US20100231727A1 - Digital camera with built-in lens calibration table - Google Patents

Digital camera with built-in lens calibration table Download PDF

Info

Publication number
US20100231727A1
US20100231727A1 US12/558,227 US55822709A US2010231727A1 US 20100231727 A1 US20100231727 A1 US 20100231727A1 US 55822709 A US55822709 A US 55822709A US 2010231727 A1 US2010231727 A1 US 2010231727A1
Authority
US
United States
Prior art keywords
dust
lens
image
camera
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/558,227
Inventor
Eran Steinberg
Yury Prilutsky
Peter Corcoran
Adrian Zamfir
Petronel Bigioi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fotonation Ltd
Original Assignee
Fotonation Ireland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/676,820 external-priority patent/US7676110B2/en
Application filed by Fotonation Ireland Ltd filed Critical Fotonation Ireland Ltd
Priority to US12/558,227 priority Critical patent/US20100231727A1/en
Assigned to FOTONATION IRELAND LTD. reassignment FOTONATION IRELAND LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STEINBERG, ERAN, BIGIOI, PETRONEL, CORCORAN, PETER, PRILUTSKY, YURY, ZAMFIR, ADRIAN
Publication of US20100231727A1 publication Critical patent/US20100231727A1/en
Assigned to TESSERA TECHNOLOGIES IRELAND LIMITED reassignment TESSERA TECHNOLOGIES IRELAND LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FOTONATION IRELAND LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • H04N1/4097Removing errors due external factors, e.g. dust, scratches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • H04N23/811Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation by dust removal, e.g. from surfaces of the image sensor or processing of the image signal output by the electronic image sensor

Definitions

  • This invention related to digital photography and in particular, automated means of in-camera removal of blemish artifacts from images captured and digitized in a digital process.
  • Image correction has been studied in relation to display devices, output apparatuses such as printers, and digital sensors.
  • Image correction of dust artifacts can be used to recreate missing data, also referred to as in-painting or restoration, or undoing degradation of data, which still remains in the image, also referred to as image enhancement. It is desired to have a system including a digital camera and an external device or apparatus that can facilitate a defect detection and/or correction process involving sophisticated and automated computerized programming techniques.
  • the manifestation of the dust in a digital image is a function of several optical parameters representing the dust. It is desired to create a system that can automatically take into account changes in such parameters without the need to manually recalibrate the camera system.
  • a digital camera that automatically corrects dust artifact regions within acquired images by compiling a statistical dust map from multiple images acquired under different image acquisition conditions.
  • An optical system that acquires an image includes a lens assembly and an aperture stop. The optical system may include the lens specific calibration information in the lens.
  • An electronic sensor array is disposed approximately at an image focal plane of the optical system for collecting image data according to spectral information associated with multiple pixels that collectively correspond to the image.
  • Digital processing electronics include a processor for converting the image data to digital data and processing the digital data according to programming instructions.
  • a memory has programming instructions stored therein for performing a method of automatic image correction of dust defect regions.
  • the specific dust map can be converted between different lenses and between different focal lens setting of the same lens, using a numerical formulae. By doing so, only a single dust map needs to be maintained.
  • the further digitally-acquired images may include different images than the originally acquired images.
  • the method may further include correcting pixels corresponding to correlated dust artifact regions within each of the original images based on the associated statistical dust map.
  • the method may include correcting pixels corresponding to correlated dust artifact regions within the original images based on the associated statistical dust map.
  • the method may include digitally-acquiring additional images with the digital camera, repeating the determining and associating, and updating the statistical dust map including updating the mapped dust regions based on the additional dust artifact determining and associating.
  • the image correction method may be performed on a processed image after being converted from raw format to a known red, green, blue representation.
  • the correcting may include replacing pixels within the one or more digitally-acquired images with new pixels.
  • the correcting may include enhancing the values of pixels within the one or more digitally-acquired images.
  • the dust artifact determining may include loading the statistical dust map, loading extracted parameter information of a present image, performing calculations within the statistical dust map having extracted parameter variable-dependencies, and comparing dust artifact detection data with the extracted parameter dependent statistical dust map data.
  • the dust artifact determining may also include loading the statistical dust map, loading extracted parameter information of a present image, loading extracted parameters regarding the optical system, performing a calculation for relating the statistical dust map with the present image according to a selected value of an extracted parameter which is otherwise uncorrelated between the present image and the dust map, and comparing dust artifact detection data with the now correlated statistical dust map data.
  • the suspected dust artifact regions of at least two images may include shadow regions and aura regions, and wherein the method may include a first comparison of the shadow regions and a second comparison of the aura regions.
  • the method may include digitally-acquiring further images with the digital camera, repeating the determining and associating, and updating the statistical dust map including updating the mapped dust regions based on the further dust artifact determining and associating.
  • the determining may include determining probabilities that certain pixels correspond to dust artifact regions within the acquired images based at least in part on a comparison of suspected dust artifact regions within two or more digitally-acquired images, or on a pixel analysis of the suspected dust artifact regions in view of predetermined characteristics indicative of the presence of a dust artifact region, or both.
  • the determining may be based at least in part on a comparison of suspected dust artifact regions within two or more digitally-acquired images.
  • the correcting may further include replacing the pixels within the one or more digitally-acquired images with new pixels.
  • the correcting may include enhancing the values of pixels within the one or more digitally-acquired images.
  • FIG. 2 illustrates the creation of a dust map
  • FIG. 4 illustrates a procedure for detecting and removing dust from images in accordance with a preferred embodiment.
  • FIG. 6 illustrates an adjustment of a dust map based on focal length.
  • FIG. 7 illustrates the plot describing a the dust movement as a function of a lookup table for a hypothetical map.
  • FIG. 9 schematically illustrates coupling components of a lens assembly with a housing of a digital image acquisition device.
  • Table 1 lists potential Extracted Lens Parameters.
  • Dust specs The preferred embodiment takes advantage of the fact that many images may have repetitive manifestation of the same defects such as dust, dead-pixels, burnt pixels, scratches etc. Collectively, for this specifications all possible defects of this nature are referred to in this application as dust-specs or dust defects. The effects of those dust specs on digital images are referred to herein as dust artifacts.
  • the acquisition device may be a multi-functional electronic appliance wherein one of the major functional capabilities of the appliance is that of a digital camera.
  • a digital camera examples can be include digital camera, a hand held computer with an imaging sensor, a scanner, a hand-set phone, or another digital device with built in optics capable of acquiring images. Acquisition devices can also include film scanners with a area-capture CCDs, as contrasted, e.g., with a line scan mechanism.
  • D-SLR Digital Single Lens Reflex Camera. A digital camera where the viewfinder is receiving the image from the same optical system as the sensor does. Many D-SLR, as for SLR cameras have the capability to interchange its lenses, this exposing the inner regions of the camera to dust.
  • N Number of images in a collection.
  • HIdp Number of images for occurrence to be high dust probability HSdp Number of recurring specs for label a region to be high dust probability p(hsdp) Probability threshold for high confidence of a dust spec.
  • Hidp ⁇ HSdp I—is a generic image I(x,y) pixel in location x horizontal, y vertical of Image I pM is a continuous tone, or a statistical representation of a dust map dM is a binary dust map created form some thresholding of pM.
  • the preferred embodiments may advantageously utilize a single dust map for dust detection and/or correction techniques rather than creating a dust map for each instance of dust artifact having its own shape and opacity depending on extracted parameters relating to the imaging acquisition process.
  • a single map may suffice for each lens or for multiple lenses, and for multiple focal lengths, multiple apertures, and/or other extracted parameters as described in more detail below.
  • This information which is typical to a lens and a camera combination may be stored in an external application, in the camera processing memory and or inside the lens.
  • the preferred embodiment then extracts the shooting parameters ( 120 ).
  • Such parameters include, but not limited to data about: the generic device parameters such as Camera parameters ( 122 ) such as Camera name, Model, and conversion data specific for the camera, Lens parameters ( 124 ) such as Lens brand, lens type, lens focal length, and lens calibration tables; as well as parameters specific to the image ( 126 ) such as focal length at acquisition, aperture range, aperture at acquisition.
  • some parameter, in particular on the lens ( 126 ) and the camera ( 124 ) may be also stored in the device, which is the acquisition device such as the digital camera or the processing device such as the personal computer or digital printer.
  • the device which is the acquisition device such as the digital camera or the processing device such as the personal computer or digital printer.
  • Such information which may include parameters such as exit pupil, exit pupil distance regarding the lens, or distance of dust to sensor for the camera.
  • lenses store some data in the lens which can communicate this information to the camera processor.
  • the specific lens calibration tables can may be stored as part of the lens assembly. By doing so, the introduction of new lenses to the market may automatically be supported with the shipping lenses.
  • a table with such data may look like:
  • the information may be related to the resulting dust shift, as opposed to the theoretical parameters such as an exit pupil, of which the shift is calculated. Such can be in a form of a lookup table or a analytical formulae.
  • FIG. 7 describes the graph created by such an analytical formulae or a lookup table describing the dust movement as a function of the focal length for a specific hypothetical lens.
  • This plot describes a 70-210 mm zoom lens ( 1000 ). The interpolated values based on measured 7 points 1010 .
  • the X-axis, 1020 defines the focal length in mm of the lens.
  • the plot describes a dust spot in a distance of roughly 960-970 away from the optical center of the lens, as illustrated in the Y-axis, 1030 . As can be seen, the dust shifts as a function of the focal length.
  • This extrapolated empirical result, 1050 corroborates the analytical explanation provided in FIG. 6 . It is important to note that the plot may and is different based on the actual lens configuration and is neither predictable by the mere focal length nor is monotonicity guaranteed.
  • the dust map may also include meta-data that are different the list of extracted parameters.
  • that which is described as being extracted parameter dependent or encoded with extracted parameter value data or based on a value of an extracted parameter can be broadened to include other meta-data than just the extracted parameters listed in Table 1.
  • certain meta-data are dependent on parameters existing at the time of acquisition of the image, and can be camera-specific or not. The amount of ambient light available will depend on whether there is artificial lighting nearby or whether it is a cloudy day. Discussion of meta-data as it relates to image acquisition is found in more detail at U.S.
  • the algorithm describes a loop operation on all images ( 110 ).
  • the first step is to open a dust map ( 130 ). If non exists ( 132 ) the system will create a new dust map ( 200 ) as further described in FIG. 2 .
  • the software will try to correlate one of the maps ( 300 ) to the image. This process is further illustrated in FIG. 3 .
  • this correlation refers to the adjustment of the shooting conditions to some accepted standard.
  • the acquisition conditions in particular refer to the aperture and the focal length.
  • the correlation process is interchangeable and can be done by adjusting the image to the map or adjusting the map to the image.
  • both acquired image and dust map should be adjusted to some common ground.
  • Such an example may happen when the ma is calculated based on a aperture that the lens does not reach or a different lens than the one used with different optical configuration.
  • this process ( 300 ) as called by 130 may be used to adjust the map onto a new map and from that stage onwards continue with a single map.
  • a new dust map is created ( 200 ).
  • the preferred embodiment checks if the dust specs as defined in the dust map are of high enough confidence level to being dust regions ( 150 ). The statistical decision as to the way such confidence level is calculated for the dust map in general and for the individual dust specs, is further discussed with reference to FIG. 2 and FIG. 3 . If the confidence level is low, the image is added to the updating of the dust map ( 200 ). If after the image is added, the confidence level is high enough ( 152 ) the software continues to the dust removal process ( 160 ). Otherwise, the software progresses to the next image ( 170 ).
  • a dust map is considered valid after 10 images are analyzed, and a dust spec is considered valid after a dust is detected in 8 images.
  • the software may continue to the stage of updating the dust map ( 200 ) but upon completion (10 images) there is a valid dust map, and the software will continue to the correction ( 160 ) stage. If however the loop ( 110 ) is only on its 1 st to 8 th image, no correction will be done.
  • images can be corrected retroactively after the dust map reached high enough confidence. This can be used for batch processing or off line processing or processing where the information is gathered in parallel to the needed correction.
  • the confidence level is not enough ( 152 , NOT-YET) the images, a pointer to them, or a list of them, or a representation of them, that were used to create the dust map are stored in temporary location ( 154 ) and when the dust map is ready ( 151 -YES), the software will retroactively remove the dust from all those images ( 156 ). In this fashion, all images, including ones that originally did not hold sufficient statistical information, may be corrected.
  • This process may be executed as a loop on every dust spec in the dust map, with a stage of detection and correction ( 400 , followed by 166 and 168 ).
  • the process can be implemented where all dust specs are detected first ( 162 ) and then all dust specs are corrected ( 164 ).
  • the decision as to the sequence of operations varies based on implementation criteria such as what regions of the image are in memory, and should not affect the nature of the preferred embodiment.
  • the lens specific calibration table is in the lens, there is a need for a intermediate step which converts the dust map via those tables.
  • a single dust map may suffice to accommodate changes in lenses and changes in the focal length of a single zoom lens.
  • FIG. 8 This workflow is illustrated in FIG. 8 which describes the workflow of correcting and detecting the dust images based on a lens lookup table and a dust map. If a dust map exists ( 1120 ) the system will load the dust map ( 1130 ). Otherwise, a new dust map needs to be created as described in FIG. 2 ( 200 ). The lens calibration is then loaded ( 1140 ). Such map can exist in the software, or as part of the lens memory, or in the camera. Together with the dust map, a specific manifestation of the dust for the specific camera, lens combination is created ( 1160 ). This is the dust map that will be used to remove dust specs ( 400 ) from an image ( 404 ) that was captured using the specific lens on the specific camera.
  • this process can receive a collection of images as defined by FIG. 1 blocks 108 and 109 ) or one image at a time is refereed to this process, as defined by FIG. 1 block 110 .
  • the function is called with a single image ( 220 -SINGLE IMAGE) the image is directly provided to the calculations ( 270 ).
  • multiple images are provided ( 240 MULTIPLE IMAGES), then an initial step is to define if there are more than enough images for defining the map. This step is designed to optimize the creation process for dust in case of large amount of images.
  • the sequence of images is based on a few criteria such as: giving more weight to images shot last, and if images are shot in a relatively small time frame, allocate the sequence is large distances to try and assure minimal repetitiveness between similar images that may have been taken of the same object with little movement.
  • the sequence will not be limited to the number of images (HIDP) because it may well be that some regions will not have enough data in them to evaluate the dust. This may happen in cases where part of the image is very dark in some of the images.
  • a potential sequence may be:
  • this process of sampling the series ( 270 ) may also decide not to use images that are taken too long from the last image. In this case, for example if image 1-15 were taken in July and 16-30 were taken in November, this process may limit the new map to 16-30 or even create two different maps, one for images 1-15 and the other for 16-30.
  • Another criteria for creating a new set or checking for new dust is the type of lens. If a lens is changed, it means that the CCD-cavity was exposed to potential new dust. This may trigger a new set of images to be looked at. It may also be an indication that the camera was serviced, or that the photographer cleaned the camera. Of course, if there is a parameter that defines when a camera was serviced, this will trigger the creation of a new dust map.
  • the next loop ( 270 - 271 ) defines the marking of each region and the addition of the region to the dust map if it is not already there.
  • regions in an image There are three type of regions in an image, the first are images with sufficient information to detect whether they are of dust nature. As an example, dark regions surrounded by a light background. Other criteria may be regions with a relatively small color saturation.
  • the second group are regions that are definitely non-dust. Such regions are for example all clear, or of high color saturation. Other regions are inconclusive such as a very dark segment of the image. In this case, it will be hard to detect the dust even if it was part of the image.
  • the criteria may be reversed, if the pixels appear as a white spec in the image.
  • the criteria may be also a function of the acquisition parameter. For example an image with a open aperture may all be marked as in-decisive, because the dust may not appear on the image. Regions that are potentially dust are marked ( 292 ) and then added to the dust mask ( 294 ). The addition may be the creation of a new dust spec on the map or the modification of the probability function or the confidence level counter for the region. Regions that are most likely non-dust are marked ( 282 ) and then added to the dust mask ( 284 ). The addition may be the creation of a new dust spec on the map or the modification of the probability function or the confidence level counter for the region. The additions of the regions needs to be normalized to the shooting conditions as defined by the dust map ( 300 ) if this step was not performed prior to entering this function, as optionally defined in FIG. 1 .
  • each region is compared ( 500 ) with the map dust to se if there is no case where the monotonicity is broken, i.e. a region that was of high probability to be dust is now non dust.
  • FIG. 3 illustrates the process of correlating the image to a default settings of the dust map.
  • This process defines correlating the image o the dust map, the dust map to a new dust map of the dust map to the mage.
  • this correlation refers to the adjustment of the shooting conditions to some accepted standard.
  • the acquisition conditions in particular refer to the aperture and the focal length.
  • the correlation process is interchangeable and can be done by adjusting the image to the map or adjusting the map to the image. In some cases both acquired image and dust map may be adjusted to some common ground. Such an example may happen when the ma is calculated based on a aperture that the lens does not reach or a different lens than the one used with different optical configuration.
  • this process ( 300 ) may be used to adjust the map onto a new map and from that stage onwards continue with a single map.
  • the dust map is being loaded ( 112 ) and the default data on which the map was generated is extracted ( 310 ).
  • Such data may include the lens type, the aperture and the focal length associated with the default state.
  • the information form the acquired image ( 304 ) is extracted ( 320 ) and compared to the one of the dust map.
  • the two main adjustments between the dust map and the image are based on focal length, and on aperture, each creating a different artifact that should be addressed.
  • Knowledge of the phenomena may assist in creating a better detection and correction of the dust artifact.
  • analysis of the image and the modification of the dust as changed by aperture and focal length may provide the necessary mathematical model that describes transformation that defines the changes to the dust as a function of change in the lens type, the focal length and the aperture.
  • the following step is modification of the map and or the image based no focal length ( 900 ), and based on aperture ( 800 ).
  • the following steps are further defined with reference to FIG. 6 and FIG. 5 , respectively.
  • FIG. 4 defines the preferred process of detecting and removing the dust from the image.
  • the input is the image I is loaded, if it is not already in memory ( 404 ) and the correlated dust map is cM is loaded ( 402 ) if already not in memory.
  • the process of detecting and removing the dust is done per dust spec. This process is highly parallelized and can be performed as a single path over the image, or in strips.
  • the flexibility of performing the operation on the entire image, or in portions, combined with the correlation or as a separate process, enables a flexible implementation of the algorithm based on external restrictions defined by the hardware, the run time environment, memory restrictions and processing speed.
  • the acquisition information and the corresponding dust map default setup are extracted in blocks 326 and 312 respectively. Then, for each dust spec in the image 810 , the size of the region that is still obscured by the dust is calculated, as defined by mathematical model. In some cases, when the aperture is very open, this region may decline to 0. In others, where the aperture is still very close, the size may be close to the size of the dust.
  • This step, 820 may be done as a preparation stage, and kept in a database, which can be loaded.
  • the process then splits in two.
  • the fully obscured region will be marked in 834 pixel by pixel 832 in a loop 834 , 835 and will be treated by the in-painting process as defined in FIG. 4 .
  • a semi opaque dust map is created in the loop 840 , 841 for each pixel.
  • Each of the pixels 842 is assigned an OPACITY value 844 , based on the mathematical model as described previously.
  • the dust spec that is only partially attenuated will go through a inverse filtering of the information already there, as described in FIG. 4 block 430 , with a specific embodiment in block 432 .
  • the process of the inverse filtering may take into account the signal to noise ratio to avoid enhancing data which is not part of the original image.
  • the region around the dust may have a over-shoot similar to a high pass filter, which may manifest itself in the form of an aura around the dust. This aura should to be taken into account before enhancing the regions.
  • FIG. 6 describes the adjustment of the Dust Map based on the Focal length, and the specific lens.
  • the shift of the dust spec as a function of focal length for a specific lens is a function of equation (13 the thickness of the window—tw, which is constant for a given camera and exit pupil position—Pe, which varies based on the lens system and the variable focal length in case of a zoom lens.
  • the pertinent information is loaded, as described in FIG. 3 , namely the focal lens and lens type of the camera, 326 , the focal length and lens type in the dust map 312 and the camera distance of dust to the sensor 318 .
  • the process then goes through all knows dust specs in the image 910 and calculates the shift of the dust.
  • the coordinates of the pixel are calculated from the center of the optical path, 922 , and the shift is calculated 924 .
  • the shift is a function of the location (x,y) of the dust, in the case where dust is far enough from the origin, the dust shape will not change. It is then sufficient to calculate only a shift of a single point and displace the entire dust spec accordingly.
  • the regions, which are only partially attenuated due to the change in aperture, may be calculated in this stage 940 , 941 , if calculated already as illustrated in FIG. 8 , or alternatively, the displacement can be calculated first as explained in blocks 942 , 944 .
  • FIG. 9 schematically illustrates coupling components of a lens assembly with a housing of a digital image acquisition device, such as a Digital Single Lens Reflex Camera, or D-SLR.
  • the lens assembly 1310 includes various optical, mechanical, electrical and/or signal connector or coupling components for coupling with a camera housing 1320 or other digital image acquisition device housing or component.
  • the components 1310 and 1320 are illustrated as if the lens 1310 has been uncoupled from the camera 1320 and rotated 180° about an axis running vertically within the plane of the drawing between the components 1310 and 1320 .
  • the physical or mechanical coupling between the lens assembly 1310 and the camera body 1320 is preferably via a bayonet type mount where the grooves on the lens bayonet mount 1332 fit into the camera body mount 1330 .
  • electrical connectors 1342 on the back of the lens align and couple with the camera electrical connectors 1340 on the camera body.
  • FIG. 9 also shows a further coupling component pair including a meter coupling ridge 1350 and an Ai coupling lever 1352 .
  • an aperture indexing post 1360 of the lens 1310 is shown which couples with an aperture control coupling lever 1362 of the camera 1320 .
  • the interface of the camera 1320 and the lens 1310 may preferably include several other coupling or related optical system components including a focal length indexing ridge and focal length indexing pin pair, a lens-type signal notch and a lens-type signal pin pair, and a lens speed indexing post and a lens speed indexing lever pair.
  • a focal length indexing ridge and focal length indexing pin pair may be including within the electrical connectors 1340 , 1342 , or may be otherwise disposed at the interface.
  • an AF coupling on the lens 1310 may be coupled with an AF coupler on the camera body 1320 , e.g., in a exemplary Auto focus lens Nikkor® AF lens-type and Nikon® F4 body configuration.
  • information may be communicated to and from the lens 1310 to the camera 1320 .
  • Such information may include details about the lens type, magnification and/or focal length. Other parameters may include aperture size or F-number.
  • the camera 1320 may send information to the lens 1310 such as for setting up a focus ring or otherwise initializing or calibrating with the camera 1220 or other digital image acquisition device 1220 .
  • the connectors illustrated at FIG. 13 and/or those just described above, may also serve to transfer lens calibration data relevant to dust or dust artifact within images.
  • the lens parameter data may be entirely digitally-stored in a permanent memory of the lens assembly, and may be made accessible by a camera micro-processor upon electrical, optical or other signal coupling.
  • This data may be in the form of analytical parameters, such as exit pupil dimension, exit pupil distance regarding the lens or distance of dust to the sensor (which may often include a thickness of a protective CCD sensor cover material, such as an anti-aliasing or an optical spacer), or other parameters, and may be a table, e.g., a look up table, describing the dust movement as a function of the focal length, etc., as discrete points, or a mathematical formula describing this relationship, or otherwise as set forth above or below herein.
  • the lens calibration may include other data such as the effect of the aperture on the dust.
  • Values of extracted parameters relating to the optical system including the lens assembly may be embedded within the lens system, wherein by “embedded” it is meant that the information is stored or contained in whatever form within or on or in connection with the lens assembly.
  • This embedded information may preferably be within a Flash or EEPROM memory chip.
  • RAM is an alternative, but is “volatile” and would utilize a back-up battery to retain data storage when powered down.
  • the lens system would use the power of the camera when coupled thereto, and only alternatively would have its own separate power supply or back-up battery. In that case, the battery may be charged when coupled to the camera.
  • relevant data is advantageously digitally-stored in an optical calibration table, or otherwise, within a chip or other digital storage component of the lens holder 1310 , optical mount 1310 or the lens 1310 itself.
  • the table is made accessible to a camera-resident micro-processor through the electrical or other signal connections 1340 , 1342 .
  • the lens When the lens is mechanically coupled to the camera, it is also electrically and/or optically coupled specifically so that the camera can access the table. There may be an automatic focusing that is facilitated by this communication, or other advantage involving this feature of camera-lens communication.
  • the lens parameter data may be entirely digitally-stored in the table that is made accessible by the camera micro-processor upon coupling, although it may be made accessible by a switch that turns on the connection or by opening the shutter or by other preparation for taking a picture.
  • an electronic circuit may be designed to detect maximum and minimum dust detection probability thresholds while acquiring pixels in an image (see also U.S. Pat. No. 5,065,257 to Yamada, hereby incorporated by reference).
  • Such a circuit can produce signals that may be used in processing to eliminate regions, which lie outside the expected range of signal values due to the presence of dust particles or similar optical defects, or alternatively to accept, maintain or eliminate regions as dust artifact regions based on whether a probability determination exceeds, high or low, a certain threshold or thresholds.
  • a technique may be used to detect and provide a remedy for the effects of dust on a digitally-acquired image (see also U.S. Pat. No. 5,214,470 to Denber, hereby incorporated by reference).
  • An image may be recorded within a digital camera or external processing device such as may be signal coupled with a digital camera for receiving digital output image information or a device that acquires or captures a digital image of a film image.
  • the digital image may be compared with the film image, e.g., through a logical XOR operation, which may be used to remove dust spots or blemishes picked up in the acquisition of the digital image from the film image.
  • Multiple images may be processed and stationary components, which are common between images, may be detected and assigned a high probability of being a defect (see also U.S. Pat. No. 6,035,072 to Read, hereby incorporated by reference). Additional techniques, which may be employed to modify defect probability, may include median filtering, sample area detection and dynamic adjustment of scores. This dynamic defect detection process allows defect compensation, defect correction and alerting an operator of the likelihood of defects.
  • Dark field imaging may be employed to determine the location of defects in digital images from digital cameras or film scanners (see U.S. Pat. No. 5,969,372 to Stavely et al., and US patent application 2001/0035491 to Ochiai et al., each hereby incorporated by reference).
  • a normal imaging of a object with normal illumination may be followed by a second imaging using different wavelengths, e.g., infrared illumination. Dust, fingerprints, scratches and other optical defects are typically opaque to infrared light. Thus the second image produces an image with dark spots indicating the position of dust particles or other defects.
  • a linear scanning element moves across a document (or the document is moved across the scanning element) and an image of the document is built up as a series of rows of pixels. This differs from the physical configuration of a camera in which a shutter illuminates a X-Y sensor array with a single burst of light. In both cases, though, dust may lie close to the imaging plane of the sensor.
  • a technique for correcting image defects from a digital image acquisition device such as a digital camera may involve repeated imaging of an object or other image, where each successive image-acquisition involves different properties or extracted parameters or meta-data related properties, such as variable angles of incidence or variable lighting or contrast parameters, and the results of these repeated scans may be combined to form a reference image from which defect corrections are made (see also US patent application 2003/0118249 to Edgar, hereby incorporated by reference).
  • a decision on whether a defect in a image acquired by a field-based digital camera is to be corrected or not may be based on a balancing of considerations. For example, the likely damage to surrounding defect-free portions of the image may be balanced against the likelihood of successfully achieving correction of the defect.
  • Image processing means may be employed where the detection or correction of defects in a digital image may be based solely on analysis of the digital image, or may employ techniques directly related to the image acquisition process, or both.
  • Anomalous image regions may be determined based on the difference between the gradient of an image at a set of grid points and the local mean of the image gradient (e.g., see U.S. Pat. No. 6,233,364 to Krainiouk et al., hereby incorporated by reference).
  • Such technique can reduce the number of false positives in “noisy” regions of an image such as those representing leaves in a tree, or pebbles on a beach.
  • the technique may involve culling the list based on a one or more or a series of heuristic measures based on color, size, shape and/or visibility measures where these are designed to indicate how much an anomalous region resembles a dust fragment or a scratch.
  • Techniques and means to correct scratches in a digitized images may employ a binary mask to indicate regions requiring repair or noise removal, and sample and repair windows to indicate (i) the region requiring repair and/or (ii) a similar “sample” area of the image (see also U.S. Pat. No. 5,974,194 to Hirani et al., hereby incorporated by reference).
  • Data from a sample window may be converted to a frequency domain and combined with frequency domain data of the repair window. When a low-pass filter is applied, it has the effect to remove the sharp, or high-frequency, scratch defect.
  • Techniques and means of detecting potential defect or “trash” regions within an image may be based on a comparison of the quadratic differential value of a pixel with a pre-determined threshold value (see U.S. Pat. No. 6,125,213 to Morimoto, hereby incorporated by reference).
  • the technique may involve correcting “trash” regions within an image by successively interpolating from the outside of the “trash” region to the inside of this region.
  • Techniques and means to automate the removal of narrow elongated distortions from a digital image may utilize the characteristics of image regions bordering the distortion (see also U.S. Pat. No. 6,266,054 to Lawton et al., hereby incorporated by reference).
  • User input may be used to mark the region of the defect, or automatic defect detection may be employed according to a preferred embodiment herein, while the process of delineating the defect is also preferably also performed automatically.
  • Techniques and means to allow automatic alteration of defects in digital images may be based upon a defect channel having a signal proportional to defects in the digital image (see also U.S. Pat. No. 6,487,321 to Edgar et al., hereby incorporated by reference). This allows areas of strong defect to be more easily excised without causing significant damage to the area of the image surrounding the defect.
  • Image defect may be repaired as facilitated by the replacement data.
  • the repairing of the unwanted image region may preserves image textures within the repaired (or “healed”) region of the image.
  • Techniques and means may be employed to detect defect pixels by applying a median filter to an image and subtracting the result from the original image to obtain a difference image (see also US patent application 2003/0039402 and WIPO patent application WO-03/019473, both to Robins et al., each hereby incorporated by reference). This may be used to construct at least one defect map. Correction of suspected defect pixels may be achieved by replacing those pixel values with pixel values from the filtered image and applying a smoothing operation. User input may or may not be utilized to further mitigate the effects of uncertainty in defect identification.
  • Techniques and means for retouching binary image data which is to be presented on a view-screen or display apparatus may be employed to eliminate local screen defects such as dust and scratch artifacts (see also US patent application 2002/0154831 to Hansen et al., hereby incorporated by reference).
  • the production of visible moiré effects in the retouched image data may be avoided by the replacement of small areas.
  • a digital video camera with sensor apparatus may incorporate a defect detecting mode (see also U.S. Pat. No. 5,416,516 to Kameyama et al., hereby incorporated by reference).
  • the locations of detected defect pixels may be retained in the memory of the camera apparatus and replacement pixel values may be interpolated by processing algorithms, which convert the sensor data into digital image pixel values.
  • Techniques may be employed to automatically detect and compensate for defective sensor pixels within a video camera (see also U.S. Pat. No. 5,625,413 to Katoh et al., hereby incorporated by reference).
  • the camera may perform a dark current measurement on start-up when the camera iris is closed and by raising the gain can determine pixels which exhibit abnormally high dark current values.
  • the location of these pixels is recorded in camera memory as a LUT with associated threshold brightness values associated with each pixel depending on its dark current value; defect compensation depends on input image brightness and ambient temperature.
  • An image pickup apparatus such as a digital camera, may have a detachable lens (see also US patent application 2003/0133027 to Itoh, hereby incorporated by reference).
  • the camera may incorporate a defect detecting section and a compensation section for sensor defects. Further the defect detection operation may become active when the camera lens is detached so that the user will not miss an opportunity to take a picture due to the operation of the defect detection process.
  • the techniques of the preferred and alternative embodiments described herein may be applied to cameras with interchangeable lens units (see also U.S. Pat. No. 5,003,399 to Masayoshi et. al., hereby incorporated by reference).
  • the camera and lens have first and second computers in the camera body and lens device, respectively, which are programmed so that, in an initial communication sequence there between after the selected lens device is mounted on the camera body, the second microcomputer transmits optical characteristic data for the respective lens device to the first microcomputer in response to a data transmission request signal from the latter.
  • a process may be employed for detecting and mapping dust on the surface of a photographic element (see also U.S. Pat. No. 5,436,979 to Gray et al., hereby incorporated by reference). This may be applied in the context of a verification procedure to follow a cleaning process for a range of photographic elements including film negatives and slides. Statistical information may be obtained and presented to an operator to allow control of the cleaning process. Detailed location information may be also recorded and/or correction means may be also provided for dust defects on a photographic element.
  • Techniques and means to create a defect map for a digital camera or similar imaging device may use an all-white reference background (see also US patent application 2002/0093577 to Kitawaki et al., hereby incorporated by reference).
  • the location of any dust or scratch defects may be recorded in the memory of the imaging apparatus when the camera is in a dust detection mode and when a dust correction circuit is active any image data co-located with a defect may be corrected for the presence of dust by elimination, color correction or interpolation based on the surrounding pixels.
  • a list of dust locations corresponding to f-stop settings is pre recorded at the time of manufacturing in a LUT in the camera memory. Any effect of different focal length may be simplified to the effect of the change in dust due to magnification of the lens.
  • techniques for dynamically obtaining a defect map based on the processing of a plurality of images may be employed with this technique.
  • Techniques may be also employed involving correcting for dust defects based on the geometry of said dust or of the camera. Further techniques may involve utilizing camera metadata to enhance the detection and correction processes for defects. Further techniques may involve alerting the user that the camera requires servicing due to excessive levels of dust contamination, or the fact that it is not only magnification but the actual lens that is mounted.
  • a method of detecting and removing dust artifacts may be performed in the acquisition device as a post-processing stage prior to saving the image. This method may further include an analysis of the image in its raw format immediately followed by the acquisition stage.
  • the method of detecting and removing dust artifacts can be performed on an external device as part of a download or capture process. Such external device may be a personal computer, a storage device, and archival device, a display or a printing device or other device.
  • the method of detecting and removing dust artifacts can be performed in part in the acquisition device and the external device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

A digital camera that automatically corrects dust artifact regions within acquired images by compiling a dust map includes an optical system for acquiring an image with a corresponding dust calibration table for such optical system, including a lens assembly and an aperture stop, in which the corresponding dust calibration map can reside. A transformation between the dust map and the specific lens calibration table, enables the use for a single dust map in multiple instances of lenses and focal length, without the need to recalibrate the digital camera for each instance.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of application Ser. No. 10/842,244, filed on May 10, 2004, entitled, “Digital Camera With Built-In Lens Calibration Table,” which is a continuation in part of application Ser. No. 10/676,820, filed on Sep. 30, 2003, entitled, “Determination Of Need To Service A Camera Based On Detection of Blemishes in Digital Images”, which is related to a family of patent applications filed on the same day, including U.S. application Ser. No. 10/676,823, entitled, “Automated Statistical Self-Calibrating Detection and Removal of Blemishes in Digital Images Based On Multiple Occurrences Of Dust In Images”; U.S. application Ser. No. 10/677,134, entitled, “Automated Statistical Self-Calibrating Detection and Removal of Blemishes in Digital Images Based on a Dust Map Developed From Actual Image Data”; U.S. application Ser. No. 10/677,139, entitled, “Automated Statistical Self-Calibrating Detection and Removal of Blemishes in Digital Images Dependent Upon Changes in Extracted Parameter Values”; U.S. application Ser. No. 10/677,140, entitled, “Automated Statistical Self-Calibrating Detection and Removal of Blemishes in Digital Images Based on Determining Probabilities Based On Image Analysis Of Single Images”; U.S. application Ser. No. 10/676,845, entitled, “Method Of Detecting and Correcting Dust in Digital Images Based On Aura And Shadow Region Analysis”; U.S. application Ser. No. 10/676,716, entitled, “Digital Camera”; and U.S. application Ser. No. 10/676,835, entitled, “Digital Image Acquisition And Processing System”, which are all hereby incorporated by reference.
  • BACKGROUND
  • 1. Field of the Invention
  • This invention related to digital photography and in particular, automated means of in-camera removal of blemish artifacts from images captured and digitized in a digital process.
  • 2. Description of the Related Art
  • Many problems are caused by dust in particular and blemishes in general on imaging devices in general and digital imaging devices in particular. In the past, two distinct forms of image processing included providing means to detect and locate dust, scratches or similar defects and providing means to remedy the distortions caused by the defects to an image. It is desired to have an advantageous system that combines these functions, and can automatically detect and correct for the effects of dust, scratches and other optical blemishes.
  • Image correction has been studied in relation to display devices, output apparatuses such as printers, and digital sensors. Image correction of dust artifacts can be used to recreate missing data, also referred to as in-painting or restoration, or undoing degradation of data, which still remains in the image, also referred to as image enhancement. It is desired to have a system including a digital camera and an external device or apparatus that can facilitate a defect detection and/or correction process involving sophisticated and automated computerized programming techniques.
  • The manifestation of the dust in a digital image is a function of several optical parameters representing the dust. It is desired to create a system that can automatically take into account changes in such parameters without the need to manually recalibrate the camera system.
  • SUMMARY OF THE INVENTION
  • A digital camera is provided that automatically corrects dust artifact regions within acquired images by compiling a statistical dust map from multiple images acquired under different image acquisition conditions. An optical system that acquires an image includes a lens assembly and an aperture stop. The optical system may include the lens specific calibration information in the lens. An electronic sensor array is disposed approximately at an image focal plane of the optical system for collecting image data according to spectral information associated with multiple pixels that collectively correspond to the image. Digital processing electronics include a processor for converting the image data to digital data and processing the digital data according to programming instructions. A memory has programming instructions stored therein for performing a method of automatic image correction of dust defect regions.
  • The specific dust map can be converted between different lenses and between different focal lens setting of the same lens, using a numerical formulae. By doing so, only a single dust map needs to be maintained.
  • The further digitally-acquired images may include different images than the originally acquired images. The method may further include correcting pixels corresponding to correlated dust artifact regions within each of the original images based on the associated statistical dust map. The method may include correcting pixels corresponding to correlated dust artifact regions within the original images based on the associated statistical dust map. The method may include digitally-acquiring additional images with the digital camera, repeating the determining and associating, and updating the statistical dust map including updating the mapped dust regions based on the additional dust artifact determining and associating.
  • The image correction method may be performed on a processed image after being converted from raw format to a known red, green, blue representation. The correcting may include replacing pixels within the one or more digitally-acquired images with new pixels. The correcting may include enhancing the values of pixels within the one or more digitally-acquired images.
  • The dust artifact determining may include loading the statistical dust map, loading extracted parameter information of a present image, performing calculations within the statistical dust map having extracted parameter variable-dependencies, and comparing dust artifact detection data with the extracted parameter dependent statistical dust map data. The dust artifact determining may also include loading the statistical dust map, loading extracted parameter information of a present image, loading extracted parameters regarding the optical system, performing a calculation for relating the statistical dust map with the present image according to a selected value of an extracted parameter which is otherwise uncorrelated between the present image and the dust map, and comparing dust artifact detection data with the now correlated statistical dust map data. The suspected dust artifact regions of at least two images may include shadow regions and aura regions, and wherein the method may include a first comparison of the shadow regions and a second comparison of the aura regions.
  • The method may include digitally-acquiring further images with the digital camera, repeating the determining and associating, and updating the statistical dust map including updating the mapped dust regions based on the further dust artifact determining and associating. The determining may include determining probabilities that certain pixels correspond to dust artifact regions within the acquired images based at least in part on a comparison of suspected dust artifact regions within two or more digitally-acquired images, or on a pixel analysis of the suspected dust artifact regions in view of predetermined characteristics indicative of the presence of a dust artifact region, or both. The determining may be based at least in part on a comparison of suspected dust artifact regions within two or more digitally-acquired images.
  • The correcting may further include replacing the pixels within the one or more digitally-acquired images with new pixels. The correcting may include enhancing the values of pixels within the one or more digitally-acquired images.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a main workflow of a dust removal process in accordance with a preferred embodiment.
  • FIG. 2 illustrates the creation of a dust map.
  • FIG. 3 outlines a correlation of a dust map to image shooting parameters.
  • FIG. 4 illustrates a procedure for detecting and removing dust from images in accordance with a preferred embodiment.
  • FIG. 5 illustrates an adjustment of the dust map based on aperture.
  • FIG. 6 illustrates an adjustment of a dust map based on focal length.
  • FIG. 7 illustrates the plot describing a the dust movement as a function of a lookup table for a hypothetical map.
  • FIG. 8 describes the workflow of correcting and detecting the dust images based on a lens lookup table and a dust map.
  • FIG. 9 schematically illustrates coupling components of a lens assembly with a housing of a digital image acquisition device.
  • BRIEF DESCRIPTION OF TABLES
  • Table 1 lists potential Extracted Lens Parameters.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS SOME DEFINITIONS
  • Dust specs: The preferred embodiment takes advantage of the fact that many images may have repetitive manifestation of the same defects such as dust, dead-pixels, burnt pixels, scratches etc. Collectively, for this specifications all possible defects of this nature are referred to in this application as dust-specs or dust defects. The effects of those dust specs on digital images are referred to herein as dust artifacts.
  • Acquisition device: the acquisition device may be a multi-functional electronic appliance wherein one of the major functional capabilities of the appliance is that of a digital camera. Examples can be include digital camera, a hand held computer with an imaging sensor, a scanner, a hand-set phone, or another digital device with built in optics capable of acquiring images. Acquisition devices can also include film scanners with a area-capture CCDs, as contrasted, e.g., with a line scan mechanism. D-SLR: Digital Single Lens Reflex Camera. A digital camera where the viewfinder is receiving the image from the same optical system as the sensor does. Many D-SLR, as for SLR cameras have the capability to interchange its lenses, this exposing the inner regions of the camera to dust.
  • A few parameters are defined as part of the process:
  • N Number of images in a collection.
    HIdp Number of images for occurrence to be high dust probability
    HSdp Number of recurring specs for label a region to be high dust probability
    p(hsdp) Probability threshold for high confidence of a dust spec.
    N dp Number of images to determine that a region is not dust
    p(ndp) Probability threshold to determine that a region is not a dust region.
    Most likely Hidp<=HSdp
    I—is a generic image
    I(x,y) pixel in location x horizontal, y vertical of Image I
    pM is a continuous tone, or a statistical representation of a dust map
    dM is a binary dust map created form some thresholding of pM.
  • Mathematical Modeling of the Optical System
  • Prior to understanding the preferred embodiments described herein, it is helpful to understand the mathematical modeling of the camera optical system. This model is defined in application Ser. No. 10/676,820 filed on Sep. 30, 2003, which is incorporated by reference. With this modeling, the preferred embodiments may advantageously utilize a single dust map for dust detection and/or correction techniques rather than creating a dust map for each instance of dust artifact having its own shape and opacity depending on extracted parameters relating to the imaging acquisition process. With an ability to model the optical system and its variability, a single map may suffice for each lens or for multiple lenses, and for multiple focal lengths, multiple apertures, and/or other extracted parameters as described in more detail below. This information, which is typical to a lens and a camera combination may be stored in an external application, in the camera processing memory and or inside the lens.
  • The main workflow of detecting and removing the dust from an image is illustrated in FIG. 1. The preferred embodiment is activated in four different cases. In general, this preferred embodiment works for removing dust form a collection of images having the same acquisition device. Specifically, a user may acquire a picture on her digital camera (as illustrated in Block 101). Alternatively (102), a user may open a single image on a external device such as a personal computer, open (103) a folder of images on an external device or open a collection of images on a digital printing device (104).
  • The preferred embodiment then extracts the shooting parameters (120). Such parameters include, but not limited to data about: the generic device parameters such as Camera parameters (122) such as Camera name, Model, and conversion data specific for the camera, Lens parameters (124) such as Lens brand, lens type, lens focal length, and lens calibration tables; as well as parameters specific to the image (126) such as focal length at acquisition, aperture range, aperture at acquisition.
  • In addition, some parameter, in particular on the lens (126) and the camera (124) may be also stored in the device, which is the acquisition device such as the digital camera or the processing device such as the personal computer or digital printer. Such information, which may include parameters such as exit pupil, exit pupil distance regarding the lens, or distance of dust to sensor for the camera. Currently lenses store some data in the lens which can communicate this information to the camera processor. In one embodiment of this invention the specific lens calibration tables can may be stored as part of the lens assembly. By doing so, the introduction of new lenses to the market may automatically be supported with the shipping lenses.
  • A table with such data may look like:
  • TABLE 1
    Extracted Lens Parameters
    Field Example of data Category
    Lens Nikon lens
    Manufacturer
    Lens Type AF 24 mm-45 mm f2.8-f3.5 lens
    Focal Length 38 mm Acquisition data
    Aperture f-16 Acquisition data
    Dust distance 0.156 mm   Camera data
    Exit pupil 19 mm Lens data
    Exit pupil
    230 mm  Lens data
    distance

    Alternatively, the information may be related to the resulting dust shift, as opposed to the theoretical parameters such as an exit pupil, of which the shift is calculated.
    Such can be in a form of a lookup table or a analytical formulae.
  • FIG. 7 describes the graph created by such an analytical formulae or a lookup table describing the dust movement as a function of the focal length for a specific hypothetical lens. This plot describes a 70-210 mm zoom lens (1000). The interpolated values based on measured 7 points 1010. The X-axis, 1020 defines the focal length in mm of the lens. The plot describes a dust spot in a distance of roughly 960-970 away from the optical center of the lens, as illustrated in the Y-axis, 1030. As can be seen, the dust shifts as a function of the focal length. This extrapolated empirical result, 1050, corroborates the analytical explanation provided in FIG. 6. It is important to note that the plot may and is different based on the actual lens configuration and is neither predictable by the mere focal length nor is monotonicity guaranteed.
  • The dust map may also include meta-data that are different the list of extracted parameters. Moreover, that which is described as being extracted parameter dependent or encoded with extracted parameter value data or based on a value of an extracted parameter can be broadened to include other meta-data than just the extracted parameters listed in Table 1. For example, certain meta-data are dependent on parameters existing at the time of acquisition of the image, and can be camera-specific or not. The amount of ambient light available will depend on whether there is artificial lighting nearby or whether it is a cloudy day. Discussion of meta-data as it relates to image acquisition is found in more detail at U.S. patent application Ser. No. 10/608,810, filed Jun. 26, 2003, and is hereby incorporated by reference.
  • In the case that the system deals with multiple images (as defined in 102, 103, and 104), the algorithm describes a loop operation on all images (110). The first step is to open a dust map (130). If non exists (132) the system will create a new dust map (200) as further described in FIG. 2. In the case that the system has a few dust maps (130) the software will try to correlate one of the maps (300) to the image. This process is further illustrated in FIG. 3. In particular this correlation refers to the adjustment of the shooting conditions to some accepted standard. The acquisition conditions in particular refer to the aperture and the focal length. The correlation process is interchangeable and can be done by adjusting the image to the map or adjusting the map to the image. In some cases both acquired image and dust map should be adjusted to some common ground. Such an example may happen when the ma is calculated based on a aperture that the lens does not reach or a different lens than the one used with different optical configuration. Alternatively, such as in the case of a new lens, this process (300) as called by 130, may be used to adjust the map onto a new map and from that stage onwards continue with a single map.
  • If no dust map corresponds with the image (140), a new dust map is created (200). When a dust map does correspond (140) to the image, the preferred embodiment checks if the dust specs as defined in the dust map are of high enough confidence level to being dust regions (150). The statistical decision as to the way such confidence level is calculated for the dust map in general and for the individual dust specs, is further discussed with reference to FIG. 2 and FIG. 3. If the confidence level is low, the image is added to the updating of the dust map (200). If after the image is added, the confidence level is high enough (152) the software continues to the dust removal process (160). Otherwise, the software progresses to the next image (170).
  • For example, a dust map is considered valid after 10 images are analyzed, and a dust spec is considered valid after a dust is detected in 8 images. In this case, after analyzing 9 images, the software may continue to the stage of updating the dust map (200) but upon completion (10 images) there is a valid dust map, and the software will continue to the correction (160) stage. If however the loop (110) is only on its 1st to 8th image, no correction will be done.
  • As an additional embodiment, images can be corrected retroactively after the dust map reached high enough confidence. This can be used for batch processing or off line processing or processing where the information is gathered in parallel to the needed correction. In this embodiment, when the confidence level is not enough (152, NOT-YET) the images, a pointer to them, or a list of them, or a representation of them, that were used to create the dust map are stored in temporary location (154) and when the dust map is ready (151-YES), the software will retroactively remove the dust from all those images (156). In this fashion, all images, including ones that originally did not hold sufficient statistical information, may be corrected.
  • Referring to the dust detection and correction process (160). This process may be executed as a loop on every dust spec in the dust map, with a stage of detection and correction (400, followed by 166 and 168). Alternatively, the process can be implemented where all dust specs are detected first (162) and then all dust specs are corrected (164). The decision as to the sequence of operations varies based on implementation criteria such as what regions of the image are in memory, and should not affect the nature of the preferred embodiment. In the case where the lens specific calibration table is in the lens, there is a need for a intermediate step which converts the dust map via those tables. By having this functionality, a single dust map may suffice to accommodate changes in lenses and changes in the focal length of a single zoom lens.
  • This workflow is illustrated in FIG. 8 which describes the workflow of correcting and detecting the dust images based on a lens lookup table and a dust map. If a dust map exists (1120) the system will load the dust map (1130). Otherwise, a new dust map needs to be created as described in FIG. 2 (200). The lens calibration is then loaded (1140). Such map can exist in the software, or as part of the lens memory, or in the camera. Together with the dust map, a specific manifestation of the dust for the specific camera, lens combination is created (1160). This is the dust map that will be used to remove dust specs (400) from an image (404) that was captured using the specific lens on the specific camera.
  • In this scenario, if a user lads anew lens, 1180, there is no need for a new calibration stage, but rather a computational step (1160) is preferred to calculate the new Specific Dust Map.
  • Referring to FIG. 2 where the Dust map creation and updating is defined:
  • this process can receive a collection of images as defined by FIG. 1 blocks 108 and 109) or one image at a time is refereed to this process, as defined by FIG. 1 block 110. If the function is called with a single image (220-SINGLE IMAGE) the image is directly provided to the calculations (270). If multiple images are provided (240 MULTIPLE IMAGES), then an initial step is to define if there are more than enough images for defining the map. This step is designed to optimize the creation process for dust in case of large amount of images.
  • The sequence of the images that are to be referenced based on the original collection of N images as defined in FIG. 1 blocks 102, 103 or 104. The sequence of images is based on a few criteria such as: giving more weight to images shot last, and if images are shot in a relatively small time frame, allocate the sequence is large distances to try and assure minimal repetitiveness between similar images that may have been taken of the same object with little movement. The sequence will not be limited to the number of images (HIDP) because it may well be that some regions will not have enough data in them to evaluate the dust. This may happen in cases where part of the image is very dark in some of the images.
  • As an example: if N (number of images in a selection)=30; and HSdp (number of images needed to determining map)=10; and all images were shot in a space of an hour; then a potential sequence may be:
  • 30, 27, 24, 21, 18, 15, 12, 9, 6, 3, 29, 26, 25 . . . , 2, 28, 25, . . . 1
  • Alternatively if the same 30 images were taken over a period of a month it may be beneficial to select images sequentially (last one shot is the first to be calculated):
  • 30, 29, 28, . . . 20, 19 . . . 2, 1
  • And in some cases this process of sampling the series (270) may also decide not to use images that are taken too long from the last image. In this case, for example if image 1-15 were taken in July and 16-30 were taken in November, this process may limit the new map to 16-30 or even create two different maps, one for images 1-15 and the other for 16-30.
  • In a different criteria, the parameters as extracted from the images will determine the sequence and the number of dust maps that are to be calculated. For example if a folder contains N=30 images, where 15 were taken with one camera and 15 with another, the sampling step (270) may create two map sets.
  • Another criteria for creating a new set or checking for new dust is the type of lens. If a lens is changed, it means that the CCD-cavity was exposed to potential new dust. This may trigger a new set of images to be looked at. It may also be an indication that the camera was serviced, or that the photographer cleaned the camera. Of course, if there is a parameter that defines when a camera was serviced, this will trigger the creation of a new dust map.
  • Those familiar in the art may be able to determine the right combinations of creating this sequence based on the nature of the dust, the camera and the lens. The next loop (270-271) defines the marking of each region and the addition of the region to the dust map if it is not already there. There are three type of regions in an image, the first are images with sufficient information to detect whether they are of dust nature. As an example, dark regions surrounded by a light background. Other criteria may be regions with a relatively small color saturation. The second group are regions that are definitely non-dust. Such regions are for example all clear, or of high color saturation. Other regions are inconclusive such as a very dark segment of the image. In this case, it will be hard to detect the dust even if it was part of the image. Alternatively when looking for over exposed or “dead pixels” the criteria may be reversed, if the pixels appear as a white spec in the image.
  • The criteria may be also a function of the acquisition parameter. For example an image with a open aperture may all be marked as in-decisive, because the dust may not appear on the image. Regions that are potentially dust are marked (292) and then added to the dust mask (294). The addition may be the creation of a new dust spec on the map or the modification of the probability function or the confidence level counter for the region. Regions that are most likely non-dust are marked (282) and then added to the dust mask (284). The addition may be the creation of a new dust spec on the map or the modification of the probability function or the confidence level counter for the region. The additions of the regions needs to be normalized to the shooting conditions as defined by the dust map (300) if this step was not performed prior to entering this function, as optionally defined in FIG. 1.
  • This loop continues over all regions of the image (271). Alternatively (272), each region is compared (500) with the map dust to se if there is no case where the monotonicity is broken, i.e. a region that was of high probability to be dust is now non dust.
  • FIG. 3 illustrates the process of correlating the image to a default settings of the dust map. This process defines correlating the image o the dust map, the dust map to a new dust map of the dust map to the mage. In particular this correlation refers to the adjustment of the shooting conditions to some accepted standard. The acquisition conditions in particular refer to the aperture and the focal length. The correlation process is interchangeable and can be done by adjusting the image to the map or adjusting the map to the image. In some cases both acquired image and dust map may be adjusted to some common ground. Such an example may happen when the ma is calculated based on a aperture that the lens does not reach or a different lens than the one used with different optical configuration. Alternatively, in case of a new lens, this process (300) may be used to adjust the map onto a new map and from that stage onwards continue with a single map.
  • To begin with, the dust map is being loaded (112) and the default data on which the map was generated is extracted (310). Such data may include the lens type, the aperture and the focal length associated with the default state. In concurrence, the information form the acquired image (304) is extracted (320) and compared to the one of the dust map.
  • A explained in the mathematical model of the optical system, the two main adjustments between the dust map and the image are based on focal length, and on aperture, each creating a different artifact that should be addressed. Knowledge of the phenomena may assist in creating a better detection and correction of the dust artifact. Alternatively, in a separate embodiment, analysis of the image and the modification of the dust as changed by aperture and focal length, may provide the necessary mathematical model that describes transformation that defines the changes to the dust as a function of change in the lens type, the focal length and the aperture.
  • Referring to FIG. 3, after extracting the data, the following step is modification of the map and or the image based no focal length (900), and based on aperture (800). The following steps are further defined with reference to FIG. 6 and FIG. 5, respectively.
  • Following the two steps (800 and 900); the Image and the Dust Map are considered to be correlated. The correlated map cM is no longer binary because it defines both the shift and the fall off which is continuous. FIG. 4 defines the preferred process of detecting and removing the dust from the image. The input is the image I is loaded, if it is not already in memory (404) and the correlated dust map is cM is loaded (402) if already not in memory.
  • The process of detecting and removing the dust is done per dust spec. This process is highly parallelized and can be performed as a single path over the image, or in strips. The flexibility of performing the operation on the entire image, or in portions, combined with the correlation or as a separate process, enables a flexible implementation of the algorithm based on external restrictions defined by the hardware, the run time environment, memory restrictions and processing speed.
  • The acquisition information and the corresponding dust map default setup are extracted in blocks 326 and 312 respectively. Then, for each dust spec in the image 810, the size of the region that is still obscured by the dust is calculated, as defined by mathematical model. In some cases, when the aperture is very open, this region may decline to 0. In others, where the aperture is still very close, the size may be close to the size of the dust. Alternatively, This step, 820, may be done as a preparation stage, and kept in a database, which can be loaded.
  • The process then splits in two. The fully obscured region will be marked in 834 pixel by pixel 832 in a loop 834, 835 and will be treated by the in-painting process as defined in FIG. 4. A semi opaque dust map, is created in the loop 840, 841 for each pixel. Each of the pixels 842, is assigned an OPACITY value 844, based on the mathematical model as described previously. The dust spec that is only partially attenuated will go through a inverse filtering of the information already there, as described in FIG. 4 block 430, with a specific embodiment in block 432. The process of the inverse filtering may take into account the signal to noise ratio to avoid enhancing data which is not part of the original image. For example, the region around the dust may have a over-shoot similar to a high pass filter, which may manifest itself in the form of an aura around the dust. This aura should to be taken into account before enhancing the regions.
  • FIG. 6 describes the adjustment of the Dust Map based on the Focal length, and the specific lens. As described before, the shift of the dust spec as a function of focal length for a specific lens is a function of equation (13 the thickness of the window—tw, which is constant for a given camera and exit pupil position—Pe, which varies based on the lens system and the variable focal length in case of a zoom lens. Given an image and a dust map, the pertinent information is loaded, as described in FIG. 3, namely the focal lens and lens type of the camera, 326, the focal length and lens type in the dust map 312 and the camera distance of dust to the sensor 318.
  • The process then goes through all knows dust specs in the image 910 and calculates the shift of the dust. The coordinates of the pixel are calculated from the center of the optical path, 922, and the shift is calculated 924. Alternatively to going through each pixel, in order to speed the process, only the periphery of the dust spec can be calculated and the rest will be filled in. Moreover, because the shift is a function of the location (x,y) of the dust, in the case where dust is far enough from the origin, the dust shape will not change. It is then sufficient to calculate only a shift of a single point and displace the entire dust spec accordingly. The regions, which are only partially attenuated due to the change in aperture, may be calculated in this stage 940, 941, if calculated already as illustrated in FIG. 8, or alternatively, the displacement can be calculated first as explained in blocks 942,944.
  • In some cases, it is impossible to get the data on the exit pupil, nor the distance the dust is from the sensor. Such cases may be when the application has no a-priori knowledge of the camera or the lens that was used.
  • FIG. 9 schematically illustrates coupling components of a lens assembly with a housing of a digital image acquisition device, such as a Digital Single Lens Reflex Camera, or D-SLR. The lens assembly 1310 includes various optical, mechanical, electrical and/or signal connector or coupling components for coupling with a camera housing 1320 or other digital image acquisition device housing or component. In FIG. 9, the components 1310 and 1320 are illustrated as if the lens 1310 has been uncoupled from the camera 1320 and rotated 180° about an axis running vertically within the plane of the drawing between the components 1310 and 1320.
  • The physical or mechanical coupling between the lens assembly 1310 and the camera body 1320 is preferably via a bayonet type mount where the grooves on the lens bayonet mount 1332 fit into the camera body mount 1330. When the lens is correctly held within the camera bayonet, electrical connectors 1342 on the back of the lens align and couple with the camera electrical connectors 1340 on the camera body. FIG. 9 also shows a further coupling component pair including a meter coupling ridge 1350 and an Ai coupling lever 1352. In addition, an aperture indexing post 1360 of the lens 1310 is shown which couples with an aperture control coupling lever 1362 of the camera 1320. Although not shown in the illustration of FIG. 9, the interface of the camera 1320 and the lens 1310 may preferably include several other coupling or related optical system components including a focal length indexing ridge and focal length indexing pin pair, a lens-type signal notch and a lens-type signal pin pair, and a lens speed indexing post and a lens speed indexing lever pair. One or more of these coupling component pairs may be including within the electrical connectors 1340, 1342, or may be otherwise disposed at the interface. Moreover, an AF coupling on the lens 1310 may be coupled with an AF coupler on the camera body 1320, e.g., in a exemplary Auto focus lens Nikkor® AF lens-type and Nikon® F4 body configuration.
  • Through these connectors, information may be communicated to and from the lens 1310 to the camera 1320. Such information may include details about the lens type, magnification and/or focal length. Other parameters may include aperture size or F-number. Conversely, the camera 1320 may send information to the lens 1310 such as for setting up a focus ring or otherwise initializing or calibrating with the camera 1220 or other digital image acquisition device 1220. The connectors illustrated at FIG. 13 and/or those just described above, may also serve to transfer lens calibration data relevant to dust or dust artifact within images. The lens parameter data may be entirely digitally-stored in a permanent memory of the lens assembly, and may be made accessible by a camera micro-processor upon electrical, optical or other signal coupling. This data may be in the form of analytical parameters, such as exit pupil dimension, exit pupil distance regarding the lens or distance of dust to the sensor (which may often include a thickness of a protective CCD sensor cover material, such as an anti-aliasing or an optical spacer), or other parameters, and may be a table, e.g., a look up table, describing the dust movement as a function of the focal length, etc., as discrete points, or a mathematical formula describing this relationship, or otherwise as set forth above or below herein. The lens calibration may include other data such as the effect of the aperture on the dust.
  • Values of extracted parameters relating to the optical system including the lens assembly may be embedded within the lens system, wherein by “embedded” it is meant that the information is stored or contained in whatever form within or on or in connection with the lens assembly. This embedded information may preferably be within a Flash or EEPROM memory chip. RAM is an alternative, but is “volatile” and would utilize a back-up battery to retain data storage when powered down. Preferably, the lens system would use the power of the camera when coupled thereto, and only alternatively would have its own separate power supply or back-up battery. In that case, the battery may be charged when coupled to the camera.
  • Therefore, relevant data is advantageously digitally-stored in an optical calibration table, or otherwise, within a chip or other digital storage component of the lens holder 1310, optical mount 1310 or the lens 1310 itself. The table is made accessible to a camera-resident micro-processor through the electrical or other signal connections 1340, 1342. When the lens is mechanically coupled to the camera, it is also electrically and/or optically coupled specifically so that the camera can access the table. There may be an automatic focusing that is facilitated by this communication, or other advantage involving this feature of camera-lens communication. The lens parameter data may be entirely digitally-stored in the table that is made accessible by the camera micro-processor upon coupling, although it may be made accessible by a switch that turns on the connection or by opening the shutter or by other preparation for taking a picture.
  • There are many alternatives to the preferred embodiments described above that may be incorporated into a image processing method, a digital camera, and/or an image processing system including a digital camera and an external image processing device that may be advantageous. For example, an electronic circuit may be designed to detect maximum and minimum dust detection probability thresholds while acquiring pixels in an image (see also U.S. Pat. No. 5,065,257 to Yamada, hereby incorporated by reference). Such a circuit can produce signals that may be used in processing to eliminate regions, which lie outside the expected range of signal values due to the presence of dust particles or similar optical defects, or alternatively to accept, maintain or eliminate regions as dust artifact regions based on whether a probability determination exceeds, high or low, a certain threshold or thresholds. A technique may be used to detect and provide a remedy for the effects of dust on a digitally-acquired image (see also U.S. Pat. No. 5,214,470 to Denber, hereby incorporated by reference). An image may be recorded within a digital camera or external processing device such as may be signal coupled with a digital camera for receiving digital output image information or a device that acquires or captures a digital image of a film image. The digital image may be compared with the film image, e.g., through a logical XOR operation, which may be used to remove dust spots or blemishes picked up in the acquisition of the digital image from the film image.
  • Multiple images may be processed and stationary components, which are common between images, may be detected and assigned a high probability of being a defect (see also U.S. Pat. No. 6,035,072 to Read, hereby incorporated by reference). Additional techniques, which may be employed to modify defect probability, may include median filtering, sample area detection and dynamic adjustment of scores. This dynamic defect detection process allows defect compensation, defect correction and alerting an operator of the likelihood of defects.
  • Dark field imaging may be employed to determine the location of defects in digital images from digital cameras or film scanners (see U.S. Pat. No. 5,969,372 to Stavely et al., and US patent application 2001/0035491 to Ochiai et al., each hereby incorporated by reference). A normal imaging of a object with normal illumination may be followed by a second imaging using different wavelengths, e.g., infrared illumination. Dust, fingerprints, scratches and other optical defects are typically opaque to infrared light. Thus the second image produces an image with dark spots indicating the position of dust particles or other defects.
  • A process may involve changing any of a variety of extracted parameters (see elsewhere herein), angle of sensor relative to image plane, distance of image plane or sensor from dust specks (e.g., on window of sensor), etc., and imaging a same object with the digital camera. A comparison of the images reveals with enhanced probability the locations of dust artifact. In a camera application, the unique location of the actual dust relative to the object and to the image plane provide information about extracted parameter-dependent characteristics of dust artifact in the images. The analysis for the digital camera application depends on the “transmission”-based optical parameters of the system, i.e., the fact that light travels from a scene through the camera lens and onto the camera sensor, and not involving any substantial reflective effects. It is possible to make determinations as to where the dust actually is in the system by analyzing multiple images taken with different extracted parameters, e.g., on the sensor window, or in an image of an original object which itself is being images such as in film imaging.
  • In a scanning application, this technique can be use the face that a speck of dust will cast a shadow of a different color, geometry location, etc. with changes in extracted parameters, e.g., with a different color with increasing elongation of the shadow for each parallel row of pixels (a “rainbow” shadow, as it were). Multiple scans taken from various angles of illumination may be employed to produce an image which identifies dust defects from their shadows and the colors thereof (see U.S. Pat. No. 6,465,801 to Gann et al. and US patent applications 2002/0195577 and 2002/0158192 to Gann et al, hereby incorporated by reference). A linear scanning element moves across a document (or the document is moved across the scanning element) and an image of the document is built up as a series of rows of pixels. This differs from the physical configuration of a camera in which a shutter illuminates a X-Y sensor array with a single burst of light. In both cases, though, dust may lie close to the imaging plane of the sensor.
  • Technique may be applied as part of a photofinishing process to eliminate blemishes on a film image obtained by a digital camera (see also US patent application 2001/0041018 to Sonoda, hereby incorporated by reference). Such techniques may import previous acquired information about defects in images from a blemish detection procedure. A technique for correcting image defects from a digital image acquisition device such as a digital camera may involve repeated imaging of an object or other image, where each successive image-acquisition involves different properties or extracted parameters or meta-data related properties, such as variable angles of incidence or variable lighting or contrast parameters, and the results of these repeated scans may be combined to form a reference image from which defect corrections are made (see also US patent application 2003/0118249 to Edgar, hereby incorporated by reference).
  • A decision on whether a defect in a image acquired by a field-based digital camera is to be corrected or not may be based on a balancing of considerations. For example, the likely damage to surrounding defect-free portions of the image may be balanced against the likelihood of successfully achieving correction of the defect.
  • Image processing means may be employed where the detection or correction of defects in a digital image may be based solely on analysis of the digital image, or may employ techniques directly related to the image acquisition process, or both. Anomalous image regions may be determined based on the difference between the gradient of an image at a set of grid points and the local mean of the image gradient (e.g., see U.S. Pat. No. 6,233,364 to Krainiouk et al., hereby incorporated by reference). Such technique can reduce the number of false positives in “noisy” regions of an image such as those representing leaves in a tree, or pebbles on a beach. After determining an initial defect list by this means, the technique may involve culling the list based on a one or more or a series of heuristic measures based on color, size, shape and/or visibility measures where these are designed to indicate how much an anomalous region resembles a dust fragment or a scratch.
  • Techniques and means to correct scratches in a digitized images may employ a binary mask to indicate regions requiring repair or noise removal, and sample and repair windows to indicate (i) the region requiring repair and/or (ii) a similar “sample” area of the image (see also U.S. Pat. No. 5,974,194 to Hirani et al., hereby incorporated by reference). Data from a sample window may be converted to a frequency domain and combined with frequency domain data of the repair window. When a low-pass filter is applied, it has the effect to remove the sharp, or high-frequency, scratch defect.
  • Techniques and means of detecting potential defect or “trash” regions within an image may be based on a comparison of the quadratic differential value of a pixel with a pre-determined threshold value (see U.S. Pat. No. 6,125,213 to Morimoto, hereby incorporated by reference). The technique may involve correcting “trash” regions within an image by successively interpolating from the outside of the “trash” region to the inside of this region.
  • Techniques and means to automate the removal of narrow elongated distortions from a digital image may utilize the characteristics of image regions bordering the distortion (see also U.S. Pat. No. 6,266,054 to Lawton et al., hereby incorporated by reference). User input may be used to mark the region of the defect, or automatic defect detection may be employed according to a preferred embodiment herein, while the process of delineating the defect is also preferably also performed automatically.
  • Techniques and means to allow automatic alteration of defects in digital images may be based upon a defect channel having a signal proportional to defects in the digital image (see also U.S. Pat. No. 6,487,321 to Edgar et al., hereby incorporated by reference). This allows areas of strong defect to be more easily excised without causing significant damage to the area of the image surrounding the defect.
  • Techniques and means may be employed to generate replacement data values for an image region (see also U.S. Pat. No. 6,587,592 to Georgiev et al., hereby incorporated by reference) Image defect may be repaired as facilitated by the replacement data. Moreover, the repairing of the unwanted image region may preserves image textures within the repaired (or “healed”) region of the image.
  • Techniques and means may be employed to detect defect pixels by applying a median filter to an image and subtracting the result from the original image to obtain a difference image (see also US patent application 2003/0039402 and WIPO patent application WO-03/019473, both to Robins et al., each hereby incorporated by reference). This may be used to construct at least one defect map. Correction of suspected defect pixels may be achieved by replacing those pixel values with pixel values from the filtered image and applying a smoothing operation. User input may or may not be utilized to further mitigate the effects of uncertainty in defect identification.
  • Techniques and means for retouching binary image data which is to be presented on a view-screen or display apparatus may be employed to eliminate local screen defects such as dust and scratch artifacts (see also US patent application 2002/0154831 to Hansen et al., hereby incorporated by reference). The production of visible moiré effects in the retouched image data may be avoided by the replacement of small areas.
  • A digital video camera with sensor apparatus may incorporate a defect detecting mode (see also U.S. Pat. No. 5,416,516 to Kameyama et al., hereby incorporated by reference). The locations of detected defect pixels may be retained in the memory of the camera apparatus and replacement pixel values may be interpolated by processing algorithms, which convert the sensor data into digital image pixel values. Techniques may be employed to automatically detect and compensate for defective sensor pixels within a video camera (see also U.S. Pat. No. 5,625,413 to Katoh et al., hereby incorporated by reference). The camera may perform a dark current measurement on start-up when the camera iris is closed and by raising the gain can determine pixels which exhibit abnormally high dark current values. The location of these pixels is recorded in camera memory as a LUT with associated threshold brightness values associated with each pixel depending on its dark current value; defect compensation depends on input image brightness and ambient temperature.
  • An image pickup apparatus, such as a digital camera, may have a detachable lens (see also US patent application 2003/0133027 to Itoh, hereby incorporated by reference). The camera may incorporate a defect detecting section and a compensation section for sensor defects. Further the defect detection operation may become active when the camera lens is detached so that the user will not miss an opportunity to take a picture due to the operation of the defect detection process.
  • The techniques of the preferred and alternative embodiments described herein may be applied to cameras with interchangeable lens units (see also U.S. Pat. No. 5,003,399 to Masayoshi et. al., hereby incorporated by reference). The camera and lens have first and second computers in the camera body and lens device, respectively, which are programmed so that, in an initial communication sequence there between after the selected lens device is mounted on the camera body, the second microcomputer transmits optical characteristic data for the respective lens device to the first microcomputer in response to a data transmission request signal from the latter.
  • The techniques of the preferred and alternative embodiments described herein may be applied to printers and to imaging devices such as a digital cameras which incorporate a focusing lens system. A process may be employed for detecting and mapping dust on the surface of a photographic element (see also U.S. Pat. No. 5,436,979 to Gray et al., hereby incorporated by reference). This may be applied in the context of a verification procedure to follow a cleaning process for a range of photographic elements including film negatives and slides. Statistical information may be obtained and presented to an operator to allow control of the cleaning process. Detailed location information may be also recorded and/or correction means may be also provided for dust defects on a photographic element.
  • Techniques and means to create a defect map for a digital camera or similar imaging device may use an all-white reference background (see also US patent application 2002/0093577 to Kitawaki et al., hereby incorporated by reference). The location of any dust or scratch defects may be recorded in the memory of the imaging apparatus when the camera is in a dust detection mode and when a dust correction circuit is active any image data co-located with a defect may be corrected for the presence of dust by elimination, color correction or interpolation based on the surrounding pixels. Further, where the position of a dust defect changes with f-stop of the camera a list of dust locations corresponding to f-stop settings is pre recorded at the time of manufacturing in a LUT in the camera memory. Any effect of different focal length may be simplified to the effect of the change in dust due to magnification of the lens. In addition, techniques for dynamically obtaining a defect map based on the processing of a plurality of images may be employed with this technique.
  • Techniques may be also employed involving correcting for dust defects based on the geometry of said dust or of the camera. Further techniques may involve utilizing camera metadata to enhance the detection and correction processes for defects. Further techniques may involve alerting the user that the camera requires servicing due to excessive levels of dust contamination, or the fact that it is not only magnification but the actual lens that is mounted.
  • A method of filtering dust artifacts form an acquired digital image including multiplicity of pixels indicative of dust, the pixels forming various shapes in the image, may be employed. The method may include analyzing image information including information describing conditions under which the image was acquired and/or acquisition device-specific information. One or more regions may be determined within the digital image suspected as including dust artifact. Based at least in part on said meta-data analysis, it may be determined whether the regions are actual dust artifact.
  • A method may further include analyzing the images in comparison to a predetermined dust map to establish the validity of the dust over progressions of time. The method may further involve mapping the acquired image to a predetermined default acquisition condition based on a lens and camera calibration tables, as a function of the lens type and the focal length that was used at acquisition.
  • A method may further include mapping a dust spec as depicted in the dust map and the suspected dust specs in the acquired image based on a calculated transformation of the dust as a function of the lens and the aperture, or other extracted parameter, used to acquire the image. The actual removal of dust artifacts from an image may include a step where missing data as obscured by the dust specs is regenerated and in-painted based on analysis of the region in the image surrounding the dust spec. The actual removal of the dust artifacts from the image may also include a step where deteriorated regions primarily in the periphery of the dust spec are enhanced and restored based on knowledge of the deterioration function. The actual image retouching may include both in-painting and restoration or either one of these operations, or another image correction technique as may be understood by those skilled in the art.
  • A method of detecting and removing dust artifacts may be performed in the acquisition device as a post-processing stage prior to saving the image. This method may further include an analysis of the image in its raw format immediately followed by the acquisition stage. The method of detecting and removing dust artifacts can be performed on an external device as part of a download or capture process. Such external device may be a personal computer, a storage device, and archival device, a display or a printing device or other device. The method of detecting and removing dust artifacts can be performed in part in the acquisition device and the external device.
  • A dust detection and/or correction technique may be applied post priori to a collection of images, or individually to images as they are added to a collection. The map may be generated a priori to the introduction of an image, or dynamically and in concurrence to the introduction of new images. The method may further include steps of providing a statistical confidence level as to the fact that a certain region is indeed part of a dust spec. The method may further provide tools to determine whether the acquisition device may benefit from some maintenance. A method may be employed that may be implemented as part of a digitization process, such as correcting defects on scanning device, whether flat bed or drum, whether for hard copy documents or for film digitization. A method may be further applied to other recurring image imperfections such as dead pixels on the sensor, burnt pixels on the sensor, scratches, etc. A method of automatically determining whether to recommend servicing a digital image acquisition system including a digital camera based on dust analysis may be advantageously employed. A method of calculating parameters of an optical system may be based on analysis of the dust.
  • While an exemplary drawings and specific embodiments of the present invention have been described and illustrated, it is to be understood that that the scope of the present invention is not to be limited to the particular embodiments discussed. Thus, the embodiments shall be regarded as illustrative rather than restrictive, and it should be understood that variations may be made in those embodiments by workers skilled in the arts without departing from the scope of the present invention as set forth in the claims that follow and their structural and functional equivalents.
  • In addition, in methods that may be performed according to preferred embodiments herein, the operations have been described in selected typographical sequences. However, the sequences have been selected and so ordered for typographical convenience and are not intended to imply any particular order for performing the operations, unless a particular ordering is expressly provided or understood by those skilled in the art as being necessary.
  • Many references have been cited above herein, and in addition to that which is described as background, the invention summary, brief description of the drawings, the drawings and the abstract, these references are hereby incorporated by reference into the detailed description of the preferred embodiments, as disclosing alternative embodiments of elements or features of the preferred embodiments not otherwise set forth in detail above. A single one or a combination of two or more of these references may be consulted to obtain a variation of the preferred embodiments described in the detailed description above.

Claims (26)

1. A digital camera that automatically corrects dust artifact regions within acquired images, comprising:
(a) a main camera body and an optical system for acquiring an image including a removable lens subsystem, wherein the optical system comprises:
(i) a lens assembly,
(ii) a diaphram or other aperture adjustment unit,
(iii) an electronic control processing subsystem, and
(iv) a communications interface between said lens subsystem and an electronic processing subsystem within the main camera body;
(b) an electronic sensor array for collecting image data with multiple pixels that collectively correspond to the acquired image;
(c) a lens calibration table containing optical system data relating to said removable lens subsystem;
(d) a master dust map describing a physical manifestation of one or more dust artifacts on said sensor array;
(e) an intermediate dust map determined to match a specific lens, focal length, or aperture, or combinations thereof, and calculated as a transformation of the master dust map based at least in part on one or more parameters included in the lens calibration table;
(f) an electronic subsystem for digital processing including a processor for converting processing the digital data according to programming instructions;
(g) a communications interface between said electronic subsystem and said removable lens subsystem, and
(h) wherein the camera is configured to correct for the dust artifacts on the sensor array in an acquired image based on the intermediate dust map.
2. The camera of claim 1, wherein said lens calibration table comprises processor-readable digital code embedded within a memory component that is located inside the lens assembly.
3. The camera of claim 1, wherein said lens calibration table is located in an external application.
4. The camera of claim 1, wherein said lens calibration table is downloadable from a server.
5. The camera of claim 1, wherein said master dust map comprises a statistical dust map.
6. The camera of claim 5, wherein additional images are digitally-acquired with said digital camera, and said statistical dust map is dynamically updated.
7. The camera of claim 6, wherein said statistical map comprises probabilities based on comparisons with suspected equivalent dust artifact regions within said additional images.
8. The camera of claim 7, wherein determining of said probabilities is based on a pixel analysis of the suspected dust artifact regions in view of predetermined characteristics indicative of the presence of a dust artifact region.
9. The camera of claim 5, wherein whether said additional digitally-acquired images have non-contradicting data that said probability that certain pixels correspond to dust artifact regions within said images is validated prior to correcting pixels corresponding to correlated dust artifact regions within said images based on the manifestation of said master statistical dust map.
10. The camera of claim 1, wherein said dust artifacts are corrected on a image from raw format.
11. The camera of claim 1, wherein said dust artifacts are corrected on a processed image after being converted from raw format to a known red, green, blue representation.
12. The camera of claim 1, wherein said dust artifacts are corrected by replacing said pixels within said one or more digitally-acquired images with new pixels.
13. The camera of claim 1, wherein said dust artifacts are corrected by enhancing values of pixels within said one or more digitally-acquired images.
14. The camera of claim 1, wherein the parameters included in the lens calibration table comprise exit pupil dimension of the lens assembly, or distance of dust from a surface of the electronic sensor array that corresponds to a focal plane of the lens assembly, or both.
15. A method of automatically correcting dust artifact regions within acquired images, comprising:
(a) acquiring a digital image with a digital camera that includes an optical system including a removable lens subsystem, wherein the optical system comprises:
(i) a lens assembly,
(ii) a diaphram or other aperture adjustment unit,
(iii) an electronic control processing subsystem, and
(iv) a communications interface between said lens subsystem and an electronic processing subsystem within the main camera body; and wherein the acquiring comprises collecting image data with an electronic image sensor that includes multiple pixels that collectively correspond to the acquired image;
(b) reading a lens calibration table containing optical system data relating to said removable lens subsystem;
(c) calibrating a dust correction component with a master dust map describing a physical manifestation of one or more dust artifacts on said sensor array or one or more components of said optical system, or both; and wherein the calibrating comprises matching with an intermediate dust map a specific lens, focal length, or aperture, or combinations thereof, and including calculating the intermediate dust map as a transformation of the master dust map based at least in part on one or more parameters included in the lens calibration table;
(d) digitally processing the digital image including converting processing the digital data according to programming instructions;
(e) providing communications interfacing between said electronic subsystem and said removable lens subsystem, and
(f) correcting for the dust artifacts on the sensor array or the one or more components of the optical system, or both, in the acquired digital image based on the intermediate dust map.
16. The method of claim 15, further comprising downloading the lens calibration table from a server.
17. The method of claim 15, further comprising acquiring one or more further digital images with said digital camera and dynamically updating the master dust map based in-part on an analysis thereof.
18. The method of claim 15, further comprising converting one or more pixels corresponding to one or more dust artifacts from raw format to a known red, green, blue representation.
19. The method of claim 15, wherein the correcting comprises replacing pixels within said one or more digitally-acquired images with new pixels.
20. The method of claim 15, wherein the correcting comprises enhancing values of pixels within said one or more digitally-acquired images.
21. One or more processor-readable media having code embodied therein for programming a processor to perform a method of automatically correcting dust artifact regions within acquired digital images, wherein the method comprises:
(a) acquiring a digital image with a digital camera that includes an optical system including a removable lens subsystem, wherein the optical system comprises:
(i) a lens assembly,
(ii) a diaphram or other aperture adjustment unit,
(iii) an electronic control processing subsystem, and
(iv) a communications interface between said lens subsystem and an electronic processing subsystem within the main camera body; and wherein the acquiring comprises collecting image data with an electronic image sensor that includes multiple pixels that collectively correspond to the acquired image;
(b) reading a lens calibration table containing optical system data relating to said removable lens subsystem;
(c) calibrating a dust correction component with a master dust map describing a physical manifestation of one or more dust artifacts on said sensor array or one or more components of said optical system, or both; and wherein the calibrating comprises matching with an intermediate dust map a specific lens, focal length, or aperture, or combinations thereof, and including calculating the intermediate dust map as a transformation of the master dust map based at least in part on one or more parameters included in the lens calibration table;
(d) digitally processing the digital image including converting processing the digital data according to programming instructions;
(e) providing communications interfacing between said electronic subsystem and said removable lens subsystem, and
(f) correcting for the dust artifacts on the sensor array or the one or more components of the optical system, or both, in the acquired digital image based on the intermediate dust map.
22. The one or more processor-readable media of claim 21, wherein the method further comprises downloading the lens calibration table from a server.
23. The one or more processor-readable media of claim 21, wherein the method further comprises acquiring one or more further digital images with said digital camera and dynamically updating the master dust map based in-part on an analysis thereof.
24. The one or more processor-readable media of claim 21, wherein the method further comprises converting one or more pixels corresponding to one or more dust artifacts from raw format to a known red, green, blue representation.
25. The one or more processor-readable media of claim 21, wherein the correcting comprises replacing pixels within said one or more digitally-acquired images with new pixels.
26. The one or more processor-readable media of claim 21, wherein the correcting comprises enhancing values of pixels within said one or more digitally-acquired images.
US12/558,227 2003-09-30 2009-09-11 Digital camera with built-in lens calibration table Abandoned US20100231727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/558,227 US20100231727A1 (en) 2003-09-30 2009-09-11 Digital camera with built-in lens calibration table

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/676,820 US7676110B2 (en) 2003-09-30 2003-09-30 Determination of need to service a camera based on detection of blemishes in digital images
US10/842,244 US7590305B2 (en) 2003-09-30 2004-05-10 Digital camera with built-in lens calibration table
US12/558,227 US20100231727A1 (en) 2003-09-30 2009-09-11 Digital camera with built-in lens calibration table

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/842,244 Division US7590305B2 (en) 2003-09-30 2004-05-10 Digital camera with built-in lens calibration table

Publications (1)

Publication Number Publication Date
US20100231727A1 true US20100231727A1 (en) 2010-09-16

Family

ID=34966489

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/842,244 Active 2027-06-10 US7590305B2 (en) 2003-09-30 2004-05-10 Digital camera with built-in lens calibration table
US12/558,227 Abandoned US20100231727A1 (en) 2003-09-30 2009-09-11 Digital camera with built-in lens calibration table

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/842,244 Active 2027-06-10 US7590305B2 (en) 2003-09-30 2004-05-10 Digital camera with built-in lens calibration table

Country Status (3)

Country Link
US (2) US7590305B2 (en)
IE (1) IES20050282A2 (en)
WO (1) WO2005109853A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100321537A1 (en) * 2003-09-30 2010-12-23 Fotonation Ireland Ltd. Image Defect Map Creation Using Batches of Digital Images
US8213737B2 (en) 2007-06-21 2012-07-03 DigitalOptics Corporation Europe Limited Digital image enhancement with reference images
US8335355B2 (en) 2004-12-29 2012-12-18 DigitalOptics Corporation Europe Limited Method and component for image recognition
US8503800B2 (en) 2007-03-05 2013-08-06 DigitalOptics Corporation Europe Limited Illumination detection using classifier chains
KR20130098298A (en) 2010-07-07 2013-09-04 디지털옵틱스 코포레이션 유럽 리미티드 Real-time video frame pre-processing hardware
US8682097B2 (en) 2006-02-14 2014-03-25 DigitalOptics Corporation Europe Limited Digital image enhancement with reference images
US8692867B2 (en) 2010-03-05 2014-04-08 DigitalOptics Corporation Europe Limited Object detection and rendering for wide field of view (WFOV) image acquisition systems
US8860816B2 (en) 2011-03-31 2014-10-14 Fotonation Limited Scene enhancements in off-center peripheral regions for nonlinear lens geometries
US8896703B2 (en) 2011-03-31 2014-11-25 Fotonation Limited Superresolution enhancment of peripheral regions in nonlinear lens geometries
US9854188B2 (en) 2015-12-16 2017-12-26 Google Llc Calibration of defective image sensor elements
US11405386B2 (en) * 2018-05-31 2022-08-02 Samsung Electronics Co., Ltd. Electronic device for authenticating user and operating method thereof

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630006B2 (en) * 1997-10-09 2009-12-08 Fotonation Ireland Limited Detecting red eye filter and apparatus using meta-data
US7042505B1 (en) 1997-10-09 2006-05-09 Fotonation Ireland Ltd. Red-eye filter method and apparatus
US7738015B2 (en) * 1997-10-09 2010-06-15 Fotonation Vision Limited Red-eye filter method and apparatus
US8036458B2 (en) * 2007-11-08 2011-10-11 DigitalOptics Corporation Europe Limited Detecting redeye defects in digital images
US7689009B2 (en) * 2005-11-18 2010-03-30 Fotonation Vision Ltd. Two stage detection for photographic eye artifacts
US8494286B2 (en) 2008-02-05 2013-07-23 DigitalOptics Corporation Europe Limited Face detection in mid-shot digital images
US9692964B2 (en) 2003-06-26 2017-06-27 Fotonation Limited Modification of post-viewing parameters for digital images using image region or feature information
US7639889B2 (en) * 2004-11-10 2009-12-29 Fotonation Ireland Ltd. Method of notifying users regarding motion artifacts based on image analysis
US7680342B2 (en) 2004-08-16 2010-03-16 Fotonation Vision Limited Indoor/outdoor classification in digital images
US8989453B2 (en) 2003-06-26 2015-03-24 Fotonation Limited Digital image processing using face detection information
US8155397B2 (en) * 2007-09-26 2012-04-10 DigitalOptics Corporation Europe Limited Face tracking in a camera processor
US9129381B2 (en) * 2003-06-26 2015-09-08 Fotonation Limited Modification of post-viewing parameters for digital images using image region or feature information
US8180173B2 (en) * 2007-09-21 2012-05-15 DigitalOptics Corporation Europe Limited Flash artifact eye defect correction in blurred images using anisotropic blurring
US8948468B2 (en) * 2003-06-26 2015-02-03 Fotonation Limited Modification of viewing parameters for digital images using face detection information
US8417055B2 (en) * 2007-03-05 2013-04-09 DigitalOptics Corporation Europe Limited Image processing method and apparatus
US7702236B2 (en) * 2006-02-14 2010-04-20 Fotonation Vision Limited Digital image acquisition device with built in dust and sensor mapping capability
US7844076B2 (en) 2003-06-26 2010-11-30 Fotonation Vision Limited Digital image processing using face detection and skin tone information
US8254674B2 (en) 2004-10-28 2012-08-28 DigitalOptics Corporation Europe Limited Analyzing partial face regions for red-eye detection in acquired digital images
US7565030B2 (en) * 2003-06-26 2009-07-21 Fotonation Vision Limited Detecting orientation of digital images using face detection information
US7269292B2 (en) 2003-06-26 2007-09-11 Fotonation Vision Limited Digital image adjustable compression and resolution using face detection information
US7362368B2 (en) * 2003-06-26 2008-04-22 Fotonation Vision Limited Perfecting the optics within a digital image acquisition device using face detection
US7620218B2 (en) * 2006-08-11 2009-11-17 Fotonation Ireland Limited Real-time face tracking with reference images
US7440593B1 (en) 2003-06-26 2008-10-21 Fotonation Vision Limited Method of improving orientation and color balance of digital images using face detection information
US8170294B2 (en) * 2006-11-10 2012-05-01 DigitalOptics Corporation Europe Limited Method of detecting redeye in a digital image
US8199222B2 (en) 2007-03-05 2012-06-12 DigitalOptics Corporation Europe Limited Low-light video frame enhancement
US7471846B2 (en) * 2003-06-26 2008-12-30 Fotonation Vision Limited Perfecting the effect of flash within an image acquisition devices using face detection
US7970182B2 (en) 2005-11-18 2011-06-28 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US7587085B2 (en) * 2004-10-28 2009-09-08 Fotonation Vision Limited Method and apparatus for red-eye detection in an acquired digital image
US7920723B2 (en) 2005-11-18 2011-04-05 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US8330831B2 (en) * 2003-08-05 2012-12-11 DigitalOptics Corporation Europe Limited Method of gathering visual meta data using a reference image
US9160897B2 (en) * 2007-06-14 2015-10-13 Fotonation Limited Fast motion estimation method
US7606417B2 (en) * 2004-08-16 2009-10-20 Fotonation Vision Limited Foreground/background segmentation in digital images with differential exposure calculations
US7574016B2 (en) 2003-06-26 2009-08-11 Fotonation Vision Limited Digital image processing using face detection information
US8593542B2 (en) * 2005-12-27 2013-11-26 DigitalOptics Corporation Europe Limited Foreground/background separation using reference images
US8264576B2 (en) * 2007-03-05 2012-09-11 DigitalOptics Corporation Europe Limited RGBW sensor array
US7636486B2 (en) * 2004-11-10 2009-12-22 Fotonation Ireland Ltd. Method of determining PSF using multiple instances of a nominally similar scene
US7792970B2 (en) 2005-06-17 2010-09-07 Fotonation Vision Limited Method for establishing a paired connection between media devices
US8498452B2 (en) 2003-06-26 2013-07-30 DigitalOptics Corporation Europe Limited Digital image processing using face detection information
US8698924B2 (en) 2007-03-05 2014-04-15 DigitalOptics Corporation Europe Limited Tone mapping for low-light video frame enhancement
US7685341B2 (en) * 2005-05-06 2010-03-23 Fotonation Vision Limited Remote control apparatus for consumer electronic appliances
US8989516B2 (en) 2007-09-18 2015-03-24 Fotonation Limited Image processing method and apparatus
US20050140801A1 (en) * 2003-08-05 2005-06-30 Yury Prilutsky Optimized performance and performance for red-eye filter method and apparatus
US8520093B2 (en) * 2003-08-05 2013-08-27 DigitalOptics Corporation Europe Limited Face tracker and partial face tracker for red-eye filter method and apparatus
US9412007B2 (en) * 2003-08-05 2016-08-09 Fotonation Limited Partial face detector red-eye filter method and apparatus
US7676110B2 (en) * 2003-09-30 2010-03-09 Fotonation Vision Limited Determination of need to service a camera based on detection of blemishes in digital images
US7308156B2 (en) * 2003-09-30 2007-12-11 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images based on a dust map developed from actual image data
US7295233B2 (en) * 2003-09-30 2007-11-13 Fotonation Vision Limited Detection and removal of blemishes in digital images utilizing original images of defocused scenes
US7424170B2 (en) * 2003-09-30 2008-09-09 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images based on determining probabilities based on image analysis of single images
US7310450B2 (en) 2003-09-30 2007-12-18 Fotonation Vision Limited Method of detecting and correcting dust in digital images based on aura and shadow region analysis
US7590305B2 (en) * 2003-09-30 2009-09-15 Fotonation Vision Limited Digital camera with built-in lens calibration table
US7340109B2 (en) 2003-09-30 2008-03-04 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images dependent upon changes in extracted parameter values
US7369712B2 (en) * 2003-09-30 2008-05-06 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images based on multiple occurrences of dust in images
US20110102643A1 (en) * 2004-02-04 2011-05-05 Tessera Technologies Ireland Limited Partial Face Detector Red-Eye Filter Method and Apparatus
US8320641B2 (en) 2004-10-28 2012-11-27 DigitalOptics Corporation Europe Limited Method and apparatus for red-eye detection using preview or other reference images
US7639888B2 (en) * 2004-11-10 2009-12-29 Fotonation Ireland Ltd. Method and apparatus for initiating subsequent exposures based on determination of motion blurring artifacts
US7315631B1 (en) * 2006-08-11 2008-01-01 Fotonation Vision Limited Real-time face tracking in a digital image acquisition device
US20110102553A1 (en) * 2007-02-28 2011-05-05 Tessera Technologies Ireland Limited Enhanced real-time face models from stereo imaging
US7694048B2 (en) * 2005-05-06 2010-04-06 Fotonation Vision Limited Remote control apparatus for printer appliances
US7599577B2 (en) * 2005-11-18 2009-10-06 Fotonation Vision Limited Method and apparatus of correcting hybrid flash artifacts in digital images
JP4590355B2 (en) * 2006-01-12 2010-12-01 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2007215151A (en) 2006-01-12 2007-08-23 Canon Inc Imaging apparatus, control method thereof, and program
JP4678860B2 (en) 2006-01-24 2011-04-27 キヤノン株式会社 Imaging apparatus and control method and program thereof
WO2007095553A2 (en) 2006-02-14 2007-08-23 Fotonation Vision Limited Automatic detection and correction of non-red eye flash defects
IES20070229A2 (en) * 2006-06-05 2007-10-03 Fotonation Vision Ltd Image acquisition method and apparatus
EP2033142B1 (en) 2006-06-12 2011-01-26 Tessera Technologies Ireland Limited Advances in extending the aam techniques from grayscale to color images
JP4771539B2 (en) * 2006-07-26 2011-09-14 キヤノン株式会社 Image processing apparatus, control method therefor, and program
JP4771540B2 (en) * 2006-07-26 2011-09-14 キヤノン株式会社 Image processing apparatus, control method therefor, image processing method and program
WO2008022005A2 (en) * 2006-08-09 2008-02-21 Fotonation Vision Limited Detection and correction of flash artifacts from airborne particulates
US7403643B2 (en) * 2006-08-11 2008-07-22 Fotonation Vision Limited Real-time face tracking in a digital image acquisition device
US7916897B2 (en) 2006-08-11 2011-03-29 Tessera Technologies Ireland Limited Face tracking for controlling imaging parameters
US20080075444A1 (en) * 2006-09-25 2008-03-27 Murali Subbarao Blur equalization for auto-focusing
US8055067B2 (en) 2007-01-18 2011-11-08 DigitalOptics Corporation Europe Limited Color segmentation
WO2008104549A2 (en) 2007-02-28 2008-09-04 Fotonation Vision Limited Separating directional lighting variability in statistical face modelling based on texture space decomposition
JP4970557B2 (en) 2007-03-05 2012-07-11 デジタルオプティックス・コーポレイション・ヨーロッパ・リミテッド Face search and detection in digital image capture device
KR101159830B1 (en) 2007-03-05 2012-06-26 디지털옵틱스 코포레이션 유럽 리미티드 Red eye false positive filtering using face location and orientation
US7773118B2 (en) * 2007-03-25 2010-08-10 Fotonation Vision Limited Handheld article with movement discrimination
US7916971B2 (en) * 2007-05-24 2011-03-29 Tessera Technologies Ireland Limited Image processing method and apparatus
US20080309770A1 (en) * 2007-06-18 2008-12-18 Fotonation Vision Limited Method and apparatus for simulating a camera panning effect
US8503818B2 (en) 2007-09-25 2013-08-06 DigitalOptics Corporation Europe Limited Eye defect detection in international standards organization images
JP4951540B2 (en) * 2008-01-23 2012-06-13 ペンタックスリコーイメージング株式会社 Dust detection device and digital camera
US8212864B2 (en) * 2008-01-30 2012-07-03 DigitalOptics Corporation Europe Limited Methods and apparatuses for using image acquisition data to detect and correct image defects
US7855737B2 (en) * 2008-03-26 2010-12-21 Fotonation Ireland Limited Method of making a digital camera image of a scene including the camera user
WO2009143321A2 (en) * 2008-05-22 2009-11-26 Matrix Electronic Measuring, L.P. Stereoscopic measurement system and method
US9449378B2 (en) 2008-05-22 2016-09-20 Matrix Electronic Measuring Properties, Llc System and method for processing stereoscopic vehicle information
US8345953B2 (en) * 2008-05-22 2013-01-01 Matrix Electronic Measuring Properties, Llc Stereoscopic measurement system and method
US8249332B2 (en) 2008-05-22 2012-08-21 Matrix Electronic Measuring Properties Llc Stereoscopic measurement system and method
US8326022B2 (en) * 2008-05-22 2012-12-04 Matrix Electronic Measuring Properties, Llc Stereoscopic measurement system and method
KR101446975B1 (en) 2008-07-30 2014-10-06 디지털옵틱스 코포레이션 유럽 리미티드 Automatic face and skin beautification using face detection
US8081254B2 (en) * 2008-08-14 2011-12-20 DigitalOptics Corporation Europe Limited In-camera based method of detecting defect eye with high accuracy
US8724007B2 (en) 2008-08-29 2014-05-13 Adobe Systems Incorporated Metadata-driven method and apparatus for multi-image processing
US8340453B1 (en) 2008-08-29 2012-12-25 Adobe Systems Incorporated Metadata-driven method and apparatus for constraining solution space in image processing techniques
US8842190B2 (en) * 2008-08-29 2014-09-23 Adobe Systems Incorporated Method and apparatus for determining sensor format factors from image metadata
US8194993B1 (en) * 2008-08-29 2012-06-05 Adobe Systems Incorporated Method and apparatus for matching image metadata to a profile database to determine image processing parameters
US8368773B1 (en) 2008-08-29 2013-02-05 Adobe Systems Incorporated Metadata-driven method and apparatus for automatically aligning distorted images
US8391640B1 (en) 2008-08-29 2013-03-05 Adobe Systems Incorporated Method and apparatus for aligning and unwarping distorted images
CN101883289A (en) * 2009-05-07 2010-11-10 张冬云 Parallax reservation and parallax elimination in imaging systems of multiple-lens and multiple-sensor
US8605955B2 (en) 2009-06-29 2013-12-10 DigitalOptics Corporation Europe Limited Methods and apparatuses for half-face detection
US8379917B2 (en) 2009-10-02 2013-02-19 DigitalOptics Corporation Europe Limited Face recognition performance using additional image features
US8723912B2 (en) 2010-07-06 2014-05-13 DigitalOptics Corporation Europe Limited Scene background blurring including face modeling
US8982263B2 (en) 2010-11-11 2015-03-17 Hewlett-Packard Development Company, L.P. Blemish detection and notification in an image capture device
US8308379B2 (en) 2010-12-01 2012-11-13 Digitaloptics Corporation Three-pole tilt control system for camera module
US8723959B2 (en) 2011-03-31 2014-05-13 DigitalOptics Corporation Europe Limited Face and other object tracking in off-center peripheral regions for nonlinear lens geometries
US8982180B2 (en) 2011-03-31 2015-03-17 Fotonation Limited Face and other object detection and tracking in off-center peripheral regions for nonlinear lens geometries
TW201326799A (en) * 2011-12-21 2013-07-01 Hon Hai Prec Ind Co Ltd Particle detecting system and method for camera module
WO2013136053A1 (en) 2012-03-10 2013-09-19 Digitaloptics Corporation Miniature camera module with mems-actuated autofocus
US9294667B2 (en) 2012-03-10 2016-03-22 Digitaloptics Corporation MEMS auto focus miniature camera module with fixed and movable lens groups
WO2014072837A2 (en) 2012-06-07 2014-05-15 DigitalOptics Corporation Europe Limited Mems fast focus camera module
US9007520B2 (en) 2012-08-10 2015-04-14 Nanchang O-Film Optoelectronics Technology Ltd Camera module with EMI shield
US9001268B2 (en) 2012-08-10 2015-04-07 Nan Chang O-Film Optoelectronics Technology Ltd Auto-focus camera module with flexible printed circuit extension
US9242602B2 (en) 2012-08-27 2016-01-26 Fotonation Limited Rearview imaging systems for vehicle
US9081264B2 (en) 2012-12-31 2015-07-14 Digitaloptics Corporation Auto-focus camera module with MEMS capacitance estimator
WO2017149732A1 (en) * 2016-03-03 2017-09-08 株式会社Pfu Image reading device, control method and control program
CN109155809A (en) * 2016-03-04 2019-01-04 惠普发展公司,有限责任合伙企业 Captured image is corrected using reference picture
US10284836B2 (en) 2017-02-08 2019-05-07 Microsoft Technology Licensing, Llc Depth camera light leakage avoidance
US11367220B1 (en) * 2020-08-27 2022-06-21 Edge 3 Technologies Localization of lens focus parameter estimation and subsequent camera calibration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020038076A1 (en) * 1998-10-26 2002-03-28 Sheehan David M. Portable data collection device
US20020093577A1 (en) * 2001-01-12 2002-07-18 Reiko Kitawaki Digital camera and method of controlling operation of same
US7061648B2 (en) * 2001-01-17 2006-06-13 Canon Kabushiki Kaisha Calibration method for density in image forming apparatus
US7315658B2 (en) * 2003-09-30 2008-01-01 Fotonation Vision Limited Digital camera
US7590305B2 (en) * 2003-09-30 2009-09-15 Fotonation Vision Limited Digital camera with built-in lens calibration table
US7683946B2 (en) * 2006-02-14 2010-03-23 Fotonation Vision Limited Detection and removal of blemishes in digital images utilizing original images of defocused scenes
US20100259622A1 (en) * 2003-09-30 2010-10-14 Fotonation Vision Limited Determination of need to service a camera based on detection of blemishes in digital images

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1203057A (en) 1967-08-07 1970-08-26 Rank Organisation Ltd Improvements relating to camera systems
US3621136A (en) 1969-09-10 1971-11-16 Us Navy Automatic optical-focusing system for tv cameras
FR2386832A1 (en) 1977-04-05 1978-11-03 Commissariat Energie Atomique AUTOMATIC CORRECTION PROCEDURE FOR FOCUSING A MICROSCOPE AND A DEVICE IMPLEMENTING THIS PROCEDURE
JPS56116007A (en) 1980-02-18 1981-09-11 Olympus Optical Co Ltd Automatic focusing controller
US5065257A (en) 1985-03-20 1991-11-12 Canon Kabushiki Kaisha Image processing apparatus with means for compensating for dust., etc., on an original
US4748509A (en) 1986-09-18 1988-05-31 Victor Company Of Japan, Ltd. Focusing control and indication of information relating to an object
JP2822256B2 (en) 1990-02-15 1998-11-11 ソニー株式会社 Exposure compensation device for video camera
US5485534A (en) 1990-03-28 1996-01-16 Fuji Photo Film Co., Ltd. Method and apparatus for emphasizing sharpness of image by detecting the edge portions of the image
US5475429A (en) 1991-07-25 1995-12-12 Olympus Optical Co., Ltd. In-focus sensing device for sensing an in-focus condition using a ratio of frequency components at different positions
US5526446A (en) 1991-09-24 1996-06-11 Massachusetts Institute Of Technology Noise reduction system
US5216504A (en) 1991-09-25 1993-06-01 Display Laboratories, Inc. Automatic precision video monitor alignment system
US5541655A (en) 1991-11-05 1996-07-30 Canon Kabushiki Kaisha Image pickup device
CA2077970C (en) 1991-11-19 1999-02-23 Daniel P. Huttenlocher Optical word recognition by examination of word shape
JPH05260386A (en) 1992-03-16 1993-10-08 Sony Corp Defect picture element detection circuit for solid-state image pickup device
US5315538A (en) 1992-03-23 1994-05-24 Hughes Aircraft Company Signal processing incorporating signal, tracking, estimation, and removal processes using a maximum a posteriori algorithm, and sequential signal detection
US5214470A (en) 1992-04-09 1993-05-25 Xerox Corporation Method and apparatus for compensating for dirt or etched areas on a document platen
US5436979A (en) 1992-08-21 1995-07-25 Eastman Kodak Company Process for detecting and mapping dirt on the surface of a photographic element
US5448053A (en) 1993-03-01 1995-09-05 Rhoads; Geoffrey B. Method and apparatus for wide field distortion-compensated imaging
US6097847A (en) 1993-05-31 2000-08-01 Nec Corporation Method of and apparatus for calculating sharpness of image and apparatus for sharpening image
JP3014895B2 (en) 1993-06-02 2000-02-28 株式会社日立製作所 Video camera
US5576715A (en) 1994-03-07 1996-11-19 Leica, Inc. Method and apparatus for digital processing in a global positioning system receiver
US6018363A (en) 1994-04-28 2000-01-25 Canon Kabushiki Kaisha Image sensing apparatus with optical-axis deflecting device
DE4416882C2 (en) 1994-05-13 1999-03-18 Multiline International Europa Method of aligning a film and a circuit board
US6282909B1 (en) 1995-09-01 2001-09-04 Nartron Corporation Ice making system, method, and component apparatus
US6167206A (en) 1995-09-12 2000-12-26 Smartlens Corporation Image modifiers for use in photography
JPH09128529A (en) 1995-10-30 1997-05-16 Sony Corp Removing method for noise in digital image based on projection
JPH09294215A (en) 1996-02-29 1997-11-11 Konica Corp Color condition calculation method, color correction method, color correction condition calculation method, color correction device and storage medium
US6172363B1 (en) 1996-03-05 2001-01-09 Hitachi, Ltd. Method and apparatus for inspecting integrated circuit pattern
DE19609859C1 (en) 1996-03-13 1997-07-24 Siemens Ag Method for forming an image transformation matrix for an arbitrarily shaped image segment of a digital image, by a computer
US6181378B1 (en) 1996-06-14 2001-01-30 Asahi Kogaku Kogyo Kabushiki Kaisha Image reading device
AU727503B2 (en) 1996-07-31 2000-12-14 Canon Kabushiki Kaisha Image filtering method and apparatus
KR100525521B1 (en) 1996-10-21 2006-01-27 가부시키가이샤 니콘 Exposure apparatus and exposure method
US5982941A (en) 1997-02-07 1999-11-09 Eastman Kodak Company Method of producing digital image with improved performance characteristic
US6125213A (en) 1997-02-17 2000-09-26 Canon Kabushiki Kaisha Image processing method, an image processing apparatus, and a storage medium readable by a computer
US5965896A (en) 1997-02-26 1999-10-12 Marton & Associates, Inc. Apparatus and method for scratch wear testing of thin films
US6249315B1 (en) 1997-03-24 2001-06-19 Jack M. Holm Strategy for pictorial digital image processing
US5873830A (en) 1997-08-22 1999-02-23 Acuson Corporation Ultrasound imaging system and method for improving resolution and operation
US6002436A (en) 1997-08-28 1999-12-14 Flashpoint Technology, Inc. Method and system for auto wake-up for time lapse image capture in an image capture unit
US6895109B1 (en) 1997-09-04 2005-05-17 Texas Instruments Incorporated Apparatus and method for automatically detecting defects on silicon dies on silicon wafers
US6326998B1 (en) 1997-10-08 2001-12-04 Eastman Kodak Company Optical blur filter having a four-feature pattern
US5969372A (en) 1997-10-14 1999-10-19 Hewlett-Packard Company Film scanner with dust and scratch correction by use of dark-field illumination
US6266054B1 (en) 1997-11-05 2001-07-24 Microsoft Corporation Automated removal of narrow, elongated distortions from a digital image
US6035072A (en) 1997-12-08 2000-03-07 Read; Robert Lee Mapping defects or dirt dynamically affecting an image acquisition device
JP2000050062A (en) 1998-07-31 2000-02-18 Minolta Co Ltd Image input device
JP3592147B2 (en) 1998-08-20 2004-11-24 キヤノン株式会社 Solid-state imaging device
US6233364B1 (en) 1998-09-18 2001-05-15 Dainippon Screen Engineering Of America Incorporated Method and system for detecting and tagging dust and scratches in a digital image
US6567116B1 (en) 1998-11-20 2003-05-20 James A. Aman Multiple object tracking system
US6323855B1 (en) 1998-12-10 2001-11-27 Eastman Kodak Company Sharpening edge features in digital image providing high frequency edge enhancement
US6192161B1 (en) 1999-02-12 2001-02-20 Sony Corporation Method and apparatus for adaptive filter tap selection according to a class
US6381357B1 (en) 1999-02-26 2002-04-30 Intel Corporation Hi-speed deterministic approach in detecting defective pixels within an image sensor
US20010035491A1 (en) 1999-03-15 2001-11-01 Toru Ochiai Image reading device, method and program
US6707950B1 (en) 1999-06-22 2004-03-16 Eastman Kodak Company Method for modification of non-image data in an image processing chain
AU7586800A (en) 1999-09-16 2001-04-17 Applied Science Fiction, Inc. Method and system for altering defects in a digital image
US6874420B2 (en) 1999-10-22 2005-04-05 Cc1, Inc. System and method for register mark recognition
JP5002086B2 (en) 1999-10-28 2012-08-15 キヤノン株式会社 Focus detection device and imaging device
JP4056670B2 (en) 2000-01-31 2008-03-05 富士フイルム株式会社 Image processing method
US6940545B1 (en) 2000-02-28 2005-09-06 Eastman Kodak Company Face detecting camera and method
US6842196B1 (en) 2000-04-04 2005-01-11 Smith & Nephew, Inc. Method and system for automatic correction of motion artifacts
WO2001078010A2 (en) 2000-04-07 2001-10-18 Aylward Stephen R Systems and methods for tubular object processing
JP3927353B2 (en) 2000-06-15 2007-06-06 株式会社日立製作所 Image alignment method, comparison inspection method, and comparison inspection apparatus in comparison inspection
US7149262B1 (en) 2000-07-06 2006-12-12 The Trustees Of Columbia University In The City Of New York Method and apparatus for enhancing data resolution
US6636646B1 (en) 2000-07-20 2003-10-21 Eastman Kodak Company Digital image processing method and for brightness adjustment of digital images
US6465801B1 (en) 2000-07-31 2002-10-15 Hewlett-Packard Company Dust and scratch detection for an image scanner
US6816625B2 (en) 2000-08-16 2004-11-09 Lewis Jr Clarence A Distortion free image capture system and method
US6900836B2 (en) 2001-02-19 2005-05-31 Eastman Kodak Company Correcting defects in a digital image caused by a pre-existing defect in a pixel of an image sensor
EP1251464A3 (en) 2001-03-21 2006-08-02 Heidelberger Druckmaschinen Aktiengesellschaft Method for retouching re-scanned raster binary images
US6987892B2 (en) 2001-04-19 2006-01-17 Eastman Kodak Company Method, system and software for correcting image defects
US7183532B2 (en) 2001-04-30 2007-02-27 Hewlett-Packard Development Company, L.P. Detecting a defect in an image scanner
WO2002097528A1 (en) 2001-05-30 2002-12-05 Panavision, Inc. Hand-held remote control and display system for film and video cameras and lenses
US6733136B2 (en) 2001-06-06 2004-05-11 Spitz, Inc. Video-based immersive theater
US7116354B2 (en) 2001-06-20 2006-10-03 Xenogen Corporation Absolute intensity determination for a light source in low level light imaging systems
US6999111B2 (en) 2001-06-26 2006-02-14 Eastman Kodak Company Electronic camera and system for transmitting digital over a communication network
US20030039402A1 (en) 2001-08-24 2003-02-27 Robins David R. Method and apparatus for detection and removal of scanned image scratches and dust
US6587592B2 (en) 2001-11-16 2003-07-01 Adobe Systems Incorporated Generating replacement data values for an image region
US20030098922A1 (en) 2001-11-27 2003-05-29 Creo Il. Ltd. Precision exposure setting in a digital imaging device
JP2003209749A (en) 2002-01-11 2003-07-25 Olympus Optical Co Ltd Imaging apparatus
US6795597B2 (en) 2002-03-15 2004-09-21 Optimer Photonics, Inc. Electrode and core arrangements for polarization-independent waveguides
US7120315B2 (en) 2002-03-18 2006-10-10 Creo Il., Ltd Method and apparatus for capturing images using blemished sensors
US6940554B2 (en) 2002-04-11 2005-09-06 Hewlett-Packard Development Company, L.P. Camera lens contamination detection and indication system and method
US7003136B1 (en) 2002-04-26 2006-02-21 Hewlett-Packard Development Company, L.P. Plan-view projections of depth image data for object tracking
US6919892B1 (en) 2002-08-14 2005-07-19 Avaworks, Incorporated Photo realistic talking head creation system and method
US7103208B2 (en) 2002-08-26 2006-09-05 Eastman Kodak Company Detecting and classifying blemishes on the transmissive surface of an image sensor package
JP4324402B2 (en) 2003-04-08 2009-09-02 Hoya株式会社 Camera autofocus device
JP4186699B2 (en) * 2003-05-16 2008-11-26 株式会社ニコン Imaging apparatus and image processing apparatus
US7920723B2 (en) * 2005-11-18 2011-04-05 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US7702236B2 (en) * 2006-02-14 2010-04-20 Fotonation Vision Limited Digital image acquisition device with built in dust and sensor mapping capability
US7369712B2 (en) 2003-09-30 2008-05-06 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images based on multiple occurrences of dust in images
US7340109B2 (en) 2003-09-30 2008-03-04 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images dependent upon changes in extracted parameter values
US7310450B2 (en) 2003-09-30 2007-12-18 Fotonation Vision Limited Method of detecting and correcting dust in digital images based on aura and shadow region analysis
IES20040604A2 (en) * 2003-09-30 2005-06-15 Fotonation Vision Ltd Statistical self-calibrating detection and removal of blemishes in digital images based on multiple occurrences of dust in images
US7206461B2 (en) 2003-09-30 2007-04-17 Fotonation Vision Limited Digital image acquisition and processing system
US7424170B2 (en) * 2003-09-30 2008-09-09 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images based on determining probabilities based on image analysis of single images
US7308156B2 (en) 2003-09-30 2007-12-11 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images based on a dust map developed from actual image data
US7780089B2 (en) * 2005-06-03 2010-08-24 Hand Held Products, Inc. Digital picture taking optical reader having hybrid monochrome and color image sensor array
US20060221227A1 (en) * 2005-04-05 2006-10-05 Chi-Kuei Chang Focusing method for image-capturing device
US20070095482A1 (en) * 2005-10-28 2007-05-03 Benton Frances H Label applicator
US7599577B2 (en) * 2005-11-18 2009-10-06 Fotonation Vision Limited Method and apparatus of correcting hybrid flash artifacts in digital images

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020038076A1 (en) * 1998-10-26 2002-03-28 Sheehan David M. Portable data collection device
US20020093577A1 (en) * 2001-01-12 2002-07-18 Reiko Kitawaki Digital camera and method of controlling operation of same
US7061648B2 (en) * 2001-01-17 2006-06-13 Canon Kabushiki Kaisha Calibration method for density in image forming apparatus
US7315658B2 (en) * 2003-09-30 2008-01-01 Fotonation Vision Limited Digital camera
US7590305B2 (en) * 2003-09-30 2009-09-15 Fotonation Vision Limited Digital camera with built-in lens calibration table
US20100259622A1 (en) * 2003-09-30 2010-10-14 Fotonation Vision Limited Determination of need to service a camera based on detection of blemishes in digital images
US7683946B2 (en) * 2006-02-14 2010-03-23 Fotonation Vision Limited Detection and removal of blemishes in digital images utilizing original images of defocused scenes

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100321537A1 (en) * 2003-09-30 2010-12-23 Fotonation Ireland Ltd. Image Defect Map Creation Using Batches of Digital Images
US8879869B2 (en) 2003-09-30 2014-11-04 DigitalOptics Corporation Europe Limited Image defect map creation using batches of digital images
US8369650B2 (en) 2003-09-30 2013-02-05 DigitalOptics Corporation Europe Limited Image defect map creation using batches of digital images
US8335355B2 (en) 2004-12-29 2012-12-18 DigitalOptics Corporation Europe Limited Method and component for image recognition
US8682097B2 (en) 2006-02-14 2014-03-25 DigitalOptics Corporation Europe Limited Digital image enhancement with reference images
US8503800B2 (en) 2007-03-05 2013-08-06 DigitalOptics Corporation Europe Limited Illumination detection using classifier chains
US8213737B2 (en) 2007-06-21 2012-07-03 DigitalOptics Corporation Europe Limited Digital image enhancement with reference images
US8692867B2 (en) 2010-03-05 2014-04-08 DigitalOptics Corporation Europe Limited Object detection and rendering for wide field of view (WFOV) image acquisition systems
US8872887B2 (en) 2010-03-05 2014-10-28 Fotonation Limited Object detection and rendering for wide field of view (WFOV) image acquisition systems
KR20130098298A (en) 2010-07-07 2013-09-04 디지털옵틱스 코포레이션 유럽 리미티드 Real-time video frame pre-processing hardware
US8860816B2 (en) 2011-03-31 2014-10-14 Fotonation Limited Scene enhancements in off-center peripheral regions for nonlinear lens geometries
US8896703B2 (en) 2011-03-31 2014-11-25 Fotonation Limited Superresolution enhancment of peripheral regions in nonlinear lens geometries
US8947501B2 (en) 2011-03-31 2015-02-03 Fotonation Limited Scene enhancements in off-center peripheral regions for nonlinear lens geometries
US9854188B2 (en) 2015-12-16 2017-12-26 Google Llc Calibration of defective image sensor elements
US11405386B2 (en) * 2018-05-31 2022-08-02 Samsung Electronics Co., Ltd. Electronic device for authenticating user and operating method thereof

Also Published As

Publication number Publication date
IES20050282A2 (en) 2005-12-14
US7590305B2 (en) 2009-09-15
US20050068452A1 (en) 2005-03-31
WO2005109853A1 (en) 2005-11-17

Similar Documents

Publication Publication Date Title
US7590305B2 (en) Digital camera with built-in lens calibration table
US7536061B2 (en) Automated statistical self-calibrating detection and removal of blemishes in digital images based on determining probabilities based on image analysis of single images
US7206461B2 (en) Digital image acquisition and processing system
US7536060B2 (en) Automated statistical self-calibrating detection and removal of blemishes in digital images based on multiple occurrences of dust in images
US7340109B2 (en) Automated statistical self-calibrating detection and removal of blemishes in digital images dependent upon changes in extracted parameter values
US8369650B2 (en) Image defect map creation using batches of digital images
US7676110B2 (en) Determination of need to service a camera based on detection of blemishes in digital images
US7315658B2 (en) Digital camera
US7683946B2 (en) Detection and removal of blemishes in digital images utilizing original images of defocused scenes
US7310450B2 (en) Method of detecting and correcting dust in digital images based on aura and shadow region analysis
US7308156B2 (en) Automated statistical self-calibrating detection and removal of blemishes in digital images based on a dust map developed from actual image data
EP1668886B1 (en) Statistical self-calibrating detection and removal of blemishes in digital images
GB2460241A (en) Correction of optical lateral chromatic aberration
IES84112Y1 (en) Digital camera with built-in lens calibration table
IE20040604U1 (en) Automated statistical self-calibrating detection and removal of blemishes in digital images based on multiple occurrences of dust in images
IES83966Y1 (en) Automated statistical self-calibrating detection and removal of blemishes in digital images based on multiple occurrences of dust in images

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOTONATION IRELAND LTD., IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STEINBERG, ERAN;PRILUTSKY, YURY;CORCORAN, PETER;AND OTHERS;SIGNING DATES FROM 20040615 TO 20040628;REEL/FRAME:023221/0652

AS Assignment

Owner name: TESSERA TECHNOLOGIES IRELAND LIMITED, IRELAND

Free format text: CHANGE OF NAME;ASSIGNOR:FOTONATION IRELAND LIMITED;REEL/FRAME:025570/0547

Effective date: 20100531

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION