US20100069320A1 - Synergism of gos and polyfructose - Google Patents

Synergism of gos and polyfructose Download PDF

Info

Publication number
US20100069320A1
US20100069320A1 US11/569,239 US56923905A US2010069320A1 US 20100069320 A1 US20100069320 A1 US 20100069320A1 US 56923905 A US56923905 A US 56923905A US 2010069320 A1 US2010069320 A1 US 2010069320A1
Authority
US
United States
Prior art keywords
polyfructose
intestinal
inulin
galacto
oligosaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/569,239
Inventor
Gelske Speelmans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nutricia NV
Original Assignee
Nutricia NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34928228&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100069320(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nutricia NV filed Critical Nutricia NV
Assigned to N.V. NUTRICIA reassignment N.V. NUTRICIA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOVERS, MARIA JOHANNA ADRIANA PETRONELLA, KNOL, JAN, SPEELMANS, GELSKE, VAN TOL, ERIC ALEXANDER FRANCISCUS
Publication of US20100069320A1 publication Critical patent/US20100069320A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/733Fructosans, e.g. inulin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/244Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin from corms, tubers or roots, e.g. glucomannan
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • A23L33/22Comminuted fibrous parts of plants, e.g. bagasse or pulp
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/01Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/06Anti-spasmodics, e.g. drugs for colics, esophagic dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/10Laxatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/318Foods, ingredients or supplements having a functional effect on health having an effect on skin health and hair or coat

Definitions

  • the present invention relates to the field of human health and nutrition. It provides novel synergistic mixtures of prebiotic carbohydrates, especially mixtures of galacto-oligosaccharides (GOS, for example TOS) and polyfructose (for example inulin), as well as nutritional compositions comprising these.
  • GOS galacto-oligosaccharides
  • polyfructose for example inulin
  • the nutritional compositions have beneficial effects when fed to bottle fed or partially bottle fed infants and also have health improving effects when ingested by adults having intestinal problems, such as Inflammatory Bowel Disease (IBD) or Irritable Bowel Syndrome (IBS).
  • IBD Inflammatory Bowel Disease
  • IBS Irritable Bowel Syndrome
  • the microflora of the human large intestine plays a crucial role in both human nutrition and health.
  • the bacterial composition is influenced and can be modulated by dietary intake.
  • Carbohydrates which have passed through the stomach and small intestine are metabolised by the bacteria and as a major end-product of metabolism short-chain fatty acids (SCFA), such as acetate, propionate, butyrate and valerate, are formed, which are subsequently released into the blood.
  • SCFA short-chain fatty acids
  • Other end products of bacterial fermentation include for example lactate and succinate.
  • the total amounts and compositions (relative amounts) of these end products in turn have a profound effect on bacterial growth, pH, exclusion of pathogenic species, etc.
  • Prebiotics were defined as “non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improve the hosts health (Gibson and Roberfroid 1995, J. Nutr. 125, 1401-1412).
  • a compound must fulfil in order to be classified as a prebiotic are: 1) it must not be hydrolysed or absorbed in the upper part of the gastrointestinal tract (stomach, small intestine), 2) it must be selectively fermented by one or more potentially beneficial bacteria in the colon, 3) it must alter the colonic microbiota towards a healthier composition and 4) it must preferably induce effects which are beneficial to the health of the subject.
  • Commonly used prebiotics are so-called non-digestible carbohydrates (or “soluble dietary fibres”), which pass undigested through the upper part of the gastrointestinal tract into the large intestine.
  • fructooligosaccharides include for example fructooligosaccharides (FOS), oligofructose, inulin and transgalacto-oligosaccharides (TOS).
  • FOS fructooligosaccharides
  • TOS transgalacto-oligosaccharides
  • beneficial bacteria which are stimulated by the uptake of prebiotics, are lactic acid bacteria, such as Lactobacilli and Bifidobacteria, and health benefits have been ascribed to be due to this stimulatory effect.
  • beneficial effects of inulin and inulin-type fructans, such as oligofructose, on intestinal function have been described (Jenkins et al. 1999, J. Nutrition 129, 1431S-1433S) and this effect is thought to be due to a bifidogenic effect, which refers to a selective growth stimulating effect on total bifidobacteria, measured either in vivo through bifidobacterial counts of the faeces or in vitro (see e.g. Roberfroid, Am J Clin Nutr 2001, 73(suppl), 406S-409S).
  • Human milk appears also to have a bifidogenic effect, as the dominant bacteria which become established in breast-fed infants are bifidobacteria.
  • bacterial colonisation of milk formula fed infants is not dominated by bifidobacteria and is more diverse in bacterial species (Harmsen et al. 2000, J. Pediatr. Gastroenterol. Nutr. 30, 61-67). It is thought that oligosaccharides found in the human milk are responsible for the bifidogenic or prebiotic effect and efforts have been made to modify infant formula in such a way that it resembles human milk as closely as possible and especially that it has the same or a very similar prebiotic effect as human milk.
  • Lactobacilli Upon fermentation of prebiotics by lactic acid bacteria organic acids are produced and the pH is lowered. Lactobacilli produce either lactate or lactate and acetate (a Short Chain Fatty Acid; SCFA). The lactate can be in the L- or D-form. Bifidobacteria, on the other hand, produce L-lactate and acetate, but no D-lactate. Bifidobacteria (and other lactic acid bacteria) usually do not lead to the production of gases, such as H 2 and CH 4 . They also do not produce other SCFA, such as propionate, butyrate, isobutyrate, valerate and isovalerate.
  • SCFA Short Chain Fatty Acid
  • SCFA such as isobutyrate and isovalerate
  • SCFA isobutyrate and isovalerate
  • other intestinal bacteria are capable of producing acetate or lactate, such as Propionibacteria, Enterococci and Pediococci.
  • SCFA colonic acid tolerant bacteria
  • lactic acid bacteria including Bifidobacteria
  • SCFA are an energy source of colonocytes and thereby aid to the intestinal barrier integrity. SCFA are also involved in effects on peristalsis, bile acid metabolism, water absorption and cell differentiation (see e.g. EP1105002). SCFA are known to stimulate the production of mucus and are involved in mineral absorption and mucus production.
  • GOS especially TOS
  • polyfructose especially inulin
  • compositions comprising lactate may therefore be used to stimulate mucin production and support the mucosal barrier integrity (mucoprotection). Lactate was further found to decrease spontaneous contractions and tension in colonic muscles, resulting in relief of cramp and pain.
  • the prebiotic compositions are therefore novel, in that they do not, or do not significantly, increase the number of Bifidobacteria, while they do result in an increase in total SCFA amounts, beneficial changes in SCFA profile (increases in acetate, decreases in butyrate and propionate), increase in lactic acid (and resulting beneficial contraction and tension reducing effects and muco-stimulatory effect), a decrease in faecal pH, a decrease in formation of gases, and more gradual formation of SCFA (including formation in the distal part of the colon), i.e. overall an optimal pattern of fermentation products (more L-lactate, less butyrate etc.). All these changes make the colonic environment more resemble that of breast fed babies.
  • the use of mixtures of GOS and polyfructose in effective amounts for the preparation of compositions which lead to a colonic environment essentially similar to that of breast fed infants is, therefore, provided herein.
  • compositions comprising both GOS and polyfructose in suitable (synergistic) amounts, such as treatment or prevention of colic and/or abdominal cramps, abdominal bloating, flatulence, abdominal pain, constipation, IBS, IBD, allergy and/or increased muco-protection of the intestine.
  • a composition comprising lactate (D-lactate and/or L-lactate, preferably L-lactate) may be used to treat or prevent one or more of these symptoms or disorders.
  • Polysaccharides refers to carbohydrate chains of monosaccharide units with a chain length of at least 10 units. In contrast, “oligosaccharides” have a chain length of less than 10 units.
  • “Degree of polymerisation” or “DP” refers to the total number of saccharide units in an oligo- or polysaccharide chain.
  • the “average DP” refers to the average DP of oligosaccharides or polysaccharide chains in a composition, without taking possible mono- or disaccharides into account (which are preferably removed if present).
  • the average DP of a composition is used to distinguish between compositions.
  • the % saccharide units, such as the % glucose and % fructose units, in a composition are distinguishing.
  • Polyfructose or “polyfructan” or “fructopolysaccharide” refers to a polysaccharide carbohydrate comprising a chain of ⁇ linked fructose units with a degree of polymerisation of 10 or more and comprises, for example, inulin (e.g. inulin HP), levan and/or a “mixed type of polyfructan” (see below).
  • “Inulin” or “non-hydrolysed inulin” or “inulin HP” is used herein to refer to glucose-terminated fructose chains with the majority of chains (at least 90%, preferably at least 95%) having a degree of polymerisation (DP) of 10 or more.
  • Inulin can thus be described as GF n , wherein G represents a glucosyl unit, F represents a fructosyl unit and n is the number of fructosyl units linked to each other, n being 9 or more.
  • the G/F ratio is about 0.1 to 0.
  • the average DP is preferably at least 15, more preferably 20 or more, such as 20, 21, 22, 23, 25, 30, 40, 60, 70, 100, 150 or more herein.
  • inulin the fructose units are linked with a ⁇ (2 ⁇ 41) linkage.
  • a suitable inulin is for example the commercially available as Raftiline®HP (Orafti) with an average DP>23.
  • Hydrolysed inulin refers to mixtures of glucose- and fructose-terminated fructose chains, with a DP below 10.
  • Hydrolysed inulin is an (enzymatic or acidic) hydrolysis product or partial hydrolysis product of inulin, resulting from cleavage of ⁇ (1 ⁇ 2) fructosyl-fructose linkages.
  • the term hydrolysed inulin also encompasses synthetically made or recombinantly made inulin which have the same structural makeup.
  • “Levan” or “levulan” or “levulin” or “levulosan” refers to a polysaccharide consisting of polyfructose in which the fructose units are linked with ⁇ (2 ⁇ 6) linkages. A starting glucose moiety can be present, but this is not necessary. The degree of polymerisation is above 10.
  • mixed type polyfructans the fructose units are linked with ⁇ (2 ⁇ 1) and ⁇ (2 ⁇ 6) linkages.
  • Mixed type polyfructans are branched and have a DP>10.
  • GOS galactooligosaccharides
  • trans-galactooligosaccharides or “trans-galactooligosaccharides” refers to oligosaccharides composed of galactose units, with a DP of 10 or less and an average DP of 2, 3, 4, 5 or 6.
  • a glucose unit may be present at the reducing end of the chain.
  • the GOS contains at least 2 ⁇ 3 galactose units.
  • Most preferred are trans-galactooligosaccharides (TOS) with 1341-4) glycosidic bonds.
  • Such a GOS is for example that found in Vivinal®GOS (commercially available from Borculo Domo Ingredients, Zwolle, Netherlands), comprising trans-galactooligosaccharides with ⁇ -(1-4) glycosidic bonds and ⁇ -(1 ⁇ 6) glycosidic bonds.
  • SCFA short chain fatty acids
  • C2 fatty acids, with a carbon chain lengths of up to C6, produced as an end-product of bacterial intestinal fermentation, such as acetate (C2), propionate (C3), butyrate and isobutyrate (C4), valerate and isovalerate (C5) and others
  • iC4-5 refers to the sum of isobutyrate, valerate and isovalerate.
  • a “synergistically effective amount” refers to an amount of GOS and polyfructose (for example TOS and inulin) which, when co-administered, confers one (or more) specific physiological effects (as described elsewhere herein), whereby the total effect of co-administration is significantly larger than the sum of the effect of individual administration of GOS or polyfructose.
  • the effect of administration of GOS alone is X and the effect of administration of polyfructose alone is Y
  • the effect of co-administration of GOS and polyfructose is larger than X+Y and for example the effect of co-administration of 1 ⁇ 2 the concentration of GOS plus 1 ⁇ 2 the concentration of polyfructose has an effect larger than 1 ⁇ 2 X+1 ⁇ 2Y, etc.
  • Co-administration of two or more substances refers to the administration of these substances to one individual, either in one composition or in separate compositions (kit of parts; as a combined composition) which are administered at the same time (simultaneously) or within a short time-span (separate or sequential use, e.g. within minutes or hours).
  • Enteral refers herein to the delivery directly into the gastrointestinal tract of a subject (e.g. orally or via a tube, catheter or stoma).
  • “Infant” refers herein to humans aged 0-36 months, preferably 0-18 months, or more preferably 0-12 months.
  • “Breast fed infants” refers to infants exclusively fed with human breast milk. “Non- or partially breast fed infants” are infants not exclusively fed on human breast milk. This includes infants fed with at least one bottle (about 80 ml) of formula milk per day.
  • Percentage or “average” generally refers to percentages of averages by weight, unless otherwise specified or unless it is clear that another basis is meant.
  • the present invention provides a number of novel uses of compositions comprising both GOS and polyfructose in suitable (synergistically effective) amounts.
  • a subject is preferably a human subject, more preferably an infant, such as a new born infant up to a 12 months old infant. Especially bottle fed or partially bottle fed infants are referred to. Alternatively, a subject may also be a child, teenager or adult.
  • intestinal problems such as but not limited to Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS), flatulence, abdominal cramps, colic, abdominal bloating, abdominal pain, etc., which may also result in fatigue, depression or moodiness, may be prevented and/or treated using compositions according to the invention.
  • mucosal production may be enhanced and allergies resulting from a suboptimal functioning of the intestine may be prevented or treated.
  • the intestinal barrier function may be improved in patients with an impaired barrier function as a result from malnutrition, surgery, chemotherapy etc.
  • compositions comprising both GOS and polyfructose may in one embodiment be used to induce the production of SCFA in the large intestine of a subject and to significantly increase the (intestinal and/or faecal) total amount of SCFA produced following administration and/or to significantly modify the relative amounts of (intestinal and/or faecal) SCFA produced, in particular to increase the (intestinal and/or faecal) relative amount of acetate out of total SCFA, and/or to significantly increase the amount (absolute and relative) of intestinal lactate produced, and/or to significantly reduce or prevent intestinal gas formation, and/or to extend the SCFA production to the distal part of the colon, and/or to significantly reduce the pH in the large intestine and faecal pH.
  • the sum of intestinal and/or faecal butyrate, isobutyrate, valerate and/or isovalerate relative to the total SCFA may be decreased.
  • These effects are achieved following administration, without having a significant effect on the total and/or relative number of intestinal bifidobacteria.
  • Compositions for the treatment or prophylaxis of any diseases or disorders or discomforts associated with or caused by one or more of these intestinal effects are provided herein.
  • the present invention provides the use of galacto-oligsaccharides and polyfructose for the manufacture of a composition for the treatment or prevention of abdominal bloating, gas formation, abdominal pain and/or flatulence.
  • the present invention provides the use of galactooligosaccharides and polyfructose for the manufacture of a composition for the treatment or prevention of allergy, eczema or atopic diseases.
  • the present invention provides the use of galacto-oligosaccharides and polyfructose for the manufacture of a composition for the treatment and/or prevention of colics and/or for the relaxation of contractions of the colon, preferably the tonic and/or phasic contraction.
  • the present invention provides the use galacto-oligosaccharides and polyfructose for the manufacture of a composition for the treatment or prevention of irritable bowel syndrome or inflammatory bowel disease.
  • the present invention provides the use of galacto-oligosaccharides and polyfructose for the manufacture of a composition for the increase of intestinal barrier functioning and/or mucus production in the large intestine.
  • a “significant increase” refers herein to an increase of at least 5%, preferably at least 10%, more preferably at least 20%, or more, compared to the amount produced when either GOS or polyfructose (e.g. inulin) alone are administered.
  • a “significant reduction” refers to a reduction of at least 5%, preferably at least 10%, more preferably at least 20%, 25%, 50% or more (e.g. 70%, 80%, 90%, 100%) compared to the amount produced when polyfructose (e.g. inulin) alone is administered.
  • An increase in the total amount of SCFA produced as fermentation product of GOS and polyfructose compositions can also be measured as a significant decrease in pH of faecal samples of subjects, reflecting an in vivo decrease in pH in the large intestine.
  • faecal pH decreased to about pH 5.8 or less, such as pH 5.6, 5.5 or 5.4 or 5.2 following co-administration of TOS and polyfructose (e.g. inulin), while the pH of standard formula fed infants was around or above pH 6, such as about pH 5.9, 6.8 or even 7.0.
  • a significant decrease in pH refers therefore to a decrease in pH by at least 15% or 0.9 unit compared to infants fed a standard formula.
  • compositions of SCFA are significantly different than when either GOS or polyfructose are administered. Especially the relative amount of butyrate is significantly reduced, while the relative amount of acetate is significantly increased.
  • the compositions may, thus, be used to alter not only total SCFA quantities, but also relative SCFA proportions.
  • TOS and polyfructose e.g.
  • the relative SCFA levels resembled more the levels found in breast fed infants, with acetate:propionate:butyrate ratios generally about 80-85%:10-15%:1-5%, while in infants fed on standard milk formula ratios were generally around 69-74%:16-19%:5-6% (as shown in the examples).
  • acetate:propionate:butyrate ratios generally about 80-85%:10-15%:1-5%
  • infants fed on standard milk formula ratios were generally around 69-74%:16-19%:5-6% (as shown in the examples).
  • GOS and polyfructose results in acetate:propionate:butyrate proportions resembling that of breast-fed infants much more closely than that of formula fed infants (which produce high levels of butyrate and propionate and relatively low levels of acetate).
  • a “significantly modified SCFA composition” or a “significantly increased amount of acetate” refers to the amount of acetate (% of total SCFA) being at least about 4%, 5%, 10%, 15%, or more, higher than when no GOS or polyfructose are administered or when GOS or polyfructose are administered individually.
  • the relative amounts of propionate and/or butyrate are lower than when no GOS or polyfructose are administered or when GOS or polyfructose are administered individually.
  • the composition according to the invention is suitable for increasing intestinal and/or faecal acetate to above about 85%, such as 86%, 87%, 88%, 90% or more, of the total SCFA.
  • a “significant decrease in branched SCFA”, as used herein, refers to a decrease at least 70% compared to the concentration found in infants not fed prebiotics or resulting in a faecal proportion of less than 1.5% of total SCFA.
  • the proportion of branched SCFA relative to the total SCFA can be measured by dividing the sum of branched SCFAs, i.e. isobutyrate, plus isovalerate plus valerate, by the sum of total SCFA, i.e. acetate, plus propionate, plus butyrate, plus isobutyrate, plus isovalerate, plus valerate, etc.
  • branched SCFA Reducing the proportion of branched SCFA is beneficial to the health of the subject, as branches SCFA are damaging. This indicates less protein degradation, which is unwanted because protein fermentation results in an increase of pH and in the formation of damaging agents such as H 2 S.
  • a significant decrease of butyrate relates to a decrease by at least 50% compared to the concentration found in infants not fed prebiotics or resulting in a faecal proportion of less than 4% of total SCFA.
  • the composition according to the invention is suitable for decreasing the sum of intestinal (and/or faecal) butyrate, isobutyrate, valerate and isovalerate is below 7% of total SCFA, such as 6.5%, 6%, 5%, 4% or less of total SCFA.
  • compositions comprising GOS and polyfructose are suitable to increase the length of fermentation within the colon.
  • bacterial fermentation will still be active in the most distal parts of the colon following co-administration, as indicated by SCFA production in the distal part of the colon.
  • No or only very little SCFA is produced in the distal part of the colon following administration of compositions comprising only GOS or only polyfructose.
  • fast fermentation at the beginning of the colon is seen following co-administration, which is especially important for anti-pathogenic effects and is also observed in breast fed infants.
  • SCFA and most likely also other fermentation products, especially lactate, are therefore produced throughout the colon, in the beginning, middle and end of the colon.
  • co-administration of GOS and polyfructose in synergistic amounts may be used for significantly increasing lactate production, as can be determined again by analysing faecal samples of test subjects and control subjects, which received compositions comprising either GOS alone or polyfructose alone or equivalent base compositions without prebiotics.
  • a “significant increase in lactate” refers to at least 5%, 10%, 20% or even 50% or more lactate being produced in subjects being co-administered compositions comprising GOS and polyfructose, compared to subjects not administered GOS or polyfructose.
  • the intestinal mucosa plays an important role in human health, as it serves as a barrier to infectious pathogens, allergens and carcinogens.
  • Compositions which positively influence the development and/or integrity of the mucosa may therefore be used to aid the build up of a healthy mucosa in new born infants and to aid the establishment of a healthy mucosa in bottle-fed or partially bottle-fed infants and in subjects suffering from symptoms or diseases resulting from or being associated with a not properly functioning intestinal mucosa.
  • intestinal problems such as Inflammatory Bowel Disease (IBD, for example colitis or Crohn's disease) or Irritable Bowel Syndrome (IBS) may be treated or prevented, or pathogen attachment and/or entry through the mucosa may be reduced or other immunological problems, such as the development of asthma, may be prevented or reduced.
  • IBD Inflammatory Bowel Disease
  • IBS Irritable Bowel Syndrome
  • loss of intestinal barrier integrity as a result from malnutrition, surgery, chemotherapy etc. can be prevented or reduced.
  • compositions according to the invention may thus be used to increase intestinal lactate levels and thereby treat or prevent symptoms such as abdominal pain, colic, abdominal contractions, abdominal tension and the like.
  • compositions comprising lactate in suitable amounts, which may be used to treat or prevent the above described symptoms and disorders.
  • compositions comprises only lactate in suitable amounts, while in another embodiment the GOS an polyfructose compositions described herein further comprises lactate to further increase intestinal lactate levels.
  • One such composition according to the invention comprises TOS and inulin in synergistically effective amounts and further comprises lactate in suitable amounts.
  • compositions are provided which are suitable for increasing intestinal and/or faecal lactate to above about 10 mmol/kg faeces.
  • in vitro assays may be carried out, whereby bacterial populations are grown in vitro and suitable amounts of compositions are added to the cultures.
  • in vitro fermentation system described in the Examples may be used.
  • At least 2, 3, 4, 5, 6, 7, 8, 9 or all these effects are significantly modified when using compositions comprising both GOS and polyfructose, compared to when administering compositions comprising only GOS or polyfructose, or neither GOS or polyfructose.
  • at least 2, 3, 4, 5, 6, 7, 8, 9 or all these effects are significantly larger following co-administration of a (synergistically effective amount) of GOS and polyfructose than the sum of the effect(s) of administration of GOS and polyfructose individually.
  • the synergistic compositions according to the invention are, therefore, particularly suited to build up and/or maintain a healthy microflora within an infant's large intestine following administration of a synergistically effective amount.
  • an infant is fed solely on a base composition, such as milk formula, supplemented with a synergistically effective amount of GOS and polyfructose within the first weeks after birth.
  • a preferred composition is, therefore, a dietary composition for infants.
  • an infant is only partly fed on a composition according to the invention.
  • the composition is used to treat or prevent symptoms selected from one or more of: gas formation, flatulence, colitis, abdominal bloating, abdominal cramps, abdominal pain, IBS, IBD, allergy and/or as a mucoprotectant.
  • GOS and polyfructose may, thus, be used for the preparation of a composition or a combined composition for simultaneous, separate or sequential use in treatment of flatulence, excessive gas formation, colitis, abdominal bloating, abdominal cramps, abdominal pain, IBS, IBD, allergy, decreased intestinal barrier functioning and/or as a mucoprotectant.
  • the subject may in this case be any subject, ranging from infant, child, teenager to adult.
  • the base compositions to which GOS and polyfructose are added in synergistically effective amounts will vary depending on the age of the subject, the mode of administration and on the main symptoms to be treated or prevented.
  • the base composition is preferably a liquid or powder form infant or follow-on formula, while for adults a nutrient supplement composition (liquid, semi-liquid or solid) or tube feeding may be more suitable.
  • GOS and polyfructose are co-administered in a synergistically effective amount suitable to significantly increase the total amount of intestinal SCFA formed and/or to significantly improve intestinal SCFA composition (especially to significantly increase the percentage of acetate relative to the total amount of SCFA) and/or to significantly increase lactate production and/or to and to lower intestinal pH and/or to significantly reduce intestinal gas formation.
  • compositions comprising a synergistically effective amount of GOS and polyfructose for the treatment and/or prevention of colic and/or abdominal cramps, abdominal bloating and/or flatulence, abdominal pain, IBS, IBD and/or allergy is provided.
  • Use of such compositions for increasing mucoprotection and strengthening the intestinal barrier is also provided. It is understood that not necessarily one composition is referred to, but that GOS and polyfructose may be present in separate compositions, which provides a synergistically effective amount when co-administered.
  • compositions are able to cause one or more of the following downstream beneficial effects:
  • a composition comprising a synergistically effective amount of GOS and polyfructose may therefore be used to either maintain or establish (e.g. in a newborn, premature or mature born baby or in a non- or partially breast fed baby, or other subjects, such as adults, one or more of the above physiological effects and maintain or improve the health of the subject by ensuring or establishing a healthy large intestinal environment and optimal activity of the large intestine.
  • compositions according to the invention may also be used to relax contractions of the colon, preferably the phasic and/or tonic contractions.
  • compositions suitable for the uses described above comprise both polyfructose and GOS in synergistically effective amounts.
  • the compositions comprise GOS/polyfructose in ratios ranging from 3/97 to 97/3, preferably 5/95 to 95/5, more preferably 90/10 to 45/55. All individual ratios between these end-points are encompassed herein, such as 10/90, 20/80, 30/70, 40/60, 50/50, 55/45, 60/40, 70/30, 80/20, 85/15, 90/10, etc.
  • the dosages required and the GOS/polyfructose ratio for achieving the (optimal) synergistic effect may vary, depending on the type of composition and the method and frequency of administration. A few examples are however given below. A skilled person may easily determine what dosages of each component is required to achieve the best physiological effect and what GOS/polyfructose ratio is the most suitable.
  • the main aim is to enhance the total level of SCFA following oral administration of a composition comprising GOS and polyfructose
  • a skilled person will make various compositions (comprising GOS plus polyfructose, GOS alone, polyfructose alone) and compare their efficiency in inducing high SCFA levels using either in vivo or in vitro tests as known in the art. It is understood that when referring to “daily dose” or ‘dosage per day’, this does not imply that the dosage must be administered to the subject at one time.
  • a synergistically effective infant formula may, for example, consist of a base composition (e.g. standard infant formula) comprising about 4 g/l, 5 g/l or more of a mixture of GOS and polyfructose, whereby the ratio's of GOS to polyfructose may vary as described elsewhere herein (e.g. 90% GOS:10% polyfructose).
  • a base composition e.g. standard infant formula
  • a base composition comprising about 4 g/l, 5 g/l or more of a mixture of GOS and polyfructose, whereby the ratio's of GOS to polyfructose may vary as described elsewhere herein (e.g. 90% GOS:10% polyfructose).
  • Polyfructose may, for example, be levan and/or inulin.
  • Polyfructose, such as levan or inulin, for use in the compositions may be either extracted from natural sources (plants or bacteria) or may be made by de novo synthesis or by recombinant DNA technologies as known in the art. Extraction, size separation and purification methods of inulin have been described, for example in De Leenheer (1996), U.S. Pat. No. 6,569,488 and U.S. Pat. No. 5,968,365. Recombinant production methods have been for example described in U.S. Pat. No. 6,559,356. Synthesis generally involves the use of sucrose molecules and enzymes with fructosyl transferase activity. Inulin suitable for use in the compositions is also already commercially available, e.g. Raftiline®HP, Orafti.
  • Plant inulins generally have a much lower degree of polymerisation than bacterial inulins (up to 150, compared to up to 100,000 in bacteria).
  • Plant sources include dicotyledenous species, such as Compositae. Examples of species which produce relatively large amounts of inulin, mainly in their roots, bulbs or tubers, are chicory, asparagus, dahlia, Jerusalem artichoke, garlic, and others (see Kaur and Gupta, J. Biosci. 2002, 27, 703-714).
  • the inulin should preferably not comprise oligofructose, hydrolysis should be avoided or oligofructose and/or mono- or disaccharides present should be removed prior to use.
  • polyfructose with a PD of at least 10, 15, 20, 50, 70, 100, 120, 130, 150, 200, 300, 500 or more.
  • Polyfructoses such as levans, may be hydrolysed to avoid viscosity problems associated with too long chains, as long as a PD of 10 or more is retained.
  • Levans may also be obtained from natural sources such as plants (e.g. monocotyledons) yeast, fungi, bacteria, or made chemically or using recombinant DNA technology.
  • GOS may be obtained from natural sources, such as plants (e.g. chicory, Soya) or bacteria, or may be made synthetically or by recombinant DNA technology as known in the art.
  • GOS may be ⁇ -galacto-oligosaccharide or ⁇ -galacto-oligosaccharide or a mixture of both.
  • galactose residues are linked by ⁇ (1 ⁇ 4) and ⁇ (1 ⁇ 6) glycosidic bonds (trans GOS or TOS).
  • GOS suitable for use in the compositions is also already commercially available, e.g. Vivinal®GOS, Borculo Domo Ingredients, Zwolle, The Netherlands.
  • GOS may also be derived from lactose, by treatment of lactose enzymatically with ⁇ -galactosidase or by hydrolysis from polyglucan.
  • TOS is used.
  • the preferred polyfructose is inulin HP, so that the combination of TOS and inulin HP are also a preferred embodiment herein.
  • compositions comprising lactate in suitable amounts, in particular for the uses described above.
  • suitable amounts of lactate may vary, and may for example range from 1 to 30 grams per day.
  • Compositions according to the invention may be either food compositions, food supplement compositions or pharmaceutical compositions. Apart from polyfructose and GOS (and/or lactate) they may comprise additional ingredients. For food compositions or food supplement compositions these should be food grade and physiologically acceptable. “Food” refers to liquid, solid or semi-solid dietetic compositions, especially total food compositions (food-replacement), which do not require additional nutrient intake or food supplement compositions. Food supplement compositions do not completely replace nutrient intake by other means. Food and food supplement compositions are in a preferred embodiment baby food or food supplements, food or food supplements for prematurely born babies, infant food, toddler food, etc., which are preferably administered enterally, preferably orally several times daily.
  • the food or food supplement compositions are particularly suited for non- or partially breast fed infants. Also, the composition may be beneficially administered to infants in their adaptation period to solid food or infants changing from breast to bottle feeding. The composition may also be part of a human milk fortifier supplement.
  • the composition is an infant or follow-on formula as e.g. known in the art, especially as described in the European Commission directive 91/321/EEC and the amendments thereof, but may be modified to comprise an effective amount of polyfructose and GOS.
  • the infant or follow-on formula may be based on milk (cows milk, goats milk, etc.), infant milk formula (IMF) or soy for lactose intolerant infants or may contain amino acids as a nitrogen source for infants having problems regarding allergy or absorption.
  • infant or follow-on formulae comprise, thus, a milk protein or soy protein base, fat, vitamins, digestible carbohydrates and minerals in recommended daily amounts and may be powders, liquid concentrates or ready-to-feed compositions.
  • the modified infant or follow-on formula results in a large intestinal environment which resembles that of breast-fed infants, as can be determined by analyses of faecal pH, bacterial composition, SCFA production and profiles, gas production, etc.
  • the volume (comprising the daily effective dose) consumed or administered on a daily basis is in the range of about 100 to 1500 ml, more preferably about 450 to 1000 ml per day.
  • the formula is a solid preferably the amount (comprising the daily effective dose) consumed or administered on a daily basis is in the range of about 15 to 220 g/day, preferably about 70 to 150 g/day of formula powder.
  • a daily effective dose of GOS and polyfructose ranges from about 1 to 30 g/day, preferably from about 2 to 10 g/day for infants and preferably for adults from about 5 to 20 g/day.
  • Food or food supplement compositions according to the invention may additionally comprise other active ingredients, such as vitamins (A, B1, B2, B3, B5, B12, C, D, E, K, etc.), probiotics (e.g. bifidobacteria, lactobacilli, etc.), other prebiotics, fibres, lactoferrin, immunoglobulins, nucleotides, and the like.
  • Nutrients such as proteins, lipids and other carbohydrates (e.g. digestible carbohydrates, non-digestible carbohydrates, soluble or insoluble carbohydrates) may be present in various amounts. Typical in-soluble non-digestible carbohydrates present in infant nutrition are soy polysaccharides, resistant starch, cellulose and hemicellulose.
  • Typical soluble and digestible carbohydrates for use in infant nutrition are for example maltodextrin, lactose, maltose, glucose, fructose, sucrose and other mono- or disaccharides or mixtures thereof.
  • the composition may also comprise other inactive ingredients and carriers, such as e.g. glucose, lactose, sucrose, mannitol, starch, cellulose or cellulose derivatives, magnesium stearate, stearic acid, sodium saccharin, talcum, magnesium carbonate and the like.
  • compositions may also comprise water, electrolytes, essential and non-essential amino acids, trace elements, minerals, fibre, sweeteners, flavorings, colorants, emulsifiers and stabilisers (such as soy lecithin, citric acid, esters of mono- or di-glycerides), preservatives, binders, fragrances, and the like.
  • stabilisers such as soy lecithin, citric acid, esters of mono- or di-glycerides
  • Lipids suitable for the compositions, especially for infant food or food supplements are milk fats, plant lipids, such as canola oil, safflower oil, sunflower oil, olive oil, marine oils, etc. or fractions or mixtures thereof comprising suitable fatty acids (polyunsaturated and/or saturated).
  • Proteins suitable for the compositions especially for infant food or food supplements include casein, whey, condensed skimmed milk, soy, beef, collagen, corn and other plant proteins or hydrolysed proteins, free amino acids, etc.
  • proteins comprised in infant food or food supplement compositions are extensively hydrolysed and/or partially hydrolysed to reduce the risk of allergies.
  • the infant food compositions according to the invention preferably comprise all vitamins and minerals essential in the daily or weekly diet in nutritionally significant amounts, such as minimal recommended daily amounts.
  • the food or food supplement composition may also in one embodiment be made on the basis of (i.e. starting from or comprising) a food base. It may, for example, based on, or comprises, a dairy product, such as a fermented dairy product, including but not limited to milk, yoghurt, a yoghurt-based drink or buttermilk. Such compositions may be prepared in a manner known per se, e.g. by adding an effective amount of polyfructose and GOS or TOS to a suitable food or food base.
  • Other food bases suitable may be plant bases, meat bases and the like.
  • the food or food supplement composition according to the invention may be used either as a treatment and/or prophylactically. This is to say that they may be either administered after gastrointestinal problems or diseases have been diagnosed in a subject or, alternatively, prior to the occurrence of symptoms (for example to high risk patients, likely to develop gastrointestinal problems). For example, if symptoms associated with the disease or suboptimal functioning if the large intestine, such as constipation, flatulence, allergies, colics, abdominal pain, abdominal cramps, IBD, IBS are observed, administration of the composition will aid in re-establishing a healthy large intestinal environment or prevent the development of such symptoms.
  • compositions are administered prophylactically, to support the development of a healthy microflora and/or healthy large intestinal environment.
  • a “healthy large intestinal environment” refers to a normal intestinal physiology and activity, especially normal absorption of nutrient, water, resistance of the mucosa to pathogen attachment, colonisation and infection, etc. as can be determined by faecal analysis and gas production.
  • an optimal physiology and activity is referred to. Any suboptimal functioning of the large intestine results in symptoms as described and can be determined by faecal analysis and/or gas production. Intestinal diseases or disorders resulting from a suboptimal functioning are included herein.
  • compositions for the treatment or prophylaxis of intestinal disorders or symptoms of suboptimal intestinal functioning may comprise additional biologically active ingredients, such as drugs, biologically active proteins or peptides, probiotics, and others.
  • additional biologically active ingredients such as drugs, biologically active proteins or peptides, probiotics, and others.
  • the embodiments described for food or food supplement compositions apply also to pharmaceutical compositions.
  • compositions according to the invention may be in any dosage form, such as liquid, solid, semi-solid, tablets, drinks, powders, etc., depending on the method of administration.
  • Administration to a subject is preferably oral, although for some uses rectal or tube feeding (with a tube directly entering the stomach, duodenum, or small intestine or large intestine) may be suitable.
  • FIG. 1 A first figure.
  • Microorganisms were obtained from fresh faeces from bottle fed babies. Fresh faecal material from babies ranging 1 to 4 month of age was pooled and put into preservative medium within 2 h.
  • prebiotics TOS; TOS (from VivinalGOS, Borculo Domo Ingredients, The Netherlands) and inulin (raftilinHP from Orafti, Belgium) mixture in a 9/1 (w/w) ratio; inulin; oligofructose and inulin mixture in a 1/1 (w/w) ratio, or none (blanc) was used.
  • McBain & MacFarlane medium Buffered peptone water 3.0 g/l, yeast extract 2.5 g/l. mucin (brush borders) 0.8 g/l, tryptone 3.0 g/l, L-Cysteine-HCl 0.4 g/l, bile salts 0.05 g/l, K 2 HPO 4 .3H 2 O 2.6 g/l, NaHCO 3 0.2 g/l, NaCl 4.5 g/l, MgSO 4 .7H 2 O 0.5 g/l, CaCl 2 0.228 g/l, FeSO 4 .7H 2 O 0.005 g/l. 500 ml Scott bottles were filled with the medium and sterilised for 15 minutes at 121° C.
  • Buffered medium K 2 HPO 4 .3H 2 O 2.6 g/l, NaHCO 3 0.2 g/l, NaCl 4.5 g/l, MgSO 4 .7H 2 O, 0.5 g/l, CaCl 2 0.228 g/l, FeSO 4 .7H 2 O 0.005 g/l. pH was adjusted to 6.3 ⁇ 0.1 with K 2 HPO 4 or NaHCO 3 . 500 ml Scott bottles were filled with the medium and sterilised for 15 minutes at 121° C.
  • Preservative medium Buffered peptone 20.0 g/l, L-Cysteine-HCl 0.5 g/l, Sodium thioglycollate 0.5 g/l, resazurine tablet 1 per litre. pH was adjusted to 6.7 ⁇ 0.1 with 1 M NaOH or HCl. The medium was boiled in microwave. 30 ml serum bottles were filled with 25 ml medium and sterilised for 15 minutes at 121° C.
  • Fresh faeces were mixed with the preservative medium. Fresh faeces can be preserved in this form for several hours at 4° C.
  • Faecal suspension The preserved solution of faeces was centrifuged at 13,000 rpm for 15 minutes. The supernatant was removed and the faeces was mixed with the McBain & Mac Farlane medium in a weight ratio of 1:5.
  • the gas pressure in the head space of the 60 ml bottle was measured by a gas pressure meter (Druckmessumformer, Econtronic, Germany) by stinging a hypodermic 6 ml syringe through the rubber cap of the bottle and withdrawal of gas from the headspace by this syringe until the gas pressure was 0 bar.
  • the volume in the syringe was the volume of gas formed. Values were corrected for blanc.
  • FIG. 1 shows that the mixture of TOS/Inulin resulted in a significantly higher amount of SCFA per g fibre than the single components, but also higher than the mixture of oligofructose (OF) and inulin. Also tested were 85 mg TOS/inuline in a ratio of 1/1 (data not shown), which also provided a synergistic effect.
  • OF oligofructose
  • FIG. 2 shows the pattern of fermentation products after 48 h.
  • the mixture of TOS/inulin shows a significantly higher percentage of acetate than the single components, which is also higher than for the mixture of oligofructose (OF) and Inulin. Faeces of breast fed babies show a high percentage of acetate, so the mixture of TOS/Inulin results in a pattern of fermentation products which most resembles that of breast fed babies.
  • Results are shown in FIG. 3 .
  • TOS and the mixture TOS/Inulin form the lowest amount of gas per mmol SCFA formed.
  • Inulin and the mixture of OF/inulin show a much higher amount of gas formation.
  • Per mmol SCFA formed the amount of gas is lowest in the TOS/inulin mixture.
  • Table 2 shows the kinetics of SCFA formation.
  • the combination of TOS/inulin still shows a high SCFA formation between 24 and 48 h, indicating that in the distal part of the colon still SCFA is formed and having a beneficial effect on the colon permeability, mucus formation and anti-pathogenic effects etc.
  • the highest amount of SCFA is formed, as is the case with human milk oligosaccharides (data not shown).
  • a fast fermentation at the beginning of the colon is of importance because of the antipathogenic effects.
  • the prebiotic formula group received the same standard infant formula supplemented with a mixture of 6 g/l transgalacto-oligosaccharides (TOS; Vivinal GOS, Borculo Domo Ingredients, Zwolle, The Netherlands) and inulin (PF; RaftilineHP, Orafti active food ingredient, Tienen, Belgium).
  • TOS transgalacto-oligosaccharides
  • PF RaftilineHP, Orafti active food ingredient, Tienen, Belgium
  • the mixture comprised 90% TOS and 10% inulin (polyfructose).
  • the study formulas were fed ad libitum during the study period. Mothers who decided to breast feed were stimulated to continue breast feeding during the course of the study and were supported by a lactation consultant when needed. At termination of breast feeding their infants received one of two formulae. Compliance was assessed by counting the number of unused formula tins during each visit and comparing the amount of consumed formula with the recorded food intake.
  • Demographic, clinical anthropometrical data of the mother are collected prior to delivery. Information on delivery was obtained from the mothers at day 5 after delivery. Information of the infants' food intake, formula tolerance, stool characteristics, health and anthropometrics was obtained from questionnaires at postnatal day 5, 10, 28 and once every 4 weeks thereafter until the end of the study.
  • the samples were thawed in ice water, diluted 10 ⁇ (w/v) in phosphate buffered saline, pH 7.4 (PBS) and homogenized for 10 minutes using a stomacher.
  • the homogenised faeces were stored at ⁇ 20° C.
  • FISH analysis was performed as described (Langendijk et al, 1995, Appl. Environ. Microbiol. 61:3069-3075.) with some slight modifications.
  • Paraformaldehyde fixed samples were applied to gelatin coated glass slides (PTFE coated 8-wells [1 cm2/well] object slides, CBN labsuppliers, Drachten, The Netherlands) and air-dried. The dried samples were dehydrated in 96% ethanol for 10 minutes.
  • Hybridisation buffer (20 mm Tris-HCl, 0.9 M NaCl, 0.1% SDS [pH 7.1[) with 10 ng/l Cy 3 Labeled Bifidobacterium specific probe Bif164mod (5′-CAT CCG GYA TTA CCA CCC), was preheated and added to the dried samples.
  • the slides were briefly rinsed in MilliQ, dried, mounted with Vectashield (Vector Laboratories, Burlingame, Calif., U.S.A.) and covered with a coverslip.
  • the slides were automatically analysed using an Olympus AX70 epifluorescence microscope with automated image analysis software (Analysis 3.2, Soft Imaging Systems GmbH, Weg, Germany). The percentage of bifidobacteria per sample was determined by analysing 25 randomly chosen microscopic positions.
  • the percentage of bifidobacteria was determined by counting all cells with a DAPI filter set (SP 100, Chroma Technology Corp., Brattleboro, U.S.A.) and counting all bifidobacteria using a Cy3 filter set (41007, Chroma Technology, Brattleboro, U.S.A.).
  • the short chain fatty acids (SCFA) acetic, propionic, n-butyric, iso-butyric and n-valeric acids were quantitatively determined by a Varian 3800 gas chromatograph (GC) (Varian Inc., Walnut Creek, U.S.A.) equipped with a flame ionisation detector. 0.5 ⁇ l of the sample was injected at 80° C. in the column (Stabilwax, 15 ⁇ 0.53 mm, film thickness 1.00 ⁇ m, Restek Co., U.S.A.) using helium as a carrier gas (3.0 psi). After injection of the sample, the oven was heated to 160° C. at a speed of 16° C./min, followed by heating to 220° C. at a speed of 20° C./min and finally maintained at a temperature of 220° C. for 1.5 minutes. The temperature of the injector and detector was 200° C. 2-ethylbytyric acid was used as an internal standard.
  • GC
  • Lactate was determined enzymatically, using a L-lactate acid detection kit with D- and L-lactate-dehydrogenase (Boehringer Mannheim, Mannheim, Germany). Lactate was only determined in those faecal samples which were large enough.
  • the percentages of bifidobacteria in faeces at the age of 5 days, 10 days, 4, 8, 12, and 16 weeks of the feeding groups are shown in Table 5 and the amounts in Table 5.
  • the OSF group tends to have a higher bifidobacteria % than the SF group from total bacterial count at all ages, but the differences were not statistically different.
  • the percentage of Bifidobacteria in breast fed babies was also relatively low and were in line with the formula fed groups.
  • the concentrations lactate (mmol/kg faeces) of all groups are shown in Table 5.
  • the OS formula (not sign.) and the groups of breast milk have higher amounts of lactate compared to the standard formula group.
  • the relative amount of lactate (as a percentage of the sum of SCFA and lactate) is highest in breast fed babies and lowest in standard formula fed babies.
  • Babies fed a formula containing TOS/inulin have an intermediate relative amount of acetate.
  • the percentage of lactate in OSF fed babies at 16 weeks (relative to total acids) significantly differs from that of SF babies.
  • lactate and a SCFA mixture were analysed as described in Willemsen, L E M, Koetsier M A, van Deventer S J H, van Tol E A F (2003), Gut 52:1442-1447, with the following modifications: Lactate and a mixture of acetate/propionate/butyrate 90/5/5 was tested.
  • a co-culture of CCD 18 and T84 cells was used, whereas for the PGE1 and PGE2 production experiments a monoculture of CCD18 cells was used.
  • the colon was cut into a distal and a proximal portion and was rinsed with Krebs-Henseleit buffer while gently squeezing out faecal content.
  • 1 cm fully intact segments were attached longitudinally to an isometric force transducer (F30 type 372, HSE, Germany) in 20 ml water-jacketed (37° C.) organ baths (Schuler, HSE, Germany) containing Krebs-Henseleit buffer gassed continuously with 95% O 2 -5% CO 2 .
  • the segments were gradually stretched to a resting tension of 1 g and allowed to equilibrate for 45 minutes with intermittent washings.
  • the tensions of the segments in rest and in response to different stimuli were amplified by a transducer amplifier module (HSE, Germany) and recorded on a multi-pen recorder (Rikadenki, HSE, Germany).
  • the segments were incubated with 40 mM KCl for 5 minutes and the contractile responses were measured. KCl was washed out by three consecutive washes at 5 minutes intervals. The segments were then incubated with increasing concentrations up to 100 mM of acetate or sodium-L-lactate. The acid solutions were prepared freshly in distilled water. NaOH was added to acetate to obtain a neutral pH. At the end of the incubation with a fatty acid, 40 mM KCl was added to determine whether the contractile response to KCl was influenced by the fatty acid. Before a new incubation the segments were allowed to equilibrate for 45 minutes in fresh Krebs-Henseleit buffer with intermittent washings.
  • the experimental protocol consisted of two proximal and two distal sections of the colon.
  • the contraction level induced by the stimuli was defined as the tension in g after 5 minutes incubation.
  • Data obtained from identical segments (proximal or distal) were used to calculate a mean value and each segment served as its own control sample.
  • sodium acetate and especially sodium-L-lactate decrease the tension of tonic contractions.
  • the relaxation effects are higher in the distal part of the colon than in the proximal part of the colon.
  • the tonic contractions as a response to KCl are comparable in the presence or absence of 25 mM sodium actetate or sodium L-lactate. At higher concentrations a significant relaxation is observed even after addition of KCl.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Dispersion Chemistry (AREA)
  • Pediatric Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Hematology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Obesity (AREA)
  • Pulmonology (AREA)
  • Diabetes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dairy Products (AREA)

Abstract

The present invention relates to the filed of prebiotics. Provided are uses for compositions comprising synergistically effective amounts of polyfructose and galactooligosaccharides (GOS).

Description

    FIELD OF THE INVENTION
  • The present invention relates to the field of human health and nutrition. It provides novel synergistic mixtures of prebiotic carbohydrates, especially mixtures of galacto-oligosaccharides (GOS, for example TOS) and polyfructose (for example inulin), as well as nutritional compositions comprising these. The nutritional compositions have beneficial effects when fed to bottle fed or partially bottle fed infants and also have health improving effects when ingested by adults having intestinal problems, such as Inflammatory Bowel Disease (IBD) or Irritable Bowel Syndrome (IBS).
  • BACKGROUND OF THE INVENTION
  • The microflora of the human large intestine (typically divided into caecum, colon and rectum) plays a crucial role in both human nutrition and health. The bacterial composition is influenced and can be modulated by dietary intake. Carbohydrates which have passed through the stomach and small intestine are metabolised by the bacteria and as a major end-product of metabolism short-chain fatty acids (SCFA), such as acetate, propionate, butyrate and valerate, are formed, which are subsequently released into the blood. Other end products of bacterial fermentation include for example lactate and succinate. The total amounts and compositions (relative amounts) of these end products in turn have a profound effect on bacterial growth, pH, exclusion of pathogenic species, etc. A method to beneficially influence the microbial flora and human health is the administration of prebiotics. “Prebiotics” were defined as “non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improve the hosts health (Gibson and Roberfroid 1995, J. Nutr. 125, 1401-1412). The criteria which a compound must fulfil in order to be classified as a prebiotic are: 1) it must not be hydrolysed or absorbed in the upper part of the gastrointestinal tract (stomach, small intestine), 2) it must be selectively fermented by one or more potentially beneficial bacteria in the colon, 3) it must alter the colonic microbiota towards a healthier composition and 4) it must preferably induce effects which are beneficial to the health of the subject. Commonly used prebiotics are so-called non-digestible carbohydrates (or “soluble dietary fibres”), which pass undigested through the upper part of the gastrointestinal tract into the large intestine. These include for example fructooligosaccharides (FOS), oligofructose, inulin and transgalacto-oligosaccharides (TOS). It should be noted that in the literature, there is often inconsistency between the use of various terms, such as fructooligosaccharide, inulin, oligofructose and inulo-oligosaccharides, and the same term may be used for different compounds or compositions.
  • Well known beneficial bacteria, which are stimulated by the uptake of prebiotics, are lactic acid bacteria, such as Lactobacilli and Bifidobacteria, and health benefits have been ascribed to be due to this stimulatory effect. For example, beneficial effects of inulin and inulin-type fructans, such as oligofructose, on intestinal function have been described (Jenkins et al. 1999, J. Nutrition 129, 1431S-1433S) and this effect is thought to be due to a bifidogenic effect, which refers to a selective growth stimulating effect on total bifidobacteria, measured either in vivo through bifidobacterial counts of the faeces or in vitro (see e.g. Roberfroid, Am J Clin Nutr 2001, 73(suppl), 406S-409S).
  • Human milk appears also to have a bifidogenic effect, as the dominant bacteria which become established in breast-fed infants are bifidobacteria. In contrast, bacterial colonisation of milk formula fed infants is not dominated by bifidobacteria and is more diverse in bacterial species (Harmsen et al. 2000, J. Pediatr. Gastroenterol. Nutr. 30, 61-67). It is thought that oligosaccharides found in the human milk are responsible for the bifidogenic or prebiotic effect and efforts have been made to modify infant formula in such a way that it resembles human milk as closely as possible and especially that it has the same or a very similar prebiotic effect as human milk. This has been done by adding prebiotics to infant milk formula (Boehm et al. Acta Paediatr. Suppl. 2003, 441, 64-67 and Moro et al. 2002, J Pediatr Gastroenterol Nutr 34, 291-295). For example, supplementation of bovine milk formula with an oligosaccharide mixture comprising trans-galactooligosaccharides (TOS) and inulinHP has been described to increase the faecal count of bifidobacteria in bottle fed infants (Boehm et al. 2002, Arch Dis Child 86, F178-F181).
  • Also, supplementation of infant milk formula with TOS and inulin has been described to have a bifidogenic effect, and to decrease faecal pH (Boehm et al. 2003 supra; Moro et al. 2003, Acta Paediatr. Suppl. 441:77-79; Marini et al. 2003, Acta Paediatr. Suppl. 441:80-81; Boehm et al. 2002, Arch. Dis. Child Fetal. Neonata. Ed. 86:F178-F181; Moro et al. 2002, J. Pediatr. Gastroenterol. Nutr. 34:291-295; Schmelzle et al. 2003, J. Pediatr. Gastroenterol. Nutr. 36:343-51).
  • Upon fermentation of prebiotics by lactic acid bacteria organic acids are produced and the pH is lowered. Lactobacilli produce either lactate or lactate and acetate (a Short Chain Fatty Acid; SCFA). The lactate can be in the L- or D-form. Bifidobacteria, on the other hand, produce L-lactate and acetate, but no D-lactate. Bifidobacteria (and other lactic acid bacteria) usually do not lead to the production of gases, such as H2 and CH4. They also do not produce other SCFA, such as propionate, butyrate, isobutyrate, valerate and isovalerate. The presence of SCFA, such as isobutyrate and isovalerate, are indicative of the fermentation of carbohydrates by other bacterial species, such as Clostridia and Bacteroides or Enterobacteriaceae, or are indicative for the fermentation of proteins (of which the Bifidobacteria have a poor capability). Also, other intestinal bacteria are capable of producing acetate or lactate, such as Propionibacteria, Enterococci and Pediococci.
  • Previously it has been reported that the intake of certain prebiotic carbohydrates increase the (relative) amounts of Bifidobacteria and/or Lactobacilli. Concomitantly an increased formation of SCFA and decrease of pH has been observed. But also the formation of gases, which results in unwanted symptoms such as flatulence and abdominal pain, has been reported when introducing prebiotics, such as inulin or GOS, into the diet. Furthermore, not only acetate but also increases in, for example, butyrate have been reported, which is undesirable. A range of undesirable effects have therefore been described, resulting from the consumption of nutrition supplemented with certain prebiotics.
  • In the colon and faeces of breast fed infants the predominant SCFA found is acetate. Furthermore high concentrations of lactate are found. These (relative) amounts are higher than those observed in adults (where concentrations of lactate are generally negligible) or in standard milk formula fed infants. Subsequently, concentrations of propionate and especially butyrate are much lower in the colon and faeces of breast fed infants than in adults and even lower than in infants fed with standard infant milk formula. The pH of the faeces is lowest in breast fed children. As mentioned above, it is desirable to provide nutrient compositions, especially milk formula compositions, which, when consumed, result in an intestinal microflora closely resembling that of breast fed infants.
  • Many health effects of SCFA and lactate and a low colon pH have been described. The lowered pH and the presence of organic acids have been described to have an anti-pathogenic effect, and provide an advantage to acid tolerant bacteria such as the lactic acid bacteria (including Bifidobacteria). Also effects of SCFA on the intestinal wall have been described. SCFA are an energy source of colonocytes and thereby aid to the intestinal barrier integrity. SCFA are also involved in effects on peristalsis, bile acid metabolism, water absorption and cell differentiation (see e.g. EP1105002). SCFA are known to stimulate the production of mucus and are involved in mineral absorption and mucus production.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present inventors surprisingly found that GOS (especially TOS) and polyfructose (especially inulin), when administered together, provide a number of beneficial effects which cannot be explained by an increase in the number of intestinal bifidobacteria and which are, therefore, not due to the bifidogenic effect described for TOS or inulinHP in the prior art (e.g. in Boehm et al. 2002, supra). In particular, it was unexpectedly found that, following administration of GOS and polyfructose mixtures, there was an increase in the total amounts of SCFA formed, an increase in the relative amounts of acetate and lactate and a decrease in faecal pH of infants, whereby these effects were not correlated with an increased (relative) amount of Bifidobacteria. Beside a beneficial SCFA amount and profile and an increased amount of lactate, a decrease in gas formation was observed. Further, lactate itself was found to have a hitherto unknown beneficial effect on the colon, as it was found to increase the secretion of prostaglandin E1 and prostaglandin E2. This effect was previously only reported for SCFA, especially acetate (Willemsen et al. 2003, Gut 52, 1442-1447). Compositions comprising lactate, and compositions comprising prebiotics which stimulate lactate production, may therefore be used to stimulate mucin production and support the mucosal barrier integrity (mucoprotection). Lactate was further found to decrease spontaneous contractions and tension in colonic muscles, resulting in relief of cramp and pain.
  • The prebiotic compositions are therefore novel, in that they do not, or do not significantly, increase the number of Bifidobacteria, while they do result in an increase in total SCFA amounts, beneficial changes in SCFA profile (increases in acetate, decreases in butyrate and propionate), increase in lactic acid (and resulting beneficial contraction and tension reducing effects and muco-stimulatory effect), a decrease in faecal pH, a decrease in formation of gases, and more gradual formation of SCFA (including formation in the distal part of the colon), i.e. overall an optimal pattern of fermentation products (more L-lactate, less butyrate etc.). All these changes make the colonic environment more resemble that of breast fed babies. In one embodiment of the invention the use of mixtures of GOS and polyfructose in effective amounts for the preparation of compositions which lead to a colonic environment essentially similar to that of breast fed infants is, therefore, provided herein.
  • The beneficial effects found were significantly more pronounced upon co-administration than when either GOS or polyfructose (e.g. TOS or inulin) alone was administered, indicating that GOS and polyfructose act synergistically. In the prior art no studies were carried out wherein the individual effects of TOS and inulin administration were directly compared to the co-administration of these two types of compounds and clearly such independent individual studies cannot be compared to one another and are unsuitable to identify synergistic effects.
  • This novel synergistic interaction of GOS and polyfructose (e.g. TOS and inulin), and the in vivo effects of co-administration thereof, leads to new uses of compositions comprising both GOS and polyfructose in suitable (synergistic) amounts, such as treatment or prevention of colic and/or abdominal cramps, abdominal bloating, flatulence, abdominal pain, constipation, IBS, IBD, allergy and/or increased muco-protection of the intestine. In addition, a composition comprising lactate (D-lactate and/or L-lactate, preferably L-lactate) may be used to treat or prevent one or more of these symptoms or disorders.
  • Thus, unexpectedly, fermentation of the specific mixtures of prebiotics (GOS and polyfructose) by the intestinal flora results in an enhanced and kinetically advantageous formation of SCFA and lactate and an improved pattern of metabolic end products. As a consequence many beneficial effects result, such as effects on mucus production, anti-inflammatory effects, effects on pain perception and effects on abdominal cramps/colic (both via relaxation of the colon and decrease of spontaneous contractions). The nutrition compositions comprising these prebiotic mixtures can also be used for adults having intestinal problems such as IBD or IBS or a decreased intestinal barrier integrity due to malnutrition.
  • DEFINITIONS
  • “Polysaccharides” refers to carbohydrate chains of monosaccharide units with a chain length of at least 10 units. In contrast, “oligosaccharides” have a chain length of less than 10 units.
  • “Degree of polymerisation” or “DP” refers to the total number of saccharide units in an oligo- or polysaccharide chain. The “average DP” refers to the average DP of oligosaccharides or polysaccharide chains in a composition, without taking possible mono- or disaccharides into account (which are preferably removed if present). The average DP of a composition is used to distinguish between compositions. In addition the % saccharide units, such as the % glucose and % fructose units, in a composition are distinguishing.
  • “Polyfructose” or “polyfructan” or “fructopolysaccharide” refers to a polysaccharide carbohydrate comprising a chain of β linked fructose units with a degree of polymerisation of 10 or more and comprises, for example, inulin (e.g. inulin HP), levan and/or a “mixed type of polyfructan” (see below).
  • “Inulin” or “non-hydrolysed inulin” or “inulin HP” is used herein to refer to glucose-terminated fructose chains with the majority of chains (at least 90%, preferably at least 95%) having a degree of polymerisation (DP) of 10 or more. Inulin can thus be described as GFn, wherein G represents a glucosyl unit, F represents a fructosyl unit and n is the number of fructosyl units linked to each other, n being 9 or more. The G/F ratio is about 0.1 to 0. A small part of the inulin molecules, however, may have no terminal glucose unit. The average DP is preferably at least 15, more preferably 20 or more, such as 20, 21, 22, 23, 25, 30, 40, 60, 70, 100, 150 or more herein. In inulin the fructose units are linked with a β(2→41) linkage. A suitable inulin is for example the commercially available as Raftiline®HP (Orafti) with an average DP>23.
  • “Hydrolised inulin” or “oligofructose” refers to mixtures of glucose- and fructose-terminated fructose chains, with a DP below 10. Thus, hydrolysed inulin can be described as a mixture of GFn chains and Fn chains (wherein G is a glucosyl unit, F is fructosyl unit and n=1-8). Hydrolysed inulin is an (enzymatic or acidic) hydrolysis product or partial hydrolysis product of inulin, resulting from cleavage of β(1→2) fructosyl-fructose linkages. The term hydrolysed inulin also encompasses synthetically made or recombinantly made inulin which have the same structural makeup.
  • “Levan” or “levulan” or “levulin” or “levulosan” refers to a polysaccharide consisting of polyfructose in which the fructose units are linked with β(2→6) linkages. A starting glucose moiety can be present, but this is not necessary. The degree of polymerisation is above 10.
  • In “mixed type polyfructans” the fructose units are linked with β(2→1) and β(2→6) linkages. Mixed type polyfructans are branched and have a DP>10.
  • “GOS” or “galactooligosaccharides”, or “trans-galactooligosaccharides” or “TOS” refers to oligosaccharides composed of galactose units, with a DP of 10 or less and an average DP of 2, 3, 4, 5 or 6. A glucose unit may be present at the reducing end of the chain. Preferably the GOS contains at least ⅔ galactose units. Most preferred are trans-galactooligosaccharides (TOS) with 1341-4) glycosidic bonds. Such a GOS is for example that found in Vivinal®GOS (commercially available from Borculo Domo Ingredients, Zwolle, Netherlands), comprising trans-galactooligosaccharides with β-(1-4) glycosidic bonds and β-(1→6) glycosidic bonds.
  • “SCFA” or “short chain fatty acids” refers to fatty acids, with a carbon chain lengths of up to C6, produced as an end-product of bacterial intestinal fermentation, such as acetate (C2), propionate (C3), butyrate and isobutyrate (C4), valerate and isovalerate (C5) and others The expression “iC4-5” refers to the sum of isobutyrate, valerate and isovalerate.
  • A “synergistically effective amount” refers to an amount of GOS and polyfructose (for example TOS and inulin) which, when co-administered, confers one (or more) specific physiological effects (as described elsewhere herein), whereby the total effect of co-administration is significantly larger than the sum of the effect of individual administration of GOS or polyfructose. For example, if the effect of administration of GOS alone is X and the effect of administration of polyfructose alone is Y, then the effect of co-administration of GOS and polyfructose is larger than X+Y and for example the effect of co-administration of ½ the concentration of GOS plus ½ the concentration of polyfructose has an effect larger than ½ X+½Y, etc.
  • “Co-administration” of two or more substances refers to the administration of these substances to one individual, either in one composition or in separate compositions (kit of parts; as a combined composition) which are administered at the same time (simultaneously) or within a short time-span (separate or sequential use, e.g. within minutes or hours).
  • “Enteral” refers herein to the delivery directly into the gastrointestinal tract of a subject (e.g. orally or via a tube, catheter or stoma).
  • The term “comprising” is to be interpreted as specifying the presence of the stated parts, steps or components, but does not exclude the presence of one or more additional parts, steps or components.
  • “Infant” refers herein to humans aged 0-36 months, preferably 0-18 months, or more preferably 0-12 months.
  • “Breast fed infants” refers to infants exclusively fed with human breast milk. “Non- or partially breast fed infants” are infants not exclusively fed on human breast milk. This includes infants fed with at least one bottle (about 80 ml) of formula milk per day.
  • “Percentage” or “average” generally refers to percentages of averages by weight, unless otherwise specified or unless it is clear that another basis is meant.
  • In one embodiment the present invention provides a number of novel uses of compositions comprising both GOS and polyfructose in suitable (synergistically effective) amounts.
  • Uses and Methods According to the Invention
  • In the various uses described herein, a subject is preferably a human subject, more preferably an infant, such as a new born infant up to a 12 months old infant. Especially bottle fed or partially bottle fed infants are referred to. Alternatively, a subject may also be a child, teenager or adult. In particular intestinal problems, such as but not limited to Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS), flatulence, abdominal cramps, colic, abdominal bloating, abdominal pain, etc., which may also result in fatigue, depression or moodiness, may be prevented and/or treated using compositions according to the invention. Also, mucosal production may be enhanced and allergies resulting from a suboptimal functioning of the intestine may be prevented or treated. Also the intestinal barrier function may be improved in patients with an impaired barrier function as a result from malnutrition, surgery, chemotherapy etc.
  • Compositions comprising both GOS and polyfructose, such as compositions comprising TOS and inulin, may in one embodiment be used to induce the production of SCFA in the large intestine of a subject and to significantly increase the (intestinal and/or faecal) total amount of SCFA produced following administration and/or to significantly modify the relative amounts of (intestinal and/or faecal) SCFA produced, in particular to increase the (intestinal and/or faecal) relative amount of acetate out of total SCFA, and/or to significantly increase the amount (absolute and relative) of intestinal lactate produced, and/or to significantly reduce or prevent intestinal gas formation, and/or to extend the SCFA production to the distal part of the colon, and/or to significantly reduce the pH in the large intestine and faecal pH. Also, the sum of intestinal and/or faecal butyrate, isobutyrate, valerate and/or isovalerate relative to the total SCFA may be decreased. These effects are achieved following administration, without having a significant effect on the total and/or relative number of intestinal bifidobacteria. Compositions for the treatment or prophylaxis of any diseases or disorders or discomforts associated with or caused by one or more of these intestinal effects are provided herein.
  • The present invention provides the use of galacto-oligsaccharides and polyfructose for the manufacture of a composition for the treatment or prevention of abdominal bloating, gas formation, abdominal pain and/or flatulence. In a further embodiment the present invention provides the use of galactooligosaccharides and polyfructose for the manufacture of a composition for the treatment or prevention of allergy, eczema or atopic diseases. In a further embodiment the present invention provides the use of galacto-oligosaccharides and polyfructose for the manufacture of a composition for the treatment and/or prevention of colics and/or for the relaxation of contractions of the colon, preferably the tonic and/or phasic contraction. In another embodiment the present invention provides the use galacto-oligosaccharides and polyfructose for the manufacture of a composition for the treatment or prevention of irritable bowel syndrome or inflammatory bowel disease. In an even further embodiment the present invention provides the use of galacto-oligosaccharides and polyfructose for the manufacture of a composition for the increase of intestinal barrier functioning and/or mucus production in the large intestine.
  • Unless specified otherwise, a “significant increase” (of for example SCFA, acetate or lactate) refers herein to an increase of at least 5%, preferably at least 10%, more preferably at least 20%, or more, compared to the amount produced when either GOS or polyfructose (e.g. inulin) alone are administered. Similarly, unless specified otherwise a “significant reduction” (of for example gas formation) refers to a reduction of at least 5%, preferably at least 10%, more preferably at least 20%, 25%, 50% or more (e.g. 70%, 80%, 90%, 100%) compared to the amount produced when polyfructose (e.g. inulin) alone is administered.
  • An increase in the total amount of SCFA produced as fermentation product of GOS and polyfructose compositions can also be measured as a significant decrease in pH of faecal samples of subjects, reflecting an in vivo decrease in pH in the large intestine. In infants it was found that faecal pH decreased to about pH 5.8 or less, such as pH 5.6, 5.5 or 5.4 or 5.2 following co-administration of TOS and polyfructose (e.g. inulin), while the pH of standard formula fed infants was around or above pH 6, such as about pH 5.9, 6.8 or even 7.0. A significant decrease in pH refers therefore to a decrease in pH by at least 15% or 0.9 unit compared to infants fed a standard formula.
  • Another beneficial effect of co-administration of GOS and polyfructose in suitable amounts is that the composition of SCFA is significantly different than when either GOS or polyfructose are administered. Especially the relative amount of butyrate is significantly reduced, while the relative amount of acetate is significantly increased. The compositions may, thus, be used to alter not only total SCFA quantities, but also relative SCFA proportions. In infants co-administered with TOS and polyfructose (e.g. inulin), the relative SCFA levels resembled more the levels found in breast fed infants, with acetate:propionate:butyrate ratios generally about 80-85%:10-15%:1-5%, while in infants fed on standard milk formula ratios were generally around 69-74%:16-19%:5-6% (as shown in the examples). Thus, especially relative amounts of acetate are increased and relative amounts of propionate and butyrate are decreased by the compositions according to the invention. The co-administration of GOS and polyfructose results in acetate:propionate:butyrate proportions resembling that of breast-fed infants much more closely than that of formula fed infants (which produce high levels of butyrate and propionate and relatively low levels of acetate). The effect on relative SCFA proportions can be measured by methods known in the art, such as gas chromatography of faecal samples at various time points after administration, either using in vivo studies or an in vitro fermentation systems as e.g. described in the Examples. A “significantly modified SCFA composition” or a “significantly increased amount of acetate” refers to the amount of acetate (% of total SCFA) being at least about 4%, 5%, 10%, 15%, or more, higher than when no GOS or polyfructose are administered or when GOS or polyfructose are administered individually. Preferably the relative amounts of propionate and/or butyrate are lower than when no GOS or polyfructose are administered or when GOS or polyfructose are administered individually. In one embodiment, the composition according to the invention is suitable for increasing intestinal and/or faecal acetate to above about 85%, such as 86%, 87%, 88%, 90% or more, of the total SCFA.
  • Yet a further beneficial effect observed when co-administering GOS and polyfructose is a significant decrease in branched SCFA, compared to the proportion of branched SCFA found when only GOS or only polyfructose are administered. A “significant decrease in branched SCFA”, as used herein, refers to a decrease at least 70% compared to the concentration found in infants not fed prebiotics or resulting in a faecal proportion of less than 1.5% of total SCFA. The proportion of branched SCFA relative to the total SCFA can be measured by dividing the sum of branched SCFAs, i.e. isobutyrate, plus isovalerate plus valerate, by the sum of total SCFA, i.e. acetate, plus propionate, plus butyrate, plus isobutyrate, plus isovalerate, plus valerate, etc.
  • Reducing the proportion of branched SCFA is beneficial to the health of the subject, as branches SCFA are damaging. This indicates less protein degradation, which is unwanted because protein fermentation results in an increase of pH and in the formation of damaging agents such as H2S.
  • A significant decrease of butyrate relates to a decrease by at least 50% compared to the concentration found in infants not fed prebiotics or resulting in a faecal proportion of less than 4% of total SCFA. In one embodiment the composition according to the invention is suitable for decreasing the sum of intestinal (and/or faecal) butyrate, isobutyrate, valerate and isovalerate is below 7% of total SCFA, such as 6.5%, 6%, 5%, 4% or less of total SCFA.
  • In another embodiment, compositions comprising GOS and polyfructose are suitable to increase the length of fermentation within the colon. In particular, bacterial fermentation will still be active in the most distal parts of the colon following co-administration, as indicated by SCFA production in the distal part of the colon. No or only very little SCFA is produced in the distal part of the colon following administration of compositions comprising only GOS or only polyfructose. In addition, fast fermentation at the beginning of the colon is seen following co-administration, which is especially important for anti-pathogenic effects and is also observed in breast fed infants. Overall, this indicates the compositions are suitable for establishing and/or maintaining a relatively even fermentation pattern throughout the colon of a subject and to extend fermentation and SCFA production to the distal end of the colon. SCFA, and most likely also other fermentation products, especially lactate, are therefore produced throughout the colon, in the beginning, middle and end of the colon.
  • In a further embodiment, co-administration of GOS and polyfructose in synergistic amounts may be used for significantly increasing lactate production, as can be determined again by analysing faecal samples of test subjects and control subjects, which received compositions comprising either GOS alone or polyfructose alone or equivalent base compositions without prebiotics. A “significant increase in lactate” refers to at least 5%, 10%, 20% or even 50% or more lactate being produced in subjects being co-administered compositions comprising GOS and polyfructose, compared to subjects not administered GOS or polyfructose. For example, infants fed on standard milk formula supplemented with 6 g/l of TOS/inulin mixtures (90%:10%) produced at 16 weeks about 16% lactate (as % of total acids), while standard formula fed infants produced about 0.6% and breast fed infants produced about 35% lactate. Although not matching the amount of lactate produced by breast fed infants, the supplementation of the standard milk formula with TOS and inulin mixtures led to a significant increase in lactate production. As shown in the Examples, lactate was found to have unexpected beneficial effects. Similarly to acetate it increased the prostaglandin E1 and prostaglandin E2 production and resulted in enhanced epithelial mucin expression. The intestinal mucosa plays an important role in human health, as it serves as a barrier to infectious pathogens, allergens and carcinogens. Compositions which positively influence the development and/or integrity of the mucosa may therefore be used to aid the build up of a healthy mucosa in new born infants and to aid the establishment of a healthy mucosa in bottle-fed or partially bottle-fed infants and in subjects suffering from symptoms or diseases resulting from or being associated with a not properly functioning intestinal mucosa. For example, intestinal problems, such as Inflammatory Bowel Disease (IBD, for example colitis or Crohn's disease) or Irritable Bowel Syndrome (IBS) may be treated or prevented, or pathogen attachment and/or entry through the mucosa may be reduced or other immunological problems, such as the development of asthma, may be prevented or reduced. Also the loss of intestinal barrier integrity as a result from malnutrition, surgery, chemotherapy etc. can be prevented or reduced.
  • Furthermore, spontaneous contractions and abdominal tension was significantly reduced in a dose dependent manner following D- or L-lactate administration. The compositions according to the invention may thus be used to increase intestinal lactate levels and thereby treat or prevent symptoms such as abdominal pain, colic, abdominal contractions, abdominal tension and the like.
  • As lactate itself was found to have previously unknown effects, it is also an object of the invention to provide compositions comprising lactate in suitable amounts, which may be used to treat or prevent the above described symptoms and disorders. In one embodiment compositions comprises only lactate in suitable amounts, while in another embodiment the GOS an polyfructose compositions described herein further comprises lactate to further increase intestinal lactate levels. One such composition according to the invention comprises TOS and inulin in synergistically effective amounts and further comprises lactate in suitable amounts. In one embodiment compositions are provided which are suitable for increasing intestinal and/or faecal lactate to above about 10 mmol/kg faeces.
  • It is understood that when referring to the analysis of faecal samples this is an indirect measure of the actual in vivo effect. Likewise, in vitro assays may be carried out, whereby bacterial populations are grown in vitro and suitable amounts of compositions are added to the cultures. In particular, the in vitro fermentation system described in the Examples may be used.
  • Co-administration of compositions comprising GOS and polyfructose can therefore be used to achieve one or more of the following physiological effects:
      • a significant increase in total SCFA
      • a significant decrease in pH
      • a significantly modified SCFA composition
      • a significant decrease in branched SCFA
      • a significant decrease in gas production per mol SCFA produced
      • a longer and more even fermentation, including fermentation even in the most distal parts of the colon, and/or
      • a high initial formation of SCFA and for lactic acid formation in the most proximal part of the colon
      • promoting the production of SCFA at the beginning, middle and end of the colon
      • a significant increase in lactic acid (absolute and/or relative) and/or
      • an increase in the relative amount of L-lactate as a ratio of total lactic acid formed.
  • In a preferred embodiment at least 2, 3, 4, 5, 6, 7, 8, 9 or all these effects are significantly modified when using compositions comprising both GOS and polyfructose, compared to when administering compositions comprising only GOS or polyfructose, or neither GOS or polyfructose. In particular, at least 2, 3, 4, 5, 6, 7, 8, 9 or all these effects are significantly larger following co-administration of a (synergistically effective amount) of GOS and polyfructose than the sum of the effect(s) of administration of GOS and polyfructose individually.
  • The synergistic compositions according to the invention are, therefore, particularly suited to build up and/or maintain a healthy microflora within an infant's large intestine following administration of a synergistically effective amount. In a preferred embodiment an infant is fed solely on a base composition, such as milk formula, supplemented with a synergistically effective amount of GOS and polyfructose within the first weeks after birth. A preferred composition is, therefore, a dietary composition for infants. In another embodiment an infant is only partly fed on a composition according to the invention. In one embodiment the composition is used to treat or prevent symptoms selected from one or more of: gas formation, flatulence, colitis, abdominal bloating, abdominal cramps, abdominal pain, IBS, IBD, allergy and/or as a mucoprotectant. GOS and polyfructose may, thus, be used for the preparation of a composition or a combined composition for simultaneous, separate or sequential use in treatment of flatulence, excessive gas formation, colitis, abdominal bloating, abdominal cramps, abdominal pain, IBS, IBD, allergy, decreased intestinal barrier functioning and/or as a mucoprotectant. The subject may in this case be any subject, ranging from infant, child, teenager to adult. Clearly, the base compositions to which GOS and polyfructose are added in synergistically effective amounts, will vary depending on the age of the subject, the mode of administration and on the main symptoms to be treated or prevented. For infants for example the base composition is preferably a liquid or powder form infant or follow-on formula, while for adults a nutrient supplement composition (liquid, semi-liquid or solid) or tube feeding may be more suitable.
  • In a preferred embodiment GOS and polyfructose are co-administered in a synergistically effective amount suitable to significantly increase the total amount of intestinal SCFA formed and/or to significantly improve intestinal SCFA composition (especially to significantly increase the percentage of acetate relative to the total amount of SCFA) and/or to significantly increase lactate production and/or to and to lower intestinal pH and/or to significantly reduce intestinal gas formation.
  • Use of compositions comprising a synergistically effective amount of GOS and polyfructose for the treatment and/or prevention of colic and/or abdominal cramps, abdominal bloating and/or flatulence, abdominal pain, IBS, IBD and/or allergy is provided. Use of such compositions for increasing mucoprotection and strengthening the intestinal barrier is also provided. It is understood that not necessarily one composition is referred to, but that GOS and polyfructose may be present in separate compositions, which provides a synergistically effective amount when co-administered.
  • Through these changes in SCFA levels, profile and intestinal pH, the compositions are able to cause one or more of the following downstream beneficial effects:
    • a) The intestinal permeability at the site of SCFA production is decreased. This is important for preventing disease and maintaining health, especially to prevent allergies from developing. The finding that co-administration of GOS and polyfructose causes more even fermentation and extends fermentation to the distal part of the colon is important in this respect, as the permeability of the intestine, including the distal parts of the colon, can be evenly reduced and the intestine can thereby be evenly maintained in a healthy state.
    • b) The motility or peristaltic movement of the intestine is enhanced, which reduces or prevents constipation, a common problem observed in formula fed infants.
    • c) Decreasing the amount of spontaneous contractions and the colonic muscle tension resulting in less cramps and less abdominal pain.
    • d) Calcium-ion absorption is increased, which is important for bone mineralisation and bone development of the subject, especially if the subject is an infant
    • e) Secondary symptoms of reduced health such as fatigue, depression and mood fluctuation may be reduced,
    • f) Mucus production of the intestinal mucosa is significantly enhanced, which provides protection against pathogen attachment and colonization. In particular, it was found that lactate levels correlated positively with mucus production. The compositions according to the invention may thus be used to stimulate mucus production.
    • g) Bile metabolism may be modified to levels and/or patterns as observed in breast fed infants.
    • h) Growth of intestinal pathogenic microorganisms is inhibited along the entire colon.
  • A composition comprising a synergistically effective amount of GOS and polyfructose may therefore be used to either maintain or establish (e.g. in a newborn, premature or mature born baby or in a non- or partially breast fed baby, or other subjects, such as adults, one or more of the above physiological effects and maintain or improve the health of the subject by ensuring or establishing a healthy large intestinal environment and optimal activity of the large intestine.
  • In particular, incidence, duration and/or severity of diseases, disorders or symptoms such as colic and/or abdominal cramps, abdominal bloating and/or flatulence, abdominal pain, IBS, IBD and/or allergy, intestinal pathogen infection (e.g. bacteria, viruses, fungi), diarrhoea, eczema, allergy induced asthma and other atopic diseases, and/or constipation can be reduced, abolished or prevented by administration of a composition according to the invention. The compositions according to the invention may also be used to relax contractions of the colon, preferably the phasic and/or tonic contractions.
  • Compositions According to the Invention
  • Compositions suitable for the uses described above comprise both polyfructose and GOS in synergistically effective amounts. The compositions comprise GOS/polyfructose in ratios ranging from 3/97 to 97/3, preferably 5/95 to 95/5, more preferably 90/10 to 45/55. All individual ratios between these end-points are encompassed herein, such as 10/90, 20/80, 30/70, 40/60, 50/50, 55/45, 60/40, 70/30, 80/20, 85/15, 90/10, etc.
  • The dosages required and the GOS/polyfructose ratio for achieving the (optimal) synergistic effect may vary, depending on the type of composition and the method and frequency of administration. A few examples are however given below. A skilled person may easily determine what dosages of each component is required to achieve the best physiological effect and what GOS/polyfructose ratio is the most suitable. For example, if the main aim is to enhance the total level of SCFA following oral administration of a composition comprising GOS and polyfructose, a skilled person will make various compositions (comprising GOS plus polyfructose, GOS alone, polyfructose alone) and compare their efficiency in inducing high SCFA levels using either in vivo or in vitro tests as known in the art. It is understood that when referring to “daily dose” or ‘dosage per day’, this does not imply that the dosage must be administered to the subject at one time.
  • A synergistically effective infant formula may, for example, consist of a base composition (e.g. standard infant formula) comprising about 4 g/l, 5 g/l or more of a mixture of GOS and polyfructose, whereby the ratio's of GOS to polyfructose may vary as described elsewhere herein (e.g. 90% GOS:10% polyfructose).
  • Polyfructose may, for example, be levan and/or inulin. Polyfructose, such as levan or inulin, for use in the compositions may be either extracted from natural sources (plants or bacteria) or may be made by de novo synthesis or by recombinant DNA technologies as known in the art. Extraction, size separation and purification methods of inulin have been described, for example in De Leenheer (1996), U.S. Pat. No. 6,569,488 and U.S. Pat. No. 5,968,365. Recombinant production methods have been for example described in U.S. Pat. No. 6,559,356. Synthesis generally involves the use of sucrose molecules and enzymes with fructosyl transferase activity. Inulin suitable for use in the compositions is also already commercially available, e.g. Raftiline®HP, Orafti.
  • Plant inulins generally have a much lower degree of polymerisation than bacterial inulins (up to 150, compared to up to 100,000 in bacteria). Plant sources include dicotyledenous species, such as Compositae. Examples of species which produce relatively large amounts of inulin, mainly in their roots, bulbs or tubers, are chicory, asparagus, dahlia, Jerusalem artichoke, garlic, and others (see Kaur and Gupta, J. Biosci. 2002, 27, 703-714). As the inulin should preferably not comprise oligofructose, hydrolysis should be avoided or oligofructose and/or mono- or disaccharides present should be removed prior to use.
  • Especially preferred is polyfructose with a PD of at least 10, 15, 20, 50, 70, 100, 120, 130, 150, 200, 300, 500 or more. Polyfructoses, such as levans, may be hydrolysed to avoid viscosity problems associated with too long chains, as long as a PD of 10 or more is retained.
  • Levans may also be obtained from natural sources such as plants (e.g. monocotyledons) yeast, fungi, bacteria, or made chemically or using recombinant DNA technology.
  • GOS may be obtained from natural sources, such as plants (e.g. chicory, Soya) or bacteria, or may be made synthetically or by recombinant DNA technology as known in the art. GOS may be β-galacto-oligosaccharide or α-galacto-oligosaccharide or a mixture of both. In particular, galactose residues are linked by β(1→4) and β(1→6) glycosidic bonds (trans GOS or TOS). GOS suitable for use in the compositions is also already commercially available, e.g. Vivinal®GOS, Borculo Domo Ingredients, Zwolle, The Netherlands. GOS may also be derived from lactose, by treatment of lactose enzymatically with β-galactosidase or by hydrolysis from polyglucan. In a preferred embodiment TOS is used. In one embodiment the preferred polyfructose is inulin HP, so that the combination of TOS and inulin HP are also a preferred embodiment herein.
  • Other compositions provided are compositions comprising lactate in suitable amounts, in particular for the uses described above. Suitable amounts of lactate may vary, and may for example range from 1 to 30 grams per day.
  • Compositions according to the invention may be either food compositions, food supplement compositions or pharmaceutical compositions. Apart from polyfructose and GOS (and/or lactate) they may comprise additional ingredients. For food compositions or food supplement compositions these should be food grade and physiologically acceptable. “Food” refers to liquid, solid or semi-solid dietetic compositions, especially total food compositions (food-replacement), which do not require additional nutrient intake or food supplement compositions. Food supplement compositions do not completely replace nutrient intake by other means. Food and food supplement compositions are in a preferred embodiment baby food or food supplements, food or food supplements for prematurely born babies, infant food, toddler food, etc., which are preferably administered enterally, preferably orally several times daily. The food or food supplement compositions are particularly suited for non- or partially breast fed infants. Also, the composition may be beneficially administered to infants in their adaptation period to solid food or infants changing from breast to bottle feeding. The composition may also be part of a human milk fortifier supplement.
  • In one embodiment the composition is an infant or follow-on formula as e.g. known in the art, especially as described in the European Commission directive 91/321/EEC and the amendments thereof, but may be modified to comprise an effective amount of polyfructose and GOS. The infant or follow-on formula may be based on milk (cows milk, goats milk, etc.), infant milk formula (IMF) or soy for lactose intolerant infants or may contain amino acids as a nitrogen source for infants having problems regarding allergy or absorption. Commercially available infant or follow-on formulae comprise, thus, a milk protein or soy protein base, fat, vitamins, digestible carbohydrates and minerals in recommended daily amounts and may be powders, liquid concentrates or ready-to-feed compositions.
  • Administration of the modified infant or follow-on formula results in a large intestinal environment which resembles that of breast-fed infants, as can be determined by analyses of faecal pH, bacterial composition, SCFA production and profiles, gas production, etc. When the composition is a drink, preferably the volume (comprising the daily effective dose) consumed or administered on a daily basis is in the range of about 100 to 1500 ml, more preferably about 450 to 1000 ml per day. When the formula is a solid preferably the amount (comprising the daily effective dose) consumed or administered on a daily basis is in the range of about 15 to 220 g/day, preferably about 70 to 150 g/day of formula powder.
  • A daily effective dose of GOS and polyfructose ranges from about 1 to 30 g/day, preferably from about 2 to 10 g/day for infants and preferably for adults from about 5 to 20 g/day.
  • Food or food supplement compositions according to the invention may additionally comprise other active ingredients, such as vitamins (A, B1, B2, B3, B5, B12, C, D, E, K, etc.), probiotics (e.g. bifidobacteria, lactobacilli, etc.), other prebiotics, fibres, lactoferrin, immunoglobulins, nucleotides, and the like. Nutrients such as proteins, lipids and other carbohydrates (e.g. digestible carbohydrates, non-digestible carbohydrates, soluble or insoluble carbohydrates) may be present in various amounts. Typical in-soluble non-digestible carbohydrates present in infant nutrition are soy polysaccharides, resistant starch, cellulose and hemicellulose. Typical soluble and digestible carbohydrates for use in infant nutrition are for example maltodextrin, lactose, maltose, glucose, fructose, sucrose and other mono- or disaccharides or mixtures thereof. The composition may also comprise other inactive ingredients and carriers, such as e.g. glucose, lactose, sucrose, mannitol, starch, cellulose or cellulose derivatives, magnesium stearate, stearic acid, sodium saccharin, talcum, magnesium carbonate and the like. The compositions may also comprise water, electrolytes, essential and non-essential amino acids, trace elements, minerals, fibre, sweeteners, flavorings, colorants, emulsifiers and stabilisers (such as soy lecithin, citric acid, esters of mono- or di-glycerides), preservatives, binders, fragrances, and the like.
  • Lipids suitable for the compositions, especially for infant food or food supplements, are milk fats, plant lipids, such as canola oil, safflower oil, sunflower oil, olive oil, marine oils, etc. or fractions or mixtures thereof comprising suitable fatty acids (polyunsaturated and/or saturated).
  • Proteins suitable for the compositions especially for infant food or food supplements, include casein, whey, condensed skimmed milk, soy, beef, collagen, corn and other plant proteins or hydrolysed proteins, free amino acids, etc. Preferably proteins comprised in infant food or food supplement compositions are extensively hydrolysed and/or partially hydrolysed to reduce the risk of allergies. The infant food compositions according to the invention preferably comprise all vitamins and minerals essential in the daily or weekly diet in nutritionally significant amounts, such as minimal recommended daily amounts.
  • The food or food supplement composition may also in one embodiment be made on the basis of (i.e. starting from or comprising) a food base. It may, for example, based on, or comprises, a dairy product, such as a fermented dairy product, including but not limited to milk, yoghurt, a yoghurt-based drink or buttermilk. Such compositions may be prepared in a manner known per se, e.g. by adding an effective amount of polyfructose and GOS or TOS to a suitable food or food base. Other food bases suitable may be plant bases, meat bases and the like.
  • The food or food supplement composition according to the invention may be used either as a treatment and/or prophylactically. This is to say that they may be either administered after gastrointestinal problems or diseases have been diagnosed in a subject or, alternatively, prior to the occurrence of symptoms (for example to high risk patients, likely to develop gastrointestinal problems). For example, if symptoms associated with the disease or suboptimal functioning if the large intestine, such as constipation, flatulence, allergies, colics, abdominal pain, abdominal cramps, IBD, IBS are observed, administration of the composition will aid in re-establishing a healthy large intestinal environment or prevent the development of such symptoms.
  • In one embodiment the compositions are administered prophylactically, to support the development of a healthy microflora and/or healthy large intestinal environment. A “healthy large intestinal environment” refers to a normal intestinal physiology and activity, especially normal absorption of nutrient, water, resistance of the mucosa to pathogen attachment, colonisation and infection, etc. as can be determined by faecal analysis and gas production. Especially, an optimal physiology and activity is referred to. Any suboptimal functioning of the large intestine results in symptoms as described and can be determined by faecal analysis and/or gas production. Intestinal diseases or disorders resulting from a suboptimal functioning are included herein.
  • Pharmaceutical compositions for the treatment or prophylaxis of intestinal disorders or symptoms of suboptimal intestinal functioning, such as IBD, colitis, IBS and/or increased barrier integrity may comprise additional biologically active ingredients, such as drugs, biologically active proteins or peptides, probiotics, and others. The embodiments described for food or food supplement compositions apply also to pharmaceutical compositions.
  • The compositions according to the invention may be in any dosage form, such as liquid, solid, semi-solid, tablets, drinks, powders, etc., depending on the method of administration. Administration to a subject is preferably oral, although for some uses rectal or tube feeding (with a tube directly entering the stomach, duodenum, or small intestine or large intestine) may be suitable.
  • It is a further embodiment of the invention to provide a method for the manufacture of a composition according to the invention by adding a synergistically effective amount of GOS (or TOS) and polyfructose to a suitable composition base, as described above.
  • The following non-limiting Examples describe the synergikic effect of GOS and polyfructose. Unless stated otherwise, the practice of the invention will employ standard conventional methods of molecular biology, pharmacology, immunology, virology, microbiology or biochemistry. Such techniques are described in Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, NY, in Volumes 1 and 2 of Ausubel et al. (1994) Current Protocols in Molecular Biology, Current Protocols, USA and Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa., 17th ed. (1985), Microbiology: A Laboratory Manual (6th Edition) by James Cappuccino, Laboratory Methods in Food Microbiology (3rd edition) by W. Harrigan (Author) Academic Press, all incorporated herein by reference.
  • FIGURE LEGENDS
  • FIG. 1
  • Formation of acetate, propionate and butyrate after 48 h in vitro fermentation of TOS, Inulin, a mixture of TOS/Inulin 9/1 and a mixture of oligofructose and inulin 1/1 by fresh faeces obtained from babies.
  • FIG. 2
  • Relative amounts of acetate, propionate and butyrate formed after 48 h in vitro fermentation of TOS, Inulin, a mixture of TOS/Inulin 9/1 and a mixture of oligofructose and inulin 1/1 by fresh faeces obtained from babies. The sum of acetate plus propionate plus butyrate formed was set at 100% for each of the fibre tested.
  • FIG. 3
  • Formation of gas after 48 h in vitro fermentation of TOS, Inulin, a mixture of TOS/Inulin 9/1 and a mixture of oligofructose and inulin 1/1 by fresh faeces obtained from babies. The amount of gas formed (ml was related to the amount of total SCFA formed (in mmol per g fibre)
  • FIG. 4
  • Effects of mixtures of SCFA (acteate/propionate/butyrate in a ratio of 90/5/5 on a molar basis) and of L-lactate.
  • FIG. 4A: Effect of 0, 0.1, 0.5, 1 and 4 mM of the SCFA mixture or L-lactate on muc-2 expression in a CCD18/T84 co-culture (n=6). Error bars show the SEM. The increase at 1 and 4 mM SCFA mixture and 0.5, 1 and 4 mM L-lactate is statistically significant.
  • FIG. 4B: Effect of 0, 50, 100, 250 and 500 μM SCFA mixture or L-lactate on the spontaneous PGE1 and PGE2 response in CCD18 cells (n=7). Error bars show the SEM. The increase of PGE1 at 100, 250 and 500 μM SCFA mixture and 100 μM L-lactate is statistically significant. The increase of PGE2 at 100, 250 and 500 μM SCFA mixture and 250 μM L-lactate is statistically significant (P<0.05)
  • FIG. 5
  • Effects of sodium acetate and sodium L-lactate on the spontaneous contraction in the distal and proximal part of the colon. The blanc (set to a tension of 1 g) is 0%. The tension after addition of 40 mM KCl was set to 100%.
  • EXAMPLES Example 1 In Vitro Fermentation Studies Show Synergistic Effects on Fermentation Patterns 1.1 Materials and Methods Microorganisms
  • Microorganisms were obtained from fresh faeces from bottle fed babies. Fresh faecal material from babies ranging 1 to 4 month of age was pooled and put into preservative medium within 2 h.
  • Compositions/Substrate
  • As substrate either prebiotics (TOS; TOS (from VivinalGOS, Borculo Domo Ingredients, The Netherlands) and inulin (raftilinHP from Orafti, Belgium) mixture in a 9/1 (w/w) ratio; inulin; oligofructose and inulin mixture in a 1/1 (w/w) ratio, or none (blanc) was used.
  • Media
  • McBain & MacFarlane medium: Buffered peptone water 3.0 g/l, yeast extract 2.5 g/l. mucin (brush borders) 0.8 g/l, tryptone 3.0 g/l, L-Cysteine-HCl 0.4 g/l, bile salts 0.05 g/l, K2HPO4.3H2O 2.6 g/l, NaHCO3 0.2 g/l, NaCl 4.5 g/l, MgSO4.7H2O 0.5 g/l, CaCl2 0.228 g/l, FeSO4.7H2O 0.005 g/l. 500 ml Scott bottles were filled with the medium and sterilised for 15 minutes at 121° C.
  • Buffered medium: K2HPO4.3H2O 2.6 g/l, NaHCO3 0.2 g/l, NaCl 4.5 g/l, MgSO4.7H2O, 0.5 g/l, CaCl2 0.228 g/l, FeSO4.7H2O 0.005 g/l. pH was adjusted to 6.3±0.1 with K2HPO4 or NaHCO3. 500 ml Scott bottles were filled with the medium and sterilised for 15 minutes at 121° C.
  • Preservative medium: Buffered peptone 20.0 g/l, L-Cysteine-HCl 0.5 g/l, Sodium thioglycollate 0.5 g/l, resazurine tablet 1 per litre. pH was adjusted to 6.7±0.1 with 1 M NaOH or HCl. The medium was boiled in microwave. 30 ml serum bottles were filled with 25 ml medium and sterilised for 15 minutes at 121° C.
  • The fresh faeces were mixed with the preservative medium. Fresh faeces can be preserved in this form for several hours at 4° C.
  • Faecal suspension: The preserved solution of faeces was centrifuged at 13,000 rpm for 15 minutes. The supernatant was removed and the faeces was mixed with the McBain & Mac Farlane medium in a weight ratio of 1:5.
  • Fermentation
  • 3.0 ml of the faecal suspension were combined with 85 mg glucose or prebiotic or with no addition (blanc) in a bottle and mix thoroughly. A t=0 sample was withdrawn (0.5 ml). 2.5 ml of the resulting suspension was brought in a dialysis tube in a 60 ml bottle filled with 60 ml of the buffered medium. The bottle was closed well and incubated at 37° C. Samples were taken from the dialysis tube (0.2 ml) or from the dialysis buffer (1.0 ml) with a hypodermic syringe after 3, 24, and 48 hours and immediately put it on ice to stop fermentation.
  • Determination of the Short Chain Fatty Acids and Lactate
  • See Example 2. Values were corrected for blanc.
  • Gas Determination
  • At t=3, t=24 and t=48 the gas pressure in the head space of the 60 ml bottle was measured by a gas pressure meter (Druckmessumformer, Econtronic, Germany) by stinging a hypodermic 6 ml syringe through the rubber cap of the bottle and withdrawal of gas from the headspace by this syringe until the gas pressure was 0 bar. The volume in the syringe was the volume of gas formed. Values were corrected for blanc.
  • 1.2 Results
  • In vitro fermentation was carried out using the following samples:
  • 1.) 85 mg TOS (from VivinalGOS, Borculo Domo Ingredients, The Netherlands)
    2.) 85 mg inulin (RaftilinHP, from Orafti, Belgium)
    3.) 85 mg TOS/inulin with a ratio of TOS/inulin of 9/1 (w/w) and
    4.) 85 mg OF (raftiloseP95, from Orafti, Belgium)/inulin (raftilinHP) in a ratio of OF/inulin of 1/1 (w/w).
  • Total Amount of SCFA Produced
  • Results are shown in FIG. 1. FIG. 1 shows that the mixture of TOS/Inulin resulted in a significantly higher amount of SCFA per g fibre than the single components, but also higher than the mixture of oligofructose (OF) and inulin. Also tested were 85 mg TOS/inuline in a ratio of 1/1 (data not shown), which also provided a synergistic effect.
  • L- and D-Lactate production
  • L- and D-lactate could only be determined at t=3. Table 1 shows the metabolic end products formed at that time point.
  • TABLE 1
    metabolic end-products (mmol/g fibre) formed
    after 3 hours in vitro fermentation
    Acetate Propionate Butyrate L-lactate D-lactate
    TOS 0.23 0 0 0.14 0.03
    Inulin 0 0 0 0.00 0.00
    TOS/Inulin 0.40 0 0 0.17 0.04
    OF/Inulin 0.30 0 0 0.04 0.02
  • Again a synergistic higher formation of lactate is observed for the mixture TOS/Inulin compared to the single components TOS and Inulin. Compared to the mixture with OF and Inulin the percentage lactate (based on total acids) and ratio L-/D-lactate is higher in the TOS/Inulin mixture.
  • Relative Amounts of SCFA
  • FIG. 2 shows the pattern of fermentation products after 48 h. The mixture of TOS/inulin shows a significantly higher percentage of acetate than the single components, which is also higher than for the mixture of oligofructose (OF) and Inulin. Faeces of breast fed babies show a high percentage of acetate, so the mixture of TOS/Inulin results in a pattern of fermentation products which most resembles that of breast fed babies.
  • Gas Formation
  • Results are shown in FIG. 3. Regarding the formation of gas, TOS and the mixture TOS/Inulin form the lowest amount of gas per mmol SCFA formed. Inulin and the mixture of OF/inulin show a much higher amount of gas formation. Per mmol SCFA formed the amount of gas is lowest in the TOS/inulin mixture.
  • Kinetics of SCFA Formation
  • Table 2 shows the kinetics of SCFA formation. The combination of TOS/inulin still shows a high SCFA formation between 24 and 48 h, indicating that in the distal part of the colon still SCFA is formed and having a beneficial effect on the colon permeability, mucus formation and anti-pathogenic effects etc. Also in the first 3 h the highest amount of SCFA is formed, as is the case with human milk oligosaccharides (data not shown). A fast fermentation at the beginning of the colon is of importance because of the antipathogenic effects.
  • TABLE 2
    kinetics of SCFA formation (mmol) SCFA (blanc corrected)
    Time interval (hours)
    Prebiotics 0-3 hrs 3-24 hrs 24-48 hrs
    TOS 0.23 3.85 0.13
    TOS/inulin HP 0.40 4.49 0.24
    Inulin HP 0.00 3.05 0.05
    OF/Inulin HP 0.11 4.26 0.00
    OF = oligofructose
  • Example 2 Clinical Study with TOS/Inulin: a Relative Increase of Acetate and Relative Decrease of Butyrate is not Correlated with an Increase of Bifidobacteria. TOS and Inulin have a Synergistic Effect 2.1 Materials and Methods
  • 63 pregnant woman who had decided to breast-feed and 57 who chose not to, were recruited during their last trimester of pregnancy. Infants with normal birth weight, no congenital abnormality, congenital disease or gastrointestinal disease were enrolled within 3 days after delivery. The study was approved by the ethical committee of the Medical Center, St. Radboud, Nijmegen, The Netherlands. Written informed consent was obtained from the parents before enrolment in the study.
  • Infants of mothers who had decided not to breast-feed, were randomly and double blindly allocated to one of two formula groups (OSF, SF). The standard formula group (SF; n=19 received a regular, non-supplemented infant formula (Nutrilon I, Nutricia, The Netherlands). The main compositional data of the standard formula at standard dilution of 131 g/l are given in Table 3. The prebiotic formula group (OSF; n=19) received the same standard infant formula supplemented with a mixture of 6 g/l transgalacto-oligosaccharides (TOS; Vivinal GOS, Borculo Domo Ingredients, Zwolle, The Netherlands) and inulin (PF; RaftilineHP, Orafti active food ingredient, Tienen, Belgium). The mixture comprised 90% TOS and 10% inulin (polyfructose). The study formulas were fed ad libitum during the study period. Mothers who decided to breast feed were stimulated to continue breast feeding during the course of the study and were supported by a lactation consultant when needed. At termination of breast feeding their infants received one of two formulae. Compliance was assessed by counting the number of unused formula tins during each visit and comparing the amount of consumed formula with the recorded food intake.
  • TABLE 3
    Composition of the standard formula per litre
    Energy kcal 670
    Protein g 14
    Casein/whey ratio 40/60
    Fat g 35
    Total carbohydrates g 75
    Lactose g 75
    Minerals
    Calcium mg 540
    Phosphorus mg 270
    Magnesium mg 50
    Sodium mg 190
    Potassium mg 680
    Chloride mg 430
    Iron mg 5
    Zinc mg 5
  • Questionnaires
  • Demographic, clinical anthropometrical data of the mother are collected prior to delivery. Information on delivery was obtained from the mothers at day 5 after delivery. Information of the infants' food intake, formula tolerance, stool characteristics, health and anthropometrics was obtained from questionnaires at postnatal day 5, 10, 28 and once every 4 weeks thereafter until the end of the study.
  • Faecal Samples
  • Parents were asked to take faecal samples from their infants, at postnatal day 5, 10, 28 and once every 4 weeks thereafter. The samples were taken from the diaper, as soon as possible after defecation, collected in faeces containers (Greiner Labortechnik, the Netherlands) and stored immediately at −20° C. by the parent and transported in a portable freezer to the laboratory by the investigators.
  • Preparation of Faecal Samples:
  • For the determination of SCFA, 1 gram of the samples was thawed in ice water diluted 10× in MilliQ and homogenised for 10 minutes using a stomacher (IUL Instruments, Barcelona, Spain). 350 μl homogenised faeces was mixed with 200 μl 5% (v/v) formic acid, 100 μl 1.25 g/l 2-ethylbutyric acid (Sigma-Aldrich, Zwijndrecht, The Netherlands) and 350 μl 1 MilliQ. The samples were centrifuged for 5 minutes at 14,000 rpm to remove large particles and the supernatant was stored at −20° C. For the FISH analysis and lactic acid measurements, the samples were thawed in ice water, diluted 10× (w/v) in phosphate buffered saline, pH 7.4 (PBS) and homogenized for 10 minutes using a stomacher. The homogenised faeces were stored at −20° C.
  • Fluorescence In Situ Hybridisation
  • FISH analysis was performed as described (Langendijk et al, 1995, Appl. Environ. Microbiol. 61:3069-3075.) with some slight modifications. Paraformaldehyde fixed samples were applied to gelatin coated glass slides (PTFE coated 8-wells [1 cm2/well] object slides, CBN labsuppliers, Drachten, The Netherlands) and air-dried. The dried samples were dehydrated in 96% ethanol for 10 minutes. Hybridisation buffer (20 mm Tris-HCl, 0.9 M NaCl, 0.1% SDS [pH 7.1[) with 10 ng/l Cy3 Labeled Bifidobacterium specific probe Bif164mod (5′-CAT CCG GYA TTA CCA CCC), was preheated and added to the dried samples. Bif 164 mod is modified version of probe S-G-Bif-a-0164-a-A-18 ((Langendijk et al, 1995, Appl. Environ. Microbiol. 61:3069-3075.). The slides were incubated overnight in a dark moist chamber at 50° C. After hybridisation the slides were washed for 30 minutes in 50 ml preheated washing buffer (20 mM Tris-HCl, 0.9 M NaCl [pH 7.2]) and briefly rinsed in MilliQ. For staining all bacteria, the samples were incubated with 0.25 ng/l 4′,6-diamidino-2-phenylindole (DAPI) in PBS for 5 minutes at room temperature. After DAPI staining the slides were briefly rinsed in MilliQ, dried, mounted with Vectashield (Vector Laboratories, Burlingame, Calif., U.S.A.) and covered with a coverslip. The slides were automatically analysed using an Olympus AX70 epifluorescence microscope with automated image analysis software (Analysis 3.2, Soft Imaging Systems GmbH, Münster, Germany). The percentage of bifidobacteria per sample was determined by analysing 25 randomly chosen microscopic positions. At each position the percentage of bifidobacteria was determined by counting all cells with a DAPI filter set (SP 100, Chroma Technology Corp., Brattleboro, U.S.A.) and counting all bifidobacteria using a Cy3 filter set (41007, Chroma Technology, Brattleboro, U.S.A.).
  • Short Chain Fatty Acids Analysis
  • The short chain fatty acids (SCFA) acetic, propionic, n-butyric, iso-butyric and n-valeric acids were quantitatively determined by a Varian 3800 gas chromatograph (GC) (Varian Inc., Walnut Creek, U.S.A.) equipped with a flame ionisation detector. 0.5 μl of the sample was injected at 80° C. in the column (Stabilwax, 15×0.53 mm, film thickness 1.00 μm, Restek Co., U.S.A.) using helium as a carrier gas (3.0 psi). After injection of the sample, the oven was heated to 160° C. at a speed of 16° C./min, followed by heating to 220° C. at a speed of 20° C./min and finally maintained at a temperature of 220° C. for 1.5 minutes. The temperature of the injector and detector was 200° C. 2-ethylbytyric acid was used as an internal standard.
  • Lactate Analysis
  • Homogenised faeces was thawed on ice and centrifuged for 5 minutes ant 14,000 rpm 100 μl supernatant was heated for 10 minutes at 100° C. to inactivate all enzymes. Lactate was determined enzymatically, using a L-lactate acid detection kit with D- and L-lactate-dehydrogenase (Boehringer Mannheim, Mannheim, Germany). Lactate was only determined in those faecal samples which were large enough.
  • pH Analysis
  • After storage at −20° C., faecal samples were thawed and the pH was directly measured in the faeces at room temperature using a Handylab pH meter (Scott Glas, Mainz, Germany) equipped with an Inlab 423 pH electrode (Mettler-Toledo, Columbo, U.S.A.)
  • Data Analysis
  • Prior to the study, power calculations showed that to detect a difference in percentage of bifidobacteria between the intervention formula group and the standard formula group of 30% with a SD of 25%, 13 infants per group should be included. Because of an expected drop out of 30% in the formula groups, more infants than calculated were included in the study. Statistical package SPSS (version 11/0) was used for statistical analysis of the results. All values were checked for normality by visual inspection of the normal probability plots. Differences in percentage bifidobacteria, pH, relative amounts of SCFA and lactate between the groups were tested for significance using analysis of variance. In case of a significant difference (p<0.05), groups were compared by using the Bonferroni post hoc test. Because it is not possible to double blind assign breast and bottle-feeding and to ensure adequate randomisation, no statistical analysis were performed to compare the breast-feeding with any of the formula feeding groups. Data from the breast-fed group are only given when the infant was only fed breast milk at that time point.
  • 2.2 Results
  • In total, 120 (-pro group infants were included. 57 infants started on formula feeding directly after birth and were equally divided among the formula groups. Of the 63 infants that were fed breast milk directly after birth, 24 switched to formula feeding before the age of 16 weeks and 5 infants dropped out. The characteristics of the study subjects are shown in Table 4. In the formula groups, 9 infants dropped out of the study within the first 16 weeks after birth (4 in the SF, 5 in the OSF group. Reasons for drop out included: colics, suspicion of cow's milk allergy, constipation and practical problems.
  • TABLE 4
    Characteristics of study objects
    Standard Prebiotic
    Formula, SF formula, OSF Breast milk,
    N = 19 N = 19 BF N = 63
    Sex Male 5 12 33
    Female 14 7 30
    Place of birth At home 7 8 40
    Hospital 12 11 23
    Mode of Vaginal 14 16 59
    delivery Caesarean 5 3 4
    Birth weight 3600 ± 501 3318 ± 602 3651 ± 601
  • Faecal Bifidobacteria
  • The percentages of bifidobacteria in faeces at the age of 5 days, 10 days, 4, 8, 12, and 16 weeks of the feeding groups are shown in Table 5 and the amounts in Table 5. The OSF group tends to have a higher bifidobacteria % than the SF group from total bacterial count at all ages, but the differences were not statistically different. Unexpectedly, the percentage of Bifidobacteria in breast fed babies was also relatively low and were in line with the formula fed groups.
  • Preliminary data also show an increase in Lactobacilli in the BF and OSF group, but the amounts of Lactobacilli in the faecal flora are at least one order of magnitude lower than the Bifidobacteria, the overall pattern is changes very little.
  • pH Results
  • The pH values measured in the faeces of the formula-fed infants are shown in table 6. Lowest pH was found in infants fed on breast milk. Faecal pH of faeces of infants fed the OSF formula were lower than the SF group (p<0.045 at all ages except day 5).
  • SCFA Results
  • The total amount of SCFA in the faeces is shown in Table 5 below.
  • The percentage of the different SCFA from total SCFA are shown in Table 6. There are no statistically significant differences found in total SCFA concentration between the formula groups. Also the amount of SCFA is comparable to those of the other feeding groups. However, already after 10 days, differences in the SCFA profiles can be seen between infants fed on OSF or breast milk compared to infants fed on standard formula. Infants fed the formula containing GOS and polyfructose and fed breast milk, have higher percentages of acetate and lower percentages of propionate, butyrate, iC4-6 SCFA when compared to infants fed the standard formula.
  • Lactate Results
  • The concentrations lactate (mmol/kg faeces) of all groups are shown in Table 5. Already from 5 days of age, the OS formula (not sign.) and the groups of breast milk have higher amounts of lactate compared to the standard formula group. The relative amount of lactate (as a percentage of the sum of SCFA and lactate) is highest in breast fed babies and lowest in standard formula fed babies. Babies fed a formula containing TOS/inulin have an intermediate relative amount of acetate. The percentage of lactate in OSF fed babies at 16 weeks (relative to total acids) significantly differs from that of SF babies.
  • TABLE 5
    Concentration of lactate and total SCFA (mmol/kg faeces) and
    Bifidobacteria (*1.1013/kg faeces) pH between birth
    and 16 weeks of age.
    Lactate SCFA pH Bifidobacteria
     5 days SF 13.5 ± 7.7 54.7 ± 12.6 5.93 ± 0.15 0.58 ± 0.49
    OSF 10.7 ± 4.3 56.5 ± 7.7 5.49 ± 0.15 1.20 ± 2.24
    BF 13.3 ± 2.8 48.7 ± 4.4 5.27 ± 0.07 0.47 ± 0.39
    10 days SF  4.6 ± 3.0 62.0 ± 7.9 6.88 ± 0.15 0.96 ± 0.83
    OSF  9.7 ± 3.6 62.3 + 7.2 5.95 ± 0.20 1.10 ± 0.99
    BF 15.1 ± 3.2 54.7 ± 4.9 5.35 ± 0.07 0.48 ± 0.61
     4 SF  2.6 ± 1.4 68.3 ± 10.3 6.77 ± 0.21 0.97 ± 0.96
    weeks OSF  9.9 ± 3.4 83.1 ± 8.8 5.88  + 0.18* 1.20 ± 0.55
    BF 22.8 ± 4.4 59.8 ± 4.8 5.45 ± 0.12 0.56 ± 0.64
     8 SF  7.6 ± 6.8 76.5 ± 13.2 6.80 + 0.20 0.89 ± 0.56
    weeks OSF 24.4 ± 5.3 76.0 + 8.4 5.68  ± 0.18* 1.00 ± 0.52
    BF 30.9 ± 5.3 62.8 ± 5.4 5.27 ± 0.15 0.58 ± 0.59
    12 SF 14.1 ± 9.4 73.9 ± 11.9 6.88 ± 0.20 0.91 ± 0.80
    weeks OSF 18.4 ± 7.0 76.1 ± 12.1 5.60  ± 0.18* 1.30 ± 0.99
    BF 42.1 ± 7.1 60.4 ± 4.9 5.29 ± 0.17 1.40 + 1.38
    16 SF  1.7 ± 1.2 68.6 ± 14.0 7.09 ± 0.15 1.00 ± 0.80
    weeks OSF 18.5 ± 5.7 67.7 ± 11.7 5.60  ± 0.20* 1.30 ± 0.76
    BF 45.1 ± 9.0 59.2 ± 6.9 5.68 ± 0.24 0.89 ± 0.78
    Mean ± SEM.
    Except for pH, no statistically differences were found.
  • TABLE 6
    relative amounts of SCFA (% of total SCFA), lactate (% of total acids), %
    Bifidobacteria between birth and 16 weeks of age.
    Day/ Sum
    week Acetate Propionate Butyrate iC4-C5 % Bifidobacteria lactate
     5 d SF 84.3 ± 3.4 12.9 ± 3.2 1.7 ± 0.5 1.1 ± 0.4 45 ± 3.6 13.8 ± 18.5
    OSF 85.8 + 5.1 12.0 ± 4.7 0.5 ± 0.5 1.7 ± 0.7 50 ± 8.6  8.7 ± 13.3
    BF 89.5 ± 1.8  7.0 ± 1.5 1.6 ± 0.4 2.0 ± 0.4 54 ± 4.1 12.5 ± 14.0
    10 d SF 70.9 ± 2.0 21.3 ± 2.6 4.6 ± 1.1 3.2 ± 0.5 65 ± 6.0  4.3 ± 10.8
    OSF   84  ± 2.4* 13.5 ± 2.3 1.4  ± 0.4* 1.1 ± 0.4 61 ± 6.3  8.2 ± 9.8
    BF 89.3 ± 1.9  5.8 ± 1.3 2.3 ± 0.3 2.6 ± 0.4 42 ± 4.1 13.4 ± 13.8
     4 w SF 71.8 ± 2.8 17.8 ± 3.3 5.0 ± 1.1 5.5 ± 2.6 52 ± 5.4  6.9 ± 16.4
    OSF 77.7 ± 2.2 15.4 ± 2.0 5.8 ± 2.2 1.1 ± 0.3 71 ± 4.5  8.4 ± 10.7
    BF 91.0 ± 1.8  4.3 ± 1.2 2.6 ± 0.6 2.1 ± 0.4 47 ± 5.4 19.6 ± 17.0
     8 w SF 74.6 ± 2.9 16.4 ± 2.0 6.1 ± 1.2 2.9 ± 0.7 50 ± 6.3  3.5 ± 9.9
    OSF 83.5 ± 2.7 11.4 ± 2.1 3.7 ± 1.2 1.4 ± 0.4 64 ± 4.1 17.7 ± 15.2
    BF 91.2 ± 1.6  5.4 ± 1.4 1.9 ± 0.5 1.6 ± 0.3 41 ± 4.5 21.7 ± 13.4
    12 w SF 73.9 ± 2.9 17.8 ± 3.3 5.0 ± 1.1 3.2 ± 0.5 56 ± 5.4  5.4 ± 11.9
    OSF 86.5 ± 2.1 11.2 ± 1.8 1.2  ± 0.3* 1.0 ± 0.4 60 ± 5.0 13.6 ± 13.2
    BF 86.1 ± 3.3  7.5 ± 2.2 3.0 ± 0.7 3.5 ± 0.8 59 ± 4.5 30.2 ± 16.3
    16 w SF 69.9 ± 3.9 19.6 ± 2.7 5.6 ± 0.9 4.9 ± 0.8 52 ± 6.3  0.6 ± 0.9
    OSF 82.2 ± 5.3 14.3 ± 4.9 2.1  ± 0.5* 1.5  ± 0.4* 69 ± 7.7 16.4  ± 12.0*
    BF 89.7 ± 2.7  6.4 ± 2.1 1.6 ± 0.4 2.2 ± 0.5 47 ± 6.3 35.6 ± 20.4
    P < 0.05 compared to SF;
    SF = standard formula fed,
    OSF = SF supplemented with GOS + inulin;
    BF = breast fed.
  • The above demonstrates that in faeces of infants fed with this combination of GOS and polyfructose the pH is lowered, that more lactate is formed, and that an acid (acetate and lactate) pattern is formed which is more similar to that of breast fed babies and that this effect cannot be attributed to the quantitative increase of Bifidobacteria.
  • Example 3 Beneficial Effects of Lactate and SCFA Mixture on Muc-2, PGE1 and PGE2 expression 3.1 Material and Methods
  • The effect of lactate and a SCFA mixture was analysed as described in Willemsen, L E M, Koetsier M A, van Deventer S J H, van Tol E A F (2003), Gut 52:1442-1447, with the following modifications: Lactate and a mixture of acetate/propionate/butyrate 90/5/5 was tested. For the mucus production experiments a co-culture of CCD 18 and T84 cells was used, whereas for the PGE1 and PGE2 production experiments a monoculture of CCD18 cells was used.
  • 3.2 Results
  • SCFA, in a mixture of 90/5/5 (acetate/propionate/butyrate), and L-lactate dose dependently induces MUC-2 expression in a co-culture of CCD18 and T84 cells as can be seen in FIG. 4A. Also the concentration of PGE1 and PGE2 increases in CCD18 cells as can be seen in FIG. 4B. At higher concentrations of the added organic acids the increases reaches statistically significance.
  • Example 4 Effect of Lactate on Colon Contraction 4.1 Material and Methods
  • Male Wistar rats (CKP/Harlan, Wageningen/Horst, Netherlands) were housed under conditions of controlled temperature and light cycle and were provided free access to food pellets and water. Animals were anaesthetised by a mixture of N2O, O2 and isofluran, the abdomen was opened and the colon was removed immediately. The tissue was placed in Krebs-Henseleit buffer pH 7.4 (composition in mM: 118.0 NaCl, 4.75 KCl, 1.18 MgSO4, 2.5 CaCl2, 10 glucose, 1.17 KH2PO4 and 24.9 NaHCO3).
  • The colon was cut into a distal and a proximal portion and was rinsed with Krebs-Henseleit buffer while gently squeezing out faecal content. To approximate in vivo conditions as closely as possible, 1 cm fully intact segments were attached longitudinally to an isometric force transducer (F30 type 372, HSE, Germany) in 20 ml water-jacketed (37° C.) organ baths (Schuler, HSE, Germany) containing Krebs-Henseleit buffer gassed continuously with 95% O2-5% CO2. The segments were gradually stretched to a resting tension of 1 g and allowed to equilibrate for 45 minutes with intermittent washings. The tensions of the segments in rest and in response to different stimuli were amplified by a transducer amplifier module (HSE, Germany) and recorded on a multi-pen recorder (Rikadenki, HSE, Germany).
  • The segments were incubated with 40 mM KCl for 5 minutes and the contractile responses were measured. KCl was washed out by three consecutive washes at 5 minutes intervals. The segments were then incubated with increasing concentrations up to 100 mM of acetate or sodium-L-lactate. The acid solutions were prepared freshly in distilled water. NaOH was added to acetate to obtain a neutral pH. At the end of the incubation with a fatty acid, 40 mM KCl was added to determine whether the contractile response to KCl was influenced by the fatty acid. Before a new incubation the segments were allowed to equilibrate for 45 minutes in fresh Krebs-Henseleit buffer with intermittent washings.
  • The experimental protocol consisted of two proximal and two distal sections of the colon. For data analysis (n=3), the contraction level induced by the stimuli was defined as the tension in g after 5 minutes incubation. Data obtained from identical segments (proximal or distal) were used to calculate a mean value and each segment served as its own control sample.
  • 4.2 Results
  • As can be seen from FIG. 5, sodium acetate and especially sodium-L-lactate decrease the tension of tonic contractions. The relaxation effects are higher in the distal part of the colon than in the proximal part of the colon.
  • Also the number of spontaneous contractions, the phasic contractions, decrease in the proximal part of the colon upon addition of the sodium acetate and sodium-L-lactate, whereas no effects are observed in the distal part of the colon.
  • In the proximal part of the colon the tonic contractions as a response to KCl, however, are comparable in the presence or absence of 25 mM sodium actetate or sodium L-lactate. At higher concentrations a significant relaxation is observed even after addition of KCl.

Claims (24)

1-15. (canceled)
16. A method of (a) increasing intestinal and/or faecal short chain fatty acid levels, (b) increasing intestinal and/or faecal acetate levels relative to total short chain fatty acids, (c) increasing intestinal lactate levels, (d) decreasing intestinal and/or faecal pH, (e) decreasing total intestinal and/or faecal butyrate, isobutyrate, valerate and/or isovalerate relative to total short chain fatty acids, (f) decreasing intestinal gas production, and/or (g) promoting the production of short chain fatty acids at the beginning, middle or end of the colon, without having a significant effect on the total and/or relative number of intestinal bifidobacteria, the method comprising administering to a mammal a composition comprising galacto-oligosaccharides and polyfructose.
17. The method according to claim 16, wherein the ratio of galacto-oligosaccharide:polyfructose is 3:97 to 97:3.
18. The method according to claim 16, wherein the ratio of galacto-oligosaccharide:polyfructose is 5:95 to 95:5.
19. The method according to claim 16, wherein the ratio of galacto-oligosaccharide:polyfructose is 90:10 to 45:55.
20. The method according to claim 16, wherein the galacto-oligosaccharide is transgalacto-oligosaccharide.
21. The method according to claim 16, wherein the polyfructose is inulin.
22. The method according to claim 21, wherein the inulin has an average degree of polymerisation of 20 or above.
23. The method according to claim 16, wherein the galacto-oligosaccharide is transgalacto-oligosaccharide and the polyfructose is inulin.
24. The method according to claim 16, wherein the faecal pH, intestinal pH, or both is decreased to below pH 6.
25. The method according to claim 24, wherein the faecal pH, intestinal pH, or both is decreased to below pH 5.75.
26. The method according to claim 16, wherein the concentration of intestinal lactate, faecal lactate, or both is increased to above about 10 mmol/kg faeces.
27. The method according to claim 16, wherein the concentration of intestinal acetate, faecal acetate, or both is increased to above about 85% of the total SCFA.
28. The method according to claim 16, wherein the sum of intestinal and/or faecal butyrate, isobutyrate, valerate and isovalerate is decreased to below 7% of total SCFA.
29. The method according to claim 16, wherein the composition is suitable for oral administration to an infant.
30. A method of relaxing contractions of the colon comprising administering to a mammal a composition comprising galacto-oligosaccharides and polyfructose.
31. A method of increasing the intestinal barrier functioning and/or mucus production of the large intestine comprising administering to a mammal a composition comprising galacto-oligosaccharides and polyfructose.
32. The method of preventing or treating a condition selected from abdominal bloating, gas formation, abdominal pain, flatulence, allergy, eczema, atopic diseases, irritable bowel syndrome and inflammatory bowel disease, the method comprising administering to a mammal a composition comprising galacto-oligosaccharides and polyfructose.
33. The method according to claim 32, wherein the ratio of galacto-oligosaccharide:polyfructose is 3:97 to 97:3.
34. The method according to claim 32, wherein the ratio of galacto-oligosaccharide:polyfructose is 5:95 to 95:5.
35. The method according to claim 32, wherein the ratio of galacto-oligosaccharide:polyfructose is 90:10 to 45:55.
36. The method according to claim 32, wherein the galacto-oligosaccharide is transgalacto-oligosaccharide.
37. The method according to claim 32, wherein the polyfructose is inulin.
38. The method according to claim 32, wherein the galacto-oligosaccharide is transgalacto-oligosaccharide and the polyfructose is inulin.
US11/569,239 2004-05-17 2005-05-17 Synergism of gos and polyfructose Abandoned US20100069320A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04076479.7 2004-05-17
EP04076479A EP1597978A1 (en) 2004-05-17 2004-05-17 Synergism of GOS and polyfructose
PCT/NL2005/000372 WO2005110121A1 (en) 2004-05-17 2005-05-17 Synergism of gos and polyfructose

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2005/000372 A-371-Of-International WO2005110121A1 (en) 2004-05-17 2005-05-17 Synergism of gos and polyfructose

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/750,749 Continuation US20130210763A1 (en) 2004-05-17 2013-01-25 Synergism of gos and polyfructose

Publications (1)

Publication Number Publication Date
US20100069320A1 true US20100069320A1 (en) 2010-03-18

Family

ID=34928228

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/569,239 Abandoned US20100069320A1 (en) 2004-05-17 2005-05-17 Synergism of gos and polyfructose
US13/750,749 Abandoned US20130210763A1 (en) 2004-05-17 2013-01-25 Synergism of gos and polyfructose
US15/646,746 Active US10426791B2 (en) 2004-05-17 2017-07-11 Synergism of GOS and polyfructose
US16/586,544 Abandoned US20200023000A1 (en) 2004-05-17 2019-09-27 Synergism of gos and polyfructose
US17/570,451 Abandoned US20220125826A1 (en) 2004-05-17 2022-01-07 Synergism of GOS and polyfructose

Family Applications After (4)

Application Number Title Priority Date Filing Date
US13/750,749 Abandoned US20130210763A1 (en) 2004-05-17 2013-01-25 Synergism of gos and polyfructose
US15/646,746 Active US10426791B2 (en) 2004-05-17 2017-07-11 Synergism of GOS and polyfructose
US16/586,544 Abandoned US20200023000A1 (en) 2004-05-17 2019-09-27 Synergism of gos and polyfructose
US17/570,451 Abandoned US20220125826A1 (en) 2004-05-17 2022-01-07 Synergism of GOS and polyfructose

Country Status (20)

Country Link
US (5) US20100069320A1 (en)
EP (10) EP1597978A1 (en)
JP (2) JP5705400B2 (en)
CN (6) CN1964638B (en)
AT (2) ATE413816T1 (en)
AU (2) AU2005244321B2 (en)
BR (1) BRPI0511133A (en)
CA (1) CA2565421C (en)
CY (2) CY1110425T1 (en)
DE (2) DE602005010964D1 (en)
DK (3) DK1685763T4 (en)
ES (6) ES2609300T3 (en)
HU (1) HUE046219T2 (en)
NZ (2) NZ588306A (en)
PL (6) PL2279671T3 (en)
PT (2) PT1927292E (en)
RU (1) RU2402929C2 (en)
SI (2) SI1927292T1 (en)
UA (1) UA91678C2 (en)
WO (1) WO2005110121A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110516A1 (en) * 2002-08-30 2006-05-25 Holtus Maria F Foaming ingredient and products containing the ingredient
US20080064656A1 (en) * 2004-06-22 2008-03-13 N,V, Nutricia Improvement of intestinal barrier integrity
US20080171720A1 (en) * 2005-04-21 2008-07-17 N.V. Nutricia Nutritional Supplement For Hiv Patients
US20080207559A1 (en) * 1998-08-11 2008-08-28 N.V. Nutricia Carbohydrates mixture
US20090082249A1 (en) * 2005-04-21 2009-03-26 N.V. Nutricia Nutritional supplement for a category of hiv patients
US20100167982A1 (en) * 2004-06-22 2010-07-01 N.V. Nutricia Barrier integrity in hiv patients
US20100215738A1 (en) * 2009-02-24 2010-08-26 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US20110077189A1 (en) * 2008-02-01 2011-03-31 N.V. Nutricia Composition for stimulating natural killer cell activity
US20110223248A1 (en) * 2007-12-12 2011-09-15 Ritter Pharmaceuticals, Inc. Methods and compositions for treating lactose intolerance
US20110236480A1 (en) * 2009-02-24 2011-09-29 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US20110236500A1 (en) * 2005-04-21 2011-09-29 N.V. Nutricia Nutritional supplement with colostrum and epa or dha or gla
US20150150798A1 (en) * 2010-03-29 2015-06-04 Ferring B.V. Fast dissolving pharmaceutical composition
US10086078B2 (en) 2010-03-29 2018-10-02 Ferring B.V. Fast dissolving pharmaceutical composition
US10426791B2 (en) 2004-05-17 2019-10-01 N.V. Nutricia Synergism of GOS and polyfructose
EP3632221A4 (en) * 2017-05-23 2020-06-24 Beijing Ruiqianjing Science And Technology Development Co. Ltd. Composition for improving intestinal microecology and preventing chronic disease, balanced nutritious food, and application
US11064722B2 (en) * 2016-06-10 2021-07-20 N.V. Nutricia Risk of allergy and nutrition to reduce that risk

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080126195A1 (en) 2004-07-22 2008-05-29 Ritter Andrew J Methods and Compositions for Treating Lactose Intolerance
EP1776877A1 (en) 2005-10-21 2007-04-25 N.V. Nutricia Method for stimulating the intestinal flora
JP2009529574A (en) * 2006-03-10 2009-08-20 エヌ.ブイ.・ヌートリシア Use of indigestible sugars to give the baby the best beginning after birth
PT2164349E (en) * 2006-08-04 2014-12-11 Shs Int Ltd Protein free formula
DE102006055210A1 (en) * 2006-11-21 2008-05-29 Ionescu, John G., Dr. Dietary food with increased free radical binding effect
JP5285852B2 (en) * 2006-12-28 2013-09-11 株式会社ファンケル DFAIII production method and DFAIII-rich plant extract
EP2631650B1 (en) 2007-09-07 2015-04-22 Children's Hospital Medical Center Composition comprising alpha-1,2 fucosyl glycans for treating gastrointestinal disorders
WO2009075564A1 (en) * 2007-12-10 2009-06-18 N.V. Nutricia Paediatric fibre mixture
CN101951794B (en) 2007-12-21 2016-11-02 N.V.努特里奇亚 Use of sphingomyelin and non-digestible carbohydrates for improving intestinal microbiota
WO2009102193A1 (en) * 2008-02-12 2009-08-20 N.V. Nutricia A composition comprising bifidobacterium infantis and fructo- and galacto-oligosaccharides for the prevention of intestinal discomfort in infants
EP2098124A1 (en) 2008-03-03 2009-09-09 Nestec S.A. Carbohydrate gel
RU2500408C2 (en) * 2008-06-06 2013-12-10 Н.В. Нютрисиа Method for prevention of using corticosteroids
WO2009151315A1 (en) * 2008-06-13 2009-12-17 N.V. Nutricia Nutritional composition for infants delivered via caesarean section
EP3326633A1 (en) * 2008-06-13 2018-05-30 N.V. Nutricia Immune system stimulating nutrition
WO2010002241A1 (en) * 2008-06-30 2010-01-07 N.V. Nutricia Nutritional composition for infants delivered via caesarean section
GB0906983D0 (en) 2009-04-23 2009-06-03 Clasado Inc Novel use
EP3248605A1 (en) 2009-07-06 2017-11-29 Children's Hospital Medical Center Inhibiting inflammation with milk oligosaccharides
US20120177691A1 (en) 2009-07-15 2012-07-12 N.V. Nutricia Fucosyllactose as breast milk identical non-digestible oligosaccharide with new functional benefit
CN106890329A (en) 2009-07-15 2017-06-27 N·V·努特里奇亚 Mixtures of indigestible oligosaccharides for stimulating the immune system
IN2012DN03632A (en) * 2009-11-12 2015-06-26 Nestec Sa
EP3097791B1 (en) * 2010-06-04 2018-05-16 N.V. Nutricia Non-digestible oligosaccharides for oral induction of tolerance against dietary proteins
EP2452571A1 (en) * 2010-11-15 2012-05-16 Nestec S.A. Array of complementary infant/young child nutritional compositions
BR112013016905A2 (en) 2010-12-31 2019-09-24 Abbott Lab Methods to Decrease Incidence of Necrotizing Enterocolitis in Infants, Young Children, or Children Using Human Milk Oligosaccharides
US9795623B2 (en) 2010-12-31 2017-10-24 Abbott Laboratories Methods for reducing the incidence of oxidative stress using human milk oligosaccharides, vitamin C and anti-inflammatory agents
ES2657744T3 (en) 2011-07-22 2018-03-06 Abbott Laboratories Galactoligosaccharides to prevent injuries and / or promote healing of the gastrointestinal tract
US10639319B2 (en) 2011-08-29 2020-05-05 Abbott Laboratories Human milk oligosaccharides for preventing injury and/or promoting healing of the gastrointestinal tract
RU2473347C1 (en) * 2011-11-09 2013-01-27 Сергей Константинович Панюшин Prebiotic composition for normalising body microflora
GB2511993B (en) * 2011-11-30 2019-09-18 Ritter Pharmaceuticals Inc Prebiotic formulations and methods of use
WO2013126015A1 (en) 2012-02-23 2013-08-29 N. V. Nutricia Composition comprising non- digestible oligosaccharides
US9782422B2 (en) 2012-05-18 2017-10-10 N.V. Nutricia Treatment of conditions associated with mycotoxin exposure
WO2013187755A1 (en) 2012-06-14 2013-12-19 N.V. Nutricia Fermented infant formula with non digestible oligosaccharides
WO2014130789A1 (en) 2013-02-21 2014-08-28 Children's Hospital Medical Center Use of glycans and glycosyltransferases for diagnosing/monitoring inflammatory bowel disease
US11328621B2 (en) 2013-10-25 2022-05-10 Red Pinnace Limited Dietary regime for treatment of acne and other inflammatory skin conditions
US10650064B2 (en) 2013-10-25 2020-05-12 Red Pinnace Limited Dietary regime for treatment of acne
EP3079502A1 (en) 2013-11-04 2016-10-19 N.V. Nutricia Fermented formula with non digestible oligosaccharides
CN103820314B (en) * 2013-12-05 2016-05-11 南昌大学 A kind of device and using method of simulating large intestine glycolysis
US20170216328A1 (en) * 2014-04-04 2017-08-03 Ritter Pharmaceuticals, Inc. Methods and compositions for microbiome alteration
WO2016013928A1 (en) 2014-07-24 2016-01-28 N.V. Nutricia Prevention or treatment of food allergy in infants and toddlers
WO2016176484A1 (en) 2015-04-28 2016-11-03 Children's Hospital Medical Center Use of oligosaccharide compositions to enhance weight gain
WO2017105186A1 (en) * 2015-12-15 2017-06-22 Kuragobiotek Holding´S Sapi De Cv Mixture of probiotics and prebiotics plus nutrients in biological interaction, and use thereof for treating intestinal dysbiosis in poultry, increasing the immunological response thereof and conversion factor
CN108472274A (en) * 2016-01-26 2018-08-31 雀巢产品技术援助有限公司 Composition for preventing or reducing percutaneous water loss
US20180133287A1 (en) * 2016-11-14 2018-05-17 Mead Johnson Nutrition Company Nutritional compositions providing dietary management of colic
ES2967947T3 (en) * 2016-12-06 2024-05-06 Dsm Nutritional Products Llc Glycan polymers and related methods thereof
US11065217B2 (en) 2017-01-27 2021-07-20 Temple University—Of the Commonwealth System of Higher Education Use of short chain fatty acids for the treatment and prevention of diseases and disorders
US11260067B2 (en) 2017-05-24 2022-03-01 Societe Des Produits Nestle S.A. Methods and compositions for decreasing concentrations of detrimental proteolytic metabolites, treating health disorders, and/or promoting health benefits in infants or young children
WO2019031961A1 (en) 2017-08-11 2019-02-14 N.V. Nutricia Human milk oligosaccharide for improving immune fitness
CN108117991B (en) * 2017-11-03 2021-03-30 湖南海路生物科技有限公司 Use of a product for detecting the content of acetic acid, isobutyric acid and/or valeric acid for the preparation of a product for revealing an imbalance in the intestinal microecology of constipation sufferers
EP3530743A1 (en) 2018-02-21 2019-08-28 Cambridge Glycoscience Ltd Method of production
BR112021002910A2 (en) 2018-08-15 2021-07-20 Cambridge Glycoscience Ltd new compositions, their use and methods for their formation
NL2021737B1 (en) * 2018-10-01 2020-05-07 Nutricia Nv Dietary fiber for treating patients suffering from methylmalonic acidemia and propionic acidemia
EP3646739A1 (en) 2018-11-01 2020-05-06 N.V. Nutricia Nutritional composition comprising urea and non-digestible oligosaccharides
US20220218804A1 (en) 2019-05-17 2022-07-14 N.V. Nutricia Composition comprising vitamin A and non digestible oligosaccharides
CN114727642A (en) 2019-08-16 2022-07-08 剑桥糖质科学有限公司 Methods of treating biomass to produce oligosaccharides and related compositions
EP4072318A2 (en) 2019-12-12 2022-10-19 Cambridge Glycoscience Ltd Low sugar multiphase foodstuffs

Citations (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US547952A (en) * 1895-10-15 Hayes
US2981629A (en) * 1960-04-05 1961-04-25 Lewis F Ginnette Process of dehydrating foams
US3956228A (en) * 1973-05-21 1976-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyester resin composition for powder coatings prepared from endomethylenetetrahydrophthalic acid
US4237118A (en) * 1972-03-06 1980-12-02 Howard Alan N Dietary supplement and dietary methods employing said supplement for the treatment of obesity
US4412946A (en) * 1980-09-19 1983-11-01 Roussel Uclaf Immunostimulating glycoproteins
US4438147A (en) * 1982-06-25 1984-03-20 Societe D'assistance Technique Pour Produits Nestle S.A. Foaming creamer and method of making same
US5292723A (en) * 1991-03-13 1994-03-08 Clintec Nutrition Company Liquid nutritional compositions comprising slowly absorbed glucides
US5374657A (en) * 1991-01-24 1994-12-20 Martek Corporation Microbial oil mixtures and uses thereof
US5444054A (en) * 1994-04-01 1995-08-22 Abbott Labatories Method of treating ulcerative colitis
US5502041A (en) * 1992-12-11 1996-03-26 The Center For Innovative Technology Potent inhibitor of HIV reverse transcriptase
US5531988A (en) * 1994-10-28 1996-07-02 Metagenics, Inc. Bacteria and immunoglobulin-containing composition for human gastrointestinal health
US5629040A (en) * 1993-11-10 1997-05-13 Lotte Co., Ltd. Low calorie chocolate
US5629023A (en) * 1991-12-31 1997-05-13 Bland; Jeffrey S. Medical food composition for metabolic detoxification
US5709888A (en) * 1990-10-30 1998-01-20 Abbott Laboratories High fat nutritional formula for infants and adults
US5733579A (en) * 1995-04-05 1998-03-31 Abbott Laboratories Oral rehydration solution containing indigestible oligosaccharides
US5744134A (en) * 1994-10-28 1998-04-28 Metagenics, Inc. Immunoglobulin and fiber-containing composition for human gastrointestinal health
US5773094A (en) * 1994-02-17 1998-06-30 Ksk Industrielackierungen Gmbh Curtain coating method and device for painting body parts of motor vehicles
US5776887A (en) * 1995-10-16 1998-07-07 Bristol-Myers Squibb Company Diabetic nutritional product having controlled absorption of carbohydrate
US5792754A (en) * 1995-08-04 1998-08-11 N.V. Nutricia Nutritional composition containing fibres
US5827526A (en) * 1995-07-11 1998-10-27 Abbott Laboratories Use of indigestible oligosaccharides to prevent gastrointestinal infections and reduce duration of diarrhea in humans
US5840361A (en) * 1997-04-09 1998-11-24 Beech-Nut Nutrition Corporation Fructan-containing baby food compositions and methods therefor
US5846569A (en) * 1997-06-20 1998-12-08 Creative Labs, Inc. Colostrum supplement
US5882648A (en) * 1988-12-26 1999-03-16 Masazumi Yoshihara Methods of disease inhibition using acid polysaccharides extracted from nutshells
US6051260A (en) * 1998-04-07 2000-04-18 Healthcomm International, Inc. Medical food composition of reduced allergenicity, especially adapted for improving gut mucosal integrity
US6197758B1 (en) * 1996-10-08 2001-03-06 Meiji Seika Kaisha, Ltd. Methods for supplying postgastrectomic mineral and methods for treating postgastrectomic syndrome
US6231889B1 (en) * 1998-09-21 2001-05-15 Chronorx, Llc Unit dosage forms for the treatment of herpes simplex
US6306908B1 (en) * 1997-02-21 2001-10-23 Abbott Laboratories Methods for reducing the incidence of necrotizing enterocolitis
US6337137B1 (en) * 1997-04-14 2002-01-08 Dsm N.V. Powder paint binder composition
US20020016289A1 (en) * 1995-06-01 2002-02-07 Orla M. Conneely Methods for treatment and prevention of helicobacter pylori infection using lactoferrin
US20020044988A1 (en) * 2000-08-22 2002-04-18 Fuchs Eileen C. Nutritional composition and method for improving protein deposition
US6426110B1 (en) * 2000-08-11 2002-07-30 Global Health Sciences, Inc. Low-carbohydrate high-protein creamer powder
US6451584B2 (en) * 1996-12-12 2002-09-17 Morinaga Milk Industry Co., Ltd. Lactobacillus bifidus growth promoting composition and use thereof
US6468987B1 (en) * 1994-04-01 2002-10-22 Abbott Laboratories Nutritional product for a person having ulcerative colitis
US20030022863A1 (en) * 2000-02-16 2003-01-30 Bernd Stahl Antiadhesive carbohydrates
US6576251B1 (en) * 1997-01-16 2003-06-10 N. V. Nutricia Carbohydrate mixture
US20030165604A1 (en) * 2001-02-15 2003-09-04 Kazufumi Tsubaki Products containing $g(b)-glucan
US6645543B2 (en) * 2000-12-13 2003-11-11 Novartis Nutrition Ag Infant formula with free amino acids and nucleotides
US6713113B2 (en) * 1999-08-03 2004-03-30 Nestec S.A. Foaming ingredient and powders containing it
US20040072791A1 (en) * 2000-11-22 2004-04-15 Markwart Kunz Method for producing pectin hydrolysis products
US6737089B2 (en) * 1999-08-27 2004-05-18 Morinda, Inc. Morinda citrifolia (Noni) enhanced animal food product
US20040122105A1 (en) * 2002-09-20 2004-06-24 Griscom Bettle Transdermal compositions
US6794495B1 (en) * 1998-10-19 2004-09-21 New Nordic Danmark Aps Composition comprising extensin and, optionally, pectic polysaccharides
US20040219188A1 (en) * 2003-05-02 2004-11-04 Comer Gail M. Composition and methods for nutritional management of patients with hepatic disease
US6846501B2 (en) * 2000-04-12 2005-01-25 Mid-America Commercialization Corporation Traditional snacks having balanced nutritional profiles
US6872416B2 (en) * 1999-01-28 2005-03-29 Nestec S.A. Aromatized soluble creamer powder
US6974841B1 (en) * 2002-09-27 2005-12-13 Rapisarda Family Irrevocable Trust Pet anti-aging wellness supplement
US20060110516A1 (en) * 2002-08-30 2006-05-25 Holtus Maria F Foaming ingredient and products containing the ingredient
US20070166446A1 (en) * 2004-02-13 2007-07-19 Roquette Freres Method for producing a gluten-based baked product
US20080015166A1 (en) * 2004-06-22 2008-01-17 N.V. Nutricia Barrier Integrity in Hiv Patients
US20080064656A1 (en) * 2004-06-22 2008-03-13 N,V, Nutricia Improvement of intestinal barrier integrity
US20080138435A1 (en) * 2005-04-21 2008-06-12 N.V. Nutricia Nutritional Supplement With Colostrum and Epa or Dha or Gla
US20080171720A1 (en) * 2005-04-21 2008-07-17 N.V. Nutricia Nutritional Supplement For Hiv Patients
US20080207559A1 (en) * 1998-08-11 2008-08-28 N.V. Nutricia Carbohydrates mixture
US20090082249A1 (en) * 2005-04-21 2009-03-26 N.V. Nutricia Nutritional supplement for a category of hiv patients
US20110077189A1 (en) * 2008-02-01 2011-03-31 N.V. Nutricia Composition for stimulating natural killer cell activity

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2033677A1 (en) 1970-07-07 1972-02-17 Deutsche Laevosan Gesellschaft C F Boehringer & Sohne GmbH & Co KG, Suddeutsche Zucker AG, 6800 Mannheim drug
JPS5342340A (en) 1976-09-29 1978-04-17 Shin Kobe Electric Machinery Method of producing battery plate
DE2844861A1 (en) 1978-10-14 1980-04-30 Kerstein Pharma Hameln Gmbh Dietetic food given orally or artificially - is enriched with chemically and/or enzymatically prepd. free fatty acid and mono:glyceride
US4859488A (en) 1987-09-15 1989-08-22 Kabushiki Kaisha Yakult Honsha Liquid food for curing constipation: polydextrose and oligosaccharide
DE3734962C1 (en) 1987-10-15 1989-01-05 Luitpold Werk Chem Pharm Use of chondroitin polysulfate for the preventive, soothing or curative treatment of AIDS and ARC
DE68904264T2 (en) 1988-08-24 1993-05-27 Akzo Nv FRAGMENTS AND FRACTIONS OF HEPARIN WITH EFFECT AGAINST HIV.
DE3901048A1 (en) 1989-01-14 1990-07-19 Chimicasa Gmbh ANTIKACHECTIKUM
JP2779963B2 (en) 1989-02-09 1998-07-23 株式会社林原生物化学研究所 Bifidobacterium growth promoter
JPH02286058A (en) 1989-04-28 1990-11-26 Nippon Synthetic Chem Ind Co Ltd:The Drug for controlling intestinal function
GB9109125D0 (en) 1991-04-27 1991-06-12 Cerestar Holding Bv Sweetening composition
IT1248060B (en) 1991-06-14 1995-01-05 Italfarmaco Spa ACILATED HEPARINS AS INHIBITORS OF RETROVIRUS REPLICATION
GB9116054D0 (en) 1991-07-24 1991-09-11 Efamol Holdings Preparation of fatty acid medicaments
CA2110993C (en) 1992-04-10 2002-02-05 Akihisa Takaichi Food composition for inhibiting the formation of an intestinal putrefactive product
CA2089607C (en) 1992-11-05 1997-11-04 Ranjit K. Chandra Nutritional supplement for the elderly
GB9304746D0 (en) 1993-03-09 1993-04-28 Scotia Holdings Plc Treatment of viral infections
US5472952A (en) 1993-03-18 1995-12-05 Bristol-Myers Squibb Company Partially hydrolyzed pectin in nutritional compositions
US5405637A (en) 1993-06-30 1995-04-11 Bristol-Myers Squibb Company Milk protein partial hydrolysate and infant formula containing same
GB9318611D0 (en) 1993-09-08 1993-10-27 Sandoz Nutrition Ltd Improvements in or relating to organic compounds
US5612320A (en) 1993-12-22 1997-03-18 Internutria, Inc. Therapeutic carbohydrate blends for treating and aiding premenstrual syndrome
WO1995026646A1 (en) 1994-04-01 1995-10-12 Abbott Laboratories Nutritional product for treatment of ulcerative colitis and use thereof
DE69520528T2 (en) 1994-06-14 2001-09-27 Raffinerie Tirlemontoise, S.A. Use of a composition containing inulin or oligofructose as an anti-cancer agent
JP3419897B2 (en) 1994-07-22 2003-06-23 明治乳業株式会社 Hypoallergenic formula
NL9401644A (en) 1994-10-06 1996-05-01 Friesland Brands Bv Food for pregnant and lactating women
EP0711503A3 (en) 1994-11-14 1997-11-26 Scotia Holdings Plc Milk fortified with GLA and/or DGLA
JPH08151328A (en) 1994-11-28 1996-06-11 Fuji Ratetsukusu Kk Lubricating agent for preventing infection of aids
IT1278166B1 (en) 1995-01-24 1997-11-17 Ars Ing Srl PROCESS FOR THE PREPARATION OF BIS (2-HYDROXYETHYL) TERAPHTHALATE
US6099871A (en) 1995-06-01 2000-08-08 Bristol-Myers Squibb Company Anti-regurgitation infant formula
JPH0965855A (en) 1995-08-28 1997-03-11 Otsuka Shokuhin Kk Low-caloric food material for controlling intestinal function
US5968365A (en) 1996-02-05 1999-10-19 Mcneil-Ppc, Inc. Preparation of inulin products
AUPN881396A0 (en) 1996-03-20 1996-04-18 Arnott's Biscuits Limited Enhancement of microbial colonization of the gastrointestinal tract
CA2205773A1 (en) 1996-06-21 1997-12-21 Kraft Foods, Inc. Creamy, thick, hot beverage foam
ES2184847T5 (en) 1996-07-31 2007-03-01 &quot;RAFFINERIE TIRLEMONTOISE&quot;, SOCIETE ANONYME LACTIC POWDERS CONTAINING FRUCTANE AND / OR POLYDEXTROSA, PROCEDURE FOR PREPARATION AND USE.
FR2751876B1 (en) * 1996-07-31 1998-12-31 Roc Sa USE OF AN OLIGOSACCHARIDE AS AN IMMUNOMODULATOR, DERMATO-COSMETIC COMPOSITION AND METHOD OF COSMETIC TREATMENT
FR2752381B1 (en) 1996-08-13 1998-11-06 Pierre Moreau AVIAN BIOTECHNOLOGY, BIOAVAILABLE MICRO NUTRIENTS. PREVENTION AND TREATMENT OF THE SPECIFIC PHYSIOPATHOLOGY OF DEGENESCENCE AND AGING DISEASES
JP3792309B2 (en) 1996-08-30 2006-07-05 サントリー株式会社 Process for producing unsaturated fatty acid-containing fats and oils
GB9619660D0 (en) 1996-09-20 1996-11-06 Scient Hospital Suppl Int Ltd Prevention of gastrointestinal damage
DE69719539D1 (en) 1996-11-05 2003-04-10 Wisconsin Alumni Res Found USE OF CONJUGATED LINOLIC ACID TO INCREASE THE ACTIVITY OF NATURAL KILLER LYMPHOCYTES
AUPO430496A0 (en) 1996-12-19 1997-01-23 Arnott's Biscuits Limited Prebiotics and probiotics
PT1598422E (en) 1997-04-11 2013-04-03 Abbott Lab Methods and compositions for synthesis of long chain polyunsaturated fatty acids in plants
DE19749122A1 (en) 1997-11-06 1999-06-10 Max Planck Gesellschaft Enzymes encoding nucleic acid molecules that have fructosyl transferase activity
GB9808579D0 (en) 1998-04-22 1998-06-24 Novartis Nutrition Ag Improvements in or relating to organic compounds
EP0958825A1 (en) 1998-05-18 1999-11-24 Tiense Suikerraffinaderij N.V. (Raffinerie Tirlemontoise S.A.) Synergistic composition of a non-digestible carbohydrate and an anti-cancer drug for use in the treatment of cancer
FR2781673B1 (en) 1998-07-28 2001-09-28 Univ Picardie USE OF A GLUCURONANE AS AN IMMUNOSTIMULATING AGENT, METHOD OF PREPARATION
US6569488B2 (en) 1998-08-27 2003-05-27 Barnard Stewart Silver Processes for making novel inulin products
DE19940011B4 (en) 1999-08-24 2009-04-02 Schütte/Reichel GbR (vertretungsberechtigte Gesellschafter: Irene Schütte Alginate preparation and their use
EP1062873A1 (en) 1999-12-13 2000-12-27 N.V. Nutricia Improved infant formula, protein hydrolysate for use in such an infant formula, and method for producing such a hydrolysate
US6596302B2 (en) 2000-04-13 2003-07-22 Abbott Laboratories Infant formulas containing long-chain polyunsaturated fatty acids and uses thereof
EP1155627A1 (en) 2000-05-18 2001-11-21 Belovo Eggs &amp; Egg Products Eggs with balanced lipid composition
DE10027050A1 (en) 2000-06-02 2001-12-13 Karim Balan Therapeutic composition containing alginate preparation and plant extract, useful e.g. for immunomodulation or treatment of gastrointestinal disorders, migraine, rheumatism or diabetes
EP1321527A4 (en) 2000-08-30 2004-08-11 Amano Enzyme Inc Method of elevating yield of oligosaccharides containing alpha-galactosyl and anti-candida compositions
US20050238655A1 (en) 2004-01-06 2005-10-27 Paul Stamets Antiviral activity from medicinal mushrooms
AU2002243267A1 (en) 2000-10-27 2002-06-24 Mannatech, Inc. Dietary supplement compositions
FI109602B (en) * 2001-01-25 2002-09-13 Valio Oy Probiotkombination
WO2002060283A2 (en) 2001-01-30 2002-08-08 Unilever N.V. Food product comprising protein coated gas microbubbles
EP1228694A1 (en) 2001-02-02 2002-08-07 Societe Des Produits Nestle S.A. Aromatizing agent
EP1243273A1 (en) 2001-03-22 2002-09-25 Societe Des Produits Nestle S.A. Composition comprising a prebiotic for decreasing infammatory process and abnormal activation of non-specific immune parameters
DE10136260B4 (en) 2001-07-25 2004-07-08 Südzucker AG Mannheim/Ochsenfurt Inulin in gelling agent compositions
NL1018832C2 (en) 2001-08-27 2003-03-03 Friesland Brands Bv Use of locust bean flour as a prebiotic for stimulating the growth of lactobacilli and/or streptococci in the intestinal flora and/or increasing the resistance of the intestinal flora to colonization by undesirable bacteria
KR100913587B1 (en) * 2001-09-26 2009-08-26 후지 니혼 세이토 코퍼레이션 Processes for producing inulin
JP2003146887A (en) 2001-11-07 2003-05-21 Gotoo Corporation:Kk Formulation and food and drink having nk cell- activating effect
WO2003093322A2 (en) 2002-04-30 2003-11-13 The Population Council, Inc. Carrageenan based antimicrobial compositions
US6623954B1 (en) 2002-05-28 2003-09-23 Neose Technologies, Inc. Process for removal of phosphorous from a dairy stream
AU2003247225A1 (en) 2002-06-19 2004-01-06 N.V. Nutricia Method and composition for treating or preventing catabolism or stimulating anabolism in a mammal undergoing metabolic stress
EP1374878A1 (en) * 2002-06-20 2004-01-02 N.V. Nutricia Method and composition for preventing or alleviating symptoms of malabsorption from the gastrointestinal tract
AU2002951270A0 (en) * 2002-09-06 2002-09-19 Vri Biomedical Ltd Probiotic Bacterium and Methods of Use
US20040087490A1 (en) 2002-09-20 2004-05-06 Troup John P. Nutritional compositions
GB0229015D0 (en) * 2002-12-12 2003-01-15 Novartis Nutrition Ag New Compound
ATE491348T1 (en) 2003-06-23 2011-01-15 Nestec Sa INFANT NUTRITIONAL PREPARATION OR FOLLOW-ON MILK
WO2004112509A2 (en) * 2003-06-23 2004-12-29 Nestec S.A. Nutritional formula for optimal gut barrier function
EP1491570A1 (en) 2003-06-25 2004-12-29 DSM IP Assets B.V. Powder coating composition for low temperature cure
AU2003904192A0 (en) 2003-08-11 2003-08-21 Adelaide Research and Innovaiton Pty Ltd Method for inhibiting bacterial colonisation
DE602004020809D1 (en) 2003-10-24 2009-06-04 Nutricia Nv Immunomodulatory oligosaccharides
EP2033529B1 (en) * 2003-10-24 2019-12-11 N.V. Nutricia Synbiotic composition for infants
EP1597978A1 (en) 2004-05-17 2005-11-23 Nutricia N.V. Synergism of GOS and polyfructose
JP2008505912A (en) 2004-07-07 2008-02-28 ザ ジェネラル ホスピタル コーポレーション Direct activation method of ATIII in whole blood and plasma
WO2006007676A1 (en) 2004-07-21 2006-01-26 Amazônia Fitomedicamentos Ltda. Combination of active fractions from the plants euphorbia tirucalli l and ficos carica l. and method of treating cancer and aids
JP4653465B2 (en) 2004-10-25 2011-03-16 泰信 小林 Method for promoting natural killer cell proliferation and culture composition used therefor
US20070036840A1 (en) 2005-07-27 2007-02-15 Jose Antonio Matji Tuduri Phosphorylated glucomannan polysaccharides containing 1-6 and 1-2 linkages increase weight gain in swine
BRPI0614915A2 (en) 2005-07-29 2011-04-19 Alcon Refractive Horizons Inc ophthalmic device lateral positioning system and associated methods
US20070231449A1 (en) 2006-03-30 2007-10-04 Nutracea Non-starchy rice bran polysaccharides

Patent Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US547952A (en) * 1895-10-15 Hayes
US2981629A (en) * 1960-04-05 1961-04-25 Lewis F Ginnette Process of dehydrating foams
US4237118A (en) * 1972-03-06 1980-12-02 Howard Alan N Dietary supplement and dietary methods employing said supplement for the treatment of obesity
US3956228A (en) * 1973-05-21 1976-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyester resin composition for powder coatings prepared from endomethylenetetrahydrophthalic acid
US4412946A (en) * 1980-09-19 1983-11-01 Roussel Uclaf Immunostimulating glycoproteins
US4438147A (en) * 1982-06-25 1984-03-20 Societe D'assistance Technique Pour Produits Nestle S.A. Foaming creamer and method of making same
US5882648A (en) * 1988-12-26 1999-03-16 Masazumi Yoshihara Methods of disease inhibition using acid polysaccharides extracted from nutshells
US5709888A (en) * 1990-10-30 1998-01-20 Abbott Laboratories High fat nutritional formula for infants and adults
US5374657A (en) * 1991-01-24 1994-12-20 Martek Corporation Microbial oil mixtures and uses thereof
US5292723A (en) * 1991-03-13 1994-03-08 Clintec Nutrition Company Liquid nutritional compositions comprising slowly absorbed glucides
US5629023A (en) * 1991-12-31 1997-05-13 Bland; Jeffrey S. Medical food composition for metabolic detoxification
US5502041A (en) * 1992-12-11 1996-03-26 The Center For Innovative Technology Potent inhibitor of HIV reverse transcriptase
US5629040A (en) * 1993-11-10 1997-05-13 Lotte Co., Ltd. Low calorie chocolate
US5773094A (en) * 1994-02-17 1998-06-30 Ksk Industrielackierungen Gmbh Curtain coating method and device for painting body parts of motor vehicles
US6468987B1 (en) * 1994-04-01 2002-10-22 Abbott Laboratories Nutritional product for a person having ulcerative colitis
US5444054A (en) * 1994-04-01 1995-08-22 Abbott Labatories Method of treating ulcerative colitis
US5744134A (en) * 1994-10-28 1998-04-28 Metagenics, Inc. Immunoglobulin and fiber-containing composition for human gastrointestinal health
US5531988A (en) * 1994-10-28 1996-07-02 Metagenics, Inc. Bacteria and immunoglobulin-containing composition for human gastrointestinal health
US5733579A (en) * 1995-04-05 1998-03-31 Abbott Laboratories Oral rehydration solution containing indigestible oligosaccharides
US20020016289A1 (en) * 1995-06-01 2002-02-07 Orla M. Conneely Methods for treatment and prevention of helicobacter pylori infection using lactoferrin
US5827526A (en) * 1995-07-11 1998-10-27 Abbott Laboratories Use of indigestible oligosaccharides to prevent gastrointestinal infections and reduce duration of diarrhea in humans
US5792754A (en) * 1995-08-04 1998-08-11 N.V. Nutricia Nutritional composition containing fibres
US5776887A (en) * 1995-10-16 1998-07-07 Bristol-Myers Squibb Company Diabetic nutritional product having controlled absorption of carbohydrate
US6197758B1 (en) * 1996-10-08 2001-03-06 Meiji Seika Kaisha, Ltd. Methods for supplying postgastrectomic mineral and methods for treating postgastrectomic syndrome
US6451584B2 (en) * 1996-12-12 2002-09-17 Morinaga Milk Industry Co., Ltd. Lactobacillus bifidus growth promoting composition and use thereof
US6576251B1 (en) * 1997-01-16 2003-06-10 N. V. Nutricia Carbohydrate mixture
US6306908B1 (en) * 1997-02-21 2001-10-23 Abbott Laboratories Methods for reducing the incidence of necrotizing enterocolitis
US5840361A (en) * 1997-04-09 1998-11-24 Beech-Nut Nutrition Corporation Fructan-containing baby food compositions and methods therefor
US6337137B1 (en) * 1997-04-14 2002-01-08 Dsm N.V. Powder paint binder composition
US5846569A (en) * 1997-06-20 1998-12-08 Creative Labs, Inc. Colostrum supplement
US6051260A (en) * 1998-04-07 2000-04-18 Healthcomm International, Inc. Medical food composition of reduced allergenicity, especially adapted for improving gut mucosal integrity
US20100016214A1 (en) * 1998-08-11 2010-01-21 N.V. Nutricia Carbohydrates mixture
US7601364B2 (en) * 1998-08-11 2009-10-13 N.V. Nutricia Carbohydrate mixtures
US20080207559A1 (en) * 1998-08-11 2008-08-28 N.V. Nutricia Carbohydrates mixture
US6231889B1 (en) * 1998-09-21 2001-05-15 Chronorx, Llc Unit dosage forms for the treatment of herpes simplex
US6632445B2 (en) * 1998-09-21 2003-10-14 Chronorx, Llc Unit dosage forms for the treatment of herpes simplex
US7351715B2 (en) * 1998-09-21 2008-04-01 Chronorx, Llc Unit dosage forms for the treatment of herpes simplex
US6794495B1 (en) * 1998-10-19 2004-09-21 New Nordic Danmark Aps Composition comprising extensin and, optionally, pectic polysaccharides
US6872416B2 (en) * 1999-01-28 2005-03-29 Nestec S.A. Aromatized soluble creamer powder
US6713113B2 (en) * 1999-08-03 2004-03-30 Nestec S.A. Foaming ingredient and powders containing it
US6737089B2 (en) * 1999-08-27 2004-05-18 Morinda, Inc. Morinda citrifolia (Noni) enhanced animal food product
US20030022863A1 (en) * 2000-02-16 2003-01-30 Bernd Stahl Antiadhesive carbohydrates
US6846501B2 (en) * 2000-04-12 2005-01-25 Mid-America Commercialization Corporation Traditional snacks having balanced nutritional profiles
US6426110B1 (en) * 2000-08-11 2002-07-30 Global Health Sciences, Inc. Low-carbohydrate high-protein creamer powder
US20020044988A1 (en) * 2000-08-22 2002-04-18 Fuchs Eileen C. Nutritional composition and method for improving protein deposition
US20040072791A1 (en) * 2000-11-22 2004-04-15 Markwart Kunz Method for producing pectin hydrolysis products
US7576070B2 (en) * 2000-11-22 2009-08-18 N.V. Nutricia Method for producing pectin hydrolysis products
US6645543B2 (en) * 2000-12-13 2003-11-11 Novartis Nutrition Ag Infant formula with free amino acids and nucleotides
US20030165604A1 (en) * 2001-02-15 2003-09-04 Kazufumi Tsubaki Products containing $g(b)-glucan
US20060110516A1 (en) * 2002-08-30 2006-05-25 Holtus Maria F Foaming ingredient and products containing the ingredient
US20040122105A1 (en) * 2002-09-20 2004-06-24 Griscom Bettle Transdermal compositions
US6974841B1 (en) * 2002-09-27 2005-12-13 Rapisarda Family Irrevocable Trust Pet anti-aging wellness supplement
US20040219188A1 (en) * 2003-05-02 2004-11-04 Comer Gail M. Composition and methods for nutritional management of patients with hepatic disease
US20070166446A1 (en) * 2004-02-13 2007-07-19 Roquette Freres Method for producing a gluten-based baked product
US20080064656A1 (en) * 2004-06-22 2008-03-13 N,V, Nutricia Improvement of intestinal barrier integrity
US20080015166A1 (en) * 2004-06-22 2008-01-17 N.V. Nutricia Barrier Integrity in Hiv Patients
US20100167982A1 (en) * 2004-06-22 2010-07-01 N.V. Nutricia Barrier integrity in hiv patients
US20080138435A1 (en) * 2005-04-21 2008-06-12 N.V. Nutricia Nutritional Supplement With Colostrum and Epa or Dha or Gla
US20080171720A1 (en) * 2005-04-21 2008-07-17 N.V. Nutricia Nutritional Supplement For Hiv Patients
US20090082249A1 (en) * 2005-04-21 2009-03-26 N.V. Nutricia Nutritional supplement for a category of hiv patients
US20110236500A1 (en) * 2005-04-21 2011-09-29 N.V. Nutricia Nutritional supplement with colostrum and epa or dha or gla
US20110077189A1 (en) * 2008-02-01 2011-03-31 N.V. Nutricia Composition for stimulating natural killer cell activity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bedell, G. N. et al., J. Clin. Invest., "Measurement of the Volume of Gas in the Gastrointestinal Tract. Values in Normal Subjects and Ambulatory Patients", March 1956, vol. 35, no.3, pp.336-345 *
Hallert, C. et al., Scand. J. Gastroenterol., "Ispaghula Husk May Relieve Gastrointestinal Symptoms in Ulcerative Colitis in Remission", 1991, vol. 26, no. 7, pp.747-750 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580295B2 (en) 1998-08-11 2013-11-12 N.V. Nutricia Carbohydrates mixture
US9763466B2 (en) 1998-08-11 2017-09-19 N.V. Nutricia Carbohydrates mixture
US20080207559A1 (en) * 1998-08-11 2008-08-28 N.V. Nutricia Carbohydrates mixture
US20100016214A1 (en) * 1998-08-11 2010-01-21 N.V. Nutricia Carbohydrates mixture
US8277836B2 (en) 1998-08-11 2012-10-02 N.V. Nutricia Carbohydrates mixture
US20060110516A1 (en) * 2002-08-30 2006-05-25 Holtus Maria F Foaming ingredient and products containing the ingredient
US10426791B2 (en) 2004-05-17 2019-10-01 N.V. Nutricia Synergism of GOS and polyfructose
US10499676B2 (en) 2004-06-06 2019-12-10 N.V. Nutricia Intestinal barrier integrity
US9084433B2 (en) 2004-06-06 2015-07-21 N. V. Nutricia Intestinal barrier integrity
US8252769B2 (en) 2004-06-22 2012-08-28 N. V. Nutricia Intestinal barrier integrity
US11076623B2 (en) 2004-06-22 2021-08-03 N.V. Nutricia Intestinal barrier integrity
US20100167982A1 (en) * 2004-06-22 2010-07-01 N.V. Nutricia Barrier integrity in hiv patients
US20080064656A1 (en) * 2004-06-22 2008-03-13 N,V, Nutricia Improvement of intestinal barrier integrity
US20110236500A1 (en) * 2005-04-21 2011-09-29 N.V. Nutricia Nutritional supplement with colostrum and epa or dha or gla
US20090082249A1 (en) * 2005-04-21 2009-03-26 N.V. Nutricia Nutritional supplement for a category of hiv patients
US20080171720A1 (en) * 2005-04-21 2008-07-17 N.V. Nutricia Nutritional Supplement For Hiv Patients
US20110223248A1 (en) * 2007-12-12 2011-09-15 Ritter Pharmaceuticals, Inc. Methods and compositions for treating lactose intolerance
US20110077189A1 (en) * 2008-02-01 2011-03-31 N.V. Nutricia Composition for stimulating natural killer cell activity
US8486668B2 (en) 2009-02-24 2013-07-16 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US8785160B2 (en) 2009-02-24 2014-07-22 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US9579340B2 (en) 2009-02-24 2017-02-28 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US9592248B2 (en) 2009-02-24 2017-03-14 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US8492124B2 (en) 2009-02-24 2013-07-23 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US9775860B2 (en) 2009-02-24 2017-10-03 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US9808481B2 (en) 2009-02-24 2017-11-07 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US20100215738A1 (en) * 2009-02-24 2010-08-26 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US20110236480A1 (en) * 2009-02-24 2011-09-29 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
US10086078B2 (en) 2010-03-29 2018-10-02 Ferring B.V. Fast dissolving pharmaceutical composition
US20180297728A1 (en) * 2010-03-29 2018-10-18 Ferring B.V. Fast dissolving pharmaceutical composition
US20150150798A1 (en) * 2010-03-29 2015-06-04 Ferring B.V. Fast dissolving pharmaceutical composition
US10512695B2 (en) 2010-03-29 2019-12-24 Ferring B.V. Fast dissolving pharmaceutical composition
US10023335B2 (en) * 2010-03-29 2018-07-17 Ferring B.V. Fast dissolving pharmaceutical composition
US11064722B2 (en) * 2016-06-10 2021-07-20 N.V. Nutricia Risk of allergy and nutrition to reduce that risk
EP3632221A4 (en) * 2017-05-23 2020-06-24 Beijing Ruiqianjing Science And Technology Development Co. Ltd. Composition for improving intestinal microecology and preventing chronic disease, balanced nutritious food, and application
EP3632222A4 (en) * 2017-05-23 2020-07-01 Beijing Ruiqianjing Science And Technology Development Co. Ltd. Anti-inflammatory composition for improving intestinal nutritional metabolism functions and intestinal microecology, food containing same, and application thereof

Also Published As

Publication number Publication date
PL2279672T3 (en) 2021-09-13
EP2266422A1 (en) 2010-12-29
EP1597978A1 (en) 2005-11-23
HUE046219T2 (en) 2020-02-28
ES2331935T3 (en) 2010-01-20
ES2757674T3 (en) 2020-04-29
ES2609300T3 (en) 2017-04-19
EP2279672B1 (en) 2021-03-10
DE602005016319D1 (en) 2009-10-08
JP5705400B2 (en) 2015-04-22
ES2583089T3 (en) 2016-09-19
CN102090560B (en) 2013-11-13
EP3892117A1 (en) 2021-10-13
CN102008036A (en) 2011-04-13
EP2279671B1 (en) 2016-10-05
CN102090559B (en) 2013-01-30
DK1685763T3 (en) 2009-01-12
EP2263478A1 (en) 2010-12-22
DK1927292T3 (en) 2009-12-21
EP1679980A1 (en) 2006-07-19
ATE440506T1 (en) 2009-09-15
SI1685763T2 (en) 2013-08-30
EP1927292A1 (en) 2008-06-04
CN1964638A (en) 2007-05-16
PL1679980T3 (en) 2016-11-30
CN1964638B (en) 2010-12-08
EP2279671A1 (en) 2011-02-02
PL2266422T3 (en) 2020-02-28
BRPI0511133A (en) 2007-11-27
EP1685763A1 (en) 2006-08-02
EP2266422B1 (en) 2019-08-21
SI1685763T1 (en) 2009-02-28
US20200023000A1 (en) 2020-01-23
EP1685763B1 (en) 2008-11-12
US20130210763A1 (en) 2013-08-15
CA2565421A1 (en) 2005-11-24
EP1685763B2 (en) 2013-06-05
AU2005244321B2 (en) 2010-08-19
DK2266422T3 (en) 2019-11-25
ATE413816T1 (en) 2008-11-15
RU2006144870A (en) 2008-06-27
NZ551249A (en) 2011-04-29
DK1685763T4 (en) 2013-08-05
PT1685763E (en) 2009-01-02
CN102008037A (en) 2011-04-13
ES2314826T3 (en) 2009-03-16
AU2010241530B2 (en) 2013-02-14
PL2279671T3 (en) 2017-06-30
CN102090559A (en) 2011-06-15
CY1109673T1 (en) 2014-08-13
DE602005010964D1 (en) 2008-12-24
AU2005244321A1 (en) 2005-11-24
WO2005110121A1 (en) 2005-11-24
CN102090560A (en) 2011-06-15
PL1685763T5 (en) 2013-10-31
US20180153923A1 (en) 2018-06-07
CN102008035A (en) 2011-04-13
JP2007538067A (en) 2007-12-27
AU2010241530A1 (en) 2010-12-09
CY1110425T1 (en) 2015-04-29
ES2874273T3 (en) 2021-11-04
RU2402929C2 (en) 2010-11-10
EP2263479A1 (en) 2010-12-22
SI1927292T1 (en) 2010-01-29
PL1685763T3 (en) 2009-03-31
JP2012087133A (en) 2012-05-10
PL1927292T3 (en) 2010-01-29
ES2314826T5 (en) 2013-10-17
NZ588306A (en) 2012-04-27
CA2565421C (en) 2014-07-15
EP1927292B1 (en) 2009-08-26
US20220125826A1 (en) 2022-04-28
EP1679980B1 (en) 2016-05-04
EP2279672A1 (en) 2011-02-02
PT1927292E (en) 2010-01-04
UA91678C2 (en) 2010-08-25
US10426791B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
US20220125826A1 (en) Synergism of GOS and polyfructose
RU2471375C2 (en) Paediatric mixture of food fibres
US20120058968A1 (en) Composition containing fermantable polysaccharides
WO2022122958A1 (en) Fibre mixture for young children

Legal Events

Date Code Title Description
AS Assignment

Owner name: N.V. NUTRICIA,NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPEELMANS, GELSKE;GOVERS, MARIA JOHANNA ADRIANA PETRONELLA;KNOL, JAN;AND OTHERS;REEL/FRAME:020390/0028

Effective date: 20070905

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION