US20100201187A1 - Versatile Endless Track For Lightweight Mobile Robots - Google Patents
Versatile Endless Track For Lightweight Mobile Robots Download PDFInfo
- Publication number
- US20100201187A1 US20100201187A1 US12/694,996 US69499610A US2010201187A1 US 20100201187 A1 US20100201187 A1 US 20100201187A1 US 69499610 A US69499610 A US 69499610A US 2010201187 A1 US2010201187 A1 US 2010201187A1
- Authority
- US
- United States
- Prior art keywords
- traction
- track
- pad
- ground
- pads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D55/00—Endless track vehicles
- B62D55/08—Endless track units; Parts thereof
- B62D55/18—Tracks
- B62D55/26—Ground engaging parts or elements
- B62D55/27—Ground engaging parts or elements having different types of crampons for progression over varying ground
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D55/00—Endless track vehicles
- B62D55/08—Endless track units; Parts thereof
- B62D55/18—Tracks
- B62D55/26—Ground engaging parts or elements
- B62D55/28—Ground engaging parts or elements detachable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S180/00—Motor vehicles
- Y10S180/901—Devices for traversing vertical surfaces
Definitions
- the present invention relates to small, unmanned ground robotic vehicles. More particularly, the present invention relates to a versatile endless track for a lightweight robotic vehicle.
- Unmanned robotic vehicles can be deployed in a variety of applications and environments, including for example, search and rescue, military operations, and industrial operations. Unmanned robotic vehicles can help to avoid the need to expose humans to hazardous environments, such as unstable buildings, military conflict situations, and chemically, biologically, or nuclear contaminated environments.
- Unmanned robotic vehicles face many challenges when attempting mobility. Terrain can vary widely, including for example, bumpy or smooth surfaces, firm or soft ground, loose and shifting materials, etc. For small robotic vehicles, the challenges become even greater. A vehicle optimized for operation in one environment may perform poorly in other environments.
- endless tracks are known to provide a good compromise which allows a robotic vehicle to accommodate a large variation in terrain types while maintaining relatively good traction and maneuverability.
- tank-like vehicles using a pair of parallel endless tracks can provide high stability in some environments.
- traction performance of endless tracks can be less than desired.
- traction performance for small robotic vehicles can be poor because the robotic vehicle is relatively lightweight. Little downward force is applied to the endless track, resulting in reduced frictional forces between the endless track and the ground surface.
- the present invention includes a versatile endless track system for a lightweight robotic vehicle that helps to overcome problems and deficiencies inherent in the prior art.
- the versatile endless track system includes a flexible track on which a plurality of traction pads are disposed. At least two different traction pad types are included, where each type of traction pad has a different ground-interfacing profile designed to provide traction with respect to ground surfaces having different traction properties.
- FIG. 1 illustrates a perspective view of a versatile endless track mounted on a lightweight robotic vehicle according to an embodiment of the present invention
- FIG. 2 illustrates a perspective view of a versatile endless track in accordance with another embodiment of the present invention
- FIG. 3 illustrates a perspective view of a versatile endless track according to another embodiment of the present invention
- FIG. 4 illustrates a perspective view of a versatile endless track according to yet another embodiment of the present invention
- FIG. 5 illustrates a perspective view of one type of traction pad according to an embodiment of the present invention
- FIG. 6 illustrates a perspective view of another type of traction pad according to an embodiment of the present invention.
- FIG. 7 illustrates a flow diagram of a method for configuring an endless track with traction pads according to an embodiment of the present invention.
- the environments faced by lightweight robotic vehicle can be highly variable, as lightweight robotic vehicles may be used indoors or outdoors, on land or water.
- ground is thus used broadly within the present application to refer generally to the surface on which the lightweight robotic vehicle is operating, which can include ground, vegetation, road surface, flooring, carpet, liquid surfaces, and the like.
- the highly variable environment encountered by lightweight robotic vehicles differs from that of traditional tracked vehicles, such as tanks or earth working equipment, which typically operate in very limited environments (e.g., outdoors on unprepared surfaces).
- earth working equipment often includes cleat bars on the tracks to help provide traction in soft or slippery conditions, such as mud or soft ground.
- the cleat bars sink into and engage with the ground, helping to reduce slippage of the tracks.
- Good performance is also obtained on hard ground, because the weight of the equipment is sufficiently large to develop large downward forces which translate into high friction (and thus traction) for portions of the track in contact with the ground.
- a lightweight robotic vehicle is less able to develop large downward force, and thus different approaches to developing traction are required.
- one approach is to use cleat profiles adapted for developing traction when lightly loaded, such a solution is likely to only perform well over a relatively narrow range of environmental conditions.
- cleats might perform well when the robotic vehicle is operated over a very soft surface (e.g., sand or soil), but provide very little traction when operated over a very hard, smooth surface (e.g., glass or polished stone).
- a particular cleat or other traction device configuration is often a compromise solution that performs well over a relatively narrow range of surface conditions.
- FIG. 1 shown is an illustration of a versatile endless track, according to a first exemplary embodiment of the present invention.
- the versatile endless track shown generally at 10 , is mounted on a lightweight robotic vehicle 14 , threaded about a plurality of track supports 12 .
- the track includes a flexible track 16 .
- Disposed along the flexible track 16 are a plurality of traction pads 18 .
- Different types 20 , 22 of traction pads are included, each traction pad type having a different exposed ground-interfacing profile designed to provide traction with respect to ground surfaces having different traction properties.
- An exposed portion 26 of the flexible track 16 engages with the ground when the lightweight robotic vehicle is in operation. It will be appreciated that the exposed portion is constantly changing as the flexible track is rotated around the plurality of track supports. Sufficient traction pads 18 of each type 20 , 22 can be included so that at least one traction pad of each type is present on the exposed ground-engaging portion of the flexible track at all times.
- the flexible track 16 can be constructed in various ways.
- the flexible track can be a loop which is slid laterally over the track supports 12 .
- the track can be a long assembly which is threaded through the track supports after which ends of the flexible track are attached together to form a loop.
- the flexible track can be an elastic belt, for example of rubber or other elastomeric material.
- the flexible track can be two or more cables 19 on which the traction pads are threaded as shown in FIG. 2 in accordance with another embodiment of the present invention.
- the lightweight robotic vehicle 14 includes a drive unit which causes the versatile endless track 16 to rotate about the track supports 12 providing propulsion of the lightweight robotic.
- one of the track supports can provide a friction drive interface 13 to the flexible track.
- Friction drive interfaces 13 provide a benefit in that the flexible track need not include gear-like protrusions on the internal surface in order to interface to the drive unit. Friction drive interface is possible for lightweight robotic vehicles because the forces involved are relatively low (as compared, for example, to large heavy vehicles such as a tank or snowmobile).
- the traction pads 18 can be threaded onto flexible track which is formed from a plurality of cables 19 .
- the traction pads may be integrally formed with the flexible track, for example by molding the flexible track as single assembly, in accordance with an embodiment of the present invention.
- the traction pads may be formed of different materials and attached to the flexible track by glue, fasteners, and similar techniques.
- the traction pads may be removable, allowing for easy replacement or changing of the types of traction pads.
- FIG. 4 illustrates a particular example of a technique for attaching the traction pads 27 , 28 , 29 to the flexible track 16 in accordance with an embodiment of the present invention.
- the flexible track includes a plurality of receptacles 30 into which the traction pads can be inserted.
- the traction pads can slide or snap into the receptacles.
- the traction pads can have a friction fit interface to the receptacle, allowing for manual insertion and removal of the traction pads by a person.
- a friction fit can be appropriate for the lightweight loading conditions of small robotic vehicles because the forces placed on the traction pad are relatively small.
- lightweight robotic vehicles generally weigh less than 100 pounds, and typically under 50 pounds, although some lightweight robotic vehicles can weight less than 20 or even 10 pounds.
- the traction pads 18 can be arranged in a sequential order, for example as illustrated in FIG. 2 , although this is not essential. In other words, for three traction pad types A, B, and C, the traction pads can be arranged in sequence A-B-C-A-B-C . . . all the way around the flexible track. Alternately, the traction pads can be arranged in different orders. For example, it may be desirable to include more of one fraction pad type than other traction pad types due to differences in the traction provided. Accordingly, the traction pads may be arranged in a sequence such as A-A-A-B-C-A-A-A-B-C . . . where three traction pads of type A are provided for each traction pad of type B and type C. For example, FIG. 3 illustrates an alternate arrangement of different types of traction pads. Of course, many other arrangements are possible as will occur to one of skill in the art.
- a versatile endless track 10 having two or more types of traction pads 18 can provide improved traction for a lightweight robotic vehicle 14 in a variety of conditions.
- endless track configurations have generally presented a uniform ground-interface profile that is a compromise design for a range of surface conditions.
- the versatile endless track can include multiple traction pads, each traction pad type designed for good performance under specific conditions.
- different types of traction pads can be defined by their differing ground-interfacing profiles.
- the flexible track 16 can have two, three, or more differing types of traction pads.
- a first traction pad type can be designed to provide traction on a soft, friable surface.
- FIG. 5 illustrates a traction pad 40 designed to help spread the weight of the lightweight robotic vehicle over an area to help avoid breaking the surface which could allow slippage of the track.
- the traction pad includes a low-profile projecting bar cleat 42 mounted on a substantially flat ground-interfacing surface 44 .
- FIG. 6 illustrates a sticky-pad 50 designed to provide a large, high coefficient of friction surface.
- the sticky-pad can have a substantially flat ground-interfacing surface 52 which can include grit, non-drying adhesive, or similar high coefficient of friction material.
- a traction pad design 27 for use on a hard, slippery surface can include one or more suction cups (see FIG. 4 ).
- various other traction pad types and profiles can be used, including for example, flat pads (e.g., 20 ), cleats (e.g., 22 ), spikes (e.g., 24 ), tread patterns (e.g., 25 ), saw tooth profiles (e.g., 28 ) and water paddles (e.g., 29 ).
- flat pads e.g., 20
- cleats e.g., 22
- spikes e.g., 24
- tread patterns e.g., 25
- saw tooth profiles e.g., 28
- water paddles e.g., 29
- the individual traction pad types may each be optimized to provide traction with respect to a ground surface having different traction properties.
- the individual traction pad types need not be compromise designs designed for more than one surface type.
- the performance of the traction pad in mud or hard ground may be ignored.
- multiple traction pad types are included on the versatile endless track.
- one type of traction pads may provide most of the traction while other types provide relatively little traction.
- the individual traction pads can also be designed to accommodate a range of surface conditions as well. Hence, great flexibility in the versatile endless track is obtained.
- traction pads can be installed on a lightweight robotic vehicle depending on the environmental conditions expected for a planned operating environment of the lightweight robotic vehicle.
- a lightweight robotic vehicle which is expected to operate on both solid land and on water, can include a mixture of paddle-type traction pads and cleat-type traction pads.
- a lightweight robotic vehicle that is expected to operate over a wide variety of surface conditions might include three or more different traction pad types, including for example, sticky-pads, short spikes, long spikes, bar cleats, suction cups, and water paddles.
- FIG. 7 illustrates a method for configuring an endless track with traction pads in accordance with an embodiment of the present invention.
- the method shown generally at 70 , includes the step of providing 72 an endless track suitable for mounting a lightweight robotic vehicle. Various materials and configurations of endless tracks are described above.
- a next step of the method is mounting 74 the endless track on the lightweight robotic vehicle so that a portion of the endless track is exposed for interfacing to a ground surface. Various techniques for mounting the endless track on the lightweight robotic vehicle are described above.
- the method also includes the step of attaching 76 a plurality of traction pads to the endless track so that at least one of each type of traction pad is included within the exposed portion of the endless track when the lightweight robotic vehicle is operated. For example, the traction pads may be placed in a sequential order as described above.
- the method can include replacing at least one of the plurality of traction pads with a traction pad of a different type.
- the lightweight robotic vehicle can be reconfigured for a different operating environment by replacing one type of traction pads with a different type of traction pads.
- the traction pads types consist of alternating suction cups and spikes, designed to provide good traction on both a smooth, hard surface and a soft, penetrable surface. The spikes might be removed and replaced with sticky pads to provide good traction on both smooth, hard surfaces and rough, hard surfaces.
- a first configuration having two traction pad types might be rearranged to include a third traction pad type to provide increased versatility.
- a versatile endless track system in accordance with embodiments of the present invention provides flexibility in the configuration of an endless track for a lightweight robotic vehicle.
- a mix of different traction pad types can be included which correspond to a range of expected environments, where individual traction pads provide good traction properties under different conditions. Traction pads can be removed and replaced with different traction pad types to adapt the lightweight robotic vehicle to different conditions.
- the term “preferably” is non-exclusive where it is intended to mean “preferably, but not limited to.” Any steps recited in any method or process claims may be executed in any order and are not limited to the order presented in the claims. Means-plus-function or step-plus-function limitations will only be employed where for a specific claim limitation all of the following conditions are present: a) “means for” or “step for” is expressly recited in that limitation; b) a corresponding function is expressly recited in that limitation; and c) structure, material or acts that support that function are described within the specification. Accordingly, the scope of the invention should be determined solely by the appended claims and their legal equivalents, rather than by the descriptions and examples given above.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Toys (AREA)
- Platform Screen Doors And Railroad Systems (AREA)
Abstract
A versatile endless track system for a lightweight robotic vehicle is disclosed. The versatile endless track system includes a flexible track configured for mounting about a plurality of track supports of the lightweight robotic vehicle. A plurality of traction pads including at least two different types of traction pads are inserted into and supported by a plurality of receptacles contained within the flexible track. The different types of traction pads provide different ground-interfacing profiles designed to provide traction with respect to ground surfaces having different traction properties. Optionally, traction pads can be removable, allowing the versatile endless track to be reconfigured. A method of configuring a versatile endless track is also disclosed.
Description
- This application is a divisional of prior U.S. patent application Ser. No. 11/985,346, filed Nov. 13, 2007, and entitled “Versatile Endless Track for Lightweight Mobile Robots,” which claims the benefit of U.S. Provisional Patent Application No. 60/858,804, filed Nov. 13, 2006 in the United States Patent and Trademark Office, and entitled, “Versatile Endless Track for Lightweight Mobile Robots,” each of which is incorporated by reference in its entirety herein.
- The present invention relates to small, unmanned ground robotic vehicles. More particularly, the present invention relates to a versatile endless track for a lightweight robotic vehicle.
- Unmanned robotic vehicles can be deployed in a variety of applications and environments, including for example, search and rescue, military operations, and industrial operations. Unmanned robotic vehicles can help to avoid the need to expose humans to hazardous environments, such as unstable buildings, military conflict situations, and chemically, biologically, or nuclear contaminated environments.
- Unmanned robotic vehicles face many challenges when attempting mobility. Terrain can vary widely, including for example, bumpy or smooth surfaces, firm or soft ground, loose and shifting materials, etc. For small robotic vehicles, the challenges become even greater. A vehicle optimized for operation in one environment may perform poorly in other environments.
- The use of endless tracks are known to provide a good compromise which allows a robotic vehicle to accommodate a large variation in terrain types while maintaining relatively good traction and maneuverability. For example, tank-like vehicles using a pair of parallel endless tracks can provide high stability in some environments.
- For small robotic vehicles, however, the traction performance of endless tracks can be less than desired. In part, traction performance for small robotic vehicles can be poor because the robotic vehicle is relatively lightweight. Little downward force is applied to the endless track, resulting in reduced frictional forces between the endless track and the ground surface.
- The present invention includes a versatile endless track system for a lightweight robotic vehicle that helps to overcome problems and deficiencies inherent in the prior art. In one embodiment, the versatile endless track system includes a flexible track on which a plurality of traction pads are disposed. At least two different traction pad types are included, where each type of traction pad has a different ground-interfacing profile designed to provide traction with respect to ground surfaces having different traction properties.
- The present invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings merely depict exemplary embodiments of the present invention, they are, therefore, not to be considered limiting of its scope. It will be readily appreciated that the components of the present invention, as generally described and illustrated in the figures herein, can be arranged and designed in a wide variety of different configurations. Nonetheless, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
-
FIG. 1 illustrates a perspective view of a versatile endless track mounted on a lightweight robotic vehicle according to an embodiment of the present invention; -
FIG. 2 illustrates a perspective view of a versatile endless track in accordance with another embodiment of the present invention; -
FIG. 3 illustrates a perspective view of a versatile endless track according to another embodiment of the present invention; -
FIG. 4 illustrates a perspective view of a versatile endless track according to yet another embodiment of the present invention; -
FIG. 5 illustrates a perspective view of one type of traction pad according to an embodiment of the present invention; -
FIG. 6 illustrates a perspective view of another type of traction pad according to an embodiment of the present invention; and -
FIG. 7 illustrates a flow diagram of a method for configuring an endless track with traction pads according to an embodiment of the present invention. - The following detailed description of exemplary embodiments of the invention makes reference to the accompanying drawings, which form a part hereof and in which are shown, by way of illustration, exemplary embodiments in which the invention may be practiced. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art practice the invention, it should be understood that other embodiments may be realized and that various changes to the invention may be made without departing from the spirit and scope of the present invention. Thus, the following more detailed description of the embodiments of the present invention is not intended to limit the scope of the invention, as claimed, but is presented for purposes of illustration only and not limitation to describe the features and characteristics of the present invention, to set forth the best mode of operation of the invention, and to sufficiently enable one skilled in the art to practice the invention. Accordingly, the scope of the present invention is to be defined solely by the appended claims.
- The following detailed description and exemplary embodiments of the invention will be best understood by reference to the accompanying drawings, wherein the elements and features of the invention are designated by numerals throughout.
- In general, the environments faced by lightweight robotic vehicle can be highly variable, as lightweight robotic vehicles may be used indoors or outdoors, on land or water. The term “ground” is thus used broadly within the present application to refer generally to the surface on which the lightweight robotic vehicle is operating, which can include ground, vegetation, road surface, flooring, carpet, liquid surfaces, and the like. The highly variable environment encountered by lightweight robotic vehicles differs from that of traditional tracked vehicles, such as tanks or earth working equipment, which typically operate in very limited environments (e.g., outdoors on unprepared surfaces).
- For example, earth working equipment often includes cleat bars on the tracks to help provide traction in soft or slippery conditions, such as mud or soft ground. The cleat bars sink into and engage with the ground, helping to reduce slippage of the tracks. Good performance is also obtained on hard ground, because the weight of the equipment is sufficiently large to develop large downward forces which translate into high friction (and thus traction) for portions of the track in contact with the ground.
- In contrast, a lightweight robotic vehicle is less able to develop large downward force, and thus different approaches to developing traction are required. Although one approach is to use cleat profiles adapted for developing traction when lightly loaded, such a solution is likely to only perform well over a relatively narrow range of environmental conditions. For example, cleats might perform well when the robotic vehicle is operated over a very soft surface (e.g., sand or soil), but provide very little traction when operated over a very hard, smooth surface (e.g., glass or polished stone). Accordingly, a particular cleat or other traction device configuration is often a compromise solution that performs well over a relatively narrow range of surface conditions.
- It has been recognized by the inventor of the present invention that a versatile endless track can provide traction over a wide range of conditions by including a number of different traction pads of different ground-interfacing profiles on the endless track. With reference to
FIG. 1 , shown is an illustration of a versatile endless track, according to a first exemplary embodiment of the present invention. The versatile endless track, shown generally at 10, is mounted on a lightweightrobotic vehicle 14, threaded about a plurality oftrack supports 12. The track includes aflexible track 16. Disposed along theflexible track 16 are a plurality oftraction pads 18.Different types - An exposed
portion 26 of theflexible track 16 engages with the ground when the lightweight robotic vehicle is in operation. It will be appreciated that the exposed portion is constantly changing as the flexible track is rotated around the plurality of track supports.Sufficient traction pads 18 of eachtype - The
flexible track 16 can be constructed in various ways. For example, the flexible track can be a loop which is slid laterally over the track supports 12. Alternately, the track can be a long assembly which is threaded through the track supports after which ends of the flexible track are attached together to form a loop. The flexible track can be an elastic belt, for example of rubber or other elastomeric material. As another example, the flexible track can be two ormore cables 19 on which the traction pads are threaded as shown inFIG. 2 in accordance with another embodiment of the present invention. - Generally, the lightweight
robotic vehicle 14 includes a drive unit which causes the versatileendless track 16 to rotate about the track supports 12 providing propulsion of the lightweight robotic. For example, one of the track supports can provide afriction drive interface 13 to the flexible track. Friction drive interfaces 13 provide a benefit in that the flexible track need not include gear-like protrusions on the internal surface in order to interface to the drive unit. Friction drive interface is possible for lightweight robotic vehicles because the forces involved are relatively low (as compared, for example, to large heavy vehicles such as a tank or snowmobile). - Various ways of attaching the
traction pads 18 to theflexible track 16 are possible. For example, as shown inFIG. 2 , the traction pads can be threaded onto flexible track which is formed from a plurality ofcables 19. As another option, as shown inFIG. 3 the traction pads may be integrally formed with the flexible track, for example by molding the flexible track as single assembly, in accordance with an embodiment of the present invention. As another option, the traction pads may be formed of different materials and attached to the flexible track by glue, fasteners, and similar techniques. The traction pads may be removable, allowing for easy replacement or changing of the types of traction pads. -
FIG. 4 illustrates a particular example of a technique for attaching thetraction pads flexible track 16 in accordance with an embodiment of the present invention. The flexible track includes a plurality ofreceptacles 30 into which the traction pads can be inserted. For example, the traction pads can slide or snap into the receptacles. The traction pads can have a friction fit interface to the receptacle, allowing for manual insertion and removal of the traction pads by a person. A friction fit can be appropriate for the lightweight loading conditions of small robotic vehicles because the forces placed on the traction pad are relatively small. For example, lightweight robotic vehicles generally weigh less than 100 pounds, and typically under 50 pounds, although some lightweight robotic vehicles can weight less than 20 or even 10 pounds. - The
traction pads 18 can be arranged in a sequential order, for example as illustrated inFIG. 2 , although this is not essential. In other words, for three traction pad types A, B, and C, the traction pads can be arranged in sequence A-B-C-A-B-C . . . all the way around the flexible track. Alternately, the traction pads can be arranged in different orders. For example, it may be desirable to include more of one fraction pad type than other traction pad types due to differences in the traction provided. Accordingly, the traction pads may be arranged in a sequence such as A-A-A-B-C-A-A-A-B-C . . . where three traction pads of type A are provided for each traction pad of type B and type C. For example,FIG. 3 illustrates an alternate arrangement of different types of traction pads. Of course, many other arrangements are possible as will occur to one of skill in the art. - It is desirable that sufficient traction pads of each type are included so that at least one traction pad of each type is present on the ground-engaging portion of the flexible endless track at all times. This can help to ensure that adequate traction is provided at all times.
- A versatile
endless track 10 having two or more types oftraction pads 18 can provide improved traction for a lightweightrobotic vehicle 14 in a variety of conditions. Previously, endless track configurations have generally presented a uniform ground-interface profile that is a compromise design for a range of surface conditions. In contrast, the versatile endless track can include multiple traction pads, each traction pad type designed for good performance under specific conditions. For example, different types of traction pads can be defined by their differing ground-interfacing profiles. Theflexible track 16 can have two, three, or more differing types of traction pads. - Various examples of traction pads will now be described, although various other traction pads will occur to one of skill in the art having possession of this disclosure. A first traction pad type can be designed to provide traction on a soft, friable surface. For example,
FIG. 5 illustrates atraction pad 40 designed to help spread the weight of the lightweight robotic vehicle over an area to help avoid breaking the surface which could allow slippage of the track. The traction pad includes a low-profile projectingbar cleat 42 mounted on a substantially flat ground-interfacingsurface 44. - Other traction pad types can also be designed to provide traction on a hard, slippery surface. For example,
FIG. 6 illustrates a sticky-pad 50 designed to provide a large, high coefficient of friction surface. The sticky-pad can have a substantially flat ground-interfacingsurface 52 which can include grit, non-drying adhesive, or similar high coefficient of friction material. Alternately, atraction pad design 27 for use on a hard, slippery surface can include one or more suction cups (seeFIG. 4 ). - As illustrated in
FIGS. 1-4 , various other traction pad types and profiles can be used, including for example, flat pads (e.g., 20), cleats (e.g., 22), spikes (e.g., 24), tread patterns (e.g., 25), saw tooth profiles (e.g., 28) and water paddles (e.g., 29). - Because different fraction pads are included on the versatile endless track to accommodate different conditions, in one embodiment the individual traction pad types may each be optimized to provide traction with respect to a ground surface having different traction properties. In other words, the individual traction pad types need not be compromise designs designed for more than one surface type. Thus, when designing a traction pad type for operation in sand, as an example, the performance of the traction pad in mud or hard ground may be ignored. This is possible because multiple traction pad types are included on the versatile endless track. When conditions are encountered for which one traction pad type provides poor performance, other traction pad types are likely to perform well. Thus, depending on the ground surface conditions, one type of traction pads may provide most of the traction while other types provide relatively little traction. Of course, the individual traction pads can also be designed to accommodate a range of surface conditions as well. Hence, great flexibility in the versatile endless track is obtained.
- Versatile endless tracks as described above can be helpful in adapting the configuration of a lightweight robotic vehicle for a particular task. For example, different types of traction pads can be installed on a lightweight robotic vehicle depending on the environmental conditions expected for a planned operating environment of the lightweight robotic vehicle. A lightweight robotic vehicle, which is expected to operate on both solid land and on water, can include a mixture of paddle-type traction pads and cleat-type traction pads. As another example, a lightweight robotic vehicle that is expected to operate over a wide variety of surface conditions might include three or more different traction pad types, including for example, sticky-pads, short spikes, long spikes, bar cleats, suction cups, and water paddles. With a reconfigurable versatile endless track, where the traction pads are easily removed and replaced, a virtually unlimited number of different arrangements are possible.
-
FIG. 7 illustrates a method for configuring an endless track with traction pads in accordance with an embodiment of the present invention. The method, shown generally at 70, includes the step of providing 72 an endless track suitable for mounting a lightweight robotic vehicle. Various materials and configurations of endless tracks are described above. A next step of the method is mounting 74 the endless track on the lightweight robotic vehicle so that a portion of the endless track is exposed for interfacing to a ground surface. Various techniques for mounting the endless track on the lightweight robotic vehicle are described above. The method also includes the step of attaching 76 a plurality of traction pads to the endless track so that at least one of each type of traction pad is included within the exposed portion of the endless track when the lightweight robotic vehicle is operated. For example, the traction pads may be placed in a sequential order as described above. - The method can include replacing at least one of the plurality of traction pads with a traction pad of a different type. For example, the lightweight robotic vehicle can be reconfigured for a different operating environment by replacing one type of traction pads with a different type of traction pads. As a particular example, consider a first configuration where the traction pads types consist of alternating suction cups and spikes, designed to provide good traction on both a smooth, hard surface and a soft, penetrable surface. The spikes might be removed and replaced with sticky pads to provide good traction on both smooth, hard surfaces and rough, hard surfaces. As another example, a first configuration having two traction pad types might be rearranged to include a third traction pad type to provide increased versatility.
- Summarizing and reiterating to some extent, a versatile endless track system in accordance with embodiments of the present invention provides flexibility in the configuration of an endless track for a lightweight robotic vehicle. A mix of different traction pad types can be included which correspond to a range of expected environments, where individual traction pads provide good traction properties under different conditions. Traction pads can be removed and replaced with different traction pad types to adapt the lightweight robotic vehicle to different conditions.
- The foregoing detailed description describes the invention with reference to specific exemplary embodiments. However, it will be appreciated that various modifications and changes can be made without departing from the scope of the present invention as set forth in the appended claims. The detailed description and accompanying drawings are to be regarded as merely illustrative, rather than as restrictive, and all such modifications or changes, if any, are intended to fall within the scope of the present invention as described and set forth herein.
- More specifically, while illustrative exemplary embodiments of the invention have been described herein, the present invention is not limited to these embodiments, but includes any and all embodiments having modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the foregoing detailed description. The limitations in the claims are to be interpreted broadly based the language employed in the claims and not limited to examples described in the foregoing detailed description or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, in the present disclosure, the term “preferably” is non-exclusive where it is intended to mean “preferably, but not limited to.” Any steps recited in any method or process claims may be executed in any order and are not limited to the order presented in the claims. Means-plus-function or step-plus-function limitations will only be employed where for a specific claim limitation all of the following conditions are present: a) “means for” or “step for” is expressly recited in that limitation; b) a corresponding function is expressly recited in that limitation; and c) structure, material or acts that support that function are described within the specification. Accordingly, the scope of the invention should be determined solely by the appended claims and their legal equivalents, rather than by the descriptions and examples given above.
Claims (20)
1. A versatile endless track usable by a lightweight mobile robot, the track comprising:
a flexible track configured for mounting about a plurality of track supports, and having a changing ground-engaging portion exposed for engagement with a ground surface as the flexible track is rotated around the plurality of track supports;
a plurality of receptacles contained within the flexible track; and
a plurality of traction pads inserted into and support by the plurality of receptacles,
wherein at least two different types of traction pad are included, each type of traction pad having a different ground-interfacing profile designed to provide traction with respect to ground surfaces having different traction properties, and
wherein sufficient traction pads of each type are included so that at least one traction pad of each type is present on the ground-engaging portion of the flexible track at all times.
2. The track of claim 1 , wherein the traction pads are removably supported with the receptacles and replaceable with a traction pad of a different type.
3. The track of claim 1 , wherein the traction pads snap into the receptacles.
4. The track of claim 1 , wherein the traction pads have a friction fit interface with the receptacles.
5. The track of claim 1 , wherein each of the plurality of receptacles comprises at least one hole formed into flexible track for receiving at least one corresponding post extending from a base of a traction pad.
6. The track of claim 1 , wherein the flexible track comprises an elastic belt into which the plurality of receptacles are formed.
7. The track of claim 1 , wherein the flexible track is configured to provide a friction drive interface to at least one of the plurality of track supports.
8. The track of claim 1 , wherein at least three different traction pad types are included.
9. The track of claim 1 , wherein each traction pad type is optimized to provide traction with respect to a ground surface having different traction properties.
10. The track of claim 1 , wherein the traction pad types are optimized to provide traction when loaded by a lightweight mobile robot weighing less than 100 pounds.
11. The track of claim 1 , wherein a first traction pad type is designed to provide traction on a soft, friable surface and a second traction pad type is designed to provide traction on a hard, slippery surface.
12. The track of claim 1 , wherein a first traction pad type is designed to provide traction on a firm surface and a second traction pad type is designed to provide traction on a soft surface.
13. The track of claim 1 , wherein a first traction pad type is designed to provide traction on a solid surface and a second traction pad type is designed to provide traction on a liquid surface.
14. The track of claim 1 , wherein at least one traction pad type comprises a substantially flat ground-interfacing portion having a high coefficient of friction and a second traction pad type comprises a projecting cleat.
15. The track of claim 1 , wherein at least one traction pad type comprises a projecting cleat and a second traction pad type comprises a water paddle.
16. The track of claim 1 , wherein each of the traction pad types are chosen from the group of traction pad types consisting of: a flat pad, a sticky pad, a bar cleat, a spike, a suction cup, a saw tooth profile, and a water paddle.
17. A method of configuring an endless track with traction pads comprising
providing an endless track suitable for mounting on a lightweight robotic vehicle having a ground-engaging portion and a plurality of receptacles contained within the endless track;
mounting the endless track on the lightweight robotic vehicle so that the ground-engaging a portion is exposed for interfacing to a ground surface; and
inserting the plurality of traction pads into the plurality of receptacles in an alternating sequence of at least two different traction pad types so that at least one of each type of traction pad is present on the exposed, ground-engaging portion of the endless track when the lightweight robotic vehicle is operated.
18. The method of claim 17 , further comprising selecting the at least two different traction pad types from a predefined assortment of traction pad types, wherein the at least two fraction pad types are selected to correspond to a planned operating environment.
19. The method of claim 17 , further comprising removing and replacing at least one of the plurality of traction pads with a traction pad of a different type.
20. A versatile endless track usable by a lightweight mobile robot, the track comprising:
a flexible track configured for mounting about a plurality of track supports, and having a changing ground-engaging portion exposed for engagement with a ground surface as the flexible track is rotated around the plurality of track supports;
a plurality of receptacles contained within the flexible track; and
a plurality of first traction pads removably inserted into at least some of the plurality of receptacles, each having a ground-interfacing profile configured to provide traction with respect to a first ground surface; and
a plurality of second traction pads removably inserted into at least some of the plurality of receptacles in an alternating sequence with the first traction pads, each having a ground-interfacing profile configured to provide traction with respect to a second ground surface,
wherein the first and second traction pads are selectively interchangeable with a plurality of third traction pads having a ground-interfacing profile configured to provide traction with respect to a third ground surface, and
wherein sufficient traction pads of at least two types are included so that at least one traction pad of the at least two types is present on the ground-engaging portion of the flexible track at all times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/694,996 US20100201187A1 (en) | 2006-11-13 | 2010-01-27 | Versatile Endless Track For Lightweight Mobile Robots |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85880406P | 2006-11-13 | 2006-11-13 | |
US11/985,346 US20080136254A1 (en) | 2006-11-13 | 2007-11-13 | Versatile endless track for lightweight mobile robots |
US12/694,996 US20100201187A1 (en) | 2006-11-13 | 2010-01-27 | Versatile Endless Track For Lightweight Mobile Robots |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/985,346 Division US20080136254A1 (en) | 2006-11-13 | 2007-11-13 | Versatile endless track for lightweight mobile robots |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100201187A1 true US20100201187A1 (en) | 2010-08-12 |
Family
ID=39414961
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/985,346 Abandoned US20080136254A1 (en) | 2006-11-13 | 2007-11-13 | Versatile endless track for lightweight mobile robots |
US12/694,996 Abandoned US20100201187A1 (en) | 2006-11-13 | 2010-01-27 | Versatile Endless Track For Lightweight Mobile Robots |
US12/820,881 Active US8042630B2 (en) | 2006-11-13 | 2010-06-22 | Serpentine robotic crawler |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/985,346 Abandoned US20080136254A1 (en) | 2006-11-13 | 2007-11-13 | Versatile endless track for lightweight mobile robots |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/820,881 Active US8042630B2 (en) | 2006-11-13 | 2010-06-22 | Serpentine robotic crawler |
Country Status (8)
Country | Link |
---|---|
US (3) | US20080136254A1 (en) |
EP (1) | EP2086821B1 (en) |
JP (1) | JP5399910B2 (en) |
CN (1) | CN101583532B (en) |
AT (1) | ATE473907T1 (en) |
DE (1) | DE602007007807D1 (en) |
IL (1) | IL198712A (en) |
WO (1) | WO2008076192A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8042630B2 (en) | 2006-11-13 | 2011-10-25 | Raytheon Company | Serpentine robotic crawler |
US8205695B2 (en) | 2006-11-13 | 2012-06-26 | Raytheon Company | Conformable track assembly for a robotic crawler |
US8434208B2 (en) | 2007-05-07 | 2013-05-07 | Raytheon Company | Two-dimensional layout for use in a complex structure |
US8935014B2 (en) | 2009-06-11 | 2015-01-13 | Sarcos, Lc | Method and system for deploying a surveillance network |
US9409292B2 (en) | 2013-09-13 | 2016-08-09 | Sarcos Lc | Serpentine robotic crawler for performing dexterous operations |
US9566711B2 (en) | 2014-03-04 | 2017-02-14 | Sarcos Lc | Coordinated robotic control |
US10071303B2 (en) | 2015-08-26 | 2018-09-11 | Malibu Innovations, LLC | Mobilized cooler device with fork hanger assembly |
US10583878B2 (en) | 2016-12-08 | 2020-03-10 | Aqua Products, Inc. | Endless track for submersible, autonomous vehicle |
US10807659B2 (en) | 2016-05-27 | 2020-10-20 | Joseph L. Pikulski | Motorized platforms |
WO2023022841A1 (en) * | 2021-08-16 | 2023-02-23 | Caterpillar Inc. | Track shoe assembly including a shoe plate and a grouser and related method of manufacture |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2170683A2 (en) | 2007-07-10 | 2010-04-07 | Raytheon Sarcos, LLC | Modular robotic crawler |
US8392036B2 (en) | 2009-01-08 | 2013-03-05 | Raytheon Company | Point and go navigation system and method |
WO2011017668A2 (en) | 2009-08-06 | 2011-02-10 | The Regents Of The University Of California | Multimodal dynamic robotic systems |
JP5542092B2 (en) * | 2011-05-12 | 2014-07-09 | 学校法人千葉工業大学 | Unmanned traveling vehicle |
US8393422B1 (en) * | 2012-05-25 | 2013-03-12 | Raytheon Company | Serpentine robotic crawler |
US9031698B2 (en) * | 2012-10-31 | 2015-05-12 | Sarcos Lc | Serpentine robotic crawler |
CA2881247C (en) * | 2015-02-04 | 2021-04-20 | Brad Blackburn | Detachable traction system for endless track vehicles |
WO2016130565A1 (en) | 2015-02-09 | 2016-08-18 | The Regents Of The University Of California | Ball-balancing robot and drive assembly therefor |
US9927060B2 (en) | 2015-04-22 | 2018-03-27 | The Johns Hopkins University | Vehicle for navigating within an enclosed space |
US10023250B2 (en) * | 2016-06-10 | 2018-07-17 | The Boeing Company | Multi-tread vehicles and methods of operating thereof |
CN106143664B (en) * | 2016-08-15 | 2018-06-22 | 湖南农业大学 | Track grouser height adjustable track running gear |
US10351188B2 (en) * | 2016-11-23 | 2019-07-16 | Bae Systems Land & Armaments L.P. | Devices and methods for increasing traction of continuous track vehicles |
DE102017203363A1 (en) * | 2017-03-02 | 2018-09-06 | Contitech Transportbandsysteme Gmbh | Chassis chain, especially Bogie chain |
CN109015594A (en) * | 2018-10-08 | 2018-12-18 | 李友朋 | Industrial robot |
CN109383661A (en) * | 2018-10-11 | 2019-02-26 | 东北大学 | A kind of sleeper beam inner cavity monitoring robot |
Citations (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1107874A (en) * | 1911-11-06 | 1914-08-18 | Bullock Tractor Company | Vehicle. |
US1112460A (en) * | 1913-04-21 | 1914-10-06 | Harry W Leavitt | Tractor. |
US1515756A (en) * | 1922-05-12 | 1924-11-18 | Roy Irene | Articulated coupling device for heavy loads |
US1975726A (en) * | 1931-09-15 | 1934-10-02 | Martinage Leon | Endless track vehicle |
US2025999A (en) * | 1932-01-25 | 1935-12-31 | Edward C Myers | Rubber covered flexible track |
US2082920A (en) * | 1935-12-24 | 1937-06-08 | Aulmont W Tye | Trailer |
US2129557A (en) * | 1937-06-09 | 1938-09-06 | Charles H Beach | Detachable traction lug |
US2311475A (en) * | 1941-09-19 | 1943-02-16 | Theodore G Schmeiser | Auxiliary traction wheel |
US2312072A (en) * | 1940-03-07 | 1943-02-23 | Tenger Victoria | Endless track for vehicles |
US2329582A (en) * | 1942-11-02 | 1943-09-14 | Harold M Bishop | Tread |
US2967737A (en) * | 1959-11-30 | 1961-01-10 | George V Moore | Detachable traction units |
US4589460A (en) * | 1978-01-03 | 1986-05-20 | Albee William H | Off road vehicles |
US5018591A (en) * | 1990-04-24 | 1991-05-28 | Caterpillar Inc. | Track laying work vehicle |
US5205612A (en) * | 1990-05-17 | 1993-04-27 | Z C Mines Pty. Ltd. | Transport apparatus and method of forming same |
US5386741A (en) * | 1993-06-07 | 1995-02-07 | Rennex; Brian G. | Robotic snake |
USRE36025E (en) * | 1992-07-15 | 1999-01-05 | Kabushiki Kaisha Suzuki Shoki | Crawler pad |
US5878783A (en) * | 1995-05-22 | 1999-03-09 | British Gas Plc | Pipeline vehicle |
US6056237A (en) * | 1997-06-25 | 2000-05-02 | Woodland; Richard L. K. | Sonotube compatible unmanned aerial vehicle and system |
US6203126B1 (en) * | 1998-06-05 | 2001-03-20 | Northern Freight Brokers, Inc. | Traction stud for a snowmobile belt made of a non-metal material |
US6264294B1 (en) * | 1999-06-04 | 2001-07-24 | International Engineering And Manufacturing, Inc. | Tapered traction stud, stud mount and method of making and mounting |
US20010037163A1 (en) * | 2000-05-01 | 2001-11-01 | Irobot Corporation | Method and system for remote control of mobile robot |
US6380889B1 (en) * | 1999-02-19 | 2002-04-30 | Rheinmetall W & M Gmbh | Reconnaissance sonde |
US6422509B1 (en) * | 2000-11-28 | 2002-07-23 | Xerox Corporation | Tracking device |
US20020128714A1 (en) * | 1999-06-04 | 2002-09-12 | Mark Manasas | Orthopedic implant and method of making metal articles |
US20020140392A1 (en) * | 2001-03-30 | 2002-10-03 | Johann Borenstein | Apparatus for obstacle traversion |
US20030000747A1 (en) * | 2000-12-22 | 2003-01-02 | Genroku Sugiyama | Crawler |
US20030069474A1 (en) * | 2001-10-05 | 2003-04-10 | Couvillon Lucien Alfred | Robotic endoscope |
US20030097080A1 (en) * | 2001-11-22 | 2003-05-22 | Masayoshi Esashi | Active guide wire and method of making the same |
US6576406B1 (en) * | 2000-06-29 | 2003-06-10 | Sarcos Investments Lc | Micro-lithographic method and apparatus using three-dimensional mask |
US20030110938A1 (en) * | 2001-12-13 | 2003-06-19 | Seiko Epson Corporation | Flexible actuator |
US6619146B2 (en) * | 2001-08-07 | 2003-09-16 | The Charles Stark Draper Laboratory, Inc. | Traveling wave generator |
US20030223844A1 (en) * | 2002-05-22 | 2003-12-04 | Organisation Intergouvernementale Dite Agence Spatiale Europeenne | Exoskeleton for the human arm, in particular for space applications |
US20040030571A1 (en) * | 2002-04-22 | 2004-02-12 | Neal Solomon | System, method and apparatus for automated collective mobile robotic vehicles used in remote sensing surveillance |
US20040099175A1 (en) * | 2000-07-18 | 2004-05-27 | Yann Perrot | Robot vehicle adapted to operate in pipelines and other narrow passages |
US20040103740A1 (en) * | 2002-09-26 | 2004-06-03 | Townsend William T. | Intelligent, self-contained robotic hand |
US20040168837A1 (en) * | 2002-11-27 | 2004-09-02 | Universite De Sherbrooke | Modular robotic platform |
US20040216931A1 (en) * | 1998-03-27 | 2004-11-04 | Chikyung Won | Robotic platform |
US20040216932A1 (en) * | 2001-07-09 | 2004-11-04 | United Defense, Lp | Hybrid wheel and track vehicle drive system |
US20050007055A1 (en) * | 2001-03-30 | 2005-01-13 | Johann Borenstein | Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness |
US20050027412A1 (en) * | 2003-05-19 | 2005-02-03 | Hobson Brett W. | Amphibious robot devices and related methods |
US20050085693A1 (en) * | 2000-04-03 | 2005-04-21 | Amir Belson | Activated polymer articulated instruments and methods of insertion |
US20050168068A1 (en) * | 2004-01-28 | 2005-08-04 | Camoplast Inc. | Reinforced stud mount |
US20050168070A1 (en) * | 2004-02-02 | 2005-08-04 | Camoplast Inc. | Endless track with various hardnesses for a recreational vehicle |
US20050166413A1 (en) * | 2003-04-28 | 2005-08-04 | Crampton Stephen J. | CMM arm with exoskeleton |
US20050225162A1 (en) * | 2002-03-20 | 2005-10-13 | John Gibbins | Compaction wheel and cleat assembly therefor |
US20050235899A1 (en) * | 2002-04-30 | 2005-10-27 | Ikuo Yamamoto | Fish-shaped underwater navigating body, control system thereof, and aquarium |
US20050288819A1 (en) * | 2002-10-11 | 2005-12-29 | Neil De Guzman | Apparatus and method for an autonomous robotic system for performing activities in a well |
US20060000137A1 (en) * | 2004-06-24 | 2006-01-05 | Massachusetts Institute Of Technology | Mechanical fish robot exploiting vibration modes for locomotion |
US20060005733A1 (en) * | 2004-07-09 | 2006-01-12 | The Research Foundation Of State University Of New York | Gun fired sensor platforms |
US20060010702A1 (en) * | 2003-01-31 | 2006-01-19 | Roland Roth | Probe head for a coordinate measuring machine |
US7004245B2 (en) * | 2003-10-15 | 2006-02-28 | Abdeljawad Adel A | System for aiding in prevention of engine overheating in a vehicle |
US7020701B1 (en) * | 1999-10-06 | 2006-03-28 | Sensoria Corporation | Method for collecting and processing data using internetworked wireless integrated network sensors (WINS) |
US20060070775A1 (en) * | 2003-06-17 | 2006-04-06 | Science Applications International Corporation | Toroidal propulsion and steering system |
US20060156851A1 (en) * | 2004-12-02 | 2006-07-20 | Jacobsen Stephen C | Mechanical serpentine device |
US20060229773A1 (en) * | 2002-12-31 | 2006-10-12 | Yossef Peretz | Unmanned tactical platform |
US20060225928A1 (en) * | 2003-09-18 | 2006-10-12 | Nelson Carl V | Mono-track vehicle |
US7171279B2 (en) * | 2000-08-18 | 2007-01-30 | Oliver Crispin Robotics Limited | Articulating arm for positioning a tool at a location |
US20070156286A1 (en) * | 2005-12-30 | 2007-07-05 | Irobot Corporation | Autonomous Mobile Robot |
US7347179B2 (en) * | 2003-09-25 | 2008-03-25 | Daimler Chrysler Ag | Method for operating an internal combustion engine |
US20080115185A1 (en) * | 2006-10-31 | 2008-05-15 | Microsoft Corporation | Dynamic modification of video properties |
US20080115687A1 (en) * | 2004-12-01 | 2008-05-22 | Ehud Gal | Weapon Launched Reconnaissance System |
US20080164079A1 (en) * | 2006-11-13 | 2008-07-10 | Jacobsen Stephen C | Serpentine robotic crawler |
US20080168070A1 (en) * | 2007-01-08 | 2008-07-10 | Naphade Milind R | Method and apparatus for classifying multimedia artifacts using ontology selection and semantic classification |
US20090171151A1 (en) * | 2004-06-25 | 2009-07-02 | Choset Howard M | Steerable, follow the leader device |
US20100030377A1 (en) * | 2006-05-24 | 2010-02-04 | John Unsworth | Snaking Robotic Arm with Movable Shapers |
Family Cites Families (235)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2345763A (en) | 1941-02-27 | 1944-04-04 | Goodrich Co B F | Flexible track for self-laying track vehicles |
US5570992A (en) | 1954-07-28 | 1996-11-05 | Lemelson; Jerome H. | Free-traveling manipulator with optical feedback control and methods |
US2701169A (en) | 1954-08-18 | 1955-02-01 | Edgar M Cannon | Mud lug for endless traction track links |
US2850147A (en) | 1954-08-20 | 1958-09-02 | James M Hill | Mobile curvable conveyor |
US2933143A (en) | 1957-06-25 | 1960-04-19 | Canadair Ltd | Articulated vehicle |
US3060972A (en) | 1957-08-22 | 1962-10-30 | Bausch & Lomb | Flexible tube structures |
US3037571A (en) | 1959-08-17 | 1962-06-05 | Schield Bantam Company | Wide base crawler |
US3166138A (en) | 1961-10-26 | 1965-01-19 | Jr Edward D Dunn | Stair climbing conveyance |
US3190286A (en) * | 1961-10-31 | 1965-06-22 | Bausch & Lomb | Flexible viewing probe for endoscopic use |
US3223462A (en) | 1963-04-25 | 1965-12-14 | Boeing Co | Endless track for a track laying vehicle |
US3266059A (en) * | 1963-06-19 | 1966-08-16 | North American Aviation Inc | Prestressed flexible joint for mechanical arms and the like |
US3215219A (en) * | 1963-07-22 | 1965-11-02 | Lockheed Aircraft Corp | Articulated vehicle |
DE1505007B2 (en) * | 1965-02-11 | 1976-07-22 | Eisen- Und Drahtwerk Erlau Ag, 7080 Aalen | SLIDING PROTECTION OR PROTECTIVE TIRE CHAIN FOR TIRE OF A MOTOR VEHICLE'S WHEELS |
US3284964A (en) | 1964-03-26 | 1966-11-15 | Saito Norio | Flexible beam structures |
US3311424A (en) * | 1965-06-03 | 1967-03-28 | Marval & O Farrell | Tractive device comprising a belt driven soft roller |
US3362492A (en) * | 1966-02-14 | 1968-01-09 | Darrell L. Hansen | Snowbike attachment |
GB1199729A (en) | 1966-10-24 | 1970-07-22 | Rowland Lewis Robert Morgan | Tractor Vehicle for Underwater Use |
US3565198A (en) * | 1967-06-26 | 1971-02-23 | Whiting Corp | Steering, driving and single track support systems for vehicles |
US3497083A (en) * | 1968-05-10 | 1970-02-24 | Us Navy | Tensor arm manipulator |
US3489236A (en) | 1968-08-01 | 1970-01-13 | Us Army | Egressing device for military vehicles |
US3572325A (en) * | 1968-10-25 | 1971-03-23 | Us Health Education & Welfare | Flexible endoscope having fluid conduits and control |
US3609804A (en) | 1969-08-27 | 1971-10-05 | Marvin Glass & Associates | Vehicle |
US3808078A (en) * | 1970-01-05 | 1974-04-30 | Norfin | Glass fiber cable, method of making, and its use in the manufacture of track vehicles |
US3715146A (en) | 1970-01-19 | 1973-02-06 | W Robertson | Snow cleat and track for tracked vehicle |
US3650343A (en) * | 1970-03-12 | 1972-03-21 | John B Helsell | Ski slope traversing and conditioning vehicle |
US3700115A (en) | 1970-09-17 | 1972-10-24 | Koehring Co | Vehicle with variable width ground supports |
US3707218A (en) | 1970-10-26 | 1972-12-26 | Mackey M Payne | Conveyor apparatus |
US3757635A (en) | 1971-03-23 | 1973-09-11 | F Hickerson | Multi-purpose munitions carrier |
US3974907A (en) * | 1971-10-29 | 1976-08-17 | Gordon A. Brewer | Flexible mobile conveyor |
US3712481A (en) * | 1971-12-23 | 1973-01-23 | Mc Donnell Douglas Corp | Actuator |
US3841424A (en) | 1971-12-27 | 1974-10-15 | Caterpillar Tractor Co | Triangular track resilient bogie suspension |
US3820616A (en) | 1972-02-03 | 1974-06-28 | American Hoist & Derrick Co | Crawler vehicle with dual extensible side frames |
US3933214A (en) | 1972-07-12 | 1976-01-20 | Guibord Georges E | All terrain pleasure vehicle |
US3864983A (en) * | 1972-09-15 | 1975-02-11 | Stephen C Jacobsen | Rotary-to-linear and linear-to-rotary motion converters |
US3934664A (en) * | 1973-02-01 | 1976-01-27 | Pohjola Jorma | Steering mechanism for track vehicles |
US5672044A (en) | 1974-01-24 | 1997-09-30 | Lemelson; Jerome H. | Free-traveling manipulator with powered tools |
FI51306C (en) | 1975-01-30 | 1976-12-10 | Pohjola Jorma | Method and apparatus in a swivel vehicle. |
US4068905A (en) | 1975-09-10 | 1978-01-17 | Black Chester A | Detachable road protecting device for tracked vehicles |
US4059315A (en) | 1976-01-02 | 1977-11-22 | Jolliffe James D | Cleat anchor for flexible vehicle track |
NO137351C (en) * | 1976-01-30 | 1978-02-22 | Trallfa Nils Underhaug As | FLEXIBLE ROBOT ARM. |
JPS52122431U (en) * | 1976-03-15 | 1977-09-17 | ||
BE845263A (en) | 1976-08-18 | 1976-12-16 | SELF-MOVING TOWER END | |
US4109971A (en) | 1976-10-12 | 1978-08-29 | Black Chester A | Detachable road protecting devices for tracked vehicles |
US4218101A (en) * | 1978-04-03 | 1980-08-19 | De Lorean Manufacturing Company | Low disturbance track cleat and ice calk structure for firm or icy snow |
US4332424A (en) * | 1978-04-03 | 1982-06-01 | De Lorean Manufacturing Company | Low disturbance track cleat and ice calk structure for firm or icy snow |
SE419421B (en) * | 1979-03-16 | 1981-08-03 | Ove Larson | RESIDENTIAL ARM IN SPECIAL ROBOT ARM |
US4494417A (en) * | 1979-03-16 | 1985-01-22 | Robotgruppen Hb | Flexible arm, particularly a robot arm |
DE2926798C2 (en) * | 1979-07-03 | 1986-05-28 | Klöckner-Werke AG, 4100 Duisburg | Chain scraper conveyor |
US4339031A (en) * | 1979-10-01 | 1982-07-13 | Joy Manufacturing Company | Monorail suspended conveyor system |
US4260053A (en) * | 1979-10-09 | 1981-04-07 | Hirosuke Onodera | Flexible conveyor belt |
CA1118021A (en) * | 1980-01-29 | 1982-02-09 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Track for rope vehicle |
DE3025840C2 (en) * | 1980-07-08 | 1983-08-04 | Mowag Motorwagenfabrik Ag, Kreuzlingen | Chain link for a crawler belt |
US4453611A (en) * | 1980-10-10 | 1984-06-12 | Stacy Jr Jack C | Terrain vehicle having a single, latterally bendable track |
US4636137A (en) | 1980-10-24 | 1987-01-13 | Lemelson Jerome H | Tool and material manipulation apparatus and method |
US4489826A (en) | 1982-02-05 | 1984-12-25 | Philip Dubson | Adjustable apparatus |
US4483407A (en) | 1982-03-26 | 1984-11-20 | Hitachi, Ltd. | Variable configuration track laying vehicle |
SE436175B (en) * | 1982-07-05 | 1984-11-19 | Robotgruppen Hb | DEVICE FOR THE CONNECTION OF A ROBOT ARM OR SIMILAR INCLUDING ELEMENT |
DE3236947A1 (en) | 1982-10-06 | 1984-04-12 | Rainer 6074 Rödermark Hitzel | PIPE MANIPULATOR FOR PIPING THROUGH PIPES |
US4806066A (en) * | 1982-11-01 | 1989-02-21 | Microbot, Inc. | Robotic arm |
GB8303694D0 (en) | 1983-02-10 | 1983-03-16 | Atomic Energy Authority Uk | Manipulators |
JPS59139494U (en) * | 1983-03-09 | 1984-09-18 | 田中 勝 | water propulsion machine |
US4900218A (en) | 1983-04-07 | 1990-02-13 | Sutherland Ivan E | Robot arm structure |
US4551061A (en) | 1983-04-18 | 1985-11-05 | Olenick Ralph W | Flexible, extensible robot arm |
GB2145691B (en) * | 1983-08-29 | 1987-06-03 | Toshiba Kk | Extendible and contractable arms |
US4661039A (en) * | 1983-10-20 | 1987-04-28 | Donaldson Company | Flexible-frame robot |
CA1245510A (en) | 1984-03-05 | 1988-11-29 | Arktos Developments Ltd. | All terrain vehicle and method of operating same |
US4646906A (en) * | 1984-09-06 | 1987-03-03 | Fairchild Incorporated | Apparatus for continuously conveying coal from a continuous miner to a remote floor conveyor |
US4736826A (en) | 1985-04-22 | 1988-04-12 | Remote Technology Corporation | Remotely controlled and/or powered mobile robot with cable management arrangement |
FI852478L (en) * | 1985-06-20 | 1986-12-21 | Reta-Myynti Ky | FOERFARANDE I FORDON MED SVAENGBAR LARVMATTA FOER ATT AOSTADKOMMA BAETTRE KOERSTABILITETER. |
US4752105A (en) * | 1985-10-24 | 1988-06-21 | Barnard Jan H | Vehicle traction |
FR2589238B1 (en) | 1985-10-25 | 1987-11-20 | Commissariat Energie Atomique | SENSOR FOR EFFORT AND TORQUE MEASUREMENT AND APPLICATIONS OF SUCH A SENSOR TO A PROBE AND TO A GRIPPING DEVICE |
GB8526602D0 (en) * | 1985-10-29 | 1986-11-05 | Secr Defence | Unmanned vehicle |
US4700693A (en) | 1985-12-09 | 1987-10-20 | Welch Allyn, Inc. | Endoscope steering section |
US4784042A (en) | 1986-02-12 | 1988-11-15 | Nathaniel A. Hardin | Method and system employing strings of opposed gaseous-fluid inflatable tension actuators in jointed arms, legs, beams and columns for controlling their movements |
US4756662A (en) * | 1986-03-31 | 1988-07-12 | Agency Of Industrial Science & Technology | Varible compliance manipulator |
US4714125A (en) | 1986-05-05 | 1987-12-22 | Stacy Jr Jack C | Single laterally bendable track snowmobile |
JPS62184080U (en) * | 1986-05-14 | 1987-11-21 | ||
EP0405623A3 (en) | 1986-05-21 | 1991-02-06 | Kabushiki Kaisha Komatsu Seisakusho | System for inspecting a dust proofing property |
US4765795A (en) | 1986-06-10 | 1988-08-23 | Lord Corporation | Object manipulator |
DE3626238A1 (en) | 1986-08-02 | 1988-02-18 | Kloeckner Becorit Gmbh | Steerable tracklaying unit |
US5219264A (en) | 1986-09-19 | 1993-06-15 | Texas Instruments Incorporated | Mobile robot on-board vision system |
US4828339A (en) * | 1986-09-30 | 1989-05-09 | Joy Technologies Inc. | Crawler chain |
FR2609335B1 (en) * | 1987-01-05 | 1989-04-14 | Protee | SYSTEM FOR TRACKING THE MOTION OF A TRACKED VEHICLE |
GB8709125D0 (en) | 1987-04-15 | 1987-05-20 | Siren A O | All-terrain hydrofoil train |
US4765796A (en) * | 1987-07-20 | 1988-08-23 | The United States Of America As Represented By The Secretary Of Agriculture | Process for flameproofing cellulosic fibers prior to dyeing |
US4796607A (en) * | 1987-07-28 | 1989-01-10 | Welch Allyn, Inc. | Endoscope steering section |
JPS6471686A (en) | 1987-09-09 | 1989-03-16 | Komatsu Mfg Co Ltd | Flexible arm robot |
US4848179A (en) * | 1988-02-16 | 1989-07-18 | Trw Inc. | Flexidigit robotic manipulator |
US5021798A (en) * | 1988-02-16 | 1991-06-04 | Trw Inc. | Antenna with positionable reflector |
JPH01237271A (en) * | 1988-03-18 | 1989-09-21 | Takaoka Electric Mfg Co Ltd | Crawler |
US5046914A (en) | 1988-07-12 | 1991-09-10 | Cybermation, Inc. | Parallel lifting device |
US4862808A (en) | 1988-08-29 | 1989-09-05 | Gas Research Institute | Robotic pipe crawling device |
US4932831A (en) | 1988-09-26 | 1990-06-12 | Remotec, Inc. | All terrain mobile robot |
FR2638813B1 (en) | 1988-11-09 | 1991-02-01 | Nancy Ecole Sup Sciences Techn | SELF-PROPELLED VEHICLE FOR GRINDING OF PIPING |
DE4000348A1 (en) * | 1989-03-06 | 1990-09-13 | Hewlett Packard Co | DEVICE AND METHOD FOR MONITORING THE MOVEMENTS OF A FLEXIBLE ROBOT |
US4932491A (en) | 1989-03-21 | 1990-06-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Body steered rover |
FR2651201B1 (en) | 1989-08-31 | 1991-10-25 | Framatome Sa | VEHICLE WITH INCLINABLE TRACKS. |
US5080000A (en) * | 1990-05-11 | 1992-01-14 | Bubic Frank R | Flexible robotic links and manipulator trunks made thereform |
EP0465743A1 (en) * | 1990-07-12 | 1992-01-15 | British Aerospace Public Limited Company | Teach and report probe for a robot arm |
US5588688A (en) | 1990-08-06 | 1996-12-31 | Sarcos, Inc. | Robotic grasping apparatus |
US4997790A (en) * | 1990-08-13 | 1991-03-05 | Motorola, Inc. | Process for forming a self-aligned contact structure |
US5186526A (en) * | 1990-08-31 | 1993-02-16 | General Chemical Corporation | One-piece crawler pad |
JPH053087U (en) * | 1991-01-25 | 1993-01-19 | 株式会社小松製作所 | Rubber track |
JPH04101782U (en) * | 1991-02-13 | 1992-09-02 | 株式会社フジタ | Caterpillar protection cover |
US5252870A (en) * | 1991-03-01 | 1993-10-12 | Jacobsen Stephen C | Magnetic eccentric motion motor |
US5142932A (en) | 1991-09-04 | 1992-09-01 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Flexible robotic arm |
DE4133605C2 (en) | 1991-10-10 | 1994-05-11 | Siemens Ag | Flexible robot arm |
US5317952A (en) * | 1991-11-22 | 1994-06-07 | Kinetic Sciences Inc. | Tentacle-like manipulators with adjustable tension lines |
US5428713A (en) * | 1991-11-25 | 1995-06-27 | Kabushiki Kaisha Toshiba | Compound module type manipulator apparatus |
US5562843A (en) | 1991-12-28 | 1996-10-08 | Joven Electric Co., Ltd. | Industrial robot with contact sensor |
US5199771A (en) | 1992-03-02 | 1993-04-06 | Logan Manufacturing Company | Not retaining cleat for vehicle endless track |
US5297443A (en) * | 1992-07-07 | 1994-03-29 | Wentz John D | Flexible positioning appendage |
US5443354A (en) | 1992-07-20 | 1995-08-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Hazardous materials emergency response mobile robot |
US5337732A (en) * | 1992-09-16 | 1994-08-16 | Cedars-Sinai Medical Center | Robotic endoscopy |
US5451135A (en) | 1993-04-02 | 1995-09-19 | Carnegie Mellon University | Collapsible mobile vehicle |
US5350033A (en) | 1993-04-26 | 1994-09-27 | Kraft Brett W | Robotic inspection vehicle |
US5435405A (en) * | 1993-05-14 | 1995-07-25 | Carnegie Mellon University | Reconfigurable mobile vehicle with magnetic tracks |
US5363935A (en) * | 1993-05-14 | 1994-11-15 | Carnegie Mellon University | Reconfigurable mobile vehicle with magnetic tracks |
US5413454A (en) | 1993-07-09 | 1995-05-09 | Movsesian; Peter | Mobile robotic arm |
US5466056A (en) | 1993-07-26 | 1995-11-14 | Lmc Operating Corp. | Cleat retaining assembly for vehicle endless track |
US5556370A (en) | 1993-07-28 | 1996-09-17 | The Board Of Trustees Of The Leland Stanford Junior University | Electrically activated multi-jointed manipulator |
US5354124A (en) | 1993-09-07 | 1994-10-11 | Lmc Operating Corp. | Water sealed, cable reinforced vehicle endless track and cleat assembly |
US5440916A (en) | 1993-11-15 | 1995-08-15 | The United States Of America As Represented By The Administrator Of The National Aeronatics And Space Administration | Emergency response mobile robot for operations in combustible atmospheres |
JP2594880B2 (en) | 1993-12-29 | 1997-03-26 | 西松建設株式会社 | Autonomous traveling intelligent work robot |
US5551545A (en) | 1994-03-18 | 1996-09-03 | Gelfman; Stanley | Automatic deployment and retrieval tethering system |
US5516249A (en) * | 1994-05-10 | 1996-05-14 | Technical Research Associates, Inc. | Exoskeleton with kinesthetic feedback and robotic control |
JPH07329837A (en) * | 1994-06-08 | 1995-12-19 | Kubota Corp | Spike cover for crawler type travelling device with spike |
DE4426811C1 (en) | 1994-07-28 | 1995-10-19 | Siemens Ag | Precisely controllable flexible actuator |
US5573316A (en) | 1995-06-02 | 1996-11-12 | Wankowski; Russell A. | Lightweight snowmobile traction stud |
JP3267116B2 (en) | 1995-09-19 | 2002-03-18 | ミノルタ株式会社 | Contact sensors and moving objects |
US5821666A (en) | 1995-09-22 | 1998-10-13 | Nippondenso Co., Ltd. | United control system comprising a plurality of control units independently controllable |
US5770913A (en) * | 1995-10-23 | 1998-06-23 | Omnific International, Ltd. | Actuators, motors and wheelless autonomous robots using vibratory transducer drivers |
DE19541458C1 (en) | 1995-11-07 | 1997-03-06 | Siemens Ag | Flexible actuator e.g. for domestic appliances |
US5697285A (en) | 1995-12-21 | 1997-12-16 | Nappi; Bruce | Actuators for simulating muscle activity in robotics |
US5749828A (en) * | 1995-12-22 | 1998-05-12 | Hewlett-Packard Company | Bending neck for use with invasive medical devices |
CH690595A5 (en) | 1996-04-12 | 2000-10-31 | Ka Te System Ag | Control means for a fluid aggregates exhibiting device and device for rehabilitating pipes. |
DE19617852A1 (en) | 1996-04-23 | 1997-10-30 | Karlsruhe Forschzent | Process for the planar production of pneumatic and fluidic miniature manipulators |
JP3126986B2 (en) | 1996-06-12 | 2001-01-22 | 株式会社小松製作所 | Crawler type vibration compaction machine |
US6030057A (en) * | 1996-06-19 | 2000-02-29 | Fikse; Tyman H. | Tractor endless tread |
US6186604B1 (en) * | 1996-06-19 | 2001-02-13 | Tyman H. Fikse | Tractor endless tread |
US5963712A (en) | 1996-07-08 | 1999-10-05 | Sony Corporation | Selectively configurable robot apparatus |
GB9614761D0 (en) | 1996-07-13 | 1996-09-04 | Schlumberger Ltd | Downhole tool and method |
US5902254A (en) * | 1996-07-29 | 1999-05-11 | The Nemours Foundation | Cathether guidewire |
JPH1086865A (en) * | 1996-09-13 | 1998-04-07 | Bill Daiko:Kk | Attracting unit for wall cleaner |
ES2321671T3 (en) | 1996-10-18 | 2009-06-09 | Kyushu Electric Power Co., Inc. | ROBOT VEHICLE FOR WORK ON POWER TRANSMISSION LINES WITH CURRENT. |
IT1285533B1 (en) * | 1996-10-22 | 1998-06-08 | Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant Anna | ENDOSCOPIC ROBOT |
US6331181B1 (en) * | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US6113343A (en) | 1996-12-16 | 2000-09-05 | Goldenberg; Andrew | Explosives disposal robot |
US5888235A (en) * | 1997-01-07 | 1999-03-30 | Sarcos, Inc. | Body-powered prosthetic arm |
DE19704080C2 (en) | 1997-02-04 | 1998-11-05 | Diehl Stiftung & Co | Mine detector |
US6281489B1 (en) | 1997-05-02 | 2001-08-28 | Baker Hughes Incorporated | Monitoring of downhole parameters and tools utilizing fiber optics |
US6016385A (en) * | 1997-08-11 | 2000-01-18 | Fanu America Corp | Real time remotely controlled robot |
DE19746510C2 (en) * | 1997-10-22 | 2003-03-06 | Pii Pipetronix Gmbh | Device for driving through pipes |
JP3919040B2 (en) * | 1997-11-30 | 2007-05-23 | ソニー株式会社 | Robot equipment |
JP3765356B2 (en) | 1997-12-22 | 2006-04-12 | ソニー株式会社 | Robot equipment |
DE19821306C2 (en) | 1998-05-13 | 2000-12-14 | Gmd Gmbh | Autonomously navigating system with obstacle detection |
US6138604A (en) | 1998-05-26 | 2000-10-31 | The Charles Stark Draper Laboratories, Inc. | Pelagic free swinging aquatic vehicle |
US5984032A (en) | 1998-06-10 | 1999-11-16 | Gremillion; Ernest J. | Articulating marsh buggy |
US6109705A (en) | 1998-08-07 | 2000-08-29 | Camoplast, Inc. | Snowmobile drive track for traveling on icy and hardened snow surface |
JP3017182B1 (en) | 1998-09-29 | 2000-03-06 | 富太郎 服部 | Track pad |
US6162171A (en) | 1998-12-07 | 2000-12-19 | Wan Sing Ng | Robotic endoscope and an autonomous pipe robot for performing endoscopic procedures |
DE19857891A1 (en) | 1998-12-15 | 2000-06-21 | Macmoter Spa | Tracked vehicle with separately driven tracks has body connected to running gear to pivot around pivot point, and spring unit between running gear and body a distance away from pivot point |
US6333631B1 (en) | 1999-03-08 | 2001-12-25 | Minister Of National Defence Of Her Majesty's Canadian Government | Cantilevered manipulator for autonomous non-contact scanning of natural surfaces for the deployment of landmine detectors |
US6820653B1 (en) * | 1999-04-12 | 2004-11-23 | Carnegie Mellon University | Pipe inspection and repair system |
US6264293B1 (en) * | 1999-06-04 | 2001-07-24 | International Engineering & Manufacturing Inc | Traction stud mount and method of manufacturing and mounting |
US6523629B1 (en) * | 1999-06-07 | 2003-02-25 | Sandia Corporation | Tandem mobile robot system |
US6484083B1 (en) | 1999-06-07 | 2002-11-19 | Sandia Corporation | Tandem robot control system and method for controlling mobile robots in tandem |
DE10018075A1 (en) | 1999-06-29 | 2001-01-18 | Daimler Chrysler Ag | Combating explosive bodies, especially mines, involves using platform holding several devices with hollow charges forming projectiles deployed using three-dimensional optical sensor |
JP2001038663A (en) * | 1999-07-28 | 2001-02-13 | Yamaha Motor Co Ltd | Machine control system |
MXPA02001452A (en) * | 1999-08-12 | 2003-07-21 | Manomuscle Inc | Shape-memory alloy actuators and control methods. |
US6505896B1 (en) | 2000-09-01 | 2003-01-14 | Alain Boivin | Track for snow vehicles |
JP3326472B2 (en) * | 1999-11-10 | 2002-09-24 | 独立行政法人 航空宇宙技術研究所 | Articulated robot |
US6260501B1 (en) * | 2000-03-17 | 2001-07-17 | Arthur Patrick Agnew | Submersible apparatus for transporting compressed gas |
US6610007B2 (en) * | 2000-04-03 | 2003-08-26 | Neoguide Systems, Inc. | Steerable segmented endoscope and method of insertion |
JP3511088B2 (en) * | 2000-04-10 | 2004-03-29 | 独立行政法人航空宇宙技術研究所 | Pressure distribution sensor for multi-joint care robot control |
US6450104B1 (en) * | 2000-04-28 | 2002-09-17 | North Carolina State University | Modular observation crawler and sensing instrument and method for operating same |
US6488306B1 (en) | 2000-12-21 | 2002-12-03 | Sandia Corporation | Mobility platform coupling device and method for coupling mobility platforms |
ES2249599T3 (en) * | 2001-03-07 | 2006-04-01 | Carnegie Mellon University | ROBOTIZED SYSTEM TO INSPECT GAS DRIVES. |
US6774597B1 (en) * | 2001-03-30 | 2004-08-10 | The Regents Of The University Of Michigan | Apparatus for obstacle traversion |
US6563084B1 (en) * | 2001-08-10 | 2003-05-13 | Lincoln Global, Inc. | Probe for touch sensing |
US6715575B2 (en) | 2001-08-16 | 2004-04-06 | Formula Fast Racing | Track tensioning system for a tracked vehicle |
US6799815B2 (en) | 2001-09-12 | 2004-10-05 | The Goodyear Tire & Rubber Company | Cold environment endless rubber track and vehicle containing such track |
NO317623B1 (en) | 2001-09-25 | 2004-11-22 | Inocean As | System for utilizing sinusoidal motion samples |
JP2003118660A (en) * | 2001-10-15 | 2003-04-23 | Toyoji Aida | Crawler belt enhancing buoyancy |
US6672344B1 (en) | 2001-10-26 | 2004-01-06 | Perseptive Biosystems, Inc. | Robotic system having positionally adjustable multiple probes |
US6859359B2 (en) | 2002-01-30 | 2005-02-22 | The United States Of America As Represented By The Secretary Of The Army | Modular sensor platform |
US6540310B1 (en) * | 2002-02-01 | 2003-04-01 | Ironwood Designs Llc | Grouser |
US6773327B1 (en) * | 2002-02-12 | 2004-08-10 | Hasbro, Inc. | Apparatus for actuating a toy |
US6595812B1 (en) * | 2002-02-15 | 2003-07-22 | Harry Haney | Amphibious vehicle |
US6732015B2 (en) | 2002-03-14 | 2004-05-04 | Kabushiki Kaisha Toshiba | Robot system |
US6652164B2 (en) | 2002-03-28 | 2003-11-25 | Pelco | Retractable camera mounting mechanism |
US6831436B2 (en) | 2002-04-22 | 2004-12-14 | Jose Raul Gonzalez | Modular hybrid multi-axis robot |
US6651804B2 (en) | 2002-04-30 | 2003-11-25 | Joy Mm Delaware, Inc. | Self-propelled articulated conveyor system |
KR100812506B1 (en) | 2002-05-31 | 2008-03-11 | 후지쯔 가부시끼가이샤 | Remotely-operated robot, and robot self position identifying method |
US7040426B1 (en) * | 2002-06-04 | 2006-05-09 | Polaris Industries, Inc. | Suspension for a tracked vehicle |
US7137465B1 (en) | 2002-10-02 | 2006-11-21 | The Charles Stark Draper Laboratory, Inc. | Crawler device |
US6840588B2 (en) | 2002-10-25 | 2005-01-11 | Soucy International Inc. | Non-repeating sequence of profiles |
US7069124B1 (en) | 2002-10-28 | 2006-06-27 | Workhorse Technologies, Llc | Robotic modeling of voids |
US6936003B2 (en) | 2002-10-29 | 2005-08-30 | Given Imaging Ltd | In-vivo extendable element device and system, and method of use |
AU2003289022A1 (en) | 2002-12-12 | 2004-06-30 | Matsushita Electric Industrial Co., Ltd. | Robot control device |
FR2850350B1 (en) | 2003-01-29 | 2006-03-10 | Bernard Coeuret | CHASSIS TRACKED VEHICLE PROVIDED WITH A PIVOTING MEANS |
US7331436B1 (en) | 2003-03-26 | 2008-02-19 | Irobot Corporation | Communications spooler for a mobile robot |
US6837318B1 (en) | 2003-03-28 | 2005-01-04 | Hanna Craig | Rescue and exploration apparatus |
US7090637B2 (en) | 2003-05-23 | 2006-08-15 | Novare Surgical Systems, Inc. | Articulating mechanism for remote manipulation of a surgical or diagnostic tool |
CN1603068A (en) | 2003-09-29 | 2005-04-06 | 中国科学院自动化研究所 | Control system for multi robot carrying based on wireless network |
JP4607442B2 (en) | 2003-10-07 | 2011-01-05 | 国立大学法人東京工業大学 | Crawler type traveling robot |
US6964312B2 (en) | 2003-10-07 | 2005-11-15 | International Climbing Machines, Inc. | Surface traversing apparatus and method |
WO2005049414A1 (en) | 2003-11-20 | 2005-06-02 | The Circle For The Promotion Of Science And Engineering | Crawler belt, crawler device, and method of producing the crawler belt |
DE102004010089A1 (en) | 2004-02-27 | 2005-09-15 | Losch Airport Equipment Gmbh | Transport vehicle for wheelchairs |
ATE524783T1 (en) | 2004-03-27 | 2011-09-15 | Harvey Koselka | AUTONOMOUS PERSONAL SERVICE ROBOT |
US7188473B1 (en) * | 2004-04-26 | 2007-03-13 | Harry HaruRiko Asada | Shape memory alloy actuator system using segmented binary control |
CA2512299C (en) * | 2004-09-07 | 2017-11-07 | Camoplast Inc. | Powder snow track for snowmobile |
DE602005021918D1 (en) | 2004-12-20 | 2010-07-29 | Tokyo Inst Tech | FINAL BODY AND TREADMILL |
CN2774717Y (en) | 2005-01-17 | 2006-04-26 | 江南大学 | Snaik shape robot of multiple freedom flexible joints |
US7188568B2 (en) * | 2005-06-29 | 2007-03-13 | Arizona Public Service Company | Self-propelled vehicle for movement within a tubular member |
US7493976B2 (en) | 2005-08-04 | 2009-02-24 | Engineering Services, Inc. | Variable configuration articulated tracked vehicle |
JP4565107B2 (en) | 2005-08-31 | 2010-10-20 | 株式会社東芝 | Mobile robot with arm mechanism |
US7860614B1 (en) | 2005-09-13 | 2010-12-28 | The United States Of America As Represented By The Secretary Of The Army | Trainer for robotic vehicle |
GB0522924D0 (en) | 2005-11-10 | 2005-12-21 | Allen Vanguard Ltd | Remotely operated machine with manipulator arm |
CN100509524C (en) | 2005-11-25 | 2009-07-08 | 杨宁 | Restrained pedrail type flexible barrier-exceeding vehicle |
US8374754B2 (en) | 2005-12-05 | 2013-02-12 | Niitek, Inc. | Apparatus for detecting subsurface objects with a reach-in arm |
JP4635259B2 (en) | 2006-03-10 | 2011-02-23 | 独立行政法人産業技術総合研究所 | Crawler robot |
US7654348B2 (en) | 2006-10-06 | 2010-02-02 | Irobot Corporation | Maneuvering robotic vehicles having a positionable sensor head |
US7843431B2 (en) | 2007-04-24 | 2010-11-30 | Irobot Corporation | Control system for a remote vehicle |
EP2476604B1 (en) | 2006-11-13 | 2013-08-21 | Raytheon Company | Tracked robotic crawler having a moveable arm |
CN101626946B (en) | 2006-11-13 | 2013-06-05 | 雷神萨科斯公司 | Suspension system for light robot vehicle and the vehicle support method |
WO2008076192A2 (en) | 2006-11-13 | 2008-06-26 | Raytheon Sarcos Llc | Versatile endless track for lightweight mobile robots |
JP2010509127A (en) | 2006-11-13 | 2010-03-25 | レイセオン・サルコス・エルエルシー | Unmanned ground robotic vehicle with selectively extendable and retractable sensing appendages |
JP2010526590A (en) | 2007-05-07 | 2010-08-05 | レイセオン・サルコス・エルエルシー | Method for manufacturing a composite structure |
US20080281468A1 (en) | 2007-05-08 | 2008-11-13 | Raytheon Sarcos, Llc | Variable primitive mapping for a robotic crawler |
JP2010533102A (en) | 2007-07-10 | 2010-10-21 | レイセオン・サルコス・エルエルシー | Serpentine robot crawler with continuous trajectory |
EP2170683A2 (en) | 2007-07-10 | 2010-04-07 | Raytheon Sarcos, LLC | Modular robotic crawler |
US8392036B2 (en) | 2009-01-08 | 2013-03-05 | Raytheon Company | Point and go navigation system and method |
WO2010144820A2 (en) | 2009-06-11 | 2010-12-16 | Raytheon Sarcos, Llc | Amphibious robotic crawler |
US8935014B2 (en) | 2009-06-11 | 2015-01-13 | Sarcos, Lc | Method and system for deploying a surveillance network |
-
2007
- 2007-11-13 WO PCT/US2007/023867 patent/WO2008076192A2/en active Application Filing
- 2007-11-13 EP EP07870879A patent/EP2086821B1/en not_active Not-in-force
- 2007-11-13 US US11/985,346 patent/US20080136254A1/en not_active Abandoned
- 2007-11-13 DE DE602007007807T patent/DE602007007807D1/en active Active
- 2007-11-13 CN CN200780049707.XA patent/CN101583532B/en not_active Expired - Fee Related
- 2007-11-13 AT AT07870879T patent/ATE473907T1/en not_active IP Right Cessation
- 2007-11-13 JP JP2009536341A patent/JP5399910B2/en not_active Expired - Fee Related
-
2009
- 2009-05-12 IL IL198712A patent/IL198712A/en not_active IP Right Cessation
-
2010
- 2010-01-27 US US12/694,996 patent/US20100201187A1/en not_active Abandoned
- 2010-06-22 US US12/820,881 patent/US8042630B2/en active Active
Patent Citations (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1107874A (en) * | 1911-11-06 | 1914-08-18 | Bullock Tractor Company | Vehicle. |
US1112460A (en) * | 1913-04-21 | 1914-10-06 | Harry W Leavitt | Tractor. |
US1515756A (en) * | 1922-05-12 | 1924-11-18 | Roy Irene | Articulated coupling device for heavy loads |
US1975726A (en) * | 1931-09-15 | 1934-10-02 | Martinage Leon | Endless track vehicle |
US2025999A (en) * | 1932-01-25 | 1935-12-31 | Edward C Myers | Rubber covered flexible track |
US2082920A (en) * | 1935-12-24 | 1937-06-08 | Aulmont W Tye | Trailer |
US2129557A (en) * | 1937-06-09 | 1938-09-06 | Charles H Beach | Detachable traction lug |
US2312072A (en) * | 1940-03-07 | 1943-02-23 | Tenger Victoria | Endless track for vehicles |
US2311475A (en) * | 1941-09-19 | 1943-02-16 | Theodore G Schmeiser | Auxiliary traction wheel |
US2329582A (en) * | 1942-11-02 | 1943-09-14 | Harold M Bishop | Tread |
US2967737A (en) * | 1959-11-30 | 1961-01-10 | George V Moore | Detachable traction units |
US4589460A (en) * | 1978-01-03 | 1986-05-20 | Albee William H | Off road vehicles |
US5018591A (en) * | 1990-04-24 | 1991-05-28 | Caterpillar Inc. | Track laying work vehicle |
US5205612A (en) * | 1990-05-17 | 1993-04-27 | Z C Mines Pty. Ltd. | Transport apparatus and method of forming same |
USRE36025E (en) * | 1992-07-15 | 1999-01-05 | Kabushiki Kaisha Suzuki Shoki | Crawler pad |
US5386741A (en) * | 1993-06-07 | 1995-02-07 | Rennex; Brian G. | Robotic snake |
US5878783A (en) * | 1995-05-22 | 1999-03-09 | British Gas Plc | Pipeline vehicle |
US6107795A (en) * | 1995-05-22 | 2000-08-22 | British Gas Plc | Pipeline vehicle with linked modules and carriages |
US6056237A (en) * | 1997-06-25 | 2000-05-02 | Woodland; Richard L. K. | Sonotube compatible unmanned aerial vehicle and system |
US20040216931A1 (en) * | 1998-03-27 | 2004-11-04 | Chikyung Won | Robotic platform |
US6203126B1 (en) * | 1998-06-05 | 2001-03-20 | Northern Freight Brokers, Inc. | Traction stud for a snowmobile belt made of a non-metal material |
US6380889B1 (en) * | 1999-02-19 | 2002-04-30 | Rheinmetall W & M Gmbh | Reconnaissance sonde |
US6264294B1 (en) * | 1999-06-04 | 2001-07-24 | International Engineering And Manufacturing, Inc. | Tapered traction stud, stud mount and method of making and mounting |
US20020128714A1 (en) * | 1999-06-04 | 2002-09-12 | Mark Manasas | Orthopedic implant and method of making metal articles |
US7020701B1 (en) * | 1999-10-06 | 2006-03-28 | Sensoria Corporation | Method for collecting and processing data using internetworked wireless integrated network sensors (WINS) |
US20050085693A1 (en) * | 2000-04-03 | 2005-04-21 | Amir Belson | Activated polymer articulated instruments and methods of insertion |
US20010037163A1 (en) * | 2000-05-01 | 2001-11-01 | Irobot Corporation | Method and system for remote control of mobile robot |
US6576406B1 (en) * | 2000-06-29 | 2003-06-10 | Sarcos Investments Lc | Micro-lithographic method and apparatus using three-dimensional mask |
US20040099175A1 (en) * | 2000-07-18 | 2004-05-27 | Yann Perrot | Robot vehicle adapted to operate in pipelines and other narrow passages |
US7171279B2 (en) * | 2000-08-18 | 2007-01-30 | Oliver Crispin Robotics Limited | Articulating arm for positioning a tool at a location |
US6422509B1 (en) * | 2000-11-28 | 2002-07-23 | Xerox Corporation | Tracking device |
US20030000747A1 (en) * | 2000-12-22 | 2003-01-02 | Genroku Sugiyama | Crawler |
US20020140392A1 (en) * | 2001-03-30 | 2002-10-03 | Johann Borenstein | Apparatus for obstacle traversion |
US20050007055A1 (en) * | 2001-03-30 | 2005-01-13 | Johann Borenstein | Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness |
US20040216932A1 (en) * | 2001-07-09 | 2004-11-04 | United Defense, Lp | Hybrid wheel and track vehicle drive system |
US6619146B2 (en) * | 2001-08-07 | 2003-09-16 | The Charles Stark Draper Laboratory, Inc. | Traveling wave generator |
US20030069474A1 (en) * | 2001-10-05 | 2003-04-10 | Couvillon Lucien Alfred | Robotic endoscope |
US6835173B2 (en) * | 2001-10-05 | 2004-12-28 | Scimed Life Systems, Inc. | Robotic endoscope |
US20050107669A1 (en) * | 2001-10-05 | 2005-05-19 | Couvillon Lucien A.Jr. | Robotic endoscope |
US20030097080A1 (en) * | 2001-11-22 | 2003-05-22 | Masayoshi Esashi | Active guide wire and method of making the same |
US20030110938A1 (en) * | 2001-12-13 | 2003-06-19 | Seiko Epson Corporation | Flexible actuator |
US20050225162A1 (en) * | 2002-03-20 | 2005-10-13 | John Gibbins | Compaction wheel and cleat assembly therefor |
US20040030571A1 (en) * | 2002-04-22 | 2004-02-12 | Neal Solomon | System, method and apparatus for automated collective mobile robotic vehicles used in remote sensing surveillance |
US20050235899A1 (en) * | 2002-04-30 | 2005-10-27 | Ikuo Yamamoto | Fish-shaped underwater navigating body, control system thereof, and aquarium |
US20030223844A1 (en) * | 2002-05-22 | 2003-12-04 | Organisation Intergouvernementale Dite Agence Spatiale Europeenne | Exoskeleton for the human arm, in particular for space applications |
US20040103740A1 (en) * | 2002-09-26 | 2004-06-03 | Townsend William T. | Intelligent, self-contained robotic hand |
US20050288819A1 (en) * | 2002-10-11 | 2005-12-29 | Neil De Guzman | Apparatus and method for an autonomous robotic system for performing activities in a well |
US20040168837A1 (en) * | 2002-11-27 | 2004-09-02 | Universite De Sherbrooke | Modular robotic platform |
US20060229773A1 (en) * | 2002-12-31 | 2006-10-12 | Yossef Peretz | Unmanned tactical platform |
US20060010702A1 (en) * | 2003-01-31 | 2006-01-19 | Roland Roth | Probe head for a coordinate measuring machine |
US20050166413A1 (en) * | 2003-04-28 | 2005-08-04 | Crampton Stephen J. | CMM arm with exoskeleton |
US20050235898A1 (en) * | 2003-05-19 | 2005-10-27 | Nekton Research Llc | Amphibious robot devices |
US20050027412A1 (en) * | 2003-05-19 | 2005-02-03 | Hobson Brett W. | Amphibious robot devices and related methods |
US7235046B2 (en) * | 2003-06-17 | 2007-06-26 | Science Applications International Corporation | Toroidal propulsion and steering system |
US7387179B2 (en) * | 2003-06-17 | 2008-06-17 | Science Applications International Corporation | Toroidal propulsion and steering system |
US20060070775A1 (en) * | 2003-06-17 | 2006-04-06 | Science Applications International Corporation | Toroidal propulsion and steering system |
US7044245B2 (en) * | 2003-06-17 | 2006-05-16 | Science Applications International Corporation | Toroidal propulsion and steering system |
US20060225928A1 (en) * | 2003-09-18 | 2006-10-12 | Nelson Carl V | Mono-track vehicle |
US7347179B2 (en) * | 2003-09-25 | 2008-03-25 | Daimler Chrysler Ag | Method for operating an internal combustion engine |
US7004245B2 (en) * | 2003-10-15 | 2006-02-28 | Abdeljawad Adel A | System for aiding in prevention of engine overheating in a vehicle |
US20050168068A1 (en) * | 2004-01-28 | 2005-08-04 | Camoplast Inc. | Reinforced stud mount |
US20050168070A1 (en) * | 2004-02-02 | 2005-08-04 | Camoplast Inc. | Endless track with various hardnesses for a recreational vehicle |
US20060000137A1 (en) * | 2004-06-24 | 2006-01-05 | Massachusetts Institute Of Technology | Mechanical fish robot exploiting vibration modes for locomotion |
US20090171151A1 (en) * | 2004-06-25 | 2009-07-02 | Choset Howard M | Steerable, follow the leader device |
US20060005733A1 (en) * | 2004-07-09 | 2006-01-12 | The Research Foundation Of State University Of New York | Gun fired sensor platforms |
US20080115687A1 (en) * | 2004-12-01 | 2008-05-22 | Ehud Gal | Weapon Launched Reconnaissance System |
US20060156851A1 (en) * | 2004-12-02 | 2006-07-20 | Jacobsen Stephen C | Mechanical serpentine device |
US20070156286A1 (en) * | 2005-12-30 | 2007-07-05 | Irobot Corporation | Autonomous Mobile Robot |
US20100030377A1 (en) * | 2006-05-24 | 2010-02-04 | John Unsworth | Snaking Robotic Arm with Movable Shapers |
US20080115185A1 (en) * | 2006-10-31 | 2008-05-15 | Microsoft Corporation | Dynamic modification of video properties |
US20080164079A1 (en) * | 2006-11-13 | 2008-07-10 | Jacobsen Stephen C | Serpentine robotic crawler |
US20080168070A1 (en) * | 2007-01-08 | 2008-07-10 | Naphade Milind R | Method and apparatus for classifying multimedia artifacts using ontology selection and semantic classification |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8042630B2 (en) | 2006-11-13 | 2011-10-25 | Raytheon Company | Serpentine robotic crawler |
US8205695B2 (en) | 2006-11-13 | 2012-06-26 | Raytheon Company | Conformable track assembly for a robotic crawler |
US8434208B2 (en) | 2007-05-07 | 2013-05-07 | Raytheon Company | Two-dimensional layout for use in a complex structure |
US8935014B2 (en) | 2009-06-11 | 2015-01-13 | Sarcos, Lc | Method and system for deploying a surveillance network |
US9409292B2 (en) | 2013-09-13 | 2016-08-09 | Sarcos Lc | Serpentine robotic crawler for performing dexterous operations |
US9566711B2 (en) | 2014-03-04 | 2017-02-14 | Sarcos Lc | Coordinated robotic control |
US10071303B2 (en) | 2015-08-26 | 2018-09-11 | Malibu Innovations, LLC | Mobilized cooler device with fork hanger assembly |
US10814211B2 (en) | 2015-08-26 | 2020-10-27 | Joseph Pikulski | Mobilized platforms |
US10807659B2 (en) | 2016-05-27 | 2020-10-20 | Joseph L. Pikulski | Motorized platforms |
US10583878B2 (en) | 2016-12-08 | 2020-03-10 | Aqua Products, Inc. | Endless track for submersible, autonomous vehicle |
WO2023022841A1 (en) * | 2021-08-16 | 2023-02-23 | Caterpillar Inc. | Track shoe assembly including a shoe plate and a grouser and related method of manufacture |
Also Published As
Publication number | Publication date |
---|---|
ATE473907T1 (en) | 2010-07-15 |
IL198712A (en) | 2013-09-30 |
US20100258365A1 (en) | 2010-10-14 |
WO2008076192A2 (en) | 2008-06-26 |
JP2010509126A (en) | 2010-03-25 |
CN101583532B (en) | 2012-06-13 |
CN101583532A (en) | 2009-11-18 |
US20080136254A1 (en) | 2008-06-12 |
IL198712A0 (en) | 2010-02-17 |
JP5399910B2 (en) | 2014-01-29 |
EP2086821A2 (en) | 2009-08-12 |
DE602007007807D1 (en) | 2010-08-26 |
US8042630B2 (en) | 2011-10-25 |
EP2086821B1 (en) | 2010-07-14 |
WO2008076192A3 (en) | 2008-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100201187A1 (en) | Versatile Endless Track For Lightweight Mobile Robots | |
JP2010509126A5 (en) | ||
Goldberg et al. | Gait studies for a quadrupedal microrobot reveal contrasting running templates in two frequency regimes | |
US20090302676A1 (en) | Track drive assembly | |
CA2733471A1 (en) | Tire chains | |
CA2533851A1 (en) | Traction assembly for a heavy vehicle | |
CA2881247C (en) | Detachable traction system for endless track vehicles | |
US20160362151A1 (en) | Endless track tread pattern | |
US9630663B1 (en) | Track system and method for use with rubber tire equipment | |
US2487813A (en) | Endless band track | |
AU2003234436A1 (en) | Method and device for adapting a cargo container to directly interface with an aircraft cargo bay | |
CN104608835A (en) | Combined drive type movement mechanism suitable for paddy field | |
EP0399047A1 (en) | Cross belt device for covering tire of automobile travelling on snow-covered road | |
WO2009030913A3 (en) | Conveyors and transmission belts | |
JPS60501002A (en) | Track system capable of traveling on the road | |
Oliveira et al. | A review on locomotion systems for RoboCup rescue league robots | |
CN204701681U (en) | A kind of combination drive-type travel mechanism being applicable to paddy field | |
US20180141598A1 (en) | Devices and methods for increasing traction of continuous track vehicles | |
US2561910A (en) | Quick adjusting traction device for vehicle wheels | |
US5547268A (en) | Traction device for tracked vehicle | |
US9221505B1 (en) | Endless track adapter | |
WO2006099587A3 (en) | Tracked wheelchair apparatus and associated methods | |
AU661940B2 (en) | A traction mat for vehicles | |
CN214001914U (en) | Mounting mechanism of bicycle mudguard | |
US7347511B1 (en) | Rotary walker robotic platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RAYTHEON SARCOS, LLC, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JACOBSEN, STEPHEN C.;REEL/FRAME:024280/0240 Effective date: 20080212 |
|
AS | Assignment |
Owner name: RAYTHEON COMPANY, MASSACHUSETTS Free format text: MERGER;ASSIGNOR:RAYTHEON SARCOS, LLC;REEL/FRAME:025368/0225 Effective date: 20101025 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |