US20080206830A1 - Granule with hydrated barrier material - Google Patents
Granule with hydrated barrier material Download PDFInfo
- Publication number
- US20080206830A1 US20080206830A1 US12/113,422 US11342208A US2008206830A1 US 20080206830 A1 US20080206830 A1 US 20080206830A1 US 11342208 A US11342208 A US 11342208A US 2008206830 A1 US2008206830 A1 US 2008206830A1
- Authority
- US
- United States
- Prior art keywords
- granule
- barrier material
- enzyme
- granules
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000008187 granular material Substances 0.000 title claims abstract description 71
- 239000000463 material Substances 0.000 title claims abstract description 32
- 230000004888 barrier function Effects 0.000 title claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 54
- 230000000694 effects Effects 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 12
- 102000004190 Enzymes Human genes 0.000 claims description 62
- 108090000790 Enzymes Proteins 0.000 claims description 62
- 102000004169 proteins and genes Human genes 0.000 claims description 25
- 108090000623 proteins and genes Proteins 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 11
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 8
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 claims description 4
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 claims description 4
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 claims description 4
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 claims description 2
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 claims description 2
- PYLIXCKOHOHGKQ-UHFFFAOYSA-L disodium;hydrogen phosphate;heptahydrate Chemical compound O.O.O.O.O.O.O.[Na+].[Na+].OP([O-])([O-])=O PYLIXCKOHOHGKQ-UHFFFAOYSA-L 0.000 claims description 2
- 229940097364 magnesium acetate tetrahydrate Drugs 0.000 claims description 2
- XKPKPGCRSHFTKM-UHFFFAOYSA-L magnesium;diacetate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].CC([O-])=O.CC([O-])=O XKPKPGCRSHFTKM-UHFFFAOYSA-L 0.000 claims description 2
- 229960000999 sodium citrate dihydrate Drugs 0.000 claims description 2
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 claims description 2
- 239000000428 dust Substances 0.000 abstract description 5
- 229940088598 enzyme Drugs 0.000 description 60
- 239000011162 core material Substances 0.000 description 29
- 235000018102 proteins Nutrition 0.000 description 18
- 239000003599 detergent Substances 0.000 description 15
- 239000011247 coating layer Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 108091005804 Peptidases Proteins 0.000 description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 description 9
- 239000004365 Protease Substances 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 7
- -1 fatty acid ester Chemical class 0.000 description 7
- 238000005469 granulation Methods 0.000 description 7
- 230000003179 granulation Effects 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 7
- 239000001509 sodium citrate Substances 0.000 description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 6
- 239000007844 bleaching agent Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000005243 fluidization Methods 0.000 description 6
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 6
- 235000019341 magnesium sulphate Nutrition 0.000 description 6
- 239000000049 pigment Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- 108010084185 Cellulases Proteins 0.000 description 3
- 102000005575 Cellulases Human genes 0.000 description 3
- 239000004606 Fillers/Extenders Substances 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- 239000007771 core particle Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000013112 stability test Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108090000787 Subtilisin Proteins 0.000 description 2
- 108010056079 Subtilisins Proteins 0.000 description 2
- 102000005158 Subtilisins Human genes 0.000 description 2
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000007931 coated granule Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 235000008504 concentrate Nutrition 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 125000000914 phenoxymethylpenicillanyl group Chemical group CC1(S[C@H]2N([C@H]1C(=O)*)C([C@H]2NC(COC2=CC=CC=C2)=O)=O)C 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229940038773 trisodium citrate Drugs 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- RYYXDZDBXNUPOG-UHFFFAOYSA-N 4,5,6,7-tetrahydro-1,3-benzothiazole-2,6-diamine;dihydrochloride Chemical compound Cl.Cl.C1C(N)CCC2=C1SC(N)=N2 RYYXDZDBXNUPOG-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 102000004867 Hydro-Lyases Human genes 0.000 description 1
- 108090001042 Hydro-Lyases Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 108091007187 Reductases Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- STIAPHVBRDNOAJ-UHFFFAOYSA-N carbamimidoylazanium;carbonate Chemical compound NC(N)=N.NC(N)=N.OC(O)=O STIAPHVBRDNOAJ-UHFFFAOYSA-N 0.000 description 1
- LNEUSAPFBRDCPM-UHFFFAOYSA-N carbamimidoylazanium;sulfamate Chemical compound NC(N)=N.NS(O)(=O)=O LNEUSAPFBRDCPM-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical group CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000008202 granule composition Substances 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005563 spheronization Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229940045136 urea Drugs 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
- C11D11/0088—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/046—Salts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38672—Granulated or coated enzymes
Definitions
- Enzymes are used in several industries including, for example, the starch industry, the dairy industry, and the detergent industry. It is well known in the detergent industry that the use of enzymes, particularly proteolytic enzymes, has created industrial hygiene concerns for detergent factory workers, particularly due to the health risks associated with dustiness of the available enzymes.
- U.S. Pat. No. 4,106,991 describes an improved formation of enzyme granules by including within the composition undergoing granulation, finely divided cellulose fibers in an amount of 2-40% w/w based on the dry weight of the whole composition.
- this patent describes that waxy substances can be used to coat the particles of the granulate.
- U.S. Pat. No. 4,689,297 describes enzyme containing particles which comprise a particulate, water dispersible core which is 150-2,000 microns in its longest dimension, a uniform layer of enzyme around the core particle which amounts to 10%-35% by weight of the weight of the core particle, and a layer of macro-molecular, film-forming, water soluble or dispersible coating agent uniformly surrounding the enzyme layer wherein the combination of enzyme and coating agent is from 25-55% of the weight of the core particle.
- the core material described in this patent includes clay, a sugar crystal enclosed in layers of corn starch which is coated with a layer of dextrin, agglomerated potato starch, particulate salt, agglomerated trisodium citrate, pan crystallized NaCl flakes, bentonite granules or prills, granules containing bentonite, Kaolin and diatomaceous earth or sodium citrate crystals.
- the film forming material may be a fatty acid ester, an alkoxylated alcohol, a polyvinyl alcohol or an ethoxylated alkylphenol.
- U.S. Pat. No. 4,740,469 describes an enzyme granular composition consisting essentially of from 1-35% by weight of an enzyme and from 0.5-30% by weight of a synthetic fibrous material having an average length of from 100-500 micron and a fineness in the range of from 0.05-0.7 denier, with the balance being an extender or filler.
- the granular composition may further comprise a molten waxy material, such as polyethylene glycol, and optionally a colorant such as titanium dioxide.
- U.S. Pat. No. 5,254,283 describes a particulate material which has been coated with a continuous layer of a non-water soluble, warp size polymer.
- U.S. Pat. No. 5,324,649 describes enzyme-containing granules having a core, an enzyme layer and an outer coating layer. The enzyme layer and, optionally, the core and outer coating layer contain a vinyl polymer.
- WO 91/09941 describes an enzyme containing preparation whereby at least 50% of the enzymatic activity is present in the preparation as enzyme crystals.
- the preparation can be either a slurry or a granulate.
- WO 97/12958 discloses a microgranular enzyme composition.
- the granules are made by fluid-bed agglomeration which results in granules with numerous carrier or seed particles coated with enzyme and bound together by a binder.
- One embodiment of the present invention is a granule that includes a protein core and a hydrated barrier material with moderate or high water activity.
- the hydrated barrier material can be in one or more layers and/or can be included in the protein core.
- a further embodiment of the present invention is a granule that includes an enzyme core and a hydrated barrier material with moderate or high water activity.
- the hydrated barrier material can be in one or more layers and/or can be included in the enzyme core.
- Another embodiment is a method of producing the above granule.
- the present invention provides a granule with improved stability having low dust.
- the granule includes a protein core and a hydrated barrier material with moderate or high water activity.
- a “protein core” or an “enzyme core” can be homogenous such as that described in U.S. patent application Ser. No. 08/995,457 or layered as described in U.S. Pat. No. 5,324,649.
- Proteins that are within the scope of the present invention include pharmaceutically important proteins such as hormones or other therapeutic proteins and industrially important proteins such as enzymes.
- enzymes include those enzymes capable of hydrolyzing substrates, e.g. stains. These enzymes are known as hydrolases which include, but are not limited to, proteases (bacterial, fungal, acid, neutral or alkaline), amylases (alpha or beta), lipases, cellulases and mixtures thereof. Particularly preferred enzymes are subtilisins and cellulases. Most preferred are subtilisins such as described in U.S. Pat. No.
- EP Patent 130 756 B1 and EP Patent Application WO 91/06637 which are incorporated herein by reference, and cellulases such as Multifect L250TM and PuradaxTM, commercially available from Genencor International.
- cellulases such as Multifect L250TM and PuradaxTM, commercially available from Genencor International.
- Other enzymes that can be used in the present invention include oxidases, transferases, dehydratases, reductases, hemicellulases and isomerases.
- the barrier material can be coated over the protein core in one or more layers or made part of the protein core in order to insulate or to impede transport of water and inactivating substances to the protein.
- the barrier material can be dispersed throughout the core or as a layer in the core.
- Suitable hydrated barrier materials with moderate or high water activity can include salts of an inorganic or organic acid, sugars, polysaccharides, lipids, proteins or synthetic polymers; preferably salts.
- water activity refers to the fractional relative humidity of an atmosphere in equilibrium with a solid or liquid phase material, i.e., the ratio of the partial pressure of water vapor to that present above pure water at the same temperature. In all phases between which water distribution has reached equilibrium, it is by definition equal.
- Water activity can be readily measured by methods known in the art, typically by placing a sample of the material inside the temperature-controlled chamber of a water activity meter, such as the Water Activity System Model D2100 available from Rotronic Instrument Corp. (Huntington, N.Y.), and allowing the measurement to reach equilibrium as indicated on the display.
- a water activity meter such as the Water Activity System Model D2100 available from Rotronic Instrument Corp. (Huntington, N.Y.)
- a “hydrated” barrier material contains water in a free or bound form, or a combination of the two.
- the water of hydration can be added either during or after the coating process.
- the degree of hydration will be a function of the material itself and the temperature, humidity and drying conditions under which it is applied.
- Moderate or high water activity includes a water activity of at least 0.25, preferably greater than 0.30, most preferably greater than 0.35.
- the water activity referred to herein is that of the granule itself once it has the barrier material—but no further coatings—coated onto it. Further coatings may mask accurate measurement of the water activity of the barrier material as a distinct layer.
- the water activity of the granule is lower than that of the detergent or the corresponding relative humidity, the water present in the barrier layer would act as a shield limiting the amount of water and hence in activating substances being picked up by the granule and affecting the protein core.
- the hydrated material is a crystalline salt hydrate with bound water(s) of crystallization.
- the hydrate should be chosen and applied in a manner such that the resulting coated granule will have a water activity in excess of 0.25, or as high as possible while still providing a granule which is dry to the touch.
- a salt hydrate, or any other suitable hydrated barrier material in such a manner, as noted above, one expects that this would eliminate any driving force for further uptake of water by the granule.
- the driving force for transport of substances which may be detrimental to enzyme activity, such as perborate or peroxide anion is removed. Without water as a vehicle, these substances are less likely to penetrate the enzyme core.
- Empirical data demonstrates that enzyme activity in the granule is substantially enhanced by coating the enzyme core with stable salt hydrates.
- Preferred salts include magnesium sulfate heptahydrate, zinc sulfate heptahydrate, copper sulfate pentahydrate, sodium phosphate dibasic heptahydrate, magnesium nitrate hexahydrate, sodium borate decahydrate, sodium citrate dihydrate and magnesium acetate tetrahydrate.
- the granules of the present invention can also comprise one or more coating layers.
- coating layers may be one or more intermediate coating layers, or such coating layers may be one or more outside coating layers or a combination thereof.
- Coating layers may serve any of a number of functions in a granule composition, depending on the end use of the granule.
- coatings may render the protein resistant to oxidation by bleach, bring about the desirable rates of dissolution upon introduction of the granule into an aqueous medium, or provide a barrier against ambient moisture in order to enhance the storage stability of the enzyme and reduce the possibility of microbial growth within the granule.
- Suitable coatings include polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), cellulose derivatives such as methylcellulose, hydroxypropylmethyl cellulose, hydroxycellulose, ethylcellulose, carboxymethyl cellulose, hydroxypropyl cellulose, polyethylene glycol, polyethylene oxide, chitosan, gum arabic, xanthan, carrageenan, latex polymers, and enteric coatings.
- PVA polyvinyl alcohol
- PVP polyvinyl pyrrolidone
- cellulose derivatives such as methylcellulose, hydroxypropylmethyl cellulose, hydroxycellulose, ethylcellulose, carboxymethyl cellulose, hydroxypropyl cellulose, polyethylene glycol, polyethylene oxide, chitosan, gum arabic, xanthan, carrageenan, latex polymers, and enteric coatings.
- coating agents may be used in conjunction with other active agents of the same or different categories.
- Suitable PVAs for incorporation in the coating layer(s) of the granule include partially hydrolyzed, fully hydrolyzed and intermediately hydrolyzed PVAs having low to high degrees of viscosity.
- the outer coating layer comprises partially hydrolyzed PVA having low viscosity.
- Other vinyl polymers which may be useful include polyvinyl acetate and polyvinyl pyrrolidone.
- Useful copolymers include, for example, PVA-methylmethacrylate copolymer and PVP-PVA copolymer.
- the coating layers of the present invention may further comprise one or more of the following: plasticizers, extenders, lubricants, pigments, and optionally additional enzymes.
- plasticizers useful in the coating layers of the present invention are plasticizers including, for example, polyols such as sugars, sugar alcohols, or polyethylene glycols (PEGs), urea, glycol, propylene glycol or other known plasticizers such as triethyl citrate, dibutyl or dimethyl phthalate or water.
- Suitable pigments useful in the coating layers of the present invention include, but are not limited to, finely divided whiteners such as titanium dioxide or calcium carbonate or colored pigments or dyes or a combination thereof. Preferably such pigments are low residue pigments upon dissolution.
- Suitable extenders include sugars such as sucrose or starch hydrolysates such as maltodextrin and corn syrup solids, clays such as kaolin and bentonite, and talc.
- Suitable lubricants include nonionic surfactants such as Neodol, tallow alcohols, fatty acids, fatty acid salts such as magnesium stearate and fatty acid esters.
- the outer coating layer of the present invention preferably comprises between about 1-25% by weight of the coated granule.
- Adjunct ingredients may be added to the granules of the present invention.
- Adjunct ingredients may include: metallic salts; solubilizers; activators; antioxidants; dyes; inhibitors; binders; fragrances; enzyme protecting agents/scavengers such as ammonium sulfate, ammonium citrate, urea, guanidine hydrochloride, guanidine carbonate, guanidine sulfamate, thiourea dioxide, monoethanolamine, diethanolamine, triethanolamine, amino acids such as glycine, sodium glutamate and the like, proteins such as bovine serum albumin, casein and the like etc.; surfactants including anionic surfactants, ampholytic surfactants, nonionic surfactants, cationic surfactants and long-chain fatty acid salts; builders; alkalis or inorganic electrolytes; bleaching agents; bluing agents and fluorescent dyes and whiteners; and caking inhibitors.
- the granules described herein may be made by methods known to those skilled in the art of enzyme granulation, including pan-coating, fluid-bed coating, fluid-bed agglomeration, prilling, disc granulation, spray drying, extrusion, centrifugal extrusion, spheronization, drum granulation, high shear agglomeration, or combinations of these techniques.
- a solution of magnesium sulfate was prepared by adding 22.2 kg of magnesium sulfate heptahydrate into 22.2 kg of water, and this was sprayed onto the enzyme-coated cores under the following conditions in order to provide that 20% of the final granule would be magnesium sulfate heptahydrate, with care being taken to keep the bed temperature close to, but slightly below, 50 degrees C.:
- a polymer coating solution was prepared by dissolving 6.35 kg of Elvanol 51-05 polyvinyl alcohol, 7.94 kg titanium dioxide and 1.59 kg Neodol 23-6.5T nonionic surfactant in 50.12 kg water and spraying over the salt-coated enzyme cores under the following conditions:
- the harvested granules had an enzyme concentration of approximately 40 g/kg.
- the stability of many enzyme granules formulated into bleach-containing detergents is generally excellent, showing generally no more than about 10 to 20% loss in activity over 6 weeks storage at 30 to 37° C. and 70% to 80% R.H.
- the conditions of the accelerated stability test are far more severe than enzyme granules or detergents would ever encounter in realistic storage or transport.
- the AST is a “stress test” designed to discriminate differences between formulations which would otherwise not be evident for weeks or months.
- test detergent base was made from the following ingredients:
- the enzyme activity was determined by adding to each tube 30 ml of 0.25M MES pH 5.5 buffer containing 20 ⁇ l Catalase HP L5000 (Genencor International, Rochester, N.Y.) and incubating for 40 minutes to inactivate the perborate. After this, the enzyme was assayed by adding 10 ⁇ l of the test tube mixture and 10 ⁇ l of sAAPF protease substrate to 980 ⁇ l of 0.1 M Tris pH 8.6, then incubating at 25° C. over 3 minutes, and measuring the optical absorbance at 410 nm. The slope of the absorbance vs. time was then multiplied by the dilution factor and the known extinction coefficient for the specific protease to obtain an enzyme activity as concentration in mg/ml.
- a solution of trisodium citrate was prepared by adding 13.2 kg of trisodium citrate dihydrate into 19.7 kg of water, and this was sprayed onto the enzyme-coated cores under the following conditions in order to provide that 25% of the final granule would be trisodium citrate dihydrate, with care being taken to keep the bed temperature close to 50 degrees C.:
- the harvested granules had a weight of 49.5 kg and an enzyme concentration of approximately 40 g/kg.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
- Enzymes And Modification Thereof (AREA)
- Fodder In General (AREA)
- Cosmetics (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
- Packages (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Laminated Bodies (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
Abstract
A granule having high stability and low dust is described. The granule includes a hydrated barrier material having moderate or high water activity. Also described are methods of producing the granules.
Description
- Recently the use of enzymes, especially of microbial origin, has become more and more common. Enzymes are used in several industries including, for example, the starch industry, the dairy industry, and the detergent industry. It is well known in the detergent industry that the use of enzymes, particularly proteolytic enzymes, has created industrial hygiene concerns for detergent factory workers, particularly due to the health risks associated with dustiness of the available enzymes.
- Since the introduction of enzymes into the detergent business, many developments in the granulation and coating of enzymes have been offered by the industry. See for example the following patents relating to enzyme granulation:
- U.S. Pat. No. 4,106,991 describes an improved formation of enzyme granules by including within the composition undergoing granulation, finely divided cellulose fibers in an amount of 2-40% w/w based on the dry weight of the whole composition. In addition, this patent describes that waxy substances can be used to coat the particles of the granulate.
- U.S. Pat. No. 4,689,297 describes enzyme containing particles which comprise a particulate, water dispersible core which is 150-2,000 microns in its longest dimension, a uniform layer of enzyme around the core particle which amounts to 10%-35% by weight of the weight of the core particle, and a layer of macro-molecular, film-forming, water soluble or dispersible coating agent uniformly surrounding the enzyme layer wherein the combination of enzyme and coating agent is from 25-55% of the weight of the core particle. The core material described in this patent includes clay, a sugar crystal enclosed in layers of corn starch which is coated with a layer of dextrin, agglomerated potato starch, particulate salt, agglomerated trisodium citrate, pan crystallized NaCl flakes, bentonite granules or prills, granules containing bentonite, Kaolin and diatomaceous earth or sodium citrate crystals. The film forming material may be a fatty acid ester, an alkoxylated alcohol, a polyvinyl alcohol or an ethoxylated alkylphenol.
- U.S. Pat. No. 4,740,469 describes an enzyme granular composition consisting essentially of from 1-35% by weight of an enzyme and from 0.5-30% by weight of a synthetic fibrous material having an average length of from 100-500 micron and a fineness in the range of from 0.05-0.7 denier, with the balance being an extender or filler. The granular composition may further comprise a molten waxy material, such as polyethylene glycol, and optionally a colorant such as titanium dioxide.
- U.S. Pat. No. 5,254,283 describes a particulate material which has been coated with a continuous layer of a non-water soluble, warp size polymer. U.S. Pat. No. 5,324,649 describes enzyme-containing granules having a core, an enzyme layer and an outer coating layer. The enzyme layer and, optionally, the core and outer coating layer contain a vinyl polymer.
- WO 91/09941 describes an enzyme containing preparation whereby at least 50% of the enzymatic activity is present in the preparation as enzyme crystals. The preparation can be either a slurry or a granulate.
- WO 97/12958 discloses a microgranular enzyme composition. The granules are made by fluid-bed agglomeration which results in granules with numerous carrier or seed particles coated with enzyme and bound together by a binder.
- However, even in light of these developments offered by the industry (as described above) there is a continuing need for low-dust enzyme granules which have additional beneficial characteristics. Additional beneficial characteristics needed in the enzyme granulation industry are low-residue granule formulations (where low residue is defined as a reduced tendency to leave noticeable undissolved residues on clothes or other material), and improved stability formulations. Accomplishing all these desired characteristics simultaneously is a particularly challenging task since, for example, many delayed release or low-dust agents such as fibrous cellulose or warp size polymers leave behind insoluble residues.
- Therefore, it is an object of the present invention to provide low-dust, low residue, highly soluble enzyme granules having increased stability. It is another object of the present invention to provide processes which afford the formation of such improved granules.
- One embodiment of the present invention is a granule that includes a protein core and a hydrated barrier material with moderate or high water activity. The hydrated barrier material can be in one or more layers and/or can be included in the protein core.
- A further embodiment of the present invention is a granule that includes an enzyme core and a hydrated barrier material with moderate or high water activity. The hydrated barrier material can be in one or more layers and/or can be included in the enzyme core.
- Another embodiment is a method of producing the above granule.
- The present invention provides a granule with improved stability having low dust. The granule includes a protein core and a hydrated barrier material with moderate or high water activity.
- A “protein core” or an “enzyme core” can be homogenous such as that described in U.S. patent application Ser. No. 08/995,457 or layered as described in U.S. Pat. No. 5,324,649.
- Proteins that are within the scope of the present invention include pharmaceutically important proteins such as hormones or other therapeutic proteins and industrially important proteins such as enzymes.
- Any enzyme or combination of enzymes may be used in the present invention. Preferred enzymes include those enzymes capable of hydrolyzing substrates, e.g. stains. These enzymes are known as hydrolases which include, but are not limited to, proteases (bacterial, fungal, acid, neutral or alkaline), amylases (alpha or beta), lipases, cellulases and mixtures thereof. Particularly preferred enzymes are subtilisins and cellulases. Most preferred are subtilisins such as described in U.S. Pat. No. 4,760,025, EP Patent 130 756 B1 and EP Patent Application WO 91/06637, which are incorporated herein by reference, and cellulases such as Multifect L250™ and Puradax™, commercially available from Genencor International. Other enzymes that can be used in the present invention include oxidases, transferases, dehydratases, reductases, hemicellulases and isomerases.
- As noted, the barrier material can be coated over the protein core in one or more layers or made part of the protein core in order to insulate or to impede transport of water and inactivating substances to the protein. When the barrier material is part of the protein core, it can be dispersed throughout the core or as a layer in the core.
- Suitable hydrated barrier materials with moderate or high water activity can include salts of an inorganic or organic acid, sugars, polysaccharides, lipids, proteins or synthetic polymers; preferably salts.
- The term “water activity”, symbolized aw, refers to the fractional relative humidity of an atmosphere in equilibrium with a solid or liquid phase material, i.e., the ratio of the partial pressure of water vapor to that present above pure water at the same temperature. In all phases between which water distribution has reached equilibrium, it is by definition equal. The term “relative humidity” is generally used to describe the water in the atmosphere or gas phase in equilibrium with the solid, and is expressed as a percentage, with 100% as the relative humidity of pure water in a closed system. Thus, for any water activity value, there is a corresponding relative humidity given by % RH=100*aw.
- Water activity can be readily measured by methods known in the art, typically by placing a sample of the material inside the temperature-controlled chamber of a water activity meter, such as the Water Activity System Model D2100 available from Rotronic Instrument Corp. (Huntington, N.Y.), and allowing the measurement to reach equilibrium as indicated on the display.
- A “hydrated” barrier material contains water in a free or bound form, or a combination of the two. The water of hydration can be added either during or after the coating process. The degree of hydration will be a function of the material itself and the temperature, humidity and drying conditions under which it is applied.
- “Moderate or high” water activity includes a water activity of at least 0.25, preferably greater than 0.30, most preferably greater than 0.35. The water activity referred to herein is that of the granule itself once it has the barrier material—but no further coatings—coated onto it. Further coatings may mask accurate measurement of the water activity of the barrier material as a distinct layer.
- Without wishing to be bound by theory, it is expected that materials with a water activity greater than 0.25 will have a reduced driving force for picking up water under storage conditions in which the relative humidity is greater than 25%. Most climates have relative humidities above 25%. Many detergents have water activities in the range of about 0.3 to 0.4. If the water activity of the granule is actually higher than that of the surrounding detergent or storage climate, the driving force for pick up of water by the granule should be eliminated, and in fact water may be given up by the granule to its surroundings. Even if the water activity of the granule is lower than that of the detergent or the corresponding relative humidity, the water present in the barrier layer would act as a shield limiting the amount of water and hence in activating substances being picked up by the granule and affecting the protein core.
- In the case of salt hydrates, the hydrated material is a crystalline salt hydrate with bound water(s) of crystallization. The hydrate should be chosen and applied in a manner such that the resulting coated granule will have a water activity in excess of 0.25, or as high as possible while still providing a granule which is dry to the touch. By applying a salt hydrate, or any other suitable hydrated barrier material, in such a manner, as noted above, one expects that this would eliminate any driving force for further uptake of water by the granule. As an important consequence, the driving force for transport of substances which may be detrimental to enzyme activity, such as perborate or peroxide anion, is removed. Without water as a vehicle, these substances are less likely to penetrate the enzyme core. Empirical data demonstrates that enzyme activity in the granule is substantially enhanced by coating the enzyme core with stable salt hydrates.
- Preferred salts include magnesium sulfate heptahydrate, zinc sulfate heptahydrate, copper sulfate pentahydrate, sodium phosphate dibasic heptahydrate, magnesium nitrate hexahydrate, sodium borate decahydrate, sodium citrate dihydrate and magnesium acetate tetrahydrate.
- The granules of the present invention can also comprise one or more coating layers. For example, such coating layers may be one or more intermediate coating layers, or such coating layers may be one or more outside coating layers or a combination thereof. Coating layers may serve any of a number of functions in a granule composition, depending on the end use of the granule. For example, coatings may render the protein resistant to oxidation by bleach, bring about the desirable rates of dissolution upon introduction of the granule into an aqueous medium, or provide a barrier against ambient moisture in order to enhance the storage stability of the enzyme and reduce the possibility of microbial growth within the granule.
- Suitable coatings include polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), cellulose derivatives such as methylcellulose, hydroxypropylmethyl cellulose, hydroxycellulose, ethylcellulose, carboxymethyl cellulose, hydroxypropyl cellulose, polyethylene glycol, polyethylene oxide, chitosan, gum arabic, xanthan, carrageenan, latex polymers, and enteric coatings. Furthermore, coating agents may be used in conjunction with other active agents of the same or different categories.
- Suitable PVAs for incorporation in the coating layer(s) of the granule include partially hydrolyzed, fully hydrolyzed and intermediately hydrolyzed PVAs having low to high degrees of viscosity. Preferably, the outer coating layer comprises partially hydrolyzed PVA having low viscosity. Other vinyl polymers which may be useful include polyvinyl acetate and polyvinyl pyrrolidone. Useful copolymers include, for example, PVA-methylmethacrylate copolymer and PVP-PVA copolymer.
- The coating layers of the present invention may further comprise one or more of the following: plasticizers, extenders, lubricants, pigments, and optionally additional enzymes. Suitable plasticizers useful in the coating layers of the present invention are plasticizers including, for example, polyols such as sugars, sugar alcohols, or polyethylene glycols (PEGs), urea, glycol, propylene glycol or other known plasticizers such as triethyl citrate, dibutyl or dimethyl phthalate or water. Suitable pigments useful in the coating layers of the present invention include, but are not limited to, finely divided whiteners such as titanium dioxide or calcium carbonate or colored pigments or dyes or a combination thereof. Preferably such pigments are low residue pigments upon dissolution. Suitable extenders include sugars such as sucrose or starch hydrolysates such as maltodextrin and corn syrup solids, clays such as kaolin and bentonite, and talc. Suitable lubricants include nonionic surfactants such as Neodol, tallow alcohols, fatty acids, fatty acid salts such as magnesium stearate and fatty acid esters.
- The outer coating layer of the present invention preferably comprises between about 1-25% by weight of the coated granule.
- Adjunct ingredients may be added to the granules of the present invention. Adjunct ingredients may include: metallic salts; solubilizers; activators; antioxidants; dyes; inhibitors; binders; fragrances; enzyme protecting agents/scavengers such as ammonium sulfate, ammonium citrate, urea, guanidine hydrochloride, guanidine carbonate, guanidine sulfamate, thiourea dioxide, monoethanolamine, diethanolamine, triethanolamine, amino acids such as glycine, sodium glutamate and the like, proteins such as bovine serum albumin, casein and the like etc.; surfactants including anionic surfactants, ampholytic surfactants, nonionic surfactants, cationic surfactants and long-chain fatty acid salts; builders; alkalis or inorganic electrolytes; bleaching agents; bluing agents and fluorescent dyes and whiteners; and caking inhibitors.
- The granules described herein may be made by methods known to those skilled in the art of enzyme granulation, including pan-coating, fluid-bed coating, fluid-bed agglomeration, prilling, disc granulation, spray drying, extrusion, centrifugal extrusion, spheronization, drum granulation, high shear agglomeration, or combinations of these techniques.
- The following examples are representative and not intended to be limiting. One skilled in the art could choose other proteins, protein cores, enzymes, enzyme cores, seed particles, methods and coating agents based on the teachings herein.
- A. In a Deseret 60 fluidized bed coater, 54.1 kg of sucrose/starch non pareil seeds were charged and fluidized. Onto these cores, 75.8 kg of protease UF concentrate containing 62.9 g/kg subtilisin protease were sprayed under the following conditions. (Ranges indicate initial and final values over the course of the specified ramp time):
-
Ramp time: 80 minutes Fluid feed rate 0.6-1.0 liter/min Atomization pressure 75 psi Inlet air temperature 85-92 degrees C. Outlet air temperature 50 degrees C. Fluidization air rate 18 m3/min - A solution of magnesium sulfate was prepared by adding 22.2 kg of magnesium sulfate heptahydrate into 22.2 kg of water, and this was sprayed onto the enzyme-coated cores under the following conditions in order to provide that 20% of the final granule would be magnesium sulfate heptahydrate, with care being taken to keep the bed temperature close to, but slightly below, 50 degrees C.:
-
Ramp time: 40 minutes Fluid feed rate 0.6-1.7 liter/min Atomization pressure 45 psi Inlet air temperature 70-84 degrees C. Outlet air temperature 48-50 degrees C. Fluidization air rate 18 m3/min - Finally, a polymer coating solution was prepared by dissolving 6.35 kg of Elvanol 51-05 polyvinyl alcohol, 7.94 kg titanium dioxide and 1.59 kg Neodol 23-6.5T nonionic surfactant in 50.12 kg water and spraying over the salt-coated enzyme cores under the following conditions:
-
Ramp time: 10 min, then constant for 100 min Fluid feed rate 0.6 liter/min Atomization pressure 75 psi Inlet air temperature 50 degrees C. Outlet air temperature 75-80 degrees C. Fluidization air rate 18 m3/min - The harvested granules had an enzyme concentration of approximately 40 g/kg.
- B. Accelerated Stability Test
- The stability of many enzyme granules formulated into bleach-containing detergents is generally excellent, showing generally no more than about 10 to 20% loss in activity over 6 weeks storage at 30 to 37° C. and 70% to 80% R.H. However, to aid in the development and screening of granular formulations, it is desirable to have an accelerated means of determining relative granule stability. The conditions of the accelerated stability test (AST) are far more severe than enzyme granules or detergents would ever encounter in realistic storage or transport. The AST is a “stress test” designed to discriminate differences between formulations which would otherwise not be evident for weeks or months.
- In this test, a test detergent base was made from the following ingredients:
-
72% WFK-1 detergent base (WFK, Forschunginstitut fuer Reinigungstechnologie e.V., Krefeld, Germany) 25% sodium perborate monohydrate (Degussa Corp., Allendale Park, New Jersey.) 3% TAED bleach activator (Warwick International, (=tetraacetylethylenediamine) Mostyn, UK) - For each enzyme sample to be tested, three identical tubes were prepared by adding 1 gram of the test base and 30 mg of enzyme granules to a 15 ml conical tube and mixed by inverting the capped tube 5-8 times by hand. A hole was drilled in the tube cap with a 1/16 inch drill bit. One of the three tubes was assayed immediately and the other two were stored in a humidity chamber set at 50° C. and 70% R.H. One of the two stored tubes was assayed after 1 day of storage; the second, after 3 days of storage. Storage stability was reported for Day 1 and Day 3 by dividing the remaining activity by the original activity at Day 0, expressed as a percentage.
- The enzyme activity was determined by adding to each tube 30 ml of 0.25M MES pH 5.5 buffer containing 20 μl Catalase HP L5000 (Genencor International, Rochester, N.Y.) and incubating for 40 minutes to inactivate the perborate. After this, the enzyme was assayed by adding 10 μl of the test tube mixture and 10 μl of sAAPF protease substrate to 980 μl of 0.1 M Tris pH 8.6, then incubating at 25° C. over 3 minutes, and measuring the optical absorbance at 410 nm. The slope of the absorbance vs. time was then multiplied by the dilution factor and the known extinction coefficient for the specific protease to obtain an enzyme activity as concentration in mg/ml.
- The process described in A above was repeated three more times, the only difference being that the outlet air temperature was controlled at a setpoint of 40, 60 and 70 degrees C. in each of the three separate runs. Samples were removed from all four batches after the magnesium sulfate barrier coating had been applied, and water activities of the granules were measure in a Rotronic Water Activity System, as reported in Table 1. Two of the granules, after application of the final polymer coating, were placed in WFK-1 detergent formula and stored in tubes with drilled caps for three days at 50 degrees C. and 70% relative humidity, according to the accelerated stability test method described above. Tubes were withdrawn from the humidity chamber and assayed after 1 day and 3 days. The percent retained activities are reported in Table 1. The results indicate the granules in which magnesium sulfate was coated at 50 degrees C. outlet temperature are significantly more stable than those coated at 70 degrees C., and that the more stable granules had a water activity above 0.35, while the less stable granules had a significantly lower water activity.
-
TABLE 1 Stability of Magnesium Sulfate Coated Enzyme Granules Aw of MgSO4 Outlet Coated Percent Retained Activity of Temp Protease Granules Stored in Bleach Detergent (C.) Cores 0 days 1 day 3 days 40 0.374 50 0.409 100% 108% 97% 60 0.140 70 0.165 100% 94% 63% - A. In a Vector 60 coater, 25 kg of sucrose/starch nonpareil seeds were fluidized and 30.9 kg of subtilisin protease concentrate with a concentration of 65.9 g/L and 18.3% total solids were sprayed onto the fluidized cores under the following conditions:
-
Ramp time: 55 minutes Fluid feed rate 0.5-0.9 liter/min Atomization pressure 75 psi Inlet air temperature 60-95 degrees C. Outlet air temperature 50 degrees C. Fluidization air rate 24 m3/min - A solution of trisodium citrate was prepared by adding 13.2 kg of trisodium citrate dihydrate into 19.7 kg of water, and this was sprayed onto the enzyme-coated cores under the following conditions in order to provide that 25% of the final granule would be trisodium citrate dihydrate, with care being taken to keep the bed temperature close to 50 degrees C.:
-
Ramp time: 23 minutes Fluid feed rate 0.6-1.9 liter/min Atomization pressure 75 psi Inlet air temperature 60-95 degrees C. Outlet air temperature 50 degrees C. Fluidization air rate 24 m3/min
Finally, a polymer coating solution was prepared by dissolving 2.94 kg Methocel HPMC, 0.98 kg polyethylene glycol, molecular weight 600, 2.06 kg titanium dioxide and 0.59 kg Neodol 23-6.5T nonionic surfactant in 55.88 kg water and spraying over the salt-coated enzyme cores under the following conditions: -
Ramp time: 10 min, then 80 minutes constant Fluid feed rate 0.5-0.7 liter/min Atomization pressure 75 psi Inlet air temperature 75-80 degrees C. Outlet air temperature 60 degrees C. Fluidization air rate 18 m3/min - The harvested granules had a weight of 49.5 kg and an enzyme concentration of approximately 40 g/kg.
- B. The above process was repeated under the same conditions, but the outlet air temperature was controlled at a setpoint of 70 degrees C. Samples were removed from both batches after the sodium citrate barrier coating had been applied, and water activities of the granules were measure in a Rotronic Water Activity System, as reported in Table 2. The two granules, after application of the final polymer coating, were placed in an automatic dish detergent base and stored in sealed tubes for 84 days at 37 degrees C. Tubes were withdrawn from the humidity chamber and assayed after 14, 42 and 84 days. The percent retained activities are reported in Table 2. The results indicate the granules in which sodium citrate was coated at 50 degrees C. outlet temperature are significantly more stable than those coated at 70 degrees C., and that the more stable granules had a water activity above 0.25, while the less stable granules had a significantly lower water activity.
-
TABLE 2 Stability of Sodium Citrate Coated Enzyme Granules Aw of Na3 Citrate Outlet Coated Percent Retained Activity of Temp Protease Granules Stored in Bleach Detergent (C.) Cores 0 days 14 days 42 days 84 days 55 0.272 100% 90% 89% 87% 70 0.059 100% 86% 81% 75%
Claims (11)
1. A granule comprising an enzyme core and a barrier material, wherein the barrier material comprises a hydrated barrier material with moderate or high water activity.
2. The granule of claim 1 , wherein the barrier material is a salt.
3. The granule of claim 1 , wherein the salt is selected from the group consisting of magnesium sulfate heptahydrate, zinc sulfate heptahydrate, copper sulfate pentahydrate, sodium phosphate dibasic heptahydrate, magnesium nitrate hexahydrate, sodium borate decahydrate, sodium citrate dihydrate and magnesium acetate tetrahydrate.
4. The granule of claim 1 , wherein the barrier material is part of the protein core.
5. The granule of claim 1 , wherein the barrier material is coated over the protein core.
6. The granule of claim 1 , further comprising a layer of material between the protein core and the barrier material.
7. The granule of claim 1 , further comprising a layer of material over the barrier layer and protein core.
8. The granule of claim 1 , wherein the protein is an enzyme.
9. The granule of claim 1 , wherein the water activity is greater than 0.25.
10. A method of producing a granule comprising:
a) providing a protein core;
b) coating a hydrated barrier material with moderate or high water activity onto the protein core.
11. The method of claim 10 , further comprising a coating over the barrier material.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/113,422 US20080206830A1 (en) | 1997-12-20 | 2008-05-01 | Granule with hydrated barrier material |
US13/361,860 US20120214727A1 (en) | 1997-12-20 | 2012-01-30 | Granule With Hydrated Barrier Material |
US14/107,765 US20140141971A1 (en) | 1997-12-20 | 2013-12-16 | Granule with hydrated barrier material |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6838297P | 1997-12-20 | 1997-12-20 | |
PCT/US1998/027214 WO1999032595A1 (en) | 1997-12-20 | 1998-12-21 | Granule with hydrated barrier material |
US09/581,717 US6602841B1 (en) | 1997-12-20 | 1998-12-21 | Granule with hydrated barrier material |
US10/630,217 US20040029756A1 (en) | 1997-12-20 | 2003-07-30 | Granule with hydrated barrier material |
US12/113,422 US20080206830A1 (en) | 1997-12-20 | 2008-05-01 | Granule with hydrated barrier material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/630,217 Continuation US20040029756A1 (en) | 1997-12-20 | 2003-07-30 | Granule with hydrated barrier material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US201113165455A Continuation | 1997-12-20 | 2011-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080206830A1 true US20080206830A1 (en) | 2008-08-28 |
Family
ID=22082210
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/581,717 Expired - Lifetime US6602841B1 (en) | 1997-12-20 | 1998-12-21 | Granule with hydrated barrier material |
US10/630,217 Abandoned US20040029756A1 (en) | 1997-12-20 | 2003-07-30 | Granule with hydrated barrier material |
US12/113,422 Abandoned US20080206830A1 (en) | 1997-12-20 | 2008-05-01 | Granule with hydrated barrier material |
US13/361,860 Abandoned US20120214727A1 (en) | 1997-12-20 | 2012-01-30 | Granule With Hydrated Barrier Material |
US14/107,765 Abandoned US20140141971A1 (en) | 1997-12-20 | 2013-12-16 | Granule with hydrated barrier material |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/581,717 Expired - Lifetime US6602841B1 (en) | 1997-12-20 | 1998-12-21 | Granule with hydrated barrier material |
US10/630,217 Abandoned US20040029756A1 (en) | 1997-12-20 | 2003-07-30 | Granule with hydrated barrier material |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/361,860 Abandoned US20120214727A1 (en) | 1997-12-20 | 2012-01-30 | Granule With Hydrated Barrier Material |
US14/107,765 Abandoned US20140141971A1 (en) | 1997-12-20 | 2013-12-16 | Granule with hydrated barrier material |
Country Status (16)
Country | Link |
---|---|
US (5) | US6602841B1 (en) |
EP (1) | EP1042443B1 (en) |
JP (1) | JP4367743B2 (en) |
KR (1) | KR20010033321A (en) |
CN (1) | CN1197946C (en) |
AT (1) | ATE344313T1 (en) |
AU (1) | AU745104B2 (en) |
BR (1) | BR9813768A (en) |
CA (1) | CA2313238C (en) |
CZ (1) | CZ302123B6 (en) |
DE (1) | DE69836348T2 (en) |
DK (1) | DK1042443T3 (en) |
ES (1) | ES2276482T3 (en) |
NZ (1) | NZ505298A (en) |
PL (1) | PL342655A1 (en) |
WO (1) | WO1999032595A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2216393A1 (en) | 2009-02-09 | 2010-08-11 | The Procter & Gamble Company | Detergent composition |
EP2674475A1 (en) | 2012-06-11 | 2013-12-18 | The Procter & Gamble Company | Detergent composition |
WO2014100100A1 (en) | 2012-12-20 | 2014-06-26 | The Procter & Gamble Company | Detergent composition with silicate coated bleach |
US20140364353A1 (en) * | 2013-06-11 | 2014-12-11 | The Procter & Gamble Company | Detergent composition |
EP2924106A1 (en) | 2014-03-28 | 2015-09-30 | The Procter and Gamble Company | Water soluble unit dose article |
EP2924105A1 (en) | 2014-03-28 | 2015-09-30 | The Procter and Gamble Company | Water soluble unit dose article |
EP3181671A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
EP3181679A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Process for making an automatic dishwashing product |
EP3181675A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
EP3181672A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
EP3181670A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
EP3181676A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
EP3181678A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Process for making a detergent powder |
US11312924B2 (en) | 2018-08-14 | 2022-04-26 | The Procter & Gamble Company | Fabric treatment compositions comprising benefit agent capsules |
US11339356B2 (en) | 2018-08-14 | 2022-05-24 | The Procter & Gamble Company | Liquid fabric treatment compositions comprising brightener |
US11634668B2 (en) | 2018-08-14 | 2023-04-25 | The Procter & Gamble Company | Fabric treatment compositions comprising benefit agent capsules |
Families Citing this family (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1021525A1 (en) | 1997-12-20 | 2000-07-26 | Genencor International, Inc. | Fluidized bed matrix granule |
AU745104B2 (en) * | 1997-12-20 | 2002-03-14 | Genencor International, Inc. | Granule with hydrated barrier material |
JP2002519052A (en) * | 1998-06-30 | 2002-07-02 | ノボザイムス アクティーゼルスカブ | New and improved enzyme-containing particles |
ES2237209T3 (en) | 1998-10-27 | 2005-07-16 | Genencor International, Inc. | MATRIX Granule. |
CA2348896A1 (en) | 1998-11-13 | 2000-05-25 | Douglas A. Dale | Fluidized bed low density granule |
AU2497100A (en) | 1999-01-08 | 2000-07-24 | Genencor International, Inc. | Low-density compositions and particulates including same |
DE60024663T2 (en) * | 1999-10-01 | 2006-08-10 | Novozymes A/S | SPRAY DRYED ENZYME PRODUCT |
CA2387511A1 (en) | 1999-10-15 | 2001-04-26 | Genencor International, Inc. | Protein-containing granules and granule formulations |
EP1456336A1 (en) * | 2001-12-21 | 2004-09-15 | Novozymes A/S | Salt coatings |
CN100386434C (en) | 2002-03-27 | 2008-05-07 | 诺和酶股份有限公司 | Granules with filamentous coatings |
WO2004033083A2 (en) | 2002-10-09 | 2004-04-22 | Novozymes A/S | A method for improving particle compositions |
ATE461276T1 (en) | 2003-01-27 | 2010-04-15 | Novozymes As | ENZYME STABILIZATION |
ES2299682T3 (en) * | 2003-05-23 | 2008-06-01 | THE PROCTER & GAMBLE COMPANY | CLEANING COMPOSITION FOR USE IN A WASHER OR DISHWASHER. |
US20060073193A1 (en) * | 2004-09-27 | 2006-04-06 | Novozymes A/S | Enzyme granules |
DE10180655T8 (en) * | 2004-09-27 | 2013-04-25 | Novozymes A/S | Phytase granules in animal nutrition |
US20060160317A1 (en) * | 2005-01-18 | 2006-07-20 | International Business Machines Corporation | Structure and method to enhance stress in a channel of cmos devices using a thin gate |
WO2007010603A1 (en) * | 2005-07-20 | 2007-01-25 | Nissin Dental Products Inc. | Multilayered model tooth for dental training |
CA2625557C (en) * | 2005-10-12 | 2014-08-12 | Genencor International, Inc. | Stable, durable granules with active agents |
EP1994130A1 (en) | 2006-03-02 | 2008-11-26 | Novozymes A/S | High capacity encapsulation process |
US20080031998A1 (en) | 2006-08-07 | 2008-02-07 | Novozymes A/S | Enzyme Granules for Animal Feed |
CN101500430B (en) * | 2006-08-07 | 2014-02-19 | 诺维信公司 | Enzyme granules for animal feed |
AU2009214868A1 (en) * | 2008-02-14 | 2009-08-20 | Danisco Us Inc. | Small enzyme-containing granules |
NZ589121A (en) | 2008-06-09 | 2012-10-26 | Danisco Us Inc | Recovery of insoluble enzyme from fermentation broth and formulation of insoluble enzyme |
AU2009324381A1 (en) * | 2008-12-09 | 2011-06-30 | Carlsberg Breweries A/S | A system and method for providing a self cooling container |
CA2797032A1 (en) * | 2010-04-26 | 2011-11-03 | Novozymes A/S | Enzyme granules |
US9453197B2 (en) | 2010-12-16 | 2016-09-27 | General Electric Company | Methods of making cell carrier |
US9453196B2 (en) | 2010-12-16 | 2016-09-27 | General Electric Company | Cell carrier, methods of making and use |
US9534206B2 (en) | 2010-12-16 | 2017-01-03 | General Electric Company | Cell carrier, associated methods for making cell carrier and culturing cells using the same |
US9518249B2 (en) | 2010-12-16 | 2016-12-13 | General Electric Company | Cell carrier, associated methods for making cell carrier and culturing cells using the same |
US9926523B2 (en) | 2010-12-16 | 2018-03-27 | General Electric Company | Cell carriers and methods for culturing cells |
JP2014501257A (en) | 2010-12-23 | 2014-01-20 | コルゲート・パーモリブ・カンパニー | Aqueous oral care composition |
BR112013016210A2 (en) | 2010-12-23 | 2019-09-24 | Colgate Palmolive Co | fluid compositions comprising a structuring agent. |
TW201234978A (en) | 2011-02-18 | 2012-09-01 | Danisco | Feed additive composition |
SG11201402061UA (en) | 2011-12-15 | 2014-06-27 | Colgate Palmolive Co | Aqueous oral care compositions |
WO2013119468A2 (en) | 2012-02-07 | 2013-08-15 | Danisco Us Inc. | Phytic acid as a stabilizer for phytase |
DK2812429T3 (en) | 2012-02-07 | 2020-09-28 | Danisco Us Inc | GLYCOSYLATION AS A STABILIZER FOR PHYTASE |
US20130284637A1 (en) | 2012-04-30 | 2013-10-31 | Danisco Us Inc. | Unit-dose format perhydrolase systems |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
US20180092379A1 (en) | 2015-03-19 | 2018-04-05 | Danisco Us Inc. | Stable granules with low internal water activity |
DE102015217816A1 (en) | 2015-09-17 | 2017-03-23 | Henkel Ag & Co. Kgaa | Use of highly concentrated enzyme granules to increase the storage stability of enzymes |
US11058129B2 (en) | 2016-05-24 | 2021-07-13 | Novozymes A/S | Animal feed additives |
CN109312321A (en) | 2016-05-24 | 2019-02-05 | 诺维信公司 | Composition comprising the polypeptide with galactanase activity and the polypeptide with betagalactosidase activity |
EP4446410A2 (en) | 2016-05-24 | 2024-10-16 | Novozymes A/S | Compositions comprising polypeptides having galactanase activity and polypeptides having beta-galactosidase activity |
WO2017202966A1 (en) | 2016-05-24 | 2017-11-30 | Novozymes A/S | Polypeptides having alpha-galactosidase activity and polynucleotides encoding same |
CN109415709A (en) | 2016-07-08 | 2019-03-01 | 诺维信公司 | Polypeptide with xylanase activity and the polynucleotides for encoding it |
WO2018007154A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Xylanase variants and polynucleotides encoding same |
US20190284647A1 (en) | 2016-09-29 | 2019-09-19 | Novozymes A/S | Spore Containing Granule |
WO2018083093A1 (en) | 2016-11-01 | 2018-05-11 | Novozymes A/S | Multi-core granules |
US20200109352A1 (en) | 2017-04-04 | 2020-04-09 | Novozymes A/S | Polypeptide compositions and uses thereof |
CN110651029B (en) | 2017-04-04 | 2022-02-15 | 诺维信公司 | Glycosyl hydrolase |
EP3478811B1 (en) | 2017-04-06 | 2019-10-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185269A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
CA3058520A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Detergent compositions and uses thereof |
CN110662829B (en) | 2017-04-06 | 2022-03-01 | 诺维信公司 | Cleaning composition and use thereof |
US11352591B2 (en) | 2017-04-06 | 2022-06-07 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3607043A1 (en) | 2017-04-06 | 2020-02-12 | Novozymes A/S | Cleaning compositions and uses thereof |
US10968416B2 (en) | 2017-04-06 | 2021-04-06 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018234465A1 (en) | 2017-06-22 | 2018-12-27 | Novozymes A/S | Xylanase variants and polynucleotides encoding same |
AU2018322867B2 (en) | 2017-09-01 | 2024-05-09 | Novozymes A/S | Animal feed additives comprising a polypeptide having protease activity and uses thereof |
BR112020001577B1 (en) | 2017-09-01 | 2023-12-26 | Novozymes A/S | ANIMAL FEED ADDITIVE, LIQUID FORMULATION, ANIMAL FEED, METHODS FOR IMPROVING ONE OR MORE PERFORMANCE PARAMETERS OF AN ANIMAL, FOR PREPARING AN ANIMAL FEED, FOR PROTEIN TREATMENT, FOR INCREASING PROTEIN DIGESTIBILITY AND/OR SOLUBILITY, FOR IMPROVEMENT OF THE NUTRITIONAL VALUE OF AN ANIMAL FEED AND FOR PRODUCTION OF A POLYPEPTIDE, AND, USE OF ANIMAL FEED ADDITIVE |
EP3684899A1 (en) | 2017-09-22 | 2020-07-29 | Novozymes A/S | Novel polypeptides |
CN111373036A (en) | 2017-10-02 | 2020-07-03 | 诺维信公司 | Polypeptides having mannanase activity and polynucleotides encoding same |
US11746310B2 (en) | 2017-10-02 | 2023-09-05 | Novozymes A/S | Polypeptides having mannanase activity and polynucleotides encoding same |
US20230193162A1 (en) | 2017-10-16 | 2023-06-22 | Novozymes A/S | Low dusting granules |
WO2019076800A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2019076834A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
US11866748B2 (en) | 2017-10-24 | 2024-01-09 | Novozymes A/S | Compositions comprising polypeptides having mannanase activity |
BR112020008711A2 (en) | 2017-11-01 | 2020-11-10 | Novozymes A/S | polypeptides and compositions comprising such polypeptides |
CN111527190A (en) | 2017-11-01 | 2020-08-11 | 诺维信公司 | Polypeptides and compositions comprising such polypeptides |
WO2019121930A1 (en) | 2017-12-20 | 2019-06-27 | Dsm Ip Assets B.V. | Animal feed compositions and uses thereof |
EP3727025A1 (en) | 2017-12-20 | 2020-10-28 | DSM IP Assets B.V. | Animal feed compositions comprising muramidase and uses thereof |
EP3737769A1 (en) | 2018-01-11 | 2020-11-18 | Novozymes A/S | Animal feed compositions and uses thereof |
BR112020015339A2 (en) | 2018-02-06 | 2020-12-08 | Novozymes Bioag A/S | METHODS FOR FOLIATING APPLICATION OF A COMPOSITION, TO CONTROL OR PREVENT ONE OR MORE PLANT DISEASES AND / OR PLANT PLUNGES ON A PLANT OR PART OF THE PLANT AND / OR INDUCT RESISTANCE TO DISEASES BY A PATHOGEN ON A PLANT OR PART OF THE PLANT AND FOR CONTROL OR PREVENT DAMAGE FROM PATHOGENS AND / OR DAMAGE FROM PEST IN A PLANT PROPAGATION MATERIAL, A PLANT, PART OF A PLANT AND / OR PLANT ORGAN |
BR112020021365A2 (en) | 2018-04-25 | 2021-01-19 | Novozymes A/S | ANIMAL FEED, METHOD FOR IMPROVING THE EUROPEAN PRODUCTION EFFICIENCY FACTOR, BODY WEIGHT GAIN AND / OR RATION CONVERSION REASON FOR A MONOGRAPHIC ANIMAL, USE OF AT LEAST ONE PROBIOTIC IN COMBINATION WITH A POLYPEPTIOUS ACTIVITY OF BEING ACTIVELY ACTIVE IN HIS ACTIVITY. FEED, AND, FEED COMPOSITION OR PRE-MIXTURE COMPOSITION, OR ANIMAL FEED ADDITIVE. |
WO2019209623A1 (en) | 2018-04-26 | 2019-10-31 | Danisco Us Inc | Method for increasing stability of phytase in a solid composition and a granule composition comprising phosphate and phytase |
CA3102064A1 (en) | 2018-06-01 | 2019-12-05 | Danisco Us Inc. | High-payload, non-porous, enzyme-containing coated granules |
EP3801030A1 (en) | 2018-06-05 | 2021-04-14 | Novozymes BioAG A/S | Methods of protecting a plant from fungal pests |
CA3101519A1 (en) | 2018-06-05 | 2019-12-12 | Novozymes Bioag A/S | Methods of protecting a plant from insect pests |
US20210214703A1 (en) | 2018-06-19 | 2021-07-15 | Danisco Us Inc | Subtilisin variants |
US20210363470A1 (en) | 2018-06-19 | 2021-11-25 | Danisco Us Inc | Subtilisin variants |
US20210071115A1 (en) | 2018-06-28 | 2021-03-11 | Novozymes A/S | Detergent Compositions and Uses Thereof |
US20210071116A1 (en) | 2018-06-29 | 2021-03-11 | Novozymes A/S | Detergent Compositions and Uses Thereof |
US12012573B2 (en) | 2018-07-02 | 2024-06-18 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3818138A1 (en) | 2018-07-03 | 2021-05-12 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3818140A1 (en) | 2018-07-06 | 2021-05-12 | Novozymes A/S | Cleaning compositions and uses thereof |
CN112566502A (en) | 2018-08-31 | 2021-03-26 | 诺维信公司 | Polypeptides having protease activity and polynucleotides encoding same |
US20220046955A1 (en) | 2018-09-11 | 2022-02-17 | Novozymes A/S | Stable Granules for Feed Compositions |
WO2020058226A1 (en) | 2018-09-17 | 2020-03-26 | Dsm Ip Assets B.V. | Animal feed compositions and uses thereof |
WO2020058224A1 (en) | 2018-09-17 | 2020-03-26 | Dsm Ip Assets B.V. | Animal feed compositions and uses thereof |
EP3852547A1 (en) | 2018-09-17 | 2021-07-28 | DSM IP Assets B.V. | Animal feed compositions and uses thereof |
WO2020058225A1 (en) | 2018-09-17 | 2020-03-26 | Dsm Ip Assets B.V. | Animal feed compositions and uses thereof |
US20210340466A1 (en) | 2018-10-01 | 2021-11-04 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020070209A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
US20230287306A1 (en) | 2018-10-02 | 2023-09-14 | Novozymes A/S | Cleaning Composition |
EP3861008A1 (en) | 2018-10-03 | 2021-08-11 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
EP3864122A1 (en) | 2018-10-09 | 2021-08-18 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074499A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074545A1 (en) | 2018-10-11 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
ES2981999T3 (en) | 2018-10-31 | 2024-10-14 | Henkel Ag & Co Kgaa | Cleaning compositions containing dispersins V |
EP3647397A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins iv |
US20230028935A1 (en) | 2018-11-28 | 2023-01-26 | Danisco Us Inc | Subtilisin variants having improved stability |
US20220015394A1 (en) | 2018-12-05 | 2022-01-20 | Novozymes A/S | Use of An Enzyme Granule |
CN113366103A (en) | 2018-12-21 | 2021-09-07 | 诺维信公司 | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
EP3976776A1 (en) | 2019-05-24 | 2022-04-06 | Danisco US Inc. | Subtilisin variants and methods of use |
EP4031661A1 (en) | 2019-09-16 | 2022-07-27 | Novozymes A/S | Polypeptides having beta-glucanase activity and polynucleotides encoding same |
WO2021078839A1 (en) | 2019-10-22 | 2021-04-29 | Novozymes A/S | Animal feed composition |
EP4051643A1 (en) | 2019-10-28 | 2022-09-07 | Danisco US Inc. | Methods and compositions for remediating cyanuric acid in aqueous liquids |
CN114829564A (en) | 2019-12-20 | 2022-07-29 | 汉高股份有限及两合公司 | Cleaning compositions comprising dispersible protein and carbohydrase |
US20230048546A1 (en) | 2019-12-20 | 2023-02-16 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
AU2020404594A1 (en) | 2019-12-20 | 2022-08-18 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins VIII |
WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
US20230045289A1 (en) | 2019-12-20 | 2023-02-09 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins ix |
US20240228913A1 (en) | 2019-12-23 | 2024-07-11 | Novozymes A/S | Enzyme compositions and uses thereof |
EP4093842A1 (en) | 2020-01-23 | 2022-11-30 | Novozymes A/S | Enzyme compositions and uses thereof |
WO2021152120A1 (en) | 2020-01-31 | 2021-08-05 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
CN115052981A (en) | 2020-01-31 | 2022-09-13 | 诺维信公司 | Mannanase variants and polynucleotides encoding same |
US20240228996A1 (en) | 2020-02-10 | 2024-07-11 | Novozymes A/S | Polypeptides having alpha-amylase activity and polynucleotides encoding same |
GB202005073D0 (en) | 2020-04-06 | 2020-05-20 | Mellizyme Biotechnology Ltd | Enzymatic degradation of plastics |
CN115516071A (en) | 2020-04-21 | 2022-12-23 | 诺维信公司 | Cleaning compositions comprising polypeptides having fructan-degrading activity |
EP4152946A1 (en) | 2020-05-18 | 2023-03-29 | DSM IP Assets B.V. | Animal feed compositions |
EP4152945A1 (en) | 2020-05-18 | 2023-03-29 | DSM IP Assets B.V. | Animal feed compositions |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
BR112023006411A2 (en) | 2020-10-07 | 2023-10-31 | Novozymes As | NEW GRANULES FOR ANIMAL FEED |
CA3196405A1 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Enzymatic feed preservation |
AU2021360228A1 (en) | 2020-10-15 | 2023-05-04 | Dsm Ip Assets B.V. | Methods of modulating gastrointestinal metabolites |
WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
CA3199315A1 (en) | 2020-11-02 | 2022-05-05 | Novozymes A/S | Glucoamylase variants and polynucleotides encoding same |
WO2023225459A2 (en) | 2022-05-14 | 2023-11-23 | Novozymes A/S | Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections |
WO2023288294A1 (en) | 2021-07-16 | 2023-01-19 | Novozymes A/S | Compositions and methods for improving the rainfastness of proteins on plant surfaces |
EP4291625A1 (en) | 2021-02-12 | 2023-12-20 | Novozymes A/S | Stabilized biological detergents |
GB202114239D0 (en) | 2021-10-05 | 2021-11-17 | Mellizyme Biotechnology Ltd | Oxidative transformation of small molecules |
WO2023114795A1 (en) | 2021-12-16 | 2023-06-22 | The Procter & Gamble Company | Automatic dishwashing composition comprising a protease |
CA3240638A1 (en) | 2021-12-16 | 2023-06-22 | Michelle Jackson | Fabric and home care composition comprising a protease |
CN118679251A (en) | 2021-12-16 | 2024-09-20 | 丹尼斯科美国公司 | Subtilisin variants and methods of use |
WO2023114939A2 (en) | 2021-12-16 | 2023-06-22 | Danisco Us Inc. | Subtilisin variants and methods of use |
WO2023114932A2 (en) | 2021-12-16 | 2023-06-22 | Danisco Us Inc. | Subtilisin variants and methods of use |
WO2023110639A1 (en) | 2021-12-16 | 2023-06-22 | Novozymes A/S | Protease animal feed formulation |
EP4206309A1 (en) | 2021-12-30 | 2023-07-05 | Novozymes A/S | Protein particles with improved whiteness |
AU2023231428A1 (en) | 2022-03-08 | 2024-07-11 | Novozymes A/S | Fusion polypeptides with deamidase inhibitor and deamidase domains |
EP4242303A1 (en) | 2022-03-08 | 2023-09-13 | Novozymes A/S | Fusion polypeptides with deamidase inhibitor and deamidase domains |
WO2023194388A1 (en) | 2022-04-07 | 2023-10-12 | Novozymes A/S | Fusion proteins and their use against eimeria |
WO2023247348A1 (en) | 2022-06-21 | 2023-12-28 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
WO2023247664A2 (en) | 2022-06-24 | 2023-12-28 | Novozymes A/S | Lipase variants and compositions comprising such lipase variants |
WO2024003143A1 (en) | 2022-06-30 | 2024-01-04 | Novozymes A/S | Mutanases and oral care compositions comprising same |
WO2024012912A1 (en) | 2022-07-15 | 2024-01-18 | Novozymes A/S | Polypeptides having deamidase inhibitor activity |
WO2024050346A1 (en) | 2022-09-02 | 2024-03-07 | Danisco Us Inc. | Detergent compositions and methods related thereto |
WO2024050343A1 (en) | 2022-09-02 | 2024-03-07 | Danisco Us Inc. | Subtilisin variants and methods related thereto |
WO2024102698A1 (en) | 2022-11-09 | 2024-05-16 | Danisco Us Inc. | Subtilisin variants and methods of use |
WO2024110541A1 (en) | 2022-11-22 | 2024-05-30 | Novozymes A/S | Colored granules having improved colorant stability |
WO2024121070A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2024121324A1 (en) | 2022-12-08 | 2024-06-13 | Novozymes A/S | Polypeptide having lysozyme activity and polynucleotides encoding same |
WO2024121327A1 (en) | 2022-12-08 | 2024-06-13 | Novozymes A/S | Co-granulate for animal feed |
WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
WO2024137246A1 (en) | 2022-12-19 | 2024-06-27 | Novozymes A/S | Carbohydrate esterase family 1 (ce1) polypeptides having ferulic acid esterase and/or acetyl xylan esterase activity and polynucleotides encoding same |
WO2024137250A1 (en) | 2022-12-19 | 2024-06-27 | Novozymes A/S | Carbohydrate esterase family 3 (ce3) polypeptides having acetyl xylan esterase activity and polynucleotides encoding same |
EP4389865A1 (en) | 2022-12-21 | 2024-06-26 | Novozymes A/S | Recombinant protease for cell detachment |
WO2024133497A1 (en) | 2022-12-21 | 2024-06-27 | Novozymes A/S | Recombinant protease for cell detachment |
WO2024133495A1 (en) | 2022-12-21 | 2024-06-27 | Novozymes A/S | Microbial proteases for cell detachment |
US20240263162A1 (en) | 2023-02-01 | 2024-08-08 | The Procter & Gamble Company | Detergent compositions containing enzymes |
WO2024163584A1 (en) | 2023-02-01 | 2024-08-08 | Danisco Us Inc. | Subtilisin variants and methods of use |
WO2024175631A1 (en) | 2023-02-22 | 2024-08-29 | Novozymes A/S | Oral care composition comprising invertase |
WO2024186819A1 (en) | 2023-03-06 | 2024-09-12 | Danisco Us Inc. | Subtilisin variants and methods of use |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7006570A (en) * | 1969-05-29 | 1970-12-01 | ||
US3650961A (en) * | 1969-07-18 | 1972-03-21 | Monsanto Co | Process for preparing particulate products having preferentially internally concentrated core components |
DE2044536A1 (en) * | 1969-09-24 | 1971-04-08 | Colgate Palmolive Co , New York, NY (V St A ) | Process for the production of an enzyme-containing granulate for washing purposes |
US3793216A (en) * | 1971-12-06 | 1974-02-19 | Pennwalt Corp | Calcium hypochlorite composition |
US3764542A (en) * | 1972-03-28 | 1973-10-09 | Colgate Palmolive Co | Enzyme granulation process |
GB1590432A (en) | 1976-07-07 | 1981-06-03 | Novo Industri As | Process for the production of an enzyme granulate and the enzyme granuate thus produced |
JPS5950280B2 (en) * | 1980-10-24 | 1984-12-07 | 花王株式会社 | Enzyme bleach composition |
US4417994A (en) * | 1981-01-24 | 1983-11-29 | The Procter & Gamble Company | Particulate detergent additive compositions |
JPS59194000A (en) * | 1983-04-18 | 1984-11-02 | 花王株式会社 | Bleaching detergent composition |
JPS59193999A (en) * | 1983-04-18 | 1984-11-02 | 花王株式会社 | Bleaching detergent composition |
JPS59204697A (en) * | 1983-05-06 | 1984-11-20 | 花王株式会社 | Bleach-active composition |
US4760025A (en) | 1984-05-29 | 1988-07-26 | Genencor, Inc. | Modified enzymes and methods for making same |
IE81141B1 (en) | 1983-06-24 | 2000-04-05 | Genencor Int | Procaryotic carbonyl hydrolases |
US5185258A (en) | 1984-05-29 | 1993-02-09 | Genencor International, Inc. | Subtilisin mutants |
JPS6192570A (en) | 1984-10-12 | 1986-05-10 | Showa Denko Kk | Enzyme granulation |
US4664917A (en) * | 1984-11-13 | 1987-05-12 | Central Soya Company, Inc. | Method of providing cattle with proteinaceous feed materials |
US4689297A (en) * | 1985-03-05 | 1987-08-25 | Miles Laboratories, Inc. | Dust free particulate enzyme formulation |
EP0206418B1 (en) * | 1985-06-28 | 1991-11-13 | The Procter & Gamble Company | Dry bleach and stable enzyme granular composition |
US4707287A (en) * | 1985-06-28 | 1987-11-17 | The Procter & Gamble Company | Dry bleach stable enzyme composition |
US5167854A (en) * | 1985-08-21 | 1992-12-01 | The Clorox Company | Encapsulated enzyme in dry bleach composition |
US5211874A (en) * | 1985-08-21 | 1993-05-18 | The Clorox Company | Stable peracid and enzyme bleaching composition |
JP2787941B2 (en) * | 1986-09-12 | 1998-08-20 | 花王株式会社 | High density granular detergent composition containing enzymes |
US4965012A (en) * | 1987-04-17 | 1990-10-23 | Olson Keith E | Water insoluble encapsulated enzymes protected against deactivation by halogen bleaches |
JPH05502584A (en) | 1989-12-21 | 1993-05-13 | ノボ ノルディスク アクティーゼルスカブ | Enzyme-containing preparations and detergents containing the preparations |
US5814501A (en) | 1990-06-04 | 1998-09-29 | Genencor International, Inc. | Process for making dust-free enzyme-containing particles from an enzyme-containing fermentation broth |
CA2096255C (en) * | 1990-11-14 | 1998-01-20 | Jeffrey D. Painter | Nonphosphated automatic dishwashing compositions with oxygen bleach systems and process for their preparation |
DE4041752A1 (en) * | 1990-12-24 | 1992-06-25 | Henkel Kgaa | ENZYME PREPARATION FOR WASHING AND CLEANING AGENTS |
AU677166B2 (en) * | 1991-10-07 | 1997-04-17 | Genencor International, Inc. | Coated enzyme containing granule |
US5324649A (en) | 1991-10-07 | 1994-06-28 | Genencor International, Inc. | Enzyme-containing granules coated with hydrolyzed polyvinyl alcohol or copolymer thereof |
US5879920A (en) * | 1991-10-07 | 1999-03-09 | Genencor International, Inc. | Coated enzyme-containing granule |
US5698510A (en) * | 1993-09-13 | 1997-12-16 | The Procter & Gamble Company | Process for making granular detergent compositions comprising nonionic surfactant |
DE4344215A1 (en) * | 1993-12-23 | 1995-06-29 | Cognis Bio Umwelt | Silver corrosion inhibitor-containing enzyme preparation |
SK40697A3 (en) * | 1995-07-28 | 1997-10-08 | Gist Brocades Bv | Salt-stabilized enzyme preparations |
DE69632638T2 (en) * | 1995-10-06 | 2004-11-11 | Genencor International, Inc., Palo Alto | MICROGRANULES FOR THE USE OF FOOD OR FEED |
JP3081534B2 (en) * | 1995-12-22 | 2000-08-28 | 花王株式会社 | Enzyme-containing granules, method for producing the same, and compositions containing the same |
CA2285075A1 (en) * | 1997-04-04 | 1998-10-15 | Jyoti Varadarajan | Low sudsing granular detergent composition containing optimally selected levels of a foam control agent and enzymes |
DK0988366T3 (en) * | 1997-06-04 | 2004-03-29 | Procter & Gamble | Purifying enzyme particles having a water-soluble carboxylate barrier layer and compositions comprising the same |
EP1021525A1 (en) | 1997-12-20 | 2000-07-26 | Genencor International, Inc. | Fluidized bed matrix granule |
AU745104B2 (en) * | 1997-12-20 | 2002-03-14 | Genencor International, Inc. | Granule with hydrated barrier material |
CA2313168A1 (en) | 1997-12-20 | 1999-07-01 | Genencor International, Inc. | Matrix granule |
-
1998
- 1998-12-21 AU AU19373/99A patent/AU745104B2/en not_active Ceased
- 1998-12-21 EP EP98964195A patent/EP1042443B1/en not_active Revoked
- 1998-12-21 CZ CZ20002306A patent/CZ302123B6/en not_active IP Right Cessation
- 1998-12-21 CA CA002313238A patent/CA2313238C/en not_active Expired - Lifetime
- 1998-12-21 PL PL98342655A patent/PL342655A1/en unknown
- 1998-12-21 DK DK98964195T patent/DK1042443T3/en active
- 1998-12-21 DE DE69836348T patent/DE69836348T2/en not_active Expired - Lifetime
- 1998-12-21 US US09/581,717 patent/US6602841B1/en not_active Expired - Lifetime
- 1998-12-21 KR KR1020007006768A patent/KR20010033321A/en not_active Application Discontinuation
- 1998-12-21 JP JP2000525517A patent/JP4367743B2/en not_active Expired - Lifetime
- 1998-12-21 NZ NZ505298A patent/NZ505298A/en not_active IP Right Cessation
- 1998-12-21 CN CNB988124483A patent/CN1197946C/en not_active Expired - Lifetime
- 1998-12-21 AT AT98964195T patent/ATE344313T1/en not_active IP Right Cessation
- 1998-12-21 ES ES98964195T patent/ES2276482T3/en not_active Expired - Lifetime
- 1998-12-21 WO PCT/US1998/027214 patent/WO1999032595A1/en active IP Right Grant
- 1998-12-21 BR BR9813768-9A patent/BR9813768A/en not_active Application Discontinuation
-
2003
- 2003-07-30 US US10/630,217 patent/US20040029756A1/en not_active Abandoned
-
2008
- 2008-05-01 US US12/113,422 patent/US20080206830A1/en not_active Abandoned
-
2012
- 2012-01-30 US US13/361,860 patent/US20120214727A1/en not_active Abandoned
-
2013
- 2013-12-16 US US14/107,765 patent/US20140141971A1/en not_active Abandoned
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7103959B2 (en) | 2009-02-09 | 2022-07-20 | ザ プロクター アンド ギャンブル カンパニー | Detergent composition |
WO2010090915A1 (en) | 2009-02-09 | 2010-08-12 | The Procter & Gamble Company | Detergent composition |
US20110053820A1 (en) * | 2009-02-09 | 2011-03-03 | Philip Frank Souter | Detergent composition |
US8697623B2 (en) | 2009-02-09 | 2014-04-15 | The Procter & Gamble Company | Detergent composition |
EP3998328A1 (en) | 2009-02-09 | 2022-05-18 | The Procter & Gamble Company | Detergent composition |
EP2216393A1 (en) | 2009-02-09 | 2010-08-11 | The Procter & Gamble Company | Detergent composition |
EP2674475A1 (en) | 2012-06-11 | 2013-12-18 | The Procter & Gamble Company | Detergent composition |
EP2674476A1 (en) | 2012-06-11 | 2013-12-18 | The Procter & Gamble Company | Detergent composition |
WO2013188331A1 (en) | 2012-06-11 | 2013-12-19 | The Procter & Gamble Company | Detergent composition |
EP2674476B1 (en) | 2012-06-11 | 2018-04-18 | The Procter & Gamble Company | Detergent composition |
WO2014100100A1 (en) | 2012-12-20 | 2014-06-26 | The Procter & Gamble Company | Detergent composition with silicate coated bleach |
US20140364353A1 (en) * | 2013-06-11 | 2014-12-11 | The Procter & Gamble Company | Detergent composition |
US9752103B2 (en) * | 2013-06-11 | 2017-09-05 | The Procter & Gamble Company | Detergent composition |
EP2924105A1 (en) | 2014-03-28 | 2015-09-30 | The Procter and Gamble Company | Water soluble unit dose article |
WO2015148777A1 (en) | 2014-03-28 | 2015-10-01 | The Procter & Gamble Company | Water soluble unit dose article |
WO2015148780A1 (en) | 2014-03-28 | 2015-10-01 | The Procter & Gamble Company | Water soluble unit dose article |
EP2924107A1 (en) | 2014-03-28 | 2015-09-30 | The Procter and Gamble Company | Water soluble unit dose article |
EP2924108A1 (en) | 2014-03-28 | 2015-09-30 | The Procter and Gamble Company | Water soluble unit dose article |
EP2924106A1 (en) | 2014-03-28 | 2015-09-30 | The Procter and Gamble Company | Water soluble unit dose article |
EP3181679A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Process for making an automatic dishwashing product |
EP3181670A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
EP3181678A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Process for making a detergent powder |
WO2017105826A1 (en) | 2015-12-17 | 2017-06-22 | The Procter & Gamble Company | Automatic dishwashing detergent composition |
WO2017105828A1 (en) | 2015-12-17 | 2017-06-22 | The Procter & Gamble Company | Automatic dishwashing detergent composition |
WO2017105825A1 (en) | 2015-12-17 | 2017-06-22 | The Procter & Gamble Company | Automatic dishwashing detergent composition |
WO2017105827A1 (en) | 2015-12-17 | 2017-06-22 | The Procter & Gamble Company | Automatic dishwashing detergent composition |
EP3181676A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
EP3181672A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
EP3181671A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
EP3181675A1 (en) | 2015-12-17 | 2017-06-21 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
US11339356B2 (en) | 2018-08-14 | 2022-05-24 | The Procter & Gamble Company | Liquid fabric treatment compositions comprising brightener |
US11312924B2 (en) | 2018-08-14 | 2022-04-26 | The Procter & Gamble Company | Fabric treatment compositions comprising benefit agent capsules |
US11634668B2 (en) | 2018-08-14 | 2023-04-25 | The Procter & Gamble Company | Fabric treatment compositions comprising benefit agent capsules |
US11952560B2 (en) | 2018-08-14 | 2024-04-09 | The Procter & Gamble Company | Fabric treatment compositions comprising benefit agent capsules |
US11952555B2 (en) | 2018-08-14 | 2024-04-09 | The Procter & Gamble Company | Fabric treatment compositions comprising benefit agent capsules |
Also Published As
Publication number | Publication date |
---|---|
JP4367743B2 (en) | 2009-11-18 |
CZ20002306A3 (en) | 2001-10-17 |
EP1042443A1 (en) | 2000-10-11 |
ES2276482T3 (en) | 2007-06-16 |
US20040029756A1 (en) | 2004-02-12 |
DE69836348D1 (en) | 2006-12-14 |
PL342655A1 (en) | 2001-07-02 |
WO1999032595A1 (en) | 1999-07-01 |
CN1282367A (en) | 2001-01-31 |
AU1937399A (en) | 1999-07-12 |
AU745104B2 (en) | 2002-03-14 |
US20120214727A1 (en) | 2012-08-23 |
ATE344313T1 (en) | 2006-11-15 |
EP1042443B1 (en) | 2006-11-02 |
DK1042443T3 (en) | 2007-03-05 |
BR9813768A (en) | 2000-10-10 |
US20140141971A1 (en) | 2014-05-22 |
CZ302123B6 (en) | 2010-10-27 |
CA2313238A1 (en) | 1999-07-01 |
CN1197946C (en) | 2005-04-20 |
DE69836348T2 (en) | 2007-05-16 |
NZ505298A (en) | 2002-10-25 |
KR20010033321A (en) | 2001-04-25 |
JP2001527024A (en) | 2001-12-25 |
US6602841B1 (en) | 2003-08-05 |
CA2313238C (en) | 2009-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6602841B1 (en) | Granule with hydrated barrier material | |
US6423517B2 (en) | Granule containing protein and salt layered on an inert particle | |
EP1037968B1 (en) | Matrix granule | |
US6790643B2 (en) | Granule containing enzyme, corn starch and sugar layered on an inert particle | |
EP1129163B1 (en) | Fluidized bed low density granule | |
US8535924B2 (en) | Granules with reduced dust potential comprising an antifoam agent | |
EP1220887B1 (en) | Protein-containing granules and granule formulations | |
US20010056177A1 (en) | Matrix granule | |
MXPA00005830A (en) | Granule with hydrated barrier material | |
MXPA01004174A (en) | Matrix granule | |
MXPA00005831A (en) | Matrix granule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENENCOR INTERNATIONAL, INC.,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BECKER, NATHANIEL T.;CHRISTENSEN, ROBERT I., JR.;GAERTNER, ALFRED L.;AND OTHERS;SIGNING DATES FROM 20000510 TO 20000705;REEL/FRAME:021259/0958 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |