US20080189104A1 - Adaptive noise suppression for digital speech signals - Google Patents

Adaptive noise suppression for digital speech signals Download PDF

Info

Publication number
US20080189104A1
US20080189104A1 US12/009,601 US960108A US2008189104A1 US 20080189104 A1 US20080189104 A1 US 20080189104A1 US 960108 A US960108 A US 960108A US 2008189104 A1 US2008189104 A1 US 2008189104A1
Authority
US
United States
Prior art keywords
gain
noise
power
speech
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/009,601
Other versions
US8275611B2 (en
Inventor
Wenbo Zong
Yuan Wu
Sapna George
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMICROELECTRONICS INTERNATIONAL NV
Original Assignee
STMicroelectronics Asia Pacific Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Asia Pacific Pte Ltd filed Critical STMicroelectronics Asia Pacific Pte Ltd
Priority to US12/009,601 priority Critical patent/US8275611B2/en
Assigned to STMICROELECTRONICS ASIA PACIFIC PTE., LTD. reassignment STMICROELECTRONICS ASIA PACIFIC PTE., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GEORGE, SAPNA, WU, YUAN, ZONG, WENBO
Publication of US20080189104A1 publication Critical patent/US20080189104A1/en
Application granted granted Critical
Publication of US8275611B2 publication Critical patent/US8275611B2/en
Assigned to STMICROELECTRONICS INTERNATIONAL N.V. reassignment STMICROELECTRONICS INTERNATIONAL N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STMICROELECTRONICS ASIA PACIFIC PTE LTD
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals

Definitions

  • the disclosure relates generally to audio signal processing, and in particular to suppressing additive noise in a speech signal in a communication system.
  • an additive background noise signal is introduced into the speech signal.
  • the corrupted speech signal, or noisy speech signal often poses difficulties for the receiving party, such as degraded quality or reduced intelligibility. For instance, when having a conversation over the mobile phone in a driving car or on a busy street, the background noise is often high enough to make the conversation far less efficient than in a quiet room. It is hence often desired to remove the corrupting noise either before the noisy signal is transmitted at the sender or before the received noisy signal is played out at the receiver.
  • Embodiments of the present disclosure relate to a system and method that rates the voice activity with a continuous score, and adaptively estimates the noise power in psychoacoustic bands and accordingly adjusts the noisy signal spectrum based on probabilistic heuristics to suppress the noise in a speech signal.
  • an apparatus for adaptively suppressing noise in an input signal frequency spectrum derived from overlapping input frames includes a psychoacoustic power computation module configured to compute a noisy signal power in psychoacoustic bands, a voice activity scoring module configured to compute a probabilistic score for a presence of a speech, and a noise estimation module configured to estimate a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power.
  • the system also includes a gain computation module configured to compute a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames, and a gain post-processing module configured to perform a gain time smoothing, a gain frequency smoothing, and a gain regulation for the computed gain.
  • a gain computation module configured to compute a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames
  • a gain post-processing module configured to perform a gain time smoothing, a gain frequency smoothing, and a gain regulation for the computed gain.
  • a method for adaptively suppressing a noise in an input signal frequency spectrum derived from overlapping input frames includes computing a noisy signal power in psychoacoustic bands, computing a probabilistic score for a presence of a speech, and estimating a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power.
  • the method also includes computing a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames, post-processing the computed gain by performing a gain time smoothing, a gain frequency smoothing, and a gain regulation on the computed gain, and adjusting the input signal frequency spectrum by attenuating a noise in the input signal frequency spectrum based on the post-processed gain.
  • a computer program embodied on a computer readable medium and operable to be executed by a processor.
  • the computer program includes computer readable program code for converting overlapping input frames into an input signal frequency spectrum, computing a noisy signal power in psychoacoustic bands and computing a probabilistic score for a presence of a speech.
  • the computer program also includes computer readable program code for estimating a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power, and computing a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames.
  • the computer program further includes computer readable program code for post-processing the computed gain by performing a gain time smoothing, a gain frequency smoothing, and a gain regulation on the computed gain and adjusting the input signal frequency spectrum by attenuating a noise in the input signal frequency spectrum based on the post-processed gain.
  • FIG. 1 shows two possible applications for one embodiment of the present disclosure in a telecommunication system
  • FIG. 2 shows a high-level block diagram of functional modules related to noise suppression according to one embodiment of the present disclosure
  • FIG. 3 shows a block diagram of a processing engine for noise suppression according to one embodiment of the present disclosure
  • FIG. 4 shows an block diagram for a gain post-processing module according to one embodiment of the present disclosure
  • FIG. 5 shows an exemplary curve of a voice activity score component as a function of a voice band count
  • FIG. 6 shows an exemplary frame core distribution and associated frame characteristics according to one embodiment of the present disclosure
  • FIG. 7 shows an exemplary curve for the noise time smoothing factor for different constants according to one embodiment of the present disclosure
  • FIG. 8 shows an exemplary curve of a scale factor as a function of an estimate noise according to one embodiment of the present disclosure
  • FIG. 9 illustrates exemplary curves of gain vs. a ratio of noise power to threshold according to one embodiment of the present disclosure
  • FIG. 10 illustrates an exemplary gain regulation curve according to one embodiment of the present disclosure.
  • FIG. 11 depicts a block diagram of a generic controller 1100 for a wireless terminal according to one embodiment of the present disclosure.
  • spectral subtraction works by estimating the power of additive noise and subtracting it from the noisy signal power to obtain an estimated spectrum of the clean speech, based on the assumption that the corrupting noise is uncorrelated with speech, which is generally true in practice. Special treatment is needed to avoid negative power after subtraction.
  • phase information is generally taken the same as the noisy signal, as it is found to be less important for perception than power.
  • Spectral weighting is to obtain a weight for each frequency that corresponds to an optimum filter that minimizes the mean-square error of the processed signal against the desired signal (clean speech), a form of Wiener filter implemented in the frequency domain. It involves estimating the noise power and computing the spectrum of the noisy signal, after which a weighting gain is calculated. These two methods can be considered as special cases of generalized Wiener filtering, and one issue is that it relies on accurate estimation of the noise power.
  • the model based approach is based on an underlying speech model and has also been investigated in the past.
  • the parameters of the model are first estimated and then the speech is generated using the estimated parameters.
  • One issue associated with this approach is that a high level of complexity. The fact that accurate estimation of the model parameters for a noisy signal is itself difficult. Practically, for better accuracy, a higher model order is necessary, which in turns increases the complexity significantly, in some cases exponentially.
  • FIG. 1 shows a communication system 100 .
  • the communication system 100 includes a sender 110 and a receiver 130 .
  • the sender 110 can include one or more software modules and one or more hardware modules.
  • the examples of the sender 110 can be a wireless terminal or a wireline phone terminal.
  • the first block diagram shows the sender 110 of the communication system 100 , where noise suppression is carried out before the speech is encoded.
  • the sender 110 includes a microphone input unit 111 , an analog-to-digital converter (ADC) 113 , a noise suppression unit 200 , a speech encoding unit 117 , and modulation and transmission unit 119 .
  • ADC analog-to-digital converter
  • the microphone input unit 111 can receive speech from a speaker and generate analog signals.
  • the ADC 113 converts the analog speech signals to corresponding digital signals.
  • the noise suppression module 200 is configured to suppress noise in the speech signals before the speech signals are transmitted to the receiver 130 . More details of the noise suppression module 200 are shown in FIG. 2 and FIG. 3 and described therein.
  • the input to noise suppression module 200 is in Pulse Code Modulation (PCM) format obtained by the ADC 113 . Typical sampling frequency, denoted as Fs, is 8 KHz, though 16 KHz or other frequencies are sometimes used.
  • PCM Pulse Code Modulation
  • Fs Typical sampling frequency
  • the speech signals in digital format are encoded at the speech encoding module 117 .
  • the encoded speech data are modulated and transmitted to the receiver by the modulation and transmission module 119 .
  • the receiver 130 can include one or more software modules and one or more hardware modules.
  • the examples of the sender 110 can be a wireless terminal or a wireline phone terminal.
  • the receiver 130 can include a reception and demodulation unit 139 , speech decoding unit 137 , a noise suppression module 200 , a digital-to-analog converter (DAC) convert 133 , and a speaker output unit 131 .
  • the noise suppression module 200 on the receiver 130 is identical to the one on the sender 110 .
  • noise suppression is carried out after the signal is decoded by the decoding unit 137 , also operating in PCM format.
  • the operations at the receiver 130 are the mirror image of those at the sender 110 .
  • the reception and demodulation unit 139 receive and demodulate the speech data and then the speed decoding module 137 decodes the speech data into the PCM format.
  • the noise suppression module 200 is configured to suppress the noise in the speech data.
  • the DAC 133 converts the speech data back to the analog format to be played back by the speaker output unit 131 .
  • one embodiment of the present disclosure should work equally well in either scenario. Practically, it is preferred to carry out noise suppression at the sender 110 ; because the receiver often has no information as to whether the received signal had its noise suppressed at the sender 110 and simply reapplying noise suppression may compromise the speech quality. Thus, following the well-established principles of Wiener filtering, a method according to one embodiment of the present disclosure works in the frequency domain to suppress the noise. To make the processing more closely related to human perception and to keep cost low in terms of memory and computation, processing is done in the psychoacoustically motivated bands, for example the Bark bands as shown in Table 1 below.
  • the frequency range covering the first two or three formants is identified as more important, also referred to as speech band.
  • the psychoacoustic bands are divided into three groups: Low Range (LR) for bands below the speech band, Middle Range (MR) for those in the speech band, and High Range (HR) for those above the speech band.
  • LR Low Range
  • MR Middle Range
  • HR High Range
  • Table 1 Processing is discriminatively carried out for bands in different groups according to one embodiment of the present disclosure.
  • FIG. 2 shows a high-level functional block diagram of a noise suppression module 200 , according to one embodiment of the present disclosure.
  • the noise suppression module 200 can include one or more software modules and one or more hardware module.
  • the noise suppression module 200 is implemented in the generic controller 1100 as illustrated in FIG. 11 .
  • the noise suppression module 200 includes an input windowing module 211 , a frequency analysis module 213 , a processing engine 300 , a frequency synthesis module 217 , and an output overlapping and adding module 219 .
  • the process engine 300 includes a voice activity scoring module 313 , a perceptual analysis and processing module 331 , and a noise estimation module 315 .
  • the method works in block-processing mode; that is, input stream is segmented into overlapping frames, each frame processed separately, and output obtained by overlap-and-adding the processed frames.
  • the input Windowing module 211 segments the input signal into overlapping frames. Overlapping ratio is typically chosen to be half; that is, the first half of the current frame is in fact the second half of the previous frame. A window is multiplied with the frame to ensure smooth transition from frame to frame, and to suppress high frequencies introduced by segmentation.
  • the frequency analysis 213 then transforms the windowed frame to the frequency domain using a frequency analysis method.
  • FFT Fast Fourier Transform
  • the processing engine 300 is configured to analyze and identify the noise in the input signal spectrum and then suppress the noise.
  • the processing engine 300 includes a voice activity score module 313 , a perceptual analysis and processing module 331 , and a noise estimation module 315 . These component modules of the processing engine 300 for noise suppression are depicted in more details in FIG. 3 and FIG. 4 and described therein.
  • the frequency synthesis module 217 and the output overlap-and-add module 219 are configured to the transform processed signal spectrum back to time-domain, after the noise suppression operations on the input signal spectrum.
  • the frequency synthesis and overlap-and-add module 219 may use an inverse transformation method of frequency analysis to convert the processed signal spectrum in frequency domain back to the time domain. If FFT was used for frequency analysis, then Inverse FFT is applied.
  • the processed time domain signal of the current frame is aligned with the corresponding part of the previously processed frame and they are summed to produce the output.
  • the overlapping region of current frame with the next frame is saved for synthesis of next output frame.
  • FIG. 3 shows a block diagram of a processing engine 300 for noise suppression according to one embodiment of the present disclosure.
  • the processing engine 300 can include one or more software modules and one or more hardware module.
  • the processing engine 300 is implemented in the generic controller 1100 for a wireless terminal, as illustrated in FIG. 11 .
  • the processing engine 300 includes a Bark bank power computation module 311 , a voice activity scoring module 313 , a noise power estimation module 315 , and a gain computation module 317 .
  • the processing engine 300 also includes a gain post-processing module 400 , a signal spectrum adjustment module 321 , and a mode switching decision module 323 .
  • the processing engine 300 also includes a signal power array updating module 314 and an information store 316 .
  • the information of a certain number of past frames may be stored in the information store 316 to facilitate modules such as Voice Activity Scoring (VAS) module 313 , the noise power estimation 315 , the gain computation module 317 and the gain post-processing module 319 .
  • VAS Voice Activity Scoring
  • the voice activity scoring (VAS) module 313 is configured to compute a continuous score to rate the possibility of the presence of speech.
  • noise power is estimated for adjusting the noisy signal spectrum.
  • VAS voice activity scoring
  • the VAS module 313 is particularly useful in making the estimation of noise power fuzzy so as to eliminate the risk of wrong classification by a traditional voice activity detector (VAD) that outputs binary decisions.
  • VAD voice activity detector
  • the VAS module 313 computes a score in a continuous range such that a low score indicates the input frame highly likely being a noise-only frame and a high score indicates the input frame highly likely being a frame dominated by speech. This scoring scheme is found advantageous over the binary decision scheme of a conventional Voice Activity Detector (VAD) due to the quasi- and non-stationary nature of speech signals.
  • VAD Voice Activity Detector
  • the noise power estimation module 315 follows the principle of temporal tracking. Making use of the observation that noise power normally changes slowly. According to one embodiment of the present disclosure, taking advantage of the score output by the VAS, the noise estimation module 315 can respond quickly to non-stationarity in the input, in addition to being able to cope with signals that are neither noise-only nor speech-dominated with a very high likelihood.
  • the gain computation module 317 may compute a gain for each frequency according to a heuristic, based on the estimated noise power.
  • the heuristic may be expressed as follows. As the ratio of the noisy signal frequency component power to the estimated noise frequency component power grows, the possibility of that frequency component of the noisy signal being noise decreases, and when the ratio is large enough the frequency component can eventually be taken as containing speech only.
  • the gain post-process module 400 performs a post-gain processing on the computed gain for each frequency, with the estimated noise power, and according to probabilistic heuristics.
  • the post-gain processing module 400 makes sure the processed signal sound natural.
  • FIG. 4 shows details of the post-gain processing module 400 .
  • the signal spectrum adjustment module 321 adjusts the noisy signal spectrum by multiplying the final gains with the magnitudes of the noisy signal spectrum to attenuate noise. This in effect suppresses the noise to achieve improved quality and intelligibility of speech.
  • the mode switching decision module 323 checks mode switching criteria for each frame to decide a mode for next frame. To cope with changing environments, the noise suppression engine may operate in and automatically switch between two modes: NORMAL for adequate noise and NOISY for extremely high noise.
  • the following sections describe these operations of the processing engine 300 for noise suppression in more detail. These operations are performed by the Bark band power computation module 311 , the VAS module 313 , the signal power array updating module 314 , the noise power estimation module 315 , the gain computation module 317 , the gain post-processing module 400 , the signal spectrum adjustment module 321 and the mode switching decision module 323 .
  • the Bark band power computer module 311 computes the signal bank power in psychoacoustic bands. Equation 1 below represents the power in the psychoacoustic bands, where X i,k denotes the ith frequency sample of kth frame after frequency analysis, j is the band index, k is the frame index, B j is the set of frequency indices of the jth band according to Table 1 above.
  • the voice activity scoring module 313 assigns a score, denoted as FRAME_SCORE k , to the current frame k to indicate the possibility of existence of speech. It is continuous and non-negative, with a larger value indicating higher possibility of containing speech.
  • FRAME_SCORE k is computed based on a combination of two metrics: Score_ 1 taking into account the shape of the signal's power spectrum, and Score_ 2 the total power. Specifically, Score_ 1 is a function of the number of MR bands of the current frame having greater power than corresponding MR bands of the previously estimated noise scaled by a factor. A pseudo code is shown below to illustrate how the signal power and noise power are compared to obtain the input to the function for computing Score_ 1 .
  • X j,k b Signal power of psychoacoustic band j of current frame k (see Equation 0)
  • D j,k ⁇ 1 b Estimated noise power of psychoacoustic band j of previous frame k ⁇ 1 (see (Equation 4)
  • A constant scaling factor, preferably in the range of 1.5 to 4.
  • FIG. 5 shows a curve that results from a function into which the computed value cnt that is fed to finally obtain Score_ 1 .
  • threshold_cnt controls the turning point above which the curve, hence Score_ 1 , increases more quickly as cnt increases.
  • Score_ 2 is related to the ratio of total power of the current frame to that of the previous estimated noise.
  • Score_ ⁇ 2 ⁇ * ⁇ j ⁇ X j , k b ⁇ j ⁇ D j , k - 1 b ( Equation ⁇ ⁇ 1 )
  • is a constant and takes a value in the range of 0.25 to 0.5.
  • the final score is a weighted sum of these two:
  • the noise power estimation module 315 estimates the noise power in psychoacoustic bands that are more closely related to human perception than individual frequencies. The estimation works in one of two modes that are adapted to different signal characteristics: one mode for noise-like signal, and the other for speech-like signal.
  • the threshold NOISE_SPEECH_TH can be tuned with test signals.
  • the estimation is based on the principle of temporal tracking; that is, noise power in each band changes slowly in time and is closely related to the recent frames having small power.
  • the signal power of N recent frames is sorted in ascending order, and a portion of the array from the beginning is averaged as the estimated noise power in this band of the current frame.
  • the total number of recent frames, N, for which the signal power is stored, may correspond to a time interval of about 200 to 400 milliseconds.
  • estimated noise power for band j is
  • is an adaptive smoothing factor to eliminate abrupt change, and is derived from a predefined constant NOISE_SMOOTH_FACTOR, which is greater than 0.5, and the normalized deviation of total power of current frame from the mean total power of a few recent frames.
  • G is the set of frame indices for P most recent frames.
  • the signal power is taken as the estimated noise power:
  • the smoothing factor ⁇ gradually changes from the 1-NOISE_SMOOTH_FACTOR to NOISE_SMOOTH_FACTOR as FRAME_SCORE k increases from a lower score threshold NOISE_TH_L to a higher score threshold NOISE_TH_H, as depicted in FIG. 7 .
  • the final noise power is updated following (Equation 4.
  • the gain computation module 317 computes a gain for each frequency component I according to a probabilistically driven heuristics.
  • a threshold THRES j is first computed based on the estimated noise power D j,k b :
  • r ⁇ j ⁇ X j , k b ⁇ j ⁇ D j , k - 1 b .
  • FIG. 8 An example curve to compute SCALE_FACTOR k with r is illustrated in FIG. 8 .
  • the gain G i,k is computed according to a probabilistically driven curve that can be either linear or non-linear.
  • FIG. 9 shows some example curves that can be used.
  • a turnover point is identified, below which the gain is attenuated and above which it is amplified.
  • Different degrees of attenuation/attenuation amplification correspond to different probabilistic heuristics in the treatment of noise. Further improvement can be achieved by assigning the same gain to frequencies in one psychoacoustic band if they are in the LR or when current frame is found to be noise-only. This also simplifies computation.
  • G i,k is computed as
  • G i , k ⁇ f ⁇ ( X j , k b / C j THRES j ) , if ⁇ ⁇ j ⁇ LR ⁇ ⁇ or ⁇ ⁇ FRAME_SCORE k ⁇ NOISE_TH ⁇ _L f ⁇ ( ⁇ X i , k ⁇ 2 THRES j ) , otherwise ( Equation ⁇ ⁇ 8 )
  • B j is the set of frequency indices of the jth band according to Table 1
  • C j is the total number of frequency components in band j
  • f( ) is a function designed according to probabilistic heuristics as mentioned above.
  • FIG. 4 shows the component modules of the gain post-processing module 400 .
  • the gain post-processing module 400 further processes the computed gains to ensure the quality of processed signal and may include a gain time smoothing module 411 , a gain frequency smoothing module 413 , and, and a gain regulation 415 .
  • the gain time smoothing module 411 can smooth the gains in the time domain. As known, a filter that changes too fast in the time domain results in unnaturalness in the processed signal and in some cases may introduce musical noise. Hence, the gains are carefully smoothed in the time axis.
  • the gain time smoothing module 411 takes into account the signal temporal characteristics by detecting if the current frame is a release; if so, the time smoothing factor is adjusted according to G i,k-1 , based on the heuristic that the higher G i,k-1 is the more likely frequency i corresponding to a decaying voice and hence is given a higher value to better preserve voice. If not a release, is assigned with the lowest value.
  • Equation 9 The time smoothing formula is expressed as shown by Equation 9 below.
  • ⁇ i is a frequency-dependent time smoothing factor, preferably in the range of 0.3 to 0.7.
  • the gain smoothing over frequency smoothing module 413 can mitigate artifacts introduced into the computed gains.
  • the computed gains are all positive real numbers, and they correspond to a zero-phase filter which is symmetric in the time domain. If the filter impulse response has significant energy near its beginning (and tail by symmetry), when convolving with the windowed input signal, some artifacts may be introduced into the output. This can be mitigated by multiplying the filter impulse response with a smoothing window. In the frequency domain, this can be accomplished by filtering gains ⁇ G′ i,k ⁇ with a linear-phase low-pass filter. A finite impulse response (FIR) filter of order as low as four is normally adequate.
  • FIR finite impulse response
  • G min a threshold G min , (i.e., G′ i,k G min .
  • the threshold G min determines the maximum suppression of noise and it also serves as an injection of comfort noise. Furthermore, no gain should exceed unity, G′ i,k 1, the gain.
  • the gain regulation curve 1000 is depicted in FIG. 10 according to one embodiment of the present disclosure.
  • the noisy signal spectrum adjustment module 321 can adjust the noisy signal spectrum by multiplying the post-processed gain G′ i,k with respective frequency component X i,k to produce a filtered spectrum ⁇ Y i,k ⁇ as shown by Equation 10 below.
  • the mode switching decision module 323 is configured to determine a mode of operation based on the empirical observation and then switch into the mode.
  • a significant portion of non-noise frames if FRAME_SCORE k >NOISE_TH_H, see FIG. 6 ) are in fact speech-dominated frames (if FRAME_SCORE k >SPEECH_TH).
  • the mode is switched from NORMAL to NOISY when this portion falls below a threshold.
  • this portion is too large, mode is switched from NOISY to NORMAL.
  • the exact proportion can be tuned with the actual test signals that comprise streams of normal noise and streams of high noise.
  • one embodiment of the present disclosure provides a system and method for adaptively suppressing noise in a speech signal with little memory and computation.
  • the method and system can adaptively suppress additive noise in a speech signal for improved quality and intelligibility.
  • Input signal is segmented into overlapping frames and each frame is processed in the frequency domain.
  • Voice activity of an input frame is rated with a score in a continuous range to adapt other processing modules.
  • Noise power is estimated in psychoacoustically motivated bands, making the processing closely related to human perception.
  • a gain for each frequency is computed according to probabilistic heuristics, smoothed in the time axis and frequency axis, and regulated before adjusting the noisy signal spectrum, to ensure the naturalness of the processed speech.
  • the method can operate in and automatically switch between two modes: one for adequate noise and the other for extremely high noise. This method is very efficient in terms of memory and computation as some processing is done in a psychoacoustic scale which has only about 20 bands.
  • FIG. 11 depicts a block diagram of a generic controller 1100 for a wireless terminal.
  • the generic controller 1100 depicted includes a processor 1102 connected to a level two cache/bridge 1104 , which is connected in turn to a local system bus 1106 .
  • Local system bus 1106 may be, for example, a peripheral component interconnect (PCI) architecture bus.
  • PCI peripheral component interconnect
  • Also connected to local system bus in the depicted example are a main memory 1108 and a graphics adapter 1110 .
  • the graphics adapter 1110 may be connected to display 1111 .
  • LAN local area network
  • WiFi Wireless Fidelity
  • I/O input/output
  • Disk controller 1120 can be connected to a storage 1126 , which can be any suitable machine usable or machine readable storage medium, including but not limited to nonvolatile, hard-coded type mediums such as read only memories (ROMs) or erasable, electrically programmable-read only memories (EEPROMs), magnetic tape storage, and user-recordable type mediums such as floppy disks, hard disk drives and compact disk read only memories (CD-ROMs) or digital versatile disks (DVDs), and other known optical, electrical, or magnetic storage devices.
  • ROMs read only memories
  • EEPROMs electrically programmable-read only memories
  • CD-ROMs compact disk read only memories
  • DVDs digital versatile disks
  • audio adapter 1124 Also connected to I/O bus 1116 in the example shown is audio adapter 1124 , to which speakers (not shown) may be connected for playing sounds.
  • Keyboard/mouse adapter 1118 provides a connection for a pointing device (not shown), such as a mouse, a trackball, and a trackpointer, etc.
  • FIG. 11 may vary for particular embodiments.
  • other peripheral devices such as an optical disk drive and the like, also may be used in addition or in place of the hardware depicted.
  • the depicted example is provided for the purpose of explanation only and is not meant to imply architectural limitations with respect to the present disclosure.
  • the generic controller 1100 in accordance with an embodiment of the present disclosure includes an operating system employing a graphical user interface.
  • the operating system permits multiple display windows to be presented in the graphical user interface simultaneously, with each display window providing an interface to a different application or to a different instance of the same application.
  • a cursor in the graphical user interface may be manipulated by a user through the pointing device. The position of the cursor may be changed and/or an event, such as clicking a mouse button, generated to actuate a desired response.
  • One of various commercial operating systems such as a version of Microsoft WindowsTM, a product of Microsoft Corporation located in Redmond, Wash. may be employed if suitably modified.
  • the operating system is modified or created in accordance with the present disclosure as described.
  • LAN/WAN/Wireless adapter 1112 can be connected to a network 1130 (not a part of generic controller 1100 ), which can be any public or private data processing system network or combination of networks, as known to those of skill in the art, including the Internet.
  • the generic controller 1100 can communicate over network 1130 with server system 1140 , which is also not part of generic controller 1100 , but can be implemented, for example, as a separate generic controller 1100 .
  • Couple and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another.
  • the term “or” is inclusive, meaning and/or.
  • the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Telephone Function (AREA)

Abstract

An apparatus for adaptively suppressing noise in an input signal frequency spectrum derived from overlapping input frames is provided. The system includes a psychoacoustic power computation module configured to compute a noisy signal power in psychoacoustic bands, a voice activity scoring module configured to compute a probabilistic score for a presence of a speech, and a noise estimation module configured to estimate a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power. The system also includes a gain computation module configured to compute a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames, and a gain post-processing module configured to perform a gain time smoothing, a gain frequency smoothing, and a gain regulation for the computed gain.

Description

    CROSS-REFERENCE TO RELATED APPLICATION AND CLAIM OF PRIORITY
  • The present application is related to U.S. Provisional Patent No. 60/881,028, filed Jan. 18, 2007, entitled “ADAPTIVE NOISE SUPPRESSION FOR DIGITAL SPEECH SIGNALS”. U.S. Provisional Patent No. 60/881,028 is assigned to the assignee of the present application and is hereby incorporated by reference into the present disclosure as if fully set forth herein. The present application hereby claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent No. 60/881,028.
  • TECHNICAL FIELD
  • The disclosure relates generally to audio signal processing, and in particular to suppressing additive noise in a speech signal in a communication system.
  • BACKGROUND
  • In many communication applications, an additive background noise signal is introduced into the speech signal. The corrupted speech signal, or noisy speech signal, often poses difficulties for the receiving party, such as degraded quality or reduced intelligibility. For instance, when having a conversation over the mobile phone in a driving car or on a busy street, the background noise is often high enough to make the conversation far less efficient than in a quiet room. It is hence often desired to remove the corrupting noise either before the noisy signal is transmitted at the sender or before the received noisy signal is played out at the receiver.
  • SUMMARY
  • Embodiments of the present disclosure relate to a system and method that rates the voice activity with a continuous score, and adaptively estimates the noise power in psychoacoustic bands and accordingly adjusts the noisy signal spectrum based on probabilistic heuristics to suppress the noise in a speech signal.
  • In one embodiment, an apparatus for adaptively suppressing noise in an input signal frequency spectrum derived from overlapping input frames is provided. The system includes a psychoacoustic power computation module configured to compute a noisy signal power in psychoacoustic bands, a voice activity scoring module configured to compute a probabilistic score for a presence of a speech, and a noise estimation module configured to estimate a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power. The system also includes a gain computation module configured to compute a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames, and a gain post-processing module configured to perform a gain time smoothing, a gain frequency smoothing, and a gain regulation for the computed gain.
  • In another embodiment, a method for adaptively suppressing a noise in an input signal frequency spectrum derived from overlapping input frames is provided. The method includes computing a noisy signal power in psychoacoustic bands, computing a probabilistic score for a presence of a speech, and estimating a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power. The method also includes computing a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames, post-processing the computed gain by performing a gain time smoothing, a gain frequency smoothing, and a gain regulation on the computed gain, and adjusting the input signal frequency spectrum by attenuating a noise in the input signal frequency spectrum based on the post-processed gain.
  • In yet another embodiment, a computer program embodied on a computer readable medium and operable to be executed by a processor is provided. The computer program includes computer readable program code for converting overlapping input frames into an input signal frequency spectrum, computing a noisy signal power in psychoacoustic bands and computing a probabilistic score for a presence of a speech. The computer program also includes computer readable program code for estimating a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power, and computing a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames. The computer program further includes computer readable program code for post-processing the computed gain by performing a gain time smoothing, a gain frequency smoothing, and a gain regulation on the computed gain and adjusting the input signal frequency spectrum by attenuating a noise in the input signal frequency spectrum based on the post-processed gain.
  • Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of this disclosure and its features, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 shows two possible applications for one embodiment of the present disclosure in a telecommunication system;
  • FIG. 2 shows a high-level block diagram of functional modules related to noise suppression according to one embodiment of the present disclosure;
  • FIG. 3 shows a block diagram of a processing engine for noise suppression according to one embodiment of the present disclosure;
  • FIG. 4 shows an block diagram for a gain post-processing module according to one embodiment of the present disclosure;
  • FIG. 5 shows an exemplary curve of a voice activity score component as a function of a voice band count;
  • FIG. 6 shows an exemplary frame core distribution and associated frame characteristics according to one embodiment of the present disclosure;
  • FIG. 7 shows an exemplary curve for the noise time smoothing factor for different constants according to one embodiment of the present disclosure;
  • FIG. 8 shows an exemplary curve of a scale factor as a function of an estimate noise according to one embodiment of the present disclosure;
  • FIG. 9 illustrates exemplary curves of gain vs. a ratio of noise power to threshold according to one embodiment of the present disclosure;
  • FIG. 10 illustrates an exemplary gain regulation curve according to one embodiment of the present disclosure; and
  • FIG. 11 depicts a block diagram of a generic controller 1100 for a wireless terminal according to one embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • The problem of removing or suppressing noise corrupting a speech signal in a communication system has been studied for a long time. Reported approaches can be broadly classified into several categories: spectral subtraction, spectral weighting and model based. Spectral subtraction works by estimating the power of additive noise and subtracting it from the noisy signal power to obtain an estimated spectrum of the clean speech, based on the assumption that the corrupting noise is uncorrelated with speech, which is generally true in practice. Special treatment is needed to avoid negative power after subtraction. In spectral subtraction, the phase information is generally taken the same as the noisy signal, as it is found to be less important for perception than power.
  • Spectral weighting is to obtain a weight for each frequency that corresponds to an optimum filter that minimizes the mean-square error of the processed signal against the desired signal (clean speech), a form of Wiener filter implemented in the frequency domain. It involves estimating the noise power and computing the spectrum of the noisy signal, after which a weighting gain is calculated. These two methods can be considered as special cases of generalized Wiener filtering, and one issue is that it relies on accurate estimation of the noise power.
  • The model based approach is based on an underlying speech model and has also been investigated in the past. In such approach, the parameters of the model are first estimated and then the speech is generated using the estimated parameters. One issue associated with this approach is that a high level of complexity. The fact that accurate estimation of the model parameters for a noisy signal is itself difficult. Practically, for better accuracy, a higher model order is necessary, which in turns increases the complexity significantly, in some cases exponentially.
  • There is therefore a need for an improved system and method to adequately suppress the corrupting noise in a noisy speech signal to improve its quality and intelligibility with low computational cost. In particular, there is a need for a system and method to be applied in situations where there is only one single recording device, in contrast to when there is a separate recording device for the background noise. The implication of one recording device is that the input signal is mono.
  • FIG. 1 shows a communication system 100. The communication system 100 includes a sender 110 and a receiver 130. The sender 110 can include one or more software modules and one or more hardware modules. The examples of the sender 110 can be a wireless terminal or a wireline phone terminal. The first block diagram shows the sender 110 of the communication system 100, where noise suppression is carried out before the speech is encoded. The sender 110 includes a microphone input unit 111, an analog-to-digital converter (ADC) 113, a noise suppression unit 200, a speech encoding unit 117, and modulation and transmission unit 119.
  • The microphone input unit 111 can receive speech from a speaker and generate analog signals. The ADC 113 converts the analog speech signals to corresponding digital signals. The noise suppression module 200 is configured to suppress noise in the speech signals before the speech signals are transmitted to the receiver 130. More details of the noise suppression module 200 are shown in FIG. 2 and FIG. 3 and described therein. The input to noise suppression module 200 is in Pulse Code Modulation (PCM) format obtained by the ADC 113. Typical sampling frequency, denoted as Fs, is 8 KHz, though 16 KHz or other frequencies are sometimes used. After the noise suppression operation at the noise suppression module 200, the speech signals in digital format are encoded at the speech encoding module 117. Then the encoded speech data are modulated and transmitted to the receiver by the modulation and transmission module 119.
  • The receiver 130 can include one or more software modules and one or more hardware modules. The examples of the sender 110 can be a wireless terminal or a wireline phone terminal. The receiver 130 can include a reception and demodulation unit 139, speech decoding unit 137, a noise suppression module 200, a digital-to-analog converter (DAC) convert 133, and a speaker output unit 131. The noise suppression module 200 on the receiver 130 is identical to the one on the sender 110. In one embodiment, noise suppression is carried out after the signal is decoded by the decoding unit 137, also operating in PCM format. The operations at the receiver 130 are the mirror image of those at the sender 110. The reception and demodulation unit 139 receive and demodulate the speech data and then the speed decoding module 137 decodes the speech data into the PCM format. The noise suppression module 200 is configured to suppress the noise in the speech data. The DAC 133 converts the speech data back to the analog format to be played back by the speaker output unit 131.
  • With the assumption that there is only one microphone for recording the input signal, these two use cases are the same, regardless of any effects caused by the speech codec used. Hence, one embodiment of the present disclosure should work equally well in either scenario. Practically, it is preferred to carry out noise suppression at the sender 110; because the receiver often has no information as to whether the received signal had its noise suppressed at the sender 110 and simply reapplying noise suppression may compromise the speech quality. Thus, following the well-established principles of Wiener filtering, a method according to one embodiment of the present disclosure works in the frequency domain to suppress the noise. To make the processing more closely related to human perception and to keep cost low in terms of memory and computation, processing is done in the psychoacoustically motivated bands, for example the Bark bands as shown in Table 1 below.
  • TABLE 1
    Bark Bands
    BARK BAND FREQUENCY RANGE
    BAND GROUP NUMBER (HZ)
    Low Range 1  0~100
    2 100~200
    3 200~300
    Middle Range 4 300~400
    5 400~510
    6 510~630
    7 630~770
    8 770~920
    9  920~1080
    10 1080~1270
    11 1270~1480
    12 1480~1720
    13 1720~2000
    14 2000~2320
    High Range 15 2320~2700
    16 2700~3150
    17 3150~3700
    18 (3700~4000 for Fs = 8 KHz)
    3700~4400
    19 4400~5300
    20 5300~6400
    21 6400~7700
    22 7700~8000
  • As known, intelligibility of speech is derived largely from the pattern of voice formants distribution, and the relative positioning of the first two formants is normally sufficient to distinguish a human sound from others. Hence the frequency range covering the first two or three formants is identified as more important, also referred to as speech band. Accordingly the psychoacoustic bands are divided into three groups: Low Range (LR) for bands below the speech band, Middle Range (MR) for those in the speech band, and High Range (HR) for those above the speech band. An example of such a classification is shown in Table 1. Processing is discriminatively carried out for bands in different groups according to one embodiment of the present disclosure.
  • FIG. 2 shows a high-level functional block diagram of a noise suppression module 200, according to one embodiment of the present disclosure. The noise suppression module 200 can include one or more software modules and one or more hardware module. In one embodiment, the noise suppression module 200 is implemented in the generic controller 1100 as illustrated in FIG. 11. The noise suppression module 200 includes an input windowing module 211, a frequency analysis module 213, a processing engine 300, a frequency synthesis module 217, and an output overlapping and adding module 219. The process engine 300 includes a voice activity scoring module 313, a perceptual analysis and processing module 331, and a noise estimation module 315. In one embodiment, the method works in block-processing mode; that is, input stream is segmented into overlapping frames, each frame processed separately, and output obtained by overlap-and-adding the processed frames.
  • The input Windowing module 211, in one embodiment, segments the input signal into overlapping frames. Overlapping ratio is typically chosen to be half; that is, the first half of the current frame is in fact the second half of the previous frame. A window is multiplied with the frame to ensure smooth transition from frame to frame, and to suppress high frequencies introduced by segmentation.
  • The frequency analysis 213 then transforms the windowed frame to the frequency domain using a frequency analysis method. Fast Fourier Transform (FFT) is a common choice of frequency analysis method. For a sampling frequency of 8 KHz, a frame size of 256 samples is often a good trade-off between frequency resolution and time resolution.
  • The processing engine 300 is configured to analyze and identify the noise in the input signal spectrum and then suppress the noise. The processing engine 300 includes a voice activity score module 313, a perceptual analysis and processing module 331, and a noise estimation module 315. These component modules of the processing engine 300 for noise suppression are depicted in more details in FIG. 3 and FIG. 4 and described therein.
  • The frequency synthesis module 217 and the output overlap-and-add module 219 are configured to the transform processed signal spectrum back to time-domain, after the noise suppression operations on the input signal spectrum. The frequency synthesis and overlap-and-add module 219 may use an inverse transformation method of frequency analysis to convert the processed signal spectrum in frequency domain back to the time domain. If FFT was used for frequency analysis, then Inverse FFT is applied. The processed time domain signal of the current frame is aligned with the corresponding part of the previously processed frame and they are summed to produce the output. The overlapping region of current frame with the next frame is saved for synthesis of next output frame.
  • FIG. 3 shows a block diagram of a processing engine 300 for noise suppression according to one embodiment of the present disclosure. FIG. 3 shows more details of the same processing engine 300 than the one shown in FIG. 2. The processing engine 300 can include one or more software modules and one or more hardware module. In one embodiment, the processing engine 300 is implemented in the generic controller 1100 for a wireless terminal, as illustrated in FIG. 11. The processing engine 300 includes a Bark bank power computation module 311, a voice activity scoring module 313, a noise power estimation module 315, and a gain computation module 317. The processing engine 300 also includes a gain post-processing module 400, a signal spectrum adjustment module 321, and a mode switching decision module 323. The processing engine 300 also includes a signal power array updating module 314 and an information store 316. The information of a certain number of past frames may be stored in the information store 316 to facilitate modules such as Voice Activity Scoring (VAS) module 313, the noise power estimation 315, the gain computation module 317 and the gain post-processing module 319.
  • The voice activity scoring (VAS) module 313 is configured to compute a continuous score to rate the possibility of the presence of speech. In a Wiener filtering approach, noise power is estimated for adjusting the noisy signal spectrum. To facilitate efficient estimation of noise power in a quasi-/non-stationary speech signal, it is desired to take advantage of voice activity information. The VAS module 313 is particularly useful in making the estimation of noise power fuzzy so as to eliminate the risk of wrong classification by a traditional voice activity detector (VAD) that outputs binary decisions.
  • The VAS module 313 computes a score in a continuous range such that a low score indicates the input frame highly likely being a noise-only frame and a high score indicates the input frame highly likely being a frame dominated by speech. This scoring scheme is found advantageous over the binary decision scheme of a conventional Voice Activity Detector (VAD) due to the quasi- and non-stationary nature of speech signals.
  • The noise power estimation module 315 follows the principle of temporal tracking. Making use of the observation that noise power normally changes slowly. According to one embodiment of the present disclosure, taking advantage of the score output by the VAS, the noise estimation module 315 can respond quickly to non-stationarity in the input, in addition to being able to cope with signals that are neither noise-only nor speech-dominated with a very high likelihood.
  • Then the gain computation module 317 may compute a gain for each frequency according to a heuristic, based on the estimated noise power. The heuristic may be expressed as follows. As the ratio of the noisy signal frequency component power to the estimated noise frequency component power grows, the possibility of that frequency component of the noisy signal being noise decreases, and when the ratio is large enough the frequency component can eventually be taken as containing speech only.
  • Then the gain post-process module 400 performs a post-gain processing on the computed gain for each frequency, with the estimated noise power, and according to probabilistic heuristics. The post-gain processing module 400 makes sure the processed signal sound natural. FIG. 4 shows details of the post-gain processing module 400.
  • Then the signal spectrum adjustment module 321 adjusts the noisy signal spectrum by multiplying the final gains with the magnitudes of the noisy signal spectrum to attenuate noise. This in effect suppresses the noise to achieve improved quality and intelligibility of speech. Then the mode switching decision module 323 checks mode switching criteria for each frame to decide a mode for next frame. To cope with changing environments, the noise suppression engine may operate in and automatically switch between two modes: NORMAL for adequate noise and NOISY for extremely high noise.
  • The following sections describe these operations of the processing engine 300 for noise suppression in more detail. These operations are performed by the Bark band power computation module 311, the VAS module 313, the signal power array updating module 314, the noise power estimation module 315, the gain computation module 317, the gain post-processing module 400, the signal spectrum adjustment module 321 and the mode switching decision module 323.
  • The Bark band power computer module 311 computes the signal bank power in psychoacoustic bands. Equation 1 below represents the power in the psychoacoustic bands, where Xi,k denotes the ith frequency sample of kth frame after frequency analysis, j is the band index, k is the frame index, Bj is the set of frequency indices of the jth band according to Table 1 above.
  • X j , k b = i B j X i , k 2 ( Equation 0 )
  • The voice activity scoring module 313 assigns a score, denoted as FRAME_SCOREk, to the current frame k to indicate the possibility of existence of speech. It is continuous and non-negative, with a larger value indicating higher possibility of containing speech. FRAME_SCOREk is computed based on a combination of two metrics: Score_1 taking into account the shape of the signal's power spectrum, and Score_2 the total power. Specifically, Score_1 is a function of the number of MR bands of the current frame having greater power than corresponding MR bands of the previously estimated noise scaled by a factor. A pseudo code is shown below to illustrate how the signal power and noise power are compared to obtain the input to the function for computing Score_1.
  • Xj,k b : Signal power of psychoacoustic band j of current frame
    k (see Equation 0)
    Dj,k−1 b : Estimated noise power of psychoacoustic band j of
    previous frame k−1 (see (Equation 4)
    τ : A constant scaling factor, preferably in the range of
    1.5 to 4.
    cnt = 0;
    for each band j in the MR
    If Xj,k b >τ*Dj,k−1 b,
    cnt = cnt + 1;
    end
    end
  • FIG. 5 shows a curve that results from a function into which the computed value cnt that is fed to finally obtain Score_1. In FIG. 5, threshold_cnt controls the turning point above which the curve, hence Score_1, increases more quickly as cnt increases.
  • Score_2 is related to the ratio of total power of the current frame to that of the previous estimated noise.
  • Score_ 2 = θ * j X j , k b j D j , k - 1 b ( Equation 1 )
  • Where θ is a constant and takes a value in the range of 0.25 to 0.5. The final score is a weighted sum of these two:

  • FRAME_SCOREk =w 1*Score 1+w 2*Score2  (Equation 2)
  • where w1 and w2 are weights assigned to these two scores, respectively, and w1+w2=1. Typically, w1=0.5 and w2=0.5 are adequate. With the above derivations for FRMAE_SCORE, its range can be divided into, a few sections, each section corresponding to certain characteristics. FIG. 6 shows a few sections and their corresponding characteristics. Both the function curve of Score_1 (as shown in FIG. 5) and the constant θ for Score_2 depend on which mode it is operating in, to better cope with different characteristics of different environments. Generally, it tends to assign a higher score when operating in NOISY mode than in NORMAL mode, as speech characteristics are more difficult to identify with high level noise.
  • The noise power estimation module 315 estimates the noise power in psychoacoustic bands that are more closely related to human perception than individual frequencies. The estimation works in one of two modes that are adapted to different signal characteristics: one mode for noise-like signal, and the other for speech-like signal.
  • A frame is classified as noise-like if FRAME_SCOREk<=NOISE_SPEECH_TH, and as speech-like otherwise. The threshold NOISE_SPEECH_TH can be tuned with test signals.
  • For a speech-like frame, the estimation is based on the principle of temporal tracking; that is, noise power in each band changes slowly in time and is closely related to the recent frames having small power. Specifically, for each band, the signal power of N recent frames is sorted in ascending order, and a portion of the array from the beginning is averaged as the estimated noise power in this band of the current frame. The total number of recent frames, N, for which the signal power is stored, may correspond to a time interval of about 200 to 400 milliseconds. Mathematically, estimated noise power for band j is
  • W j , k b = 1 M j q F j X j , q b ( Equation 3 )
  • where Fj is the set of recent frame indices selected for band j, and Mj is the total number of elements in Fj. In general, Mj is different for different bands and Mj<N. For simplicity, Mj can be dependent on band group. The final estimated noise power for band j of the current frame k, denoted as Dj,k b, is smoothed with that of the previous frame k−1, denoted as Dj,k-1 b, by

  • D j,k b =αD j,k-1 b+(1−α)*W j,k b  (Equation 4)
  • where α is an adaptive smoothing factor to eliminate abrupt change, and is derived from a predefined constant NOISE_SMOOTH_FACTOR, which is greater than 0.5, and the normalized deviation of total power of current frame from the mean total power of a few recent frames. Specifically,
  • α = MAX ( NOISE_SMOOTHING _FACTOR , 1 - ABS ( dif ) ) , where dif = X j , k b - avg avg avg = 1 P q G X j , q b ( Equation 5 )
  • and G is the set of frame indices for P most recent frames.
  • For a noise-like frame, it is desirable to take advantage of the high proportion of noise in the noisy signal for estimating noise, so as to quickly respond to change in the signal, for example, the disappearance of voice. Hence, the signal power is taken as the estimated noise power:

  • Wj,k b=Xj,k b  (Equation 6)
  • In addition, to avoid dramatic difference in estimated noise power due to the binary noise-like/speech-like decision when FRAME_SCOREk is close to NOISE_SPEECH_TH, the smoothing factor α gradually changes from the 1-NOISE_SMOOTH_FACTOR to NOISE_SMOOTH_FACTOR as FRAME_SCOREk increases from a lower score threshold NOISE_TH_L to a higher score threshold NOISE_TH_H, as depicted in FIG. 7. The final noise power is updated following (Equation 4. It can be seen that when FRAME_SCOREk is close to NOISE_SPEECH_TH, either slightly above or below it, the weight given to is close to NOISE_SMOOTH_FACTOR, resulting in a similar estimated noise power regardless of the binary noise-like/speech-like decision.
  • Due to the principle of temporal tracking for estimating noise power, when storing the noisy signal power, the previous noise power is substituted for the actual noisy signal power, scaled with a factor for correction, if FRAME_SCOREk>SPEECH_TH, because a speech-dominated frame does not give good estimation of noise power.
  • The gain computation module 317 computes a gain for each frequency component I according to a probabilistically driven heuristics.
  • For computing the gains of psychoacoustic band j, a threshold THRESj is first computed based on the estimated noise power Dj,k b:

  • THRESj=SCALE_FACTORkj *D j,k b /C j  (Equation 7)
  • Where Cj is the total number of frequency components in band j, βj is a frequency-dependent constant, and SCALE_FACTORk is a variable dependent on the current frame's FRAME_SCOREk and the previous frame's FRAME_SCOREk-1. If either the current frame or the previous frame is speech-dominated, i.e., FRAME_SCOREk>SPEECH_TH or FRAME_SCOREk-1>SPEECH_TH, then SCALE_FACTORk=1; otherwise SCALE_FACTORk is proportional to the ratio of the total power of the current frame to that of the previous frame's estimated noise, i.e.,
  • r = j X j , k b j D j , k - 1 b .
  • An example curve to compute SCALE_FACTORk with r is illustrated in FIG. 8.
  • For a frequency component i with power equal or larger than the threshold, i.e., |Xi,k|2≧THRESj, it is considered as having very strong speech content so that noise is masked by speech according to psychoacoustic principles, and a unity gain is assigned, i.e. Gi,k=1.
  • For a frequency component i with power less than the threshold |Xi,k|2<THRESj, the gain Gi,k is computed according to a probabilistically driven curve that can be either linear or non-linear. FIG. 9 shows some example curves that can be used. For non-linear curves, a turnover point is identified, below which the gain is attenuated and above which it is amplified. Different degrees of attenuation/attenuation amplification correspond to different probabilistic heuristics in the treatment of noise. Further improvement can be achieved by assigning the same gain to frequencies in one psychoacoustic band if they are in the LR or when current frame is found to be noise-only. This also simplifies computation. In summary, Gi,k is computed as
  • G i , k = { f ( X j , k b / C j THRES j ) , if j LR or FRAME_SCORE k NOISE_TH _L f ( X i , k 2 THRES j ) , otherwise ( Equation 8 )
  • where iεBj Bj is the set of frequency indices of the jth band according to Table 1, Cj is the total number of frequency components in band j, and f( ) is a function designed according to probabilistic heuristics as mentioned above.
  • FIG. 4 shows the component modules of the gain post-processing module 400. The gain post-processing module 400 further processes the computed gains to ensure the quality of processed signal and may include a gain time smoothing module 411, a gain frequency smoothing module 413, and, and a gain regulation 415.
  • The gain time smoothing module 411 can smooth the gains in the time domain. As known, a filter that changes too fast in the time domain results in unnaturalness in the processed signal and in some cases may introduce musical noise. Hence, the gains are carefully smoothed in the time axis. The gain time smoothing module 411 takes into account the signal temporal characteristics by detecting if the current frame is a release; if so, the time smoothing factor is adjusted according to Gi,k-1, based on the heuristic that the higher Gi,k-1 is the more likely frequency i corresponding to a decaying voice and hence is given a higher value to better preserve voice. If not a release, is assigned with the lowest value.
  • The time smoothing formula is expressed as shown by Equation 9 below.

  • G′ i,ki *G i,k-1+(1−γi)*G i,k  (Equation 9)
  • where γi is a frequency-dependent time smoothing factor, preferably in the range of 0.3 to 0.7.
  • The gain smoothing over frequency smoothing module 413 can mitigate artifacts introduced into the computed gains. The computed gains are all positive real numbers, and they correspond to a zero-phase filter which is symmetric in the time domain. If the filter impulse response has significant energy near its beginning (and tail by symmetry), when convolving with the windowed input signal, some artifacts may be introduced into the output. This can be mitigated by multiplying the filter impulse response with a smoothing window. In the frequency domain, this can be accomplished by filtering gains {G′i,k} with a linear-phase low-pass filter. A finite impulse response (FIR) filter of order as low as four is normally adequate.
  • The gain regulation module 415 can maintain the gains within a range between a minimum value and a maximum value to avoid loss of information. Since the bands in MR are considered the most important for perception, they should not be suppressed more than bands in LR and HR. Let GAIN_MAX be the maximum gain in MR, i.e., GAIN_MAX=MAX (G′i,k) where the frequency i is in MR. Then gains in LR and HR should not exceed GAIN_MAX.
  • To avoid completely losing information, gains are maintained above a threshold Gmin, (i.e., G′i,k Gmin. The threshold Gmin determines the maximum suppression of noise and it also serves as an injection of comfort noise. Furthermore, no gain should exceed unity, G′i,k 1, the gain. The gain regulation curve 1000 is depicted in FIG. 10 according to one embodiment of the present disclosure.
  • The noisy signal spectrum adjustment module 321 can adjust the noisy signal spectrum by multiplying the post-processed gain G′i,k with respective frequency component Xi,k to produce a filtered spectrum {Yi,k} as shown by Equation 10 below.

  • Y i,k =G′ i,k *X i,k  (Equation 10)
  • The mode switching decision module 323 is configured to determine a mode of operation based on the empirical observation and then switch into the mode. In an environment with adequate noise, a significant portion of non-noise frames (if FRAME_SCOREk>NOISE_TH_H, see FIG. 6) are in fact speech-dominated frames (if FRAME_SCOREk>SPEECH_TH). Hence, the mode is switched from NORMAL to NOISY when this portion falls below a threshold. On the other hand, when this portion is too large, mode is switched from NOISY to NORMAL. The exact proportion can be tuned with the actual test signals that comprise streams of normal noise and streams of high noise.
  • Accordingly, one embodiment of the present disclosure provides a system and method for adaptively suppressing noise in a speech signal with little memory and computation. The method and system can adaptively suppress additive noise in a speech signal for improved quality and intelligibility. Input signal is segmented into overlapping frames and each frame is processed in the frequency domain. Voice activity of an input frame is rated with a score in a continuous range to adapt other processing modules. Noise power is estimated in psychoacoustically motivated bands, making the processing closely related to human perception. With the voice activity score and estimated noise power, a gain for each frequency is computed according to probabilistic heuristics, smoothed in the time axis and frequency axis, and regulated before adjusting the noisy signal spectrum, to ensure the naturalness of the processed speech. To cope with changing environments, the method can operate in and automatically switch between two modes: one for adequate noise and the other for extremely high noise. This method is very efficient in terms of memory and computation as some processing is done in a psychoacoustic scale which has only about 20 bands.
  • FIG. 11 depicts a block diagram of a generic controller 1100 for a wireless terminal. In the generic controller 1100, an embodiment of the processing engine 300 can be implemented. The generic controller 1100 depicted includes a processor 1102 connected to a level two cache/bridge 1104, which is connected in turn to a local system bus 1106. Local system bus 1106 may be, for example, a peripheral component interconnect (PCI) architecture bus. Also connected to local system bus in the depicted example are a main memory 1108 and a graphics adapter 1110. The graphics adapter 1110 may be connected to display 1111.
  • Other peripherals, such as local area network (LAN)/Wide Area Network/Wireless (e.g. WiFi) adapter 1112, may also be connected to local system bus 1106. Expansion bus interface 1114 connects local system bus 1106 to input/output (I/O) bus 1116. I/O bus 1116 is connected to keyboard/mouse adapter 1118, disk controller 1120, and I/O adapter 1122. Disk controller 1120 can be connected to a storage 1126, which can be any suitable machine usable or machine readable storage medium, including but not limited to nonvolatile, hard-coded type mediums such as read only memories (ROMs) or erasable, electrically programmable-read only memories (EEPROMs), magnetic tape storage, and user-recordable type mediums such as floppy disks, hard disk drives and compact disk read only memories (CD-ROMs) or digital versatile disks (DVDs), and other known optical, electrical, or magnetic storage devices.
  • Also connected to I/O bus 1116 in the example shown is audio adapter 1124, to which speakers (not shown) may be connected for playing sounds. Keyboard/mouse adapter 1118 provides a connection for a pointing device (not shown), such as a mouse, a trackball, and a trackpointer, etc.
  • Those of ordinary skill in the art will appreciate that the hardware depicted in FIG. 11 may vary for particular embodiments. For example, other peripheral devices, such as an optical disk drive and the like, also may be used in addition or in place of the hardware depicted. The depicted example is provided for the purpose of explanation only and is not meant to imply architectural limitations with respect to the present disclosure.
  • The generic controller 1100 in accordance with an embodiment of the present disclosure includes an operating system employing a graphical user interface. The operating system permits multiple display windows to be presented in the graphical user interface simultaneously, with each display window providing an interface to a different application or to a different instance of the same application. A cursor in the graphical user interface may be manipulated by a user through the pointing device. The position of the cursor may be changed and/or an event, such as clicking a mouse button, generated to actuate a desired response.
  • One of various commercial operating systems, such as a version of Microsoft Windows™, a product of Microsoft Corporation located in Redmond, Wash. may be employed if suitably modified. The operating system is modified or created in accordance with the present disclosure as described.
  • LAN/WAN/Wireless adapter 1112 can be connected to a network 1130 (not a part of generic controller 1100), which can be any public or private data processing system network or combination of networks, as known to those of skill in the art, including the Internet. The generic controller 1100 can communicate over network 1130 with server system 1140, which is also not part of generic controller 1100, but can be implemented, for example, as a separate generic controller 1100.
  • It may be advantageous to set forth definitions of certain words and phrases used in this patent document. The term “couple” and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.
  • While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.

Claims (20)

1. An apparatus for adaptively suppressing noise in an input signal frequency spectrum derived from overlapping input frames, the system comprising:
a psychoacoustic power computation module configured to compute a noisy signal power in psychoacoustic bands;
a voice activity scoring module configured to compute a probabilistic score for a presence of a speech;
a noise estimation module configured to estimate a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power;
a gain computation module configured to compute a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames; and
a gain post-processing module configured to perform a gain time smoothing, a gain frequency smoothing, and a gain regulation for the computed gain.
2. The apparatus of claim 1, further comprising
a windowing module configured to segment input speech signals into the overlapping input frames, wherein an overlapping ratio of 50 percent is used;
a frequency analysis module configured to convert the input frames into the input signal frequency spectrum;
a data store configured to store the information on the past frames;
a mode switching module configured to switch into one of operation modes based on a noise level, wherein the operation modes include a normal mode and a noisy mode;
a noisy spectrum adjustment module configured to adjust the input signal frequency spectrum by attenuating a noise in the input signal frequency spectrum based on the post-processed gain from the gain post-processing module.
a frequency synthesis module configured to convert the adjusted input signal frequency spectrum to a time domain; and
a overlap-and-add module configured to create a final output signal based on the adjusted input signal frequency spectrum.
3. The apparatus of claim 2, wherein first two or three formants of the input signal frequency spectrum are considered speech bands.
4. The apparatus of claim 1, wherein the input speech signals are mono speech signals sampled at a frequency equal or less than 16 KHz.
5. The apparatus of claim 1, wherein the noisy signal power of the psychoacoustic bands is based on a summation of squared frequency magnitudes of each of the psychoacoustic bands.
6. The apparatus of claim 1, wherein the probabilistic score is based on a weighted sum of a first score and a second score, wherein the first score is based on a relative power of a speech band of a current frame and a power of an estimated noise in a previous frame, and the second score is based on a total power of the current frame and a total power of the estimated noise in the previous frame.
7. The apparatus of claim 1, further comprising a signal classification module configured to classify each of the input frames into one of a noise-only frame, a non-noise frame, a noise-like frame, a speech-like frame, and a speech-dominant frame, according to the probabilistic score.
8. The apparatus of claim 1, wherein the noisy spectrum adjustment module is further configured to suppress the noise by adjusting the input signal frequency spectrum via multiplying the post-processed gain with respective frequency components.
9. A method for adaptively suppressing a noise in an input signal frequency spectrum derived from overlapping input frames, the method comprising:
computing a noisy signal power in psychoacoustic bands;
computing a probabilistic score for a presence of a speech;
estimating a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power;
computing a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames; and
post-processing the computed gain by performing a gain time smoothing, a gain frequency smoothing, and a gain regulation on the computed gain.
10. The method of claim 9, further comprising
segmenting input speech signals into the overlapping input frames;
converting the overlapping input frames into the input signal frequency spectrum;
storing the information on the past frames into a datastore;
classifying each of the input frames into one of a noise-only frame, a non-noise frame, a noise-like frame, a speech-like frame, and a speech-dominant frame, according to the probabilistic score.
deciding on one of operation modes based on a noise level, wherein the operation modes include a normal mode and a noisy mode;
adjusting the input signal frequency spectrum by attenuating a noise in the input signal frequency spectrum based on the post-processed gain;
converting the adjusted input signal frequency spectrum to a time domain; and
creating a final output signal based on the adjusted input signal frequency spectrum.
11. The method of claim 9, wherein for the speech-like frame, the noise power of a psychoacoustic band is based on an average of M smallest noisy signal powers in the that psychoacoustic band of previous N frames with M<N.
12. The method of claim 9, wherein for the noise-like frame, the noise power of a psychoacoustic band is based on the signal power of the psychoacoustic band.
13. The method of claim 9, wherein the step of computing the gain further comprises computing the gain for each frequency based on a threshold, assigning the gain a one if a signal power of the frequency is above the threshold, and assigning the gain a same value assigned to other frequencies of the same psychoacoustic band if the current frame is a noise-only frame.
14. The method of claim 13, wherein the threshold is based on a frequency-dependent constant, a variable scaling factor, and the estimated noise power of the frequency, wherein the variable scaling factor is proportional to a ratio of a total power of the current frame to a total power of estimated noise of a previous frame.
15. The method of claim 9, wherein the estimated noise power of the frequency is based on an averaged estimated noise of powers of all frequencies of the psychoacoustic band.
16. The method of claim 9, wherein the gain time smoothing comprises smoothing the computed gain with a second computed gain of a previous frame.
17. The method of claim 9, wherein the gain frequency smoothing comprises applying a linear-phase filter to the computed gain.
18. The method of claim 9, wherein the gain regulation comprises keeping the computed gain for a non-speech band smaller than a maximum gain in the speech band and keeping the computed gain above a minimum threshold.
19. A computer program embodied on a computer readable medium and operable to be executed by a processor, the computer program comprising computer readable program code for:
converting overlapping input frames into an input signal frequency spectrum;
computing a noisy signal power in psychoacoustic bands;
computing a probabilistic score for a presence of a speech;
estimating a noise power in the psychoacoustic bands based on information of past frames, the probabilistic score, and the computed noisy signal power;
computing a gain for each frequency, based on a probabilistic heuristic, the probabilistic score and the information on the past frames; and
post-processing the computed gain by performing a gain time smoothing, a gain frequency smoothing, and a gain regulation on the computed gain.
20. The computer program of claim 19, wherein the computer program further comprise computer readable program code for
segmenting input speech signals into overlapping input frames;
storing the information on the past frames into a datastore;
deciding on one of operation modes based on a noise level, wherein the operation modes include a normal mode and a noisy mode;
adjusting the input signal frequency spectrum by attenuating a noise in the input signal frequency spectrum based on the post-processed gain;
converting the adjusted input signal frequency spectrum to a time domain; and
creating a final output signal based on the adjusted input signal frequency spectrum.
US12/009,601 2007-01-18 2008-01-18 Adaptive noise suppression for digital speech signals Active 2031-07-10 US8275611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/009,601 US8275611B2 (en) 2007-01-18 2008-01-18 Adaptive noise suppression for digital speech signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88102807P 2007-01-18 2007-01-18
US12/009,601 US8275611B2 (en) 2007-01-18 2008-01-18 Adaptive noise suppression for digital speech signals

Publications (2)

Publication Number Publication Date
US20080189104A1 true US20080189104A1 (en) 2008-08-07
US8275611B2 US8275611B2 (en) 2012-09-25

Family

ID=39676917

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/009,601 Active 2031-07-10 US8275611B2 (en) 2007-01-18 2008-01-18 Adaptive noise suppression for digital speech signals

Country Status (1)

Country Link
US (1) US8275611B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219472A1 (en) * 2007-03-07 2008-09-11 Harprit Singh Chhatwal Noise suppressor
US20090063143A1 (en) * 2007-08-31 2009-03-05 Gerhard Uwe Schmidt System for speech signal enhancement in a noisy environment through corrective adjustment of spectral noise power density estimations
US20090222264A1 (en) * 2008-02-29 2009-09-03 Broadcom Corporation Sub-band codec with native voice activity detection
US20100092000A1 (en) * 2008-10-10 2010-04-15 Kim Kyu-Hong Apparatus and method for noise estimation, and noise reduction apparatus employing the same
US7746958B2 (en) * 2004-06-15 2010-06-29 Infineon Technologies Ag Receiver for a wire-free communication system
US20110029310A1 (en) * 2008-03-31 2011-02-03 Transono Inc. Procedure for processing noisy speech signals, and apparatus and computer program therefor
US20110029305A1 (en) * 2008-03-31 2011-02-03 Transono Inc Method for processing noisy speech signal, apparatus for same and computer-readable recording medium
US20110144988A1 (en) * 2009-12-11 2011-06-16 Jongsuk Choi Embedded auditory system and method for processing voice signal
EP2383731A1 (en) * 2008-12-31 2011-11-02 Huawei Technologies Co., Ltd. Signal processing method and apparatus
KR101088627B1 (en) 2008-10-24 2011-11-30 야마하 가부시키가이샤 Noise suppression device and noise suppression method
KR101088558B1 (en) 2008-10-24 2011-12-05 야마하 가부시키가이샤 Noise suppression device and noise suppression method
US20120260736A1 (en) * 2011-04-12 2012-10-18 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Methods, modules, and systems for gain control in b-mode ultrasonic imaging
US20140180682A1 (en) * 2012-12-21 2014-06-26 Sony Corporation Noise detection device, noise detection method, and program
US20140270249A1 (en) * 2013-03-12 2014-09-18 Motorola Mobility Llc Method and Apparatus for Estimating Variability of Background Noise for Noise Suppression
US20150356978A1 (en) * 2012-09-21 2015-12-10 Dolby International Ab Audio coding with gain profile extraction and transmission for speech enhancement at the decoder
US20160104488A1 (en) * 2013-06-21 2016-04-14 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out for switched audio coding systems during error concealment
CN105679325A (en) * 2010-11-09 2016-06-15 索尼公司 Decoding apparatus, decoding method, and audio processing device
US20160191007A1 (en) * 2014-12-31 2016-06-30 Stmicroelectronics Asia Pacific Pte Ltd Adaptive loudness levelling method for digital audio signals in frequency domain
US9484043B1 (en) * 2014-03-05 2016-11-01 QoSound, Inc. Noise suppressor
US9584087B2 (en) 2012-03-23 2017-02-28 Dolby Laboratories Licensing Corporation Post-processing gains for signal enhancement
US9659578B2 (en) 2014-11-27 2017-05-23 Tata Consultancy Services Ltd. Computer implemented system and method for identifying significant speech frames within speech signals
US10163313B2 (en) * 2016-03-14 2018-12-25 Tata Consultancy Services Limited System and method for sound based surveillance
US10186276B2 (en) * 2015-09-25 2019-01-22 Qualcomm Incorporated Adaptive noise suppression for super wideband music
US10319394B2 (en) * 2013-01-08 2019-06-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improving speech intelligibility in background noise by amplification and compression
US11735175B2 (en) 2013-03-12 2023-08-22 Google Llc Apparatus and method for power efficient signal conditioning for a voice recognition system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229234B2 (en) * 2007-12-18 2013-07-03 富士通株式会社 Non-speech segment detection method and non-speech segment detection apparatus
MY178597A (en) * 2008-07-11 2020-10-16 Fraunhofer Ges Forschung Audio encoder, audio decoder, methods for encoding and decoding an audio signal, and a computer program
GB2547459B (en) * 2016-02-19 2019-01-09 Imagination Tech Ltd Dynamic gain controller
CN108962275B (en) * 2018-08-01 2021-06-15 电信科学技术研究院有限公司 Music noise suppression method and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757937A (en) * 1996-01-31 1998-05-26 Nippon Telegraph And Telephone Corporation Acoustic noise suppressor
US6088668A (en) * 1998-06-22 2000-07-11 D.S.P.C. Technologies Ltd. Noise suppressor having weighted gain smoothing
US20020012429A1 (en) * 2000-06-24 2002-01-31 Alcatel Interference-signal-dependent adaptive echo suppression
US6415253B1 (en) * 1998-02-20 2002-07-02 Meta-C Corporation Method and apparatus for enhancing noise-corrupted speech
US6487535B1 (en) * 1995-12-01 2002-11-26 Digital Theater Systems, Inc. Multi-channel audio encoder
US20030055627A1 (en) * 2001-05-11 2003-03-20 Balan Radu Victor Multi-channel speech enhancement system and method based on psychoacoustic masking effects
US20040101038A1 (en) * 2002-11-26 2004-05-27 Walter Etter Systems and methods for far-end noise reduction and near-end noise compensation in a mixed time-frequency domain compander to improve signal quality in communications systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487535B1 (en) * 1995-12-01 2002-11-26 Digital Theater Systems, Inc. Multi-channel audio encoder
US5757937A (en) * 1996-01-31 1998-05-26 Nippon Telegraph And Telephone Corporation Acoustic noise suppressor
US6415253B1 (en) * 1998-02-20 2002-07-02 Meta-C Corporation Method and apparatus for enhancing noise-corrupted speech
US6088668A (en) * 1998-06-22 2000-07-11 D.S.P.C. Technologies Ltd. Noise suppressor having weighted gain smoothing
US6317709B1 (en) * 1998-06-22 2001-11-13 D.S.P.C. Technologies Ltd. Noise suppressor having weighted gain smoothing
US20020012429A1 (en) * 2000-06-24 2002-01-31 Alcatel Interference-signal-dependent adaptive echo suppression
US20030055627A1 (en) * 2001-05-11 2003-03-20 Balan Radu Victor Multi-channel speech enhancement system and method based on psychoacoustic masking effects
US20040101038A1 (en) * 2002-11-26 2004-05-27 Walter Etter Systems and methods for far-end noise reduction and near-end noise compensation in a mixed time-frequency domain compander to improve signal quality in communications systems

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746958B2 (en) * 2004-06-15 2010-06-29 Infineon Technologies Ag Receiver for a wire-free communication system
US20080219472A1 (en) * 2007-03-07 2008-09-11 Harprit Singh Chhatwal Noise suppressor
US7912567B2 (en) * 2007-03-07 2011-03-22 Audiocodes Ltd. Noise suppressor
US8364479B2 (en) * 2007-08-31 2013-01-29 Nuance Communications, Inc. System for speech signal enhancement in a noisy environment through corrective adjustment of spectral noise power density estimations
US20090063143A1 (en) * 2007-08-31 2009-03-05 Gerhard Uwe Schmidt System for speech signal enhancement in a noisy environment through corrective adjustment of spectral noise power density estimations
US8190440B2 (en) * 2008-02-29 2012-05-29 Broadcom Corporation Sub-band codec with native voice activity detection
US20090222264A1 (en) * 2008-02-29 2009-09-03 Broadcom Corporation Sub-band codec with native voice activity detection
US20110029310A1 (en) * 2008-03-31 2011-02-03 Transono Inc. Procedure for processing noisy speech signals, and apparatus and computer program therefor
US20110029305A1 (en) * 2008-03-31 2011-02-03 Transono Inc Method for processing noisy speech signal, apparatus for same and computer-readable recording medium
US8744846B2 (en) * 2008-03-31 2014-06-03 Transono Inc. Procedure for processing noisy speech signals, and apparatus and computer program therefor
US8744845B2 (en) * 2008-03-31 2014-06-03 Transono Inc. Method for processing noisy speech signal, apparatus for same and computer-readable recording medium
US9159335B2 (en) 2008-10-10 2015-10-13 Samsung Electronics Co., Ltd. Apparatus and method for noise estimation, and noise reduction apparatus employing the same
CN102779524A (en) * 2008-10-10 2012-11-14 三星电子株式会社 Apparatus and method for noise estimation, and noise reduction apparatus employing the same
US20100092000A1 (en) * 2008-10-10 2010-04-15 Kim Kyu-Hong Apparatus and method for noise estimation, and noise reduction apparatus employing the same
KR101088558B1 (en) 2008-10-24 2011-12-05 야마하 가부시키가이샤 Noise suppression device and noise suppression method
KR101088627B1 (en) 2008-10-24 2011-11-30 야마하 가부시키가이샤 Noise suppression device and noise suppression method
EP2383731A1 (en) * 2008-12-31 2011-11-02 Huawei Technologies Co., Ltd. Signal processing method and apparatus
EP2383731B1 (en) * 2008-12-31 2014-08-13 Huawei Technologies Co., Ltd. Audio signal processing method and apparatus
US8468025B2 (en) 2008-12-31 2013-06-18 Huawei Technologies Co., Ltd. Method and apparatus for processing signal
US20110144988A1 (en) * 2009-12-11 2011-06-16 Jongsuk Choi Embedded auditory system and method for processing voice signal
CN105679325A (en) * 2010-11-09 2016-06-15 索尼公司 Decoding apparatus, decoding method, and audio processing device
US20120260736A1 (en) * 2011-04-12 2012-10-18 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Methods, modules, and systems for gain control in b-mode ultrasonic imaging
US8795179B2 (en) * 2011-04-12 2014-08-05 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Methods, modules, and systems for gain control in B-mode ultrasonic imaging
US12112768B2 (en) 2012-03-23 2024-10-08 Dolby Laboratories Licensing Corporation Post-processing gains for signal enhancement
US10902865B2 (en) 2012-03-23 2021-01-26 Dolby Laboratories Licensing Corporation Post-processing gains for signal enhancement
US10311891B2 (en) 2012-03-23 2019-06-04 Dolby Laboratories Licensing Corporation Post-processing gains for signal enhancement
US11694711B2 (en) 2012-03-23 2023-07-04 Dolby Laboratories Licensing Corporation Post-processing gains for signal enhancement
US9584087B2 (en) 2012-03-23 2017-02-28 Dolby Laboratories Licensing Corporation Post-processing gains for signal enhancement
US11308976B2 (en) 2012-03-23 2022-04-19 Dolby Laboratories Licensing Corporation Post-processing gains for signal enhancement
US20150356978A1 (en) * 2012-09-21 2015-12-10 Dolby International Ab Audio coding with gain profile extraction and transmission for speech enhancement at the decoder
US9495970B2 (en) * 2012-09-21 2016-11-15 Dolby Laboratories Licensing Corporation Audio coding with gain profile extraction and transmission for speech enhancement at the decoder
US20140180682A1 (en) * 2012-12-21 2014-06-26 Sony Corporation Noise detection device, noise detection method, and program
US10319394B2 (en) * 2013-01-08 2019-06-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improving speech intelligibility in background noise by amplification and compression
US20140270249A1 (en) * 2013-03-12 2014-09-18 Motorola Mobility Llc Method and Apparatus for Estimating Variability of Background Noise for Noise Suppression
US10896685B2 (en) 2013-03-12 2021-01-19 Google Technology Holdings LLC Method and apparatus for estimating variability of background noise for noise suppression
US11557308B2 (en) 2013-03-12 2023-01-17 Google Llc Method and apparatus for estimating variability of background noise for noise suppression
US11735175B2 (en) 2013-03-12 2023-08-22 Google Llc Apparatus and method for power efficient signal conditioning for a voice recognition system
US10607614B2 (en) 2013-06-21 2020-03-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method realizing a fading of an MDCT spectrum to white noise prior to FDNS application
US9916833B2 (en) * 2013-06-21 2018-03-13 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out for switched audio coding systems during error concealment
US12125491B2 (en) 2013-06-21 2024-10-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method realizing improved concepts for TCX LTP
US9997163B2 (en) 2013-06-21 2018-06-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method realizing improved concepts for TCX LTP
US9978378B2 (en) 2013-06-21 2018-05-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out in different domains during error concealment
US9978377B2 (en) 2013-06-21 2018-05-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating an adaptive spectral shape of comfort noise
US10672404B2 (en) 2013-06-21 2020-06-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating an adaptive spectral shape of comfort noise
US10679632B2 (en) 2013-06-21 2020-06-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out for switched audio coding systems during error concealment
US10854208B2 (en) 2013-06-21 2020-12-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method realizing improved concepts for TCX LTP
US10867613B2 (en) 2013-06-21 2020-12-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out in different domains during error concealment
US9978376B2 (en) 2013-06-21 2018-05-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method realizing a fading of an MDCT spectrum to white noise prior to FDNS application
US20160104488A1 (en) * 2013-06-21 2016-04-14 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out for switched audio coding systems during error concealment
US11869514B2 (en) 2013-06-21 2024-01-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out for switched audio coding systems during error concealment
US11462221B2 (en) 2013-06-21 2022-10-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating an adaptive spectral shape of comfort noise
US11501783B2 (en) 2013-06-21 2022-11-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method realizing a fading of an MDCT spectrum to white noise prior to FDNS application
US11776551B2 (en) 2013-06-21 2023-10-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out in different domains during error concealment
US9484043B1 (en) * 2014-03-05 2016-11-01 QoSound, Inc. Noise suppressor
US9659578B2 (en) 2014-11-27 2017-05-23 Tata Consultancy Services Ltd. Computer implemented system and method for identifying significant speech frames within speech signals
US20160191007A1 (en) * 2014-12-31 2016-06-30 Stmicroelectronics Asia Pacific Pte Ltd Adaptive loudness levelling method for digital audio signals in frequency domain
US9647624B2 (en) * 2014-12-31 2017-05-09 Stmicroelectronics Asia Pacific Pte Ltd. Adaptive loudness levelling method for digital audio signals in frequency domain
US10186276B2 (en) * 2015-09-25 2019-01-22 Qualcomm Incorporated Adaptive noise suppression for super wideband music
US10163313B2 (en) * 2016-03-14 2018-12-25 Tata Consultancy Services Limited System and method for sound based surveillance

Also Published As

Publication number Publication date
US8275611B2 (en) 2012-09-25

Similar Documents

Publication Publication Date Title
US8275611B2 (en) Adaptive noise suppression for digital speech signals
RU2329550C2 (en) Method and device for enhancement of voice signal in presence of background noise
US6523003B1 (en) Spectrally interdependent gain adjustment techniques
US6529868B1 (en) Communication system noise cancellation power signal calculation techniques
US7313518B2 (en) Noise reduction method and device using two pass filtering
US6766292B1 (en) Relative noise ratio weighting techniques for adaptive noise cancellation
CN102356427B (en) Noise suppression device
EP1745468B1 (en) Noise reduction for automatic speech recognition
US9142221B2 (en) Noise reduction
US8930184B2 (en) Signal bandwidth extending apparatus
US8352257B2 (en) Spectro-temporal varying approach for speech enhancement
US7912567B2 (en) Noise suppressor
JPH07306695A (en) Method of reducing noise in sound signal, and method of detecting noise section
US6671667B1 (en) Speech presence measurement detection techniques
WO2012158156A1 (en) Noise supression method and apparatus using multiple feature modeling for speech/noise likelihood
Kato et al. Noise suppression with high speech quality based on weighted noise estimation and MMSE STSA
US20080312916A1 (en) Receiver Intelligibility Enhancement System
Azirani et al. Speech enhancement using a Wiener filtering under signal presence uncertainty
Sunnydayal et al. A survey on statistical based single channel speech enhancement techniques
Surendran et al. Variance normalized perceptual subspace speech enhancement
Cheong et al. Postfilter for Dual Channel Speech Enhancement Using Coherence and Statistical Model-Based Noise Estimation
Koval et al. Broadband noise cancellation systems: new approach to working performance optimization
Chouki et al. Comparative Study on Noisy Speech Preprocessing Algorithms
Krishnamoorthy et al. Processing noisy speech for enhancement
Tsukamoto et al. Speech enhancement based on MAP estimation with a variable speech distribution

Legal Events

Date Code Title Description
AS Assignment

Owner name: STMICROELECTRONICS ASIA PACIFIC PTE., LTD., SINGAP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZONG, WENBO;WU, YUAN;GEORGE, SAPNA;REEL/FRAME:020814/0053;SIGNING DATES FROM 20080116 TO 20080123

Owner name: STMICROELECTRONICS ASIA PACIFIC PTE., LTD., SINGAP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZONG, WENBO;WU, YUAN;GEORGE, SAPNA;SIGNING DATES FROM 20080116 TO 20080123;REEL/FRAME:020814/0053

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

AS Assignment

Owner name: STMICROELECTRONICS INTERNATIONAL N.V., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STMICROELECTRONICS ASIA PACIFIC PTE LTD;REEL/FRAME:068434/0215

Effective date: 20240628