US20080183121A2 - Fluid infusion methods for ocular disorder treatment - Google Patents
Fluid infusion methods for ocular disorder treatment Download PDFInfo
- Publication number
- US20080183121A2 US20080183121A2 US11/332,746 US33274606A US2008183121A2 US 20080183121 A2 US20080183121 A2 US 20080183121A2 US 33274606 A US33274606 A US 33274606A US 2008183121 A2 US2008183121 A2 US 2008183121A2
- Authority
- US
- United States
- Prior art keywords
- implant
- eye
- fluid
- instrument
- outflow pathway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00781—Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/0008—Introducing ophthalmic products into the ocular cavity or retaining products therein
- A61F9/0017—Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00885—Methods or devices for eye surgery using laser for treating a particular disease
- A61F2009/00891—Glaucoma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
- A61F9/00745—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/06—Head
- A61M2210/0612—Eyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M27/00—Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
- A61M27/002—Implant devices for drainage of body fluids from one part of the body to another
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
Definitions
- This invention relates to reducing intraocular pressure within the animal eye. More particularly, this invention relates to a treatment of glaucoma wherein aqueous humor is permitted to flow out of an anterior chamber of the eye through a surgically implanted pathway. Furthermore, this invention relates to directly dilating Schlemm's canal and/or aqueous collector channels by injecting fluid through the implanted pathway of a stent.
- a human eye is a specialized sensory organ capable of light reception and is able to receive visual images.
- Aqueous humor is a transparent liquid that fills the region between the cornea, at the front of the eye, and the lens.
- a trabecular meshwork located in an anterior chamber angle formed between the iris and the cornea, serves as a drainage channel for aqueous humor from the anterior chamber, which maintains a balanced pressure within the anterior chamber of the eye.
- Glaucoma is a group of eye diseases encompassing a broad spectrum of clinical presentations, etiologies, and treatment modalities. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, resulting in blindness if untreated. Lowering intraocular pressure is the major treatment goal in all glaucomas.
- aqueous aqueous humor
- Schlemm's canal aqueous aqueous humor
- Schlemm's canal aqueous collector channels in the posterior wall of Schlemm's canal
- aqueous veins which form the episcleral venous system.
- Aqueous is continuously secreted by a ciliary body around the lens, so there is a constant flow of aqueous from the ciliary body to the anterior chamber of the eye.
- Pressure within the eye is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) and uveoscleral outflow (minor route).
- the portion of the trabecular meshwork adjacent to Schlemm's canal causes most of the resistance to aqueous outflow.
- Glaucoma is broadly classified into two categories: closed-angle glaucoma, also known as angle closure glaucoma, and open-angle glaucoma. Closed-angle glaucoma is caused by closure of the anterior chamber angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous from the anterior chamber of the eye. Open-angle glaucoma is any glaucoma in which the exit of aqueous through the trabecular meshwork is diminished while the angle of the anterior chamber remains open. For most cases of open-angle glaucoma, the exact cause of diminished filtration is unknown.
- Primary open-angle glaucoma is the most common of the glaucomas, and is often asymptomatic in the early to moderately advanced stages of glaucoma. Patients may suffer substantial, irreversible vision loss prior to diagnosis and treatment.
- secondary open-angle glaucomas may include edema or swelling of the trabecular spaces (e.g., from corticosteroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.
- Miotics e.g., pilocarpine, carbachol, and acetylcholinesterase inhibitors
- Sympathomimetics e.g., epinephrine and dipivalylepinephxine
- Beta-blockers e.g., betaxolol, levobunolol and timolol
- Carbonic anhydrase inhibitors e.g., acetazolamide, methazolamide and ethoxzolamide
- Prostaglandins e.g., metabolite derivatives of arachindonic acid.
- Medical therapy includes topical ophthalmic drops or oral medications that reduce the production of aqueous or increase the outflow of aqueous.
- drug therapies for glaucoma are sometimes associated with significant side effects.
- the most frequent and perhaps most serious drawback to drug therapy is that patients, especially the elderly, often fail to correctly self-medicate. Such patients forget to take their medication at the appropriate times or else administer eye drops improperly, resulting in under- or overdosing.
- the effects of glaucoma are irreversible, when patients dose improperly, allowing ocular concentrations to drop below appropriate therapeutic levels, further permanent damage to vision occurs.
- current drug therapies are targeted to be deposited directly into the ciliary body where the aqueous is produced. And, current therapies do not provide for a continuous slow-release of the drug. When drug therapy fails, surgical therapy is pursued.
- Surgical therapy for open-angle glaucoma consists of laser trabeculoplasty, trabeculectomy, and implantation of aqueous shunts after failure of trabeculectomy or if trabeculectomy is unlikely to succeed.
- Trabeculectomy is a major surgery that is widely used and is augmented with topically applied anticancer drugs, such as 5-flurouracil or mitomycin-C to decrease scarring and increase the likelihood of surgical success.
- Approximately 100,000 trabeculectomies are performed on Medicare-age patients per year in the United States. This number would likely increase if ocular morbidity associated with trabeculectomy could be decreased.
- the current morbidity associated with trabeculectomy consists of failure (10-15%); infection (a life long risk of 2-5%); choroidal hemorrhage, a severe internal hemorrhage from low intraocular pressure, resulting in visual loss (1%); cataract formation; and hypotony maculopathy (potentially reversible visual loss from low intraocular pressure). For these reasons, surgeons have tried for decades to develop a workable surgery for the trabecular meshwork.
- goniotomy/trabeculotomy and other mechanical disruptions of the trabecular meshwork, such as trabeculopuncture, goniophotoablation, laser trabecular ablation, and goniocurretage. These are all major operations and are briefly described below.
- Goniotomy and trabeculotomy are simple and directed techniques of microsurgical dissection with mechanical disruption of the trabecular meshwork. These initially had early favorable responses in the treatment of open-angle glaucoma. However, long-term review of surgical results showed only limited success in adults. In retrospect, these procedures probably failed due to cellular repair and fibrosis mechanisms and a process of “filling in.” Filling in is a detrimental effect of collapsing and closing in of the created opening in the trabecular meshwork. Once the created openings close, the pressure builds back up and the surgery fails.
- Neodynium (Nd) YAG lasers also have been investigated as an optically invasive trabeculopuncture technique for creating full-thickness holes in trabecular meshwork.
- Nd Neodynium
- the relatively small hole created by this trabeculopuncture technique exhibits a filling-in effect and fails.
- Goniophotoablation is disclosed by Berlin in U.S. Pat. No. 4,846,172 and involves the use of an excimer laser to treat glaucoma by ablating the trabecular meshwork. This method did not succeed in a clinical trial. Hill et al. used an Erbium YAG laser to create full-thickness holes through trabecular meshwork (Hill et al., Lasers in Surgery and Medicine 11:341346, 1991). This laser trabecular ablation technique was investigated in a primate model and a limited human clinical trial at the University of California, Irvine. Although ocular morbidity was zero in both trials, success rates did not warrant further human trials. Failure was again from filling in of surgically created defects in the trabecular meshwork by repair mechanisms. Neither of these is a viable surgical technique for the treatment of glaucoma.
- Goniocurretage is an “ab interno” (from the inside), mechanically disruptive technique that uses an instrument similar to a cyclodialysis spatula with a microcurrette at the tip.
- Initial results were similar to trabeculotomy: it failed due to repair mechanisms and a process of filling in.
- trabeculectomy is the most commonly performed filtering surgery
- viscocanalostomy (VC) and nonpenetrating trabeculectomy (NPT) are two new variations of filtering surgery. These are “ab externo” (from the outside), major ocular procedures in which Schlemm's canal is surgically exposed by making a large and very deep scleral flap.
- Schlemm's canal is cannulated and viscoelastic substance injected (which dilates Schlemm's canal and the aqueous collector channels).
- NPT nonpenetrating trabeculectomy
- Trabeculectomy, VC, and NPT involve the formation of an opening or hole under the conjunctiva and scleral flap into the anterior chamber, such that aqueous is drained onto the surface of the eye or into the tissues located within the lateral wall of the eye.
- These surgical operations are major procedures with significant ocular morbidity.
- a number of implantable drainage devices have been used to ensure that the desired filtration and outflow of aqueous through the surgical opening will continue.
- the risk of placing a glaucoma drainage device also includes hemorrhage, infection, and diplopia (double vision).
- the trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous, they are logical targets for surgical removal in the treatment of open-angle glaucoma. In addition, minimal amounts of tissue need be altered and existing physiologic outflow pathways can be utilized.
- a device and methods are provided for improved treatment of intraocular pressure due to glaucoma.
- a hollow trabecular microstent is adapted for implantation within a trabecular meshwork of an eye such that aqueous humor flows controllably from an anterior chamber of the eye to Schlemm's canal, bypassing the trabecular meshwork.
- the trabecular microstent comprises a quantity of pharmaceuticals effective in treating glaucoma, which are controllably released from the device into cells of the trabecular meshwork and/or Schlemm's canal.
- pharmaceuticals may be utilized in conjunction with the trabecular microstent such that aqueous flow either increases or decreases as desired. Placement of the trabecular microstent within the eye and incorporation, and eventual release, of a proven pharmaceutical glaucoma therapy will reduce, inhibit or slow the effects of glaucoma.
- the microstent comprises an inlet section containing at least one lumen and one inlet opening, an outlet section having at least one lumen that connects to at least one outlet opening.
- the microstent further comprises a flow-restricting member within the lumen that is configured to partially prevent back flow from passing through the flow-restricting member.
- the microstent further comprises a middle section that is fixedly attached to the outlet section having at least one lumen in fluid communication with the lumen of the outlet section.
- the middle section is fixedly attached to the inlet section and the lumen within the middle section is in fluid communication with the lumen of the inlet section.
- the device is configured to permit fluid entering the lumen of the inlet section to pass through the flow-restricting member, enter the lumen of the middle section, pass into the lumen of the outlet section, and then exit the outlet section.
- Another aspect of the invention provides a method of treating glaucoma.
- the method comprises providing fluid through the lumen of the microstent to therapeutically dilate the aqueous cavity.
- aqueous cavity herein refers to any one or more of the downstream aqueous passageways “behind” the trabecular meshwork, including, without limitation, Schlemm's canal, the aqueous collector channels, and episcleral veins.
- the fluid contains therapeutic substance, including pharmaceuticals, genes, growth factors, enzymes and like.
- the fluid contains sterile saline, viscoelastic, or the like.
- the mode of fluid injection may be a pulsed mode, an intermittent mode or a programmed mode.
- the pressure of the fluid therapy is effective to cause therapeutic effects on the tissue of the aqueous cavity.
- the fluid pressure is effective to cause the dilation of the aqueous cavity beyond the tissue elastic yield point for permanent (i.e., plastic) deformation.
- the fluid is at an elevated pressure effective to cause plastic deformation for at least a portion of the aqueous cavity.
- the apparatus comprises a syringe portion and a cannula portion that has proximal and distal ends. The proximal end of the cannula portion is attached to the syringe portion.
- the cannula portion further comprises a first lumen and at least one irrigating hole disposed between the proximal and distal ends of the cannula portion. The irrigating hole is in fluid communication with the lumen.
- the apparatus further includes a holder including a second lumen for holding the trabecular microstent.
- a distal end of the second lumen opens to the distal end of the cannula portion, and a proximal end of the second lumen is separated from the first lumen of the cannula portion.
- Another aspect of the invention provides a method of implanting a trabecular microstent within an eye.
- the method comprises creating a first incision in a cornea on a first side of the eye, wherein the first incision passes through the cornea into an anterior chamber of the eye.
- the method further comprises passing an incising device through the first incision and moving a distal end of the incising device across the anterior chamber to a trabecular meshwork residing on a second side of the eye, and using the incising device to create a second incision.
- the second incision is in the trabecular meshwork, passing from the anterior chamber through the trabecular meshwork into a Schlemm's canal.
- the method further comprises inserting the trabecular microstent into a distal space of a delivery applicator.
- the delivery applicator comprises a cannula portion having a distal end and a proximal end attached to a syringe portion.
- the cannula portion has at least one lumen and at least one irrigating hole disposed between proximal and distal ends of the cannula portion.
- the irrigating hole is in fluid communication with the lumen.
- the distal space comprises a holder that holds the trabecular microstent during delivery and releases the trabecular microstent when a practitioner activates deployment of the device.
- the method further comprises advancing the cannula portion and the trabecular microstent through the first incision, across the anterior chamber and into the second incision, wherein an outlet section of the trabecular microstent is implanted into Schlemm's canal while an inlet section of the trabecular microstent remains in fluid communication with the anterior chamber.
- the method still further comprises releasing the trabecular microstent from the holder of the delivery applicator.
- One aspect of the invention includes a method of treating glaucoma, including inserting a stent through an incision in an eye; the stent having an inflow portion that is in fluid communication with an outflow portion of the stent; transporting the stent from the incision through the anterior chamber of the eye to an aqueous cavity of the eye, such that the inflow portion of the stent is positioned in the anterior chamber and the outflow portion of the stent is positioned at the aqueous cavity; and infusing fluid from the inflow portion to the outflow portion of the stent.
- Some embodiments further include closing the incision, leaving the stent in the eye such that the inflow portion of the stent is positioned in the anterior chamber of the eye and the outflow portion of the stent is positioned in Schlemm's canal.
- Some embodiments further include positioning the stent such that fluid communicating from the inflow portion to the outflow portion of the stent bypasses the trabecular meshwork of the eye.
- fluid is infused through a lumen of the stent.
- the aqueous cavity is Schlemm's canal. In other embodiments the aqueous cavity is an aqueous collector channel.
- the infusing further comprises injecting the fluid in at least one of a pulsed mode, an intermittent mode, and a programmed mode.
- the infusing of fluid is at a pressure sufficient to cause plastic deformation of at least a portion of the aqueous cavity.
- the fluid is at least one of a salt solution or viscoelastic.
- the infusing further comprises coupling the inflow portion of the stent with a fluid delivery element that transmits the fluid to the stent.
- the coupling comprises securing a screw thread arrangement of the fluid delivery element with a receiving thread arrangement of the stent.
- the fluid comprises a therapeutic substance such as a pharmaceutical, a gene, a growth factor, and/or an enzyme.
- the fluid comprises the fluid comprises a therapeutic substance such as an antiglaucoma drug, a beta-adrenergic antagonist, a TGF-beta compound, and/or an antibiotic.
- a therapeutic substance such as an antiglaucoma drug, a beta-adrenergic antagonist, a TGF-beta compound, and/or an antibiotic.
- Some embodiments provide that a temperature of the fluid is raised sufficiently to enhance the plastic deformation. And some embodiments provide that a pH of the fluid is adjusted sufficiently to enhance the plastic deformation.
- the method further includes vibrating a tissue of the eye.
- One aspect of the invention includes a method of treating glaucoma, including inserting a stent through an incision in an eye; the stent having an inflow portion that is in fluid communication with an outflow portion of the stent; positioning the stent such that the inflow portion of the stent is positioned in the anterior chamber of the eye and the outflow portion of the stent is positioned at an aqueous cavity; and infusing fluid from the inflow portion to the outflow portion of the stent.
- the aqueous cavity is Schlemm's canal. In certain arrangements, the method further comprises positioning the stent such that the outflow portion of the stent is in Schlemm's canal. In some arrangements the aqueous cavity is an aqueous collector channel.
- FIG. 1 is a coronal, cross-sectional view of an eye.
- FIG. 2 is an enlarged cross-sectional view of an anterior chamber angle of the eye of FIG. 1 .
- FIG. 3 is an oblique elevation view of one embodiment of an axisymmetric trabecular microstent.
- FIG. 4 is a detailed view of the proximal section of the microstent of FIG. 3 .
- FIG. 5 is an applicator for delivering a microstent and infusing fluid for therapeutic treatment.
- FIG. 6 is an enlarged, cross-sectional view of a preferred method of implanting a trabecular microstent within an eye.
- FIG. 1 is a cross-sectional view of an eye 10
- FIG. 2 is a close-up view showing the relative anatomical locations of a trabecular meshwork 21 , an anterior chamber 20 , and a Schlemm's canal 22
- a sclera 11 is a thick collagenous tissue that covers the entire eye 10 except a portion that is covered by a cornea 12 .
- the cornea 12 is a thin transparent tissue that focuses and transmits light into the eye and through a pupil 14 , which is a circular hole in the center of an iris 13 (colored portion of the eye).
- the cornea 12 merges into the sclera 11 at a juncture referred to as a limbus 15 .
- a ciliary body 16 extends along the interior of the sclera 11 and is coextensive with a choroid 17 .
- the choroid 17 is a vascular layer of the eye 10 , located between the sclera 11 and a retina 18 .
- An optic nerve 19 transmits visual information to the brain and is the anatomic structure that is progressively destroyed by glaucoma.
- aqueous aqueous humor
- Aqueous is produced primarily by the ciliary body 16 , then moves anteriorly through the pupil 14 and reaches an anterior chamber angle 25 , formed between the iris 13 and the cornea 12 .
- aqueous is removed from the anterior chamber 20 through the trabecular meshwork 21 .
- Aqueous passes through the trabecular meshwork 21 into Schlemm's canal 22 and thereafter through a plurality of aqueous veins 23 , which merge with blood-carrying veins, and into systemic venous circulation.
- Intraocular pressure is maintained by an intricate balance between secretion and outflow of aqueous in the manner described above.
- Glaucoma is, in most cases, characterized by an excessive buildup of aqueous in the anterior chamber 20 , which leads to an increase in intraocular pressure.
- Fluids are relatively incompressible, and thus intraocular pressure is distributed relatively uniformly throughout the eye 10 .
- the trabecular meshwork 21 is adjacent to a small portion of the sclera 11 . Exterior to the sclera 11 is a conjunctiva 24 . Traditional procedures that create a hole or opening for implanting a device through the tissues of the conjunctiva 24 and sclera 11 involve extensive surgery, as compared to surgery for implanting a device, as described herein, which ultimately resides entirely within the confines of the sclera 11 and cornea 12 .
- a microstent 81 is shown placed through trabecular meshwork 21 having a distal portion 83 disposed within Schlemm's canal 22 and a proximal portion 82 disposed within the anterior chamber 20 of the eye 10 .
- FIG. 6 generally illustrates the use of one embodiment of a trabecular microstent 81 for establishing an outflow pathway, passing through the trabecular meshwork 21 , which is discussed in greater detail below.
- FIG. 3 illustrates a preferred embodiment of a hollow trabecular microstent 81 , which facilitates the outflow of aqueous from the anterior chamber 20 into Schlemm's canal 22 , and subsequently into the aqueous collectors and the aqueous veins so that intraocular pressure is reduced.
- the trabecular microstent 81 comprises an inlet section 82 , having an inlet opening 86 , a middle section 84 , and an outlet section 83 having at least one opening 87 , 88 .
- the middle section 84 may be an extension of, or may be coextensive with, the inlet section 82 .
- the device 81 comprises at least one lumen 85 within section 84 , which is in fluid communication with the inlet opening 86 and the outlet opening 87 , 88 , thereby facilitating transfer of aqueous through the device 81 .
- the outlet side openings 88 each of which is in fluid communication with the lumen 85 for transmission of aqueous, are arranged spaced apart around the circumferential periphery 80 of the outlet section 83 .
- the outlet openings 88 are located and configured to enable jet-like infusing fluid impinging any specific region of Schlemm's canal tissue suitably for tissue stimulation.
- the lumen 85 and the remaining body of the outlet section 83 may have a cross-sectional shape that is oval, circular, or other appropriate shape.
- the middle section 84 has a length that is roughly equal to a thickness of the trabecular meshwork 21 , which typically ranges between about 100 ⁇ m and about 300 ⁇ m.
- a plurality of elevated (that is, protruding axially) supports or pillars 89 is located at the distal-most end of the outlet section 83 sized and configured for allowing media (for example, aqueous, liquid, balanced salt solution, viscoelastic fluid, therapeutic agents, or the like) to be transported freely.
- media for example, aqueous, liquid, balanced salt solution, viscoelastic fluid, therapeutic agents, or the like
- the microstent 81 may further comprises a flow-restricting member 90 , which is tightly retained within a lumen 85 .
- the flow-restricting member 90 serves to selectively restrict at least one component in blood from moving retrograde, i.e., from the outlet section 83 into the anterior chamber 20 of the eye 10 .
- the flow-restricting member 90 may be situated in any location within the device 81 such that blood flow is restricted from retrograde motion.
- the flow-restricting member 90 is sized and configured for maintaining the pressure of the infused fluid within the aqueous cavity for a suitable period of time.
- the flow-restricting member 90 may, in other embodiments, be a filter made of a material selected from the following filter materials: expanded polytetrafluoroethylene, cellulose, ceramic, glass, Nylon, plastic, and fluorinated material such as polyvinylidene fluoride (“PVDF”) (trade name: Kynar, by DuPont).
- PVDF polyvinylidene fluoride
- the trabecular microstent 81 may be made by molding, thermo-forming, or other micro-machining techniques.
- the trabecular microstent 81 preferably comprises a biocompatible material such that inflammation arising due to irritation between the outer surface of the device 81 and the surrounding tissue is minimized.
- Biocompatible materials which may be used for the device 81 preferably include, but are not limited to, titanium, stainless steel, medical grade silicone, e.g., SilasticTM, available from Dow Corning Corporation of Midland, Mich.; and polyurethane, e.g., PellethaneTM, also available from Dow Corning Corporation.
- the device 81 may comprise other types of biocompatible material, such as, by way of example, polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, polytetrafluoroethylene, expanded polytetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilicon, and/or a mixture of the aforementioned biocompatible materials, and the like.
- biocompatible material such as, by way of example, polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, polytetrafluoroethylene, expanded polytetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilicon, and/or a mixture of the aforementioned biocompatible materials, and the like.
- the microstent is made of a biodegradable material selected from a group consisting of poly(lactic acid), polyethylene-vinyl acetate, poly(lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), poly(caprolactone), poly(glycolic acid), and copolymer thereof.
- composite biocompatible material may be used, wherein a surface material may be used in addition to one or more of the aforementioned materials.
- a surface material may include polytetrafluoroethylene (PTFE) (such as TeflonTM), polyimide, hydrogel, heparin, therapeutic drugs (such as beta-adrenergic antagonists, TGF-beta, and other anti-glaucoma drugs, or antibiotics), and the like.
- a device coated or loaded with a slow-release substance can have prolonged effects on local tissue surrounding the device.
- the slow-release delivery can be designed such that an effective amount of substance is released over a desired duration.
- “Substance,” as used herein, is defined as any therapeutic or active drug that can stop, mitigate, slow-down or reverse undesired disease processes.
- the device 81 may be made of a biodegradable (also including bioerodible) material admixed with a substance for substance slow-release into ocular tissues.
- polymer films may function as substance containing release devices whereby the polymer films may be coupled or secured to the device 81 .
- the polymer films may be designed to permit the controlled release of the substance at a chosen rate and for a selected duration, which may also be episodic or periodic.
- Such polymer films may be synthesized such that the substance is bound to the surface or resides within a pore in the film so that the substance is relatively protected from enzymatic attack.
- the polymer films may also be modified to alter their hydrophilicity, hydrophobicity and vulnerability to platelet adhesion and enzymatic attack.
- the device 81 may be used for a direct release of pharmaceutical preparations into ocular tissues. As discussed above, the pharmaceuticals may be compounded within the device 81 or form a coating on the device 81 . Any known drug therapy for glaucoma may be utilized.
- FIG. 4 shows a detailed view of the proximal section 82 of the microstent 81 of FIG. 3 .
- the proximal section 82 has a bottom peripheral surface 91 that is about perpendicular to the lumen 85 of the microstent 81 .
- a receiving thread arrangement 95 is appropriately located on the peripheral surface 91 .
- the receiving thread arrangement 95 is sized and configured to releasably receive a screw thread arrangement 96 for coupling together, wherein the screw thread arrangement 96 is disposed at the distal end 97 of a fluid delivery element 94 which has a lumen 93 for transporting the infusing fluid into the aqueous cavity for therapeutic purposes.
- the coupling of the receiving thread arrangement 95 and the screw thread arrangement 96 makes the fluid infusion through the lumen 85 leak-proof enabling pressurized the aqueous cavity.
- FIG. 5 shows a distal portion 57 of an applicator 55 for delivering a microstent 81 and infusing fluid for therapeutic treatment.
- the distal portion 57 comprises a distal cutting means 42 sharp enough for creating an incision on the cornea and also creating an opening on trabecular meshwork 21 for stent placement.
- the axisymmetric microstent 81 is snugly placed within the lumen 43 of the applicator 55 and retained by a plurality of stent retaining members 45 .
- the microstent 81 is deployed from the applicator 55 once the distal section 83 passes beyond the edge of the trabecular meshwork 21 .
- the stent deployment is facilitated by a plunger-type deployment mechanism 44 with an associated deployment actuator 61 mounted on the handle 62 of the applicator 55 (see FIG. 6 ).
- the microstent 81 may be releasably coupled with a fluid delivery element 94 at any convenient time during the procedures.
- the screw-unscrew coupling steps between the microstent 81 and the fluid delivery element 94 is carried out by suitably rotating the fluid delivery element 94 with reference to the stent receiving thread arrangement 95 , wherein the associated rotating mechanism 63 is located at the handle 62 of the applicator 55 .
- the device 81 may advantageously be practiced with a variety of sizes and shapes without departing from the scope of the invention.
- the devices 81 may have a length ranging from about 0.05 centimeters to over 1 centimeter.
- the device 81 has an outside diameter ranging between about 30 ⁇ m and about 500 ⁇ m, with the lumen 85 having diameters ranging between about 20 ⁇ m and about 250 ⁇ m, respectively.
- the device 81 may have a plurality of lumens to facilitate transmission of multiple flows of aqueous or infusing fluid.
- One preferred method for increasing aqueous outflow in the eye 10 of a patient, to reduce intraocular pressure therein, comprises bypassing the trabecular meshwork 21 .
- the middle section 84 of the device 81 is advantageously placed across the trabecular meshwork 21 through a slit or opening.
- This opening can be created by use of a laser, a knife, thermal energy (radiofrequency, ultrasound, microwave), cryogenic energy, or other surgical cutting instrument.
- the opening may advantageously be substantially horizontal, i.e., extending longitudinally in the same direction as the circumference of the limbus 15 ( FIG. 2 ). Other opening directions may also be used, as well.
- the opening may advantageously be oriented at any angle, relative to the circumference of the limbus 15 , that is appropriate for inserting the device 81 through the trabecular meshwork 21 and into Schlemm's canal 22 or other outflow pathway, as will be apparent to those skilled in the art.
- the outlet section 83 may be positioned into fluid collection channels of the natural outflow pathways.
- natural outflow pathways include Schlemm's canal 22 , aqueous collector channels, aqueous veins, and episcleral veins.
- FIG. 6 generally illustrates a preferred method by which the trabecular microstent 81 is implanted within the eye 10 .
- a delivery applicator 55 is provided, which preferably comprises a syringe portion 64 and a cannula portion 65 , which contains at least one lumen 43 in fluid communication with the fluid supply 66 .
- the cannula portion 65 preferably has a size of about 30 gauge. However, in other embodiments, the cannula portion 65 may have a size ranging between about 16 gauges and about 40 gauges.
- a holder 56 at the distal portion 57 of the cannula portion 65 for holding the device 81 may advantageously comprise a lumen, a sheath, a clamp, tongs, a space, and the like.
- the device 81 is placed into the lumen 43 of the delivery applicator 55 and then advanced to a desired implantation site within the eye 10 .
- the delivery applicator 55 holds the device 81 securely during delivery and releases it when the practitioner initiates deployment actuator 61 of the applicator 55 .
- a patient is placed in a supine position, prepped, draped, and appropriately anesthetized.
- a small incision 52 is then made through the cornea 12 with a self-trephining applicator 55 .
- the incision 52 preferably has a surface length less than about 1.0 millimeter in length and may advantageously be self-sealing.
- the trabecular meshwork 21 is accessed, wherein an incision is made with a cutting means 42 enabling forming a hole on the trabecular meshwork 21 for stent placement.
- the hole on the trabecular meshwork can also be created with a tip having thermal energy or cryogenic energy.
- a method for expanding or attenuating the capacity of the existing canal outflow system also known as the “aqueous cavity”.
- This system could have become constricted or blocked due to age or other factors associated with glaucoma.
- a tight fluid coupling is established between an external pressured fluid source 66 and Schlemm's canal 22 through a microstent 81 . It is also advantageous to connect the external pressurized fluid source through a removable instrument (for example, a temporary applicator, catheter, cannula, or tubing) to Schlemm's canal ab interno for applying the fluid infusion therapy.
- a removable instrument for example, a temporary applicator, catheter, cannula, or tubing
- a method is provided of treating glaucoma including infusing fluid into aqueous cavity from an anterior chamber end of a stent, wherein the fluid is at an elevated pressure above a baseline pressure of the aqueous cavity.
- the method further comprises placing a hollow trabecular microstent bypassing the trabecular meshwork, wherein the fluid is infused from the anterior chamber through a lumen of the microstent.
- the mode of fluid injection is selected from a group consisting of a pulsed mode, an intermittent mode, a programmed mode, or combination thereof.
- the pressure of the fluid therapy is effective to cause therapeutic effects on the tissue of the aqueous cavity.
- the fluid pressure is effective to cause the dilation of the aqueous cavity beyond the tissue elastic yield point for plastic permanent deformation.
- the fluid is at an elevated pressure effective to cause plastic deformation for at least a portion of the aqueous cavity.
- the fluid may be a salt solution such as Balanced Salt Solution, a viscoelastic (such as Healon), any other suitable viscous or non-viscous liquid, or suitable liquid loaded with drug at a concentration suitable for therapeutic purposes without causing safety concerns.
- a combination of liquids may also be used.
- the pressure is raised at an appropriate rate of rise to an appropriate level and for an appropriate length of time, as determined through development studies, to provide for the expansion of the outflow structures and/or a clearing of any blockages within them.
- the procedure can be augmented with other aids to enhance its effectiveness. These aids may include heat, vibration (sonic or ultrasonic), pulsation of a pressure front, pH, drugs, etc. It is intended that the aqueous cavity be expanded (attenuation or tissue stimulation) by this procedure resulting in an increased capacity for inflow and outflow of Schlemm's canal.
- a method for using a removable applicator, catheter, cannula, or tubing that is placed ab interno through the trabecular meshwork into the aqueous cavity of an eye adapted for infusing therapeutic liquid into the aqueous cavity.
- a method of treating glaucoma including: providing at least one pharmaceutical substance incorporated into an axisymmetric trabecular microstent; implanting the microstent within a trabecular meshwork of an eye such that a first end of the microstent is positioned in an anterior chamber of the eye while a second end is positioned in a Schlemm's canal, wherein the first and second ends of the microstent establish a fluid communication between the anterior chamber and the Schlemm's canal; and allowing the microstent to release a quantity of the pharmaceutical substance into the eye.
- the method further comprises a step of infusing fluid into the Schlemm's canal from the anterior chamber through a lumen of the microstent, wherein the fluid is at an elevated pressure above a baseline pressure of the Schlemm's canal.
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Surgery (AREA)
- Prostheses (AREA)
Abstract
Description
- This application is a continuation application of U.S. patent application Ser. No. 10/384,912, entitled “Fluid Infusion Methods for Glaucoma Treatment,” filed Mar. 7, 2003, now U.S. Pat. No. 7,186,232 B1, issued Mar. 6, 2007, which application claims the priority benefit of U.S. Provisional Application No. 60/362,405, entitled “Apparatus and Combination Therapy for Treating Glaucoma,” filed Mar. 7, 2002, and U.S. Provisional Application No. 60/363,980, entitled “Means and Procedures for Implanting a Glaucoma Shunt,” filed Mar. 14, 2002, the entireties of which are hereby incorporated by reference.
- 1. Field of the Invention
- This invention relates to reducing intraocular pressure within the animal eye. More particularly, this invention relates to a treatment of glaucoma wherein aqueous humor is permitted to flow out of an anterior chamber of the eye through a surgically implanted pathway. Furthermore, this invention relates to directly dilating Schlemm's canal and/or aqueous collector channels by injecting fluid through the implanted pathway of a stent.
- 2. Description of the Related Art
- A human eye is a specialized sensory organ capable of light reception and is able to receive visual images. Aqueous humor is a transparent liquid that fills the region between the cornea, at the front of the eye, and the lens. A trabecular meshwork, located in an anterior chamber angle formed between the iris and the cornea, serves as a drainage channel for aqueous humor from the anterior chamber, which maintains a balanced pressure within the anterior chamber of the eye.
- About two percent of people in the United States have glaucoma. Glaucoma is a group of eye diseases encompassing a broad spectrum of clinical presentations, etiologies, and treatment modalities. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, resulting in blindness if untreated. Lowering intraocular pressure is the major treatment goal in all glaucomas.
- In glaucomas associated with an elevation in eye pressure (intraocular hypertension), the source of resistance to outflow is mainly in the trabecular meshwork. The tissue of the trabecular meshwork allows the aqueous humor (hereinafter referred to as “aqueous”) to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueous veins, which form the episcleral venous system. Aqueous is continuously secreted by a ciliary body around the lens, so there is a constant flow of aqueous from the ciliary body to the anterior chamber of the eye. Pressure within the eye is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) and uveoscleral outflow (minor route). The portion of the trabecular meshwork adjacent to Schlemm's canal (the juxtacanilicular meshwork) causes most of the resistance to aqueous outflow.
- Glaucoma is broadly classified into two categories: closed-angle glaucoma, also known as angle closure glaucoma, and open-angle glaucoma. Closed-angle glaucoma is caused by closure of the anterior chamber angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous from the anterior chamber of the eye. Open-angle glaucoma is any glaucoma in which the exit of aqueous through the trabecular meshwork is diminished while the angle of the anterior chamber remains open. For most cases of open-angle glaucoma, the exact cause of diminished filtration is unknown. Primary open-angle glaucoma is the most common of the glaucomas, and is often asymptomatic in the early to moderately advanced stages of glaucoma. Patients may suffer substantial, irreversible vision loss prior to diagnosis and treatment. However, there are secondary open-angle glaucomas that may include edema or swelling of the trabecular spaces (e.g., from corticosteroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.
- All current therapies for glaucoma are directed toward decreasing intraocular pressure. Currently recognized categories of drug therapy for glaucoma include: (1) Miotics (e.g., pilocarpine, carbachol, and acetylcholinesterase inhibitors), (2) Sympathomimetics (e.g., epinephrine and dipivalylepinephxine), (3) Beta-blockers (e.g., betaxolol, levobunolol and timolol), (4) Carbonic anhydrase inhibitors (e.g., acetazolamide, methazolamide and ethoxzolamide), and (5) Prostaglandins (e.g., metabolite derivatives of arachindonic acid). Medical therapy includes topical ophthalmic drops or oral medications that reduce the production of aqueous or increase the outflow of aqueous. However, drug therapies for glaucoma are sometimes associated with significant side effects. The most frequent and perhaps most serious drawback to drug therapy is that patients, especially the elderly, often fail to correctly self-medicate. Such patients forget to take their medication at the appropriate times or else administer eye drops improperly, resulting in under- or overdosing. Because the effects of glaucoma are irreversible, when patients dose improperly, allowing ocular concentrations to drop below appropriate therapeutic levels, further permanent damage to vision occurs. Furthermore, current drug therapies are targeted to be deposited directly into the ciliary body where the aqueous is produced. And, current therapies do not provide for a continuous slow-release of the drug. When drug therapy fails, surgical therapy is pursued.
- Surgical therapy for open-angle glaucoma consists of laser trabeculoplasty, trabeculectomy, and implantation of aqueous shunts after failure of trabeculectomy or if trabeculectomy is unlikely to succeed. Trabeculectomy is a major surgery that is widely used and is augmented with topically applied anticancer drugs, such as 5-flurouracil or mitomycin-C to decrease scarring and increase the likelihood of surgical success.
- Approximately 100,000 trabeculectomies are performed on Medicare-age patients per year in the United States. This number would likely increase if ocular morbidity associated with trabeculectomy could be decreased. The current morbidity associated with trabeculectomy consists of failure (10-15%); infection (a life long risk of 2-5%); choroidal hemorrhage, a severe internal hemorrhage from low intraocular pressure, resulting in visual loss (1%); cataract formation; and hypotony maculopathy (potentially reversible visual loss from low intraocular pressure). For these reasons, surgeons have tried for decades to develop a workable surgery for the trabecular meshwork.
- The surgical techniques that have been tried and practiced are goniotomy/trabeculotomy and other mechanical disruptions of the trabecular meshwork, such as trabeculopuncture, goniophotoablation, laser trabecular ablation, and goniocurretage. These are all major operations and are briefly described below.
- Goniotomy and trabeculotomy are simple and directed techniques of microsurgical dissection with mechanical disruption of the trabecular meshwork. These initially had early favorable responses in the treatment of open-angle glaucoma. However, long-term review of surgical results showed only limited success in adults. In retrospect, these procedures probably failed due to cellular repair and fibrosis mechanisms and a process of “filling in.” Filling in is a detrimental effect of collapsing and closing in of the created opening in the trabecular meshwork. Once the created openings close, the pressure builds back up and the surgery fails.
- Q-switched Neodynium (Nd) YAG lasers also have been investigated as an optically invasive trabeculopuncture technique for creating full-thickness holes in trabecular meshwork. However, the relatively small hole created by this trabeculopuncture technique exhibits a filling-in effect and fails.
- Goniophotoablation is disclosed by Berlin in U.S. Pat. No. 4,846,172 and involves the use of an excimer laser to treat glaucoma by ablating the trabecular meshwork. This method did not succeed in a clinical trial. Hill et al. used an Erbium YAG laser to create full-thickness holes through trabecular meshwork (Hill et al., Lasers in Surgery and Medicine 11:341346, 1991). This laser trabecular ablation technique was investigated in a primate model and a limited human clinical trial at the University of California, Irvine. Although ocular morbidity was zero in both trials, success rates did not warrant further human trials. Failure was again from filling in of surgically created defects in the trabecular meshwork by repair mechanisms. Neither of these is a viable surgical technique for the treatment of glaucoma.
- Goniocurretage is an “ab interno” (from the inside), mechanically disruptive technique that uses an instrument similar to a cyclodialysis spatula with a microcurrette at the tip. Initial results were similar to trabeculotomy: it failed due to repair mechanisms and a process of filling in.
- Although trabeculectomy is the most commonly performed filtering surgery, viscocanalostomy (VC) and nonpenetrating trabeculectomy (NPT) are two new variations of filtering surgery. These are “ab externo” (from the outside), major ocular procedures in which Schlemm's canal is surgically exposed by making a large and very deep scleral flap. In the VC procedure, Schlemm's canal is cannulated and viscoelastic substance injected (which dilates Schlemm's canal and the aqueous collector channels). In the NPT procedure, the inner wall of Schlemm's canal is stripped off after surgically exposing the canal.
- Trabeculectomy, VC, and NPT involve the formation of an opening or hole under the conjunctiva and scleral flap into the anterior chamber, such that aqueous is drained onto the surface of the eye or into the tissues located within the lateral wall of the eye. These surgical operations are major procedures with significant ocular morbidity. When trabeculectomy, VC, and NPT are thought to have a low chance for success, a number of implantable drainage devices have been used to ensure that the desired filtration and outflow of aqueous through the surgical opening will continue. The risk of placing a glaucoma drainage device also includes hemorrhage, infection, and diplopia (double vision).
- All of the above embodiments and variations thereof have numerous disadvantages and moderate success rates. They involve substantial trauma to the eye and require great surgical skill in creating a hole through the full thickness of the sclera into the subconjunctival space. The procedures are generally performed in an operating room and involve a prolonged recovery time for vision. The complications of existing filtration surgery have prompted ophthalmic surgeons to find other approaches to lowering intraocular pressure.
- Because the trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous, they are logical targets for surgical removal in the treatment of open-angle glaucoma. In addition, minimal amounts of tissue need be altered and existing physiologic outflow pathways can be utilized.
- As reported in Arch. Ophthalm. (2000) 118:412, glaucoma remains a leading cause of blindness, and filtration surgery remains an effective, important option in controlling glaucoma. However, modifying existing filtering surgery techniques in any profound way to increase their effectiveness appears to have reached a dead end. The article further states that the time has come to search for new surgical approaches that may provide better and safer care for patients with glaucoma.
- What is needed, therefore, is an extended, site-specific treatment method for placing a hollow trabecular microstent ab interno for diverting aqueous humor in an eye from the anterior chamber into Schlemm's canal. In some aspect of the present invention, it is provided a method for injecting fluid through the common hollow lumen of the microstent to therapeutically dilate Schlemm's canal and the aqueous collector channels.
- A device and methods are provided for improved treatment of intraocular pressure due to glaucoma. A hollow trabecular microstent is adapted for implantation within a trabecular meshwork of an eye such that aqueous humor flows controllably from an anterior chamber of the eye to Schlemm's canal, bypassing the trabecular meshwork. The trabecular microstent comprises a quantity of pharmaceuticals effective in treating glaucoma, which are controllably released from the device into cells of the trabecular meshwork and/or Schlemm's canal. Depending upon the specific treatment contemplated, pharmaceuticals may be utilized in conjunction with the trabecular microstent such that aqueous flow either increases or decreases as desired. Placement of the trabecular microstent within the eye and incorporation, and eventual release, of a proven pharmaceutical glaucoma therapy will reduce, inhibit or slow the effects of glaucoma.
- One aspect of the invention provides an axisymmetric trabecular microstent that is implantable within an eye. The microstent comprises an inlet section containing at least one lumen and one inlet opening, an outlet section having at least one lumen that connects to at least one outlet opening. In some aspect of the present invention, the microstent further comprises a flow-restricting member within the lumen that is configured to partially prevent back flow from passing through the flow-restricting member. The microstent further comprises a middle section that is fixedly attached to the outlet section having at least one lumen in fluid communication with the lumen of the outlet section. The middle section is fixedly attached to the inlet section and the lumen within the middle section is in fluid communication with the lumen of the inlet section. The device is configured to permit fluid entering the lumen of the inlet section to pass through the flow-restricting member, enter the lumen of the middle section, pass into the lumen of the outlet section, and then exit the outlet section.
- Another aspect of the invention provides a method of treating glaucoma. The method comprises providing fluid through the lumen of the microstent to therapeutically dilate the aqueous cavity. The term “aqueous cavity” herein refers to any one or more of the downstream aqueous passageways “behind” the trabecular meshwork, including, without limitation, Schlemm's canal, the aqueous collector channels, and episcleral veins. In one embodiment, the fluid contains therapeutic substance, including pharmaceuticals, genes, growth factors, enzymes and like. In another embodiment, the fluid contains sterile saline, viscoelastic, or the like. The mode of fluid injection may be a pulsed mode, an intermittent mode or a programmed mode. In one aspect, the pressure of the fluid therapy is effective to cause therapeutic effects on the tissue of the aqueous cavity. In another aspect, the fluid pressure is effective to cause the dilation of the aqueous cavity beyond the tissue elastic yield point for permanent (i.e., plastic) deformation. In other embodiment, the fluid is at an elevated pressure effective to cause plastic deformation for at least a portion of the aqueous cavity.
- Another aspect of the invention provides an apparatus for implanting a trabecular microstent within an eye and dilating the aqueous cavity. The apparatus comprises a syringe portion and a cannula portion that has proximal and distal ends. The proximal end of the cannula portion is attached to the syringe portion. The cannula portion further comprises a first lumen and at least one irrigating hole disposed between the proximal and distal ends of the cannula portion. The irrigating hole is in fluid communication with the lumen. The apparatus further includes a holder including a second lumen for holding the trabecular microstent. A distal end of the second lumen opens to the distal end of the cannula portion, and a proximal end of the second lumen is separated from the first lumen of the cannula portion. The holder holds the trabecular microstent during implantation of the device within the eye, and the holder releases the trabecular microstent when a practitioner activates deployment of the device.
- Another aspect of the invention provides a method of implanting a trabecular microstent within an eye. The method comprises creating a first incision in a cornea on a first side of the eye, wherein the first incision passes through the cornea into an anterior chamber of the eye. The method further comprises passing an incising device through the first incision and moving a distal end of the incising device across the anterior chamber to a trabecular meshwork residing on a second side of the eye, and using the incising device to create a second incision. The second incision is in the trabecular meshwork, passing from the anterior chamber through the trabecular meshwork into a Schlemm's canal. The method further comprises inserting the trabecular microstent into a distal space of a delivery applicator. The delivery applicator comprises a cannula portion having a distal end and a proximal end attached to a syringe portion. The cannula portion has at least one lumen and at least one irrigating hole disposed between proximal and distal ends of the cannula portion. The irrigating hole is in fluid communication with the lumen. The distal space comprises a holder that holds the trabecular microstent during delivery and releases the trabecular microstent when a practitioner activates deployment of the device. The method further comprises advancing the cannula portion and the trabecular microstent through the first incision, across the anterior chamber and into the second incision, wherein an outlet section of the trabecular microstent is implanted into Schlemm's canal while an inlet section of the trabecular microstent remains in fluid communication with the anterior chamber. The method still further comprises releasing the trabecular microstent from the holder of the delivery applicator.
- One aspect of the invention includes a method of treating glaucoma, including inserting a stent through an incision in an eye; the stent having an inflow portion that is in fluid communication with an outflow portion of the stent; transporting the stent from the incision through the anterior chamber of the eye to an aqueous cavity of the eye, such that the inflow portion of the stent is positioned in the anterior chamber and the outflow portion of the stent is positioned at the aqueous cavity; and infusing fluid from the inflow portion to the outflow portion of the stent.
- Some embodiments further include closing the incision, leaving the stent in the eye such that the inflow portion of the stent is positioned in the anterior chamber of the eye and the outflow portion of the stent is positioned in Schlemm's canal.
- Some embodiments further include positioning the stent such that fluid communicating from the inflow portion to the outflow portion of the stent bypasses the trabecular meshwork of the eye.
- In some embodiments fluid is infused through a lumen of the stent. In some embodiments the aqueous cavity is Schlemm's canal. In other embodiments the aqueous cavity is an aqueous collector channel.
- In some embodiments, the infusing further comprises injecting the fluid in at least one of a pulsed mode, an intermittent mode, and a programmed mode.
- In some embodiments the infusing of fluid is at a pressure sufficient to cause plastic deformation of at least a portion of the aqueous cavity.
- In a preferred arrangement, the fluid is at least one of a salt solution or viscoelastic.
- In some arrangements the infusing further comprises coupling the inflow portion of the stent with a fluid delivery element that transmits the fluid to the stent. In an embodiment the coupling comprises securing a screw thread arrangement of the fluid delivery element with a receiving thread arrangement of the stent.
- In certain preferred arrangements, the fluid comprises a therapeutic substance such as a pharmaceutical, a gene, a growth factor, and/or an enzyme.
- In other preferred arrangements, the fluid comprises the fluid comprises a therapeutic substance such as an antiglaucoma drug, a beta-adrenergic antagonist, a TGF-beta compound, and/or an antibiotic.
- Some embodiments provide that a temperature of the fluid is raised sufficiently to enhance the plastic deformation. And some embodiments provide that a pH of the fluid is adjusted sufficiently to enhance the plastic deformation.
- In some arrangements the method further includes vibrating a tissue of the eye.
- One aspect of the invention includes a method of treating glaucoma, including inserting a stent through an incision in an eye; the stent having an inflow portion that is in fluid communication with an outflow portion of the stent; positioning the stent such that the inflow portion of the stent is positioned in the anterior chamber of the eye and the outflow portion of the stent is positioned at an aqueous cavity; and infusing fluid from the inflow portion to the outflow portion of the stent.
- In some arrangements the aqueous cavity is Schlemm's canal. In certain arrangements, the method further comprises positioning the stent such that the outflow portion of the stent is in Schlemm's canal. In some arrangements the aqueous cavity is an aqueous collector channel.
-
FIG. 1 is a coronal, cross-sectional view of an eye. -
FIG. 2 is an enlarged cross-sectional view of an anterior chamber angle of the eye ofFIG. 1 . -
FIG. 3 is an oblique elevation view of one embodiment of an axisymmetric trabecular microstent. -
FIG. 4 is a detailed view of the proximal section of the microstent ofFIG. 3 . -
FIG. 5 is an applicator for delivering a microstent and infusing fluid for therapeutic treatment. -
FIG. 6 is an enlarged, cross-sectional view of a preferred method of implanting a trabecular microstent within an eye. - The preferred embodiments of the present invention described below relate particularly to surgical and therapeutic treatment of glaucoma through reduction of intraocular pressure. While the description sets forth various embodiment specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the invention. Furthermore, various applications of the invention, and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described below.
-
FIG. 1 is a cross-sectional view of aneye 10, whileFIG. 2 is a close-up view showing the relative anatomical locations of atrabecular meshwork 21, ananterior chamber 20, and a Schlemm'scanal 22. Asclera 11 is a thick collagenous tissue that covers theentire eye 10 except a portion that is covered by acornea 12. Thecornea 12 is a thin transparent tissue that focuses and transmits light into the eye and through apupil 14, which is a circular hole in the center of an iris 13 (colored portion of the eye). Thecornea 12 merges into the sclera 11 at a juncture referred to as alimbus 15. Aciliary body 16 extends along the interior of thesclera 11 and is coextensive with achoroid 17. Thechoroid 17 is a vascular layer of theeye 10, located between the sclera 11 and aretina 18. Anoptic nerve 19 transmits visual information to the brain and is the anatomic structure that is progressively destroyed by glaucoma. - The
anterior chamber 20 of theeye 10, which is bound anteriorly by thecornea 12 and posteriorly by theiris 13 and alens 26, is filled with aqueous humor (hereinafter referred to as “aqueous”). Aqueous is produced primarily by theciliary body 16, then moves anteriorly through thepupil 14 and reaches ananterior chamber angle 25, formed between theiris 13 and thecornea 12. In a normal eye, aqueous is removed from theanterior chamber 20 through thetrabecular meshwork 21. Aqueous passes through thetrabecular meshwork 21 into Schlemm'scanal 22 and thereafter through a plurality ofaqueous veins 23, which merge with blood-carrying veins, and into systemic venous circulation. Intraocular pressure is maintained by an intricate balance between secretion and outflow of aqueous in the manner described above. Glaucoma is, in most cases, characterized by an excessive buildup of aqueous in theanterior chamber 20, which leads to an increase in intraocular pressure. Fluids are relatively incompressible, and thus intraocular pressure is distributed relatively uniformly throughout theeye 10. - As shown in
FIG. 2 , thetrabecular meshwork 21 is adjacent to a small portion of thesclera 11. Exterior to thesclera 11 is aconjunctiva 24. Traditional procedures that create a hole or opening for implanting a device through the tissues of theconjunctiva 24 andsclera 11 involve extensive surgery, as compared to surgery for implanting a device, as described herein, which ultimately resides entirely within the confines of thesclera 11 andcornea 12. Amicrostent 81 is shown placed throughtrabecular meshwork 21 having adistal portion 83 disposed within Schlemm'scanal 22 and aproximal portion 82 disposed within theanterior chamber 20 of theeye 10.FIG. 6 generally illustrates the use of one embodiment of atrabecular microstent 81 for establishing an outflow pathway, passing through thetrabecular meshwork 21, which is discussed in greater detail below. -
FIG. 3 illustrates a preferred embodiment of ahollow trabecular microstent 81, which facilitates the outflow of aqueous from theanterior chamber 20 into Schlemm'scanal 22, and subsequently into the aqueous collectors and the aqueous veins so that intraocular pressure is reduced. In the illustrated embodiment, thetrabecular microstent 81 comprises aninlet section 82, having aninlet opening 86, amiddle section 84, and anoutlet section 83 having at least oneopening middle section 84 may be an extension of, or may be coextensive with, theinlet section 82. Thedevice 81 comprises at least onelumen 85 withinsection 84, which is in fluid communication with theinlet opening 86 and theoutlet opening device 81. In one aspect, theoutlet side openings 88, each of which is in fluid communication with thelumen 85 for transmission of aqueous, are arranged spaced apart around thecircumferential periphery 80 of theoutlet section 83. In another aspect, theoutlet openings 88 are located and configured to enable jet-like infusing fluid impinging any specific region of Schlemm's canal tissue suitably for tissue stimulation. - As will be apparent to a person skilled in the art, the
lumen 85 and the remaining body of theoutlet section 83 may have a cross-sectional shape that is oval, circular, or other appropriate shape. Preferably, themiddle section 84 has a length that is roughly equal to a thickness of thetrabecular meshwork 21, which typically ranges between about 100 μm and about 300 μm. - To further stent or open Schlemm's canal after implanting the
axisymmetric device 81, a plurality of elevated (that is, protruding axially) supports orpillars 89 is located at the distal-most end of theoutlet section 83 sized and configured for allowing media (for example, aqueous, liquid, balanced salt solution, viscoelastic fluid, therapeutic agents, or the like) to be transported freely. - The
microstent 81 may further comprises a flow-restrictingmember 90, which is tightly retained within alumen 85. The flow-restrictingmember 90 serves to selectively restrict at least one component in blood from moving retrograde, i.e., from theoutlet section 83 into theanterior chamber 20 of theeye 10. Alternatively, the flow-restrictingmember 90 may be situated in any location within thedevice 81 such that blood flow is restricted from retrograde motion. The flow-restrictingmember 90 is sized and configured for maintaining the pressure of the infused fluid within the aqueous cavity for a suitable period of time. The flow-restrictingmember 90 may, in other embodiments, be a filter made of a material selected from the following filter materials: expanded polytetrafluoroethylene, cellulose, ceramic, glass, Nylon, plastic, and fluorinated material such as polyvinylidene fluoride (“PVDF”) (trade name: Kynar, by DuPont). - The
trabecular microstent 81 may be made by molding, thermo-forming, or other micro-machining techniques. The trabecular microstent 81 preferably comprises a biocompatible material such that inflammation arising due to irritation between the outer surface of thedevice 81 and the surrounding tissue is minimized. Biocompatible materials which may be used for thedevice 81 preferably include, but are not limited to, titanium, stainless steel, medical grade silicone, e.g., Silastic™, available from Dow Corning Corporation of Midland, Mich.; and polyurethane, e.g., Pellethane™, also available from Dow Corning Corporation. In other embodiments, thedevice 81 may comprise other types of biocompatible material, such as, by way of example, polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, polytetrafluoroethylene, expanded polytetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilicon, and/or a mixture of the aforementioned biocompatible materials, and the like. In another aspect, the microstent is made of a biodegradable material selected from a group consisting of poly(lactic acid), polyethylene-vinyl acetate, poly(lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), poly(caprolactone), poly(glycolic acid), and copolymer thereof. - In still other embodiments, composite biocompatible material may be used, wherein a surface material may be used in addition to one or more of the aforementioned materials. For example, such a surface material may include polytetrafluoroethylene (PTFE) (such as Teflon™), polyimide, hydrogel, heparin, therapeutic drugs (such as beta-adrenergic antagonists, TGF-beta, and other anti-glaucoma drugs, or antibiotics), and the like.
- As is well known in the art, a device coated or loaded with a slow-release substance can have prolonged effects on local tissue surrounding the device. The slow-release delivery can be designed such that an effective amount of substance is released over a desired duration. “Substance,” as used herein, is defined as any therapeutic or active drug that can stop, mitigate, slow-down or reverse undesired disease processes.
- In one embodiment, the
device 81 may be made of a biodegradable (also including bioerodible) material admixed with a substance for substance slow-release into ocular tissues. In another embodiment, polymer films may function as substance containing release devices whereby the polymer films may be coupled or secured to thedevice 81. The polymer films may be designed to permit the controlled release of the substance at a chosen rate and for a selected duration, which may also be episodic or periodic. Such polymer films may be synthesized such that the substance is bound to the surface or resides within a pore in the film so that the substance is relatively protected from enzymatic attack. The polymer films may also be modified to alter their hydrophilicity, hydrophobicity and vulnerability to platelet adhesion and enzymatic attack. - The
device 81 may be used for a direct release of pharmaceutical preparations into ocular tissues. As discussed above, the pharmaceuticals may be compounded within thedevice 81 or form a coating on thedevice 81. Any known drug therapy for glaucoma may be utilized. -
FIG. 4 shows a detailed view of theproximal section 82 of themicrostent 81 ofFIG. 3 . In some aspect, theproximal section 82 has a bottomperipheral surface 91 that is about perpendicular to thelumen 85 of themicrostent 81. A receivingthread arrangement 95 is appropriately located on theperipheral surface 91. The receivingthread arrangement 95 is sized and configured to releasably receive ascrew thread arrangement 96 for coupling together, wherein thescrew thread arrangement 96 is disposed at thedistal end 97 of afluid delivery element 94 which has alumen 93 for transporting the infusing fluid into the aqueous cavity for therapeutic purposes. The coupling of the receivingthread arrangement 95 and thescrew thread arrangement 96 makes the fluid infusion through thelumen 85 leak-proof enabling pressurized the aqueous cavity. -
FIG. 5 shows adistal portion 57 of anapplicator 55 for delivering amicrostent 81 and infusing fluid for therapeutic treatment. Thedistal portion 57 comprises a distal cutting means 42 sharp enough for creating an incision on the cornea and also creating an opening ontrabecular meshwork 21 for stent placement. Theaxisymmetric microstent 81 is snugly placed within thelumen 43 of theapplicator 55 and retained by a plurality ofstent retaining members 45. Themicrostent 81 is deployed from theapplicator 55 once thedistal section 83 passes beyond the edge of thetrabecular meshwork 21. In one aspect, the stent deployment is facilitated by a plunger-type deployment mechanism 44 with an associateddeployment actuator 61 mounted on thehandle 62 of the applicator 55 (seeFIG. 6 ). - The
microstent 81 may be releasably coupled with afluid delivery element 94 at any convenient time during the procedures. In one aspect, the screw-unscrew coupling steps between the microstent 81 and thefluid delivery element 94 is carried out by suitably rotating thefluid delivery element 94 with reference to the stent receivingthread arrangement 95, wherein the associated rotatingmechanism 63 is located at thehandle 62 of theapplicator 55. - As will be appreciated by those of ordinary skill in the art, the
device 81 may advantageously be practiced with a variety of sizes and shapes without departing from the scope of the invention. Depending upon the distance between theanterior chamber 20 and the drainage vessel (e.g., a vein) contemplated, thedevices 81 may have a length ranging from about 0.05 centimeters to over 1 centimeter. Preferably, thedevice 81 has an outside diameter ranging between about 30 μm and about 500 μm, with thelumen 85 having diameters ranging between about 20 μm and about 250 μm, respectively. In addition, thedevice 81 may have a plurality of lumens to facilitate transmission of multiple flows of aqueous or infusing fluid. - One preferred method for increasing aqueous outflow in the
eye 10 of a patient, to reduce intraocular pressure therein, comprises bypassing thetrabecular meshwork 21. In operation, themiddle section 84 of thedevice 81 is advantageously placed across thetrabecular meshwork 21 through a slit or opening. This opening can be created by use of a laser, a knife, thermal energy (radiofrequency, ultrasound, microwave), cryogenic energy, or other surgical cutting instrument. The opening may advantageously be substantially horizontal, i.e., extending longitudinally in the same direction as the circumference of the limbus 15 (FIG. 2 ). Other opening directions may also be used, as well. The opening may advantageously be oriented at any angle, relative to the circumference of thelimbus 15, that is appropriate for inserting thedevice 81 through thetrabecular meshwork 21 and into Schlemm'scanal 22 or other outflow pathway, as will be apparent to those skilled in the art. Furthermore, theoutlet section 83 may be positioned into fluid collection channels of the natural outflow pathways. Such natural outflow pathways include Schlemm'scanal 22, aqueous collector channels, aqueous veins, and episcleral veins. -
FIG. 6 generally illustrates a preferred method by which thetrabecular microstent 81 is implanted within theeye 10. In the illustrated method, adelivery applicator 55 is provided, which preferably comprises a syringe portion 64 and acannula portion 65, which contains at least onelumen 43 in fluid communication with thefluid supply 66. Thecannula portion 65 preferably has a size of about 30 gauge. However, in other embodiments, thecannula portion 65 may have a size ranging between about 16 gauges and about 40 gauges. Aholder 56 at thedistal portion 57 of thecannula portion 65 for holding thedevice 81 may advantageously comprise a lumen, a sheath, a clamp, tongs, a space, and the like. - In the method illustrated in
FIG. 6 , thedevice 81 is placed into thelumen 43 of thedelivery applicator 55 and then advanced to a desired implantation site within theeye 10. Thedelivery applicator 55 holds thedevice 81 securely during delivery and releases it when the practitioner initiatesdeployment actuator 61 of theapplicator 55. - In a preferred embodiment of trabecular meshwork surgery, a patient is placed in a supine position, prepped, draped, and appropriately anesthetized. A
small incision 52 is then made through thecornea 12 with a self-trephiningapplicator 55. Theincision 52 preferably has a surface length less than about 1.0 millimeter in length and may advantageously be self-sealing. Through theincision 52, thetrabecular meshwork 21 is accessed, wherein an incision is made with a cutting means 42 enabling forming a hole on thetrabecular meshwork 21 for stent placement. The hole on the trabecular meshwork can also be created with a tip having thermal energy or cryogenic energy. After thedevice 81 is appropriately implanted, theapplicator 55 is withdrawn and the trabecular meshwork surgery is concluded. - In some aspect of the present invention, it is provided a method for expanding or attenuating the capacity of the existing canal outflow system (also known as the “aqueous cavity”). This system could have become constricted or blocked due to age or other factors associated with glaucoma. In one aspect, a tight fluid coupling is established between an external pressured
fluid source 66 and Schlemm'scanal 22 through amicrostent 81. It is also advantageous to connect the external pressurized fluid source through a removable instrument (for example, a temporary applicator, catheter, cannula, or tubing) to Schlemm's canal ab interno for applying the fluid infusion therapy. - Once the fluid coupling is established, the pressure in the canal is raised by injecting fluid or fluid with therapeutic substances. In some aspect of the present invention, a method is provided of treating glaucoma including infusing fluid into aqueous cavity from an anterior chamber end of a stent, wherein the fluid is at an elevated pressure above a baseline pressure of the aqueous cavity. The method further comprises placing a hollow trabecular microstent bypassing the trabecular meshwork, wherein the fluid is infused from the anterior chamber through a lumen of the microstent. The mode of fluid injection is selected from a group consisting of a pulsed mode, an intermittent mode, a programmed mode, or combination thereof. In one aspect, the pressure of the fluid therapy is effective to cause therapeutic effects on the tissue of the aqueous cavity. In another aspect, the fluid pressure is effective to cause the dilation of the aqueous cavity beyond the tissue elastic yield point for plastic permanent deformation. In other embodiment, the fluid is at an elevated pressure effective to cause plastic deformation for at least a portion of the aqueous cavity.
- The fluid may be a salt solution such as Balanced Salt Solution, a viscoelastic (such as Healon), any other suitable viscous or non-viscous liquid, or suitable liquid loaded with drug at a concentration suitable for therapeutic purposes without causing safety concerns. A combination of liquids may also be used. The pressure is raised at an appropriate rate of rise to an appropriate level and for an appropriate length of time, as determined through development studies, to provide for the expansion of the outflow structures and/or a clearing of any blockages within them. The procedure can be augmented with other aids to enhance its effectiveness. These aids may include heat, vibration (sonic or ultrasonic), pulsation of a pressure front, pH, drugs, etc. It is intended that the aqueous cavity be expanded (attenuation or tissue stimulation) by this procedure resulting in an increased capacity for inflow and outflow of Schlemm's canal.
- In some aspect of the present invention, it is provided a method for using a removable applicator, catheter, cannula, or tubing that is placed ab interno through the trabecular meshwork into the aqueous cavity of an eye adapted for infusing therapeutic liquid into the aqueous cavity.
- In some aspect of the present invention, it is disclosed a method of treating glaucoma, the method including: providing at least one pharmaceutical substance incorporated into an axisymmetric trabecular microstent; implanting the microstent within a trabecular meshwork of an eye such that a first end of the microstent is positioned in an anterior chamber of the eye while a second end is positioned in a Schlemm's canal, wherein the first and second ends of the microstent establish a fluid communication between the anterior chamber and the Schlemm's canal; and allowing the microstent to release a quantity of the pharmaceutical substance into the eye. In one embodiment, the method further comprises a step of infusing fluid into the Schlemm's canal from the anterior chamber through a lumen of the microstent, wherein the fluid is at an elevated pressure above a baseline pressure of the Schlemm's canal.
- Although preferred embodiments of the invention have been described in detail, certain variations and modifications will be apparent to those skilled in the art, including embodiments that do not provide all of the features and benefits described herein. Accordingly, the scope of the present invention is not to be limited by the illustrations or the foregoing descriptions thereof, but rather solely by reference to the appended claims and their equivalents.
Claims (31)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/332,746 US8617094B2 (en) | 2002-03-07 | 2006-01-12 | Fluid infusion methods for glaucoma treatment |
US14/136,753 US9220632B2 (en) | 2002-03-07 | 2013-12-20 | Fluid infusion methods for ocular disorder treatment |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36240502P | 2002-03-07 | 2002-03-07 | |
US36398002P | 2002-03-14 | 2002-03-14 | |
US10/384,912 US7186232B1 (en) | 2002-03-07 | 2003-03-07 | Fluid infusion methods for glaucoma treatment |
US11/332,746 US8617094B2 (en) | 2002-03-07 | 2006-01-12 | Fluid infusion methods for glaucoma treatment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/384,912 Continuation US7186232B1 (en) | 2002-03-07 | 2003-03-07 | Fluid infusion methods for glaucoma treatment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/136,753 Continuation US9220632B2 (en) | 2002-03-07 | 2013-12-20 | Fluid infusion methods for ocular disorder treatment |
Publications (3)
Publication Number | Publication Date |
---|---|
US20060116626A1 US20060116626A1 (en) | 2006-06-01 |
US20080183121A2 true US20080183121A2 (en) | 2008-07-31 |
US8617094B2 US8617094B2 (en) | 2013-12-31 |
Family
ID=36568226
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/384,912 Expired - Lifetime US7186232B1 (en) | 2002-03-07 | 2003-03-07 | Fluid infusion methods for glaucoma treatment |
US11/332,746 Expired - Lifetime US8617094B2 (en) | 2002-03-07 | 2006-01-12 | Fluid infusion methods for glaucoma treatment |
US14/136,753 Expired - Fee Related US9220632B2 (en) | 2002-03-07 | 2013-12-20 | Fluid infusion methods for ocular disorder treatment |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/384,912 Expired - Lifetime US7186232B1 (en) | 2002-03-07 | 2003-03-07 | Fluid infusion methods for glaucoma treatment |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/136,753 Expired - Fee Related US9220632B2 (en) | 2002-03-07 | 2013-12-20 | Fluid infusion methods for ocular disorder treatment |
Country Status (1)
Country | Link |
---|---|
US (3) | US7186232B1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110105986A1 (en) * | 2009-09-21 | 2011-05-05 | Ben Bronstein | Uveoscleral drainage device |
US8109896B2 (en) | 2008-02-11 | 2012-02-07 | Optonol Ltd. | Devices and methods for opening fluid passageways |
US8142364B2 (en) | 2001-05-02 | 2012-03-27 | Dose Medical Corporation | Method of monitoring intraocular pressure and treating an ocular disorder |
US20120197175A1 (en) * | 2006-06-30 | 2012-08-02 | Aquesys, Inc. | Methods, systems and apparatus for relieving pressure in an organ |
US8313454B2 (en) | 1997-11-20 | 2012-11-20 | Optonol Ltd. | Fluid drainage device, delivery device, and associated methods of use and manufacture |
US8771216B2 (en) * | 2009-11-06 | 2014-07-08 | University Hospitals Of Cleveland | Fluid communication device and method of use thereof |
US20150157836A1 (en) * | 2008-01-28 | 2015-06-11 | Peter Mats Forsell | Implantable drainage device |
US20150216729A1 (en) * | 2012-09-28 | 2015-08-06 | Doci Innovations GmbH | Implant for treating glaucoma |
US9730638B2 (en) | 2013-03-13 | 2017-08-15 | Glaukos Corporation | Intraocular physiological sensor |
US9883969B2 (en) | 2011-12-08 | 2018-02-06 | Aquesys, Inc. | Intrascleral shunt placement |
US9980854B2 (en) | 2010-11-15 | 2018-05-29 | Aquesys, Inc. | Shunt placement through the sclera |
US10004638B2 (en) | 2010-11-15 | 2018-06-26 | Aquesys, Inc. | Intraocular shunt delivery |
US10080682B2 (en) | 2011-12-08 | 2018-09-25 | Aquesys, Inc. | Intrascleral shunt placement |
US10195079B2 (en) | 2013-02-19 | 2019-02-05 | Aquesys, Inc. | Adjustable intraocular implant |
US10206813B2 (en) | 2009-05-18 | 2019-02-19 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
US10245178B1 (en) | 2011-06-07 | 2019-04-02 | Glaukos Corporation | Anterior chamber drug-eluting ocular implant |
US10307293B2 (en) | 2010-11-15 | 2019-06-04 | Aquesys, Inc. | Methods for intraocular shunt placement |
US10369048B2 (en) | 2013-06-28 | 2019-08-06 | Aquesys, Inc. | Intraocular shunt implantation |
US10463537B2 (en) | 2015-06-03 | 2019-11-05 | Aquesys Inc. | Ab externo intraocular shunt placement |
US10524959B2 (en) | 2013-02-27 | 2020-01-07 | Aquesys, Inc. | Intraocular shunt implantation methods and devices |
CN111759582A (en) * | 2019-04-02 | 2020-10-13 | 巨晰光纤股份有限公司 | Shunt bracket for drainage of eyeballs |
US10813789B2 (en) | 2009-05-18 | 2020-10-27 | Dose Medical Corporation | Drug eluting ocular implant |
US10842671B2 (en) | 2010-11-15 | 2020-11-24 | Aquesys, Inc. | Intraocular shunt placement in the suprachoroidal space |
US20210298948A1 (en) * | 2009-05-18 | 2021-09-30 | Dose Medical Corporation | Drug eluting ocular implant with internal plug |
US20220008700A1 (en) * | 2017-09-20 | 2022-01-13 | Sinopsys Surgical, Inc. | Paranasal sinus fluid access implantation tools, assemblies, kits and methods |
US11246753B2 (en) | 2017-11-08 | 2022-02-15 | Aquesys, Inc. | Manually adjustable intraocular flow regulation |
US11318043B2 (en) | 2016-04-20 | 2022-05-03 | Dose Medical Corporation | Bioresorbable ocular drug delivery device |
US11363951B2 (en) | 2011-09-13 | 2022-06-21 | Glaukos Corporation | Intraocular physiological sensor |
Families Citing this family (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU772917B2 (en) * | 1999-04-26 | 2004-05-13 | Gmp Vision Solutions, Inc. | Stent device and method for treating glaucoma |
US7229469B1 (en) | 1999-10-02 | 2007-06-12 | Quantumcor, Inc. | Methods for treating and repairing mitral valve annulus |
US7867186B2 (en) | 2002-04-08 | 2011-01-11 | Glaukos Corporation | Devices and methods for treatment of ocular disorders |
US6638239B1 (en) * | 2000-04-14 | 2003-10-28 | Glaukos Corporation | Apparatus and method for treating glaucoma |
CA2442652C (en) | 2001-04-07 | 2011-01-04 | Glaukos Corporation | Glaucoma stent and methods thereof for glaucoma treatment |
US7488303B1 (en) * | 2002-09-21 | 2009-02-10 | Glaukos Corporation | Ocular implant with anchor and multiple openings |
US7431710B2 (en) | 2002-04-08 | 2008-10-07 | Glaukos Corporation | Ocular implants with anchors and methods thereof |
US7331984B2 (en) | 2001-08-28 | 2008-02-19 | Glaukos Corporation | Glaucoma stent for treating glaucoma and methods of use |
US7186232B1 (en) * | 2002-03-07 | 2007-03-06 | Glaukoa Corporation | Fluid infusion methods for glaucoma treatment |
US9301875B2 (en) | 2002-04-08 | 2016-04-05 | Glaukos Corporation | Ocular disorder treatment implants with multiple opening |
US20040225250A1 (en) * | 2003-05-05 | 2004-11-11 | Michael Yablonski | Internal shunt and method for treating glaucoma |
US7291125B2 (en) * | 2003-11-14 | 2007-11-06 | Transcend Medical, Inc. | Ocular pressure regulation |
US20050250788A1 (en) * | 2004-01-30 | 2005-11-10 | Hosheng Tu | Aqueous outflow enhancement with vasodilated aqueous cavity |
BRPI0519087B8 (en) * | 2004-12-16 | 2021-06-22 | Iscience Interventional Corp | instrument for inserting an implant into the schlemm's canal of the eye |
US20090043365A1 (en) * | 2005-07-18 | 2009-02-12 | Kolis Scientific, Inc. | Methods, apparatuses, and systems for reducing intraocular pressure as a means of preventing or treating open-angle glaucoma |
US10219942B1 (en) * | 2005-12-03 | 2019-03-05 | S. Gregory Smith | Eye implant devices and method and device for implanting such devices for treatment of glaucoma |
US8721656B2 (en) | 2006-01-17 | 2014-05-13 | Transcend Medical, Inc. | Glaucoma treatment device |
CA2637602C (en) | 2006-01-17 | 2014-09-16 | Forsight Labs, Llc | Drug delivery treatment device |
US7909789B2 (en) | 2006-06-26 | 2011-03-22 | Sight Sciences, Inc. | Intraocular implants and methods and kits therefor |
US8663303B2 (en) | 2010-11-15 | 2014-03-04 | Aquesys, Inc. | Methods for deploying an intraocular shunt from a deployment device and into an eye |
US9095411B2 (en) | 2010-11-15 | 2015-08-04 | Aquesys, Inc. | Devices for deploying intraocular shunts |
US8974511B2 (en) | 2010-11-15 | 2015-03-10 | Aquesys, Inc. | Methods for treating closed angle glaucoma |
US10085884B2 (en) | 2006-06-30 | 2018-10-02 | Aquesys, Inc. | Intraocular devices |
US8801766B2 (en) | 2010-11-15 | 2014-08-12 | Aquesys, Inc. | Devices for deploying intraocular shunts |
US8308701B2 (en) | 2010-11-15 | 2012-11-13 | Aquesys, Inc. | Methods for deploying intraocular shunts |
CA2655969C (en) * | 2006-06-30 | 2014-11-25 | Aquesys Inc. | Methods, systems and apparatus for relieving pressure in an organ |
US8187266B2 (en) * | 2006-09-29 | 2012-05-29 | Quantumcor, Inc. | Surgical probe and methods for targeted treatment of heart structures |
WO2008061043A2 (en) | 2006-11-10 | 2008-05-22 | Glaukos Corporation | Uveoscleral shunt and methods for implanting same |
WO2009012406A1 (en) | 2007-07-17 | 2009-01-22 | Transcend Medical, Inc. | Ocular implant with hydrogel expansion capabilities reference to priority document |
US7740604B2 (en) * | 2007-09-24 | 2010-06-22 | Ivantis, Inc. | Ocular implants for placement in schlemm's canal |
US20090082862A1 (en) | 2007-09-24 | 2009-03-26 | Schieber Andrew T | Ocular Implant Architectures |
US20170360609A9 (en) | 2007-09-24 | 2017-12-21 | Ivantis, Inc. | Methods and devices for increasing aqueous humor outflow |
US8734377B2 (en) | 2007-09-24 | 2014-05-27 | Ivantis, Inc. | Ocular implants with asymmetric flexibility |
US8337509B2 (en) * | 2007-11-20 | 2012-12-25 | Ivantis, Inc. | Methods and apparatus for delivering ocular implants into the eye |
US8808222B2 (en) | 2007-11-20 | 2014-08-19 | Ivantis, Inc. | Methods and apparatus for delivering ocular implants into the eye |
US8512404B2 (en) * | 2007-11-20 | 2013-08-20 | Ivantis, Inc. | Ocular implant delivery system and method |
KR101043129B1 (en) * | 2007-12-24 | 2011-06-20 | 두산디에스티주식회사 | Independence type suspension apparatus for vehicles |
AU2009221859B2 (en) | 2008-03-05 | 2013-04-18 | Alcon Inc. | Methods and apparatus for treating glaucoma |
ES2640867T3 (en) | 2008-06-25 | 2017-11-07 | Novartis Ag | Eye implant with ability to change shape |
EP2548538B1 (en) | 2009-01-28 | 2020-04-01 | Alcon Inc. | Implantation systems for ocular implants with stiffness qualities |
WO2010115101A1 (en) * | 2009-04-03 | 2010-10-07 | Transcend Medical, Inc. | Ocular implant delivery systems and methods |
AU2010271218B2 (en) | 2009-07-09 | 2017-02-02 | Alcon Inc. | Ocular implants and methods for delivering ocular implants into the eye |
WO2011006078A1 (en) | 2009-07-09 | 2011-01-13 | Ivantis, Inc. | Single operator device for delivering an ocular implant |
WO2011050360A1 (en) | 2009-10-23 | 2011-04-28 | Ivantis, Inc. | Ocular implant system and method |
US20110105990A1 (en) * | 2009-11-04 | 2011-05-05 | Silvestrini Thomas A | Zonal drug delivery device and method |
US8529492B2 (en) | 2009-12-23 | 2013-09-10 | Trascend Medical, Inc. | Drug delivery devices and methods |
JP5856569B2 (en) | 2010-02-05 | 2016-02-10 | サイト サイエンシーズ, インコーポレイテッド | Device for reducing intraocular pressure and kit including the same |
US8545430B2 (en) | 2010-06-09 | 2013-10-01 | Transcend Medical, Inc. | Expandable ocular devices |
US9510973B2 (en) | 2010-06-23 | 2016-12-06 | Ivantis, Inc. | Ocular implants deployed in schlemm's canal of the eye |
LT2600930T (en) | 2010-08-05 | 2021-04-12 | Forsight Vision4, Inc. | Injector apparatus for drug delivery |
US8657776B2 (en) | 2011-06-14 | 2014-02-25 | Ivantis, Inc. | Ocular implants for delivery into the eye |
US8765210B2 (en) | 2011-12-08 | 2014-07-01 | Aquesys, Inc. | Systems and methods for making gelatin shunts |
US8663150B2 (en) | 2011-12-19 | 2014-03-04 | Ivantis, Inc. | Delivering ocular implants into the eye |
US9855167B2 (en) | 2012-03-20 | 2018-01-02 | Sight Sciences, Inc. | Ocular delivery systems and methods |
CA2868341C (en) | 2012-03-26 | 2021-01-12 | Glaukos Corporation | System and method for delivering multiple ocular implants |
US9358156B2 (en) | 2012-04-18 | 2016-06-07 | Invantis, Inc. | Ocular implants for delivery into an anterior chamber of the eye |
US10085633B2 (en) | 2012-04-19 | 2018-10-02 | Novartis Ag | Direct visualization system for glaucoma treatment |
US9241832B2 (en) | 2012-04-24 | 2016-01-26 | Transcend Medical, Inc. | Delivery system for ocular implant |
US9501823B2 (en) * | 2012-08-02 | 2016-11-22 | Agency For Science, Technology And Research | Methods and systems for characterizing angle closure glaucoma for risk assessment or screening |
ES2633185T3 (en) | 2012-09-17 | 2017-09-19 | Novartis Ag | Expandable eye implant devices |
WO2014078288A1 (en) | 2012-11-14 | 2014-05-22 | Transcend Medical, Inc. | Flow promoting ocular implant |
WO2014085450A1 (en) | 2012-11-28 | 2014-06-05 | Ivantis, Inc. | Apparatus for delivering ocular implants into an anterior chamber of the eye |
US9125723B2 (en) | 2013-02-19 | 2015-09-08 | Aquesys, Inc. | Adjustable glaucoma implant |
US10517759B2 (en) | 2013-03-15 | 2019-12-31 | Glaukos Corporation | Glaucoma stent and methods thereof for glaucoma treatment |
WO2014145021A1 (en) * | 2013-03-15 | 2014-09-18 | Orange County Glaucoma, Pc | Enhancement of aqueous flow |
US9592151B2 (en) | 2013-03-15 | 2017-03-14 | Glaukos Corporation | Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye |
US9987163B2 (en) | 2013-04-16 | 2018-06-05 | Novartis Ag | Device for dispensing intraocular substances |
US9649223B2 (en) | 2013-06-13 | 2017-05-16 | Innfocus, Inc. | Inserter for tubular medical implant devices |
CA2930027C (en) | 2013-11-14 | 2019-10-29 | Aquesys, Inc. | Intraocular shunt inserter |
US20150342875A1 (en) | 2014-05-29 | 2015-12-03 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
US9655774B2 (en) * | 2014-06-19 | 2017-05-23 | California Institute Of Technology | Small molecule transport device for drug delivery or waste removal |
US10973425B2 (en) | 2014-07-01 | 2021-04-13 | Injectsense, Inc. | Hermetically sealed implant sensors with vertical stacking architecture |
JP2017520327A (en) | 2014-07-01 | 2017-07-27 | インジェクトセンス, インコーポレイテッド | Method and device for implanting an intraocular pressure sensor |
US10709547B2 (en) | 2014-07-14 | 2020-07-14 | Ivantis, Inc. | Ocular implant delivery system and method |
US10201451B2 (en) | 2014-08-29 | 2019-02-12 | Camras Vision Inc. | Device and method for reducing intraocular pressure |
US10342702B2 (en) | 2014-08-29 | 2019-07-09 | Camras Vision Inc. | Apparatus and method for reducing intraocular pressure |
CN105769430B (en) * | 2014-12-26 | 2018-09-28 | 易浦润(上海)生物技术有限公司 | A kind of Punctual plugs carrying medicine |
WO2016109639A2 (en) * | 2014-12-31 | 2016-07-07 | Brown J David | Glaucoma treatment devices and methods |
WO2016154066A2 (en) | 2015-03-20 | 2016-09-29 | Glaukos Corporation | Gonioscopic devices |
US10299958B2 (en) | 2015-03-31 | 2019-05-28 | Sight Sciences, Inc. | Ocular delivery systems and methods |
WO2017030917A1 (en) | 2015-08-14 | 2017-02-23 | Ivantis, Inc. | Ocular inplant with pressure sensor and delivery system |
WO2017040853A1 (en) | 2015-09-02 | 2017-03-09 | Glaukos Corporation | Drug delivery implants with bi-directional delivery capacity |
WO2017049248A1 (en) | 2015-09-16 | 2017-03-23 | Orange County Glaucoma, Pc | Shunt for vascular flow enhancement |
US10092387B2 (en) | 2015-09-24 | 2018-10-09 | California Institute Of Technology | Implantable device for retaining live cells and providing nutrients thereto |
US11564833B2 (en) | 2015-09-25 | 2023-01-31 | Glaukos Corporation | Punctal implants with controlled drug delivery features and methods of using same |
AU2016331925B2 (en) | 2015-09-30 | 2021-04-22 | Microoptx Inc. | Dry eye treatment devices and methods |
US10524958B2 (en) | 2015-09-30 | 2020-01-07 | Alievio, Inc. | Method and apparatus for reducing intraocular pressure |
WO2017106517A1 (en) | 2015-12-15 | 2017-06-22 | Ivantis, Inc. | Ocular implant and delivery system |
EP3463228A4 (en) | 2016-06-02 | 2020-03-04 | Aquesys, Inc. | Intraocular drug delivery |
WO2018118817A1 (en) | 2016-12-19 | 2018-06-28 | New World Medical, Inc. | Ocular treatment devices and related methods of use |
US10674906B2 (en) | 2017-02-24 | 2020-06-09 | Glaukos Corporation | Gonioscopes |
CN107019592A (en) * | 2017-05-11 | 2017-08-08 | 天津优视眼科技术有限公司 | What a kind of interior road was implemented applies Lai Mushi pipe treatment systems |
US11116625B2 (en) | 2017-09-28 | 2021-09-14 | Glaukos Corporation | Apparatus and method for controlling placement of intraocular implants |
AU2018346229B2 (en) | 2017-10-06 | 2024-07-18 | Glaukos Corporation | Systems and methods for delivering multiple ocular implants |
USD846738S1 (en) | 2017-10-27 | 2019-04-23 | Glaukos Corporation | Implant delivery apparatus |
WO2019103906A1 (en) * | 2017-11-21 | 2019-05-31 | Forsight Vision4, Inc. | Fluid exchange apparatus for expandable port delivery system and methods of use |
US12029683B2 (en) | 2018-02-22 | 2024-07-09 | Alcon Inc. | Ocular implant and delivery system |
US10952898B2 (en) | 2018-03-09 | 2021-03-23 | Aquesys, Inc. | Intraocular shunt inserter |
US11135089B2 (en) | 2018-03-09 | 2021-10-05 | Aquesys, Inc. | Intraocular shunt inserter |
EP3843675A1 (en) * | 2018-08-31 | 2021-07-07 | New World Medical, Inc. | Ocular implants, inserter devices, and methods for insertion of ocular implants |
US11504270B1 (en) | 2019-09-27 | 2022-11-22 | Sight Sciences, Inc. | Ocular delivery systems and methods |
CN111228034A (en) * | 2020-01-16 | 2020-06-05 | 贵州省人民医院 | Drug-loading controlled-release lacrimal duct embolus and preparation method thereof |
JP7220688B2 (en) * | 2020-09-16 | 2023-02-10 | 巨晰光纖股▲ふん▼有限公司 | Diversion support frame for eyeball drainage |
AU2022205382A1 (en) | 2021-01-11 | 2023-06-22 | Alcon Inc. | Systems and methods for viscoelastic delivery |
USD1033637S1 (en) | 2022-01-24 | 2024-07-02 | Forsight Vision4, Inc. | Fluid exchange device |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976077A (en) * | 1975-02-03 | 1976-08-24 | Kerfoot Jr Franklin W | Eye surgery device |
US4642090A (en) * | 1985-03-04 | 1987-02-10 | Utrata Peter J | Disposable combination scalpel blade and incision irrigator for ophthalmological use |
US5098443A (en) * | 1989-03-23 | 1992-03-24 | University Of Miami | Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents |
US5486165A (en) * | 1992-01-10 | 1996-01-23 | Stegmann; Robert | Method and appliance for maintaining the natural intraocular pressure |
US5599534A (en) * | 1994-08-09 | 1997-02-04 | University Of Nebraska | Reversible gel-forming composition for sustained delivery of bio-affecting substances, and method of use |
US5629008A (en) * | 1992-06-02 | 1997-05-13 | C.R. Bard, Inc. | Method and device for long-term delivery of drugs |
US5652014A (en) * | 1991-08-16 | 1997-07-29 | Galin; Miles A. | Medicament coated refractive anterior chamber ocular implant |
US5767079A (en) * | 1992-07-08 | 1998-06-16 | Celtrix Pharmaceuticals, Inc. | Method of treating ophthalmic disorders using TGF -β |
US5868697A (en) * | 1995-05-14 | 1999-02-09 | Optonol Ltd. | Intraocular implant |
US5891084A (en) * | 1994-12-27 | 1999-04-06 | Lee; Vincent W. | Multiple chamber catheter delivery system |
US5893837A (en) * | 1997-02-28 | 1999-04-13 | Staar Surgical Company, Inc. | Glaucoma drain implanting device and method |
US6007511A (en) * | 1991-05-08 | 1999-12-28 | Prywes; Arnold S. | Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation |
US6033418A (en) * | 1997-04-25 | 2000-03-07 | New Jersey Institute Of Technology | Method and device for corneal shaping and refractive correction |
US6221078B1 (en) * | 1999-06-25 | 2001-04-24 | Stephen S. Bylsma | Surgical implantation apparatus |
US6299603B1 (en) * | 1998-08-03 | 2001-10-09 | Karl I. Hecker | Injection apparatus and method of using same |
US6306120B1 (en) * | 1999-06-07 | 2001-10-23 | Ben Gee Tan | Applicator and method for delivery of mitomycin to eye tissues during glaucoma filtering surgery |
US6378526B1 (en) * | 1998-08-03 | 2002-04-30 | Insite Vision, Incorporated | Methods of ophthalmic administration |
US20020128704A1 (en) * | 2001-03-07 | 2002-09-12 | Wolfgang Daum | Stent and method for drug delivery from stents |
US20020133168A1 (en) * | 2001-03-16 | 2002-09-19 | Smedley Gregory T. | Applicator and methods for placing a trabecular shunt for glaucoma treatment |
US6471666B1 (en) * | 2000-02-24 | 2002-10-29 | Steven A. Odrich | Injectable glaucoma device |
US20020165522A1 (en) * | 2001-05-03 | 2002-11-07 | Jorgen Holmen | Method for use in cataract surgery |
US20020165478A1 (en) * | 2001-05-02 | 2002-11-07 | Morteza Gharib | Bifurcatable trabecular shunt for glaucoma treatment |
US20020188308A1 (en) * | 2001-04-07 | 2002-12-12 | Hosheng Tu | Glaucoma stent and methods thereof for glaucoma treatment |
US6544249B1 (en) * | 1996-11-29 | 2003-04-08 | The Lions Eye Institute Of Western Australia Incorporated | Biological microfistula tube and implantation method and apparatus |
US20030097117A1 (en) * | 2001-11-16 | 2003-05-22 | Buono Lawrence M. | Spray device |
US6596296B1 (en) * | 1999-08-06 | 2003-07-22 | Board Of Regents, The University Of Texas System | Drug releasing biodegradable fiber implant |
US20040092548A1 (en) * | 1995-12-21 | 2004-05-13 | Jonathan Embleton | Ophthalmic treatment |
US7033603B2 (en) * | 1999-08-06 | 2006-04-25 | Board Of Regents The University Of Texas | Drug releasing biodegradable fiber for delivery of therapeutics |
US7060094B2 (en) * | 2000-08-07 | 2006-06-13 | Ophthalmotronics, Inc. | Accommodating zonular mini-bridge implants |
US7186232B1 (en) * | 2002-03-07 | 2007-03-06 | Glaukoa Corporation | Fluid infusion methods for glaucoma treatment |
Family Cites Families (197)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788327A (en) | 1971-03-30 | 1974-01-29 | H Donowitz | Surgical implant device |
US4037604A (en) | 1976-01-05 | 1977-07-26 | Newkirk John B | Artifical biological drainage device |
US4168697A (en) | 1977-01-17 | 1979-09-25 | Cantekin Erdem I | Middle ear ventilating tube and method |
US4113088A (en) | 1977-06-06 | 1978-09-12 | Binkhorst Richard D | Sterile package |
US4175563A (en) | 1977-10-05 | 1979-11-27 | Arenberg Irving K | Biological drainage shunt |
US4402681A (en) | 1980-08-23 | 1983-09-06 | Haas Joseph S | Artificial implant valve for the regulation of intraocular pressure |
NO147900C (en) | 1981-03-12 | 1983-07-06 | Finn Skjaerpe | MICROSURGICAL INSTRUMENT. |
US4428746A (en) | 1981-07-29 | 1984-01-31 | Antonio Mendez | Glaucoma treatment device |
US4554918A (en) | 1982-07-28 | 1985-11-26 | White Thomas C | Ocular pressure relief device |
JPS5985153A (en) | 1982-11-08 | 1984-05-17 | Hitachi Ltd | Redundancy controller |
US4521210A (en) | 1982-12-27 | 1985-06-04 | Wong Vernon G | Eye implant for relieving glaucoma, and device and method for use therewith |
US4634418A (en) | 1984-04-06 | 1987-01-06 | Binder Perry S | Hydrogel seton |
US4787885A (en) | 1984-04-06 | 1988-11-29 | Binder Perry S | Hydrogel seton |
US4604087A (en) | 1985-02-26 | 1986-08-05 | Joseph Neil H | Aqueous humor drainage device |
US4713448A (en) * | 1985-03-12 | 1987-12-15 | Biomatrix, Inc. | Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues |
US4820626A (en) | 1985-06-06 | 1989-04-11 | Thomas Jefferson University | Method of treating a synthetic or naturally occuring surface with microvascular endothelial cells, and the treated surface itself |
US4632842A (en) | 1985-06-20 | 1986-12-30 | Atrium Medical Corporation | Glow discharge process for producing implantable devices |
US4718907A (en) | 1985-06-20 | 1988-01-12 | Atrium Medical Corporation | Vascular prosthesis having fluorinated coating with varying F/C ratio |
US4883864A (en) | 1985-09-06 | 1989-11-28 | Minnesota Mining And Manufacturing Company | Modified collagen compound and method of preparation |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
NZ215409A (en) | 1986-03-07 | 1989-02-24 | Anthony Christopher Be Molteno | Implant for drainage of aqueous humour in glaucoma |
CH670760A5 (en) | 1986-06-02 | 1989-07-14 | Sulzer Ag | |
US4722724A (en) | 1986-06-23 | 1988-02-02 | Stanley Schocket | Anterior chamber tube shunt to an encircling band, and related surgical procedure |
US4863457A (en) | 1986-11-24 | 1989-09-05 | Lee David A | Drug delivery device |
US4846793A (en) | 1987-03-18 | 1989-07-11 | Endocon, Inc. | Injector for implanting multiple pellet medicaments |
US4846172A (en) | 1987-05-26 | 1989-07-11 | Berlin Michael S | Laser-delivery eye-treatment method |
US4900300A (en) | 1987-07-06 | 1990-02-13 | Lee David A | Surgical instrument |
AU2308988A (en) | 1987-08-06 | 1989-03-01 | Thomas C. White | Glaucoma drainage in the lacrimal system |
US4886488A (en) | 1987-08-06 | 1989-12-12 | White Thomas C | Glaucoma drainage the lacrimal system and method |
US4853224A (en) | 1987-12-22 | 1989-08-01 | Visionex | Biodegradable ocular implants |
US4997652A (en) | 1987-12-22 | 1991-03-05 | Visionex | Biodegradable ocular implants |
US4936825A (en) | 1988-04-11 | 1990-06-26 | Ungerleider Bruce A | Method for reducing intraocular pressure caused by glaucoma |
US5005577A (en) | 1988-08-23 | 1991-04-09 | Frenkel Ronald E P | Intraocular lens pressure monitoring device |
US5681275A (en) | 1988-10-07 | 1997-10-28 | Ahmed; Abdul Mateen | Ophthalmological device with adaptable multiple distribution plates |
US5785674A (en) | 1988-10-07 | 1998-07-28 | Mateen; Ahmed Abdul | Device and method for treating glaucoma |
FR2651668B1 (en) | 1989-09-12 | 1991-12-27 | Leon Claude | MICROSCOPE-ENDOSCOPE ASSEMBLY USEFUL IN PARTICULAR IN SURGERY. |
USRE35390E (en) | 1989-11-17 | 1996-12-03 | Smith; Stewart G. | Pressure relieving device and process for implanting |
US4946436A (en) | 1989-11-17 | 1990-08-07 | Smith Stewart G | Pressure-relieving device and process for implanting |
US5164188A (en) | 1989-11-22 | 1992-11-17 | Visionex, Inc. | Biodegradable ocular implants |
US4968296A (en) | 1989-12-20 | 1990-11-06 | Robert Ritch | Transscleral drainage implant device for the treatment of glaucoma |
US5092837A (en) | 1989-12-20 | 1992-03-03 | Robert Ritch | Method for the treatment of glaucoma |
US5073163A (en) | 1990-01-29 | 1991-12-17 | Lippman Myron E | Apparatus for treating glaucoma |
US5180362A (en) * | 1990-04-03 | 1993-01-19 | Worst J G F | Gonio seton |
US5129895A (en) | 1990-05-16 | 1992-07-14 | Sunrise Technologies, Inc. | Laser sclerostomy procedure |
US5041081A (en) | 1990-05-18 | 1991-08-20 | Odrich Ronald B | Ocular implant for controlling glaucoma |
US5127901A (en) | 1990-05-18 | 1992-07-07 | Odrich Ronald B | Implant with subconjunctival arch |
US5476445A (en) | 1990-05-31 | 1995-12-19 | Iovision, Inc. | Glaucoma implant with a temporary flow restricting seal |
US5397300A (en) | 1990-05-31 | 1995-03-14 | Iovision, Inc. | Glaucoma implant |
US5178604A (en) | 1990-05-31 | 1993-01-12 | Iovision, Inc. | Glaucoma implant |
US5454796A (en) | 1991-04-09 | 1995-10-03 | Hood Laboratories | Device and method for controlling intraocular fluid pressure |
US5312394A (en) | 1991-04-29 | 1994-05-17 | Hugh Beckman | Apparatus and method for surgically performing a filtering operation on an eye for glaucoma |
US5246451A (en) | 1991-04-30 | 1993-09-21 | Medtronic, Inc. | Vascular prosthesis and method |
US5358492A (en) | 1991-05-02 | 1994-10-25 | Feibus Miriam H | Woven surgical drain and method of making |
US5300020A (en) | 1991-05-31 | 1994-04-05 | Medflex Corporation | Surgically implantable device for glaucoma relief |
US5171213A (en) | 1991-08-14 | 1992-12-15 | Price Jr Francis W | Technique for fistulization of the eye and an eye filtration prosthesis useful therefor |
US5500013A (en) | 1991-10-04 | 1996-03-19 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
US5207685A (en) | 1992-02-11 | 1993-05-04 | Cinberg James Z | Tympanic ventilation tube and related technique |
US5334137A (en) | 1992-02-21 | 1994-08-02 | Eagle Vision, Inc. | Lacrimal fluid control device |
US5346464A (en) | 1992-03-10 | 1994-09-13 | Camras Carl B | Method and apparatus for reducing intraocular pressure |
US5370641A (en) | 1992-05-22 | 1994-12-06 | O'donnell, Jr.; Francis E. | Laser trabeculodissection |
DE4219299C2 (en) | 1992-06-12 | 1994-03-24 | Leica Mikroskopie & Syst | microscope |
US5290295A (en) | 1992-07-15 | 1994-03-01 | Querals & Fine, Inc. | Insertion tool for an intraluminal graft procedure |
US6197056B1 (en) | 1992-07-15 | 2001-03-06 | Ras Holding Corp. | Segmented scleral band for treatment of presbyopia and other eye disorders |
US5318513A (en) | 1992-09-24 | 1994-06-07 | Leib Martin L | Canalicular balloon fixation stent |
US5370607A (en) | 1992-10-28 | 1994-12-06 | Annuit Coeptis, Inc. | Glaucoma implant device and method for implanting same |
WO1994013234A1 (en) | 1992-12-17 | 1994-06-23 | Michael Andrew Coote | Implant device and method for treatment of glaucoma |
US5338291A (en) | 1993-02-03 | 1994-08-16 | Pudenz-Schulte Medical Research Corporation | Glaucoma shunt and method for draining aqueous humor |
CA2158443C (en) | 1993-03-16 | 2003-11-25 | Stephen E. Hughes | Method for preparation and transplantation of volute grafts and surgical instrument therefor |
US5342370A (en) | 1993-03-19 | 1994-08-30 | University Of Miami | Method and apparatus for implanting an artifical meshwork in glaucoma surgery |
IL105828A (en) | 1993-05-28 | 1999-06-20 | Medinol Ltd | Medical stent |
US5735892A (en) | 1993-08-18 | 1998-04-07 | W. L. Gore & Associates, Inc. | Intraluminal stent graft |
FR2710269A1 (en) | 1993-09-22 | 1995-03-31 | Voir Vivre | Implantable device for the treatment of edemas. |
FI934513A (en) | 1993-10-13 | 1995-04-14 | Leiras Oy | Anordning Foer injection with implant |
US5639278A (en) | 1993-10-21 | 1997-06-17 | Corvita Corporation | Expandable supportive bifurcated endoluminal grafts |
US5443505A (en) | 1993-11-15 | 1995-08-22 | Oculex Pharmaceuticals, Inc. | Biocompatible ocular implants |
US5743868A (en) | 1994-02-14 | 1998-04-28 | Brown; Reay H. | Corneal pressure-regulating implant device |
US5516522A (en) | 1994-03-14 | 1996-05-14 | Board Of Supervisors Of Louisiana State University | Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same |
US6165210A (en) | 1994-04-01 | 2000-12-26 | Gore Enterprise Holdings, Inc. | Self-expandable helical intravascular stent and stent-graft |
US5716394A (en) | 1994-04-29 | 1998-02-10 | W. L. Gore & Associates, Inc. | Blood contact surfaces using extracellular matrix synthesized in vitro |
IL109499A (en) | 1994-05-02 | 1998-01-04 | Univ Ramot | Implant device for draining excess intraocular fluid |
FR2721499B1 (en) | 1994-06-22 | 1997-01-03 | Opsia | Trabeculectomy implant. |
US6102045A (en) | 1994-07-22 | 2000-08-15 | Premier Laser Systems, Inc. | Method and apparatus for lowering the intraocular pressure of an eye |
US5704907A (en) | 1994-07-22 | 1998-01-06 | Wound Healing Of Oklahoma | Method and apparatus for lowering the intraocular pressure of an eye |
US5520631A (en) | 1994-07-22 | 1996-05-28 | Wound Healing Of Oklahoma | Method and apparatus for lowering the intraocular pressure of an eye |
US5665114A (en) | 1994-08-12 | 1997-09-09 | Meadox Medicals, Inc. | Tubular expanded polytetrafluoroethylene implantable prostheses |
DE4433104C1 (en) | 1994-09-16 | 1996-05-02 | Fraunhofer Ges Forschung | Device for measuring mechanical properties of biological tissue |
US5702419A (en) | 1994-09-21 | 1997-12-30 | Wake Forest University | Expandable, intraluminal stents |
US6063116A (en) | 1994-10-26 | 2000-05-16 | Medarex, Inc. | Modulation of cell proliferation and wound healing |
US6063396A (en) | 1994-10-26 | 2000-05-16 | Houston Biotechnology Incorporated | Methods and compositions for the modulation of cell proliferation and wound healing |
JP3642812B2 (en) | 1994-11-17 | 2005-04-27 | 株式会社町田製作所 | Medical observation device |
US5601094A (en) | 1994-11-22 | 1997-02-11 | Reiss; George R. | Ophthalmic shunt |
US6228873B1 (en) | 1994-12-09 | 2001-05-08 | The Regents Of The University Of California | Method for enhancing outflow of aqueous humor in treatment of glaucoma |
US5725493A (en) | 1994-12-12 | 1998-03-10 | Avery; Robert Logan | Intravitreal medicine delivery |
US5433701A (en) | 1994-12-21 | 1995-07-18 | Rubinstein; Mark H. | Apparatus for reducing ocular pressure |
US5558630A (en) | 1994-12-30 | 1996-09-24 | Fisher; Bret L. | Intrascleral implant and method for the regulation of intraocular pressure |
GB2296663A (en) | 1995-01-03 | 1996-07-10 | Ahmed Salih Mahmud | Drainage device for alleviating excess ophthalmic fluid pressure |
AU723047B2 (en) | 1995-02-10 | 2000-08-17 | University Of Toronto Innovations Foundation, The | Deprenyl compounds for treatment of glaucoma |
US6059772A (en) | 1995-03-10 | 2000-05-09 | Candela Corporation | Apparatus and method for treating glaucoma using a gonioscopic laser trabecular ablation procedure |
BE1009278A3 (en) | 1995-04-12 | 1997-01-07 | Corvita Europ | Guardian self-expandable medical device introduced in cavite body, and medical device with a stake as. |
US5626558A (en) | 1995-05-05 | 1997-05-06 | Suson; John | Adjustable flow rate glaucoma shunt and method of using same |
US5968058A (en) | 1996-03-27 | 1999-10-19 | Optonol Ltd. | Device for and method of implanting an intraocular implant |
DE69633074T2 (en) | 1995-05-14 | 2004-12-30 | Optonol Ltd. | INTRAOCULAR IMPLANT, INSERTION DEVICE AND IMPLANTATION PROCEDURE |
WO1996037167A1 (en) | 1995-05-25 | 1996-11-28 | Raychem Corporation | Stent assembly |
US5723005A (en) | 1995-06-07 | 1998-03-03 | Herrick Family Limited Partnership | Punctum plug having a collapsible flared section and method |
CA2223502A1 (en) | 1995-06-08 | 1996-12-27 | Bard Galway Limited | Bifurcated endovascular stent |
US5766243A (en) | 1995-08-21 | 1998-06-16 | Oasis Medical, Inc. | Abrasive polished canalicular implant |
US5662600A (en) | 1995-09-29 | 1997-09-02 | Pudenz-Schulte Medical Research Corporation | Burr-hole flow control device |
US5836939A (en) | 1995-10-25 | 1998-11-17 | Plc Medical Systems, Inc. | Surgical laser handpiece |
US6045557A (en) | 1995-11-10 | 2000-04-04 | Baxter International Inc. | Delivery catheter and method for positioning an intraluminal graft |
US5651783A (en) | 1995-12-20 | 1997-07-29 | Reynard; Michael | Fiber optic sleeve for surgical instruments |
US6299895B1 (en) | 1997-03-24 | 2001-10-09 | Neurotech S.A. | Device and method for treating ophthalmic diseases |
US5807302A (en) | 1996-04-01 | 1998-09-15 | Wandel; Thaddeus | Treatment of glaucoma |
US6629981B2 (en) | 2000-07-06 | 2003-10-07 | Endocare, Inc. | Stent delivery system |
US5830179A (en) | 1996-04-09 | 1998-11-03 | Endocare, Inc. | Urological stent therapy system and method |
US5865831A (en) | 1996-04-17 | 1999-02-02 | Premier Laser Systems, Inc. | Laser surgical procedures for treatment of glaucoma |
US5932299A (en) | 1996-04-23 | 1999-08-03 | Katoot; Mohammad W. | Method for modifying the surface of an object |
US6530896B1 (en) | 1996-05-13 | 2003-03-11 | James B. Elliott | Apparatus and method for introducing an implant |
US5670161A (en) | 1996-05-28 | 1997-09-23 | Healy; Kevin E. | Biodegradable stent |
US5681323A (en) | 1996-07-15 | 1997-10-28 | Arick; Daniel S. | Emergency cricothyrotomy tube insertion |
US6120460A (en) | 1996-09-04 | 2000-09-19 | Abreu; Marcio Marc | Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions |
US5830139A (en) | 1996-09-04 | 1998-11-03 | Abreu; Marcio M. | Tonometer system for measuring intraocular pressure by applanation and/or indentation |
US5886822A (en) | 1996-10-08 | 1999-03-23 | The Microoptical Corporation | Image combining system for eyeglasses and face masks |
US6007510A (en) | 1996-10-25 | 1999-12-28 | Anamed, Inc. | Implantable devices and methods for controlling the flow of fluids within the body |
FR2757068B1 (en) | 1996-12-13 | 1999-04-23 | Jussmann Alberto | SELF-FIXING DRAIN |
US6261256B1 (en) | 1996-12-20 | 2001-07-17 | Abdul Mateen Ahmed | Pocket medical valve & method |
US5713844A (en) | 1997-01-10 | 1998-02-03 | Peyman; Gholam A. | Device and method for regulating intraocular pressure |
GB9700390D0 (en) | 1997-01-10 | 1997-02-26 | Biocompatibles Ltd | Device for use in the eye |
US6780165B2 (en) | 1997-01-22 | 2004-08-24 | Advanced Medical Optics | Micro-burst ultrasonic power delivery |
DE19705815C2 (en) | 1997-02-15 | 1999-02-11 | Heidelberg Engineering Optisch | Medical device for microsurgery on the eye |
FR2759577B1 (en) | 1997-02-17 | 1999-08-06 | Corneal Ind | DEEP SCLERECTOMY IMPLANT |
US6071286A (en) | 1997-02-19 | 2000-06-06 | Mawad; Michel E. | Combination angioplasty balloon/stent deployment device |
US6059812A (en) | 1997-03-21 | 2000-05-09 | Schneider (Usa) Inc. | Self-expanding medical device for centering radioactive treatment sources in body vessels |
JP3827429B2 (en) | 1997-04-03 | 2006-09-27 | オリンパス株式会社 | Surgical microscope |
US5882327A (en) | 1997-04-17 | 1999-03-16 | Jacob; Jean T. | Long-term glaucoma drainage implant |
US6050970A (en) | 1997-05-08 | 2000-04-18 | Pharmacia & Upjohn Company | Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye |
US5752928A (en) | 1997-07-14 | 1998-05-19 | Rdo Medical, Inc. | Glaucoma pressure regulator |
US5980928A (en) | 1997-07-29 | 1999-11-09 | Terry; Paul B. | Implant for preventing conjunctivitis in cattle |
US5830171A (en) | 1997-08-12 | 1998-11-03 | Odyssey Medical, Inc. | Punctal occluder |
EP0898947A3 (en) | 1997-08-15 | 1999-09-08 | GRIESHABER & CO. AG SCHAFFHAUSEN | Method and apparatus to improve the outflow of the aqueous humor of an eye |
US6004302A (en) | 1997-08-28 | 1999-12-21 | Brierley; Lawrence A. | Cannula |
US6203513B1 (en) | 1997-11-20 | 2001-03-20 | Optonol Ltd. | Flow regulating implant, method of manufacture, and delivery device |
US6165209A (en) | 1997-12-15 | 2000-12-26 | Prolifix Medical, Inc. | Vascular stent for reduction of restenosis |
US6050999A (en) | 1997-12-18 | 2000-04-18 | Keravision, Inc. | Corneal implant introducer and method of use |
US6168575B1 (en) | 1998-01-29 | 2001-01-02 | David Pyam Soltanpour | Method and apparatus for controlling intraocular pressure |
EP1071414A1 (en) | 1998-04-24 | 2001-01-31 | Mitokor | Compounds and methods for treating mitochondria-associated diseases |
US6077299A (en) | 1998-06-22 | 2000-06-20 | Eyetronic, Llc | Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma |
DE19840047B4 (en) | 1998-09-02 | 2004-07-08 | Neuhann, Thomas, Prof.Dr.med. | Device for the targeted improvement and / or permanent guarantee of the permeability for eye chamber water through the trabecular mechanism in the Schlemm's Canal |
KR100300527B1 (en) | 1998-09-03 | 2001-10-27 | 윤덕용 | Remote pressure monitoring device of sealed type and manufacture method for the same |
US6241721B1 (en) | 1998-10-09 | 2001-06-05 | Colette Cozean | Laser surgical procedures for treatment of glaucoma |
US6254612B1 (en) | 1998-10-22 | 2001-07-03 | Cordis Neurovascular, Inc. | Hydraulic stent deployment system |
US6348042B1 (en) | 1999-02-02 | 2002-02-19 | W. Lee Warren, Jr. | Bioactive shunt |
US6193656B1 (en) | 1999-02-08 | 2001-02-27 | Robert E. Jeffries | Intraocular pressure monitoring/measuring apparatus and method |
US6231597B1 (en) | 1999-02-16 | 2001-05-15 | Mark E. Deem | Apparatus and methods for selectively stenting a portion of a vessel wall |
US6217895B1 (en) | 1999-03-22 | 2001-04-17 | Control Delivery Systems | Method for treating and/or preventing retinal diseases with sustained release corticosteroids |
AU772917B2 (en) | 1999-04-26 | 2004-05-13 | Gmp Vision Solutions, Inc. | Stent device and method for treating glaucoma |
US20050119601A9 (en) | 1999-04-26 | 2005-06-02 | Lynch Mary G. | Shunt device and method for treating glaucoma |
US6342058B1 (en) | 1999-05-14 | 2002-01-29 | Valdemar Portney | Iris fixated intraocular lens and instrument for attaching same to an iris |
US6558342B1 (en) * | 1999-06-02 | 2003-05-06 | Optonol Ltd. | Flow control device, introducer and method of implanting |
US6187016B1 (en) | 1999-09-14 | 2001-02-13 | Daniel G. Hedges | Stent retrieval device |
BR0014929B1 (en) | 1999-10-21 | 2009-01-13 | device for dispensing ophthalmic medicament. | |
US6416777B1 (en) | 1999-10-21 | 2002-07-09 | Alcon Universal Ltd. | Ophthalmic drug delivery device |
US6331313B1 (en) | 1999-10-22 | 2001-12-18 | Oculex Pharmaceticals, Inc. | Controlled-release biocompatible ocular drug delivery implant devices and methods |
US6579235B1 (en) | 1999-11-01 | 2003-06-17 | The Johns Hopkins University | Method for monitoring intraocular pressure using a passive intraocular pressure sensor and patient worn monitoring recorder |
US6287313B1 (en) | 1999-11-23 | 2001-09-11 | Sdgi Holdings, Inc. | Screw delivery system and method |
DE29920949U1 (en) | 1999-11-29 | 2000-04-27 | Bugge, Mogens, Göteborg | Suction tube for surgical purposes |
ATE303757T1 (en) | 1999-12-10 | 2005-09-15 | Iscience Corp | TREATMENT OF EYE DISEASES |
US6450937B1 (en) | 1999-12-17 | 2002-09-17 | C. R. Bard, Inc. | Needle for implanting brachytherapy seeds |
US6726676B2 (en) | 2000-01-05 | 2004-04-27 | Grieshaber & Co. Ag Schaffhausen | Method of and device for improving the flow of aqueous humor within the eye |
CZ20022477A3 (en) | 2000-01-12 | 2003-02-12 | Becton, Dickinson And Company | System and method for reducing intra-ocular pressure |
US20050119737A1 (en) | 2000-01-12 | 2005-06-02 | Bene Eric A. | Ocular implant and methods for making and using same |
US6375642B1 (en) | 2000-02-15 | 2002-04-23 | Grieshaber & Co. Ag Schaffhausen | Method of and device for improving a drainage of aqueous humor within the eye |
US20020143284A1 (en) | 2001-04-03 | 2002-10-03 | Hosheng Tu | Drug-releasing trabecular implant for glaucoma treatment |
US20040111050A1 (en) | 2000-04-14 | 2004-06-10 | Gregory Smedley | Implantable ocular pump to reduce intraocular pressure |
US6533768B1 (en) | 2000-04-14 | 2003-03-18 | The Regents Of The University Of California | Device for glaucoma treatment and methods thereof |
US20050049578A1 (en) | 2000-04-14 | 2005-03-03 | Hosheng Tu | Implantable ocular pump to reduce intraocular pressure |
US20030060752A1 (en) | 2000-04-14 | 2003-03-27 | Olav Bergheim | Glaucoma device and methods thereof |
US7867186B2 (en) | 2002-04-08 | 2011-01-11 | Glaukos Corporation | Devices and methods for treatment of ocular disorders |
US6638239B1 (en) | 2000-04-14 | 2003-10-28 | Glaukos Corporation | Apparatus and method for treating glaucoma |
US7708711B2 (en) | 2000-04-14 | 2010-05-04 | Glaukos Corporation | Ocular implant with therapeutic agents and methods thereof |
EP1286634B1 (en) | 2000-05-19 | 2007-11-07 | Michael S. Berlin | Laser delivery system and method of use for the eye |
JP2002040108A (en) | 2000-07-27 | 2002-02-06 | Advantest Corp | Semiconductor device testing apparatus and method for timing calibration of the same |
US6699211B2 (en) | 2000-08-22 | 2004-03-02 | James A. Savage | Method and apparatus for treatment of glaucoma |
US6428501B1 (en) | 2000-09-19 | 2002-08-06 | K2 Limited Partnership U/A/D | Surgical instrument sleeve |
FR2817912B1 (en) | 2000-12-07 | 2003-01-17 | Hispano Suiza Sa | REDUCER TAKING OVER THE AXIAL EFFORTS GENERATED BY THE BLOWER OF A TURBO-JET |
US6595945B2 (en) | 2001-01-09 | 2003-07-22 | J. David Brown | Glaucoma treatment device and method |
AU2002243612A1 (en) * | 2001-01-18 | 2002-07-30 | The Regents Of The University Of California | Minimally invasive glaucoma surgical instrument and method |
US6981958B1 (en) | 2001-05-02 | 2006-01-03 | Glaukos Corporation | Implant with pressure sensor for glaucoma treatment |
AU2002305400A1 (en) * | 2001-05-03 | 2002-11-18 | Glaukos Corporation | Medical device and methods of use for glaucoma treatment |
WO2003015659A2 (en) | 2001-08-16 | 2003-02-27 | Gmp Vision Solutions, Inc. | Improved shunt device and method for treating glaucoma |
US7331984B2 (en) * | 2001-08-28 | 2008-02-19 | Glaukos Corporation | Glaucoma stent for treating glaucoma and methods of use |
US20030097151A1 (en) | 2001-10-25 | 2003-05-22 | Smedley Gregory T. | Apparatus and mitochondrial treatment for glaucoma |
US7163543B2 (en) | 2001-11-08 | 2007-01-16 | Glaukos Corporation | Combined treatment for cataract and glaucoma treatment |
US6939298B2 (en) | 2002-02-28 | 2005-09-06 | Gmp Vision Solutions, Inc | Device and method for monitoring aqueous flow within the eye |
US20030229303A1 (en) | 2002-03-22 | 2003-12-11 | Haffner David S. | Expandable glaucoma implant and methods of use |
US20040024345A1 (en) | 2002-04-19 | 2004-02-05 | Morteza Gharib | Glaucoma implant with valveless flow bias |
US20030236483A1 (en) | 2002-06-25 | 2003-12-25 | Ren David H | Dual drainage ocular shunt for glaucoma |
USD490152S1 (en) | 2003-02-28 | 2004-05-18 | Glaukos Corporation | Surgical handpiece |
-
2003
- 2003-03-07 US US10/384,912 patent/US7186232B1/en not_active Expired - Lifetime
-
2006
- 2006-01-12 US US11/332,746 patent/US8617094B2/en not_active Expired - Lifetime
-
2013
- 2013-12-20 US US14/136,753 patent/US9220632B2/en not_active Expired - Fee Related
Patent Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976077A (en) * | 1975-02-03 | 1976-08-24 | Kerfoot Jr Franklin W | Eye surgery device |
US4642090A (en) * | 1985-03-04 | 1987-02-10 | Utrata Peter J | Disposable combination scalpel blade and incision irrigator for ophthalmological use |
US5098443A (en) * | 1989-03-23 | 1992-03-24 | University Of Miami | Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents |
US6007511A (en) * | 1991-05-08 | 1999-12-28 | Prywes; Arnold S. | Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation |
US5652014A (en) * | 1991-08-16 | 1997-07-29 | Galin; Miles A. | Medicament coated refractive anterior chamber ocular implant |
US5486165A (en) * | 1992-01-10 | 1996-01-23 | Stegmann; Robert | Method and appliance for maintaining the natural intraocular pressure |
US5629008A (en) * | 1992-06-02 | 1997-05-13 | C.R. Bard, Inc. | Method and device for long-term delivery of drugs |
US5767079A (en) * | 1992-07-08 | 1998-06-16 | Celtrix Pharmaceuticals, Inc. | Method of treating ophthalmic disorders using TGF -β |
US5599534A (en) * | 1994-08-09 | 1997-02-04 | University Of Nebraska | Reversible gel-forming composition for sustained delivery of bio-affecting substances, and method of use |
US5891084A (en) * | 1994-12-27 | 1999-04-06 | Lee; Vincent W. | Multiple chamber catheter delivery system |
US5868697A (en) * | 1995-05-14 | 1999-02-09 | Optonol Ltd. | Intraocular implant |
US20040092548A1 (en) * | 1995-12-21 | 2004-05-13 | Jonathan Embleton | Ophthalmic treatment |
US6544249B1 (en) * | 1996-11-29 | 2003-04-08 | The Lions Eye Institute Of Western Australia Incorporated | Biological microfistula tube and implantation method and apparatus |
US5893837A (en) * | 1997-02-28 | 1999-04-13 | Staar Surgical Company, Inc. | Glaucoma drain implanting device and method |
US6033418A (en) * | 1997-04-25 | 2000-03-07 | New Jersey Institute Of Technology | Method and device for corneal shaping and refractive correction |
US6378526B1 (en) * | 1998-08-03 | 2002-04-30 | Insite Vision, Incorporated | Methods of ophthalmic administration |
US6299603B1 (en) * | 1998-08-03 | 2001-10-09 | Karl I. Hecker | Injection apparatus and method of using same |
US6306120B1 (en) * | 1999-06-07 | 2001-10-23 | Ben Gee Tan | Applicator and method for delivery of mitomycin to eye tissues during glaucoma filtering surgery |
US6221078B1 (en) * | 1999-06-25 | 2001-04-24 | Stephen S. Bylsma | Surgical implantation apparatus |
US6596296B1 (en) * | 1999-08-06 | 2003-07-22 | Board Of Regents, The University Of Texas System | Drug releasing biodegradable fiber implant |
US7033603B2 (en) * | 1999-08-06 | 2006-04-25 | Board Of Regents The University Of Texas | Drug releasing biodegradable fiber for delivery of therapeutics |
US6471666B1 (en) * | 2000-02-24 | 2002-10-29 | Steven A. Odrich | Injectable glaucoma device |
US7060094B2 (en) * | 2000-08-07 | 2006-06-13 | Ophthalmotronics, Inc. | Accommodating zonular mini-bridge implants |
US20020128704A1 (en) * | 2001-03-07 | 2002-09-12 | Wolfgang Daum | Stent and method for drug delivery from stents |
US20020133168A1 (en) * | 2001-03-16 | 2002-09-19 | Smedley Gregory T. | Applicator and methods for placing a trabecular shunt for glaucoma treatment |
US20020188308A1 (en) * | 2001-04-07 | 2002-12-12 | Hosheng Tu | Glaucoma stent and methods thereof for glaucoma treatment |
US20020165478A1 (en) * | 2001-05-02 | 2002-11-07 | Morteza Gharib | Bifurcatable trabecular shunt for glaucoma treatment |
US20020165522A1 (en) * | 2001-05-03 | 2002-11-07 | Jorgen Holmen | Method for use in cataract surgery |
US6533769B2 (en) * | 2001-05-03 | 2003-03-18 | Holmen Joergen | Method for use in cataract surgery |
US20030014021A1 (en) * | 2001-05-03 | 2003-01-16 | Jorgen Holmen | Methods and compositions usable in cataract surgery |
US20030097117A1 (en) * | 2001-11-16 | 2003-05-22 | Buono Lawrence M. | Spray device |
US7186232B1 (en) * | 2002-03-07 | 2007-03-06 | Glaukoa Corporation | Fluid infusion methods for glaucoma treatment |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8313454B2 (en) | 1997-11-20 | 2012-11-20 | Optonol Ltd. | Fluid drainage device, delivery device, and associated methods of use and manufacture |
US8142364B2 (en) | 2001-05-02 | 2012-03-27 | Dose Medical Corporation | Method of monitoring intraocular pressure and treating an ocular disorder |
US20120197175A1 (en) * | 2006-06-30 | 2012-08-02 | Aquesys, Inc. | Methods, systems and apparatus for relieving pressure in an organ |
US20150157836A1 (en) * | 2008-01-28 | 2015-06-11 | Peter Mats Forsell | Implantable drainage device |
US9694165B2 (en) * | 2008-01-28 | 2017-07-04 | Peter Mats Forsell | Implantable drainage device |
US8109896B2 (en) | 2008-02-11 | 2012-02-07 | Optonol Ltd. | Devices and methods for opening fluid passageways |
US10206813B2 (en) | 2009-05-18 | 2019-02-19 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
US20210298948A1 (en) * | 2009-05-18 | 2021-09-30 | Dose Medical Corporation | Drug eluting ocular implant with internal plug |
US10813789B2 (en) | 2009-05-18 | 2020-10-27 | Dose Medical Corporation | Drug eluting ocular implant |
US20110105986A1 (en) * | 2009-09-21 | 2011-05-05 | Ben Bronstein | Uveoscleral drainage device |
US8771216B2 (en) * | 2009-11-06 | 2014-07-08 | University Hospitals Of Cleveland | Fluid communication device and method of use thereof |
US9173774B2 (en) | 2010-03-26 | 2015-11-03 | Optonol Ltd. | Fluid drainage device, delivery device, and associated methods of use and manufacture |
US10842671B2 (en) | 2010-11-15 | 2020-11-24 | Aquesys, Inc. | Intraocular shunt placement in the suprachoroidal space |
US9980854B2 (en) | 2010-11-15 | 2018-05-29 | Aquesys, Inc. | Shunt placement through the sclera |
US10004638B2 (en) | 2010-11-15 | 2018-06-26 | Aquesys, Inc. | Intraocular shunt delivery |
US10307293B2 (en) | 2010-11-15 | 2019-06-04 | Aquesys, Inc. | Methods for intraocular shunt placement |
US10245178B1 (en) | 2011-06-07 | 2019-04-02 | Glaukos Corporation | Anterior chamber drug-eluting ocular implant |
US11363951B2 (en) | 2011-09-13 | 2022-06-21 | Glaukos Corporation | Intraocular physiological sensor |
US10080682B2 (en) | 2011-12-08 | 2018-09-25 | Aquesys, Inc. | Intrascleral shunt placement |
US9883969B2 (en) | 2011-12-08 | 2018-02-06 | Aquesys, Inc. | Intrascleral shunt placement |
US20150216729A1 (en) * | 2012-09-28 | 2015-08-06 | Doci Innovations GmbH | Implant for treating glaucoma |
US9782293B2 (en) * | 2012-09-28 | 2017-10-10 | Doci Innovations GmbH | Implant for treating glaucoma |
US10195078B2 (en) | 2013-02-19 | 2019-02-05 | Aquesys, Inc. | Adjustable intraocular flow regulation |
US10195079B2 (en) | 2013-02-19 | 2019-02-05 | Aquesys, Inc. | Adjustable intraocular implant |
US10524959B2 (en) | 2013-02-27 | 2020-01-07 | Aquesys, Inc. | Intraocular shunt implantation methods and devices |
US10849558B2 (en) | 2013-03-13 | 2020-12-01 | Glaukos Corporation | Intraocular physiological sensor |
US9730638B2 (en) | 2013-03-13 | 2017-08-15 | Glaukos Corporation | Intraocular physiological sensor |
US11253394B2 (en) | 2013-03-15 | 2022-02-22 | Dose Medical Corporation | Controlled drug delivery ocular implants and methods of using same |
US10369048B2 (en) | 2013-06-28 | 2019-08-06 | Aquesys, Inc. | Intraocular shunt implantation |
US10470927B2 (en) | 2015-06-03 | 2019-11-12 | Aquesys, Inc. | AB externo intraocular shunt placement |
US10463537B2 (en) | 2015-06-03 | 2019-11-05 | Aquesys Inc. | Ab externo intraocular shunt placement |
US11612517B2 (en) | 2015-06-03 | 2023-03-28 | Aquesys, Inc. | Ab externo intraocular shunt placement |
US11318043B2 (en) | 2016-04-20 | 2022-05-03 | Dose Medical Corporation | Bioresorbable ocular drug delivery device |
US20220008700A1 (en) * | 2017-09-20 | 2022-01-13 | Sinopsys Surgical, Inc. | Paranasal sinus fluid access implantation tools, assemblies, kits and methods |
US12017023B2 (en) * | 2017-09-20 | 2024-06-25 | Sinopsys Surgical, Inc. | Paranasal sinus fluid access implantation tools, assemblies, kits and methods |
US11246753B2 (en) | 2017-11-08 | 2022-02-15 | Aquesys, Inc. | Manually adjustable intraocular flow regulation |
CN111759582A (en) * | 2019-04-02 | 2020-10-13 | 巨晰光纤股份有限公司 | Shunt bracket for drainage of eyeballs |
Also Published As
Publication number | Publication date |
---|---|
US7186232B1 (en) | 2007-03-06 |
US20060116626A1 (en) | 2006-06-01 |
US9220632B2 (en) | 2015-12-29 |
US20140343475A1 (en) | 2014-11-20 |
US8617094B2 (en) | 2013-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9220632B2 (en) | Fluid infusion methods for ocular disorder treatment | |
US10485702B2 (en) | System and method for treating an ocular disorder | |
US10285856B2 (en) | Implant delivery system and methods thereof for treating ocular disorders | |
US20060200113A1 (en) | Liquid jet for glaucoma treatment | |
EP1310222A2 (en) | Drug-releasing trabecular implant for glaucoma treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: GLAUKOS CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SMEDLEY, GREGORY;HAFFNER, DAVID;TU, HOSHENG;REEL/FRAME:032727/0822 Effective date: 20030529 |
|
CC | Certificate of correction | ||
REMI | Maintenance fee reminder mailed | ||
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554) |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551) Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |