US20090120450A1 - Smoking Articles Having Reduced Ignition Proclivity Characteristics - Google Patents

Smoking Articles Having Reduced Ignition Proclivity Characteristics Download PDF

Info

Publication number
US20090120450A1
US20090120450A1 US12/167,615 US16761508A US2009120450A1 US 20090120450 A1 US20090120450 A1 US 20090120450A1 US 16761508 A US16761508 A US 16761508A US 2009120450 A1 US2009120450 A1 US 2009120450A1
Authority
US
United States
Prior art keywords
film
smoking article
forming composition
areas
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/167,615
Inventor
Raoul Herve
Julia Cloitre-Chabert
Patrick Guilchet
Thomas A. Kraker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mativ Holdings Inc
Original Assignee
Schweitzer Mauduit International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39967637&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090120450(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schweitzer Mauduit International Inc filed Critical Schweitzer Mauduit International Inc
Priority to US12/167,615 priority Critical patent/US20090120450A1/en
Assigned to SCHWEITZER-MAUDUIT INTERNATIONAL, INC. reassignment SCHWEITZER-MAUDUIT INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUILCHET, PATRICK, HERVE, RAOUL, CLOITRE-CHABERT, JULIA, KRAKER, THOMAS A.
Publication of US20090120450A1 publication Critical patent/US20090120450A1/en
Priority to US14/099,305 priority patent/US10470489B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/02Cigars; Cigarettes with special covers
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/02Cigars; Cigarettes with special covers
    • A24D1/025Cigars; Cigarettes with special covers the covers having material applied to defined areas, e.g. bands for reducing the ignition propensity
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/14Carboxylic acids; Derivatives thereof
    • D21H17/15Polycarboxylic acids, e.g. maleic acid
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/38Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing crosslinkable groups

Definitions

  • a desirable feature of smoking articles, particularly cigarettes, is that they self-extinguish upon being dropped or left in a free burning state in contact with combustible materials.
  • the prior art describes the application of film-forming solutions to cigarette paper to reduce the paper permeability and control the burn rate. It has been shown that when these materials have been applied in discrete areas along the length of the cigarette, the cigarette shows a reduced propensity to ignite a substrate, and tends to self-extinguish.
  • U.S. Pat. No. 5,878,753 to Peterson and U.S. Pat. No. 5,820,998 to Hotaling, et al. which are incorporated herein by reference, for example, describe a smoking article wrapper being treated with a film-forming aqueous solution to reduce permeability.
  • U.S. Pat. No. 5,878,754 to Peterson which is also incorporated herein by reference describes a smoking article wrapper being treated with a non-aqueous solution of a solvent soluble polymer dissolved in a non-aqueous solution to reduce permeability.
  • the present application is directed to further improvements in producing a wrapper for a smoking article with reduced ignition proclivity properties.
  • the present disclosure is directed to improved formulations that may be applied to the paper wrapper.
  • the present disclosure is generally directed to paper wrappers for smoking articles with reduced ignition proclivity and to a process for making the wrappers.
  • the paper wrapper can be made from a paper web.
  • the paper wrapper can contain flax fibers, softwood fibers, hardwood fibers and mixtures thereof.
  • the paper wrapper can also include a filler, such as calcium carbonate and/or a magnesium oxide, in an amount from about 10% to about 40% by weight.
  • a film-forming composition is applied to the paper wrapper at particular locations.
  • the film-forming composition forms treated discrete areas on the wrapper.
  • the discrete areas are separated by untreated areas.
  • the treated discrete areas are configured to reduce ignition proclivity of a smoking article incorporating the wrapper.
  • the treated areas can reduce ignition proclivity by reducing oxygen to a smoldering coal of the smoking article as the coal burns and advances into the treated areas.
  • the film-forming composition comprises the combination of a film-forming material, which may itself be a polysaccharide, and a polysaccharide, such as a starch, which may also be considered a film-forming material. It has been unexpectedly discovered that combining a film-forming material with a starch produces synergistic results. In particular, a film-forming composition containing both a film-forming material and a starch has been found to be more efficient at reducing the ignition proclivity characteristics of a smoking article in comparison to a film-forming composition containing a film-forming material alone or a film-forming composition containing a starch alone.
  • film-forming material combined with the starch in accordance with the present disclosure can vary depending upon the particular application.
  • Film-forming materials that may be used include, for instance, guar gum, pectin, polyvinyl alcohol, polyvinyl acetate, cellulose, cellulose derivatives such as ethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and the like, alginates, and mixtures thereof.
  • a starch may be combined with an alginate in forming the composition.
  • the relative amounts of the starch and film-forming material, such as alginate, within the film-forming composition may vary depending upon the particular application.
  • the film-forming material may be present within the film-forming composition after being applied and dried on a paper wrapper in an amount from about 1% to about 15% by weight of the treated areas.
  • Starch on the other hand, may be present in the treated areas in an amount from about 1% to about 20% by weight of the treated areas.
  • the film-forming composition contains a film-forming material combined with specific filler particles.
  • the filler particles may comprise, for instance, magnesium oxide, mica, kaolin clay, or mixtures thereof.
  • those skilled in the art have suggested combining a film-forming material with various particulate inorganic fillers.
  • the present inventors have discovered, however, that the above fillers are unexpectedly more efficient at reducing the ignition proclivity properties of a treated paper wrapper in comparison to the particulate inorganic fillers used in the past.
  • the above listed filler particles may be contained in the film-forming composition (as applied to the wrapper) in an amount from about 0.25% to about 15% by weight of the composition, such as from about 0.5% to about 5% by weight of the composition.
  • the filler particles can have an average diameter from about 0.0001 microns to about 5 microns, such as from about 0.1 microns to about 3 microns.
  • the film-forming material combined with the filler particles can be any suitable film-forming material such as an alginate.
  • the filler particles can be combined with a starch.
  • the filler particles may be combined with a film-forming composition containing both an alginate and a starch.
  • film-forming materials that may be used solely or in combination with the filler particles include guar gum, pectin, polyvinyl alcohol, polyvinyl acetate, cellulose and cellulose derivatives such as ethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and the like.
  • the film-forming composition made according to the present disclosure can be applied to the paper wrapper according to various methods.
  • the composition can be printed onto the paper using, for instance, flexography, direct gravure printing, and offset gravure printing.
  • the discrete areas formed by the film-forming composition are in the shape of circumferential bands disposed longitudinally along the smoking article.
  • the bands can have a width of greater than about 3 mm, such as from about 4 mm to about 10 mm.
  • the bands can be spaced from each other at a distance of from about 5 mm to about 50 mm and particularly from about 10 mm to about 40 mm.
  • the amount of the film-forming composition that is applied to the paper wrapper depends upon the particular application and various factors.
  • the film-forming composition can be applied to the wrapper in an amount from about 1% to about 30% by dry weight based upon the weight of the wrapper within the treated areas, and particularly in an amount from about 2% to about 20% by dry weight.
  • the treated areas can have a permeability of less than about 40 Coresta, particularly less than about 30 Coresta, and more particularly from about 1 Coresta to about 30 Coresta.
  • the initial permeability of the paper wrapper can be from about 20 Coresta to about 150 Coresta or greater.
  • the initial permeability of the paper wrapper may be greater than about 60 Coresta, such as greater than about 80 Coresta.
  • the initial permeability of the paper wrapper may be less than about 60 Coresta, such as from about 20 Coresta to about 40 Coresta.
  • the film-forming composition when applied to the paper wrapper may be contained in an aqueous solution or may be contained in a non-aqueous solution.
  • a non-aqueous solution for example, an alcohol may be present.
  • the paper wrapper may have any suitable basis weight depending upon a particular application. In one particular embodiment, for instance, the paper wrapper may have a basis weight of from about 18 gsm to about 60 gsm.
  • the paper wrapper may also be treated with a burn promoting agent over substantially the entire surface area of the paper wrapper. For example, the burn promoting agent may be applied to the paper wrapper prior to or after the treated areas are formed. The burn promoting agent may be applied to the paper wrapper in amounts from about 0.1% to about 8% by dry weight.
  • the burn promoting agent may be, for instance, an acetic acid salt, a citric acid salt, a malic acid salt, a lactic acid salt, a tartaric acid salt, a carbonic acid salt, a formic acid salt, a propionic acid salt, a glycolic acid salt, a fumaric acid salt, an oxalic acid salt, a malonic acid salt, a succinic acid salt, a nitric acid salt, a phosphoric acid salt, or mixtures thereof.
  • the burn promoting agent is a citrate, a succinate, or mixtures thereof.
  • FIG. 1 is a perspective view of a smoking article made in accordance with the present disclosure
  • FIG. 2 is an exploded view of the smoking article illustrated in FIG. 1 ;
  • FIGS. 3-8 are graphical representations of the results obtained in the examples that follow.
  • the present disclosure relates to a smoking article and a wrapper for a smoking article having improved ignition proclivity control characteristics.
  • “Ignition proclivity” is a measure of the tendency of the smoking article or cigarette to ignite a flammable substrate if the burning cigarette is dropped or otherwise left on a flammable substrate.
  • a test for ignition proclivity of a cigarette has been established by NIST (National Institute of Standards and Technology) and is generally referred to as the “Mock-Up Ignition Test”.
  • the test comprises placing a smoldering cigarette on a flammable test fabric and recording the tendency of the cigarette to either ignite the test fabric, burn the test fabric beyond a normal char line of the fabric, burn its entire length without igniting the fabric, or self-extinguish before igniting the test fabric or burning its entire length.
  • Cigarette Extinction Test Another test for ignition proclivity is referred to as the “Cigarette Extinction Test”.
  • the Cigarette Extinction Test is ASTM Test No. E2187-04. In the Cigarette Extinction Test, a lit cigarette is placed on one or more layers of filter paper. If the cigarette self extinguishes, the cigarette passes the test. If the cigarette burns all the way to its end on the filter, however, the cigarette fails. Smoking articles made in accordance with the present invention can be designed to pass one or both of these tests.
  • smoking articles having reduced ignition proclivity cigarettes are typically also tested for “free air self-extinguishment” (FASE).
  • FASE free air self-extinguishment
  • the smoking articles are allowed to burn in the free air without being puffed and without being placed on an adjacent surface.
  • lower FASE rates may be preferred.
  • smoking articles constructed in accordance with the principles of the present disclosure may be configured to self extinguish when placed on an adjacent surface but yet have lower FASE rates in comparison to many prior products that are intended to have reduced ignition proclivity characteristics.
  • smoking articles having reduced ignition proclivity are made according to the present disclosure by applying in discrete areas to a wrapping paper a film-forming composition.
  • the film-forming composition contains a film-forming material combined with a polysaccharide.
  • the film-forming material may comprise, for instance, an alginate, guar gum, pectin, polyvinyl alcohol, polyvinyl acetate, cellulose, a cellulose derivative, or mixtures thereof.
  • the polysaccharide may comprise, for instance, a starch.
  • the starch may be a natural starch or may be a modified starch.
  • a film-forming material such as an alginate and starch has also provided various efficiency improvements in the ability of the solution to form treated areas on paper wrappers that reduce the ignition proclivity characteristics of a smoking article incorporating the wrapper.
  • an alginate and starch solution is generally more efficient in lowering the permeability and diffusion capacity of the paper wrapper in comparison to a similar solution containing only starch or only alginate.
  • the film-forming material comprises an alginate.
  • an alginate is a derivative of an acidic polysaccaride or gum which occurs as the insoluble mixed calcium, sodium, potassium and magnesium salt in the Phaeophyceae brown seaweeds.
  • these derivatives are calcium, sodium, potassium, and/or magnesium salts of high molecular weight polysaccarides composed of varying proportions of D-mannuronic acid and L-guluronic acid.
  • Exemplary salts or derivatives of alginic acid include ammonium alginate, potassium alginate, sodium alginate, propylene glycol alginate, and/or mixtures thereof.
  • any suitable alginate may be used in the present disclosure, including any suitable derivatives.
  • the alginate contained in the film-forming composition may have a relatively high molecular weight or may have a relatively low molecular weight.
  • the alginate may have a viscosity of less than about 500 cP when contained in a 3% by weight aqueous solution at 25° C.
  • KELGIN LB alginate from ISP Corporation may be used.
  • KELGIN LB alginate is a low viscosity, pure sodium alginate.
  • the polysaccharide that is combined with the alginate in accordance with the present disclosure may also vary depending upon the particular application.
  • the starch for instance, may be modified or may be unmodified and may be obtained from various plants.
  • an oxidized corn starch may be combined with the alginate.
  • FLOKOTE 64 commercially available from the National Starch and Chemical Company of Bridgewater, N.J.
  • the film-forming material and polysaccharide can be combined with water or with any suitable solvent.
  • the film-forming composition may comprise an aqueous dispersion or an aqueous solution.
  • the film-forming composition prior to being applied to the paper wrapper may comprise a non-aqueous solution or dispersion.
  • an alcohol may be present and combined with the film-forming material and polysaccharide.
  • the amount of the film-forming material and polysaccharide present within the film-forming composition may depend upon various factors.
  • the film-forming material such as an alginate may be present in the film-forming composition in an amount from about 1% to about 15% by weight of the solution, such as from about 1% to about 10% by weight of the solution.
  • alginate may be present in an amount from about 1% to about 10% by weight of the solution.
  • Starch on the other hand, may be present in an amount from about 3% to about 25% by weight of the solution, such as from about 3% to about 20% by weight of the solution.
  • starch may be present in the film-forming composition in an amount from about 3% to about 15% by weight of the solution.
  • the film-forming material and polysaccharide can be contained in the composition in amounts sufficient so that the composition has Theological properties that make the composition amenable to a printing process.
  • the relative amounts of film-forming material and polysaccharide can be present in the composition so that the composition has a viscosity of less than about 1500 cps.
  • the treated areas may contain, in one embodiment, a greater amount of polysaccharide than film-forming material. In other embodiments, however, the polysaccharide and the film-forming material may be present in equal amounts or a greater amount of the film-forming material may be present. In general, for instance, the treated areas may contain a polysaccharide from about 1% to about 20% by dry weight of the treated area, while containing the film-forming material in an amount from about 1% to about 15% by dry weight of the treated area.
  • the film-forming composition applied to the paper wrapper contains a film-forming material combined with filler particles.
  • the present inventors have discovered that certain filler particles provide unexpected advantages in improving the ignition proclivity characteristics of the wrapper in comparison to filler particles that have been proposed in the past.
  • the film-forming composition can contain magnesium oxide particles, kaolin clay particles, mica particles, or mixtures thereof.
  • the magnesium oxide, mica, or kaolin clay may be present in the film-forming composition, for instance, in an amount less than about 15% by weight, such as from about 0.25% to about 15% by weight, and particularly, from about 0.5% to about 5% by weight.
  • the particles can be present in an amount from about 1% to about 3% by weight of the composition.
  • the size of the filler particles may vary depending upon the particular material used in the particular application.
  • the filler particles have an average diameter of less than about 5 microns.
  • the average size of the particles may be from about 0.0001 microns to about 5 microns, such as from about 0.1 microns to about 3 microns.
  • the shape of the particles may also vary. For instance, in one embodiment, kaolin clay particles may be used that have a plate-like shape.
  • the filler particles comprise magnesium oxide particles.
  • magnesium oxide particles provide superior results in comparison to many other filler particles.
  • magnesium oxide particles have the ability to efficiently reduce the ignition proclivity properties of a smoking article containing a treated wrapper.
  • any suitable magnesium oxide particles may be used in the film-forming composition.
  • Magnesium oxide particles for instance, are available from numerous commercial sources.
  • magnesium oxide particles may be used that are commercially available from Additek S.A.S. under the name Magnesium Oxide Super Leger Type 04.
  • Magnesium oxide particles well suited for use in the present disclosure are also obtainable from Scora S.A. under the name Light Magnesium Oxide “I”.
  • the Light Magnesium Oxide “I” particles for instance, are greater than 98% by weight magnesium oxide, have a bulk density of from about 0.15 g/cc to about 0.2 g/cc and have a particle size such that about 98% of the particles pass through a 325 mesh sieve.
  • the filler particles contained within the film-forming composition may comprise mica.
  • Mica comprises a group of minerals consisting of hydrous silicates of aluminum or potassium which are common in igneous and metamorphic rocks. Mica is typically found in groups of sheet silicate minerals having a highly perfect basal cleavage. Thus, mica particles when incorporated into a film-forming composition typically have a plate-like shape. Mica has a high dielectric strength and therefore is resistant to heat.
  • Mica particles are commercially available from numerous sources. For instance, mica particles that are well suited for use in the present disclosure are obtainable from Kaolins de Ploemeur under the trade name MICA MU M2/1. MICA MU M2/1, for instance, has a particle size such that greater than about 50% of the particles have a size less than about 5 microns.
  • the film-forming composition may contain kaolin clay particles.
  • Kaolin clay is generally a hydrous aluminum silicate mineral found in sediments, soils, hydrothermal deposits and sedimentary rocks.
  • Kaolin clay particles can have a plate-like shape typically being found as a layered silicate mineral.
  • Kaolin clay particles typically contain silicon dioxide and aluminum oxide.
  • Kaolin clay particles are available from numerous commercial sources.
  • kaolin clay particles can be obtained from Kaolins de Ploemeur under the trade name 7ASP20.
  • 7ASP20 kaolin clay for instance, has a particle size such that greater than 89% of the particles have a size less than 5 microns and greater than about 64% of the particles have a size less than about 1 micron.
  • the filler particles as described above, when contained in the film-forming composition, can be combined with any suitable film-forming material.
  • the filler particles may be combined with an alginate and a starch as described above. In other embodiments, however, the filler particles may be combined with alginate alone or with starch alone.
  • film-forming materials that may be combined with the filler particles include guar gum, pectin, polyvinyl alcohol, polyvinyl acetate, cellulose, cellulose derivatives such as ethyl cellulose, methyl cellulose, and carboxymethyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, mixtures thereof, and the like.
  • the film-forming composition containing the filler particles may be water based.
  • the film-forming composition may contain a non-aqueous solvent, such as an alcohol.
  • Film-forming compositions made according to the present disclosure can be applied to paper wrappers in discrete areas to form treated areas on the wrapper.
  • compositions can vary.
  • the composition can be sprayed, brushed or printed onto the wrapper.
  • the composition can be applied in a single pass or in a multiple pass operation.
  • the composition can be applied to the wrapping paper in successive steps in order to form areas on the paper having reduced ignition proclivity.
  • the treated areas can be formed by applying the composition during from about 2 to about 8 passes.
  • a smoking article (cigarette), generally 10 having improved ignition proclivity characteristics includes a tobacco column 12 within a wrapper 14 .
  • Article 10 may include a filter 26 .
  • Wrapper 14 may include any manner of commercially available cigarette wrapper.
  • the wrapping paper can be made from cellulosic fibers obtained, for instance, from flax, softwood or hardwood.
  • various mixtures of cellulosic fibers can be used.
  • the extent to which the fibers are refined can also be varied.
  • the paper wrapper will contain a filler.
  • the filler can be, for instance, calcium carbonate, magnesium oxide, or any other suitable material.
  • the total filler loading added to the paper wrapper can be between about 10% to about 40% by weight.
  • the permeability of a paper wrapper for smoking articles made according to the present disclosure can generally be from about 10 Coresta units to about 200 Coresta units. In some applications, the permeability can be between about 15 Coresta units to about 55 Coresta units. In one embodiment of the present disclosure, however, the initial permeability of the paper wrapper is relatively high. For instance, in one embodiment, the permeability of the paper wrapper can be from about 60 Coresta units to about 110 Coresta units. In various embodiments, for example the initial permeability of the paper wrapper may be greater than about 70 Coresta units, greater than about 80 Coresta units, greater than about 90 Coresta units, or greater than about 100 Coresta units.
  • the initial permeability of the paper wrapper may be less than about 60 Coresta units, such as less than about 50 Coresta units, such as from about 20 Coresta units to about 40 Coresta units.
  • the basis weight of cigarette wrapping paper is usually between about 18 gsm to about 60 gsm, and more particularly between about 15 gsm to about 40 gsm. Wrapping papers according to the present disclosure can be made within any of these ranges.
  • the paper wrapper may be treated with a burn promoting agent.
  • the burn-promoting agent for example, may be applied over substantially the entire surface area of the wrapping paper, especially over the surface area of the wrapping paper where the treated areas are located including the untreated areas spaced between the treated areas.
  • the burn promoting agent may comprise any suitable substance that enhances the burn rate. Examples of burn promoting agents include alkali metal salts, alkaline earth metal salts, and mixtures thereof.
  • the burn promoting agent may comprise a salt of a carboxylic acid.
  • the burn promoting agent may comprise an acetic acid salt, a citric acid salt, a malic acid salt, a lactic acid salt, a tartaric acid salt, a carbonic acid salt, a formic acid salt, a propionic acid salt, a glycolic acid salt, a fumaric acid salt, an oxalic acid salt, a malonic acid salt, a succinic acid salt, a nitric acid salt, a phosphoric acid salt, and mixtures thereof.
  • the burn promoting agent may comprise potassium citrate, sodium citrate, potassium succinate, sodium succinate, or mixtures thereof.
  • the burn promoting agent may be applied relatively uniformly over the surface area of the paper wrapper in an amount from about 0.3% to over 8% by dry weight, such as from about 0.3% to about 2.5% by dry weight.
  • the burn promoting agent may be applied to the wrapper prior to or after the treated areas are formed on the wrapper using the film forming composition.
  • the burn promoting agent may be applied to the wrapper for various reasons.
  • the burn promoting agent may be applied so as to further control the burn properties of the wrapper, especially in the untreated areas on the wrapper.
  • the burn promoting agent may also serve as an ash conditioner.
  • Paper web 14 defines an outer circumferential surface 16 when wrapped around tobacco column 12 .
  • Discrete areas 18 of outer circumferential surface 16 are treated with a film-forming composition made in accordance with the present invention, such as an alginate composition blended with a burn promoting agent. It should also be understood that treated areas 18 could also be disposed on the inner surface of wrapper 14 . In other words, wrapper 14 could be rolled around tobacco column 12 so that treated areas 18 are adjacent to the tobacco.
  • treated areas 18 are defined as circumferential cross-directional bands 24 .
  • Bands 24 are spaced apart from each other longitudinally along the length of cigarette 10 .
  • the bands 24 are indicated in phantom in FIG. 2 .
  • the treated areas are essentially invisible in the formed cigarette as shown in FIG. 1 .
  • a smoker may not discern from any outward sign that the wrapper 14 has been treated in discrete areas 18 .
  • treated areas 18 have a smooth and flat texture essentially the same as untreated areas 28 .
  • the width and spacing of bands 24 are dependent on a number of variables, such as the initial permeability of wrapper 14 , density of tobacco column 12 , etc.
  • the bands 24 preferably have a width so that oxygen is limited to the burning coal for a sufficient length or period of time to extinguish the coal. In other words, if band 24 were too narrow, the burning coal would burn through band 24 before self-extinguishing. For most applications, a minimum band width of 3 mm is desired. For example, the band width can be from about 4 mm to about 10 mm.
  • the spacing between bands 24 is also a factor of a number of variables. The spacing should not be so great that the cigarette burns for a sufficient length of time to ignite a substrate before the coal ever burns into a treated area 18 .
  • the spacing between bands 24 also affects the thermal inertia of the burning coal, or the ability of the coal to burn through the treated bands 24 without self-extinguishing. In the cigarettes tested, applicants have found that a band spacing of between 5 and 50 mm is appropriate and particularly between about 10 mm and 40 mm. However, it should be understood that the band spacing can be any suitable width as determined by any number of variables. For most applications, the smoking article can contain from 1 to about 3 bands using the above spacing.
  • Treated areas 18 have a permeability within a range which is known to provide improved ignition proclivity characteristics for the make-up of cigarette 10 .
  • oxygen available to the burning coal is substantially reduced due to the decreased permeability of wrapper 14 in the treated areas.
  • the reduction of oxygen preferably causes the cigarette to self-extinguish in the treated areas 18 when in contact with a substrate.
  • the permeability may be less than 40 ml/min/cm 2 (CORESTA), particularly less than 30 ml/min/cm 2 , and generally within a range of 5 to 25 ml/min/cm 2 .
  • the treated areas 18 according to the present disclosure can have a diffusion capacity of less than about 0.5 cm/s, such than about 0.4 cm/s.
  • the diffusion capacity can be from about 0 cm/s to about 0.3 cm/s.
  • Diffusion capacity of the paper wrapper can be measured using, for instance, a carbon dioxide diffusion capacity tester that is marketed by SODIM Instrumentation Company.
  • the above described diffusion capacity ranges are particularly applicable to characterizing treated areas made from a combination of a film-forming material and a polysaccharide.
  • the diffusion capacity may be higher than as described above.
  • the filler particles of the present disclosure when contained in the film-forming composition may reduce the ignition proclivity properties of the paper because the particles are flame retardants.
  • the treated areas may have a diffusion capacity of higher than 0.5 cm/s.
  • the amount of composition that is added to the paper will depend upon various factors, including the type of composition that is used and the desired result.
  • the film-forming composition can be added to the paper in an amount from about 1% to about 30% by dry weight of the paper within the banded region, and particularly from about 2% to about 20% by dry weight of the paper within the banded region after the bands have been formed and dried.
  • the amount of the composition applied to the paper will generally increase as the permeability of the paper increases. For instance, for wrapping papers having a permeability of less than about 30 Coresta units, the composition can be applied to a paper in an amount from about 1% to about 20% by weight. For wrapping papers having a permeability greater than about 60 Coresta units, on the other hand, the composition can be applied to the paper in an amount from about 3% to about 30% by weight.
  • the composition can be sprayed, brushed, or printed onto the wrapper.
  • any suitable printing process can be used in the present invention. Applicants have found that suitable printing techniques include gravure printing, or flexographic printing.
  • Various paper wrappers were made containing cellulosic fibers in combination with a filler.
  • the filler comprised calcium carbonate having a medium particle size of 2 microns.
  • the calcium carbonate particles were present in the paper wrapper in an amount of 30% by weight.
  • the wrappers had a basis weight of 27 gsm and a base permeability of 53 Coresta.
  • the alginate used was KELGIN LB obtained from International Specialty Products.
  • the starch used was an oxidized starch sold under the trade name FLOKOTE 64 obtained from the National Starch and Chemical Company.
  • various film-forming compositions were formulated containing both sodium alginate and an oxidized starch.
  • the same alginate and starch as described in Example 1 were used.
  • the film-forming compositions were applied to a paper wrapper as described in Example 1 having a permeability of 53 Coresta.
  • the film-forming compositions were applied to a paper wrapper having a base permeability of 80 Coresta.
  • both of the smoking articles were very effective at self-extinguishing when placed on adjacent surface.
  • both smoking articles also had a low FASE rating indicating that smoking articles have a lower tendency to self-extinguish when left in a free-burning state.
  • various filler particles were added to a sodium alginate film-forming composition and applied to a paper wrapper.
  • film-forming compositions were made containing kaolin clay particles and magnesium oxide particles. These formulations were then compared with film-forming compositions containing no particles and film-forming compositions containing calcium carbonate particles and talc particles.
  • filler particles were added to an aqueous solution containing 9.5% by weight sodium alginate.
  • the sodium alginate used in this example was KELGIN LB sodium alginate obtained from International Specialty Products.
  • the above film-forming compositions were applied to the same paper wrappers described in Example 2 above.
  • the film forming compositions were printed onto a paper wrapper having a base permeability of 53 Coresta and a paper wrapper having a base permeability of 80 Coresta.
  • the permeability within the treated areas was then measured after the film-forming compositions had dried on the paper. The results are illustrated in FIG. 4 .
  • kaolin clay particles and magnesium oxide particles unexpectedly reduced the permeability of the wrappers to a much greater extent than the film-forming composition containing no filler particles and in comparison to the film-forming compositions containing talc or calcium carbonate.
  • kaolin clay particles and magnesium oxide particles were added to a 9.5% by weight sodium alginate composition.
  • the sodium alginate used was KELGIN LB sodium alginate obtained from the International Specialty Products.
  • the following film-forming compositions were formulated.
  • FIG. 5 shows the permeability within the treated areas for Sample Nos. 1-4 containing the kaolin clay particles.
  • the viscosity of the film-forming compositions was also tested and appears in the graph. As shown, the permeability of the treated areas decreases as the amount of kaolin clay particles increases.
  • the effect of the amount of magnesium oxide in the film-forming composition on the permeability on the treated areas is shown. As illustrated, as the amount of magnesium oxide increases, the permeability of the treated areas decreases. In FIG. 6 , the amount of magnesium oxide in the film-forming composition varies from 0 to 4%.
  • Paper wrappers containing the various amounts of magnesium oxide were then used to construct cigarettes that were tested according to ASTM Test No. E2187-04 and according to the FASE Test.
  • the ASTM Test measures the ability of the treated areas to extinguish the cigarette when left resting on an adjacent surface. A higher number is generally preferred.
  • the FASE Test evaluates whether or not the cigarette self-extinguishes when left free-burning. Generally, a lower FASE result is preferred but not necessary or critical. For many applications, for instance, ASTM test results can be more important than the FASE results.
  • magnesium oxide particles were added to an oxidized starch solution and applied to a paper wrapper with a base permeability of 60 Coresta.
  • 3% by weight magnesium oxide particles were added to a 22% by weight starch composition.
  • the starch used was an oxidized starch sold under the trade name FLOKOTE 64 obtained from the National Starch and Chemical Company.
  • the solution was then applied to a paper web in bands, dried, and tested for permeability.
  • the resulting band permeability was 6 Coresta.
  • the treated paper was then wrapped around a column of a tobacco filler.
  • the resulting smoking article was tested according to ASTM Test No. E2187-04 and according to the FASE Test. The following results were obtained:
  • the smoking article was very effective at self-extinguishing when placed on adjacent surface.

Landscapes

  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)
  • Paper (AREA)

Abstract

Smoking articles having reduced ignition proclivity characteristics are disclosed. The smoking articles include a paper wrapper containing cellulosic fibers and filler particles. The paper wrappers are treated with a film-forming composition in order to reduce the ignition proclivity characteristics of the smoking articles. In one embodiment, the film-forming composition contains an alginate combined with a starch. In an alternative embodiment, the film-forming composition contains a film-forming material combined with filler particles. The filler particles may comprise kaolin clay, magnesium oxide, mica, alum, or mixtures thereof.

Description

    RELATED APPLICATION DATA
  • The present application is based on and claims priority to a provisional application filed on Jul. 3, 2007 having Ser. No. 60/958,263.
  • BACKGROUND
  • There is an ongoing concern in the tobacco industry to produce cigarettes having wrappers which reduce the ignition proclivity of the smoking article, or the tendency of the smoking article to ignite surfaces which come into contact with the lit smoking article. Reports have been made of fires attributed to burning cigarettes coming into contact with combustible materials. A justifiable interest exists in the industry to reduce the tendency of cigarettes, or other smoking articles to ignite surfaces and materials used in furniture, bedding, and the like upon contact.
  • Thus, a desirable feature of smoking articles, particularly cigarettes, is that they self-extinguish upon being dropped or left in a free burning state in contact with combustible materials.
  • It has long been recognized in the tobacco industry that the cigarette wrapper has a significant influence on the smolder characteristics of the cigarette. In this regard, various attempts have been made in the art to alter or modify the cigarette wrappers in order to achieve the desired tendency of the cigarette to self-extinguish, or in other words to reduce the ignition proclivity characteristics of cigarettes.
  • The prior art describes the application of film-forming solutions to cigarette paper to reduce the paper permeability and control the burn rate. It has been shown that when these materials have been applied in discrete areas along the length of the cigarette, the cigarette shows a reduced propensity to ignite a substrate, and tends to self-extinguish.
  • U.S. Pat. No. 5,878,753 to Peterson and U.S. Pat. No. 5,820,998 to Hotaling, et al. which are incorporated herein by reference, for example, describe a smoking article wrapper being treated with a film-forming aqueous solution to reduce permeability. U.S. Pat. No. 5,878,754 to Peterson which is also incorporated herein by reference describes a smoking article wrapper being treated with a non-aqueous solution of a solvent soluble polymer dissolved in a non-aqueous solution to reduce permeability.
  • The present application is directed to further improvements in producing a wrapper for a smoking article with reduced ignition proclivity properties. In particular, the present disclosure is directed to improved formulations that may be applied to the paper wrapper.
  • SUMMARY
  • The present disclosure is generally directed to paper wrappers for smoking articles with reduced ignition proclivity and to a process for making the wrappers. For example, in one embodiment, the paper wrapper can be made from a paper web. For example, the paper wrapper can contain flax fibers, softwood fibers, hardwood fibers and mixtures thereof. The paper wrapper can also include a filler, such as calcium carbonate and/or a magnesium oxide, in an amount from about 10% to about 40% by weight.
  • A film-forming composition is applied to the paper wrapper at particular locations. The film-forming composition forms treated discrete areas on the wrapper. The discrete areas are separated by untreated areas. The treated discrete areas are configured to reduce ignition proclivity of a smoking article incorporating the wrapper. For example, the treated areas can reduce ignition proclivity by reducing oxygen to a smoldering coal of the smoking article as the coal burns and advances into the treated areas.
  • In one embodiment of the present disclosure, the film-forming composition comprises the combination of a film-forming material, which may itself be a polysaccharide, and a polysaccharide, such as a starch, which may also be considered a film-forming material. It has been unexpectedly discovered that combining a film-forming material with a starch produces synergistic results. In particular, a film-forming composition containing both a film-forming material and a starch has been found to be more efficient at reducing the ignition proclivity characteristics of a smoking article in comparison to a film-forming composition containing a film-forming material alone or a film-forming composition containing a starch alone.
  • The film-forming material combined with the starch in accordance with the present disclosure can vary depending upon the particular application. Film-forming materials that may be used include, for instance, guar gum, pectin, polyvinyl alcohol, polyvinyl acetate, cellulose, cellulose derivatives such as ethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and the like, alginates, and mixtures thereof. In one particular embodiment, for instance, a starch may be combined with an alginate in forming the composition.
  • The relative amounts of the starch and film-forming material, such as alginate, within the film-forming composition may vary depending upon the particular application. In one embodiment, for instance, the film-forming material may be present within the film-forming composition after being applied and dried on a paper wrapper in an amount from about 1% to about 15% by weight of the treated areas. Starch, on the other hand, may be present in the treated areas in an amount from about 1% to about 20% by weight of the treated areas.
  • In another embodiment of the present disclosure, the film-forming composition contains a film-forming material combined with specific filler particles.
  • The filler particles may comprise, for instance, magnesium oxide, mica, kaolin clay, or mixtures thereof. In the past, those skilled in the art have suggested combining a film-forming material with various particulate inorganic fillers. The present inventors have discovered, however, that the above fillers are unexpectedly more efficient at reducing the ignition proclivity properties of a treated paper wrapper in comparison to the particulate inorganic fillers used in the past.
  • The above listed filler particles may be contained in the film-forming composition (as applied to the wrapper) in an amount from about 0.25% to about 15% by weight of the composition, such as from about 0.5% to about 5% by weight of the composition. The filler particles can have an average diameter from about 0.0001 microns to about 5 microns, such as from about 0.1 microns to about 3 microns.
  • The film-forming material combined with the filler particles can be any suitable film-forming material such as an alginate. In an alternative embodiment, the filler particles can be combined with a starch. In still another embodiment, the filler particles may be combined with a film-forming composition containing both an alginate and a starch.
  • Other film-forming materials that may be used solely or in combination with the filler particles include guar gum, pectin, polyvinyl alcohol, polyvinyl acetate, cellulose and cellulose derivatives such as ethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and the like.
  • The film-forming composition made according to the present disclosure can be applied to the paper wrapper according to various methods. For example, the composition can be printed onto the paper using, for instance, flexography, direct gravure printing, and offset gravure printing.
  • In one embodiment, the discrete areas formed by the film-forming composition are in the shape of circumferential bands disposed longitudinally along the smoking article. The bands can have a width of greater than about 3 mm, such as from about 4 mm to about 10 mm. The bands can be spaced from each other at a distance of from about 5 mm to about 50 mm and particularly from about 10 mm to about 40 mm.
  • The amount of the film-forming composition that is applied to the paper wrapper depends upon the particular application and various factors. For example, the film-forming composition can be applied to the wrapper in an amount from about 1% to about 30% by dry weight based upon the weight of the wrapper within the treated areas, and particularly in an amount from about 2% to about 20% by dry weight.
  • Once applied to the paper wrapper, the treated areas can have a permeability of less than about 40 Coresta, particularly less than about 30 Coresta, and more particularly from about 1 Coresta to about 30 Coresta. The initial permeability of the paper wrapper can be from about 20 Coresta to about 150 Coresta or greater. For example, in one embodiment, the initial permeability of the paper wrapper may be greater than about 60 Coresta, such as greater than about 80 Coresta. In an alternative embodiment, the initial permeability of the paper wrapper may be less than about 60 Coresta, such as from about 20 Coresta to about 40 Coresta.
  • The film-forming composition when applied to the paper wrapper may be contained in an aqueous solution or may be contained in a non-aqueous solution. When contained in a non-aqueous solution, for example, an alcohol may be present.
  • The paper wrapper may have any suitable basis weight depending upon a particular application. In one particular embodiment, for instance, the paper wrapper may have a basis weight of from about 18 gsm to about 60 gsm. The paper wrapper may also be treated with a burn promoting agent over substantially the entire surface area of the paper wrapper. For example, the burn promoting agent may be applied to the paper wrapper prior to or after the treated areas are formed. The burn promoting agent may be applied to the paper wrapper in amounts from about 0.1% to about 8% by dry weight. The burn promoting agent may be, for instance, an acetic acid salt, a citric acid salt, a malic acid salt, a lactic acid salt, a tartaric acid salt, a carbonic acid salt, a formic acid salt, a propionic acid salt, a glycolic acid salt, a fumaric acid salt, an oxalic acid salt, a malonic acid salt, a succinic acid salt, a nitric acid salt, a phosphoric acid salt, or mixtures thereof. In one particular embodiment, the burn promoting agent is a citrate, a succinate, or mixtures thereof.
  • Other features and aspects of the present disclosure are discussed in greater detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A full and enabling disclosure of the present disclosure, including the best mode thereof to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures in which:
  • FIG. 1 is a perspective view of a smoking article made in accordance with the present disclosure;
  • FIG. 2 is an exploded view of the smoking article illustrated in FIG. 1; and
  • FIGS. 3-8 are graphical representations of the results obtained in the examples that follow.
  • Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the present disclosure.
  • DETAILED DESCRIPTION
  • Reference now will be made in detail to the embodiments of the disclosure, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the disclosure. For instance, features illustrated or described as part of one embodiment, can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations.
  • For purposes of explanation of the disclosure, the embodiments and principles of the disclosure will be discussed in regards to a cigarette. However, this is for the purposes of explanation of the disclosure only and is not meant to limit the disclosure only to cigarettes. Any manner of smoking article is within the scope and spirit of the disclosure.
  • The present disclosure relates to a smoking article and a wrapper for a smoking article having improved ignition proclivity control characteristics. “Ignition proclivity” is a measure of the tendency of the smoking article or cigarette to ignite a flammable substrate if the burning cigarette is dropped or otherwise left on a flammable substrate. A test for ignition proclivity of a cigarette has been established by NIST (National Institute of Standards and Technology) and is generally referred to as the “Mock-Up Ignition Test”. The test comprises placing a smoldering cigarette on a flammable test fabric and recording the tendency of the cigarette to either ignite the test fabric, burn the test fabric beyond a normal char line of the fabric, burn its entire length without igniting the fabric, or self-extinguish before igniting the test fabric or burning its entire length.
  • Another test for ignition proclivity is referred to as the “Cigarette Extinction Test”. The Cigarette Extinction Test is ASTM Test No. E2187-04. In the Cigarette Extinction Test, a lit cigarette is placed on one or more layers of filter paper. If the cigarette self extinguishes, the cigarette passes the test. If the cigarette burns all the way to its end on the filter, however, the cigarette fails. Smoking articles made in accordance with the present invention can be designed to pass one or both of these tests.
  • In addition to the above tests, smoking articles having reduced ignition proclivity cigarettes are typically also tested for “free air self-extinguishment” (FASE). During the free air extinguishment test, the smoking articles are allowed to burn in the free air without being puffed and without being placed on an adjacent surface. In some applications, it is desirable for a smoking article to pass the mock up ignition test or the cigarette extinction test while not self-extinguishing when left burning in the free air. Thus, lower FASE rates may be preferred. Of particular advantage, smoking articles constructed in accordance with the principles of the present disclosure may be configured to self extinguish when placed on an adjacent surface but yet have lower FASE rates in comparison to many prior products that are intended to have reduced ignition proclivity characteristics.
  • In general, smoking articles having reduced ignition proclivity are made according to the present disclosure by applying in discrete areas to a wrapping paper a film-forming composition. In one embodiment, the film-forming composition contains a film-forming material combined with a polysaccharide. The film-forming material may comprise, for instance, an alginate, guar gum, pectin, polyvinyl alcohol, polyvinyl acetate, cellulose, a cellulose derivative, or mixtures thereof. The polysaccharide may comprise, for instance, a starch. The starch may be a natural starch or may be a modified starch. The present inventors have discovered that when a polysaccharide and a film-forming material are combined together, various synergistic advantages and benefits are obtained.
  • In the past, the assignee of the present application has obtained various patents directed to smoking articles with reduced ignition proclivity characteristics. For example, paper wrappers treated with a film-forming composition that forms treated discrete areas on the wrapper are disclosed in U.S. Pat. Nos. 5,878,753; 5,878,754; 6,568,403; 6,779,530 and 6,725,867, which are incorporated herein by reference. The above patents disclose various different film-forming materials that may be used to form the treated discrete areas. In particular, the above patents disclose the use of alginate and disclose the use of starch. The present inventors, however, have found that various unexpected benefits and advantages are obtained when starch and a film-forming material such as an alginate are combined together.
  • For instance, although the rheology of starch and alginate are different, it has been discovered that the rheology of the two components are complimentary. When starch and alginate are combined, for instance, the resulting solution has improved printability.
  • The combination of a film-forming material such as an alginate and starch has also provided various efficiency improvements in the ability of the solution to form treated areas on paper wrappers that reduce the ignition proclivity characteristics of a smoking article incorporating the wrapper. In particular, on a weight basis, an alginate and starch solution is generally more efficient in lowering the permeability and diffusion capacity of the paper wrapper in comparison to a similar solution containing only starch or only alginate.
  • Although any film-forming material may be used in the composition in accordance with the present disclosure, in one embodiment, the film-forming material comprises an alginate. In general, an alginate is a derivative of an acidic polysaccaride or gum which occurs as the insoluble mixed calcium, sodium, potassium and magnesium salt in the Phaeophyceae brown seaweeds. Generally speaking, these derivatives are calcium, sodium, potassium, and/or magnesium salts of high molecular weight polysaccarides composed of varying proportions of D-mannuronic acid and L-guluronic acid. Exemplary salts or derivatives of alginic acid include ammonium alginate, potassium alginate, sodium alginate, propylene glycol alginate, and/or mixtures thereof.
  • Any suitable alginate may be used in the present disclosure, including any suitable derivatives. The alginate contained in the film-forming composition, for instance, may have a relatively high molecular weight or may have a relatively low molecular weight. For example, in one embodiment, the alginate may have a viscosity of less than about 500 cP when contained in a 3% by weight aqueous solution at 25° C.
  • In one embodiment, for instance, KELGIN LB alginate from ISP Corporation may be used. KELGIN LB alginate is a low viscosity, pure sodium alginate.
  • The polysaccharide that is combined with the alginate in accordance with the present disclosure may also vary depending upon the particular application. When using a starch, the starch, for instance, may be modified or may be unmodified and may be obtained from various plants. In one embodiment, for instance, an oxidized corn starch may be combined with the alginate. One example of a commercially available oxidized corn starch is FLOKOTE 64 commercially available from the National Starch and Chemical Company of Bridgewater, N.J.
  • When formulated into a film-forming composition and applied to a paper wrapper in accordance with the present disclosure, the film-forming material and polysaccharide can be combined with water or with any suitable solvent. For instance, in one embodiment, the film-forming composition may comprise an aqueous dispersion or an aqueous solution. Alternatively, the film-forming composition prior to being applied to the paper wrapper may comprise a non-aqueous solution or dispersion. For instance, an alcohol may be present and combined with the film-forming material and polysaccharide.
  • The amount of the film-forming material and polysaccharide present within the film-forming composition may depend upon various factors. When formulating an aqueous solution or dispersion, for instance, the film-forming material such as an alginate may be present in the film-forming composition in an amount from about 1% to about 15% by weight of the solution, such as from about 1% to about 10% by weight of the solution. For instance, in one embodiment, alginate may be present in an amount from about 1% to about 10% by weight of the solution. Starch, on the other hand, may be present in an amount from about 3% to about 25% by weight of the solution, such as from about 3% to about 20% by weight of the solution. For instance, in one embodiment, starch may be present in the film-forming composition in an amount from about 3% to about 15% by weight of the solution.
  • It should be understood that the above percentages are merely exemplary. When printing the film-forming composition onto a paper wrapper containing a film-forming material and polysaccharide, the film-forming material and polysaccharide can be contained in the composition in amounts sufficient so that the composition has Theological properties that make the composition amenable to a printing process. For instance, the relative amounts of film-forming material and polysaccharide can be present in the composition so that the composition has a viscosity of less than about 1500 cps.
  • Although unknown, it is believed that when a film-forming material and a polysaccharide are combined together, both components form a film on the surface of the paper that is well suited to extinguishing a smoking article should the article be left on an adjacent surface. Although unknown, it is believed that the film-forming material is better suited to forming a film on the wrapper while the polysaccharide maintains a lower viscosity and improves the properties of the treated areas. Once applied to the paper wrapper and dried, the treated areas may contain, in one embodiment, a greater amount of polysaccharide than film-forming material. In other embodiments, however, the polysaccharide and the film-forming material may be present in equal amounts or a greater amount of the film-forming material may be present. In general, for instance, the treated areas may contain a polysaccharide from about 1% to about 20% by dry weight of the treated area, while containing the film-forming material in an amount from about 1% to about 15% by dry weight of the treated area.
  • In an alternative embodiment of the present disclosure, the film-forming composition applied to the paper wrapper contains a film-forming material combined with filler particles. Specifically, the present inventors have discovered that certain filler particles provide unexpected advantages in improving the ignition proclivity characteristics of the wrapper in comparison to filler particles that have been proposed in the past. Specifically, in this embodiment of the present disclosure, the film-forming composition can contain magnesium oxide particles, kaolin clay particles, mica particles, or mixtures thereof.
  • In the past, such as in U.S. Pat. No. 6,725,867, those skilled in the art have proposed to combine a particulate filler into a composition used to form treated areas on a cigarette wrapping paper. In the '867 patent, for instance, the particulate filler is described as being chalk, clay, calcium carbonate or titanium oxide. The present inventors, however, have discovered that the above listed particles, as shown in the examples below, demonstrate unexpectedly superior results in comparison to the fillers listed in the '867 patent.
  • The magnesium oxide, mica, or kaolin clay may be present in the film-forming composition, for instance, in an amount less than about 15% by weight, such as from about 0.25% to about 15% by weight, and particularly, from about 0.5% to about 5% by weight. In many applications, for instance, the particles can be present in an amount from about 1% to about 3% by weight of the composition.
  • The size of the filler particles may vary depending upon the particular material used in the particular application. In general, the filler particles have an average diameter of less than about 5 microns. For instance, the average size of the particles may be from about 0.0001 microns to about 5 microns, such as from about 0.1 microns to about 3 microns. The shape of the particles may also vary. For instance, in one embodiment, kaolin clay particles may be used that have a plate-like shape.
  • As described above, in one embodiment, the filler particles comprise magnesium oxide particles. Although the reason is unknown, magnesium oxide particles provide superior results in comparison to many other filler particles. In particular, magnesium oxide particles have the ability to efficiently reduce the ignition proclivity properties of a smoking article containing a treated wrapper.
  • In general, any suitable magnesium oxide particles may be used in the film-forming composition. Magnesium oxide particles, for instance, are available from numerous commercial sources. For instance, in one embodiment, magnesium oxide particles may be used that are commercially available from Additek S.A.S. under the name Magnesium Oxide Super Leger Type 04. Magnesium oxide particles well suited for use in the present disclosure are also obtainable from Scora S.A. under the name Light Magnesium Oxide “I”. The Light Magnesium Oxide “I” particles, for instance, are greater than 98% by weight magnesium oxide, have a bulk density of from about 0.15 g/cc to about 0.2 g/cc and have a particle size such that about 98% of the particles pass through a 325 mesh sieve.
  • In another embodiment, the filler particles contained within the film-forming composition may comprise mica. Mica comprises a group of minerals consisting of hydrous silicates of aluminum or potassium which are common in igneous and metamorphic rocks. Mica is typically found in groups of sheet silicate minerals having a highly perfect basal cleavage. Thus, mica particles when incorporated into a film-forming composition typically have a plate-like shape. Mica has a high dielectric strength and therefore is resistant to heat.
  • Mica particles are commercially available from numerous sources. For instance, mica particles that are well suited for use in the present disclosure are obtainable from Kaolins de Ploemeur under the trade name MICA MU M2/1. MICA MU M2/1, for instance, has a particle size such that greater than about 50% of the particles have a size less than about 5 microns.
  • In another embodiment of the present disclosure, the film-forming composition may contain kaolin clay particles. Kaolin clay is generally a hydrous aluminum silicate mineral found in sediments, soils, hydrothermal deposits and sedimentary rocks. Kaolin clay particles can have a plate-like shape typically being found as a layered silicate mineral. Kaolin clay particles typically contain silicon dioxide and aluminum oxide.
  • Kaolin clay particles are available from numerous commercial sources. For instance, kaolin clay particles can be obtained from Kaolins de Ploemeur under the trade name 7ASP20. 7ASP20 kaolin clay, for instance, has a particle size such that greater than 89% of the particles have a size less than 5 microns and greater than about 64% of the particles have a size less than about 1 micron.
  • The filler particles as described above, when contained in the film-forming composition, can be combined with any suitable film-forming material. For instance, in one embodiment, the filler particles may be combined with an alginate and a starch as described above. In other embodiments, however, the filler particles may be combined with alginate alone or with starch alone.
  • Other film-forming materials that may be combined with the filler particles include guar gum, pectin, polyvinyl alcohol, polyvinyl acetate, cellulose, cellulose derivatives such as ethyl cellulose, methyl cellulose, and carboxymethyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, mixtures thereof, and the like.
  • Prior to application to the wrapper, the film-forming composition containing the filler particles may be water based. Alternatively, the film-forming composition may contain a non-aqueous solvent, such as an alcohol.
  • Film-forming compositions made according to the present disclosure, including film-forming compositions containing alginate and starch and/or film-forming compositions containing filler particles, can be applied to paper wrappers in discrete areas to form treated areas on the wrapper.
  • The manner in which the composition is applied to the paper wrapper can vary. For example, the composition can be sprayed, brushed or printed onto the wrapper. To form a treated area, the composition can be applied in a single pass or in a multiple pass operation. For instance, the composition can be applied to the wrapping paper in successive steps in order to form areas on the paper having reduced ignition proclivity. In general, during a multiple pass process, the treated areas can be formed by applying the composition during from about 2 to about 8 passes.
  • In order to assist in describing and explaining the present disclosure, one embodiment is illustrated generally in FIGS. 1 and 2. A smoking article (cigarette), generally 10, having improved ignition proclivity characteristics includes a tobacco column 12 within a wrapper 14. Article 10 may include a filter 26. Wrapper 14 may include any manner of commercially available cigarette wrapper.
  • Generally, the wrapping paper can be made from cellulosic fibers obtained, for instance, from flax, softwood or hardwood. In order to vary the properties of the paper as desired, various mixtures of cellulosic fibers can be used. The extent to which the fibers are refined can also be varied.
  • For most applications, the paper wrapper will contain a filler. The filler can be, for instance, calcium carbonate, magnesium oxide, or any other suitable material. The total filler loading added to the paper wrapper can be between about 10% to about 40% by weight.
  • The permeability of a paper wrapper for smoking articles made according to the present disclosure can generally be from about 10 Coresta units to about 200 Coresta units. In some applications, the permeability can be between about 15 Coresta units to about 55 Coresta units. In one embodiment of the present disclosure, however, the initial permeability of the paper wrapper is relatively high. For instance, in one embodiment, the permeability of the paper wrapper can be from about 60 Coresta units to about 110 Coresta units. In various embodiments, for example the initial permeability of the paper wrapper may be greater than about 70 Coresta units, greater than about 80 Coresta units, greater than about 90 Coresta units, or greater than about 100 Coresta units.
  • In other embodiments, the initial permeability of the paper wrapper may be less than about 60 Coresta units, such as less than about 50 Coresta units, such as from about 20 Coresta units to about 40 Coresta units.
  • The basis weight of cigarette wrapping paper is usually between about 18 gsm to about 60 gsm, and more particularly between about 15 gsm to about 40 gsm. Wrapping papers according to the present disclosure can be made within any of these ranges.
  • In one embodiment, the paper wrapper may be treated with a burn promoting agent. The burn-promoting agent, for example, may be applied over substantially the entire surface area of the wrapping paper, especially over the surface area of the wrapping paper where the treated areas are located including the untreated areas spaced between the treated areas. The burn promoting agent may comprise any suitable substance that enhances the burn rate. Examples of burn promoting agents include alkali metal salts, alkaline earth metal salts, and mixtures thereof. In one embodiment, the burn promoting agent may comprise a salt of a carboxylic acid. In particular examples, for instance, the burn promoting agent may comprise an acetic acid salt, a citric acid salt, a malic acid salt, a lactic acid salt, a tartaric acid salt, a carbonic acid salt, a formic acid salt, a propionic acid salt, a glycolic acid salt, a fumaric acid salt, an oxalic acid salt, a malonic acid salt, a succinic acid salt, a nitric acid salt, a phosphoric acid salt, and mixtures thereof. In one particular application, for instance, the burn promoting agent may comprise potassium citrate, sodium citrate, potassium succinate, sodium succinate, or mixtures thereof.
  • The burn promoting agent may be applied relatively uniformly over the surface area of the paper wrapper in an amount from about 0.3% to over 8% by dry weight, such as from about 0.3% to about 2.5% by dry weight. The burn promoting agent may be applied to the wrapper prior to or after the treated areas are formed on the wrapper using the film forming composition.
  • The burn promoting agent may be applied to the wrapper for various reasons. For example, the burn promoting agent may be applied so as to further control the burn properties of the wrapper, especially in the untreated areas on the wrapper. The burn promoting agent may also serve as an ash conditioner.
  • Paper web 14 defines an outer circumferential surface 16 when wrapped around tobacco column 12. Discrete areas 18 of outer circumferential surface 16 are treated with a film-forming composition made in accordance with the present invention, such as an alginate composition blended with a burn promoting agent. It should also be understood that treated areas 18 could also be disposed on the inner surface of wrapper 14. In other words, wrapper 14 could be rolled around tobacco column 12 so that treated areas 18 are adjacent to the tobacco.
  • In the embodiment illustrated in FIGS. 1 and 2, treated areas 18 are defined as circumferential cross-directional bands 24. Bands 24 are spaced apart from each other longitudinally along the length of cigarette 10. The bands 24 are indicated in phantom in FIG. 2. However, it should be understood that the treated areas are essentially invisible in the formed cigarette as shown in FIG. 1. In other words, a smoker may not discern from any outward sign that the wrapper 14 has been treated in discrete areas 18. In this regard, treated areas 18 have a smooth and flat texture essentially the same as untreated areas 28.
  • The width and spacing of bands 24 are dependent on a number of variables, such as the initial permeability of wrapper 14, density of tobacco column 12, etc. The bands 24 preferably have a width so that oxygen is limited to the burning coal for a sufficient length or period of time to extinguish the coal. In other words, if band 24 were too narrow, the burning coal would burn through band 24 before self-extinguishing. For most applications, a minimum band width of 3 mm is desired. For example, the band width can be from about 4 mm to about 10 mm.
  • The spacing between bands 24 is also a factor of a number of variables. The spacing should not be so great that the cigarette burns for a sufficient length of time to ignite a substrate before the coal ever burns into a treated area 18. The spacing between bands 24 also affects the thermal inertia of the burning coal, or the ability of the coal to burn through the treated bands 24 without self-extinguishing. In the cigarettes tested, applicants have found that a band spacing of between 5 and 50 mm is appropriate and particularly between about 10 mm and 40 mm. However, it should be understood that the band spacing can be any suitable width as determined by any number of variables. For most applications, the smoking article can contain from 1 to about 3 bands using the above spacing.
  • Treated areas 18 have a permeability within a range which is known to provide improved ignition proclivity characteristics for the make-up of cigarette 10. As the coal of cigarette 10 burns into treated areas 18, oxygen available to the burning coal is substantially reduced due to the decreased permeability of wrapper 14 in the treated areas. The reduction of oxygen preferably causes the cigarette to self-extinguish in the treated areas 18 when in contact with a substrate. The permeability, for instance, may be less than 40 ml/min/cm2 (CORESTA), particularly less than 30 ml/min/cm2, and generally within a range of 5 to 25 ml/min/cm2.
  • Another property of the paper wrapper than can be used to indicate reduced ignition proclivity properties is diffusion capacity. In general, the treated areas 18 according to the present disclosure can have a diffusion capacity of less than about 0.5 cm/s, such than about 0.4 cm/s. For instance, the diffusion capacity can be from about 0 cm/s to about 0.3 cm/s.
  • Diffusion capacity of the paper wrapper, for instance, can be measured using, for instance, a carbon dioxide diffusion capacity tester that is marketed by SODIM Instrumentation Company.
  • The above described diffusion capacity ranges are particularly applicable to characterizing treated areas made from a combination of a film-forming material and a polysaccharide. In other embodiments of the present disclosure, such as when a film-forming material is combined with filler particles, the diffusion capacity may be higher than as described above. In particular, the filler particles of the present disclosure when contained in the film-forming composition may reduce the ignition proclivity properties of the paper because the particles are flame retardants. Thus, in some embodiments, the treated areas may have a diffusion capacity of higher than 0.5 cm/s.
  • The amount of composition that is added to the paper will depend upon various factors, including the type of composition that is used and the desired result. For most applications, the film-forming composition can be added to the paper in an amount from about 1% to about 30% by dry weight of the paper within the banded region, and particularly from about 2% to about 20% by dry weight of the paper within the banded region after the bands have been formed and dried. Although not always the case, generally the amount of the composition applied to the paper will generally increase as the permeability of the paper increases. For instance, for wrapping papers having a permeability of less than about 30 Coresta units, the composition can be applied to a paper in an amount from about 1% to about 20% by weight. For wrapping papers having a permeability greater than about 60 Coresta units, on the other hand, the composition can be applied to the paper in an amount from about 3% to about 30% by weight.
  • As described above, the composition can be sprayed, brushed, or printed onto the wrapper. In general, any suitable printing process can be used in the present invention. Applicants have found that suitable printing techniques include gravure printing, or flexographic printing.
  • The present disclosure may be better understood with reference to the following examples.
  • EXAMPLE 1
  • Various paper wrappers were made containing cellulosic fibers in combination with a filler. In this example, the filler comprised calcium carbonate having a medium particle size of 2 microns. The calcium carbonate particles were present in the paper wrapper in an amount of 30% by weight. The wrappers had a basis weight of 27 gsm and a base permeability of 53 Coresta.
  • Various film-forming compositions were formulated and printed onto the paper wrapper. In particular, the following film-forming compositions were formulated.
      • 1. Aqueous composition containing 1.5% by weight alginate.
      • 2. Aqueous composition containing 10% by weight starch.
      • 3. Aqueous composition containing 11.5% by weight starch.
      • 4. Aqueous composition containing 8% by weight alginate.
      • 5. Aqueous composition containing 11.5% by weight alginate.
      • 6. Aqueous composition containing 1.5% by weight alginate and 10% by weight starch.
  • In this example, the alginate used was KELGIN LB obtained from International Specialty Products. The starch used was an oxidized starch sold under the trade name FLOKOTE 64 obtained from the National Starch and Chemical Company.
  • After the above compositions were applied to the paper wrapper and dried, the permeability within the treated areas was measured and compared to the untreated paper wrapper. The results are shown in FIG. 3. As shown, the combination of alginate and starch was more efficient at reducing the permeability of the paper wrapper in comparison to the other compositions. In each case, the same amount of composition was applied to the paper wrapper.
  • EXAMPLE 2
  • In this example, various film-forming compositions were formulated containing both sodium alginate and an oxidized starch. In particular, the same alginate and starch as described in Example 1 were used.
  • In one set of tests, the film-forming compositions were applied to a paper wrapper as described in Example 1 having a permeability of 53 Coresta. In a second set of tests, the film-forming compositions were applied to a paper wrapper having a base permeability of 80 Coresta.
  • Specifically, the following film-forming compositions were formulated:
  • PERCENT
    BY WEIGHT PERCENT BY
    SAMPLE SODIUM ALGINATE WEIGHT OXIDIZED VISCOSITY
    NO. (%) STARCH (%) (CPS)
    1 3.2 15 180
    2 4.75 11.3 210
    3 6.3 7.5 270
  • The above film-forming compositions were applied to the paper wrapper using the same process described in Example 1. The following results were obtained:
  • Results on Paper Wrapper Having a Base Permeability of 53 Coresta
  • PERMEABILITY WITHIN THE TREATED
    SAMPLE NO. AREAS (CORESTA)
    1 13
    2 13
    3 15
  • Results on Paper Wrapper Having a Base Permeability of 80 Coresta
  • PERMEABILITY WITHIN THE TREATED
    SAMPLE NO. AREAS (CORESTA)
    1 22
    2 22
    3 26
  • The 53 Coresta base paper containing Sample No. 3 and the 80 Coresta base paper containing Sample No. 1 were then wrapped around a column of a tobacco filler. The resulting smoking articles were tested according to ASTM Test No. E2187-04 and according to the FASE Test. The following results were obtained:
  • BASE PERMEABILITY COMPOSITION ASTM SE
    (CORESTA) SAMPLE NO. FASE SE (%) (%)
    53 3 10 100
    80 1 10 95
  • As shown above, both of the smoking articles were very effective at self-extinguishing when placed on adjacent surface. Of particular advantage, both smoking articles also had a low FASE rating indicating that smoking articles have a lower tendency to self-extinguish when left in a free-burning state.
  • EXAMPLE 3
  • In this example, various filler particles were added to a sodium alginate film-forming composition and applied to a paper wrapper. In particular, film-forming compositions were made containing kaolin clay particles and magnesium oxide particles. These formulations were then compared with film-forming compositions containing no particles and film-forming compositions containing calcium carbonate particles and talc particles.
  • In particular, the following filler particles were added to an aqueous solution containing 9.5% by weight sodium alginate. The sodium alginate used in this example was KELGIN LB sodium alginate obtained from International Specialty Products.
  • SAMPLE NO. FILLER PARTICLES SOLUTION WEIGHT (%)
    1
    2 TALC 15
    3 CALCIUM CARBONATE 15
    (2 MICRONS)
    4 CALCIUM CARBONATE 15
    (1 MICRON)
    5 MAGNESIUM OXIDE 15
    6 KAOLIN CLAY 15
  • The above film-forming compositions were applied to the same paper wrappers described in Example 2 above. In particular, the film forming compositions were printed onto a paper wrapper having a base permeability of 53 Coresta and a paper wrapper having a base permeability of 80 Coresta. The permeability within the treated areas was then measured after the film-forming compositions had dried on the paper. The results are illustrated in FIG. 4.
  • As shown in FIG. 4, kaolin clay particles and magnesium oxide particles unexpectedly reduced the permeability of the wrappers to a much greater extent than the film-forming composition containing no filler particles and in comparison to the film-forming compositions containing talc or calcium carbonate.
  • EXAMPLE 4
  • In this example, different amounts of the same filler particles were added to a sodium alginate solution and tested.
  • Specifically kaolin clay particles and magnesium oxide particles were added to a 9.5% by weight sodium alginate composition. The sodium alginate used was KELGIN LB sodium alginate obtained from the International Specialty Products. The following film-forming compositions were formulated.
  • SAMPLE NO. FILLER WEIGHT (%)
    1 NONE 0
    2 KAOLIN CLAY 4
    3 KAOLIN CLAY 8
    4 KAOLIN CLAY 13
    5 MAGNESIUM OXIDE 10
    6 MAGNESIUM OXIDE 5
    7 MAGNESIUM OXIDE 4
    8 MAGNESIUM OXIDE 3
    9 MAGNESIUM OXIDE 2
    10 MAGNESIUM OXIDE 1
  • The above film-forming compositions were then applied to the 80 Coresta paper wrapper described in the preceding examples. Various tests were then conducted on the compositions and on the paper wrappers. In addition, some of the paper wrappers were made into smoking articles and tested. The results are illustrated in FIGS. 5-8.
  • FIG. 5, for instance, shows the permeability within the treated areas for Sample Nos. 1-4 containing the kaolin clay particles. The viscosity of the film-forming compositions was also tested and appears in the graph. As shown, the permeability of the treated areas decreases as the amount of kaolin clay particles increases.
  • Referring to FIG. 6, the effect of the amount of magnesium oxide in the film-forming composition on the permeability on the treated areas is shown. As illustrated, as the amount of magnesium oxide increases, the permeability of the treated areas decreases. In FIG. 6, the amount of magnesium oxide in the film-forming composition varies from 0 to 4%.
  • Paper wrappers containing the various amounts of magnesium oxide were then used to construct cigarettes that were tested according to ASTM Test No. E2187-04 and according to the FASE Test. The ASTM Test measures the ability of the treated areas to extinguish the cigarette when left resting on an adjacent surface. A higher number is generally preferred. The FASE Test, on the other hand, evaluates whether or not the cigarette self-extinguishes when left free-burning. Generally, a lower FASE result is preferred but not necessary or critical. For many applications, for instance, ASTM test results can be more important than the FASE results.
  • The results of these tests are illustrated in FIG. 7. As shown, the presence of magnesium oxide within the film-forming composition improves the ASTM ranking. Increasing the amount of magnesium oxide within the film-forming composition, however, has a tendency to increase the FASE ranking. As shown, when magnesium oxide particles are present within a film-forming composition containing 9.5% by weight alginate, better FASE results are achieved when magnesium oxide is present in an amount less than about 3% by weight.
  • Referring to FIG. 8, further FASE and ASTM results are shown for an alginate composition containing no filler particles, for an alginate composition containing 5% by weight magnesium oxide particles, and for an alginate composition containing 10% by weight magnesium oxide. As shown, the control formulation containing 9.5% alginate did not pass the ASTM Test. It is believed that the permeability of the treated areas was too high.
  • EXAMPLE 5
  • In this example, magnesium oxide particles were added to an oxidized starch solution and applied to a paper wrapper with a base permeability of 60 Coresta.
  • Specifically 3% by weight magnesium oxide particles were added to a 22% by weight starch composition. The starch used was an oxidized starch sold under the trade name FLOKOTE 64 obtained from the National Starch and Chemical Company.
  • The solution was then applied to a paper web in bands, dried, and tested for permeability. The resulting band permeability was 6 Coresta.
  • The treated paper was then wrapped around a column of a tobacco filler. The resulting smoking article was tested according to ASTM Test No. E2187-04 and according to the FASE Test. The following results were obtained:
  • BASE PERMEABILITY
    (CORESTA) ASTM SE (%) FASE SE (%)
    60 98 42
  • As shown above, the smoking article was very effective at self-extinguishing when placed on adjacent surface.
  • While the invention has been described in detail with respect to the specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of, and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.

Claims (42)

1. A smoking article having reduced ignition proclivity characteristics comprising:
a column comprising a smokable tobacco; and
a paper wrapper surrounding the column of the smokable tobacco, the paper wrapper including discrete areas treated with a film-forming composition, the treated areas being separated by untreated areas, the treated areas having characteristics sufficient to reduce ignition proclivity, the film-forming composition applied to the paper wrapper comprising a film-forming material and a polysaccharide.
2. A smoking article as defined in claim 1, wherein the film-forming material comprises an alginate and the polysaccharide comprises a starch.
3. A smoking article as defined in claim 2, wherein the film-forming material comprises the alginate in an amount of from about 1% to about 15% by weight of the treated areas and the starch in an amount from about 1% to about 20% by weight of the treated areas.
4. A smoking article as defined in claim 2, wherein the alginate comprises sodium alginate.
5. A smoking article as defined in claim 2, wherein the starch comprises an oxidized starch.
6. A smoking article as defined in claim 1, wherein the treated areas have a diffusion capacity of less than about 0.5 cm/s.
7. A smoking article as defined in claim 1, wherein the treated areas are printed onto the paper wrapper.
8. A smoking article as defined in claim 2, wherein the film-forming material comprises the alginate in an amount of from about 1% to about 10% by weight of the treated areas and the starch in an amount from about 3% to about 20% by weight of the treated areas.
9. A smoking article as defined in claim 1, wherein the treated areas comprise a plurality of discrete circumferential bands disposed longitudinally along the smoking article.
10. A smoking article as defined in claim 9, wherein the bands are spaced from each other at a distance of from about 5 mm to about 50 mm, the bands having a width of greater than about 3 mm.
11. A smoking article as defined in claim 1, wherein the treated areas have a permeability of less than about 30 Coresta.
12. A smoking article as defined in claim 1, wherein the paper wrapper has a basis weight of from about 18 gsm to about 60 gsm.
13. A smoking article as defined in claim 1, wherein the untreated areas of the paper wrapper have a permeability of greater than about 80 Coresta.
14. A smoking article as defined in claim 1, wherein a burn-promoting agent is applied uniformly over substantially the entire surface area of the paper wrapper.
15. A smoking article as defined in claim 14, wherein the burn-promoting agent comprises of an acetic acid salt, a citric acid salt, a malic acid salt, a lactic acid salt, a tartaric acid salt, a carbonic acid salt, a formic acid salt, a propionic acid salt, a glycolic acid salt, a fumaric acid salt, an oxalic acid salt, a malonic acid salt, a succinic acid salt, a nitric acid salt, a phosphoric acid salt, or mixtures thereof.
16. A smoking article as defined in claim 1, wherein the film-forming composition contains filler particles.
17. A smoking article as defined in claim 16, wherein the filler particles comprise magnesium oxide, mica, kaolin clay, or mixtures thereof.
18. A smoking article having reduced ignition proclivity characteristics comprising:
a column comprising a smokable tobacco; and
a paper wrapper surrounding the column of the smokable tobacco, the paper wrapper including discrete areas treated with a film-forming composition, the treated areas being separated by untreated areas, the treated areas having characteristics sufficient to reduce ignition proclivity, the film-forming composition applied to the paper wrapper containing filler particles, the filler particles comprising magnesium oxide, mica, kaolin clay, or mixtures thereof.
19. A smoking article as defined in claim 18, wherein the film-forming composition comprises an alginate.
20. A smoking article as defined in claim 19, wherein the film-forming composition further comprises a starch.
21. A smoking article as defined in claim 20, wherein the film-forming material comprises the alginate in an amount of from about 1% to about 15% by weight of the treated area and the starch in an amount from about 1% to about 20% by weight of the treated area.
22. A smoking article as defined in claim 18, wherein the filler particles have an average particle size from about 0.0001 microns to about 5 microns.
23. A smoking article as defined in claim 18, wherein the filler particles have an average particle size from about 0.1 microns to about 3 microns.
24. A smoking article as defined in claim 18, wherein the filler particles comprise magnesium oxide.
25. A smoking article as defined in claim 18, wherein the filler particles comprise kaolin clay.
26. A smoking article as defined in claim 18, wherein the filler particles comprise mica.
27. A smoking article as defined in claim 18, wherein the filler particles are present within the film-forming composition in an amount from about 0.25% to about 15% by weight.
28. A smoking article as defined in claim 18, wherein the filler particles are present within the film-forming composition in an amount from about 0.5% to about 5% by weight.
29. A smoking article as defined in claim 18, wherein the untreated areas of the paper wrapper have a permeability of greater than about 60 Coresta.
30. A smoking article as defined in claim 18, wherein the treated areas have a permeability of less than about 40 Coresta.
31. A smoking article as defined in claim 18, wherein the film-forming composition comprises a starch.
32. A paper wrapper for a smoking article that provides the smoking article with reduced ignition proclivity characteristics comprising:
a paper web designed to surround a smokable filler, the paper web including discrete areas treated with a film-forming composition, the treated areas being separated by untreated areas, the film-forming composition applied to the paper wrapper comprising an alginate combined with a starch, the treated areas having an inherent permeability of less than about 30 Coresta, and a diffusion capacity of less than about 0.4 cm/s, the paper web having a basis weight from about 18 gsm to about 60 gsm, the alginate being present in the film-forming composition amount from about 1% by weight to about 15% by weight, while the starch being present in the film-forming composition in an amount from about 1% by weight to about 20% by weight.
33. A paper wrapper for a smoking article that provides the smoking article with reduced ignition proclivity characteristics comprising:
a paper web designed to surround a smokable filler, the paper web including discrete areas treated with a film-forming composition, the treated areas being separated by untreated areas, the film-forming composition comprising a film-forming material combined with filler particles, the filler particles comprising magnesium oxide, mica, kaolin clay, alum, or mixtures thereof, the filler particles being present in the film-forming composition in an amount from about 0.25% by weight to about 15% by weight, the paper web having a basis weight from about 18 gsm to about 60 gsm.
34. A paper wrapper as defined in claim 33, wherein the film-forming composition comprises an alginate.
35. A paper wrapper as defined in claim 34, wherein the film-forming composition further comprises starch.
36. A paper wrapper as defined in claim 33, wherein the filler particles comprise magnesium oxide.
37. A paper wrapper as defined in claim 33, wherein the filler particles comprise kaolin clay.
38. A paper wrapper as defined in claim 33, wherein the filler particles comprise mica.
39. A paper wrapper for a smoking article that provides the smoking article with reduced ignition proclivity characteristics comprising:
a paper web designed to surround a smokable filler, the paper web including discrete treated areas treated with a composition, the treated areas being separated by untreated areas, the composition comprising starch combined with filler particles, the filler particles comprising magnesium oxide, mica, kaolin clay, alum, or mixtures thereof, the filler particles being present in the composition in an amount from about 0.25% by weight to about 15% by weight, the paper web having a basis weight of from about 18 gsm to about 60 gsm.
40. A process for producing a paper wrapper having reduced ignition proclivity characteristics when incorporated into a smoking article comprising:
applying to the paper wrapper a film-forming composition at particular locations, the film-forming composition forming treated discrete areas on the wrapper, the discrete areas being separated by untreated areas, the film-forming composition comprising an aqueous composition, the film-forming composition containing an alginate and a starch, the treated areas reducing ignition proclivity of the smoking article incorporating the paper wrapper.
41. A process as defined in claim 40, wherein the alginate is present in the film-forming composition applied to the paper wrapper in an amount from about 1% to about 15% by weight, while starch is present within the film-forming composition in an amount from about 1% to about 20% by weight.
42. A process for producing a paper wrapper having reduced ignition proclivity characteristics when incorporated into a smoking article comprising:
applying to the paper wrapper a film-forming composition at particular locations, the film-forming composition forming treated discrete areas on the wrapper, the discrete areas being separated by untreated areas, the film-forming composition comprising an aqueous composition, the film-forming composition containing a film-forming material and filler particles, the filler particles comprising magnesium oxide, mica, kaolin clay, or mixtures thereof, the treated discrete areas reducing ignition proclivity of the smoking article incorporating the paper wrapper.
US12/167,615 2007-07-03 2008-07-03 Smoking Articles Having Reduced Ignition Proclivity Characteristics Abandoned US20090120450A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/167,615 US20090120450A1 (en) 2007-07-03 2008-07-03 Smoking Articles Having Reduced Ignition Proclivity Characteristics
US14/099,305 US10470489B2 (en) 2007-07-03 2013-12-06 Smoking articles having reduced ignition proclivity characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95826307P 2007-07-03 2007-07-03
US12/167,615 US20090120450A1 (en) 2007-07-03 2008-07-03 Smoking Articles Having Reduced Ignition Proclivity Characteristics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/099,305 Division US10470489B2 (en) 2007-07-03 2013-12-06 Smoking articles having reduced ignition proclivity characteristics

Publications (1)

Publication Number Publication Date
US20090120450A1 true US20090120450A1 (en) 2009-05-14

Family

ID=39967637

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/167,615 Abandoned US20090120450A1 (en) 2007-07-03 2008-07-03 Smoking Articles Having Reduced Ignition Proclivity Characteristics
US14/099,305 Active 2031-07-21 US10470489B2 (en) 2007-07-03 2013-12-06 Smoking articles having reduced ignition proclivity characteristics

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/099,305 Active 2031-07-21 US10470489B2 (en) 2007-07-03 2013-12-06 Smoking articles having reduced ignition proclivity characteristics

Country Status (14)

Country Link
US (2) US20090120450A1 (en)
EP (1) EP2160104B1 (en)
JP (2) JP5800503B2 (en)
KR (1) KR101519821B1 (en)
CN (2) CN101686732B (en)
AU (1) AU2008272833B2 (en)
BR (1) BRPI0812819B1 (en)
CA (2) CA2891884C (en)
ES (1) ES2811104T3 (en)
MX (1) MX2009013191A (en)
RU (3) RU2009147306A (en)
UA (2) UA107736C2 (en)
WO (1) WO2009006570A2 (en)
ZA (1) ZA200907969B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090159090A1 (en) * 2007-12-20 2009-06-25 Reemtsma Cigarettenfabriken Gmbh Smoking article with improved extinguishing characteristcs
WO2010149380A1 (en) * 2009-06-25 2010-12-29 Delfortgroup Ag Film-forming composition for applying to cigarette paper
WO2011120687A1 (en) * 2010-04-01 2011-10-06 Delfortgroup Ag Perforated cigarette paper
US20130139838A1 (en) * 2010-07-30 2013-06-06 Delfortgroup Ag Cigarette Paper Having a High Diffusion Capacity During Thermal Decomposition
AU2012255420A1 (en) * 2011-05-13 2013-12-19 Minfeng Special Paper Co. Ltd. Cigarette paper having low susceptibility to ignition and preparation method therefor
WO2014058102A1 (en) * 2012-10-09 2014-04-17 Kt & G Corporation Low ignition propensity cigarette paper and cigarette including the same
DE102013106516B3 (en) * 2013-06-21 2014-10-09 Delfortgroup Ag CIGARETTE PAPER GIVING A CIGARETTE AN EQUAL TRAIN PROFILE
US8939155B2 (en) 2011-07-28 2015-01-27 Delfortgroup Ag Oil-resistant filter wrapper paper
US9149068B2 (en) 2012-10-11 2015-10-06 Schweitzer-Mauduit International, Inc. Wrapper having reduced ignition proclivity characteristics
US11723398B2 (en) * 2019-02-11 2023-08-15 Mativ Holdings, Inc. Cocoa wrapper for smoking articles
US12029236B2 (en) 2013-09-05 2024-07-09 SWM Holdings US, LLC Coated plug wrap for a smoking article

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009147306A (en) 2007-07-03 2011-08-10 Швайцер-Маудит Интернешнл, Инк. (Us) SMOKING PRODUCTS WITH A REDUCED IGNITION CAPACITY
WO2012131902A1 (en) * 2011-03-29 2012-10-04 日本たばこ産業株式会社 Cigarette rolling paper manufacturing method, manufacturing device, and cigarette rolling paper
ES2393460B1 (en) * 2011-06-09 2013-10-18 Miquel Y Costas & Miquel, S.A. COMPOSITION FOR COVERING A PAPER WRAPPING OF SMOKING ITEMS
CN102493268B (en) * 2011-11-28 2014-04-16 云南烟草科学研究院 Efficient flame-retardant coating for low-ignition-tendency cigarette paper
CN102493280A (en) * 2011-12-02 2012-06-13 牡丹江恒丰纸业股份有限公司 Device and method for manufacturing cigarette paper with flame-retardant belt
CN102493285B (en) * 2011-12-02 2013-10-30 牡丹江恒丰纸业股份有限公司 Fire retardant, cigarette paper with antiflaming belt and preparation method of cigarette paper
WO2013173434A1 (en) 2012-05-15 2013-11-21 Mantrose-Haeuser Co., Inc. Seaweed-based food packaging coating
CN102864680B (en) * 2012-09-17 2015-06-24 川渝中烟工业有限责任公司 Functional cigarette paper combustion regulator and application thereof
WO2014087530A1 (en) * 2012-12-06 2014-06-12 日本たばこ産業株式会社 Double-wrapped cigarette
WO2014087529A1 (en) * 2012-12-06 2014-06-12 日本たばこ産業株式会社 Double-wrapped cigarette
DE102013109386B3 (en) * 2013-08-29 2015-01-15 Delfortgroup Ag Efficiently produced cigarette paper for self-extinguishing cigarettes, process for its preparation and a cigarette
CN114766716A (en) * 2013-12-11 2022-07-22 施韦特-莫迪国际公司 Wrapper for a smoking article
CN104805730B (en) * 2015-04-07 2017-04-26 牡丹江恒丰纸业股份有限公司 Burning inhibition composition with carbon monoxide reduction function for cigarette paper and applying method and manufacturing method thereof
CN105919156A (en) * 2015-10-14 2016-09-07 韦斯利·韦德 Luminous cigarette
JP7039556B2 (en) * 2016-08-17 2022-03-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with improved wrapper
CN106192599B (en) * 2016-08-19 2018-06-26 浙江民丰罗伯特纸业有限公司 A kind of preparation method of low igniting property cigar wrapping paper
CN108669663B (en) * 2018-05-31 2024-03-29 乐美星辰(深圳)生物科技有限公司 Heating non-burning cigarette
CN111364289A (en) * 2018-12-26 2020-07-03 云南红塔蓝鹰纸业有限公司 Cigarette paper with low air permeability variation coefficient and preparation method thereof
DE102019112777B3 (en) * 2019-05-15 2020-08-06 Delfortgroup Ag WRAPPING PAPER WITH USE INDICATOR FOR AEROSOL GENERATING ITEMS
AU2021253824A1 (en) * 2020-04-07 2022-10-20 Swm Luxembourg Non-combustible wrapper for use in heat but not burn applications
CA3208106A1 (en) * 2021-02-22 2022-08-25 Bruno STEFANI Wrapper for aerosol delivery products and aerosol delivery products made therefrom
WO2024013782A1 (en) * 2022-07-11 2024-01-18 日本たばこ産業株式会社 Wrapper for non-combustion-heated flavor inhalation article

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1996002A (en) * 1933-05-25 1935-03-26 Seaman Stewart Elmer Decreasing inflammability of cigarettes
US2013508A (en) * 1933-05-25 1935-09-03 Seaman Stewart Elmer Difficultly flammable cigarette wrapper
US2776912A (en) * 1952-04-30 1957-01-08 Hercules Powder Co Ltd Process of coating paper with a gellable water-soluble cellulose derivative and pigment and gelling said coating
US3215579A (en) * 1963-01-23 1965-11-02 Formica Corp Process for releasing laminates
US3351479A (en) * 1963-05-14 1967-11-07 Kelco Co Paper coating compositions and processes
US3511247A (en) * 1968-05-10 1970-05-12 Philip Morris Inc Smoking product and method of making the same
US3526904A (en) * 1968-05-10 1970-09-01 Philip Morris Inc Film covered,apertured cigarette wrapper
US3620801A (en) * 1968-06-07 1971-11-16 Wiggins Teape Res Dev Sized transfer sheet
US3699973A (en) * 1971-07-06 1972-10-24 Philip Morris Inc Film covering for apertured smoking product wrapper
US3736940A (en) * 1967-07-18 1973-06-05 Pastou J Saint Cigarette with ash-retaining means
US3911932A (en) * 1974-07-31 1975-10-14 Philip Morris Inc Control of smoking delivery through cigarette paper porosity
US3949762A (en) * 1973-11-13 1976-04-13 Anthony Alfred West Fibres
US4077414A (en) * 1975-01-09 1978-03-07 Brown & Williamson Tobacco Corporation Smoking articles
US4129134A (en) * 1975-04-14 1978-12-12 Philip Morris Incorporated Smoking article
US4146040A (en) * 1977-03-17 1979-03-27 Cohn Charles C Cigarettes
US4222740A (en) * 1979-03-05 1980-09-16 Armstrong Cork Company Coloration method for textiles
US4267240A (en) * 1979-11-13 1981-05-12 Formica Corporation Release sheets and process of use
US4303084A (en) * 1980-07-14 1981-12-01 Eli Simon Self-extinguishing cigarettes
US4452259A (en) * 1981-07-10 1984-06-05 Loews Theatres, Inc. Smoking articles having a reduced free burn time
US4590955A (en) * 1984-07-11 1986-05-27 Olin Corporation Cigarette paper with reduced CO on burning
US4607647A (en) * 1983-06-15 1986-08-26 British-American Tobacco Company Limited Smoking articles
US4615345A (en) * 1983-08-08 1986-10-07 Kimberly-Clark Corporation Wrapper constructions for self-extinguishing smoking articles
US4622983A (en) * 1983-08-08 1986-11-18 Kimberly-Clark Corporation Reduced ignition proclivity smoking article wrapper and smoking article
US4679575A (en) * 1984-11-23 1987-07-14 Japan Tobacco Inc. Cigarette
US4739775A (en) * 1986-09-26 1988-04-26 Kimberly-Clark Corporation Wrapper constructions for self-extinguishing and reduced ignition proclivity smoking articles
US4784164A (en) * 1986-01-07 1988-11-15 Gallaher Limited Smoking rod wrappers and compositions for their production
US4805644A (en) * 1986-06-30 1989-02-21 Kimberly-Clark Corporation Sidestream reducing cigarette paper
US4889145A (en) * 1986-08-27 1989-12-26 Gallagher Limited Smoking rod wrapper and compositions for their production
US4945932A (en) * 1988-01-29 1990-08-07 H. F. & Ph. F. Reemtsma Gmbh & Co. Cigarette which goes out rapidly or is self-extinguishing
US4984589A (en) * 1988-11-30 1991-01-15 Julius Glatz Gmbh Wrapper for smoking article
US4998542A (en) * 1989-02-23 1991-03-12 Philip Morris Incorporated Wrapper for smoking articles and method for preparing same
US5057606A (en) * 1989-01-24 1991-10-15 Minnesota Mining And Manufacturing Company Form-in-place polysaccharide gels
US5092353A (en) * 1989-01-18 1992-03-03 R. J. Reynolds Tobacco Company Cigarette
US5125421A (en) * 1991-01-22 1992-06-30 P. H. Glatfelter Company Calendered ultraporous cigarette plug wrap, method of producing same and cigarettes made from the wrap
US5131416A (en) * 1990-12-17 1992-07-21 R. J. Reynolds Tobacco Company Cigarette
US5144966A (en) * 1990-12-11 1992-09-08 Philip Morris Incorporated Filamentary flavorant-release additive for smoking compositions
US5170807A (en) * 1990-07-20 1992-12-15 Kimberly Clark Corporation Method of producing a non-burning outer wrapper for use with smoking products
US5178167A (en) * 1991-06-28 1993-01-12 R. J. Reynolds Tobacco Company Carbonaceous composition for fuel elements of smoking articles and method of modifying the burning characteristics thereof
US5221502A (en) * 1990-12-11 1993-06-22 Philip Morris Incorporated Process for making a flavorant-release filament
US5261425A (en) * 1990-05-24 1993-11-16 R. J. Reynolds Tobacco Company Cigarette
US5263999A (en) * 1991-09-10 1993-11-23 Philip Morris Incorporated Smoking article wrapper for controlling burn rate and method for making same
US5271419A (en) * 1989-09-29 1993-12-21 R. J. Reynolds Tobacco Company Cigarette
US5474095A (en) * 1990-11-16 1995-12-12 Philip Morris Incorporated Paper having crossdirectional regions of variable basis weight
US5540242A (en) * 1993-07-07 1996-07-30 Brown & Williamson Tobacco Corporation Cigarette paper having reduced sidestream properties
US5690787A (en) * 1993-12-16 1997-11-25 Kimberly-Clark Worldwide, Inc. Polymer reinforced paper having improved cross-direction tear
US5722433A (en) * 1995-08-09 1998-03-03 Mishima Paper Co., Ltd. Water-dispersible sheet for cigarettes and cigarette using the same
US5820998A (en) * 1994-03-08 1998-10-13 Schweitzer-Mauduit International, Inc. Coated paper and process for making the same
US5849153A (en) * 1995-08-09 1998-12-15 Mishima Paper Co., Ltd. Water-dispersible sheet and cigarette using the same
US5878754A (en) * 1997-03-10 1999-03-09 Schweitzer-Mauduit International, Inc. Smoking article wrapper for controlling ignition proclivity of a smoking article
US5878753A (en) * 1997-03-11 1999-03-09 Schweitzer-Mauduit International, Inc. Smoking article wrapper for controlling ignition proclivity of a smoking article without affecting smoking characteristics
US6129087A (en) * 1998-03-25 2000-10-10 Brown & Williamson Tobacco Corporation Reduced ignition propensity smoking articles
US20020139381A1 (en) * 2000-11-13 2002-10-03 Schweitzer-Mauduit International, Inc. Process for producing smoking articles with reduced ignition proclivity characteristics and products made according to same
US20020179106A1 (en) * 2001-03-28 2002-12-05 Zawadzki Michael A. Reduced ignition propensity smoking article with a polysaccharide treated wrapper
US20020179105A1 (en) * 2001-02-26 2002-12-05 Zawadzki Michael A. Reduced ignition propensity smoking article
US6568403B2 (en) * 2000-06-22 2003-05-27 Schweitzer-Mauduit International, Inc. Paper wrapper for reduction of cigarette burn rate
US20030131860A1 (en) * 2001-08-14 2003-07-17 Ashcraft Charles Ray Wrapping materials for smoking articles
US6606999B2 (en) * 2001-03-27 2003-08-19 R. J. Reynolds Tobacco Company Reduced ignition propensity smoking article
US6645605B2 (en) * 2001-01-15 2003-11-11 James Rodney Hammersmith Materials and method of making same for low ignition propensity products
US20040011368A1 (en) * 2001-01-15 2004-01-22 Takeo Tsutsumi Cigarette
US20040020502A1 (en) * 2001-08-13 2004-02-05 Agustin Tosas Fuentes Method of preparing paper for self-extinguishing cigarettes
US6779530B2 (en) * 2002-01-23 2004-08-24 Schweitzer-Mauduit International, Inc. Smoking articles with reduced ignition proclivity characteristics
US6854469B1 (en) * 2001-06-27 2005-02-15 Lloyd Harmon Hancock Method for producing a reduced ignition propensity smoking article
US20070084475A1 (en) * 2005-10-14 2007-04-19 Oglesby Robert L Smoking articles and wrapping materials therefor
US20070137668A1 (en) * 2005-12-15 2007-06-21 Borschke August J Smoking articles and wrapping materials therefor
US20070246055A1 (en) * 2006-04-21 2007-10-25 Oglesby Robert L Smoking articles and wrapping materials therefor
US20070251658A1 (en) * 2006-03-31 2007-11-01 Philip Morris Usa Inc. In situ formation of catalytic cigarette paper
US20080115794A1 (en) * 2006-11-21 2008-05-22 Robert Leslie Oglesby Smoking articles and wrapping materials therefor
US7600518B2 (en) * 2005-04-19 2009-10-13 R. J. Reynolds Tobacco Company Smoking articles and wrapping materials therefor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL209991A (en) 1955-08-26
WO1986001377A1 (en) 1984-09-03 1986-03-13 Japan Tobacco Inc. Cigarette
EP0781101B1 (en) * 1994-09-07 2000-08-02 British American Tobacco (Investments) Limited Smoking articles
US5997691A (en) 1996-07-09 1999-12-07 Philip Morris Incorporated Method and apparatus for applying a material to a web
GB9928853D0 (en) * 1999-12-07 2000-02-02 British American Tobacco Co Improvements relating to smoking articles
WO2002069745A1 (en) 2001-02-22 2002-09-12 Philip Morris Products, Inc. Cigarette and filter with downstream flavor addition
US7275548B2 (en) 2001-06-27 2007-10-02 R.J. Reynolds Tobacco Company Equipment for manufacturing cigarettes
US7073514B2 (en) 2002-12-20 2006-07-11 R.J. Reynolds Tobacco Company Equipment and methods for manufacturing cigarettes
US6976493B2 (en) 2002-11-25 2005-12-20 R.J. Reynolds Tobacco Company Wrapping materials for smoking articles
CA2476971C (en) * 2002-03-15 2012-02-28 Rothmans, Benson & Hedges Inc. Low sidestream smoke cigarette with combustible paper having modified ash
AU2003226988A1 (en) * 2002-04-22 2003-11-03 Rothmans, Benson & Hedges Inc. A low ignition propensity cigarette having oxygen donor metal oxide in the cigarette wrapper
AU2003291158A1 (en) 2002-11-25 2004-06-18 R.J. Reynolds Tobacco Company Wrapping materials for smoking articles
US20060021625A1 (en) * 2004-07-30 2006-02-02 Philip Morris Usa Inc. Make-your-own smoking article with controlled burn rate
US8151806B2 (en) 2005-02-07 2012-04-10 Schweitzer-Mauduit International, Inc. Smoking articles having reduced analyte levels and process for making same
US8646463B2 (en) 2005-08-15 2014-02-11 Philip Morris Usa Inc. Gravure-printed, banded cigarette paper
US20090266371A1 (en) * 2005-10-12 2009-10-29 Glatz Feinpapiere Julius Glatz Gmbh Smoking Product Wrapping Material Having Improved Smouldering Properties
RU2009147306A (en) 2007-07-03 2011-08-10 Швайцер-Маудит Интернешнл, Инк. (Us) SMOKING PRODUCTS WITH A REDUCED IGNITION CAPACITY

Patent Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2013508A (en) * 1933-05-25 1935-09-03 Seaman Stewart Elmer Difficultly flammable cigarette wrapper
US1996002A (en) * 1933-05-25 1935-03-26 Seaman Stewart Elmer Decreasing inflammability of cigarettes
US2776912A (en) * 1952-04-30 1957-01-08 Hercules Powder Co Ltd Process of coating paper with a gellable water-soluble cellulose derivative and pigment and gelling said coating
US3215579A (en) * 1963-01-23 1965-11-02 Formica Corp Process for releasing laminates
US3351479A (en) * 1963-05-14 1967-11-07 Kelco Co Paper coating compositions and processes
US3736940A (en) * 1967-07-18 1973-06-05 Pastou J Saint Cigarette with ash-retaining means
US3511247A (en) * 1968-05-10 1970-05-12 Philip Morris Inc Smoking product and method of making the same
US3526904A (en) * 1968-05-10 1970-09-01 Philip Morris Inc Film covered,apertured cigarette wrapper
US3620801A (en) * 1968-06-07 1971-11-16 Wiggins Teape Res Dev Sized transfer sheet
US3699973A (en) * 1971-07-06 1972-10-24 Philip Morris Inc Film covering for apertured smoking product wrapper
US3949762A (en) * 1973-11-13 1976-04-13 Anthony Alfred West Fibres
US3911932A (en) * 1974-07-31 1975-10-14 Philip Morris Inc Control of smoking delivery through cigarette paper porosity
US4077414A (en) * 1975-01-09 1978-03-07 Brown & Williamson Tobacco Corporation Smoking articles
US4129134A (en) * 1975-04-14 1978-12-12 Philip Morris Incorporated Smoking article
US4146040A (en) * 1977-03-17 1979-03-27 Cohn Charles C Cigarettes
US4222740A (en) * 1979-03-05 1980-09-16 Armstrong Cork Company Coloration method for textiles
US4267240A (en) * 1979-11-13 1981-05-12 Formica Corporation Release sheets and process of use
US4303084A (en) * 1980-07-14 1981-12-01 Eli Simon Self-extinguishing cigarettes
US4452259A (en) * 1981-07-10 1984-06-05 Loews Theatres, Inc. Smoking articles having a reduced free burn time
US4607647A (en) * 1983-06-15 1986-08-26 British-American Tobacco Company Limited Smoking articles
US4615345A (en) * 1983-08-08 1986-10-07 Kimberly-Clark Corporation Wrapper constructions for self-extinguishing smoking articles
US4622983A (en) * 1983-08-08 1986-11-18 Kimberly-Clark Corporation Reduced ignition proclivity smoking article wrapper and smoking article
US4590955A (en) * 1984-07-11 1986-05-27 Olin Corporation Cigarette paper with reduced CO on burning
US4679575A (en) * 1984-11-23 1987-07-14 Japan Tobacco Inc. Cigarette
US4784164A (en) * 1986-01-07 1988-11-15 Gallaher Limited Smoking rod wrappers and compositions for their production
US4805644A (en) * 1986-06-30 1989-02-21 Kimberly-Clark Corporation Sidestream reducing cigarette paper
US4889145A (en) * 1986-08-27 1989-12-26 Gallagher Limited Smoking rod wrapper and compositions for their production
US4739775A (en) * 1986-09-26 1988-04-26 Kimberly-Clark Corporation Wrapper constructions for self-extinguishing and reduced ignition proclivity smoking articles
US4945932A (en) * 1988-01-29 1990-08-07 H. F. & Ph. F. Reemtsma Gmbh & Co. Cigarette which goes out rapidly or is self-extinguishing
US4984589A (en) * 1988-11-30 1991-01-15 Julius Glatz Gmbh Wrapper for smoking article
US5092353A (en) * 1989-01-18 1992-03-03 R. J. Reynolds Tobacco Company Cigarette
US5057606A (en) * 1989-01-24 1991-10-15 Minnesota Mining And Manufacturing Company Form-in-place polysaccharide gels
US4998542A (en) * 1989-02-23 1991-03-12 Philip Morris Incorporated Wrapper for smoking articles and method for preparing same
US5271419A (en) * 1989-09-29 1993-12-21 R. J. Reynolds Tobacco Company Cigarette
US5261425A (en) * 1990-05-24 1993-11-16 R. J. Reynolds Tobacco Company Cigarette
US5170807A (en) * 1990-07-20 1992-12-15 Kimberly Clark Corporation Method of producing a non-burning outer wrapper for use with smoking products
US5474095A (en) * 1990-11-16 1995-12-12 Philip Morris Incorporated Paper having crossdirectional regions of variable basis weight
US5144966A (en) * 1990-12-11 1992-09-08 Philip Morris Incorporated Filamentary flavorant-release additive for smoking compositions
US5221502A (en) * 1990-12-11 1993-06-22 Philip Morris Incorporated Process for making a flavorant-release filament
US5131416A (en) * 1990-12-17 1992-07-21 R. J. Reynolds Tobacco Company Cigarette
US5125421A (en) * 1991-01-22 1992-06-30 P. H. Glatfelter Company Calendered ultraporous cigarette plug wrap, method of producing same and cigarettes made from the wrap
US5178167A (en) * 1991-06-28 1993-01-12 R. J. Reynolds Tobacco Company Carbonaceous composition for fuel elements of smoking articles and method of modifying the burning characteristics thereof
US5263999A (en) * 1991-09-10 1993-11-23 Philip Morris Incorporated Smoking article wrapper for controlling burn rate and method for making same
US5417228A (en) * 1991-09-10 1995-05-23 Philip Morris Incorporated Smoking article wrapper for controlling burn rate and method for making same
US5540242A (en) * 1993-07-07 1996-07-30 Brown & Williamson Tobacco Corporation Cigarette paper having reduced sidestream properties
US5690787A (en) * 1993-12-16 1997-11-25 Kimberly-Clark Worldwide, Inc. Polymer reinforced paper having improved cross-direction tear
US5820998A (en) * 1994-03-08 1998-10-13 Schweitzer-Mauduit International, Inc. Coated paper and process for making the same
US5722433A (en) * 1995-08-09 1998-03-03 Mishima Paper Co., Ltd. Water-dispersible sheet for cigarettes and cigarette using the same
US5849153A (en) * 1995-08-09 1998-12-15 Mishima Paper Co., Ltd. Water-dispersible sheet and cigarette using the same
US5878754A (en) * 1997-03-10 1999-03-09 Schweitzer-Mauduit International, Inc. Smoking article wrapper for controlling ignition proclivity of a smoking article
US5878753A (en) * 1997-03-11 1999-03-09 Schweitzer-Mauduit International, Inc. Smoking article wrapper for controlling ignition proclivity of a smoking article without affecting smoking characteristics
US6129087A (en) * 1998-03-25 2000-10-10 Brown & Williamson Tobacco Corporation Reduced ignition propensity smoking articles
US6568403B2 (en) * 2000-06-22 2003-05-27 Schweitzer-Mauduit International, Inc. Paper wrapper for reduction of cigarette burn rate
US20040182407A1 (en) * 2000-11-13 2004-09-23 Peterson Richard M. Process for producing smoking articles with reduced ignition proclivity characteristics and products made according to same
US6725867B2 (en) * 2000-11-13 2004-04-27 Schweitzer-Mauduit International, Inc. Process for producing smoking articles with reduced ignition proclivity characteristics and products made according to same
US20020139381A1 (en) * 2000-11-13 2002-10-03 Schweitzer-Mauduit International, Inc. Process for producing smoking articles with reduced ignition proclivity characteristics and products made according to same
US6645605B2 (en) * 2001-01-15 2003-11-11 James Rodney Hammersmith Materials and method of making same for low ignition propensity products
US20040011368A1 (en) * 2001-01-15 2004-01-22 Takeo Tsutsumi Cigarette
US6837248B2 (en) * 2001-02-26 2005-01-04 Lorillard Licensing Company, Llc Reduced ignition propensity smoking article
US20020179105A1 (en) * 2001-02-26 2002-12-05 Zawadzki Michael A. Reduced ignition propensity smoking article
US20030164173A1 (en) * 2001-02-26 2003-09-04 Zawadzki Michael A. Reduced ignition propensity smoking article
US6606999B2 (en) * 2001-03-27 2003-08-19 R. J. Reynolds Tobacco Company Reduced ignition propensity smoking article
US20040123874A1 (en) * 2001-03-28 2004-07-01 Zawadzki Michael A. Reduced ignition propensity smoking article with a polysaccharide treated wrapper
US20020179106A1 (en) * 2001-03-28 2002-12-05 Zawadzki Michael A. Reduced ignition propensity smoking article with a polysaccharide treated wrapper
US6854469B1 (en) * 2001-06-27 2005-02-15 Lloyd Harmon Hancock Method for producing a reduced ignition propensity smoking article
US20040020502A1 (en) * 2001-08-13 2004-02-05 Agustin Tosas Fuentes Method of preparing paper for self-extinguishing cigarettes
US6929013B2 (en) * 2001-08-14 2005-08-16 R. J. Reynolds Tobacco Company Wrapping materials for smoking articles
US20030131860A1 (en) * 2001-08-14 2003-07-17 Ashcraft Charles Ray Wrapping materials for smoking articles
US6779530B2 (en) * 2002-01-23 2004-08-24 Schweitzer-Mauduit International, Inc. Smoking articles with reduced ignition proclivity characteristics
US7600518B2 (en) * 2005-04-19 2009-10-13 R. J. Reynolds Tobacco Company Smoking articles and wrapping materials therefor
US20070084475A1 (en) * 2005-10-14 2007-04-19 Oglesby Robert L Smoking articles and wrapping materials therefor
US20070137668A1 (en) * 2005-12-15 2007-06-21 Borschke August J Smoking articles and wrapping materials therefor
US20070251658A1 (en) * 2006-03-31 2007-11-01 Philip Morris Usa Inc. In situ formation of catalytic cigarette paper
US20070246055A1 (en) * 2006-04-21 2007-10-25 Oglesby Robert L Smoking articles and wrapping materials therefor
US20080115794A1 (en) * 2006-11-21 2008-05-22 Robert Leslie Oglesby Smoking articles and wrapping materials therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090159090A1 (en) * 2007-12-20 2009-06-25 Reemtsma Cigarettenfabriken Gmbh Smoking article with improved extinguishing characteristcs
WO2010149380A1 (en) * 2009-06-25 2010-12-29 Delfortgroup Ag Film-forming composition for applying to cigarette paper
US10349673B2 (en) 2009-06-25 2019-07-16 Delfortgroup Ag Film-forming composition for applying to cigarette paper
WO2011120687A1 (en) * 2010-04-01 2011-10-06 Delfortgroup Ag Perforated cigarette paper
CN102843923A (en) * 2010-04-01 2012-12-26 德尔福特集团有限公司 Perforated cigarette paper
US20130139838A1 (en) * 2010-07-30 2013-06-06 Delfortgroup Ag Cigarette Paper Having a High Diffusion Capacity During Thermal Decomposition
AU2012255420B2 (en) * 2011-05-13 2016-03-31 Minfeng Special Paper Co. Ltd. Cigarette paper having low susceptibility to ignition and preparation method therefor
AU2012255420A1 (en) * 2011-05-13 2013-12-19 Minfeng Special Paper Co. Ltd. Cigarette paper having low susceptibility to ignition and preparation method therefor
US8939155B2 (en) 2011-07-28 2015-01-27 Delfortgroup Ag Oil-resistant filter wrapper paper
US9115471B2 (en) 2011-07-28 2015-08-25 Delfortgroup Ag Oil-resistant filter wrapper paper
WO2014058102A1 (en) * 2012-10-09 2014-04-17 Kt & G Corporation Low ignition propensity cigarette paper and cigarette including the same
US9149068B2 (en) 2012-10-11 2015-10-06 Schweitzer-Mauduit International, Inc. Wrapper having reduced ignition proclivity characteristics
US9247769B2 (en) 2012-10-11 2016-02-02 Schweitzer-Mauduit International, Inc. Wrapper having reduced ignition proclivity characteristics
DE102013106516B3 (en) * 2013-06-21 2014-10-09 Delfortgroup Ag CIGARETTE PAPER GIVING A CIGARETTE AN EQUAL TRAIN PROFILE
US10154687B2 (en) 2013-06-21 2018-12-18 Delfortgroup Ag Cigarette paper that gives a cigarette a uniform drawing profile
US12029236B2 (en) 2013-09-05 2024-07-09 SWM Holdings US, LLC Coated plug wrap for a smoking article
US11723398B2 (en) * 2019-02-11 2023-08-15 Mativ Holdings, Inc. Cocoa wrapper for smoking articles

Also Published As

Publication number Publication date
CN101686732B (en) 2014-08-27
US20140090656A1 (en) 2014-04-03
CA2891884A1 (en) 2009-01-08
CN102920018B (en) 2016-08-03
BRPI0812819A2 (en) 2014-12-09
RU148410U1 (en) 2014-12-10
JP5860863B2 (en) 2016-02-16
WO2009006570A2 (en) 2009-01-08
RU2014106600A (en) 2015-08-27
RU2009147306A (en) 2011-08-10
ZA200907969B (en) 2011-02-23
UA107736C2 (en) 2015-02-10
AU2008272833B2 (en) 2013-03-21
BRPI0812819B1 (en) 2019-03-19
KR101519821B1 (en) 2015-05-13
CN102920018A (en) 2013-02-13
CA2688276C (en) 2015-09-08
CA2688276A1 (en) 2009-01-08
JP2014061001A (en) 2014-04-10
MX2009013191A (en) 2010-01-25
RU2652960C2 (en) 2018-05-03
CN101686732A (en) 2010-03-31
KR20100032371A (en) 2010-03-25
JP2010532174A (en) 2010-10-07
ES2811104T3 (en) 2021-03-10
JP5800503B2 (en) 2015-10-28
WO2009006570A3 (en) 2009-06-25
EP2160104A2 (en) 2010-03-10
AU2008272833A1 (en) 2009-01-08
EP2160104B1 (en) 2020-05-27
UA102374C2 (en) 2013-07-10
CA2891884C (en) 2018-03-20
US10470489B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
US10470489B2 (en) Smoking articles having reduced ignition proclivity characteristics
US8807144B2 (en) Wrappers for smoking articles having reduced diffusion leading to reduced ignition proclivity characteristics
US8869805B2 (en) Free air burning smoking articles with reduced ignition proclivity characteristics
AU2013200653B2 (en) Smoking articles having reduced ignition proclivity characteristics

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHWEITZER-MAUDUIT INTERNATIONAL, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HERVE, RAOUL;CLOITRE-CHABERT, JULIA;GUILCHET, PATRICK;AND OTHERS;REEL/FRAME:022145/0373;SIGNING DATES FROM 20081124 TO 20090113

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION