US20090250281A1 - Snowmobile with a supercharged engine - Google Patents

Snowmobile with a supercharged engine Download PDF

Info

Publication number
US20090250281A1
US20090250281A1 US11/518,697 US51869706A US2009250281A1 US 20090250281 A1 US20090250281 A1 US 20090250281A1 US 51869706 A US51869706 A US 51869706A US 2009250281 A1 US2009250281 A1 US 2009250281A1
Authority
US
United States
Prior art keywords
heat exchanger
air
snow
ice
snowmobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/518,697
Inventor
Steven M. Weinzierl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/518,697 priority Critical patent/US20090250281A1/en
Publication of US20090250281A1 publication Critical patent/US20090250281A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M27/00Propulsion devices for sledges or the like
    • B62M27/02Propulsion devices for sledges or the like power driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M27/00Propulsion devices for sledges or the like
    • B62M27/02Propulsion devices for sledges or the like power driven
    • B62M2027/023Snow mobiles characterised by engine mounting arrangements

Definitions

  • the present invention relates to snowmobiles, and more particularly to snowmobiles with engines having air chargers such as exhaust-driven (turbo) or mechanical superchargers.
  • snowmobiles have been made small and light weight, yet have relatively powerful engines in order to appeal to the typical snowmobile driver. Because of the small size, the packaging of the components in a snowmobile is critical. However, due to its sporting nature, it is also desirable to have a snowmobile that is powered by an engine that is not only efficient and light weight, but also generates significant power for its size. So, traditionally, two cycle engines have been used to power snowmobiles. These engines have the advantage that they are powerful, yet relatively light weight and compact.
  • One particular disadvantage to the two cycle engine is its emissions—it generally exhausts more hydrocarbons and other pollutants than an equivalent four cycle engine due to cylinder charging inefficiencies and the combustion of lubricating oil, among other things. Also, the two cycle engine tends to operate at a relatively high noise level. With concern for the environment and increasing strict emissions requirements being instituted by governments, it is increasingly desirable to use four cycle engines with snowmobiles.
  • the present invention contemplates a snowmobile.
  • the snowmobile has a chassis that includes a track tunnel portion having a front end, with the front end of the tunnel portion including an intercooler opening, and a wall located adjacent to the front end of the track tunnel and the intercooler opening defining a snow/ice retention area.
  • a track is located within the tunnel portion, and an engine having an air intake assembly, an air charging system and an exhaust assembly, is mounted to the chassis.
  • the snowmobile also has an intercooler system including a heat exchanger being disposed adjacent to the intercooler opening and the wall, with the heat exchanger including a charge air inlet and a charge air outlet, and with the charge air inlet being in fluid communication with the air charging system and the charge air outlet being in fluid communication with the air intake assembly; and a screen covering the intercooler opening.
  • the present invention further contemplates a method of operating a snowmobile engine having an air charging assembly and an air intake assembly, the method comprising the steps of: compressing intake air in the air charging assembly; locating snow/ice on a first heat exchanger by providing a snow/ice retention area adjacent to the heat exchanger, and causing snow/ice to be propelled into the snow/ice retention area; passing an intercooler liquid through the first heat exchanger to thereby transfer heat to the snow/ice; passing the intercooler liquid through a second heat exchanger; passing the compressed intake air through the second heat exchanger to thereby transfer heat to the intercooler liquid; directing the compressed intake air into the air intake assembly; monitoring operating conditions of the engine; and injecting the intercooler liquid into the air intake assembly under a predetermined set of the operating conditions.
  • the present invention also contemplates a method of operating a snowmobile engine having an air charging assembly, an engine air intake assembly, the method comprising the steps of: compressing intake air in the air charging assembly; providing a snow/ice retention area adjacent to a heat exchanger; causing snow/ice to be propelled into the snow/ice retention area; passing ram air through the heat exchanger and the snow/ice; passing the compressed intake air through the heat exchanger to thereby transfer heat to the snow/ice; and directing the compressed intake air into the air intake assembly.
  • An advantage of an embodiment of the present invention is that a four stroke engine may be employed with a snowmobile, producing sufficient engine output, while remaining relatively small and light weight.
  • Another advantage of an embodiment of the present invention is that the charged air engine in the snowmobile need not require a premium grade of gasoline to operate properly.
  • a further advantage of an embodiment of the present invention is that the intercooler heat exchanger, by employing snow/ice to cool the charge air, is very efficient, allowing it to be relatively small and light weight. This efficiency also allows for minimum pressure loss in the charge air as it is being cooled in the heat exchanger, thus allowing for a relatively smaller size turbine in the air charger assembly while still providing sufficient pressure in the engine air intake. This allows for easier packaging of the components as well as reduced cost.
  • An added advantage of an embodiment of the present invention is that the engine cold start capability is improved since the engine will operate at higher compression ratios than would otherwise be possible with regular grade gasoline.
  • Another advantage of an embodiment of the present invention is that there is minimal turbo lag in the system since the total air volume in the engine system is kept to a minimum.
  • a further advantage of an embodiment of the present invention is that the intercooler system for the air charger is effective even during operation of the snowmobile under high engine load, low forward speed conditions, such as when climbing a hill.
  • An additional advantage of an embodiment of the present invention is that a portion of the intercooler liquid can be injected into the charge air, thus removing additional heat from the air charge.
  • FIG. 1 is a schematic side view of a snowmobile in accordance with the present invention
  • FIG. 2 is a schematic view of the snowmobile, including the engine and air charging system of the present invention.
  • FIG. 3 is a view similar to FIG. 2 , but illustrating an alternate embodiment of the present invention.
  • FIGS. 1-2 illustrate a snowmobile 20 , which includes a chassis 22 upon which is mounted a hood 24 and a seat 26 , with a windshield 25 between them.
  • a pair of front skis 28 (only one shown) are each connected to the chassis 22 via a front suspension 30 and are connected to a steering assembly 32 .
  • An engine 34 is mounted to the chassis under the hood 24 .
  • a rear portion of the chassis 22 forms a track tunnel 36 , which is generally located under the seat 26 .
  • the drive track 38 is a loop of rubber (or other suitable) material and includes paddle-like cleats 40 .
  • the drive track 38 is generally supported by a pair of rear idler wheels 42 , a front lower idler wheel 44 and a front drive wheel or sprocket 46 . Since the invention does not deal with the details of the suspension system for the front skis 28 or the drive track 38 , where any details of these suspension systems are discussed or shown, any conventional structure may be utilized as may be readily apparent to those skilled in the art.
  • a rubberized snow flap 47 which is mounted behind the drive track 38 in order to allow more snow/ice to be entrained in the tunnel 36 and moved toward an intercooler opening 48 .
  • the track tunnel 36 includes the intercooler opening 48 , at the front of the tunnel 36 and facing backwards toward the front of the drive track 38 .
  • the chassis 22 includes a lower wall portion 52 just forward of the opening 48 , forming a snow retention area 54 .
  • the size of the opening 48 , and the height of the wall 52 can be sized, as desired, to trap the appropriate amount of snow/ice in the retention area 54 .
  • the opening should be designed to prevent bridging, which can prevent the continued introduction of snow/ice to a heat exchanger 56 .
  • the tunnel heat exchanger 56 Located just forward of the opening 48 , and forming a bottom portion of the retention area 54 is the tunnel heat exchanger 56 —this forms part of an intercooler system 57 .
  • the heat exchanger 56 includes cooling fins, upon which snow/ice held in the retention area 54 falls.
  • the tunnel heat exchanger 56 is mounted to the chassis 22 , which are both usually made of aluminum.
  • the heat exchanger 56 includes an air inlet 58 and an air outlet 60 .
  • the heat exchanger 56 can be, for example, a plate-and-shell or an extruded-tube heat exchanger.
  • the passage size of its extruded tubes can be relatively large, thus minimizing the pressure loss in the charge air as it passes through the tubes, from the inlet 58 to the outlet 60 .
  • the chassis 22 also includes a ram air duct 64 located forward of the heat exchanger 56 . It has an opening facing forward and extends rearwardly to the heat exchanger 56 , creating a path for air flow to the heat exchanger 56 .
  • the engine 34 has an air intake manifold 66 , which is connected to the outlet 60 of the tunnel heat exchanger 56 , and an exhaust manifold 68 , which is connected to a turbine 72 in an air charging assembly 70 .
  • the air charging assembly 70 also includes a compressor 74 , which is connected to the air inlet 58 of the heat exchanger 56 .
  • the air charging assembly 70 illustrates a turbocharger, but as would be clear to one skilled in the art, a supercharger assembly may be employed instead.
  • the engine 34 will include some type of engine cooling system (not shown), which may employ, for example, air cooling or liquid cooling—but this system does not form part of the present invention, and can be conventional in nature, so it will not be discussed further herein.
  • the tunnel heat exchanger 56 acts as the primary intercooler element for cooling the charge air.
  • the heat exchanger 56 location is ideal since it is adjacent to the track 38 at a very good location for receiving snow/ice, and is also located close to the engine 34 , thus minimizing the volume of air in the system. Otherwise, the turbo-lag could increase dramatically.
  • the exhaust from the engine 34 will drive the air charging assembly 70 , causing intake air to be compressed and pushing the charged air through the heat exchanger 56 and into the engine intake manifold 66 .
  • the snowmobile 20 moves forward, some of the snow/ice caught in the grooves of the track 38 or on the track cleats 40 is inertially separated and thrown off as that particular portion of the track 56 engages the front drive wheel 46 . This is due to the abrupt change in track direction at that location.
  • the snow/ice is thrown toward the intercooler opening 48 because the opening 48 is intentionally located in the path of this snow/ice. So this snow/ice is propelled through the opening 48 and comes to rest in the retention area 54 on top of the heat exchanger 56 .
  • snow/ice When referring to snow/ice herein, this generally means water in its solid state, but it may also include some liquid water or water vapor, as the case may be, since it may be partially melted when initially entering the intercooler system, and of course will melt when absorbing heat from the charged air.
  • snow/ice means water mostly in its solid state, but also includes some liquid water and some water vapor.
  • the heat exchanger 56 is oriented to allow for a fall through (or drain through) type of flow. This means that, as the charge air flowing through the heat exchanger 56 gives off heat to the snow/ice resting on top, the snow/ice melts. The liquid water will flow down through the heat exchanger 56 , via the normal action of gravity, and continue to absorb heat until it falls out the bottom the heat exchanger 56 or vaporizes.
  • the ram air duct 64 allows air, indicated generally as 76 in FIG. 2 , to flow through the duct 64 and then through the heat exchanger 56 . This ram air duct 64 is optional, but will help to enhance evaporative cooling and keep the snow/ice piled on top of the heat exchanger 56 moving.
  • a moving blade (not shown) can be employed to keep the snow/ice in the retention area 54 moving and break it up.
  • the flap 62 which is optional, is. mounted against the heat exchanger 56 , and will retain some of the melted snow/ice that has melted and dropped through the tunnel heat exchanger. This water will then boil off as it absorbs additional heat.
  • the chassis 22 Since the heat exchanger 56 is directly mounted to the chassis 22 , and both are preferably made of aluminum, which is a good heat transfer material, the chassis 22 will also absorb some of the heat from the heat exchanger core 56 , further improving the overall efficiency of the system.
  • the efficiency of the intercooler is obtained due in part to the fact that water, when changing phase from a solid to a liquid or a vapor can absorb a very large amount of heat—significantly more heat than just air or water at ambient temperature.
  • the high heat transfer rate means that the heat exchanger core size can be minimized, while the charge air temperature is lowered substantially—even below ambient air temperature under certain conditions.
  • the tubes through which the charge air flows can be made less restrictive, thus minimizing the pressure drop across the heater core.
  • the charge air density is improved.
  • this allows for an increase in intake manifold pressure without serious predetonation (i.e. engine knock) concerns, which allows one to obtain even higher performance levels from the engine.
  • the tunnel heat exchanger 56 is a charge air-to-snow/ice heat exchanger, which acts directly as the charge air intercooler.
  • Other intercooler system configurations are possible where the tunnel heat exchanger 56 does not directly cool the charge air, as will be discussed in more detail below in regard to FIG. 3 .
  • FIG. 3 illustrates a second embodiment of the snowmobile 120 of the present invention.
  • elements that are the same as in the first embodiment will be designated with the same element numbers, but those that have changed or been added will be designated with 100 series numbers.
  • the charge air is not directly cooled by the tunnel heat exchanger 156 .
  • a secondary loop, an intercooler liquid loop 178 is added to improve the cooling performance of the intercooler system 157 under certain operating conditions.
  • This intercooler liquid loop 178 includes a liquid container 180 , which holds intercooler liquid 182 .
  • the intercooler liquid 182 is preferably an inexpensive, easily obtainable fluid, such as, for example, windshield washer fluid used with automotive vehicles. Although, if one prefers, other suitable liquids may be employed.
  • the container 180 is connected to a pump 184 , which, in turn, is in fluid communication with the inlet 158 to the tunnel heat exchanger 156 .
  • the outlet 160 to the tunnel heat exchanger 156 is in fluid communication with an inlet 185 to a charge air-to-liquid heat exchanger 186 , which, in turn, is in fluid communication with the liquid container 180 .
  • the pump 184 is also in fluid communication with the charge air output of the air charging assembly 170 , via an injector valve 187 .
  • the intercooler liquid 182 can be injected into the charge air in order to control engine knock under certain engine operating conditions.
  • the tunnel heat exchanger 156 is again mounted below a snow retention area 54 in front of an interfolding opening 48 , which is again at the front of the track tunnel 36 in front of the track 38 .
  • the tunnel heat exchanger 156 is a liquid-to-snow/ice heat exchanger, and acts as a secondary intercooler element, with the charge air-to-liquid heat exchanger 186 being the primary intercooler element.
  • the tunnel heat exchanger 156 employs the snow/ice to cool the liquid 182 , which, in turn, is employed to cool the charge air.
  • the compressor 174 of the air charging assembly 170 is connected to an air inlet of the heat exchanger 186 , and an outlet of the heat exchanger 186 is connected to the engine intake manifold 166 .
  • a wastegate 188 couples to the turbine 172 to allow for exhaust bypass of the turbine 172 if the pressure of the charge air is too high.
  • the wastegate 188 and the injector valve 187 are controlled by an engine control unit 190 , based upon inputs from an intercooler liquid level sensor 191 , a charge air temperature sensor 192 , and a knock sensor 193 , in addition to other conventional inputs to the engine control unit 190 .
  • the intercooler system 157 of the second embodiment is more complicated than that in the first embodiment, it provides advantages that allow for further enhancements to performance.
  • some of the intercooler liquid 182 can be metered into the intake manifold 166 in order to control the knock. If the level sensor 191 indicates that the liquid level is not sufficient to meter some into the intake, then the engine control unit 190 can limit some other engine function in order to prevent knock, instead of metering the liquid 182 into the air intake.
  • the thermal mass of the intercooler liquid 182 can be used to lower the charge air temperature under transient operation because the thermal mass can prevent a rapid rise of charge temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Supercharger (AREA)

Abstract

An air charging system for use with a vehicle includes a heat exchanger for cooling an air charge by melting a mass of snow/ice that is external to and in thermal communication with the heat exchanger.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This patent application is a continuation of U.S. patent application Ser. No. 10/715,296, filed Nov. 17, 2003, which is a continuation of U.S. Pat. No. 6,651,765, filed May 2, 2002, now U.S. Pat. No. 6,651,765, both of which are incorporated herein by reference.
  • BACKGROUND AND SUMMARY
  • The present invention relates to snowmobiles, and more particularly to snowmobiles with engines having air chargers such as exhaust-driven (turbo) or mechanical superchargers.
  • Conventionally, snowmobiles have been made small and light weight, yet have relatively powerful engines in order to appeal to the typical snowmobile driver. Because of the small size, the packaging of the components in a snowmobile is critical. However, due to its sporting nature, it is also desirable to have a snowmobile that is powered by an engine that is not only efficient and light weight, but also generates significant power for its size. So, traditionally, two cycle engines have been used to power snowmobiles. These engines have the advantage that they are powerful, yet relatively light weight and compact. One particular disadvantage to the two cycle engine is its emissions—it generally exhausts more hydrocarbons and other pollutants than an equivalent four cycle engine due to cylinder charging inefficiencies and the combustion of lubricating oil, among other things. Also, the two cycle engine tends to operate at a relatively high noise level. With concern for the environment and increasing strict emissions requirements being instituted by governments, it is increasingly desirable to use four cycle engines with snowmobiles.
  • But a naturally aspirated four cycle engine generally produces less specific output per liter of engine displacement than does a two cycle engine. It is not practical to merely increase the engine size due to the size and weight limitations present in packaging an engine in a snowmobile. Furthermore, the typical transmission employed in a snowmobile limits the upper end of the RPM range for the engine. To increase the output of a particular four cycle engine, then, one may wish to employ an air charging system, such as a turbocharger (exhaust driven compressor) or a supercharger (mechanically driven compressor). However, a conventional air charger will require the use of a higher grade of gasoline in order to avoid detonation and pre-ignition problems (i.e. engine knock), which can over time significantly reduce the useful life of an engine. This higher grade of gasoline is not always available to a snowmobile driver along the various trails that he may travel.
  • Thus, it is desirable to have a snowmobile that is powered by a four cycle engine which overcomes the drawbacks of limited engine output, while still remaining relatively small and light weight. In particular, it is desirable to have an air charging system that maximizes the engine output while not requiring a premium grade of gasoline.
  • In its embodiments, the present invention contemplates a snowmobile. The snowmobile has a chassis that includes a track tunnel portion having a front end, with the front end of the tunnel portion including an intercooler opening, and a wall located adjacent to the front end of the track tunnel and the intercooler opening defining a snow/ice retention area. A track is located within the tunnel portion, and an engine having an air intake assembly, an air charging system and an exhaust assembly, is mounted to the chassis. The snowmobile also has an intercooler system including a heat exchanger being disposed adjacent to the intercooler opening and the wall, with the heat exchanger including a charge air inlet and a charge air outlet, and with the charge air inlet being in fluid communication with the air charging system and the charge air outlet being in fluid communication with the air intake assembly; and a screen covering the intercooler opening.
  • The present invention further contemplates a method of operating a snowmobile engine having an air charging assembly and an air intake assembly, the method comprising the steps of: compressing intake air in the air charging assembly; locating snow/ice on a first heat exchanger by providing a snow/ice retention area adjacent to the heat exchanger, and causing snow/ice to be propelled into the snow/ice retention area; passing an intercooler liquid through the first heat exchanger to thereby transfer heat to the snow/ice; passing the intercooler liquid through a second heat exchanger; passing the compressed intake air through the second heat exchanger to thereby transfer heat to the intercooler liquid; directing the compressed intake air into the air intake assembly; monitoring operating conditions of the engine; and injecting the intercooler liquid into the air intake assembly under a predetermined set of the operating conditions.
  • In its embodiments, the present invention also contemplates a method of operating a snowmobile engine having an air charging assembly, an engine air intake assembly, the method comprising the steps of: compressing intake air in the air charging assembly; providing a snow/ice retention area adjacent to a heat exchanger; causing snow/ice to be propelled into the snow/ice retention area; passing ram air through the heat exchanger and the snow/ice; passing the compressed intake air through the heat exchanger to thereby transfer heat to the snow/ice; and directing the compressed intake air into the air intake assembly.
  • An advantage of an embodiment of the present invention is that a four stroke engine may be employed with a snowmobile, producing sufficient engine output, while remaining relatively small and light weight.
  • Another advantage of an embodiment of the present invention is that the charged air engine in the snowmobile need not require a premium grade of gasoline to operate properly.
  • A further advantage of an embodiment of the present invention is that the intercooler heat exchanger, by employing snow/ice to cool the charge air, is very efficient, allowing it to be relatively small and light weight. This efficiency also allows for minimum pressure loss in the charge air as it is being cooled in the heat exchanger, thus allowing for a relatively smaller size turbine in the air charger assembly while still providing sufficient pressure in the engine air intake. This allows for easier packaging of the components as well as reduced cost.
  • An added advantage of an embodiment of the present invention is that the engine cold start capability is improved since the engine will operate at higher compression ratios than would otherwise be possible with regular grade gasoline.
  • Another advantage of an embodiment of the present invention is that there is minimal turbo lag in the system since the total air volume in the engine system is kept to a minimum.
  • A further advantage of an embodiment of the present invention is that the intercooler system for the air charger is effective even during operation of the snowmobile under high engine load, low forward speed conditions, such as when climbing a hill.
  • An additional advantage of an embodiment of the present invention is that a portion of the intercooler liquid can be injected into the charge air, thus removing additional heat from the air charge.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic side view of a snowmobile in accordance with the present invention;
  • FIG. 2 is a schematic view of the snowmobile, including the engine and air charging system of the present invention; and
  • FIG. 3 is a view similar to FIG. 2, but illustrating an alternate embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-2 illustrate a snowmobile 20, which includes a chassis 22 upon which is mounted a hood 24 and a seat 26, with a windshield 25 between them. A pair of front skis 28 (only one shown) are each connected to the chassis 22 via a front suspension 30 and are connected to a steering assembly 32. An engine 34 is mounted to the chassis under the hood 24. A rear portion of the chassis 22 forms a track tunnel 36, which is generally located under the seat 26.
  • Within the track tunnel 36 is mounted a drive track 38. The drive track 38 is a loop of rubber (or other suitable) material and includes paddle-like cleats 40. The drive track 38 is generally supported by a pair of rear idler wheels 42, a front lower idler wheel 44 and a front drive wheel or sprocket 46. Since the invention does not deal with the details of the suspension system for the front skis 28 or the drive track 38, where any details of these suspension systems are discussed or shown, any conventional structure may be utilized as may be readily apparent to those skilled in the art. Preferably, there is a rubberized snow flap 47, which is mounted behind the drive track 38 in order to allow more snow/ice to be entrained in the tunnel 36 and moved toward an intercooler opening 48.
  • The track tunnel 36 includes the intercooler opening 48, at the front of the tunnel 36 and facing backwards toward the front of the drive track 38. There is preferably a screen 50 covering the opening 48 in order to keep unwanted debris from entering the opening 48. The chassis 22 includes a lower wall portion 52 just forward of the opening 48, forming a snow retention area 54. The size of the opening 48, and the height of the wall 52 can be sized, as desired, to trap the appropriate amount of snow/ice in the retention area 54. Preferably, the opening should be designed to prevent bridging, which can prevent the continued introduction of snow/ice to a heat exchanger 56.
  • Located just forward of the opening 48, and forming a bottom portion of the retention area 54 is the tunnel heat exchanger 56—this forms part of an intercooler system 57. The heat exchanger 56 includes cooling fins, upon which snow/ice held in the retention area 54 falls. The tunnel heat exchanger 56 is mounted to the chassis 22, which are both usually made of aluminum. The heat exchanger 56 includes an air inlet 58 and an air outlet 60. The heat exchanger 56 can be, for example, a plate-and-shell or an extruded-tube heat exchanger. The later is preferred, and, since, as will be discussed below, the heat transfer is very efficient, the passage size of its extruded tubes can be relatively large, thus minimizing the pressure loss in the charge air as it passes through the tubes, from the inlet 58 to the outlet 60. There is a flap 62, located on the forward underside of the heat exchanger 56.
  • The chassis 22 also includes a ram air duct 64 located forward of the heat exchanger 56. It has an opening facing forward and extends rearwardly to the heat exchanger 56, creating a path for air flow to the heat exchanger 56.
  • The engine 34 has an air intake manifold 66, which is connected to the outlet 60 of the tunnel heat exchanger 56, and an exhaust manifold 68, which is connected to a turbine 72 in an air charging assembly 70. The air charging assembly 70 also includes a compressor 74, which is connected to the air inlet 58 of the heat exchanger 56. The air charging assembly 70 illustrates a turbocharger, but as would be clear to one skilled in the art, a supercharger assembly may be employed instead. The engine 34 will include some type of engine cooling system (not shown), which may employ, for example, air cooling or liquid cooling—but this system does not form part of the present invention, and can be conventional in nature, so it will not be discussed further herein.
  • In this embodiment, the tunnel heat exchanger 56 acts as the primary intercooler element for cooling the charge air. One will note that the heat exchanger 56 location is ideal since it is adjacent to the track 38 at a very good location for receiving snow/ice, and is also located close to the engine 34, thus minimizing the volume of air in the system. Otherwise, the turbo-lag could increase dramatically.
  • The operation of the snowmobile 20 will now be described. When the engine 34 is started, the exhaust from the engine 34 will drive the air charging assembly 70, causing intake air to be compressed and pushing the charged air through the heat exchanger 56 and into the engine intake manifold 66. As the snowmobile 20 moves forward, some of the snow/ice caught in the grooves of the track 38 or on the track cleats 40 is inertially separated and thrown off as that particular portion of the track 56 engages the front drive wheel 46. This is due to the abrupt change in track direction at that location. The snow/ice is thrown toward the intercooler opening 48 because the opening 48 is intentionally located in the path of this snow/ice. So this snow/ice is propelled through the opening 48 and comes to rest in the retention area 54 on top of the heat exchanger 56.
  • When referring to snow/ice herein, this generally means water in its solid state, but it may also include some liquid water or water vapor, as the case may be, since it may be partially melted when initially entering the intercooler system, and of course will melt when absorbing heat from the charged air. Thus, the term snow/ice means water mostly in its solid state, but also includes some liquid water and some water vapor.
  • The heat exchanger 56 is oriented to allow for a fall through (or drain through) type of flow. This means that, as the charge air flowing through the heat exchanger 56 gives off heat to the snow/ice resting on top, the snow/ice melts. The liquid water will flow down through the heat exchanger 56, via the normal action of gravity, and continue to absorb heat until it falls out the bottom the heat exchanger 56 or vaporizes. The ram air duct 64 allows air, indicated generally as 76 in FIG. 2, to flow through the duct 64 and then through the heat exchanger 56. This ram air duct 64 is optional, but will help to enhance evaporative cooling and keep the snow/ice piled on top of the heat exchanger 56 moving. In the alternative, a moving blade (not shown) can be employed to keep the snow/ice in the retention area 54 moving and break it up. The flap 62, which is optional, is. mounted against the heat exchanger 56, and will retain some of the melted snow/ice that has melted and dropped through the tunnel heat exchanger. This water will then boil off as it absorbs additional heat.
  • Since the heat exchanger 56 is directly mounted to the chassis 22, and both are preferably made of aluminum, which is a good heat transfer material, the chassis 22 will also absorb some of the heat from the heat exchanger core 56, further improving the overall efficiency of the system.
  • When the intake air is compressed, by the air charging system 70, its temperature increases. But, since hot air contains less energy-providing oxygen by volume than cooler air, it will produce less power. A cooler charge of air is denser and can be mixed with more fuel to increase engine output. Additionally, cooler charge air reduces the tendency for engine detonation (spontaneous combustion). Thus, an effective intercooler can greatly improve the engine output.
  • The efficiency of the intercooler is obtained due in part to the fact that water, when changing phase from a solid to a liquid or a vapor can absorb a very large amount of heat—significantly more heat than just air or water at ambient temperature. The high heat transfer rate means that the heat exchanger core size can be minimized, while the charge air temperature is lowered substantially—even below ambient air temperature under certain conditions. With the very efficient cooling, the tubes through which the charge air flows can be made less restrictive, thus minimizing the pressure drop across the heater core. By minimizing the pressure loss, the charge air density is improved. Further, by significantly cooling the charge air, this allows for an increase in intake manifold pressure without serious predetonation (i.e. engine knock) concerns, which allows one to obtain even higher performance levels from the engine.
  • In the first embodiment, the tunnel heat exchanger 56 is a charge air-to-snow/ice heat exchanger, which acts directly as the charge air intercooler. Other intercooler system configurations are possible where the tunnel heat exchanger 56 does not directly cool the charge air, as will be discussed in more detail below in regard to FIG. 3.
  • FIG. 3 illustrates a second embodiment of the snowmobile 120 of the present invention. In this embodiment, elements that are the same as in the first embodiment will be designated with the same element numbers, but those that have changed or been added will be designated with 100 series numbers.
  • In this embodiment, the charge air is not directly cooled by the tunnel heat exchanger 156. A secondary loop, an intercooler liquid loop 178, is added to improve the cooling performance of the intercooler system 157 under certain operating conditions. This intercooler liquid loop 178 includes a liquid container 180, which holds intercooler liquid 182. The intercooler liquid 182 is preferably an inexpensive, easily obtainable fluid, such as, for example, windshield washer fluid used with automotive vehicles. Although, if one prefers, other suitable liquids may be employed. The container 180 is connected to a pump 184, which, in turn, is in fluid communication with the inlet 158 to the tunnel heat exchanger 156. The outlet 160 to the tunnel heat exchanger 156 is in fluid communication with an inlet 185 to a charge air-to-liquid heat exchanger 186, which, in turn, is in fluid communication with the liquid container 180.
  • The pump 184 is also in fluid communication with the charge air output of the air charging assembly 170, via an injector valve 187. The intercooler liquid 182 can be injected into the charge air in order to control engine knock under certain engine operating conditions.
  • The tunnel heat exchanger 156 is again mounted below a snow retention area 54 in front of an interfolding opening 48, which is again at the front of the track tunnel 36 in front of the track 38. But, in this second embodiment, the tunnel heat exchanger 156 is a liquid-to-snow/ice heat exchanger, and acts as a secondary intercooler element, with the charge air-to-liquid heat exchanger 186 being the primary intercooler element. Thus, the tunnel heat exchanger 156 employs the snow/ice to cool the liquid 182, which, in turn, is employed to cool the charge air.
  • The compressor 174 of the air charging assembly 170 is connected to an air inlet of the heat exchanger 186, and an outlet of the heat exchanger 186 is connected to the engine intake manifold 166. A wastegate 188 couples to the turbine 172 to allow for exhaust bypass of the turbine 172 if the pressure of the charge air is too high. The wastegate 188 and the injector valve 187 are controlled by an engine control unit 190, based upon inputs from an intercooler liquid level sensor 191, a charge air temperature sensor 192, and a knock sensor 193, in addition to other conventional inputs to the engine control unit 190.
  • While the intercooler system 157 of the second embodiment is more complicated than that in the first embodiment, it provides advantages that allow for further enhancements to performance. Under limited engine operating conditions, such as for transient operation, when engine knock is more difficult to control, as is indicated by the knock sensor 193 detecting engine knock, some of the intercooler liquid 182 can be metered into the intake manifold 166 in order to control the knock. If the level sensor 191 indicates that the liquid level is not sufficient to meter some into the intake, then the engine control unit 190 can limit some other engine function in order to prevent knock, instead of metering the liquid 182 into the air intake. Further, the thermal mass of the intercooler liquid 182 can be used to lower the charge air temperature under transient operation because the thermal mass can prevent a rapid rise of charge temperature.
  • While certain embodiments of the present invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention as defined by the following claims.

Claims (15)

1. An air charging system for use with a snowmobile engine, the snowmobile engine being mounted for propelling a snowmobile over a snow/ice covered terrain, the system comprising:
a first heat exchanger for cooling an air charge, an efficiency of the first heat exchanger being enhanced by the first heat exchanger being disposed on a snowmobile such that the first heat exchanger cools the air charge by means of latent heat including at least the heat of fusion required to melt a mass of snow/ice that is separate from the air charge, and that is in thermal communication with the first heat exchanger, the efficiency of the first heat exchanger being further enhanced by conduction, the first heat exchanger thermally conductive material being mounted to a thermally conductive structure of the snowmobile such that heat is conducted from the first heat exchanger thermally conductive material to the snowmobile thermally conductive structure; and
a second heat exchanger operating in cooperation with the first heat exchanger to cool the air charge, the second heat exchanger including a liquid reservoir for holding a volume of liquid, the reservoir being in fluid communication with the second heat exchanger for convectively cooling the air charge in the second heat exchanger.
2. The air charging system of claim 1, including the first heat exchanger being in thermal communication with a mass of snow/ice communicated to the first heat exchanger by the snowmobile from a snow/ice covered terrain.
3. The air charging system of claim 2, including the efficiency of the first heat exchanger being further enhanced by the latent heat of vaporization of entrained water being in thermal communication with the first heat exchanger and being vaporized thereby.
4. The air charging system of claim 1, including the efficiency of the first heat exchanger being further enhanced by convective heat exchange by means of a volume of ram air being moved over the first heat exchanger.
5. The air charging system of claim 1, wherein the mass of snow/ice is external to the first heat exchanger.
6. The air charging system of claim 1, further comprising a knock sensor coupled to the snowmobile engine and an injector valve for selectively injecting liquid from the liquid reservoir into the air charge based on an output from the knock sensor.
7. The air charging system of claim 6, further comprising a liquid level sensor to determine the amount of liquid in the liquid reservoir.
8-13. (canceled)
14. An air charging system for use with a snowmobile, the system comprising a heat exchanger for cooling an air charge by melting a mass of snow/ice that is external to and in thermal communication with the heat exchanger.
15. The air charging system of claim 14, further including a second heat exchanger including a liquid reservoir for holding a volume of liquid and operating in cooperation with the heat exchanger to cool the air charge.
16. The air charging system of claim 14, further including a snowmobile thermally conductive structure such that heat is conducted from the heat exchanger to the snowmobile thermally conductive structure.
17. The air charging system of claim 14, wherein the heat exchanger includes:
an air charge inlet receiving the air charge to be cooled;
an air pathway in fluid communication with the air charge inlet; and
a snow/ice receiving surface exterior to the air pathway and air charge inlet, the snow/ice receiving surface providing for the collection of snow/ice thereon to allow heat transfer from the heat exchanger to the snow/ice.
18. The air charging system of claim 17, wherein the snow/ice receiving surface defines a wall of a snow/ice retention area.
19. The air charging system of claim 17, wherein the snow/ice receiving surface is disposed within a snow/ice retention area.
20. The air charging system of claim 19, wherein the snow/ice retention area includes a snow/ice inlet positioned to receive snow/ice via a track tunnel of the snowmobile.
US11/518,697 2002-05-02 2006-09-11 Snowmobile with a supercharged engine Abandoned US20090250281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/518,697 US20090250281A1 (en) 2002-05-02 2006-09-11 Snowmobile with a supercharged engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/136,113 US6651765B1 (en) 2002-05-02 2002-05-02 Snowmobile with a supercharged engine
US10/715,296 US7104352B2 (en) 2002-05-02 2003-11-17 Intercooler system and method for a snowmobile with a supercharged engine
US11/518,697 US20090250281A1 (en) 2002-05-02 2006-09-11 Snowmobile with a supercharged engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/715,296 Continuation US7104352B2 (en) 2002-05-02 2003-11-17 Intercooler system and method for a snowmobile with a supercharged engine

Publications (1)

Publication Number Publication Date
US20090250281A1 true US20090250281A1 (en) 2009-10-08

Family

ID=29268879

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/136,113 Expired - Lifetime US6651765B1 (en) 2002-05-02 2002-05-02 Snowmobile with a supercharged engine
US10/715,296 Expired - Lifetime US7104352B2 (en) 2002-05-02 2003-11-17 Intercooler system and method for a snowmobile with a supercharged engine
US11/518,697 Abandoned US20090250281A1 (en) 2002-05-02 2006-09-11 Snowmobile with a supercharged engine

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/136,113 Expired - Lifetime US6651765B1 (en) 2002-05-02 2002-05-02 Snowmobile with a supercharged engine
US10/715,296 Expired - Lifetime US7104352B2 (en) 2002-05-02 2003-11-17 Intercooler system and method for a snowmobile with a supercharged engine

Country Status (1)

Country Link
US (3) US6651765B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229702A3 (en) * 2018-05-31 2020-02-13 Bombardier Recreational Products Inc. Exhaust system for an engine
US10865700B2 (en) 2017-07-10 2020-12-15 Bombardier Recreational Products Inc. Air intake and exhaust systems for a snowmobile engine
US11255231B2 (en) 2017-08-15 2022-02-22 Arctic Cat, Inc. Pressurized oil system powered by two-stroke engine
US11255248B2 (en) 2017-08-15 2022-02-22 Arctic Cat Inc. Snowmobile having a parallel-path exhaust system for two-stroke engine

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357543B1 (en) * 1998-12-31 2002-03-19 Formula Fast Racing Snowmobile construction
US6966395B2 (en) * 2000-11-13 2005-11-22 Bombardier Recreational Products Inc. Snowmobile with a turbocharged four-stroke engine
US6651765B1 (en) * 2002-05-02 2003-11-25 Steven M. Weinzierl Snowmobile with a supercharged engine
US6929081B2 (en) * 2002-08-13 2005-08-16 Brp-Rotax Gmbh & Co. Kg Engine arrangement for a four cycle engine
JP4063122B2 (en) * 2003-03-28 2008-03-19 スズキ株式会社 Snow vehicle
JP2005264823A (en) * 2004-03-18 2005-09-29 Suzuki Motor Corp Snowmobile with intercooler
US7168998B1 (en) 2004-08-03 2007-01-30 Accessible Technologies, Inc. Personal watercraft forced air induction system
US20060229811A1 (en) * 2005-04-12 2006-10-12 Herman Daren W Vehicle navigation system
US7255068B2 (en) * 2005-12-28 2007-08-14 Yamaha Hatsudoki Kabushiki Kaisha Cooling arrangement for a snow vehicle engine
US20080098998A1 (en) * 2006-10-30 2008-05-01 Dicke Paul A Engine mounted air-to-air aftercooler
US7913785B2 (en) * 2008-03-31 2011-03-29 Brp Finland Oy Snowmobile cooling system
US8333072B2 (en) 2008-10-01 2012-12-18 Honda Motor Co., Ltd. Wastegate control system and method
JP5907693B2 (en) * 2011-03-14 2016-04-26 株式会社ニフコ Movable assist device
JP5923298B2 (en) * 2011-03-14 2016-05-24 株式会社ニフコ ACCESSORY AND MOBILE BODY ASSISTING DEVICE PROVIDED WITH THE RECEIVER
CN104755729A (en) * 2012-09-12 2015-07-01 沃尔沃拉斯特瓦格纳公司 Apparatus and method for knock control
US9561830B2 (en) 2012-10-31 2017-02-07 Bombardier Recreational Products Inc. Backrest for a straddle-seat vehicle
US9205717B2 (en) 2012-11-07 2015-12-08 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11209286B2 (en) 2013-02-26 2021-12-28 Polaris Industies Inc. Recreational vehicle interactive telemetry, mapping and trip planning system
BR112015020500A2 (en) 2013-02-26 2017-07-18 Polaris Inc methods for facilitating the use of a vehicle, meter for off-road vehicle, interactive system for use in connection with the use of passenger vehicles, and application incorporated into computer readable media
CA2959261A1 (en) 2014-09-09 2016-03-17 Bombardier Recreational Products Inc. Heat exchanger for a snowmobile engine air intake
RU2675303C2 (en) 2014-09-09 2018-12-18 Бомбардье Рекриэйшенел Продактс Инк. Heat exchanger for snowmobile
CA3226026A1 (en) 2014-10-31 2016-05-06 Polaris Industries Inc. System and method for controlling a vehicle
MX2018009169A (en) 2016-02-10 2018-11-29 Polaris Inc Recreational vehicle group management system.
CN116176201A (en) 2016-11-18 2023-05-30 北极星工业有限公司 Vehicle with adjustable suspension
US10406884B2 (en) 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
US10987987B2 (en) 2018-11-21 2021-04-27 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
US11904648B2 (en) 2020-07-17 2024-02-20 Polaris Industries Inc. Adjustable suspensions and vehicle operation for off-road recreational vehicles

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835948A (en) * 1972-12-15 1974-09-17 Hvp Inc Liquid cooling system for use on snowmobiles
US4008777A (en) * 1974-10-23 1977-02-22 Yamaha, Hatsudoki Kabushiki Kaisha Compact snowmobile
US4249626A (en) * 1977-09-14 1981-02-10 Kawasaki Motors Corp. U.S.A. Liquid cooling system
US4317439A (en) * 1979-08-24 1982-03-02 The Garrett Corporation Cooling system
US4337733A (en) * 1980-04-28 1982-07-06 Kawasaki Jukogyo Kabushiki Kaisha Cooling liquid temperature control system for internal combustion engine
US4340123A (en) * 1979-06-13 1982-07-20 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for cooling an engine
US4480439A (en) * 1981-01-16 1984-11-06 Nissan Motor Company, Limited Supply-air cooling system for an engine including a turbocharger
US4546742A (en) * 1984-01-23 1985-10-15 Borg-Warner Corporation Temperature control system for internal combustion engine
US4563983A (en) * 1984-02-07 1986-01-14 Nissan Motor Co., Ltd. Intercooler arrangement for supercharged internal combustion engine
US4660532A (en) * 1982-01-13 1987-04-28 Klockner-Humboldt-Deutz Aktiengesellschaft Supercharged internal combustion engine with heat exchanger for the combustion air
US5129473A (en) * 1990-12-18 1992-07-14 Yamaha Hatsudoki Kabushiki Kaisha Fan/radiator combination for snowmobile with liquid cooled engine
US5152255A (en) * 1991-01-16 1992-10-06 Yamaha Hatsudoki Kabushiki Kaisha Engine cooling system for snowmobile
US5167294A (en) * 1991-08-22 1992-12-01 Raymond Gessinger Auxiliary liquid cooling system for use on snowmobile
US5232066A (en) * 1992-03-03 1993-08-03 Schnelker Irwin W Snowmobile cooler protector
US5277266A (en) * 1992-02-21 1994-01-11 Jay Robinson Snow tiller to help cool the engine and lubricate the track of a snowmobile
US5316079A (en) * 1993-02-12 1994-05-31 Paccar Inc Integrated heat exchanger
US5394854A (en) * 1991-05-06 1995-03-07 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Cooling system for a supercharged internal-combustion engine
US5568840A (en) * 1994-09-26 1996-10-29 Honda Giken Kogyo Kabushiki Kaisha Step floor for a small snowmobile
US5862662A (en) * 1996-01-22 1999-01-26 Yamaha Hatsudoki Kabushiki Kaisha Engine exhaust system including internal expansion chambers around the exhaust branch pipes
US5950432A (en) * 1994-05-02 1999-09-14 Dresser Industries, Inc. Turbocharger control management system
US5957230A (en) * 1996-01-22 1999-09-28 Yamaha Hatsudoki Kabushiki Kaisha Cooling system for snowmobile engine
US5992552A (en) * 1996-01-22 1999-11-30 Yamaha Hatsudoki Kabushiki Kaisha Vehicle frame
US6006540A (en) * 1998-08-03 1999-12-28 Ford Global Technologies, Inc. Charge air management system for automotive engine
US6021764A (en) * 1997-01-31 2000-02-08 Suzuki Motor Corporation Air intake structure for an engine with a supercharger
US6109217A (en) * 1998-12-30 2000-08-29 Polaris Industries Inc. Snowmobile with improved cooling system
US6301887B1 (en) * 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
US20010044244A1 (en) * 2000-02-29 2001-11-22 Rudolf Tscherne Four stroke engine with cooling system
US20020027029A1 (en) * 2000-09-06 2002-03-07 Yasuaki Yatagai Snowmobile four-cycle engine arrangement
US20020084125A1 (en) * 2000-11-13 2002-07-04 Bruno Scheumacher Snowmobile with a turbocharged four-stroke engine
US20020129984A1 (en) * 1998-12-23 2002-09-19 Jerome Wubbolts Snowmobile frame
US20020157619A1 (en) * 2001-02-27 2002-10-31 Gray Clint D. J. Method of operating a dual fuel internal
US20030164233A1 (en) * 2002-02-19 2003-09-04 Wu Alan K. Low profile finned heat exchanger
US6651765B1 (en) * 2002-05-02 2003-11-25 Steven M. Weinzierl Snowmobile with a supercharged engine
US6681724B1 (en) * 2001-12-20 2004-01-27 Polaris Industries Inc. Snowmobile cooling system
US6748934B2 (en) * 2001-11-15 2004-06-15 Ford Global Technologies, Llc Engine charge air conditioning system with multiple intercoolers

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835948A (en) * 1972-12-15 1974-09-17 Hvp Inc Liquid cooling system for use on snowmobiles
US4008777A (en) * 1974-10-23 1977-02-22 Yamaha, Hatsudoki Kabushiki Kaisha Compact snowmobile
US4249626A (en) * 1977-09-14 1981-02-10 Kawasaki Motors Corp. U.S.A. Liquid cooling system
US4340123A (en) * 1979-06-13 1982-07-20 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for cooling an engine
US4317439A (en) * 1979-08-24 1982-03-02 The Garrett Corporation Cooling system
US4337733A (en) * 1980-04-28 1982-07-06 Kawasaki Jukogyo Kabushiki Kaisha Cooling liquid temperature control system for internal combustion engine
US4480439A (en) * 1981-01-16 1984-11-06 Nissan Motor Company, Limited Supply-air cooling system for an engine including a turbocharger
US4660532A (en) * 1982-01-13 1987-04-28 Klockner-Humboldt-Deutz Aktiengesellschaft Supercharged internal combustion engine with heat exchanger for the combustion air
US4546742A (en) * 1984-01-23 1985-10-15 Borg-Warner Corporation Temperature control system for internal combustion engine
US4563983A (en) * 1984-02-07 1986-01-14 Nissan Motor Co., Ltd. Intercooler arrangement for supercharged internal combustion engine
US5129473A (en) * 1990-12-18 1992-07-14 Yamaha Hatsudoki Kabushiki Kaisha Fan/radiator combination for snowmobile with liquid cooled engine
US5152255A (en) * 1991-01-16 1992-10-06 Yamaha Hatsudoki Kabushiki Kaisha Engine cooling system for snowmobile
US5394854A (en) * 1991-05-06 1995-03-07 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Cooling system for a supercharged internal-combustion engine
US5167294A (en) * 1991-08-22 1992-12-01 Raymond Gessinger Auxiliary liquid cooling system for use on snowmobile
US5277266A (en) * 1992-02-21 1994-01-11 Jay Robinson Snow tiller to help cool the engine and lubricate the track of a snowmobile
US5232066A (en) * 1992-03-03 1993-08-03 Schnelker Irwin W Snowmobile cooler protector
US5316079A (en) * 1993-02-12 1994-05-31 Paccar Inc Integrated heat exchanger
US5950432A (en) * 1994-05-02 1999-09-14 Dresser Industries, Inc. Turbocharger control management system
US5568840A (en) * 1994-09-26 1996-10-29 Honda Giken Kogyo Kabushiki Kaisha Step floor for a small snowmobile
US5862662A (en) * 1996-01-22 1999-01-26 Yamaha Hatsudoki Kabushiki Kaisha Engine exhaust system including internal expansion chambers around the exhaust branch pipes
US5992552A (en) * 1996-01-22 1999-11-30 Yamaha Hatsudoki Kabushiki Kaisha Vehicle frame
US5957230A (en) * 1996-01-22 1999-09-28 Yamaha Hatsudoki Kabushiki Kaisha Cooling system for snowmobile engine
US6021764A (en) * 1997-01-31 2000-02-08 Suzuki Motor Corporation Air intake structure for an engine with a supercharger
US6006540A (en) * 1998-08-03 1999-12-28 Ford Global Technologies, Inc. Charge air management system for automotive engine
US20020129984A1 (en) * 1998-12-23 2002-09-19 Jerome Wubbolts Snowmobile frame
US6109217A (en) * 1998-12-30 2000-08-29 Polaris Industries Inc. Snowmobile with improved cooling system
US20010044244A1 (en) * 2000-02-29 2001-11-22 Rudolf Tscherne Four stroke engine with cooling system
US6301887B1 (en) * 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
US6561297B2 (en) * 2000-09-06 2003-05-13 Suzuki Motor Corporation Snowmobile four-cycle engine arrangement
US20020027029A1 (en) * 2000-09-06 2002-03-07 Yasuaki Yatagai Snowmobile four-cycle engine arrangement
US7198127B2 (en) * 2000-09-06 2007-04-03 Suzuki Motor Corporation Snowmobile four-cycle engine arrangement
US20020084125A1 (en) * 2000-11-13 2002-07-04 Bruno Scheumacher Snowmobile with a turbocharged four-stroke engine
US6966395B2 (en) * 2000-11-13 2005-11-22 Bombardier Recreational Products Inc. Snowmobile with a turbocharged four-stroke engine
US20020157619A1 (en) * 2001-02-27 2002-10-31 Gray Clint D. J. Method of operating a dual fuel internal
US6748934B2 (en) * 2001-11-15 2004-06-15 Ford Global Technologies, Llc Engine charge air conditioning system with multiple intercoolers
US6681724B1 (en) * 2001-12-20 2004-01-27 Polaris Industries Inc. Snowmobile cooling system
US20030164233A1 (en) * 2002-02-19 2003-09-04 Wu Alan K. Low profile finned heat exchanger
US6651765B1 (en) * 2002-05-02 2003-11-25 Steven M. Weinzierl Snowmobile with a supercharged engine
US7104352B2 (en) * 2002-05-02 2006-09-12 Polaris Industries, Inc. Intercooler system and method for a snowmobile with a supercharged engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10865700B2 (en) 2017-07-10 2020-12-15 Bombardier Recreational Products Inc. Air intake and exhaust systems for a snowmobile engine
US11802506B2 (en) 2017-07-10 2023-10-31 Bombardier Recreational Products Inc. Air intake and exhaust systems for a snowmobile engine
US11255231B2 (en) 2017-08-15 2022-02-22 Arctic Cat, Inc. Pressurized oil system powered by two-stroke engine
US11255248B2 (en) 2017-08-15 2022-02-22 Arctic Cat Inc. Snowmobile having a parallel-path exhaust system for two-stroke engine
US11668226B2 (en) 2017-08-15 2023-06-06 Arctic Cat Inc. Snowmobile having a parallel-path exhaust system for two-stroke engine
US11702965B2 (en) 2017-08-15 2023-07-18 Arctic Cat Inc. Pressurized oil system powered by two-stroke engine
US12055076B2 (en) 2017-08-15 2024-08-06 Arctic Cat Inc. Pressurized oil system powered by two-stroke engine
US12092005B2 (en) 2017-08-15 2024-09-17 Arctic Cat Inc. Snowmobile having a parallel-path exhaust system for two-stroke engine
WO2019229702A3 (en) * 2018-05-31 2020-02-13 Bombardier Recreational Products Inc. Exhaust system for an engine
US11598250B2 (en) 2018-05-31 2023-03-07 Brp-Rotax Gmbh & Co. Kg Exhaust system for an engine

Also Published As

Publication number Publication date
US6651765B1 (en) 2003-11-25
US20040238252A1 (en) 2004-12-02
US7104352B2 (en) 2006-09-12
US20030205423A1 (en) 2003-11-06

Similar Documents

Publication Publication Date Title
US20090250281A1 (en) Snowmobile with a supercharged engine
US20210054778A1 (en) Air intake and exhaust systems for a snowmobile engine
US7980076B2 (en) Controlled condensate collection and evacuation for charge air cooler
CA2356599C (en) Snowmobile four-cycle engine arrangement
RU139865U1 (en) MOTOR SYSTEM AND CONDENSATE COOLING SYSTEM
CN104454133B (en) Motorcycle
US8061135B2 (en) Condensate extractor for charge air cooler systems
US6848528B2 (en) Lubrication system for a four cycle engine
US10766573B2 (en) Heat exchanger for a snowmobile engine air intake
CN110023607A (en) Thermal management system and thermal management method for internal combustion engine
US6379411B1 (en) Two stroke engine exhaust emissions separator
US20010027890A1 (en) Off-road vehicle
CN108331660A (en) System and method for charge air cooler deicing
JP2001012243A (en) Water cooling device for drive device on snow mobile
JP3632255B2 (en) Exhaust gas recirculation device for engine with mechanical supercharger
JPS5833379B2 (en) Exhaust system for two-wheeled vehicles with cubicle gears
JPH08312475A (en) Suction system for engine with mechanism super charger
CA2496716C (en) A snowmobile engine arrangement having an improved heat exchanger configuration
JPS60192823A (en) Inter-cooler for engine associated with supercharger
CN107503867A (en) Cold direct-injection petrol engine assembly during supercharging is integrated
CN207377684U (en) Cold direct-injection petrol engine assembly during supercharging is integrated
JPH09317480A (en) Intercooler for turbocharged engine
Battaglia et al. UB Approach to a Diesel Powered Snowmobile
WO2024156903A2 (en) System and method for managing temperature in an engine of a vehicle
CN118030271A (en) Engine device and automobile

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION