US20090129956A1 - Compressor System and Method of Lubricating the Compressor System - Google Patents

Compressor System and Method of Lubricating the Compressor System Download PDF

Info

Publication number
US20090129956A1
US20090129956A1 US11/947,145 US94714507A US2009129956A1 US 20090129956 A1 US20090129956 A1 US 20090129956A1 US 94714507 A US94714507 A US 94714507A US 2009129956 A1 US2009129956 A1 US 2009129956A1
Authority
US
United States
Prior art keywords
compressor
lubricant
gearbox
oil circuit
gear pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/947,145
Inventor
Jean-Louis Picouet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copeland Industrial LP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/947,145 priority Critical patent/US20090129956A1/en
Assigned to VILTER MANUFACTURING LLC reassignment VILTER MANUFACTURING LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PICOUET, JEAN-LOUIS
Publication of US20090129956A1 publication Critical patent/US20090129956A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates generally to compressors and compressor components, and, more particularly, to systems and methods for providing lubrication to such compressors and compressor components.
  • the present invention relates to systems and methods for providing lubrication to compressors having internal gearboxes.
  • Compressors are used, for example, in compression systems (e.g., refrigeration systems) to compress gas, such as “halocarbon”, ammonia, natural gas, or the like.
  • gas such as “halocarbon”, ammonia, natural gas, or the like.
  • compressors employ a wide variety of components in operational association with one another. When the compressor is operated, many of these components contact each other such that surfaces of the components rub, and/or wear against each other. Therefore, it is necessary to provide the compressor components with lubrication.
  • the components are not adequately lubricated, numerous undesirable conditions can be encountered. For example, shifting, sliding, abrading, of rotating components, as well as other components that are in “intimate” contact with each other, can subject such components to wear and tear due to friction. As such, without adequate lubrication, friction tends to inhibit, or potentially prevent altogether, relative movement of the components. Abrasion of non-lubricated, or sparsely lubricated, components in intimate engagement or contact can cause surfaces of the components to become scored, pitted, gouged, or otherwise damaged.
  • one or more pumps are used within a compressor system. Although sufficient in many respects, such pumps may not be adequate in at least some circumstances. For example, in the event of a pump becoming inoperative, the flow of lubricant to the portions of the compressor system lubricated by that pump is obstructed. Additionally, if unobserved, substantial damage to certain compressor components can potentially occur and can thus affect the overall functioning of the compressor system. It would therefore be advantageous if a system that continuously provided lubrication to the various components of the compressor is developed and more specifically, if such continuous lubrication was not impeded or obstructed upon a pump or similar mechanism used with or within the compressor system becoming inoperative.
  • a compressor system in accordance with one aspect of the invention, includes: (i) a compressor oil circuit in operable association with a compressor for compressing fluids, (ii) a gear pump in operable association with a gearbox, wherein the gearbox comprises a plurality of gears mounted on a gear shaft for driving the compressor, and (iii) a lubrication system including at least two lubricant feeds for carrying lubricant to the compressor and the gearbox from a lubricant source. Also provided is a connection line connecting the compressor and the gearbox for transferring lubricant from the compressor oil circuit to the gear pump and/or from the gear pump to the compressor oil circuit.
  • a method of lubricating the compressor system includes providing a compressor, a gearbox having a plurality of gears, a compressor oil circuit, a gear pump and a lubrication system comprising a lubricant source and at least two lubricant feeds.
  • the method further includes providing a connection line between the compressor and the gearbox for transferring lubricant from the compressor oil circuit to the gear pump and/or from the gear pump to the compressor oil circuit.
  • the method additionally includes transferring lubricant from the lubricant source via the at least two lubricant feeds to the compressor and the gearbox.
  • a compressor system in combination with a lubrication system is provided.
  • the compressor system further includes a rotary screw compressor and a gearbox in operational association with the compressor, while the lubrication system for lubricating the compressor system includes a lubricant source and at least two lubricant feeds for transferring lubricant from the lubricant source to the compressor and the gearbox.
  • a connection line connecting the gearbox and the compressor for transferring lubricant from the compressor oil circuit to the gear pump and/or from the gear pump to the compressor oil circuit.
  • FIG. 1 is a schematic top view, partly in cross-section with portions broken away, of an exemplary compressor system employing a rotary screw compressor, a gearbox and a lubrication system in accordance with at least some embodiments of the present invention
  • FIG. 2 is a schematic top view, partly in cross-section with portions broken away, of the compressor system of FIG. 1 , further including an additional pump positioned in a first location with respect to the compressor system, in accordance with at least some embodiments of the present invention.
  • FIG. 3 is a schematic top view, partly in cross-section with portions broken away, of the compressor system of FIG. 1 , and further including an additional pump positioned in a second location with respect to the compressor system, in accordance with at least some embodiments of the present invention.
  • FIGS. 1 , 2 and 3 top views, partly in cross-section and with portions broken away, of a compressor system 2 are shown in accordance with at least some embodiments of the present invention.
  • the compressor system 2 employs a compressor 4 , as shown a rotary screw compressor, a gearbox 6 and a lubrication system 8 .
  • FIGS. 1-3 illustrate use of a rotary screw compressor
  • this invention is nevertheless contemplated for use with a wide variety of compressors other than a rotary screw compressor.
  • rotary piston compressors, rotary vane compressors and scroll compressors can be used in other embodiments.
  • compressors other than those mentioned above, including non-rotary-type compressors can be used as well and such use is contemplated and considered within the scope of the present invention.
  • the compressor 4 includes a compressor housing 10 , and a plurality of compressor components within the compressor housing in operable association with another (explained below).
  • the compressor housing 10 houses a single cylindrical main rotor 12 in intermeshing arrangement with first and second cylindrical star rotors (also referred herein as gate rotors and star-shaped rotors) 14 and 16 , respectively.
  • the main rotor 12 is mounted for rotation on a main rotor shaft 18 , that is rotatably supported at opposite ends on compressor bearing assemblies 20 within a cylindrical bore 22 .
  • the main rotor 12 further includes a plurality of helical grooves formed thereon, which in association with the star rotors 14 and 16 define compression chambers.
  • each of the first and the second star rotors 14 and 16 are located diametrically opposite (i.e., 180 degrees apart) the main rotor 12 .
  • the star rotors 14 and 16 further include a plurality of gear teeth 24 , such that rotation of the star rotors about an axis perpendicular to and spaced from an axis of rotation of the main rotor 12 causes the gear teeth of the star rotors to successively engage a helical groove of the main rotor.
  • Each of the star rotors 14 and 16 is additionally mounted for rotation on gate rotor shafts 26 and 26 a, respectively, within spaces 28 and 28 a, respectively, defined within the compressor housing 10 .
  • the gate rotor shafts 26 and 26 a are further supported on opposite ends by bearing assemblies (not shown).
  • the compressor housing 10 is provided with one gas suction port and with two gas discharge ports (one near each star rotor).
  • Two dual slide valve assemblies can additionally be provided on the compressor housing 10 (one assembly near each gate rotor) wherein each slide valve assembly comprises a suction slide valve (also referred to as a “capacity slide valve”) and a discharge slide valve (also referred to as a “volume slide valve”) for controlling the associated suction port and the associated discharge port, respectively.
  • the slide valves can additionally be employed for accomplishing loading and unloading of the compressor by controlling admission and discharge of gas into and from the compression chambers, described above.
  • U.S. Pat. Nos. 4,610,612, 4,610,613, 4,704,069 the teachings and disclosures of which are incorporated herein in their entireties, are assigned to the same assignee as the present application, and disclose a slide-valve assembly described above,
  • gas is drawn in through the gas suction port and is routed through the compression chambers for compression therewithin.
  • compression of the gas is achieved by rotation of the star rotors 14 and 16 in synchronism with the main rotor 12 causing the gear teeth 24 of the star rotors to intermesh with the helical grooves of the main rotor.
  • the volume of the gas is reduced, thereby achieving compression of the gas.
  • the compressed gas from each associated compression chamber then exits through its associated discharge port.
  • compressors for compressing gas e.g., rotary screw compressors
  • the gearbox 6 for driving various components of the compressor 4 including the main rotor 12 and the star rotors 14 and 16 .
  • the gearbox 6 includes a gearbox housing 30 mounted within the compressor housing 10 by way of a plurality of gearbox bearings 32 .
  • the gearbox 6 is integrally mounted within the compressor housing 10 .
  • the gearbox 6 itself is typically driven by way of one motor (not shown) present either within the compressor housing 10 or otherwise located external to the compressor housing and connected to the gearbox. Additionally, the type of motor(s) for driving the gearbox can vary.
  • the gearbox further includes a plurality of intermeshing gear 34 mounted on a gear shaft 36 and gear 34 a mounted on the main rotor shaft 18 .
  • the gear shaft 36 can drive the plurality of gears 34 , which in turn drive the gears 34 a.
  • the gears 34 a further drive the main rotor shaft 18 for transmitting power from the motor to the various components of the compressor 4 (e.g., the main rotor 12 and the star rotors 14 and 16 ).
  • the present invention employs a gear pump 40 .
  • the gear pump 40 is a conventional type of pump that is commonly available and frequently employed in compressor systems.
  • the gear pump 40 is mounted within the compressor housing 10 for encouraging lubricant flow from the lubrication system 8 and injecting such lubricant to the various portions of the compressor 4 and the gearbox 6 .
  • the gear pump 40 is mounted as described herein, in at least some other embodiments of the present invention, the location of the compressor and the gear pumps can vary to convenience.
  • a lubricant source 42 capable of providing a supply of lubricant for lubricating the compressor system 2 is provided within the lubrication system.
  • the lubricant source 42 is an oil sump, capable of storing and supplying a lubricant.
  • the lubricant source 42 can be an oil tank, a lubricant supply line or possibly even storage containers storing a fixed quantity of lubricant.
  • the lubricant can be any of a wide variety of lubricants that are commonly employed for lubricating compressors and gearboxes and/or used for reducing friction between various contacting components.
  • the lubricant can be compressor oil, lubricating oil and the like.
  • a plurality of lubricant feeds extending from the lubricant source 42 and supplying lubricant to the compressor system 2 .
  • at least some embodiments of the present invention employ a first lubricant feed 44 extending up to the gear pump 40 , and a second lubricant feed 46 extending to the compressor 4 .
  • each of the lubricant feeds 44 and 46 can be any of a conduit, a pipe or a member for carrying lubricant to the gearbox 6 and the compressor 4 , respectively.
  • lubricant can flow from the lubricant source 42 to the compressor 4 and the gearbox 6 through the lubricant feeds on activation of the associated pump for providing lubrication thereto.
  • lubricant from the first and the second lubricant feeds 44 and 46 is distributed to various portions of the gearbox 6 and the compressor.
  • lubricant can be provided to the gear bearings 32 , and the plurality of gears 34 and 34 a (including the gear shaft 36 ) as shown by communication links 48 and 50 , respectively.
  • the communication links 48 and 50 are not shown to extend to all the gear bearings 32 and the gears 34 and 34 a, it is nevertheless contemplated that lubricant be provided to all gear bearings, all gears and, additionally, all other components within the gearbox in close contact with one another.
  • lubricant from the second lubricant feed 46 to the compressor 4 can be injected into the compressor 4 for providing lubrication to various components of the compressor.
  • lubricant from the lubricant feed 46 is distributed to the compressor components by way of an oil circuit 38 .
  • the oil circuit 38 is typically internal to the compressor housing 10 , and further includes a plurality of communication links for transporting lubricant within the compressor 4 .
  • lubricant can be provided to the compressor bearing assemblies 20 and shafts (e.g., main rotor shaft 18 and star rotor shafts 26 and 26 a ), respectively.
  • shafts e.g., main rotor shaft 18 and gate rotor shafts 26 and 26 a
  • other components in close and intimate contact with one another.
  • lubricant can typically be supplied to the compression chambers to provide point seal 56 at points (as shown by exemplary communication link 54 ), where the main rotor 12 meshes with the star rotors 14 and 16 , and with the compressor housing 10 to thereby effectively seal the chambers against gas leakage during gas compression. Seal points other than those shown within the compressor system 2 can be provided. Additionally, as shown by the communication link 58 , lubricant to the seal point 56 a is provided by the gear pump 40 . Nevertheless, in other embodiments, such seal points can be supplied with lubricant from the compressor 4 (e.g., by the oil circuit 38 ) as well.
  • Lubricant can additionally be provided to various components of the motor(s) employed for driving the gearbox 6 . Subsequent to lubricating the various components of the compressor 4 and the gearbox 6 via lubricant flowing through the first and the second lubricant feeds 44 and 46 , respectively, the lubricant is discharged from the discharge ports, recovered and re-circulated. Recovering of the lubricant is well known in the art and therefore, not explained here.
  • the gear pump 40 is driven by the main rotor shaft 18 for providing power to the pump for pumping lubricant from the lubricant source 42 through the lubricant feeds 44 and 46 , and injecting and supplying lubricant from the lubricant feeds to the various components of the compressor system 2 .
  • the gear pump 40 becomes inoperative, the lubricant flow to the gearbox 6 and the seal points 56 a can be disrupted.
  • the second lubricant feed 46 becoming inoperative, lubrication to various components of the compressor 4 can be disrupted. If unnoticed, such obstruction can cause severe damage to the components of the compressor system 2 and can significantly reduce the overall performance of the compressor system.
  • an additional lubricant feed 60 (also referred herein as oil connection, connection line, and oil line) connecting the first and the second lubricant feeds 44 and 46 , respectively, is provided in the present invention.
  • the connection line 60 extends from the gear pump 40 to the compressor 4 (and, particularly to the oil circuit 38 ).
  • the connection line 60 can be provided from any point of the first lubricant feed 44 to any point of the second lubricant feed 46 .
  • lubricant can be fed from the compressor 4 to the gearbox 6 and vice versa.
  • connection line 60 can be any of a conduit, pipe or a member for supplying lubricant. Additionally, the connection line 60 is capable of transferring the lubricant from the compressor 4 to the gearbox 6 and/or from the gearbox to the compressor when the gear pump 40 is inoperative. Additionally, the connection line 60 is capable of transferring the lubricant from the compressor 4 to the gearbox 6 and/or from the gearbox to the compressor when the second lubricant feed 46 supplying lubricant to the compressor oil circuit 38 is inoperative.
  • connection line 60 serves to ensure, and further enhance lubrication during, for example, start up and operation of the compressor system 2 .
  • connection line 60 can be located internally within the compressor housing 10 or potentially external to the compressor housing.
  • the first and the second lubricant feeds 44 and 46 can be positioned either internal or external to the compressor housing 10 .
  • the lubricant feeds including the first the second lubricant feeds 44 and 46 , respectively, and the connection line 60 , can be used as a retrofit to the compressor system 2 .
  • Replacement and maintenance of the lubricant feeds can be simplified by providing the lubricant feed assembly exterior to the compressor housing.
  • externally located lubricant feeds are more prone to damage and breakage. Leakage from broken or ruptured feeds is significantly reduced by providing the feeds internal to the compressor housing 10 . Therefore, depending upon the embodiment, the lubricant feeds can be located either internal or external to the compressor system 2 .
  • an auxiliary and/or secondary pump 62 can be used in the compressor system 2 for providing an additional pumping of the lubricant during poor lubricant flow.
  • the secondary pump 62 can be used in conjunction with the gear pump 40 .
  • the secondary pump 62 can be any of a wide variety of pumps that are commonly available and frequently employed in compressor systems.
  • the location of the secondary pump 62 within the compressor system 2 can vary. For example, as shown in FIG. 2 , the secondary pump 62 can be positioned in close proximity to the compressor 4 . In other embodiments, the secondary pump 62 can be positioned at any point on the second lubricant feed 46 .
  • a similar secondary pump can also be positioned adjacent the gear pump 40 and/or the first lubricant feed 44 .
  • a secondary pump can be provided at the originating point of the first and the second lubricant feeds 44 and 46 , respectively, (e.g., close to the lubricant source 42 ), as can be seen in FIG. 3 .
  • FIG. 3 provides an alternate configuration of the lubricant feeds 44 and 46 , in which a single lubricant feed from the lubricant source 42 can later be divided into two separate lubricant feeds headed towards the compressor 4 (e.g., to the oil circuit 38 ) and the gear pump 40 .
  • a single lubricant feed e.g., first lubricant feed to the gear pump and second lubricant feed to the compressor
  • a plurality of lubricant feeds can be provided.
  • multiple connection lines connecting the compressor 4 and the gearbox 6 can be provided in alternate embodiments for transferring lubricant from the compressor to the gearbox and vice-versa in the event of the gear pump 40 or the second lubricant feed 46 becoming inoperative.
  • the lubricant feeds need not be present within the compressor housing, but can rather be located external to the compressor housing.
  • the gearbox need not be integral but can otherwise be external to the compressor housing.
  • the shape, size, type and number of the various components within the compressor system 2 can vary in alternate embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A compressor system comprising a compressor (e.g., rotary screw compressor) a gearbox and a lubrication system for providing lubrication to the compressor and the gearbox is disclosed. The compressor and the gearbox are provided in operational association with one another within a compressor housing. The compressor system further comprises a gear pump for lubricating the gearbox and a compressor oil circuit for lubricating the compressor from a lubricant source within the lubrication system. The lubrication system further includes at least two lubricant feeds, with one feed connecting the gear pump and one feed connecting the compressor oil circuit. Upon activation of the gear pump and/or the compressor oil circuit, lubricant from the lubricant source is encouraged to flow through the associated lubricant feed for distribution to the associated portion of the compressor system. An additional connection line connecting the gear pump and the compressor oil circuit is provided to continuously provide lubrication to associated portions upon the gear pump or the lubricant feed connecting the compressor oil circuit becomes inoperative.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of pending U.S. Provisional Patent Application No. 60/989,527 filed Nov. 21, 2007, which is hereby incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates generally to compressors and compressor components, and, more particularly, to systems and methods for providing lubrication to such compressors and compressor components. In one aspect, the present invention relates to systems and methods for providing lubrication to compressors having internal gearboxes.
  • BACKGROUND OF THE INVENTION
  • Compressors are used, for example, in compression systems (e.g., refrigeration systems) to compress gas, such as “halocarbon”, ammonia, natural gas, or the like. Typically, compressors employ a wide variety of components in operational association with one another. When the compressor is operated, many of these components contact each other such that surfaces of the components rub, and/or wear against each other. Therefore, it is necessary to provide the compressor components with lubrication.
  • If the components are not adequately lubricated, numerous undesirable conditions can be encountered. For example, shifting, sliding, abrading, of rotating components, as well as other components that are in “intimate” contact with each other, can subject such components to wear and tear due to friction. As such, without adequate lubrication, friction tends to inhibit, or potentially prevent altogether, relative movement of the components. Abrasion of non-lubricated, or sparsely lubricated, components in intimate engagement or contact can cause surfaces of the components to become scored, pitted, gouged, or otherwise damaged.
  • Often, to provide lubrication effectively and efficiently, one or more pumps are used within a compressor system. Although sufficient in many respects, such pumps may not be adequate in at least some circumstances. For example, in the event of a pump becoming inoperative, the flow of lubricant to the portions of the compressor system lubricated by that pump is obstructed. Additionally, if unobserved, substantial damage to certain compressor components can potentially occur and can thus affect the overall functioning of the compressor system. It would therefore be advantageous if a system that continuously provided lubrication to the various components of the compressor is developed and more specifically, if such continuous lubrication was not impeded or obstructed upon a pump or similar mechanism used with or within the compressor system becoming inoperative.
  • SUMMARY OF THE INVENTION
  • In accordance with one aspect of the invention, a compressor system is disclosed. In at least some embodiments of the present invention, the compressor system includes: (i) a compressor oil circuit in operable association with a compressor for compressing fluids, (ii) a gear pump in operable association with a gearbox, wherein the gearbox comprises a plurality of gears mounted on a gear shaft for driving the compressor, and (iii) a lubrication system including at least two lubricant feeds for carrying lubricant to the compressor and the gearbox from a lubricant source. Also provided is a connection line connecting the compressor and the gearbox for transferring lubricant from the compressor oil circuit to the gear pump and/or from the gear pump to the compressor oil circuit.
  • In another aspect of the present invention, a method of lubricating the compressor system is disclosed. The method includes providing a compressor, a gearbox having a plurality of gears, a compressor oil circuit, a gear pump and a lubrication system comprising a lubricant source and at least two lubricant feeds. The method further includes providing a connection line between the compressor and the gearbox for transferring lubricant from the compressor oil circuit to the gear pump and/or from the gear pump to the compressor oil circuit. The method additionally includes transferring lubricant from the lubricant source via the at least two lubricant feeds to the compressor and the gearbox.
  • In still another aspect of the present invention, a compressor system in combination with a lubrication system is provided. The compressor system further includes a rotary screw compressor and a gearbox in operational association with the compressor, while the lubrication system for lubricating the compressor system includes a lubricant source and at least two lubricant feeds for transferring lubricant from the lubricant source to the compressor and the gearbox. Also provided is a connection line connecting the gearbox and the compressor for transferring lubricant from the compressor oil circuit to the gear pump and/or from the gear pump to the compressor oil circuit.
  • Various other aspects, objects, features and embodiments of the present invention are disclosed with reference to the following specification, including the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Features of the present invention which are believed to be novel are set forth with particularity in the appended claims. Embodiments of the invention are disclosed with reference to the accompanying drawings and these embodiments are provided for illustrative purposes only. The invention is not limited in its application to the details of construction or the arrangement of the components illustrated in the drawings. Rather, the invention is capable of other embodiments and/or of being practiced or carried out in other various ways. The drawings illustrate a best mode presently contemplated for carrying out the invention. Like reference numerals are used to indicate like components. In the drawings:
  • FIG. 1 is a schematic top view, partly in cross-section with portions broken away, of an exemplary compressor system employing a rotary screw compressor, a gearbox and a lubrication system in accordance with at least some embodiments of the present invention;
  • FIG. 2 is a schematic top view, partly in cross-section with portions broken away, of the compressor system of FIG. 1, further including an additional pump positioned in a first location with respect to the compressor system, in accordance with at least some embodiments of the present invention; and
  • FIG. 3 is a schematic top view, partly in cross-section with portions broken away, of the compressor system of FIG. 1, and further including an additional pump positioned in a second location with respect to the compressor system, in accordance with at least some embodiments of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • Referring to FIGS. 1, 2 and 3, top views, partly in cross-section and with portions broken away, of a compressor system 2 are shown in accordance with at least some embodiments of the present invention. The compressor system 2 employs a compressor 4, as shown a rotary screw compressor, a gearbox 6 and a lubrication system 8. Notwithstanding the fact that the present embodiments (FIGS. 1-3) illustrate use of a rotary screw compressor, this invention is nevertheless contemplated for use with a wide variety of compressors other than a rotary screw compressor. For example, rotary piston compressors, rotary vane compressors and scroll compressors can be used in other embodiments. One of skill will appreciate that, in alternate embodiments, compressors other than those mentioned above, including non-rotary-type compressors, can be used as well and such use is contemplated and considered within the scope of the present invention.
  • The compressor 4 includes a compressor housing 10, and a plurality of compressor components within the compressor housing in operable association with another (explained below). As shown, the compressor housing 10 houses a single cylindrical main rotor 12 in intermeshing arrangement with first and second cylindrical star rotors (also referred herein as gate rotors and star-shaped rotors) 14 and 16, respectively. The main rotor 12 is mounted for rotation on a main rotor shaft 18, that is rotatably supported at opposite ends on compressor bearing assemblies 20 within a cylindrical bore 22. The main rotor 12 further includes a plurality of helical grooves formed thereon, which in association with the star rotors 14 and 16 define compression chambers.
  • In particular, each of the first and the second star rotors 14 and 16, respectively, are located diametrically opposite (i.e., 180 degrees apart) the main rotor 12. The star rotors 14 and 16 further include a plurality of gear teeth 24, such that rotation of the star rotors about an axis perpendicular to and spaced from an axis of rotation of the main rotor 12 causes the gear teeth of the star rotors to successively engage a helical groove of the main rotor. By virtue of such engagement of the helical grooves of the main rotor 12 with the gear teeth 24 of the star rotors 14 and 16, compression chambers for compressing a gas are defined. Each of the star rotors 14 and 16 is additionally mounted for rotation on gate rotor shafts 26 and 26 a, respectively, within spaces 28 and 28 a, respectively, defined within the compressor housing 10. The gate rotor shafts 26 and 26 a are further supported on opposite ends by bearing assemblies (not shown).
  • Although not shown, the compressor housing 10 is provided with one gas suction port and with two gas discharge ports (one near each star rotor). Two dual slide valve assemblies can additionally be provided on the compressor housing 10 (one assembly near each gate rotor) wherein each slide valve assembly comprises a suction slide valve (also referred to as a “capacity slide valve”) and a discharge slide valve (also referred to as a “volume slide valve”) for controlling the associated suction port and the associated discharge port, respectively. The slide valves can additionally be employed for accomplishing loading and unloading of the compressor by controlling admission and discharge of gas into and from the compression chambers, described above. U.S. Pat. Nos. 4,610,612, 4,610,613, 4,704,069, the teachings and disclosures of which are incorporated herein in their entireties, are assigned to the same assignee as the present application, and disclose a slide-valve assembly described above,
  • In operation, gas is drawn in through the gas suction port and is routed through the compression chambers for compression therewithin. Typically, compression of the gas is achieved by rotation of the star rotors 14 and 16 in synchronism with the main rotor 12 causing the gear teeth 24 of the star rotors to intermesh with the helical grooves of the main rotor. By virtue of such intermeshing engagement between the gear teeth 24 of the star rotors 14 and 16 and the helical grooves of the main rotor 12, the volume of the gas is reduced, thereby achieving compression of the gas. The compressed gas from each associated compression chamber then exits through its associated discharge port. In general, the operation of compressors for compressing gas (e.g., rotary screw compressors) is generally well known in the art and is therefore, not explained here in detail for conciseness of expression.
  • Also provided within the compressor housing 10 is the gearbox 6 for driving various components of the compressor 4 including the main rotor 12 and the star rotors 14 and 16. The gearbox 6 includes a gearbox housing 30 mounted within the compressor housing 10 by way of a plurality of gearbox bearings 32. In at least some embodiments of the present invention, the gearbox 6 is integrally mounted within the compressor housing 10. The gearbox 6 itself is typically driven by way of one motor (not shown) present either within the compressor housing 10 or otherwise located external to the compressor housing and connected to the gearbox. Additionally, the type of motor(s) for driving the gearbox can vary.
  • The gearbox further includes a plurality of intermeshing gear 34 mounted on a gear shaft 36 and gear 34 a mounted on the main rotor shaft 18. By virtue of driving the gearbox 6 via the motor(s), the gear shaft 36 can drive the plurality of gears 34, which in turn drive the gears 34 a. The gears 34 a further drive the main rotor shaft 18 for transmitting power from the motor to the various components of the compressor 4 (e.g., the main rotor 12 and the star rotors 14 and 16).
  • Additionally, to effectively provide lubrication to various compressor components and gearbox components, the present invention employs a gear pump 40. The gear pump 40 is a conventional type of pump that is commonly available and frequently employed in compressor systems. Typically, the gear pump 40 is mounted within the compressor housing 10 for encouraging lubricant flow from the lubrication system 8 and injecting such lubricant to the various portions of the compressor 4 and the gearbox 6. Notwithstanding the fact that in the present embodiment, the gear pump 40 is mounted as described herein, in at least some other embodiments of the present invention, the location of the compressor and the gear pumps can vary to convenience.
  • With respect to the lubrication system 8, a lubricant source 42 capable of providing a supply of lubricant for lubricating the compressor system 2 is provided within the lubrication system. In at least some embodiments of the present invention, the lubricant source 42 is an oil sump, capable of storing and supplying a lubricant. In some other embodiments, the lubricant source 42 can be an oil tank, a lubricant supply line or possibly even storage containers storing a fixed quantity of lubricant. Additionally, the lubricant can be any of a wide variety of lubricants that are commonly employed for lubricating compressors and gearboxes and/or used for reducing friction between various contacting components. For example, in at least some embodiments of the present invention, the lubricant can be compressor oil, lubricating oil and the like.
  • Also provided within the lubrication system 8 is a plurality of lubricant feeds, extending from the lubricant source 42 and supplying lubricant to the compressor system 2. In particular, at least some embodiments of the present invention employ a first lubricant feed 44 extending up to the gear pump 40, and a second lubricant feed 46 extending to the compressor 4. Typically, each of the lubricant feeds 44 and 46 can be any of a conduit, a pipe or a member for carrying lubricant to the gearbox 6 and the compressor 4, respectively. By virtue of providing the lubricant feeds 44 and 46 connected to the gear pump 40 and the compressor 4, respectively, lubricant can flow from the lubricant source 42 to the compressor 4 and the gearbox 6 through the lubricant feeds on activation of the associated pump for providing lubrication thereto.
  • Upon reaching the gear pump 40 and/or the compressor 4, lubricant from the first and the second lubricant feeds 44 and 46, respectively, is distributed to various portions of the gearbox 6 and the compressor. For example, as shown in each of FIGS. 1-3, in the gearbox 6, lubricant can be provided to the gear bearings 32, and the plurality of gears 34 and 34 a (including the gear shaft 36) as shown by communication links 48 and 50, respectively. Notwithstanding the fact that in the present embodiment, the communication links 48 and 50 are not shown to extend to all the gear bearings 32 and the gears 34 and 34 a, it is nevertheless contemplated that lubricant be provided to all gear bearings, all gears and, additionally, all other components within the gearbox in close contact with one another. Relatedly, lubricant from the second lubricant feed 46 to the compressor 4 can be injected into the compressor 4 for providing lubrication to various components of the compressor. In particular, lubricant from the lubricant feed 46 is distributed to the compressor components by way of an oil circuit 38. The oil circuit 38 is typically internal to the compressor housing 10, and further includes a plurality of communication links for transporting lubricant within the compressor 4. For example, as shown by exemplary communication links 52 and 54, lubricant can be provided to the compressor bearing assemblies 20 and shafts (e.g., main rotor shaft 18 and star rotor shafts 26 and 26 a), respectively. Although not shown as providing lubrication to all compressor bearings and shafts, lubricant is provided to all compressor bearing assemblies 20, shafts (e.g., main rotor shaft 18 and gate rotor shafts 26 and 26 a), and other components in close and intimate contact with one another.
  • Additionally, during operation of the compressor system 2, lubricant can typically be supplied to the compression chambers to provide point seal 56 at points (as shown by exemplary communication link 54), where the main rotor 12 meshes with the star rotors 14 and 16, and with the compressor housing 10 to thereby effectively seal the chambers against gas leakage during gas compression. Seal points other than those shown within the compressor system 2 can be provided. Additionally, as shown by the communication link 58, lubricant to the seal point 56 a is provided by the gear pump 40. Nevertheless, in other embodiments, such seal points can be supplied with lubricant from the compressor 4 (e.g., by the oil circuit 38) as well. Lubricant can additionally be provided to various components of the motor(s) employed for driving the gearbox 6. Subsequent to lubricating the various components of the compressor 4 and the gearbox 6 via lubricant flowing through the first and the second lubricant feeds 44 and 46, respectively, the lubricant is discharged from the discharge ports, recovered and re-circulated. Recovering of the lubricant is well known in the art and therefore, not explained here.
  • In general, the gear pump 40 is driven by the main rotor shaft 18 for providing power to the pump for pumping lubricant from the lubricant source 42 through the lubricant feeds 44 and 46, and injecting and supplying lubricant from the lubricant feeds to the various components of the compressor system 2. Upon the gear pump 40 becoming inoperative, the lubricant flow to the gearbox 6 and the seal points 56 a can be disrupted. Relatedly, upon the second lubricant feed 46 becoming inoperative, lubrication to various components of the compressor 4 can be disrupted. If unnoticed, such obstruction can cause severe damage to the components of the compressor system 2 and can significantly reduce the overall performance of the compressor system.
  • To prevent such occurrences, an additional lubricant feed 60 (also referred herein as oil connection, connection line, and oil line) connecting the first and the second lubricant feeds 44 and 46, respectively, is provided in the present invention. In particular, as shown in the present embodiment, the connection line 60 extends from the gear pump 40 to the compressor 4 (and, particularly to the oil circuit 38). Nevertheless, in alternate embodiments, the connection line 60 can be provided from any point of the first lubricant feed 44 to any point of the second lubricant feed 46. By virtue of providing such a connection line, lubricant can be fed from the compressor 4 to the gearbox 6 and vice versa. Similar to the first and the second lubricant feeds 44 and 46, respectively, the connection line 60 can be any of a conduit, pipe or a member for supplying lubricant. Additionally, the connection line 60 is capable of transferring the lubricant from the compressor 4 to the gearbox 6 and/or from the gearbox to the compressor when the gear pump 40 is inoperative. Relatedly, the connection line 60 is capable of transferring the lubricant from the compressor 4 to the gearbox 6 and/or from the gearbox to the compressor when the second lubricant feed 46 supplying lubricant to the compressor oil circuit 38 is inoperative. In case of poor lubricant flow or on occasions when one of the gear pump 40 or the second lubricant feed 46 becomes inoperative, the other system takes over (e.g., through the connection line 60) and lubricates the appropriate rotating parts. In this way the connection line 60 serves to ensure, and further enhance lubrication during, for example, start up and operation of the compressor system 2.
  • Further, the connection line 60 can be located internally within the compressor housing 10 or potentially external to the compressor housing. Relatedly, the first and the second lubricant feeds 44 and 46, respectively, can be positioned either internal or external to the compressor housing 10. When placed external to the compressor housing 10, the lubricant feeds, including the first the second lubricant feeds 44 and 46, respectively, and the connection line 60, can be used as a retrofit to the compressor system 2. Replacement and maintenance of the lubricant feeds can be simplified by providing the lubricant feed assembly exterior to the compressor housing. However, externally located lubricant feeds are more prone to damage and breakage. Leakage from broken or ruptured feeds is significantly reduced by providing the feeds internal to the compressor housing 10. Therefore, depending upon the embodiment, the lubricant feeds can be located either internal or external to the compressor system 2.
  • Additionally, as shown in FIGS. 2 and 3, an auxiliary and/or secondary pump 62 can be used in the compressor system 2 for providing an additional pumping of the lubricant during poor lubricant flow. The secondary pump 62 can be used in conjunction with the gear pump 40. In general, the secondary pump 62 can be any of a wide variety of pumps that are commonly available and frequently employed in compressor systems. Further, the location of the secondary pump 62 within the compressor system 2 can vary. For example, as shown in FIG. 2, the secondary pump 62 can be positioned in close proximity to the compressor 4. In other embodiments, the secondary pump 62 can be positioned at any point on the second lubricant feed 46.
  • Although not shown, a similar secondary pump can also be positioned adjacent the gear pump 40 and/or the first lubricant feed 44. Additionally, instead of providing a separate secondary pump for the gear pump, a secondary pump can be provided at the originating point of the first and the second lubricant feeds 44 and 46, respectively, (e.g., close to the lubricant source 42), as can be seen in FIG. 3. Also, FIG. 3 provides an alternate configuration of the lubricant feeds 44 and 46, in which a single lubricant feed from the lubricant source 42 can later be divided into two separate lubricant feeds headed towards the compressor 4 (e.g., to the oil circuit 38) and the gear pump 40.
  • Notwithstanding the embodiments of the present invention described above with respect to FIGS. 1-3, additions and/or refinements to the invention are contemplated. For example, additional components employed in conventional compressors and gearboxes, although, not shown, can be used within the compressor system 2. Separate lubricant filters and lubricant coolers for filtering debris from the lubricant and cooling the lubricant, respectively, can be used in other embodiments. Although the present embodiments of the invention describe a single lubricant feed (e.g., first lubricant feed to the gear pump and second lubricant feed to the compressor) from the lubricant source 42 to each of the gear pump 40 and the compressor 4, in alternate embodiments, a plurality of lubricant feeds can be provided. Relatedly, multiple connection lines connecting the compressor 4 and the gearbox 6 can be provided in alternate embodiments for transferring lubricant from the compressor to the gearbox and vice-versa in the event of the gear pump 40 or the second lubricant feed 46 becoming inoperative.
  • As indicated above, the lubricant feeds need not be present within the compressor housing, but can rather be located external to the compressor housing. Similarly, the gearbox need not be integral but can otherwise be external to the compressor housing. The shape, size, type and number of the various components within the compressor system 2 can vary in alternate embodiments.
  • Further, despite any methods being outlined in a step-by-step sequence, the completion of acts or steps in a particular chronological order is not mandatory. Further, elimination, modification, rearrangement, combination, reordering, or the like, of acts or steps is contemplated and considered within the scope of the description and claims.
  • Accordingly, it is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.

Claims (24)

1) A compressor system, comprising:
at least one compressor oil circuit in operable association with a compressor for compressing fluids;
at least one gear pump in operable association with a gearbox, the gearbox comprising a plurality of gears mounted on a gear shaft for driving the compressor;
a lubrication system for lubricating the gearbox and the compressor, the lubrication system comprising, (i) a lubricant source for providing a lubricant; and (ii) at least two lubricant feeds for providing a lubricant from the lubricant source to the compressor and the gearbox; and
at least one connection line connecting the compressor and the gearbox for providing lubrication thereto by transferring the lubricant from the gear pump to the compressor oil circuit and/or from the compressor oil circuit to the gear pump;
wherein the at least one compressor oil circuit is connected at least indirectly to at least one of the at least two lubricant feeds, the compressor oil circuit capable of receiving the lubricant from the lubricant source through the at least one of the at least two lubricant feeds for distribution within the compressor; and
wherein the at least one gear pump is connected at least indirectly to at least one of the at least two lubricant feeds, the gear pump capable of receiving the lubricant from the lubricant source through the at least one of the at least two lubricant feeds for distribution within the gearbox.
2) The system of claim 1, wherein the compressor is a rotary screw compressor comprising a helically grooved main rotor and at least two star rotors in operational association with the main rotor.
3) The system of claim 1, wherein the at least one connection line is capable of transferring the lubricant from the compressor to the gearbox and/or from the gearbox to the compressor when the gear pump is inoperative.
4) The system of claim 1, wherein the at least one connection line is capable of transferring the lubricant from the compressor to the gearbox and/or from the gearbox to the compressor when the at least one of the at least two lubricant feeds connected at least indirectly to the at least one compressor oil circuit is inoperative.
5) The system of claim 1, wherein the gearbox further comprises:
a gearbox housing mounted within a compressor housing by at least one gear bearing.
6) The system of claim 5, wherein the gearbox is mounted integral to the compressor housing.
7) The system of claim 1, wherein the lubricant source is an oil sump for providing a supply of lubricant for lubricating the compressor and the gearbox.
8) The system of claim 1, wherein the at least two lubricant feeds comprise a first lubricant feed connected at least indirectly to the lubricant source and in fluid communication with the compressor; and a second lubricant feed connected at least indirectly to the lubricant source and in fluid communication with the gearbox.
9) The system of claim 1, wherein the lubrication system is integral to the compressor housing.
10) The system of claim 1 further comprising at least one secondary pump connected at least indirectly to the at least two lubricant feeds for lubricating the compressor and the gearbox.
11) The system of claim 10, wherein the at least one secondary pump for lubricating the compressor and the gearbox comprises locating the at least one secondary pump either adjacent to the lubricant source, or adjacent to the compressor.
12) The system of claim 1, wherein the at least one connection line connecting the compressor and the gearbox is positioned either external to the compressor housing or internal to the compressor housing.
13) The system of claim 1, wherein the at least one connection line further comprises a first end and a second end, the first end being connected to a gear pump in the gearbox and the second end being connected to the at least one compressor oil circuit in the compressor for transferring the lubricant from the gearbox to the compressor and/or from the compressor to the gearbox.
14) A method of providing lubrication to a compressor system, the method comprising:
providing (a) a compressor for compressing fluids; (b) a gearbox having a plurality of gears for driving the compressor; (c) a lubricant source for providing a lubricant; (d) at least two lubricant feeds originating from the lubricant source; (e) a gear pump in operational association with the gearbox for providing lubrication thereto; and (f) a compressor oil circuit in operational association with the compressor for providing lubrication thereto;
providing at least one connection line connecting the compressor and the gearbox for providing lubrication thereto by transferring the lubricant from the gear pump to the compressor oil circuit and/or from the compressor oil circuit to the gear pump; and
transferring the lubricant from the lubricant source to the compressor and the gearbox through the at least two lubricant feeds;
wherein the at least one connection line is capable of transferring lubricant from the gear pump to the compressor oil circuit and/or from the compressor oil circuit to the gear pump for a particular period of time when either the gear pump or at least one of the at least two lubricant feeds connected at least indirectly to the compressor oil circuit is at least partially inoperative.
15) The method of claim 14, further comprising:
connecting the gear pump at least indirectly to at least one of the at least two lubricant feeds; and
receiving the lubricant from the lubricant source through the at least one of the at least two lubricant feeds for distribution of the received lubricant within the gearbox by the gear pump.
16) The method of claim 14, further comprising:
receiving the lubricant from the lubricant source through the at least one of the at least two lubricant feeds connected at least indirectly to the compressor oil circuit for distribution of the received lubricant within the compressor by the compressor oil circuit.
17) The method of claim 14, wherein the providing the at least one connection line connecting the compressor and the gearbox further comprises positioning the at least one connection line either external to the compressor housing or internal to the compressor housing
18) The method of claim 14, further comprising providing at least one secondary pump connected at least indirectly to the at least one lubricant feed for providing the lubricant to the compressor and the gearbox.
19) The method of claim 18, wherein the providing the at least one secondary pump for providing lubricant to the compressor and the gearbox comprises locating the at least one secondary pump either adjacent to the lubricant source or adjacent to the compressor.
20) A compressor system in combination with a lubrication system, the combination comprising:
a compressor system comprising:
a rotary screw compressor; and
a gearbox in operational association with the rotary screw compressor; and
a lubrication system for lubricating the compressor system, the lubrication system comprising:
a lubricant source for providing a lubricant; and
at least two lubricant feeds originating from the lubricant source and in fluid communication with the compressor system;
wherein the compressor system further comprises (i) a gear pump in operational association with the gearbox for providing lubrication thereto and connected at least indirectly to at least one of the at least two lubricant feeds, the gear pump capable of receiving the lubricant from the lubricant source through the at least one of the at least two lubricant feeds for distribution within the gearbox; and (ii) a compressor oil circuit in operational association with the compressor for providing lubrication thereto and connected at least indirectly to at least one of the at least two lubricant feeds, the compressor oil circuit capable of receiving the lubricant from the lubricant source through the at least one of the at least two lubricant feeds for distribution within the compressor; and
wherein the at least one connection line is capable of transferring lubricant from the gear pump to the compressor oil circuit and/or from the compressor oil circuit to the gear pump for a particular period of time when either the gear pump or the at least one of the at least two lubricant feeds connected at least indirectly to compressor oil circuit is at least partially inoperative.
21) The combination of claim 20, wherein the rotary screw compressor of the compressor system further comprises:
a compressor housing;
a main rotor having helical grooves and mounted for rotation on a rotor axis in a rotor bore in said compressor housing; and
a pair of star rotors rotatably mounted in said housing and engageable with said helical grooves to define a plurality of gas compression chambers;
22) The combination of claim 20, wherein the compressor system further comprises at least one secondary pump connected at least indirectly to the at least one lubricant feed for providing the lubricant to the compressor and the gearbox.
23) The combination of claim 20, wherein the at least one connection line connecting the compressor and the gearbox is for transferring the lubricant from the gearbox to the compressor and/or from the compressor to the gearbox, and wherein the connection line is located either external to the compressor housing or internal to the compressor housing and ensures proper compressor lubrication during startup and operation.
24) The combination of claim 20, wherein the at least one connection line provides lubrication to the compressor system to enhance lubricant flow.
US11/947,145 2007-11-21 2007-11-29 Compressor System and Method of Lubricating the Compressor System Abandoned US20090129956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/947,145 US20090129956A1 (en) 2007-11-21 2007-11-29 Compressor System and Method of Lubricating the Compressor System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US98952707P 2007-11-21 2007-11-21
US11/947,145 US20090129956A1 (en) 2007-11-21 2007-11-29 Compressor System and Method of Lubricating the Compressor System

Publications (1)

Publication Number Publication Date
US20090129956A1 true US20090129956A1 (en) 2009-05-21

Family

ID=40642161

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/947,145 Abandoned US20090129956A1 (en) 2007-11-21 2007-11-29 Compressor System and Method of Lubricating the Compressor System

Country Status (2)

Country Link
US (1) US20090129956A1 (en)
CA (1) CA2612936A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163634B2 (en) 2012-09-27 2015-10-20 Vilter Manufacturing Llc Apparatus and method for enhancing compressor efficiency
CN107654380A (en) * 2017-11-14 2018-02-02 江西红海力能源科技有限公司 A kind of single screw compressor spider piece
CN107701441A (en) * 2017-11-14 2018-02-16 江西红海力能源科技有限公司 A kind of new type single screw compressor spider piece
EP3619433B1 (en) * 2017-05-04 2021-11-10 Atlas Copco Airpower, Naamloze Vennootschap Transmission and compressor or vacuum pump provided with such a transmission
JP2022156586A (en) * 2021-03-31 2022-10-14 ダイキン工業株式会社 Screw compressor and refrigerator

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073514A (en) * 1956-11-14 1963-01-15 Svenska Rotor Maskiner Ab Rotary compressors
US3637048A (en) * 1969-09-22 1972-01-25 Carrier Corp Auxiliary lubricating system
US3828569A (en) * 1973-07-11 1974-08-13 Gen Motors Corp Automotive air conditioning system
US3876345A (en) * 1971-05-10 1975-04-08 Audi Ag Rotary piston combustion engine with oil-cooled piston
US3975123A (en) * 1973-09-03 1976-08-17 Svenska Rotor Maskiner Aktiebolag Shaft seals for a screw compressor
US3976165A (en) * 1974-05-03 1976-08-24 Norwalk-Turbo, Inc. Lubricating and oil seal system for a high speed compressor
US4080119A (en) * 1974-06-24 1978-03-21 Sven Evald Eriksson Method and device for draining oil from the gear case of a compressor
US4173440A (en) * 1977-06-17 1979-11-06 Compagnie Industrielle Des Telecommunications Cit-Alcatel Method and device for lubricating compressors
US4262775A (en) * 1979-05-07 1981-04-21 Ingersoll-Rand Company Oil supply means for a machine
US4394113A (en) * 1979-12-05 1983-07-19 M.A.N. Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Lubrication and packing of a rotor-type compressor
US4524638A (en) * 1982-06-07 1985-06-25 Atlas Copco Aktiebolag Gear box for a compressor plant
US4610612A (en) * 1985-06-03 1986-09-09 Vilter Manufacturing Corporation Rotary screw gas compressor having dual slide valves
US4610613A (en) * 1985-06-03 1986-09-09 Vilter Manufacturing Corporation Control means for gas compressor having dual slide valves
US4704069A (en) * 1986-09-16 1987-11-03 Vilter Manufacturing Corporation Method for operating dual slide valve rotary gas compressor
US4738600A (en) * 1987-03-05 1988-04-19 Dresser-Rand Company Lubricating system
US4995797A (en) * 1989-04-13 1991-02-26 Kabushiki Kaisha Kobe Seiko Sho Rotary screw vacuum pump with pressure controlled valve for lubrication/sealing fluid
US5033944A (en) * 1989-09-07 1991-07-23 Unotech Corporation Lubricant circuit for a compressor unit and process of circulating lubricant
US5037282A (en) * 1988-11-16 1991-08-06 Svenska Rotor Maskiner Ab Rotary screw compressor with oil drainage
US5121815A (en) * 1990-02-20 1992-06-16 Aerospatiale Societe Nationale Industrielle Emergency lubricating device for a reduction unit particularly for a main gear box of a rotary-wing aircraft
US5626470A (en) * 1996-04-10 1997-05-06 Ingersoll-Rand Company Method for providing lubricant to thrust bearing
US5727936A (en) * 1994-06-21 1998-03-17 Svenska Rotor Maskiner Ab Rotary displacement compressor with liquid circulation system
US5957676A (en) * 1996-06-19 1999-09-28 Atlas Copco Airpower Naamloze Vennootschap Rotary compressor with water miscible lubricant
US6416302B1 (en) * 1999-03-10 2002-07-09 Ghh-Rand Schraubenkompressoren Gmbh Rotary helical screw-type compressor having a thermally separated oil supply container
US20030039550A1 (en) * 2001-08-20 2003-02-27 Wichert Ernest J. Method and control system for controlling multiple throttled inlet rotary screw compressors
US6612820B1 (en) * 1999-01-11 2003-09-02 David Garrett Staat Screw compressor having sealed low and high pressure bearing chambers
US20050069446A1 (en) * 1999-12-27 2005-03-31 Hartmut Kriehn Cooled screw vacuum pump
US6981855B2 (en) * 2002-09-30 2006-01-03 Sandvik Ab Drilling rig having a compact compressor/pump assembly
US7011183B2 (en) * 2002-03-14 2006-03-14 Vilter Manufacturing Llc Suction oil injection for rotary compressor

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073514A (en) * 1956-11-14 1963-01-15 Svenska Rotor Maskiner Ab Rotary compressors
US3637048A (en) * 1969-09-22 1972-01-25 Carrier Corp Auxiliary lubricating system
US3876345A (en) * 1971-05-10 1975-04-08 Audi Ag Rotary piston combustion engine with oil-cooled piston
US3828569A (en) * 1973-07-11 1974-08-13 Gen Motors Corp Automotive air conditioning system
US3975123A (en) * 1973-09-03 1976-08-17 Svenska Rotor Maskiner Aktiebolag Shaft seals for a screw compressor
US3976165A (en) * 1974-05-03 1976-08-24 Norwalk-Turbo, Inc. Lubricating and oil seal system for a high speed compressor
US4080119A (en) * 1974-06-24 1978-03-21 Sven Evald Eriksson Method and device for draining oil from the gear case of a compressor
US4173440A (en) * 1977-06-17 1979-11-06 Compagnie Industrielle Des Telecommunications Cit-Alcatel Method and device for lubricating compressors
US4262775A (en) * 1979-05-07 1981-04-21 Ingersoll-Rand Company Oil supply means for a machine
US4394113A (en) * 1979-12-05 1983-07-19 M.A.N. Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Lubrication and packing of a rotor-type compressor
US4524638A (en) * 1982-06-07 1985-06-25 Atlas Copco Aktiebolag Gear box for a compressor plant
US4610612A (en) * 1985-06-03 1986-09-09 Vilter Manufacturing Corporation Rotary screw gas compressor having dual slide valves
US4610613A (en) * 1985-06-03 1986-09-09 Vilter Manufacturing Corporation Control means for gas compressor having dual slide valves
US4704069A (en) * 1986-09-16 1987-11-03 Vilter Manufacturing Corporation Method for operating dual slide valve rotary gas compressor
US4738600A (en) * 1987-03-05 1988-04-19 Dresser-Rand Company Lubricating system
US5037282A (en) * 1988-11-16 1991-08-06 Svenska Rotor Maskiner Ab Rotary screw compressor with oil drainage
US4995797A (en) * 1989-04-13 1991-02-26 Kabushiki Kaisha Kobe Seiko Sho Rotary screw vacuum pump with pressure controlled valve for lubrication/sealing fluid
US5033944A (en) * 1989-09-07 1991-07-23 Unotech Corporation Lubricant circuit for a compressor unit and process of circulating lubricant
US5121815A (en) * 1990-02-20 1992-06-16 Aerospatiale Societe Nationale Industrielle Emergency lubricating device for a reduction unit particularly for a main gear box of a rotary-wing aircraft
US5727936A (en) * 1994-06-21 1998-03-17 Svenska Rotor Maskiner Ab Rotary displacement compressor with liquid circulation system
US5626470A (en) * 1996-04-10 1997-05-06 Ingersoll-Rand Company Method for providing lubricant to thrust bearing
US5957676A (en) * 1996-06-19 1999-09-28 Atlas Copco Airpower Naamloze Vennootschap Rotary compressor with water miscible lubricant
US6612820B1 (en) * 1999-01-11 2003-09-02 David Garrett Staat Screw compressor having sealed low and high pressure bearing chambers
US6416302B1 (en) * 1999-03-10 2002-07-09 Ghh-Rand Schraubenkompressoren Gmbh Rotary helical screw-type compressor having a thermally separated oil supply container
US20050069446A1 (en) * 1999-12-27 2005-03-31 Hartmut Kriehn Cooled screw vacuum pump
US20030039550A1 (en) * 2001-08-20 2003-02-27 Wichert Ernest J. Method and control system for controlling multiple throttled inlet rotary screw compressors
US7011183B2 (en) * 2002-03-14 2006-03-14 Vilter Manufacturing Llc Suction oil injection for rotary compressor
US6981855B2 (en) * 2002-09-30 2006-01-03 Sandvik Ab Drilling rig having a compact compressor/pump assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163634B2 (en) 2012-09-27 2015-10-20 Vilter Manufacturing Llc Apparatus and method for enhancing compressor efficiency
EP3619433B1 (en) * 2017-05-04 2021-11-10 Atlas Copco Airpower, Naamloze Vennootschap Transmission and compressor or vacuum pump provided with such a transmission
US11867183B2 (en) 2017-05-04 2024-01-09 Atlas Copco Airpower, Naamloze Vennootschap Transmission and compressor or vacuum pump provided with such a transmission
CN107654380A (en) * 2017-11-14 2018-02-02 江西红海力能源科技有限公司 A kind of single screw compressor spider piece
CN107701441A (en) * 2017-11-14 2018-02-16 江西红海力能源科技有限公司 A kind of new type single screw compressor spider piece
JP2022156586A (en) * 2021-03-31 2022-10-14 ダイキン工業株式会社 Screw compressor and refrigerator
JP7356044B2 (en) 2021-03-31 2023-10-04 ダイキン工業株式会社 Screw compressor and refrigeration equipment

Also Published As

Publication number Publication date
CA2612936A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US10197059B2 (en) Double-ended scroll compressor lubrication of one orbiting scroll bearing via crankshaft oil gallery from another orbiting scroll bearing
US9617996B2 (en) Compressor
US20090129956A1 (en) Compressor System and Method of Lubricating the Compressor System
CN105452665A (en) Scroll compressor
US8888475B2 (en) Scroll compressor with oil supply across a sealing part
JP6664879B2 (en) Open type compressor
CN102678546A (en) Scroll compressor
EP0683321B1 (en) Swinging rotary compressor
JP2008121479A (en) Hermetic screw compressor
JP2002310079A (en) Water lubricated screw compressor
US7798793B2 (en) Compressor slide valve lubrication
KR970005858B1 (en) Fluid compressor
KR940008171B1 (en) Hydraulic compressor
CN211116581U (en) Compressor for vehicle
JP2007162679A (en) Fluid machine
US6685453B2 (en) Fluid transfer machine with drive shaft lubrication and cooling
JP4301985B2 (en) Scroll compressor
JPS59215985A (en) Screw compressor
CN116085263B (en) Compressor oil storage structure and compressor
CN210889313U (en) Compressor for vehicle
CN110318997B (en) Rotary pump
CN219754796U (en) Scroll compressor and vehicle
US7314353B2 (en) Pump assembly for transporting a cooling fluid
CN1888435B (en) Working oil supply structure for geared compressor
JP5701112B2 (en) Hermetic compressor

Legal Events

Date Code Title Description
AS Assignment

Owner name: VILTER MANUFACTURING LLC, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PICOUET, JEAN-LOUIS;REEL/FRAME:020175/0911

Effective date: 20071127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION