US20080183121A2 - Fluid infusion methods for ocular disorder treatment - Google Patents

Fluid infusion methods for ocular disorder treatment Download PDF

Info

Publication number
US20080183121A2
US20080183121A2 US11/332,746 US33274606A US2008183121A2 US 20080183121 A2 US20080183121 A2 US 20080183121A2 US 33274606 A US33274606 A US 33274606A US 2008183121 A2 US2008183121 A2 US 2008183121A2
Authority
US
United States
Prior art keywords
implant
eye
fluid
instrument
outflow pathway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/332,746
Other versions
US20060116626A1 (en
US8617094B2 (en
Inventor
Gregory Smedley
David Haffner
Hosheng Tu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glaukos Corp
Original Assignee
Glaukos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaukos Corp filed Critical Glaukos Corp
Priority to US11/332,746 priority Critical patent/US8617094B2/en
Publication of US20060116626A1 publication Critical patent/US20060116626A1/en
Publication of US20080183121A2 publication Critical patent/US20080183121A2/en
Priority to US14/136,753 priority patent/US9220632B2/en
Application granted granted Critical
Publication of US8617094B2 publication Critical patent/US8617094B2/en
Assigned to GLAUKOS CORPORATION reassignment GLAUKOS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAFFNER, DAVID, SMEDLEY, GREGORY, TU, HOSHENG
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00891Glaucoma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • A61F9/00745Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0612Eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • A61M27/002Implant devices for drainage of body fluids from one part of the body to another
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor

Definitions

  • This invention relates to reducing intraocular pressure within the animal eye. More particularly, this invention relates to a treatment of glaucoma wherein aqueous humor is permitted to flow out of an anterior chamber of the eye through a surgically implanted pathway. Furthermore, this invention relates to directly dilating Schlemm's canal and/or aqueous collector channels by injecting fluid through the implanted pathway of a stent.
  • a human eye is a specialized sensory organ capable of light reception and is able to receive visual images.
  • Aqueous humor is a transparent liquid that fills the region between the cornea, at the front of the eye, and the lens.
  • a trabecular meshwork located in an anterior chamber angle formed between the iris and the cornea, serves as a drainage channel for aqueous humor from the anterior chamber, which maintains a balanced pressure within the anterior chamber of the eye.
  • Glaucoma is a group of eye diseases encompassing a broad spectrum of clinical presentations, etiologies, and treatment modalities. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, resulting in blindness if untreated. Lowering intraocular pressure is the major treatment goal in all glaucomas.
  • aqueous aqueous humor
  • Schlemm's canal aqueous aqueous humor
  • Schlemm's canal aqueous collector channels in the posterior wall of Schlemm's canal
  • aqueous veins which form the episcleral venous system.
  • Aqueous is continuously secreted by a ciliary body around the lens, so there is a constant flow of aqueous from the ciliary body to the anterior chamber of the eye.
  • Pressure within the eye is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) and uveoscleral outflow (minor route).
  • the portion of the trabecular meshwork adjacent to Schlemm's canal causes most of the resistance to aqueous outflow.
  • Glaucoma is broadly classified into two categories: closed-angle glaucoma, also known as angle closure glaucoma, and open-angle glaucoma. Closed-angle glaucoma is caused by closure of the anterior chamber angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous from the anterior chamber of the eye. Open-angle glaucoma is any glaucoma in which the exit of aqueous through the trabecular meshwork is diminished while the angle of the anterior chamber remains open. For most cases of open-angle glaucoma, the exact cause of diminished filtration is unknown.
  • Primary open-angle glaucoma is the most common of the glaucomas, and is often asymptomatic in the early to moderately advanced stages of glaucoma. Patients may suffer substantial, irreversible vision loss prior to diagnosis and treatment.
  • secondary open-angle glaucomas may include edema or swelling of the trabecular spaces (e.g., from corticosteroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.
  • Miotics e.g., pilocarpine, carbachol, and acetylcholinesterase inhibitors
  • Sympathomimetics e.g., epinephrine and dipivalylepinephxine
  • Beta-blockers e.g., betaxolol, levobunolol and timolol
  • Carbonic anhydrase inhibitors e.g., acetazolamide, methazolamide and ethoxzolamide
  • Prostaglandins e.g., metabolite derivatives of arachindonic acid.
  • Medical therapy includes topical ophthalmic drops or oral medications that reduce the production of aqueous or increase the outflow of aqueous.
  • drug therapies for glaucoma are sometimes associated with significant side effects.
  • the most frequent and perhaps most serious drawback to drug therapy is that patients, especially the elderly, often fail to correctly self-medicate. Such patients forget to take their medication at the appropriate times or else administer eye drops improperly, resulting in under- or overdosing.
  • the effects of glaucoma are irreversible, when patients dose improperly, allowing ocular concentrations to drop below appropriate therapeutic levels, further permanent damage to vision occurs.
  • current drug therapies are targeted to be deposited directly into the ciliary body where the aqueous is produced. And, current therapies do not provide for a continuous slow-release of the drug. When drug therapy fails, surgical therapy is pursued.
  • Surgical therapy for open-angle glaucoma consists of laser trabeculoplasty, trabeculectomy, and implantation of aqueous shunts after failure of trabeculectomy or if trabeculectomy is unlikely to succeed.
  • Trabeculectomy is a major surgery that is widely used and is augmented with topically applied anticancer drugs, such as 5-flurouracil or mitomycin-C to decrease scarring and increase the likelihood of surgical success.
  • Approximately 100,000 trabeculectomies are performed on Medicare-age patients per year in the United States. This number would likely increase if ocular morbidity associated with trabeculectomy could be decreased.
  • the current morbidity associated with trabeculectomy consists of failure (10-15%); infection (a life long risk of 2-5%); choroidal hemorrhage, a severe internal hemorrhage from low intraocular pressure, resulting in visual loss (1%); cataract formation; and hypotony maculopathy (potentially reversible visual loss from low intraocular pressure). For these reasons, surgeons have tried for decades to develop a workable surgery for the trabecular meshwork.
  • goniotomy/trabeculotomy and other mechanical disruptions of the trabecular meshwork, such as trabeculopuncture, goniophotoablation, laser trabecular ablation, and goniocurretage. These are all major operations and are briefly described below.
  • Goniotomy and trabeculotomy are simple and directed techniques of microsurgical dissection with mechanical disruption of the trabecular meshwork. These initially had early favorable responses in the treatment of open-angle glaucoma. However, long-term review of surgical results showed only limited success in adults. In retrospect, these procedures probably failed due to cellular repair and fibrosis mechanisms and a process of “filling in.” Filling in is a detrimental effect of collapsing and closing in of the created opening in the trabecular meshwork. Once the created openings close, the pressure builds back up and the surgery fails.
  • Neodynium (Nd) YAG lasers also have been investigated as an optically invasive trabeculopuncture technique for creating full-thickness holes in trabecular meshwork.
  • Nd Neodynium
  • the relatively small hole created by this trabeculopuncture technique exhibits a filling-in effect and fails.
  • Goniophotoablation is disclosed by Berlin in U.S. Pat. No. 4,846,172 and involves the use of an excimer laser to treat glaucoma by ablating the trabecular meshwork. This method did not succeed in a clinical trial. Hill et al. used an Erbium YAG laser to create full-thickness holes through trabecular meshwork (Hill et al., Lasers in Surgery and Medicine 11:341346, 1991). This laser trabecular ablation technique was investigated in a primate model and a limited human clinical trial at the University of California, Irvine. Although ocular morbidity was zero in both trials, success rates did not warrant further human trials. Failure was again from filling in of surgically created defects in the trabecular meshwork by repair mechanisms. Neither of these is a viable surgical technique for the treatment of glaucoma.
  • Goniocurretage is an “ab interno” (from the inside), mechanically disruptive technique that uses an instrument similar to a cyclodialysis spatula with a microcurrette at the tip.
  • Initial results were similar to trabeculotomy: it failed due to repair mechanisms and a process of filling in.
  • trabeculectomy is the most commonly performed filtering surgery
  • viscocanalostomy (VC) and nonpenetrating trabeculectomy (NPT) are two new variations of filtering surgery. These are “ab externo” (from the outside), major ocular procedures in which Schlemm's canal is surgically exposed by making a large and very deep scleral flap.
  • Schlemm's canal is cannulated and viscoelastic substance injected (which dilates Schlemm's canal and the aqueous collector channels).
  • NPT nonpenetrating trabeculectomy
  • Trabeculectomy, VC, and NPT involve the formation of an opening or hole under the conjunctiva and scleral flap into the anterior chamber, such that aqueous is drained onto the surface of the eye or into the tissues located within the lateral wall of the eye.
  • These surgical operations are major procedures with significant ocular morbidity.
  • a number of implantable drainage devices have been used to ensure that the desired filtration and outflow of aqueous through the surgical opening will continue.
  • the risk of placing a glaucoma drainage device also includes hemorrhage, infection, and diplopia (double vision).
  • the trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous, they are logical targets for surgical removal in the treatment of open-angle glaucoma. In addition, minimal amounts of tissue need be altered and existing physiologic outflow pathways can be utilized.
  • a device and methods are provided for improved treatment of intraocular pressure due to glaucoma.
  • a hollow trabecular microstent is adapted for implantation within a trabecular meshwork of an eye such that aqueous humor flows controllably from an anterior chamber of the eye to Schlemm's canal, bypassing the trabecular meshwork.
  • the trabecular microstent comprises a quantity of pharmaceuticals effective in treating glaucoma, which are controllably released from the device into cells of the trabecular meshwork and/or Schlemm's canal.
  • pharmaceuticals may be utilized in conjunction with the trabecular microstent such that aqueous flow either increases or decreases as desired. Placement of the trabecular microstent within the eye and incorporation, and eventual release, of a proven pharmaceutical glaucoma therapy will reduce, inhibit or slow the effects of glaucoma.
  • the microstent comprises an inlet section containing at least one lumen and one inlet opening, an outlet section having at least one lumen that connects to at least one outlet opening.
  • the microstent further comprises a flow-restricting member within the lumen that is configured to partially prevent back flow from passing through the flow-restricting member.
  • the microstent further comprises a middle section that is fixedly attached to the outlet section having at least one lumen in fluid communication with the lumen of the outlet section.
  • the middle section is fixedly attached to the inlet section and the lumen within the middle section is in fluid communication with the lumen of the inlet section.
  • the device is configured to permit fluid entering the lumen of the inlet section to pass through the flow-restricting member, enter the lumen of the middle section, pass into the lumen of the outlet section, and then exit the outlet section.
  • Another aspect of the invention provides a method of treating glaucoma.
  • the method comprises providing fluid through the lumen of the microstent to therapeutically dilate the aqueous cavity.
  • aqueous cavity herein refers to any one or more of the downstream aqueous passageways “behind” the trabecular meshwork, including, without limitation, Schlemm's canal, the aqueous collector channels, and episcleral veins.
  • the fluid contains therapeutic substance, including pharmaceuticals, genes, growth factors, enzymes and like.
  • the fluid contains sterile saline, viscoelastic, or the like.
  • the mode of fluid injection may be a pulsed mode, an intermittent mode or a programmed mode.
  • the pressure of the fluid therapy is effective to cause therapeutic effects on the tissue of the aqueous cavity.
  • the fluid pressure is effective to cause the dilation of the aqueous cavity beyond the tissue elastic yield point for permanent (i.e., plastic) deformation.
  • the fluid is at an elevated pressure effective to cause plastic deformation for at least a portion of the aqueous cavity.
  • the apparatus comprises a syringe portion and a cannula portion that has proximal and distal ends. The proximal end of the cannula portion is attached to the syringe portion.
  • the cannula portion further comprises a first lumen and at least one irrigating hole disposed between the proximal and distal ends of the cannula portion. The irrigating hole is in fluid communication with the lumen.
  • the apparatus further includes a holder including a second lumen for holding the trabecular microstent.
  • a distal end of the second lumen opens to the distal end of the cannula portion, and a proximal end of the second lumen is separated from the first lumen of the cannula portion.
  • Another aspect of the invention provides a method of implanting a trabecular microstent within an eye.
  • the method comprises creating a first incision in a cornea on a first side of the eye, wherein the first incision passes through the cornea into an anterior chamber of the eye.
  • the method further comprises passing an incising device through the first incision and moving a distal end of the incising device across the anterior chamber to a trabecular meshwork residing on a second side of the eye, and using the incising device to create a second incision.
  • the second incision is in the trabecular meshwork, passing from the anterior chamber through the trabecular meshwork into a Schlemm's canal.
  • the method further comprises inserting the trabecular microstent into a distal space of a delivery applicator.
  • the delivery applicator comprises a cannula portion having a distal end and a proximal end attached to a syringe portion.
  • the cannula portion has at least one lumen and at least one irrigating hole disposed between proximal and distal ends of the cannula portion.
  • the irrigating hole is in fluid communication with the lumen.
  • the distal space comprises a holder that holds the trabecular microstent during delivery and releases the trabecular microstent when a practitioner activates deployment of the device.
  • the method further comprises advancing the cannula portion and the trabecular microstent through the first incision, across the anterior chamber and into the second incision, wherein an outlet section of the trabecular microstent is implanted into Schlemm's canal while an inlet section of the trabecular microstent remains in fluid communication with the anterior chamber.
  • the method still further comprises releasing the trabecular microstent from the holder of the delivery applicator.
  • One aspect of the invention includes a method of treating glaucoma, including inserting a stent through an incision in an eye; the stent having an inflow portion that is in fluid communication with an outflow portion of the stent; transporting the stent from the incision through the anterior chamber of the eye to an aqueous cavity of the eye, such that the inflow portion of the stent is positioned in the anterior chamber and the outflow portion of the stent is positioned at the aqueous cavity; and infusing fluid from the inflow portion to the outflow portion of the stent.
  • Some embodiments further include closing the incision, leaving the stent in the eye such that the inflow portion of the stent is positioned in the anterior chamber of the eye and the outflow portion of the stent is positioned in Schlemm's canal.
  • Some embodiments further include positioning the stent such that fluid communicating from the inflow portion to the outflow portion of the stent bypasses the trabecular meshwork of the eye.
  • fluid is infused through a lumen of the stent.
  • the aqueous cavity is Schlemm's canal. In other embodiments the aqueous cavity is an aqueous collector channel.
  • the infusing further comprises injecting the fluid in at least one of a pulsed mode, an intermittent mode, and a programmed mode.
  • the infusing of fluid is at a pressure sufficient to cause plastic deformation of at least a portion of the aqueous cavity.
  • the fluid is at least one of a salt solution or viscoelastic.
  • the infusing further comprises coupling the inflow portion of the stent with a fluid delivery element that transmits the fluid to the stent.
  • the coupling comprises securing a screw thread arrangement of the fluid delivery element with a receiving thread arrangement of the stent.
  • the fluid comprises a therapeutic substance such as a pharmaceutical, a gene, a growth factor, and/or an enzyme.
  • the fluid comprises the fluid comprises a therapeutic substance such as an antiglaucoma drug, a beta-adrenergic antagonist, a TGF-beta compound, and/or an antibiotic.
  • a therapeutic substance such as an antiglaucoma drug, a beta-adrenergic antagonist, a TGF-beta compound, and/or an antibiotic.
  • Some embodiments provide that a temperature of the fluid is raised sufficiently to enhance the plastic deformation. And some embodiments provide that a pH of the fluid is adjusted sufficiently to enhance the plastic deformation.
  • the method further includes vibrating a tissue of the eye.
  • One aspect of the invention includes a method of treating glaucoma, including inserting a stent through an incision in an eye; the stent having an inflow portion that is in fluid communication with an outflow portion of the stent; positioning the stent such that the inflow portion of the stent is positioned in the anterior chamber of the eye and the outflow portion of the stent is positioned at an aqueous cavity; and infusing fluid from the inflow portion to the outflow portion of the stent.
  • the aqueous cavity is Schlemm's canal. In certain arrangements, the method further comprises positioning the stent such that the outflow portion of the stent is in Schlemm's canal. In some arrangements the aqueous cavity is an aqueous collector channel.
  • FIG. 1 is a coronal, cross-sectional view of an eye.
  • FIG. 2 is an enlarged cross-sectional view of an anterior chamber angle of the eye of FIG. 1 .
  • FIG. 3 is an oblique elevation view of one embodiment of an axisymmetric trabecular microstent.
  • FIG. 4 is a detailed view of the proximal section of the microstent of FIG. 3 .
  • FIG. 5 is an applicator for delivering a microstent and infusing fluid for therapeutic treatment.
  • FIG. 6 is an enlarged, cross-sectional view of a preferred method of implanting a trabecular microstent within an eye.
  • FIG. 1 is a cross-sectional view of an eye 10
  • FIG. 2 is a close-up view showing the relative anatomical locations of a trabecular meshwork 21 , an anterior chamber 20 , and a Schlemm's canal 22
  • a sclera 11 is a thick collagenous tissue that covers the entire eye 10 except a portion that is covered by a cornea 12 .
  • the cornea 12 is a thin transparent tissue that focuses and transmits light into the eye and through a pupil 14 , which is a circular hole in the center of an iris 13 (colored portion of the eye).
  • the cornea 12 merges into the sclera 11 at a juncture referred to as a limbus 15 .
  • a ciliary body 16 extends along the interior of the sclera 11 and is coextensive with a choroid 17 .
  • the choroid 17 is a vascular layer of the eye 10 , located between the sclera 11 and a retina 18 .
  • An optic nerve 19 transmits visual information to the brain and is the anatomic structure that is progressively destroyed by glaucoma.
  • aqueous aqueous humor
  • Aqueous is produced primarily by the ciliary body 16 , then moves anteriorly through the pupil 14 and reaches an anterior chamber angle 25 , formed between the iris 13 and the cornea 12 .
  • aqueous is removed from the anterior chamber 20 through the trabecular meshwork 21 .
  • Aqueous passes through the trabecular meshwork 21 into Schlemm's canal 22 and thereafter through a plurality of aqueous veins 23 , which merge with blood-carrying veins, and into systemic venous circulation.
  • Intraocular pressure is maintained by an intricate balance between secretion and outflow of aqueous in the manner described above.
  • Glaucoma is, in most cases, characterized by an excessive buildup of aqueous in the anterior chamber 20 , which leads to an increase in intraocular pressure.
  • Fluids are relatively incompressible, and thus intraocular pressure is distributed relatively uniformly throughout the eye 10 .
  • the trabecular meshwork 21 is adjacent to a small portion of the sclera 11 . Exterior to the sclera 11 is a conjunctiva 24 . Traditional procedures that create a hole or opening for implanting a device through the tissues of the conjunctiva 24 and sclera 11 involve extensive surgery, as compared to surgery for implanting a device, as described herein, which ultimately resides entirely within the confines of the sclera 11 and cornea 12 .
  • a microstent 81 is shown placed through trabecular meshwork 21 having a distal portion 83 disposed within Schlemm's canal 22 and a proximal portion 82 disposed within the anterior chamber 20 of the eye 10 .
  • FIG. 6 generally illustrates the use of one embodiment of a trabecular microstent 81 for establishing an outflow pathway, passing through the trabecular meshwork 21 , which is discussed in greater detail below.
  • FIG. 3 illustrates a preferred embodiment of a hollow trabecular microstent 81 , which facilitates the outflow of aqueous from the anterior chamber 20 into Schlemm's canal 22 , and subsequently into the aqueous collectors and the aqueous veins so that intraocular pressure is reduced.
  • the trabecular microstent 81 comprises an inlet section 82 , having an inlet opening 86 , a middle section 84 , and an outlet section 83 having at least one opening 87 , 88 .
  • the middle section 84 may be an extension of, or may be coextensive with, the inlet section 82 .
  • the device 81 comprises at least one lumen 85 within section 84 , which is in fluid communication with the inlet opening 86 and the outlet opening 87 , 88 , thereby facilitating transfer of aqueous through the device 81 .
  • the outlet side openings 88 each of which is in fluid communication with the lumen 85 for transmission of aqueous, are arranged spaced apart around the circumferential periphery 80 of the outlet section 83 .
  • the outlet openings 88 are located and configured to enable jet-like infusing fluid impinging any specific region of Schlemm's canal tissue suitably for tissue stimulation.
  • the lumen 85 and the remaining body of the outlet section 83 may have a cross-sectional shape that is oval, circular, or other appropriate shape.
  • the middle section 84 has a length that is roughly equal to a thickness of the trabecular meshwork 21 , which typically ranges between about 100 ⁇ m and about 300 ⁇ m.
  • a plurality of elevated (that is, protruding axially) supports or pillars 89 is located at the distal-most end of the outlet section 83 sized and configured for allowing media (for example, aqueous, liquid, balanced salt solution, viscoelastic fluid, therapeutic agents, or the like) to be transported freely.
  • media for example, aqueous, liquid, balanced salt solution, viscoelastic fluid, therapeutic agents, or the like
  • the microstent 81 may further comprises a flow-restricting member 90 , which is tightly retained within a lumen 85 .
  • the flow-restricting member 90 serves to selectively restrict at least one component in blood from moving retrograde, i.e., from the outlet section 83 into the anterior chamber 20 of the eye 10 .
  • the flow-restricting member 90 may be situated in any location within the device 81 such that blood flow is restricted from retrograde motion.
  • the flow-restricting member 90 is sized and configured for maintaining the pressure of the infused fluid within the aqueous cavity for a suitable period of time.
  • the flow-restricting member 90 may, in other embodiments, be a filter made of a material selected from the following filter materials: expanded polytetrafluoroethylene, cellulose, ceramic, glass, Nylon, plastic, and fluorinated material such as polyvinylidene fluoride (“PVDF”) (trade name: Kynar, by DuPont).
  • PVDF polyvinylidene fluoride
  • the trabecular microstent 81 may be made by molding, thermo-forming, or other micro-machining techniques.
  • the trabecular microstent 81 preferably comprises a biocompatible material such that inflammation arising due to irritation between the outer surface of the device 81 and the surrounding tissue is minimized.
  • Biocompatible materials which may be used for the device 81 preferably include, but are not limited to, titanium, stainless steel, medical grade silicone, e.g., SilasticTM, available from Dow Corning Corporation of Midland, Mich.; and polyurethane, e.g., PellethaneTM, also available from Dow Corning Corporation.
  • the device 81 may comprise other types of biocompatible material, such as, by way of example, polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, polytetrafluoroethylene, expanded polytetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilicon, and/or a mixture of the aforementioned biocompatible materials, and the like.
  • biocompatible material such as, by way of example, polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, polytetrafluoroethylene, expanded polytetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilicon, and/or a mixture of the aforementioned biocompatible materials, and the like.
  • the microstent is made of a biodegradable material selected from a group consisting of poly(lactic acid), polyethylene-vinyl acetate, poly(lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), poly(caprolactone), poly(glycolic acid), and copolymer thereof.
  • composite biocompatible material may be used, wherein a surface material may be used in addition to one or more of the aforementioned materials.
  • a surface material may include polytetrafluoroethylene (PTFE) (such as TeflonTM), polyimide, hydrogel, heparin, therapeutic drugs (such as beta-adrenergic antagonists, TGF-beta, and other anti-glaucoma drugs, or antibiotics), and the like.
  • a device coated or loaded with a slow-release substance can have prolonged effects on local tissue surrounding the device.
  • the slow-release delivery can be designed such that an effective amount of substance is released over a desired duration.
  • “Substance,” as used herein, is defined as any therapeutic or active drug that can stop, mitigate, slow-down or reverse undesired disease processes.
  • the device 81 may be made of a biodegradable (also including bioerodible) material admixed with a substance for substance slow-release into ocular tissues.
  • polymer films may function as substance containing release devices whereby the polymer films may be coupled or secured to the device 81 .
  • the polymer films may be designed to permit the controlled release of the substance at a chosen rate and for a selected duration, which may also be episodic or periodic.
  • Such polymer films may be synthesized such that the substance is bound to the surface or resides within a pore in the film so that the substance is relatively protected from enzymatic attack.
  • the polymer films may also be modified to alter their hydrophilicity, hydrophobicity and vulnerability to platelet adhesion and enzymatic attack.
  • the device 81 may be used for a direct release of pharmaceutical preparations into ocular tissues. As discussed above, the pharmaceuticals may be compounded within the device 81 or form a coating on the device 81 . Any known drug therapy for glaucoma may be utilized.
  • FIG. 4 shows a detailed view of the proximal section 82 of the microstent 81 of FIG. 3 .
  • the proximal section 82 has a bottom peripheral surface 91 that is about perpendicular to the lumen 85 of the microstent 81 .
  • a receiving thread arrangement 95 is appropriately located on the peripheral surface 91 .
  • the receiving thread arrangement 95 is sized and configured to releasably receive a screw thread arrangement 96 for coupling together, wherein the screw thread arrangement 96 is disposed at the distal end 97 of a fluid delivery element 94 which has a lumen 93 for transporting the infusing fluid into the aqueous cavity for therapeutic purposes.
  • the coupling of the receiving thread arrangement 95 and the screw thread arrangement 96 makes the fluid infusion through the lumen 85 leak-proof enabling pressurized the aqueous cavity.
  • FIG. 5 shows a distal portion 57 of an applicator 55 for delivering a microstent 81 and infusing fluid for therapeutic treatment.
  • the distal portion 57 comprises a distal cutting means 42 sharp enough for creating an incision on the cornea and also creating an opening on trabecular meshwork 21 for stent placement.
  • the axisymmetric microstent 81 is snugly placed within the lumen 43 of the applicator 55 and retained by a plurality of stent retaining members 45 .
  • the microstent 81 is deployed from the applicator 55 once the distal section 83 passes beyond the edge of the trabecular meshwork 21 .
  • the stent deployment is facilitated by a plunger-type deployment mechanism 44 with an associated deployment actuator 61 mounted on the handle 62 of the applicator 55 (see FIG. 6 ).
  • the microstent 81 may be releasably coupled with a fluid delivery element 94 at any convenient time during the procedures.
  • the screw-unscrew coupling steps between the microstent 81 and the fluid delivery element 94 is carried out by suitably rotating the fluid delivery element 94 with reference to the stent receiving thread arrangement 95 , wherein the associated rotating mechanism 63 is located at the handle 62 of the applicator 55 .
  • the device 81 may advantageously be practiced with a variety of sizes and shapes without departing from the scope of the invention.
  • the devices 81 may have a length ranging from about 0.05 centimeters to over 1 centimeter.
  • the device 81 has an outside diameter ranging between about 30 ⁇ m and about 500 ⁇ m, with the lumen 85 having diameters ranging between about 20 ⁇ m and about 250 ⁇ m, respectively.
  • the device 81 may have a plurality of lumens to facilitate transmission of multiple flows of aqueous or infusing fluid.
  • One preferred method for increasing aqueous outflow in the eye 10 of a patient, to reduce intraocular pressure therein, comprises bypassing the trabecular meshwork 21 .
  • the middle section 84 of the device 81 is advantageously placed across the trabecular meshwork 21 through a slit or opening.
  • This opening can be created by use of a laser, a knife, thermal energy (radiofrequency, ultrasound, microwave), cryogenic energy, or other surgical cutting instrument.
  • the opening may advantageously be substantially horizontal, i.e., extending longitudinally in the same direction as the circumference of the limbus 15 ( FIG. 2 ). Other opening directions may also be used, as well.
  • the opening may advantageously be oriented at any angle, relative to the circumference of the limbus 15 , that is appropriate for inserting the device 81 through the trabecular meshwork 21 and into Schlemm's canal 22 or other outflow pathway, as will be apparent to those skilled in the art.
  • the outlet section 83 may be positioned into fluid collection channels of the natural outflow pathways.
  • natural outflow pathways include Schlemm's canal 22 , aqueous collector channels, aqueous veins, and episcleral veins.
  • FIG. 6 generally illustrates a preferred method by which the trabecular microstent 81 is implanted within the eye 10 .
  • a delivery applicator 55 is provided, which preferably comprises a syringe portion 64 and a cannula portion 65 , which contains at least one lumen 43 in fluid communication with the fluid supply 66 .
  • the cannula portion 65 preferably has a size of about 30 gauge. However, in other embodiments, the cannula portion 65 may have a size ranging between about 16 gauges and about 40 gauges.
  • a holder 56 at the distal portion 57 of the cannula portion 65 for holding the device 81 may advantageously comprise a lumen, a sheath, a clamp, tongs, a space, and the like.
  • the device 81 is placed into the lumen 43 of the delivery applicator 55 and then advanced to a desired implantation site within the eye 10 .
  • the delivery applicator 55 holds the device 81 securely during delivery and releases it when the practitioner initiates deployment actuator 61 of the applicator 55 .
  • a patient is placed in a supine position, prepped, draped, and appropriately anesthetized.
  • a small incision 52 is then made through the cornea 12 with a self-trephining applicator 55 .
  • the incision 52 preferably has a surface length less than about 1.0 millimeter in length and may advantageously be self-sealing.
  • the trabecular meshwork 21 is accessed, wherein an incision is made with a cutting means 42 enabling forming a hole on the trabecular meshwork 21 for stent placement.
  • the hole on the trabecular meshwork can also be created with a tip having thermal energy or cryogenic energy.
  • a method for expanding or attenuating the capacity of the existing canal outflow system also known as the “aqueous cavity”.
  • This system could have become constricted or blocked due to age or other factors associated with glaucoma.
  • a tight fluid coupling is established between an external pressured fluid source 66 and Schlemm's canal 22 through a microstent 81 . It is also advantageous to connect the external pressurized fluid source through a removable instrument (for example, a temporary applicator, catheter, cannula, or tubing) to Schlemm's canal ab interno for applying the fluid infusion therapy.
  • a removable instrument for example, a temporary applicator, catheter, cannula, or tubing
  • a method is provided of treating glaucoma including infusing fluid into aqueous cavity from an anterior chamber end of a stent, wherein the fluid is at an elevated pressure above a baseline pressure of the aqueous cavity.
  • the method further comprises placing a hollow trabecular microstent bypassing the trabecular meshwork, wherein the fluid is infused from the anterior chamber through a lumen of the microstent.
  • the mode of fluid injection is selected from a group consisting of a pulsed mode, an intermittent mode, a programmed mode, or combination thereof.
  • the pressure of the fluid therapy is effective to cause therapeutic effects on the tissue of the aqueous cavity.
  • the fluid pressure is effective to cause the dilation of the aqueous cavity beyond the tissue elastic yield point for plastic permanent deformation.
  • the fluid is at an elevated pressure effective to cause plastic deformation for at least a portion of the aqueous cavity.
  • the fluid may be a salt solution such as Balanced Salt Solution, a viscoelastic (such as Healon), any other suitable viscous or non-viscous liquid, or suitable liquid loaded with drug at a concentration suitable for therapeutic purposes without causing safety concerns.
  • a combination of liquids may also be used.
  • the pressure is raised at an appropriate rate of rise to an appropriate level and for an appropriate length of time, as determined through development studies, to provide for the expansion of the outflow structures and/or a clearing of any blockages within them.
  • the procedure can be augmented with other aids to enhance its effectiveness. These aids may include heat, vibration (sonic or ultrasonic), pulsation of a pressure front, pH, drugs, etc. It is intended that the aqueous cavity be expanded (attenuation or tissue stimulation) by this procedure resulting in an increased capacity for inflow and outflow of Schlemm's canal.
  • a method for using a removable applicator, catheter, cannula, or tubing that is placed ab interno through the trabecular meshwork into the aqueous cavity of an eye adapted for infusing therapeutic liquid into the aqueous cavity.
  • a method of treating glaucoma including: providing at least one pharmaceutical substance incorporated into an axisymmetric trabecular microstent; implanting the microstent within a trabecular meshwork of an eye such that a first end of the microstent is positioned in an anterior chamber of the eye while a second end is positioned in a Schlemm's canal, wherein the first and second ends of the microstent establish a fluid communication between the anterior chamber and the Schlemm's canal; and allowing the microstent to release a quantity of the pharmaceutical substance into the eye.
  • the method further comprises a step of infusing fluid into the Schlemm's canal from the anterior chamber through a lumen of the microstent, wherein the fluid is at an elevated pressure above a baseline pressure of the Schlemm's canal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Prostheses (AREA)

Abstract

Methods of treating ocular disorders are disclosed, such as a method that includes inserting an implant in eye tissue, using a delivery instrument, such that an inlet portion of the implant is in an anterior chamber of an eye and an outlet portion of the implant is in a physiological outflow pathway; removing the delivery instrument from the eye without removing the implant; and conducting fluid comprising a therapeutic substance through the implant and into the physiological outflow pathway. Another method includes inserting an instrument into a physiologic outflow pathway through which aqueous humor drains from an anterior chamber of an eye; separating first and second walls of tissues which comprise the physiologic outflow pathway by injecting a fluid comprising a drug from the instrument while the instrument remains in the physiologic outflow pathway; and withdrawing the instrument following the injection with said fluid remaining within the eye such that the drug has a therapeutic effect on the eye.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation application of U.S. patent application Ser. No. 10/384,912, entitled “Fluid Infusion Methods for Glaucoma Treatment,” filed Mar. 7, 2003, now U.S. Pat. No. 7,186,232 B1, issued Mar. 6, 2007, which application claims the priority benefit of U.S. Provisional Application No. 60/362,405, entitled “Apparatus and Combination Therapy for Treating Glaucoma,” filed Mar. 7, 2002, and U.S. Provisional Application No. 60/363,980, entitled “Means and Procedures for Implanting a Glaucoma Shunt,” filed Mar. 14, 2002, the entireties of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to reducing intraocular pressure within the animal eye. More particularly, this invention relates to a treatment of glaucoma wherein aqueous humor is permitted to flow out of an anterior chamber of the eye through a surgically implanted pathway. Furthermore, this invention relates to directly dilating Schlemm's canal and/or aqueous collector channels by injecting fluid through the implanted pathway of a stent.
  • 2. Description of the Related Art
  • A human eye is a specialized sensory organ capable of light reception and is able to receive visual images. Aqueous humor is a transparent liquid that fills the region between the cornea, at the front of the eye, and the lens. A trabecular meshwork, located in an anterior chamber angle formed between the iris and the cornea, serves as a drainage channel for aqueous humor from the anterior chamber, which maintains a balanced pressure within the anterior chamber of the eye.
  • About two percent of people in the United States have glaucoma. Glaucoma is a group of eye diseases encompassing a broad spectrum of clinical presentations, etiologies, and treatment modalities. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, resulting in blindness if untreated. Lowering intraocular pressure is the major treatment goal in all glaucomas.
  • In glaucomas associated with an elevation in eye pressure (intraocular hypertension), the source of resistance to outflow is mainly in the trabecular meshwork. The tissue of the trabecular meshwork allows the aqueous humor (hereinafter referred to as “aqueous”) to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueous veins, which form the episcleral venous system. Aqueous is continuously secreted by a ciliary body around the lens, so there is a constant flow of aqueous from the ciliary body to the anterior chamber of the eye. Pressure within the eye is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) and uveoscleral outflow (minor route). The portion of the trabecular meshwork adjacent to Schlemm's canal (the juxtacanilicular meshwork) causes most of the resistance to aqueous outflow.
  • Glaucoma is broadly classified into two categories: closed-angle glaucoma, also known as angle closure glaucoma, and open-angle glaucoma. Closed-angle glaucoma is caused by closure of the anterior chamber angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous from the anterior chamber of the eye. Open-angle glaucoma is any glaucoma in which the exit of aqueous through the trabecular meshwork is diminished while the angle of the anterior chamber remains open. For most cases of open-angle glaucoma, the exact cause of diminished filtration is unknown. Primary open-angle glaucoma is the most common of the glaucomas, and is often asymptomatic in the early to moderately advanced stages of glaucoma. Patients may suffer substantial, irreversible vision loss prior to diagnosis and treatment. However, there are secondary open-angle glaucomas that may include edema or swelling of the trabecular spaces (e.g., from corticosteroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.
  • All current therapies for glaucoma are directed toward decreasing intraocular pressure. Currently recognized categories of drug therapy for glaucoma include: (1) Miotics (e.g., pilocarpine, carbachol, and acetylcholinesterase inhibitors), (2) Sympathomimetics (e.g., epinephrine and dipivalylepinephxine), (3) Beta-blockers (e.g., betaxolol, levobunolol and timolol), (4) Carbonic anhydrase inhibitors (e.g., acetazolamide, methazolamide and ethoxzolamide), and (5) Prostaglandins (e.g., metabolite derivatives of arachindonic acid). Medical therapy includes topical ophthalmic drops or oral medications that reduce the production of aqueous or increase the outflow of aqueous. However, drug therapies for glaucoma are sometimes associated with significant side effects. The most frequent and perhaps most serious drawback to drug therapy is that patients, especially the elderly, often fail to correctly self-medicate. Such patients forget to take their medication at the appropriate times or else administer eye drops improperly, resulting in under- or overdosing. Because the effects of glaucoma are irreversible, when patients dose improperly, allowing ocular concentrations to drop below appropriate therapeutic levels, further permanent damage to vision occurs. Furthermore, current drug therapies are targeted to be deposited directly into the ciliary body where the aqueous is produced. And, current therapies do not provide for a continuous slow-release of the drug. When drug therapy fails, surgical therapy is pursued.
  • Surgical therapy for open-angle glaucoma consists of laser trabeculoplasty, trabeculectomy, and implantation of aqueous shunts after failure of trabeculectomy or if trabeculectomy is unlikely to succeed. Trabeculectomy is a major surgery that is widely used and is augmented with topically applied anticancer drugs, such as 5-flurouracil or mitomycin-C to decrease scarring and increase the likelihood of surgical success.
  • Approximately 100,000 trabeculectomies are performed on Medicare-age patients per year in the United States. This number would likely increase if ocular morbidity associated with trabeculectomy could be decreased. The current morbidity associated with trabeculectomy consists of failure (10-15%); infection (a life long risk of 2-5%); choroidal hemorrhage, a severe internal hemorrhage from low intraocular pressure, resulting in visual loss (1%); cataract formation; and hypotony maculopathy (potentially reversible visual loss from low intraocular pressure). For these reasons, surgeons have tried for decades to develop a workable surgery for the trabecular meshwork.
  • The surgical techniques that have been tried and practiced are goniotomy/trabeculotomy and other mechanical disruptions of the trabecular meshwork, such as trabeculopuncture, goniophotoablation, laser trabecular ablation, and goniocurretage. These are all major operations and are briefly described below.
  • Goniotomy and trabeculotomy are simple and directed techniques of microsurgical dissection with mechanical disruption of the trabecular meshwork. These initially had early favorable responses in the treatment of open-angle glaucoma. However, long-term review of surgical results showed only limited success in adults. In retrospect, these procedures probably failed due to cellular repair and fibrosis mechanisms and a process of “filling in.” Filling in is a detrimental effect of collapsing and closing in of the created opening in the trabecular meshwork. Once the created openings close, the pressure builds back up and the surgery fails.
  • Q-switched Neodynium (Nd) YAG lasers also have been investigated as an optically invasive trabeculopuncture technique for creating full-thickness holes in trabecular meshwork. However, the relatively small hole created by this trabeculopuncture technique exhibits a filling-in effect and fails.
  • Goniophotoablation is disclosed by Berlin in U.S. Pat. No. 4,846,172 and involves the use of an excimer laser to treat glaucoma by ablating the trabecular meshwork. This method did not succeed in a clinical trial. Hill et al. used an Erbium YAG laser to create full-thickness holes through trabecular meshwork (Hill et al., Lasers in Surgery and Medicine 11:341346, 1991). This laser trabecular ablation technique was investigated in a primate model and a limited human clinical trial at the University of California, Irvine. Although ocular morbidity was zero in both trials, success rates did not warrant further human trials. Failure was again from filling in of surgically created defects in the trabecular meshwork by repair mechanisms. Neither of these is a viable surgical technique for the treatment of glaucoma.
  • Goniocurretage is an “ab interno” (from the inside), mechanically disruptive technique that uses an instrument similar to a cyclodialysis spatula with a microcurrette at the tip. Initial results were similar to trabeculotomy: it failed due to repair mechanisms and a process of filling in.
  • Although trabeculectomy is the most commonly performed filtering surgery, viscocanalostomy (VC) and nonpenetrating trabeculectomy (NPT) are two new variations of filtering surgery. These are “ab externo” (from the outside), major ocular procedures in which Schlemm's canal is surgically exposed by making a large and very deep scleral flap. In the VC procedure, Schlemm's canal is cannulated and viscoelastic substance injected (which dilates Schlemm's canal and the aqueous collector channels). In the NPT procedure, the inner wall of Schlemm's canal is stripped off after surgically exposing the canal.
  • Trabeculectomy, VC, and NPT involve the formation of an opening or hole under the conjunctiva and scleral flap into the anterior chamber, such that aqueous is drained onto the surface of the eye or into the tissues located within the lateral wall of the eye. These surgical operations are major procedures with significant ocular morbidity. When trabeculectomy, VC, and NPT are thought to have a low chance for success, a number of implantable drainage devices have been used to ensure that the desired filtration and outflow of aqueous through the surgical opening will continue. The risk of placing a glaucoma drainage device also includes hemorrhage, infection, and diplopia (double vision).
  • All of the above embodiments and variations thereof have numerous disadvantages and moderate success rates. They involve substantial trauma to the eye and require great surgical skill in creating a hole through the full thickness of the sclera into the subconjunctival space. The procedures are generally performed in an operating room and involve a prolonged recovery time for vision. The complications of existing filtration surgery have prompted ophthalmic surgeons to find other approaches to lowering intraocular pressure.
  • Because the trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous, they are logical targets for surgical removal in the treatment of open-angle glaucoma. In addition, minimal amounts of tissue need be altered and existing physiologic outflow pathways can be utilized.
  • As reported in Arch. Ophthalm. (2000) 118:412, glaucoma remains a leading cause of blindness, and filtration surgery remains an effective, important option in controlling glaucoma. However, modifying existing filtering surgery techniques in any profound way to increase their effectiveness appears to have reached a dead end. The article further states that the time has come to search for new surgical approaches that may provide better and safer care for patients with glaucoma.
  • What is needed, therefore, is an extended, site-specific treatment method for placing a hollow trabecular microstent ab interno for diverting aqueous humor in an eye from the anterior chamber into Schlemm's canal. In some aspect of the present invention, it is provided a method for injecting fluid through the common hollow lumen of the microstent to therapeutically dilate Schlemm's canal and the aqueous collector channels.
  • SUMMARY OF THE INVENTION
  • A device and methods are provided for improved treatment of intraocular pressure due to glaucoma. A hollow trabecular microstent is adapted for implantation within a trabecular meshwork of an eye such that aqueous humor flows controllably from an anterior chamber of the eye to Schlemm's canal, bypassing the trabecular meshwork. The trabecular microstent comprises a quantity of pharmaceuticals effective in treating glaucoma, which are controllably released from the device into cells of the trabecular meshwork and/or Schlemm's canal. Depending upon the specific treatment contemplated, pharmaceuticals may be utilized in conjunction with the trabecular microstent such that aqueous flow either increases or decreases as desired. Placement of the trabecular microstent within the eye and incorporation, and eventual release, of a proven pharmaceutical glaucoma therapy will reduce, inhibit or slow the effects of glaucoma.
  • One aspect of the invention provides an axisymmetric trabecular microstent that is implantable within an eye. The microstent comprises an inlet section containing at least one lumen and one inlet opening, an outlet section having at least one lumen that connects to at least one outlet opening. In some aspect of the present invention, the microstent further comprises a flow-restricting member within the lumen that is configured to partially prevent back flow from passing through the flow-restricting member. The microstent further comprises a middle section that is fixedly attached to the outlet section having at least one lumen in fluid communication with the lumen of the outlet section. The middle section is fixedly attached to the inlet section and the lumen within the middle section is in fluid communication with the lumen of the inlet section. The device is configured to permit fluid entering the lumen of the inlet section to pass through the flow-restricting member, enter the lumen of the middle section, pass into the lumen of the outlet section, and then exit the outlet section.
  • Another aspect of the invention provides a method of treating glaucoma. The method comprises providing fluid through the lumen of the microstent to therapeutically dilate the aqueous cavity. The term “aqueous cavity” herein refers to any one or more of the downstream aqueous passageways “behind” the trabecular meshwork, including, without limitation, Schlemm's canal, the aqueous collector channels, and episcleral veins. In one embodiment, the fluid contains therapeutic substance, including pharmaceuticals, genes, growth factors, enzymes and like. In another embodiment, the fluid contains sterile saline, viscoelastic, or the like. The mode of fluid injection may be a pulsed mode, an intermittent mode or a programmed mode. In one aspect, the pressure of the fluid therapy is effective to cause therapeutic effects on the tissue of the aqueous cavity. In another aspect, the fluid pressure is effective to cause the dilation of the aqueous cavity beyond the tissue elastic yield point for permanent (i.e., plastic) deformation. In other embodiment, the fluid is at an elevated pressure effective to cause plastic deformation for at least a portion of the aqueous cavity.
  • Another aspect of the invention provides an apparatus for implanting a trabecular microstent within an eye and dilating the aqueous cavity. The apparatus comprises a syringe portion and a cannula portion that has proximal and distal ends. The proximal end of the cannula portion is attached to the syringe portion. The cannula portion further comprises a first lumen and at least one irrigating hole disposed between the proximal and distal ends of the cannula portion. The irrigating hole is in fluid communication with the lumen. The apparatus further includes a holder including a second lumen for holding the trabecular microstent. A distal end of the second lumen opens to the distal end of the cannula portion, and a proximal end of the second lumen is separated from the first lumen of the cannula portion. The holder holds the trabecular microstent during implantation of the device within the eye, and the holder releases the trabecular microstent when a practitioner activates deployment of the device.
  • Another aspect of the invention provides a method of implanting a trabecular microstent within an eye. The method comprises creating a first incision in a cornea on a first side of the eye, wherein the first incision passes through the cornea into an anterior chamber of the eye. The method further comprises passing an incising device through the first incision and moving a distal end of the incising device across the anterior chamber to a trabecular meshwork residing on a second side of the eye, and using the incising device to create a second incision. The second incision is in the trabecular meshwork, passing from the anterior chamber through the trabecular meshwork into a Schlemm's canal. The method further comprises inserting the trabecular microstent into a distal space of a delivery applicator. The delivery applicator comprises a cannula portion having a distal end and a proximal end attached to a syringe portion. The cannula portion has at least one lumen and at least one irrigating hole disposed between proximal and distal ends of the cannula portion. The irrigating hole is in fluid communication with the lumen. The distal space comprises a holder that holds the trabecular microstent during delivery and releases the trabecular microstent when a practitioner activates deployment of the device. The method further comprises advancing the cannula portion and the trabecular microstent through the first incision, across the anterior chamber and into the second incision, wherein an outlet section of the trabecular microstent is implanted into Schlemm's canal while an inlet section of the trabecular microstent remains in fluid communication with the anterior chamber. The method still further comprises releasing the trabecular microstent from the holder of the delivery applicator.
  • One aspect of the invention includes a method of treating glaucoma, including inserting a stent through an incision in an eye; the stent having an inflow portion that is in fluid communication with an outflow portion of the stent; transporting the stent from the incision through the anterior chamber of the eye to an aqueous cavity of the eye, such that the inflow portion of the stent is positioned in the anterior chamber and the outflow portion of the stent is positioned at the aqueous cavity; and infusing fluid from the inflow portion to the outflow portion of the stent.
  • Some embodiments further include closing the incision, leaving the stent in the eye such that the inflow portion of the stent is positioned in the anterior chamber of the eye and the outflow portion of the stent is positioned in Schlemm's canal.
  • Some embodiments further include positioning the stent such that fluid communicating from the inflow portion to the outflow portion of the stent bypasses the trabecular meshwork of the eye.
  • In some embodiments fluid is infused through a lumen of the stent. In some embodiments the aqueous cavity is Schlemm's canal. In other embodiments the aqueous cavity is an aqueous collector channel.
  • In some embodiments, the infusing further comprises injecting the fluid in at least one of a pulsed mode, an intermittent mode, and a programmed mode.
  • In some embodiments the infusing of fluid is at a pressure sufficient to cause plastic deformation of at least a portion of the aqueous cavity.
  • In a preferred arrangement, the fluid is at least one of a salt solution or viscoelastic.
  • In some arrangements the infusing further comprises coupling the inflow portion of the stent with a fluid delivery element that transmits the fluid to the stent. In an embodiment the coupling comprises securing a screw thread arrangement of the fluid delivery element with a receiving thread arrangement of the stent.
  • In certain preferred arrangements, the fluid comprises a therapeutic substance such as a pharmaceutical, a gene, a growth factor, and/or an enzyme.
  • In other preferred arrangements, the fluid comprises the fluid comprises a therapeutic substance such as an antiglaucoma drug, a beta-adrenergic antagonist, a TGF-beta compound, and/or an antibiotic.
  • Some embodiments provide that a temperature of the fluid is raised sufficiently to enhance the plastic deformation. And some embodiments provide that a pH of the fluid is adjusted sufficiently to enhance the plastic deformation.
  • In some arrangements the method further includes vibrating a tissue of the eye.
  • One aspect of the invention includes a method of treating glaucoma, including inserting a stent through an incision in an eye; the stent having an inflow portion that is in fluid communication with an outflow portion of the stent; positioning the stent such that the inflow portion of the stent is positioned in the anterior chamber of the eye and the outflow portion of the stent is positioned at an aqueous cavity; and infusing fluid from the inflow portion to the outflow portion of the stent.
  • In some arrangements the aqueous cavity is Schlemm's canal. In certain arrangements, the method further comprises positioning the stent such that the outflow portion of the stent is in Schlemm's canal. In some arrangements the aqueous cavity is an aqueous collector channel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a coronal, cross-sectional view of an eye.
  • FIG. 2 is an enlarged cross-sectional view of an anterior chamber angle of the eye of FIG. 1.
  • FIG. 3 is an oblique elevation view of one embodiment of an axisymmetric trabecular microstent.
  • FIG. 4 is a detailed view of the proximal section of the microstent of FIG. 3.
  • FIG. 5 is an applicator for delivering a microstent and infusing fluid for therapeutic treatment.
  • FIG. 6 is an enlarged, cross-sectional view of a preferred method of implanting a trabecular microstent within an eye.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The preferred embodiments of the present invention described below relate particularly to surgical and therapeutic treatment of glaucoma through reduction of intraocular pressure. While the description sets forth various embodiment specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the invention. Furthermore, various applications of the invention, and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described below.
  • FIG. 1 is a cross-sectional view of an eye 10, while FIG. 2 is a close-up view showing the relative anatomical locations of a trabecular meshwork 21, an anterior chamber 20, and a Schlemm's canal 22. A sclera 11 is a thick collagenous tissue that covers the entire eye 10 except a portion that is covered by a cornea 12. The cornea 12 is a thin transparent tissue that focuses and transmits light into the eye and through a pupil 14, which is a circular hole in the center of an iris 13 (colored portion of the eye). The cornea 12 merges into the sclera 11 at a juncture referred to as a limbus 15. A ciliary body 16 extends along the interior of the sclera 11 and is coextensive with a choroid 17. The choroid 17 is a vascular layer of the eye 10, located between the sclera 11 and a retina 18. An optic nerve 19 transmits visual information to the brain and is the anatomic structure that is progressively destroyed by glaucoma.
  • The anterior chamber 20 of the eye 10, which is bound anteriorly by the cornea 12 and posteriorly by the iris 13 and a lens 26, is filled with aqueous humor (hereinafter referred to as “aqueous”). Aqueous is produced primarily by the ciliary body 16, then moves anteriorly through the pupil 14 and reaches an anterior chamber angle 25, formed between the iris 13 and the cornea 12. In a normal eye, aqueous is removed from the anterior chamber 20 through the trabecular meshwork 21. Aqueous passes through the trabecular meshwork 21 into Schlemm's canal 22 and thereafter through a plurality of aqueous veins 23, which merge with blood-carrying veins, and into systemic venous circulation. Intraocular pressure is maintained by an intricate balance between secretion and outflow of aqueous in the manner described above. Glaucoma is, in most cases, characterized by an excessive buildup of aqueous in the anterior chamber 20, which leads to an increase in intraocular pressure. Fluids are relatively incompressible, and thus intraocular pressure is distributed relatively uniformly throughout the eye 10.
  • As shown in FIG. 2, the trabecular meshwork 21 is adjacent to a small portion of the sclera 11. Exterior to the sclera 11 is a conjunctiva 24. Traditional procedures that create a hole or opening for implanting a device through the tissues of the conjunctiva 24 and sclera 11 involve extensive surgery, as compared to surgery for implanting a device, as described herein, which ultimately resides entirely within the confines of the sclera 11 and cornea 12. A microstent 81 is shown placed through trabecular meshwork 21 having a distal portion 83 disposed within Schlemm's canal 22 and a proximal portion 82 disposed within the anterior chamber 20 of the eye 10. FIG. 6 generally illustrates the use of one embodiment of a trabecular microstent 81 for establishing an outflow pathway, passing through the trabecular meshwork 21, which is discussed in greater detail below.
  • FIG. 3 illustrates a preferred embodiment of a hollow trabecular microstent 81, which facilitates the outflow of aqueous from the anterior chamber 20 into Schlemm's canal 22, and subsequently into the aqueous collectors and the aqueous veins so that intraocular pressure is reduced. In the illustrated embodiment, the trabecular microstent 81 comprises an inlet section 82, having an inlet opening 86, a middle section 84, and an outlet section 83 having at least one opening 87, 88. The middle section 84 may be an extension of, or may be coextensive with, the inlet section 82. The device 81 comprises at least one lumen 85 within section 84, which is in fluid communication with the inlet opening 86 and the outlet opening 87, 88, thereby facilitating transfer of aqueous through the device 81. In one aspect, the outlet side openings 88, each of which is in fluid communication with the lumen 85 for transmission of aqueous, are arranged spaced apart around the circumferential periphery 80 of the outlet section 83. In another aspect, the outlet openings 88 are located and configured to enable jet-like infusing fluid impinging any specific region of Schlemm's canal tissue suitably for tissue stimulation.
  • As will be apparent to a person skilled in the art, the lumen 85 and the remaining body of the outlet section 83 may have a cross-sectional shape that is oval, circular, or other appropriate shape. Preferably, the middle section 84 has a length that is roughly equal to a thickness of the trabecular meshwork 21, which typically ranges between about 100 μm and about 300 μm.
  • To further stent or open Schlemm's canal after implanting the axisymmetric device 81, a plurality of elevated (that is, protruding axially) supports or pillars 89 is located at the distal-most end of the outlet section 83 sized and configured for allowing media (for example, aqueous, liquid, balanced salt solution, viscoelastic fluid, therapeutic agents, or the like) to be transported freely.
  • The microstent 81 may further comprises a flow-restricting member 90, which is tightly retained within a lumen 85. The flow-restricting member 90 serves to selectively restrict at least one component in blood from moving retrograde, i.e., from the outlet section 83 into the anterior chamber 20 of the eye 10. Alternatively, the flow-restricting member 90 may be situated in any location within the device 81 such that blood flow is restricted from retrograde motion. The flow-restricting member 90 is sized and configured for maintaining the pressure of the infused fluid within the aqueous cavity for a suitable period of time. The flow-restricting member 90 may, in other embodiments, be a filter made of a material selected from the following filter materials: expanded polytetrafluoroethylene, cellulose, ceramic, glass, Nylon, plastic, and fluorinated material such as polyvinylidene fluoride (“PVDF”) (trade name: Kynar, by DuPont).
  • The trabecular microstent 81 may be made by molding, thermo-forming, or other micro-machining techniques. The trabecular microstent 81 preferably comprises a biocompatible material such that inflammation arising due to irritation between the outer surface of the device 81 and the surrounding tissue is minimized. Biocompatible materials which may be used for the device 81 preferably include, but are not limited to, titanium, stainless steel, medical grade silicone, e.g., Silastic™, available from Dow Corning Corporation of Midland, Mich.; and polyurethane, e.g., Pellethane™, also available from Dow Corning Corporation. In other embodiments, the device 81 may comprise other types of biocompatible material, such as, by way of example, polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, polytetrafluoroethylene, expanded polytetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilicon, and/or a mixture of the aforementioned biocompatible materials, and the like. In another aspect, the microstent is made of a biodegradable material selected from a group consisting of poly(lactic acid), polyethylene-vinyl acetate, poly(lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), poly(caprolactone), poly(glycolic acid), and copolymer thereof.
  • In still other embodiments, composite biocompatible material may be used, wherein a surface material may be used in addition to one or more of the aforementioned materials. For example, such a surface material may include polytetrafluoroethylene (PTFE) (such as Teflon™), polyimide, hydrogel, heparin, therapeutic drugs (such as beta-adrenergic antagonists, TGF-beta, and other anti-glaucoma drugs, or antibiotics), and the like.
  • As is well known in the art, a device coated or loaded with a slow-release substance can have prolonged effects on local tissue surrounding the device. The slow-release delivery can be designed such that an effective amount of substance is released over a desired duration. “Substance,” as used herein, is defined as any therapeutic or active drug that can stop, mitigate, slow-down or reverse undesired disease processes.
  • In one embodiment, the device 81 may be made of a biodegradable (also including bioerodible) material admixed with a substance for substance slow-release into ocular tissues. In another embodiment, polymer films may function as substance containing release devices whereby the polymer films may be coupled or secured to the device 81. The polymer films may be designed to permit the controlled release of the substance at a chosen rate and for a selected duration, which may also be episodic or periodic. Such polymer films may be synthesized such that the substance is bound to the surface or resides within a pore in the film so that the substance is relatively protected from enzymatic attack. The polymer films may also be modified to alter their hydrophilicity, hydrophobicity and vulnerability to platelet adhesion and enzymatic attack.
  • The device 81 may be used for a direct release of pharmaceutical preparations into ocular tissues. As discussed above, the pharmaceuticals may be compounded within the device 81 or form a coating on the device 81. Any known drug therapy for glaucoma may be utilized.
  • FIG. 4 shows a detailed view of the proximal section 82 of the microstent 81 of FIG. 3. In some aspect, the proximal section 82 has a bottom peripheral surface 91 that is about perpendicular to the lumen 85 of the microstent 81. A receiving thread arrangement 95 is appropriately located on the peripheral surface 91. The receiving thread arrangement 95 is sized and configured to releasably receive a screw thread arrangement 96 for coupling together, wherein the screw thread arrangement 96 is disposed at the distal end 97 of a fluid delivery element 94 which has a lumen 93 for transporting the infusing fluid into the aqueous cavity for therapeutic purposes. The coupling of the receiving thread arrangement 95 and the screw thread arrangement 96 makes the fluid infusion through the lumen 85 leak-proof enabling pressurized the aqueous cavity.
  • FIG. 5 shows a distal portion 57 of an applicator 55 for delivering a microstent 81 and infusing fluid for therapeutic treatment. The distal portion 57 comprises a distal cutting means 42 sharp enough for creating an incision on the cornea and also creating an opening on trabecular meshwork 21 for stent placement. The axisymmetric microstent 81 is snugly placed within the lumen 43 of the applicator 55 and retained by a plurality of stent retaining members 45. The microstent 81 is deployed from the applicator 55 once the distal section 83 passes beyond the edge of the trabecular meshwork 21. In one aspect, the stent deployment is facilitated by a plunger-type deployment mechanism 44 with an associated deployment actuator 61 mounted on the handle 62 of the applicator 55 (see FIG. 6).
  • The microstent 81 may be releasably coupled with a fluid delivery element 94 at any convenient time during the procedures. In one aspect, the screw-unscrew coupling steps between the microstent 81 and the fluid delivery element 94 is carried out by suitably rotating the fluid delivery element 94 with reference to the stent receiving thread arrangement 95, wherein the associated rotating mechanism 63 is located at the handle 62 of the applicator 55.
  • As will be appreciated by those of ordinary skill in the art, the device 81 may advantageously be practiced with a variety of sizes and shapes without departing from the scope of the invention. Depending upon the distance between the anterior chamber 20 and the drainage vessel (e.g., a vein) contemplated, the devices 81 may have a length ranging from about 0.05 centimeters to over 1 centimeter. Preferably, the device 81 has an outside diameter ranging between about 30 μm and about 500 μm, with the lumen 85 having diameters ranging between about 20 μm and about 250 μm, respectively. In addition, the device 81 may have a plurality of lumens to facilitate transmission of multiple flows of aqueous or infusing fluid.
  • One preferred method for increasing aqueous outflow in the eye 10 of a patient, to reduce intraocular pressure therein, comprises bypassing the trabecular meshwork 21. In operation, the middle section 84 of the device 81 is advantageously placed across the trabecular meshwork 21 through a slit or opening. This opening can be created by use of a laser, a knife, thermal energy (radiofrequency, ultrasound, microwave), cryogenic energy, or other surgical cutting instrument. The opening may advantageously be substantially horizontal, i.e., extending longitudinally in the same direction as the circumference of the limbus 15 (FIG. 2). Other opening directions may also be used, as well. The opening may advantageously be oriented at any angle, relative to the circumference of the limbus 15, that is appropriate for inserting the device 81 through the trabecular meshwork 21 and into Schlemm's canal 22 or other outflow pathway, as will be apparent to those skilled in the art. Furthermore, the outlet section 83 may be positioned into fluid collection channels of the natural outflow pathways. Such natural outflow pathways include Schlemm's canal 22, aqueous collector channels, aqueous veins, and episcleral veins.
  • FIG. 6 generally illustrates a preferred method by which the trabecular microstent 81 is implanted within the eye 10. In the illustrated method, a delivery applicator 55 is provided, which preferably comprises a syringe portion 64 and a cannula portion 65, which contains at least one lumen 43 in fluid communication with the fluid supply 66. The cannula portion 65 preferably has a size of about 30 gauge. However, in other embodiments, the cannula portion 65 may have a size ranging between about 16 gauges and about 40 gauges. A holder 56 at the distal portion 57 of the cannula portion 65 for holding the device 81 may advantageously comprise a lumen, a sheath, a clamp, tongs, a space, and the like.
  • In the method illustrated in FIG. 6, the device 81 is placed into the lumen 43 of the delivery applicator 55 and then advanced to a desired implantation site within the eye 10. The delivery applicator 55 holds the device 81 securely during delivery and releases it when the practitioner initiates deployment actuator 61 of the applicator 55.
  • In a preferred embodiment of trabecular meshwork surgery, a patient is placed in a supine position, prepped, draped, and appropriately anesthetized. A small incision 52 is then made through the cornea 12 with a self-trephining applicator 55. The incision 52 preferably has a surface length less than about 1.0 millimeter in length and may advantageously be self-sealing. Through the incision 52, the trabecular meshwork 21 is accessed, wherein an incision is made with a cutting means 42 enabling forming a hole on the trabecular meshwork 21 for stent placement. The hole on the trabecular meshwork can also be created with a tip having thermal energy or cryogenic energy. After the device 81 is appropriately implanted, the applicator 55 is withdrawn and the trabecular meshwork surgery is concluded.
  • In some aspect of the present invention, it is provided a method for expanding or attenuating the capacity of the existing canal outflow system (also known as the “aqueous cavity”). This system could have become constricted or blocked due to age or other factors associated with glaucoma. In one aspect, a tight fluid coupling is established between an external pressured fluid source 66 and Schlemm's canal 22 through a microstent 81. It is also advantageous to connect the external pressurized fluid source through a removable instrument (for example, a temporary applicator, catheter, cannula, or tubing) to Schlemm's canal ab interno for applying the fluid infusion therapy.
  • Once the fluid coupling is established, the pressure in the canal is raised by injecting fluid or fluid with therapeutic substances. In some aspect of the present invention, a method is provided of treating glaucoma including infusing fluid into aqueous cavity from an anterior chamber end of a stent, wherein the fluid is at an elevated pressure above a baseline pressure of the aqueous cavity. The method further comprises placing a hollow trabecular microstent bypassing the trabecular meshwork, wherein the fluid is infused from the anterior chamber through a lumen of the microstent. The mode of fluid injection is selected from a group consisting of a pulsed mode, an intermittent mode, a programmed mode, or combination thereof. In one aspect, the pressure of the fluid therapy is effective to cause therapeutic effects on the tissue of the aqueous cavity. In another aspect, the fluid pressure is effective to cause the dilation of the aqueous cavity beyond the tissue elastic yield point for plastic permanent deformation. In other embodiment, the fluid is at an elevated pressure effective to cause plastic deformation for at least a portion of the aqueous cavity.
  • The fluid may be a salt solution such as Balanced Salt Solution, a viscoelastic (such as Healon), any other suitable viscous or non-viscous liquid, or suitable liquid loaded with drug at a concentration suitable for therapeutic purposes without causing safety concerns. A combination of liquids may also be used. The pressure is raised at an appropriate rate of rise to an appropriate level and for an appropriate length of time, as determined through development studies, to provide for the expansion of the outflow structures and/or a clearing of any blockages within them. The procedure can be augmented with other aids to enhance its effectiveness. These aids may include heat, vibration (sonic or ultrasonic), pulsation of a pressure front, pH, drugs, etc. It is intended that the aqueous cavity be expanded (attenuation or tissue stimulation) by this procedure resulting in an increased capacity for inflow and outflow of Schlemm's canal.
  • In some aspect of the present invention, it is provided a method for using a removable applicator, catheter, cannula, or tubing that is placed ab interno through the trabecular meshwork into the aqueous cavity of an eye adapted for infusing therapeutic liquid into the aqueous cavity.
  • In some aspect of the present invention, it is disclosed a method of treating glaucoma, the method including: providing at least one pharmaceutical substance incorporated into an axisymmetric trabecular microstent; implanting the microstent within a trabecular meshwork of an eye such that a first end of the microstent is positioned in an anterior chamber of the eye while a second end is positioned in a Schlemm's canal, wherein the first and second ends of the microstent establish a fluid communication between the anterior chamber and the Schlemm's canal; and allowing the microstent to release a quantity of the pharmaceutical substance into the eye. In one embodiment, the method further comprises a step of infusing fluid into the Schlemm's canal from the anterior chamber through a lumen of the microstent, wherein the fluid is at an elevated pressure above a baseline pressure of the Schlemm's canal.
  • Although preferred embodiments of the invention have been described in detail, certain variations and modifications will be apparent to those skilled in the art, including embodiments that do not provide all of the features and benefits described herein. Accordingly, the scope of the present invention is not to be limited by the illustrations or the foregoing descriptions thereof, but rather solely by reference to the appended claims and their equivalents.

Claims (31)

1-20. (canceled)
21. A method of treating an ocular disorder, comprising:
using a delivery instrument to insert an implant in eye tissue such that an inlet portion of the implant is in an anterior chamber of an eye and an outlet portion of the implant is in a physiological outflow pathway;
removing the delivery instrument from the eye without removing the implant; and
conducting fluid comprising a therapeutic substance through the implant and into the physiological outflow pathway.
22. The method of claim 21, wherein conducting fluid comprises infusing the therapeutic substance into the inlet portion of the implant.
23. The method of claim 21, wherein conducting fluid comprises conducting the fluid comprising the therapeutic substance from the inlet portion of the implant to the outlet portion of the implant.
24. The method of claim 21, wherein the fluid travels through the anterior chamber of the eye to the implant.
25. The method of claim 24, wherein the fluid travels through a delivery lumen to the implant.
26. The method of claim 25, wherein the delivery lumen is in fluid communication with a lumen of the implant.
27. The method of claim 26, wherein the delivery lumen is coupled to the lumen of the implant.
28. The method of claim 21, wherein the physiological outflow pathway comprises an aqueous pathway.
29. The method of claim 28, wherein the physiological outflow pathway comprises Schlemm's canal.
30. The method of claim 29, wherein the eye tissue comprises trabecular meshwork.
31. The method of claim 21, wherein the therapeutic substance is selected from the group consisting of a pharmaceutical, a gene, a growth factor, and an enzyme.
32. The method of claim 21, wherein the therapeutic substance is selected from the group consisting of an antiglaucoma drug, a beta-adrenergic antagonist, a TGF-beta compound, and an antibiotic.
33. A method of treating an ocular disorder, comprising:
inserting an implant through an incision in an eye;
positioning the implant in the eye such that an inlet portion of the implant is in an anterior chamber of the eye and an outlet portion of the implant is in a physiological outflow pathway with the inlet an outlet portions being in fluid communication;
providing a delivery lumen such that the delivery lumen is in fluid communication with the implant; and
infusing a fluid external to the eye through the delivery lumen such that the fluid flows from the inlet portion of the implant to the outlet portion of the implant and into the physiological outflow pathway.
34. The method of claim 33, wherein the method further comprises using a delivery instrument to transport the implant.
35. The method of claim 34, wherein the implant is transported through eye tissue.
36. The method of claim 34, wherein the implant is transported through the anterior chamber of the eye.
37. The method of claim 33, wherein providing a delivery lumen comprises coupling the delivery lumen to the inlet portion of the implant.
38. The method of claim 33, wherein providing a delivery lumen comprises coupling the delivery lumen to a lumen of the implant such that the lumens are in fluid communication.
39. The method of claim 33, wherein the fluid comprises a drug.
40. The method of claim 33, wherein the fluid comprises a therapeutic agent.
41. The method of claim 33, wherein the fluid comprises a therapeutic substance selected from the group consisting of a pharmaceutical, a gene, a growth factor, and an enzyme.
42. The method of claim 33, wherein the fluid comprises a therapeutic substance selected from the group consisting of an antiglaucoma drug, a beta-adrenergic antagonist, a TGF-beta compound, and an antibiotic.
43. The method of claim 33, wherein the physiological outflow pathway comprises an aqueous pathway.
44. The method of claim 43, wherein the physiological outflow pathway comprises Schlemm's canal.
45. A method of treating an ocular disorder, comprising:
inserting an instrument into a physiologic outflow pathway through which aqueous humor drains from an anterior chamber of an eye;
separating first and second walls of tissues which comprise the physiologic outflow pathway by injecting a fluid comprising a drug from the instrument while the instrument remains in the physiologic outflow pathway; and
withdrawing the instrument following the injection with said fluid remaining within the eye such that the drug has a therapeutic effect on the eye.
46. The method of claim 45 additionally comprising inserting the instrument into the anterior chamber of the eye and advancing the instrument through eye tissue separating the anterior chamber from the physiologic outflow pathway.
47. The method of claim 45 additionally comprising contacting scleral tissue with the instrument before separation.
48. The method of claim 45, wherein at least one of the separated tissues is scleral tissue.
49. The method of claim 48, wherein the fluid comprises a therapeutic substance selected from the group consisting of a pharmaceutical, a gene, a growth factor, and an enzyme.
50. The method of claim 48, wherein the fluid comprises a therapeutic substance selected from the group consisting of an antiglaucoma drug, a beta-adrenergic antagonist, a TGF-beta compound, and an antibiotic.
US11/332,746 2002-03-07 2006-01-12 Fluid infusion methods for glaucoma treatment Expired - Lifetime US8617094B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/332,746 US8617094B2 (en) 2002-03-07 2006-01-12 Fluid infusion methods for glaucoma treatment
US14/136,753 US9220632B2 (en) 2002-03-07 2013-12-20 Fluid infusion methods for ocular disorder treatment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36240502P 2002-03-07 2002-03-07
US36398002P 2002-03-14 2002-03-14
US10/384,912 US7186232B1 (en) 2002-03-07 2003-03-07 Fluid infusion methods for glaucoma treatment
US11/332,746 US8617094B2 (en) 2002-03-07 2006-01-12 Fluid infusion methods for glaucoma treatment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/384,912 Continuation US7186232B1 (en) 2002-03-07 2003-03-07 Fluid infusion methods for glaucoma treatment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/136,753 Continuation US9220632B2 (en) 2002-03-07 2013-12-20 Fluid infusion methods for ocular disorder treatment

Publications (3)

Publication Number Publication Date
US20060116626A1 US20060116626A1 (en) 2006-06-01
US20080183121A2 true US20080183121A2 (en) 2008-07-31
US8617094B2 US8617094B2 (en) 2013-12-31

Family

ID=36568226

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/384,912 Expired - Lifetime US7186232B1 (en) 2002-03-07 2003-03-07 Fluid infusion methods for glaucoma treatment
US11/332,746 Expired - Lifetime US8617094B2 (en) 2002-03-07 2006-01-12 Fluid infusion methods for glaucoma treatment
US14/136,753 Expired - Fee Related US9220632B2 (en) 2002-03-07 2013-12-20 Fluid infusion methods for ocular disorder treatment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/384,912 Expired - Lifetime US7186232B1 (en) 2002-03-07 2003-03-07 Fluid infusion methods for glaucoma treatment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/136,753 Expired - Fee Related US9220632B2 (en) 2002-03-07 2013-12-20 Fluid infusion methods for ocular disorder treatment

Country Status (1)

Country Link
US (3) US7186232B1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110105986A1 (en) * 2009-09-21 2011-05-05 Ben Bronstein Uveoscleral drainage device
US8109896B2 (en) 2008-02-11 2012-02-07 Optonol Ltd. Devices and methods for opening fluid passageways
US8142364B2 (en) 2001-05-02 2012-03-27 Dose Medical Corporation Method of monitoring intraocular pressure and treating an ocular disorder
US20120197175A1 (en) * 2006-06-30 2012-08-02 Aquesys, Inc. Methods, systems and apparatus for relieving pressure in an organ
US8313454B2 (en) 1997-11-20 2012-11-20 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
US8771216B2 (en) * 2009-11-06 2014-07-08 University Hospitals Of Cleveland Fluid communication device and method of use thereof
US20150157836A1 (en) * 2008-01-28 2015-06-11 Peter Mats Forsell Implantable drainage device
US20150216729A1 (en) * 2012-09-28 2015-08-06 Doci Innovations GmbH Implant for treating glaucoma
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US9883969B2 (en) 2011-12-08 2018-02-06 Aquesys, Inc. Intrascleral shunt placement
US9980854B2 (en) 2010-11-15 2018-05-29 Aquesys, Inc. Shunt placement through the sclera
US10004638B2 (en) 2010-11-15 2018-06-26 Aquesys, Inc. Intraocular shunt delivery
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
US10195079B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular implant
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US10245178B1 (en) 2011-06-07 2019-04-02 Glaukos Corporation Anterior chamber drug-eluting ocular implant
US10307293B2 (en) 2010-11-15 2019-06-04 Aquesys, Inc. Methods for intraocular shunt placement
US10369048B2 (en) 2013-06-28 2019-08-06 Aquesys, Inc. Intraocular shunt implantation
US10463537B2 (en) 2015-06-03 2019-11-05 Aquesys Inc. Ab externo intraocular shunt placement
US10524959B2 (en) 2013-02-27 2020-01-07 Aquesys, Inc. Intraocular shunt implantation methods and devices
CN111759582A (en) * 2019-04-02 2020-10-13 巨晰光纤股份有限公司 Shunt bracket for drainage of eyeballs
US10813789B2 (en) 2009-05-18 2020-10-27 Dose Medical Corporation Drug eluting ocular implant
US10842671B2 (en) 2010-11-15 2020-11-24 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US20210298948A1 (en) * 2009-05-18 2021-09-30 Dose Medical Corporation Drug eluting ocular implant with internal plug
US20220008700A1 (en) * 2017-09-20 2022-01-13 Sinopsys Surgical, Inc. Paranasal sinus fluid access implantation tools, assemblies, kits and methods
US11246753B2 (en) 2017-11-08 2022-02-15 Aquesys, Inc. Manually adjustable intraocular flow regulation
US11318043B2 (en) 2016-04-20 2022-05-03 Dose Medical Corporation Bioresorbable ocular drug delivery device
US11363951B2 (en) 2011-09-13 2022-06-21 Glaukos Corporation Intraocular physiological sensor

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU772917B2 (en) * 1999-04-26 2004-05-13 Gmp Vision Solutions, Inc. Stent device and method for treating glaucoma
US7229469B1 (en) 1999-10-02 2007-06-12 Quantumcor, Inc. Methods for treating and repairing mitral valve annulus
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US6638239B1 (en) * 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
CA2442652C (en) 2001-04-07 2011-01-04 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US7488303B1 (en) * 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US7186232B1 (en) * 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US20040225250A1 (en) * 2003-05-05 2004-11-11 Michael Yablonski Internal shunt and method for treating glaucoma
US7291125B2 (en) * 2003-11-14 2007-11-06 Transcend Medical, Inc. Ocular pressure regulation
US20050250788A1 (en) * 2004-01-30 2005-11-10 Hosheng Tu Aqueous outflow enhancement with vasodilated aqueous cavity
BRPI0519087B8 (en) * 2004-12-16 2021-06-22 Iscience Interventional Corp instrument for inserting an implant into the schlemm's canal of the eye
US20090043365A1 (en) * 2005-07-18 2009-02-12 Kolis Scientific, Inc. Methods, apparatuses, and systems for reducing intraocular pressure as a means of preventing or treating open-angle glaucoma
US10219942B1 (en) * 2005-12-03 2019-03-05 S. Gregory Smith Eye implant devices and method and device for implanting such devices for treatment of glaucoma
US8721656B2 (en) 2006-01-17 2014-05-13 Transcend Medical, Inc. Glaucoma treatment device
CA2637602C (en) 2006-01-17 2014-09-16 Forsight Labs, Llc Drug delivery treatment device
US7909789B2 (en) 2006-06-26 2011-03-22 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US9095411B2 (en) 2010-11-15 2015-08-04 Aquesys, Inc. Devices for deploying intraocular shunts
US8974511B2 (en) 2010-11-15 2015-03-10 Aquesys, Inc. Methods for treating closed angle glaucoma
US10085884B2 (en) 2006-06-30 2018-10-02 Aquesys, Inc. Intraocular devices
US8801766B2 (en) 2010-11-15 2014-08-12 Aquesys, Inc. Devices for deploying intraocular shunts
US8308701B2 (en) 2010-11-15 2012-11-13 Aquesys, Inc. Methods for deploying intraocular shunts
CA2655969C (en) * 2006-06-30 2014-11-25 Aquesys Inc. Methods, systems and apparatus for relieving pressure in an organ
US8187266B2 (en) * 2006-09-29 2012-05-29 Quantumcor, Inc. Surgical probe and methods for targeted treatment of heart structures
WO2008061043A2 (en) 2006-11-10 2008-05-22 Glaukos Corporation Uveoscleral shunt and methods for implanting same
WO2009012406A1 (en) 2007-07-17 2009-01-22 Transcend Medical, Inc. Ocular implant with hydrogel expansion capabilities reference to priority document
US7740604B2 (en) * 2007-09-24 2010-06-22 Ivantis, Inc. Ocular implants for placement in schlemm's canal
US20090082862A1 (en) 2007-09-24 2009-03-26 Schieber Andrew T Ocular Implant Architectures
US20170360609A9 (en) 2007-09-24 2017-12-21 Ivantis, Inc. Methods and devices for increasing aqueous humor outflow
US8734377B2 (en) 2007-09-24 2014-05-27 Ivantis, Inc. Ocular implants with asymmetric flexibility
US8337509B2 (en) * 2007-11-20 2012-12-25 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8808222B2 (en) 2007-11-20 2014-08-19 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8512404B2 (en) * 2007-11-20 2013-08-20 Ivantis, Inc. Ocular implant delivery system and method
KR101043129B1 (en) * 2007-12-24 2011-06-20 두산디에스티주식회사 Independence type suspension apparatus for vehicles
AU2009221859B2 (en) 2008-03-05 2013-04-18 Alcon Inc. Methods and apparatus for treating glaucoma
ES2640867T3 (en) 2008-06-25 2017-11-07 Novartis Ag Eye implant with ability to change shape
EP2548538B1 (en) 2009-01-28 2020-04-01 Alcon Inc. Implantation systems for ocular implants with stiffness qualities
WO2010115101A1 (en) * 2009-04-03 2010-10-07 Transcend Medical, Inc. Ocular implant delivery systems and methods
AU2010271218B2 (en) 2009-07-09 2017-02-02 Alcon Inc. Ocular implants and methods for delivering ocular implants into the eye
WO2011006078A1 (en) 2009-07-09 2011-01-13 Ivantis, Inc. Single operator device for delivering an ocular implant
WO2011050360A1 (en) 2009-10-23 2011-04-28 Ivantis, Inc. Ocular implant system and method
US20110105990A1 (en) * 2009-11-04 2011-05-05 Silvestrini Thomas A Zonal drug delivery device and method
US8529492B2 (en) 2009-12-23 2013-09-10 Trascend Medical, Inc. Drug delivery devices and methods
JP5856569B2 (en) 2010-02-05 2016-02-10 サイト サイエンシーズ, インコーポレイテッド Device for reducing intraocular pressure and kit including the same
US8545430B2 (en) 2010-06-09 2013-10-01 Transcend Medical, Inc. Expandable ocular devices
US9510973B2 (en) 2010-06-23 2016-12-06 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
LT2600930T (en) 2010-08-05 2021-04-12 Forsight Vision4, Inc. Injector apparatus for drug delivery
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
US8765210B2 (en) 2011-12-08 2014-07-01 Aquesys, Inc. Systems and methods for making gelatin shunts
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US9855167B2 (en) 2012-03-20 2018-01-02 Sight Sciences, Inc. Ocular delivery systems and methods
CA2868341C (en) 2012-03-26 2021-01-12 Glaukos Corporation System and method for delivering multiple ocular implants
US9358156B2 (en) 2012-04-18 2016-06-07 Invantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US9241832B2 (en) 2012-04-24 2016-01-26 Transcend Medical, Inc. Delivery system for ocular implant
US9501823B2 (en) * 2012-08-02 2016-11-22 Agency For Science, Technology And Research Methods and systems for characterizing angle closure glaucoma for risk assessment or screening
ES2633185T3 (en) 2012-09-17 2017-09-19 Novartis Ag Expandable eye implant devices
WO2014078288A1 (en) 2012-11-14 2014-05-22 Transcend Medical, Inc. Flow promoting ocular implant
WO2014085450A1 (en) 2012-11-28 2014-06-05 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
WO2014145021A1 (en) * 2013-03-15 2014-09-18 Orange County Glaucoma, Pc Enhancement of aqueous flow
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US9987163B2 (en) 2013-04-16 2018-06-05 Novartis Ag Device for dispensing intraocular substances
US9649223B2 (en) 2013-06-13 2017-05-16 Innfocus, Inc. Inserter for tubular medical implant devices
CA2930027C (en) 2013-11-14 2019-10-29 Aquesys, Inc. Intraocular shunt inserter
US20150342875A1 (en) 2014-05-29 2015-12-03 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US9655774B2 (en) * 2014-06-19 2017-05-23 California Institute Of Technology Small molecule transport device for drug delivery or waste removal
US10973425B2 (en) 2014-07-01 2021-04-13 Injectsense, Inc. Hermetically sealed implant sensors with vertical stacking architecture
JP2017520327A (en) 2014-07-01 2017-07-27 インジェクトセンス, インコーポレイテッド Method and device for implanting an intraocular pressure sensor
US10709547B2 (en) 2014-07-14 2020-07-14 Ivantis, Inc. Ocular implant delivery system and method
US10201451B2 (en) 2014-08-29 2019-02-12 Camras Vision Inc. Device and method for reducing intraocular pressure
US10342702B2 (en) 2014-08-29 2019-07-09 Camras Vision Inc. Apparatus and method for reducing intraocular pressure
CN105769430B (en) * 2014-12-26 2018-09-28 易浦润(上海)生物技术有限公司 A kind of Punctual plugs carrying medicine
WO2016109639A2 (en) * 2014-12-31 2016-07-07 Brown J David Glaucoma treatment devices and methods
WO2016154066A2 (en) 2015-03-20 2016-09-29 Glaukos Corporation Gonioscopic devices
US10299958B2 (en) 2015-03-31 2019-05-28 Sight Sciences, Inc. Ocular delivery systems and methods
WO2017030917A1 (en) 2015-08-14 2017-02-23 Ivantis, Inc. Ocular inplant with pressure sensor and delivery system
WO2017040853A1 (en) 2015-09-02 2017-03-09 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
WO2017049248A1 (en) 2015-09-16 2017-03-23 Orange County Glaucoma, Pc Shunt for vascular flow enhancement
US10092387B2 (en) 2015-09-24 2018-10-09 California Institute Of Technology Implantable device for retaining live cells and providing nutrients thereto
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
AU2016331925B2 (en) 2015-09-30 2021-04-22 Microoptx Inc. Dry eye treatment devices and methods
US10524958B2 (en) 2015-09-30 2020-01-07 Alievio, Inc. Method and apparatus for reducing intraocular pressure
WO2017106517A1 (en) 2015-12-15 2017-06-22 Ivantis, Inc. Ocular implant and delivery system
EP3463228A4 (en) 2016-06-02 2020-03-04 Aquesys, Inc. Intraocular drug delivery
WO2018118817A1 (en) 2016-12-19 2018-06-28 New World Medical, Inc. Ocular treatment devices and related methods of use
US10674906B2 (en) 2017-02-24 2020-06-09 Glaukos Corporation Gonioscopes
CN107019592A (en) * 2017-05-11 2017-08-08 天津优视眼科技术有限公司 What a kind of interior road was implemented applies Lai Mushi pipe treatment systems
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
AU2018346229B2 (en) 2017-10-06 2024-07-18 Glaukos Corporation Systems and methods for delivering multiple ocular implants
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus
WO2019103906A1 (en) * 2017-11-21 2019-05-31 Forsight Vision4, Inc. Fluid exchange apparatus for expandable port delivery system and methods of use
US12029683B2 (en) 2018-02-22 2024-07-09 Alcon Inc. Ocular implant and delivery system
US10952898B2 (en) 2018-03-09 2021-03-23 Aquesys, Inc. Intraocular shunt inserter
US11135089B2 (en) 2018-03-09 2021-10-05 Aquesys, Inc. Intraocular shunt inserter
EP3843675A1 (en) * 2018-08-31 2021-07-07 New World Medical, Inc. Ocular implants, inserter devices, and methods for insertion of ocular implants
US11504270B1 (en) 2019-09-27 2022-11-22 Sight Sciences, Inc. Ocular delivery systems and methods
CN111228034A (en) * 2020-01-16 2020-06-05 贵州省人民医院 Drug-loading controlled-release lacrimal duct embolus and preparation method thereof
JP7220688B2 (en) * 2020-09-16 2023-02-10 巨晰光纖股▲ふん▼有限公司 Diversion support frame for eyeball drainage
AU2022205382A1 (en) 2021-01-11 2023-06-22 Alcon Inc. Systems and methods for viscoelastic delivery
USD1033637S1 (en) 2022-01-24 2024-07-02 Forsight Vision4, Inc. Fluid exchange device

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976077A (en) * 1975-02-03 1976-08-24 Kerfoot Jr Franklin W Eye surgery device
US4642090A (en) * 1985-03-04 1987-02-10 Utrata Peter J Disposable combination scalpel blade and incision irrigator for ophthalmological use
US5098443A (en) * 1989-03-23 1992-03-24 University Of Miami Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents
US5486165A (en) * 1992-01-10 1996-01-23 Stegmann; Robert Method and appliance for maintaining the natural intraocular pressure
US5599534A (en) * 1994-08-09 1997-02-04 University Of Nebraska Reversible gel-forming composition for sustained delivery of bio-affecting substances, and method of use
US5629008A (en) * 1992-06-02 1997-05-13 C.R. Bard, Inc. Method and device for long-term delivery of drugs
US5652014A (en) * 1991-08-16 1997-07-29 Galin; Miles A. Medicament coated refractive anterior chamber ocular implant
US5767079A (en) * 1992-07-08 1998-06-16 Celtrix Pharmaceuticals, Inc. Method of treating ophthalmic disorders using TGF -β
US5868697A (en) * 1995-05-14 1999-02-09 Optonol Ltd. Intraocular implant
US5891084A (en) * 1994-12-27 1999-04-06 Lee; Vincent W. Multiple chamber catheter delivery system
US5893837A (en) * 1997-02-28 1999-04-13 Staar Surgical Company, Inc. Glaucoma drain implanting device and method
US6007511A (en) * 1991-05-08 1999-12-28 Prywes; Arnold S. Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation
US6033418A (en) * 1997-04-25 2000-03-07 New Jersey Institute Of Technology Method and device for corneal shaping and refractive correction
US6221078B1 (en) * 1999-06-25 2001-04-24 Stephen S. Bylsma Surgical implantation apparatus
US6299603B1 (en) * 1998-08-03 2001-10-09 Karl I. Hecker Injection apparatus and method of using same
US6306120B1 (en) * 1999-06-07 2001-10-23 Ben Gee Tan Applicator and method for delivery of mitomycin to eye tissues during glaucoma filtering surgery
US6378526B1 (en) * 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
US20020128704A1 (en) * 2001-03-07 2002-09-12 Wolfgang Daum Stent and method for drug delivery from stents
US20020133168A1 (en) * 2001-03-16 2002-09-19 Smedley Gregory T. Applicator and methods for placing a trabecular shunt for glaucoma treatment
US6471666B1 (en) * 2000-02-24 2002-10-29 Steven A. Odrich Injectable glaucoma device
US20020165522A1 (en) * 2001-05-03 2002-11-07 Jorgen Holmen Method for use in cataract surgery
US20020165478A1 (en) * 2001-05-02 2002-11-07 Morteza Gharib Bifurcatable trabecular shunt for glaucoma treatment
US20020188308A1 (en) * 2001-04-07 2002-12-12 Hosheng Tu Glaucoma stent and methods thereof for glaucoma treatment
US6544249B1 (en) * 1996-11-29 2003-04-08 The Lions Eye Institute Of Western Australia Incorporated Biological microfistula tube and implantation method and apparatus
US20030097117A1 (en) * 2001-11-16 2003-05-22 Buono Lawrence M. Spray device
US6596296B1 (en) * 1999-08-06 2003-07-22 Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
US20040092548A1 (en) * 1995-12-21 2004-05-13 Jonathan Embleton Ophthalmic treatment
US7033603B2 (en) * 1999-08-06 2006-04-25 Board Of Regents The University Of Texas Drug releasing biodegradable fiber for delivery of therapeutics
US7060094B2 (en) * 2000-08-07 2006-06-13 Ophthalmotronics, Inc. Accommodating zonular mini-bridge implants
US7186232B1 (en) * 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788327A (en) 1971-03-30 1974-01-29 H Donowitz Surgical implant device
US4037604A (en) 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4168697A (en) 1977-01-17 1979-09-25 Cantekin Erdem I Middle ear ventilating tube and method
US4113088A (en) 1977-06-06 1978-09-12 Binkhorst Richard D Sterile package
US4175563A (en) 1977-10-05 1979-11-27 Arenberg Irving K Biological drainage shunt
US4402681A (en) 1980-08-23 1983-09-06 Haas Joseph S Artificial implant valve for the regulation of intraocular pressure
NO147900C (en) 1981-03-12 1983-07-06 Finn Skjaerpe MICROSURGICAL INSTRUMENT.
US4428746A (en) 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4554918A (en) 1982-07-28 1985-11-26 White Thomas C Ocular pressure relief device
JPS5985153A (en) 1982-11-08 1984-05-17 Hitachi Ltd Redundancy controller
US4521210A (en) 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
US4634418A (en) 1984-04-06 1987-01-06 Binder Perry S Hydrogel seton
US4787885A (en) 1984-04-06 1988-11-29 Binder Perry S Hydrogel seton
US4604087A (en) 1985-02-26 1986-08-05 Joseph Neil H Aqueous humor drainage device
US4713448A (en) * 1985-03-12 1987-12-15 Biomatrix, Inc. Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues
US4820626A (en) 1985-06-06 1989-04-11 Thomas Jefferson University Method of treating a synthetic or naturally occuring surface with microvascular endothelial cells, and the treated surface itself
US4632842A (en) 1985-06-20 1986-12-30 Atrium Medical Corporation Glow discharge process for producing implantable devices
US4718907A (en) 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4883864A (en) 1985-09-06 1989-11-28 Minnesota Mining And Manufacturing Company Modified collagen compound and method of preparation
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
NZ215409A (en) 1986-03-07 1989-02-24 Anthony Christopher Be Molteno Implant for drainage of aqueous humour in glaucoma
CH670760A5 (en) 1986-06-02 1989-07-14 Sulzer Ag
US4722724A (en) 1986-06-23 1988-02-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4863457A (en) 1986-11-24 1989-09-05 Lee David A Drug delivery device
US4846793A (en) 1987-03-18 1989-07-11 Endocon, Inc. Injector for implanting multiple pellet medicaments
US4846172A (en) 1987-05-26 1989-07-11 Berlin Michael S Laser-delivery eye-treatment method
US4900300A (en) 1987-07-06 1990-02-13 Lee David A Surgical instrument
AU2308988A (en) 1987-08-06 1989-03-01 Thomas C. White Glaucoma drainage in the lacrimal system
US4886488A (en) 1987-08-06 1989-12-12 White Thomas C Glaucoma drainage the lacrimal system and method
US4853224A (en) 1987-12-22 1989-08-01 Visionex Biodegradable ocular implants
US4997652A (en) 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
US4936825A (en) 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
US5005577A (en) 1988-08-23 1991-04-09 Frenkel Ronald E P Intraocular lens pressure monitoring device
US5681275A (en) 1988-10-07 1997-10-28 Ahmed; Abdul Mateen Ophthalmological device with adaptable multiple distribution plates
US5785674A (en) 1988-10-07 1998-07-28 Mateen; Ahmed Abdul Device and method for treating glaucoma
FR2651668B1 (en) 1989-09-12 1991-12-27 Leon Claude MICROSCOPE-ENDOSCOPE ASSEMBLY USEFUL IN PARTICULAR IN SURGERY.
USRE35390E (en) 1989-11-17 1996-12-03 Smith; Stewart G. Pressure relieving device and process for implanting
US4946436A (en) 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5164188A (en) 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US4968296A (en) 1989-12-20 1990-11-06 Robert Ritch Transscleral drainage implant device for the treatment of glaucoma
US5092837A (en) 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US5073163A (en) 1990-01-29 1991-12-17 Lippman Myron E Apparatus for treating glaucoma
US5180362A (en) * 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5129895A (en) 1990-05-16 1992-07-14 Sunrise Technologies, Inc. Laser sclerostomy procedure
US5041081A (en) 1990-05-18 1991-08-20 Odrich Ronald B Ocular implant for controlling glaucoma
US5127901A (en) 1990-05-18 1992-07-07 Odrich Ronald B Implant with subconjunctival arch
US5476445A (en) 1990-05-31 1995-12-19 Iovision, Inc. Glaucoma implant with a temporary flow restricting seal
US5397300A (en) 1990-05-31 1995-03-14 Iovision, Inc. Glaucoma implant
US5178604A (en) 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5454796A (en) 1991-04-09 1995-10-03 Hood Laboratories Device and method for controlling intraocular fluid pressure
US5312394A (en) 1991-04-29 1994-05-17 Hugh Beckman Apparatus and method for surgically performing a filtering operation on an eye for glaucoma
US5246451A (en) 1991-04-30 1993-09-21 Medtronic, Inc. Vascular prosthesis and method
US5358492A (en) 1991-05-02 1994-10-25 Feibus Miriam H Woven surgical drain and method of making
US5300020A (en) 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5171213A (en) 1991-08-14 1992-12-15 Price Jr Francis W Technique for fistulization of the eye and an eye filtration prosthesis useful therefor
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5207685A (en) 1992-02-11 1993-05-04 Cinberg James Z Tympanic ventilation tube and related technique
US5334137A (en) 1992-02-21 1994-08-02 Eagle Vision, Inc. Lacrimal fluid control device
US5346464A (en) 1992-03-10 1994-09-13 Camras Carl B Method and apparatus for reducing intraocular pressure
US5370641A (en) 1992-05-22 1994-12-06 O'donnell, Jr.; Francis E. Laser trabeculodissection
DE4219299C2 (en) 1992-06-12 1994-03-24 Leica Mikroskopie & Syst microscope
US5290295A (en) 1992-07-15 1994-03-01 Querals & Fine, Inc. Insertion tool for an intraluminal graft procedure
US6197056B1 (en) 1992-07-15 2001-03-06 Ras Holding Corp. Segmented scleral band for treatment of presbyopia and other eye disorders
US5318513A (en) 1992-09-24 1994-06-07 Leib Martin L Canalicular balloon fixation stent
US5370607A (en) 1992-10-28 1994-12-06 Annuit Coeptis, Inc. Glaucoma implant device and method for implanting same
WO1994013234A1 (en) 1992-12-17 1994-06-23 Michael Andrew Coote Implant device and method for treatment of glaucoma
US5338291A (en) 1993-02-03 1994-08-16 Pudenz-Schulte Medical Research Corporation Glaucoma shunt and method for draining aqueous humor
CA2158443C (en) 1993-03-16 2003-11-25 Stephen E. Hughes Method for preparation and transplantation of volute grafts and surgical instrument therefor
US5342370A (en) 1993-03-19 1994-08-30 University Of Miami Method and apparatus for implanting an artifical meshwork in glaucoma surgery
IL105828A (en) 1993-05-28 1999-06-20 Medinol Ltd Medical stent
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
FR2710269A1 (en) 1993-09-22 1995-03-31 Voir Vivre Implantable device for the treatment of edemas.
FI934513A (en) 1993-10-13 1995-04-14 Leiras Oy Anordning Foer injection with implant
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5443505A (en) 1993-11-15 1995-08-22 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5743868A (en) 1994-02-14 1998-04-28 Brown; Reay H. Corneal pressure-regulating implant device
US5516522A (en) 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5716394A (en) 1994-04-29 1998-02-10 W. L. Gore & Associates, Inc. Blood contact surfaces using extracellular matrix synthesized in vitro
IL109499A (en) 1994-05-02 1998-01-04 Univ Ramot Implant device for draining excess intraocular fluid
FR2721499B1 (en) 1994-06-22 1997-01-03 Opsia Trabeculectomy implant.
US6102045A (en) 1994-07-22 2000-08-15 Premier Laser Systems, Inc. Method and apparatus for lowering the intraocular pressure of an eye
US5704907A (en) 1994-07-22 1998-01-06 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5520631A (en) 1994-07-22 1996-05-28 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5665114A (en) 1994-08-12 1997-09-09 Meadox Medicals, Inc. Tubular expanded polytetrafluoroethylene implantable prostheses
DE4433104C1 (en) 1994-09-16 1996-05-02 Fraunhofer Ges Forschung Device for measuring mechanical properties of biological tissue
US5702419A (en) 1994-09-21 1997-12-30 Wake Forest University Expandable, intraluminal stents
US6063116A (en) 1994-10-26 2000-05-16 Medarex, Inc. Modulation of cell proliferation and wound healing
US6063396A (en) 1994-10-26 2000-05-16 Houston Biotechnology Incorporated Methods and compositions for the modulation of cell proliferation and wound healing
JP3642812B2 (en) 1994-11-17 2005-04-27 株式会社町田製作所 Medical observation device
US5601094A (en) 1994-11-22 1997-02-11 Reiss; George R. Ophthalmic shunt
US6228873B1 (en) 1994-12-09 2001-05-08 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US5725493A (en) 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
US5433701A (en) 1994-12-21 1995-07-18 Rubinstein; Mark H. Apparatus for reducing ocular pressure
US5558630A (en) 1994-12-30 1996-09-24 Fisher; Bret L. Intrascleral implant and method for the regulation of intraocular pressure
GB2296663A (en) 1995-01-03 1996-07-10 Ahmed Salih Mahmud Drainage device for alleviating excess ophthalmic fluid pressure
AU723047B2 (en) 1995-02-10 2000-08-17 University Of Toronto Innovations Foundation, The Deprenyl compounds for treatment of glaucoma
US6059772A (en) 1995-03-10 2000-05-09 Candela Corporation Apparatus and method for treating glaucoma using a gonioscopic laser trabecular ablation procedure
BE1009278A3 (en) 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and medical device with a stake as.
US5626558A (en) 1995-05-05 1997-05-06 Suson; John Adjustable flow rate glaucoma shunt and method of using same
US5968058A (en) 1996-03-27 1999-10-19 Optonol Ltd. Device for and method of implanting an intraocular implant
DE69633074T2 (en) 1995-05-14 2004-12-30 Optonol Ltd. INTRAOCULAR IMPLANT, INSERTION DEVICE AND IMPLANTATION PROCEDURE
WO1996037167A1 (en) 1995-05-25 1996-11-28 Raychem Corporation Stent assembly
US5723005A (en) 1995-06-07 1998-03-03 Herrick Family Limited Partnership Punctum plug having a collapsible flared section and method
CA2223502A1 (en) 1995-06-08 1996-12-27 Bard Galway Limited Bifurcated endovascular stent
US5766243A (en) 1995-08-21 1998-06-16 Oasis Medical, Inc. Abrasive polished canalicular implant
US5662600A (en) 1995-09-29 1997-09-02 Pudenz-Schulte Medical Research Corporation Burr-hole flow control device
US5836939A (en) 1995-10-25 1998-11-17 Plc Medical Systems, Inc. Surgical laser handpiece
US6045557A (en) 1995-11-10 2000-04-04 Baxter International Inc. Delivery catheter and method for positioning an intraluminal graft
US5651783A (en) 1995-12-20 1997-07-29 Reynard; Michael Fiber optic sleeve for surgical instruments
US6299895B1 (en) 1997-03-24 2001-10-09 Neurotech S.A. Device and method for treating ophthalmic diseases
US5807302A (en) 1996-04-01 1998-09-15 Wandel; Thaddeus Treatment of glaucoma
US6629981B2 (en) 2000-07-06 2003-10-07 Endocare, Inc. Stent delivery system
US5830179A (en) 1996-04-09 1998-11-03 Endocare, Inc. Urological stent therapy system and method
US5865831A (en) 1996-04-17 1999-02-02 Premier Laser Systems, Inc. Laser surgical procedures for treatment of glaucoma
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US6530896B1 (en) 1996-05-13 2003-03-11 James B. Elliott Apparatus and method for introducing an implant
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5681323A (en) 1996-07-15 1997-10-28 Arick; Daniel S. Emergency cricothyrotomy tube insertion
US6120460A (en) 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US5830139A (en) 1996-09-04 1998-11-03 Abreu; Marcio M. Tonometer system for measuring intraocular pressure by applanation and/or indentation
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
US6007510A (en) 1996-10-25 1999-12-28 Anamed, Inc. Implantable devices and methods for controlling the flow of fluids within the body
FR2757068B1 (en) 1996-12-13 1999-04-23 Jussmann Alberto SELF-FIXING DRAIN
US6261256B1 (en) 1996-12-20 2001-07-17 Abdul Mateen Ahmed Pocket medical valve & method
US5713844A (en) 1997-01-10 1998-02-03 Peyman; Gholam A. Device and method for regulating intraocular pressure
GB9700390D0 (en) 1997-01-10 1997-02-26 Biocompatibles Ltd Device for use in the eye
US6780165B2 (en) 1997-01-22 2004-08-24 Advanced Medical Optics Micro-burst ultrasonic power delivery
DE19705815C2 (en) 1997-02-15 1999-02-11 Heidelberg Engineering Optisch Medical device for microsurgery on the eye
FR2759577B1 (en) 1997-02-17 1999-08-06 Corneal Ind DEEP SCLERECTOMY IMPLANT
US6071286A (en) 1997-02-19 2000-06-06 Mawad; Michel E. Combination angioplasty balloon/stent deployment device
US6059812A (en) 1997-03-21 2000-05-09 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
JP3827429B2 (en) 1997-04-03 2006-09-27 オリンパス株式会社 Surgical microscope
US5882327A (en) 1997-04-17 1999-03-16 Jacob; Jean T. Long-term glaucoma drainage implant
US6050970A (en) 1997-05-08 2000-04-18 Pharmacia & Upjohn Company Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US5752928A (en) 1997-07-14 1998-05-19 Rdo Medical, Inc. Glaucoma pressure regulator
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US5830171A (en) 1997-08-12 1998-11-03 Odyssey Medical, Inc. Punctal occluder
EP0898947A3 (en) 1997-08-15 1999-09-08 GRIESHABER & CO. AG SCHAFFHAUSEN Method and apparatus to improve the outflow of the aqueous humor of an eye
US6004302A (en) 1997-08-28 1999-12-21 Brierley; Lawrence A. Cannula
US6203513B1 (en) 1997-11-20 2001-03-20 Optonol Ltd. Flow regulating implant, method of manufacture, and delivery device
US6165209A (en) 1997-12-15 2000-12-26 Prolifix Medical, Inc. Vascular stent for reduction of restenosis
US6050999A (en) 1997-12-18 2000-04-18 Keravision, Inc. Corneal implant introducer and method of use
US6168575B1 (en) 1998-01-29 2001-01-02 David Pyam Soltanpour Method and apparatus for controlling intraocular pressure
EP1071414A1 (en) 1998-04-24 2001-01-31 Mitokor Compounds and methods for treating mitochondria-associated diseases
US6077299A (en) 1998-06-22 2000-06-20 Eyetronic, Llc Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma
DE19840047B4 (en) 1998-09-02 2004-07-08 Neuhann, Thomas, Prof.Dr.med. Device for the targeted improvement and / or permanent guarantee of the permeability for eye chamber water through the trabecular mechanism in the Schlemm's Canal
KR100300527B1 (en) 1998-09-03 2001-10-27 윤덕용 Remote pressure monitoring device of sealed type and manufacture method for the same
US6241721B1 (en) 1998-10-09 2001-06-05 Colette Cozean Laser surgical procedures for treatment of glaucoma
US6254612B1 (en) 1998-10-22 2001-07-03 Cordis Neurovascular, Inc. Hydraulic stent deployment system
US6348042B1 (en) 1999-02-02 2002-02-19 W. Lee Warren, Jr. Bioactive shunt
US6193656B1 (en) 1999-02-08 2001-02-27 Robert E. Jeffries Intraocular pressure monitoring/measuring apparatus and method
US6231597B1 (en) 1999-02-16 2001-05-15 Mark E. Deem Apparatus and methods for selectively stenting a portion of a vessel wall
US6217895B1 (en) 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
AU772917B2 (en) 1999-04-26 2004-05-13 Gmp Vision Solutions, Inc. Stent device and method for treating glaucoma
US20050119601A9 (en) 1999-04-26 2005-06-02 Lynch Mary G. Shunt device and method for treating glaucoma
US6342058B1 (en) 1999-05-14 2002-01-29 Valdemar Portney Iris fixated intraocular lens and instrument for attaching same to an iris
US6558342B1 (en) * 1999-06-02 2003-05-06 Optonol Ltd. Flow control device, introducer and method of implanting
US6187016B1 (en) 1999-09-14 2001-02-13 Daniel G. Hedges Stent retrieval device
BR0014929B1 (en) 1999-10-21 2009-01-13 device for dispensing ophthalmic medicament.
US6416777B1 (en) 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6579235B1 (en) 1999-11-01 2003-06-17 The Johns Hopkins University Method for monitoring intraocular pressure using a passive intraocular pressure sensor and patient worn monitoring recorder
US6287313B1 (en) 1999-11-23 2001-09-11 Sdgi Holdings, Inc. Screw delivery system and method
DE29920949U1 (en) 1999-11-29 2000-04-27 Bugge, Mogens, Göteborg Suction tube for surgical purposes
ATE303757T1 (en) 1999-12-10 2005-09-15 Iscience Corp TREATMENT OF EYE DISEASES
US6450937B1 (en) 1999-12-17 2002-09-17 C. R. Bard, Inc. Needle for implanting brachytherapy seeds
US6726676B2 (en) 2000-01-05 2004-04-27 Grieshaber & Co. Ag Schaffhausen Method of and device for improving the flow of aqueous humor within the eye
CZ20022477A3 (en) 2000-01-12 2003-02-12 Becton, Dickinson And Company System and method for reducing intra-ocular pressure
US20050119737A1 (en) 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
US6375642B1 (en) 2000-02-15 2002-04-23 Grieshaber & Co. Ag Schaffhausen Method of and device for improving a drainage of aqueous humor within the eye
US20020143284A1 (en) 2001-04-03 2002-10-03 Hosheng Tu Drug-releasing trabecular implant for glaucoma treatment
US20040111050A1 (en) 2000-04-14 2004-06-10 Gregory Smedley Implantable ocular pump to reduce intraocular pressure
US6533768B1 (en) 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof
US20050049578A1 (en) 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US20030060752A1 (en) 2000-04-14 2003-03-27 Olav Bergheim Glaucoma device and methods thereof
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
EP1286634B1 (en) 2000-05-19 2007-11-07 Michael S. Berlin Laser delivery system and method of use for the eye
JP2002040108A (en) 2000-07-27 2002-02-06 Advantest Corp Semiconductor device testing apparatus and method for timing calibration of the same
US6699211B2 (en) 2000-08-22 2004-03-02 James A. Savage Method and apparatus for treatment of glaucoma
US6428501B1 (en) 2000-09-19 2002-08-06 K2 Limited Partnership U/A/D Surgical instrument sleeve
FR2817912B1 (en) 2000-12-07 2003-01-17 Hispano Suiza Sa REDUCER TAKING OVER THE AXIAL EFFORTS GENERATED BY THE BLOWER OF A TURBO-JET
US6595945B2 (en) 2001-01-09 2003-07-22 J. David Brown Glaucoma treatment device and method
AU2002243612A1 (en) * 2001-01-18 2002-07-30 The Regents Of The University Of California Minimally invasive glaucoma surgical instrument and method
US6981958B1 (en) 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
AU2002305400A1 (en) * 2001-05-03 2002-11-18 Glaukos Corporation Medical device and methods of use for glaucoma treatment
WO2003015659A2 (en) 2001-08-16 2003-02-27 Gmp Vision Solutions, Inc. Improved shunt device and method for treating glaucoma
US7331984B2 (en) * 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US20030097151A1 (en) 2001-10-25 2003-05-22 Smedley Gregory T. Apparatus and mitochondrial treatment for glaucoma
US7163543B2 (en) 2001-11-08 2007-01-16 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US6939298B2 (en) 2002-02-28 2005-09-06 Gmp Vision Solutions, Inc Device and method for monitoring aqueous flow within the eye
US20030229303A1 (en) 2002-03-22 2003-12-11 Haffner David S. Expandable glaucoma implant and methods of use
US20040024345A1 (en) 2002-04-19 2004-02-05 Morteza Gharib Glaucoma implant with valveless flow bias
US20030236483A1 (en) 2002-06-25 2003-12-25 Ren David H Dual drainage ocular shunt for glaucoma
USD490152S1 (en) 2003-02-28 2004-05-18 Glaukos Corporation Surgical handpiece

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976077A (en) * 1975-02-03 1976-08-24 Kerfoot Jr Franklin W Eye surgery device
US4642090A (en) * 1985-03-04 1987-02-10 Utrata Peter J Disposable combination scalpel blade and incision irrigator for ophthalmological use
US5098443A (en) * 1989-03-23 1992-03-24 University Of Miami Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents
US6007511A (en) * 1991-05-08 1999-12-28 Prywes; Arnold S. Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation
US5652014A (en) * 1991-08-16 1997-07-29 Galin; Miles A. Medicament coated refractive anterior chamber ocular implant
US5486165A (en) * 1992-01-10 1996-01-23 Stegmann; Robert Method and appliance for maintaining the natural intraocular pressure
US5629008A (en) * 1992-06-02 1997-05-13 C.R. Bard, Inc. Method and device for long-term delivery of drugs
US5767079A (en) * 1992-07-08 1998-06-16 Celtrix Pharmaceuticals, Inc. Method of treating ophthalmic disorders using TGF -β
US5599534A (en) * 1994-08-09 1997-02-04 University Of Nebraska Reversible gel-forming composition for sustained delivery of bio-affecting substances, and method of use
US5891084A (en) * 1994-12-27 1999-04-06 Lee; Vincent W. Multiple chamber catheter delivery system
US5868697A (en) * 1995-05-14 1999-02-09 Optonol Ltd. Intraocular implant
US20040092548A1 (en) * 1995-12-21 2004-05-13 Jonathan Embleton Ophthalmic treatment
US6544249B1 (en) * 1996-11-29 2003-04-08 The Lions Eye Institute Of Western Australia Incorporated Biological microfistula tube and implantation method and apparatus
US5893837A (en) * 1997-02-28 1999-04-13 Staar Surgical Company, Inc. Glaucoma drain implanting device and method
US6033418A (en) * 1997-04-25 2000-03-07 New Jersey Institute Of Technology Method and device for corneal shaping and refractive correction
US6378526B1 (en) * 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
US6299603B1 (en) * 1998-08-03 2001-10-09 Karl I. Hecker Injection apparatus and method of using same
US6306120B1 (en) * 1999-06-07 2001-10-23 Ben Gee Tan Applicator and method for delivery of mitomycin to eye tissues during glaucoma filtering surgery
US6221078B1 (en) * 1999-06-25 2001-04-24 Stephen S. Bylsma Surgical implantation apparatus
US6596296B1 (en) * 1999-08-06 2003-07-22 Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
US7033603B2 (en) * 1999-08-06 2006-04-25 Board Of Regents The University Of Texas Drug releasing biodegradable fiber for delivery of therapeutics
US6471666B1 (en) * 2000-02-24 2002-10-29 Steven A. Odrich Injectable glaucoma device
US7060094B2 (en) * 2000-08-07 2006-06-13 Ophthalmotronics, Inc. Accommodating zonular mini-bridge implants
US20020128704A1 (en) * 2001-03-07 2002-09-12 Wolfgang Daum Stent and method for drug delivery from stents
US20020133168A1 (en) * 2001-03-16 2002-09-19 Smedley Gregory T. Applicator and methods for placing a trabecular shunt for glaucoma treatment
US20020188308A1 (en) * 2001-04-07 2002-12-12 Hosheng Tu Glaucoma stent and methods thereof for glaucoma treatment
US20020165478A1 (en) * 2001-05-02 2002-11-07 Morteza Gharib Bifurcatable trabecular shunt for glaucoma treatment
US20020165522A1 (en) * 2001-05-03 2002-11-07 Jorgen Holmen Method for use in cataract surgery
US6533769B2 (en) * 2001-05-03 2003-03-18 Holmen Joergen Method for use in cataract surgery
US20030014021A1 (en) * 2001-05-03 2003-01-16 Jorgen Holmen Methods and compositions usable in cataract surgery
US20030097117A1 (en) * 2001-11-16 2003-05-22 Buono Lawrence M. Spray device
US7186232B1 (en) * 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313454B2 (en) 1997-11-20 2012-11-20 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
US8142364B2 (en) 2001-05-02 2012-03-27 Dose Medical Corporation Method of monitoring intraocular pressure and treating an ocular disorder
US20120197175A1 (en) * 2006-06-30 2012-08-02 Aquesys, Inc. Methods, systems and apparatus for relieving pressure in an organ
US20150157836A1 (en) * 2008-01-28 2015-06-11 Peter Mats Forsell Implantable drainage device
US9694165B2 (en) * 2008-01-28 2017-07-04 Peter Mats Forsell Implantable drainage device
US8109896B2 (en) 2008-02-11 2012-02-07 Optonol Ltd. Devices and methods for opening fluid passageways
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US20210298948A1 (en) * 2009-05-18 2021-09-30 Dose Medical Corporation Drug eluting ocular implant with internal plug
US10813789B2 (en) 2009-05-18 2020-10-27 Dose Medical Corporation Drug eluting ocular implant
US20110105986A1 (en) * 2009-09-21 2011-05-05 Ben Bronstein Uveoscleral drainage device
US8771216B2 (en) * 2009-11-06 2014-07-08 University Hospitals Of Cleveland Fluid communication device and method of use thereof
US9173774B2 (en) 2010-03-26 2015-11-03 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
US10842671B2 (en) 2010-11-15 2020-11-24 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US9980854B2 (en) 2010-11-15 2018-05-29 Aquesys, Inc. Shunt placement through the sclera
US10004638B2 (en) 2010-11-15 2018-06-26 Aquesys, Inc. Intraocular shunt delivery
US10307293B2 (en) 2010-11-15 2019-06-04 Aquesys, Inc. Methods for intraocular shunt placement
US10245178B1 (en) 2011-06-07 2019-04-02 Glaukos Corporation Anterior chamber drug-eluting ocular implant
US11363951B2 (en) 2011-09-13 2022-06-21 Glaukos Corporation Intraocular physiological sensor
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
US9883969B2 (en) 2011-12-08 2018-02-06 Aquesys, Inc. Intrascleral shunt placement
US20150216729A1 (en) * 2012-09-28 2015-08-06 Doci Innovations GmbH Implant for treating glaucoma
US9782293B2 (en) * 2012-09-28 2017-10-10 Doci Innovations GmbH Implant for treating glaucoma
US10195078B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular flow regulation
US10195079B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular implant
US10524959B2 (en) 2013-02-27 2020-01-07 Aquesys, Inc. Intraocular shunt implantation methods and devices
US10849558B2 (en) 2013-03-13 2020-12-01 Glaukos Corporation Intraocular physiological sensor
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US11253394B2 (en) 2013-03-15 2022-02-22 Dose Medical Corporation Controlled drug delivery ocular implants and methods of using same
US10369048B2 (en) 2013-06-28 2019-08-06 Aquesys, Inc. Intraocular shunt implantation
US10470927B2 (en) 2015-06-03 2019-11-12 Aquesys, Inc. AB externo intraocular shunt placement
US10463537B2 (en) 2015-06-03 2019-11-05 Aquesys Inc. Ab externo intraocular shunt placement
US11612517B2 (en) 2015-06-03 2023-03-28 Aquesys, Inc. Ab externo intraocular shunt placement
US11318043B2 (en) 2016-04-20 2022-05-03 Dose Medical Corporation Bioresorbable ocular drug delivery device
US20220008700A1 (en) * 2017-09-20 2022-01-13 Sinopsys Surgical, Inc. Paranasal sinus fluid access implantation tools, assemblies, kits and methods
US12017023B2 (en) * 2017-09-20 2024-06-25 Sinopsys Surgical, Inc. Paranasal sinus fluid access implantation tools, assemblies, kits and methods
US11246753B2 (en) 2017-11-08 2022-02-15 Aquesys, Inc. Manually adjustable intraocular flow regulation
CN111759582A (en) * 2019-04-02 2020-10-13 巨晰光纤股份有限公司 Shunt bracket for drainage of eyeballs

Also Published As

Publication number Publication date
US7186232B1 (en) 2007-03-06
US20060116626A1 (en) 2006-06-01
US9220632B2 (en) 2015-12-29
US20140343475A1 (en) 2014-11-20
US8617094B2 (en) 2013-12-31

Similar Documents

Publication Publication Date Title
US9220632B2 (en) Fluid infusion methods for ocular disorder treatment
US10485702B2 (en) System and method for treating an ocular disorder
US10285856B2 (en) Implant delivery system and methods thereof for treating ocular disorders
US20060200113A1 (en) Liquid jet for glaucoma treatment
EP1310222A2 (en) Drug-releasing trabecular implant for glaucoma treatment

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: GLAUKOS CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SMEDLEY, GREGORY;HAFFNER, DAVID;TU, HOSHENG;REEL/FRAME:032727/0822

Effective date: 20030529

CC Certificate of correction
REMI Maintenance fee reminder mailed
FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554)

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551)

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8