US20080145665A1 - Bis-carbazole monomers and polymers - Google Patents
Bis-carbazole monomers and polymers Download PDFInfo
- Publication number
- US20080145665A1 US20080145665A1 US11/610,032 US61003206A US2008145665A1 US 20080145665 A1 US20080145665 A1 US 20080145665A1 US 61003206 A US61003206 A US 61003206A US 2008145665 A1 US2008145665 A1 US 2008145665A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- radical
- light emitting
- formula
- bis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 61
- 239000000178 monomer Substances 0.000 title description 20
- 239000001257 hydrogen Substances 0.000 claims abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 12
- 239000004417 polycarbonate Substances 0.000 claims abstract description 6
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 6
- 229920000728 polyester Polymers 0.000 claims abstract description 5
- 229920000570 polyether Polymers 0.000 claims abstract description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract 7
- 238000002347 injection Methods 0.000 claims description 16
- 239000007924 injection Substances 0.000 claims description 16
- YFPJFKYCVYXDJK-UHFFFAOYSA-N Diphenylphosphine oxide Chemical compound C=1C=CC=CC=1[P+](=O)C1=CC=CC=C1 YFPJFKYCVYXDJK-UHFFFAOYSA-N 0.000 claims description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 5
- 125000004665 trialkylsilyl group Chemical group 0.000 claims description 5
- 125000005106 triarylsilyl group Chemical group 0.000 claims description 5
- 229920001601 polyetherimide Polymers 0.000 claims description 4
- 239000004697 Polyetherimide Substances 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 3
- CHYUXCABJMXHJN-UHFFFAOYSA-N diphenyl(sulfanylidene)phosphanium Chemical compound C=1C=CC=CC=1[P+](=S)C1=CC=CC=C1 CHYUXCABJMXHJN-UHFFFAOYSA-N 0.000 claims 4
- 229920000110 poly(aryl ether sulfone) Polymers 0.000 claims 2
- 229920006260 polyaryletherketone Polymers 0.000 claims 2
- -1 polyestercarbonates Polymers 0.000 abstract description 128
- 150000001875 compounds Chemical class 0.000 abstract description 12
- 229920006393 polyether sulfone Polymers 0.000 abstract description 3
- 229920001643 poly(ether ketone) Polymers 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 58
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 33
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 24
- 150000003254 radicals Chemical class 0.000 description 22
- 239000000463 material Substances 0.000 description 17
- YERGTYJYQCLVDM-UHFFFAOYSA-N iridium(3+);2-(4-methylphenyl)pyridine Chemical compound [Ir+3].C1=CC(C)=CC=C1C1=CC=CC=N1.C1=CC(C)=CC=C1C1=CC=CC=N1.C1=CC(C)=CC=C1C1=CC=CC=N1 YERGTYJYQCLVDM-UHFFFAOYSA-N 0.000 description 16
- 239000000523 sample Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 10
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 10
- 230000006798 recombination Effects 0.000 description 10
- 238000005215 recombination Methods 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000004793 Polystyrene Substances 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 0 *C.*C.*C.*C.*C.*C.CO.CO.[4*]C1=CC=C2C(=C1)C1=C(/C=C\C(C3=C\C=C4C(=C\3)/C3=C(C=CC([8*])=C3)N/4C3=CC=CC=C3)=C/1)N2C1=CC=CC=C1 Chemical compound *C.*C.*C.*C.*C.*C.CO.CO.[4*]C1=CC=C2C(=C1)C1=C(/C=C\C(C3=C\C=C4C(=C\3)/C3=C(C=CC([8*])=C3)N/4C3=CC=CC=C3)=C/1)N2C1=CC=CC=C1 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 7
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 7
- 125000004555 carbazol-3-yl group Chemical group C1=CC(=CC=2C3=CC=CC=C3NC12)* 0.000 description 7
- 239000000975 dye Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 229920002223 polystyrene Polymers 0.000 description 7
- 229910001868 water Inorganic materials 0.000 description 7
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- 230000005281 excited state Effects 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 125000005843 halogen group Chemical group 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002800 charge carrier Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 125000001188 haloalkyl group Chemical group 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- MXNMKOQEJHXPFO-UHFFFAOYSA-N COC1=CC=C(C(C)(C)C2=CC=C(OC(C)=O)C=C2)C=C1 Chemical compound COC1=CC=C(C(C)(C)C2=CC=C(OC(C)=O)C=C2)C=C1 MXNMKOQEJHXPFO-UHFFFAOYSA-N 0.000 description 3
- IQIBAGRUAOXWOU-UHFFFAOYSA-N COC1=CC=C(N2C3=CC=C(C4=CC5=C(C=C4)N(C4=CC=C(OC)C=C4)C4=CC=CC=C45)C=C3C3=C2C=CC=C3)C=C1 Chemical compound COC1=CC=C(N2C3=CC=C(C4=CC5=C(C=C4)N(C4=CC=C(OC)C=C4)C4=CC=CC=C45)C=C3C3=C2C=CC=C3)C=C1 IQIBAGRUAOXWOU-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229920000144 PEDOT:PSS Polymers 0.000 description 3
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000003158 alcohol group Chemical group 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002451 electron ionisation mass spectrometry Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 125000001033 ether group Chemical group 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- 125000000468 ketone group Chemical group 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 229910052760 oxygen Chemical group 0.000 description 3
- 239000001301 oxygen Chemical group 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Chemical group 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Chemical group 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Chemical group 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 2
- DKIBUFBAMGZCBK-UHFFFAOYSA-N 2-[2-(4-methylphenyl)phenyl]pyridine Chemical compound C1=CC(C)=CC=C1C1=CC=CC=C1C1=CC=CC=N1 DKIBUFBAMGZCBK-UHFFFAOYSA-N 0.000 description 2
- QJPJQTDYNZXKQF-UHFFFAOYSA-N 4-bromoanisole Chemical compound COC1=CC=C(Br)C=C1 QJPJQTDYNZXKQF-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- VZQJKWIYMIKLPA-UHFFFAOYSA-N 9-(4-methoxyphenyl)carbazole Chemical compound C1=CC(OC)=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VZQJKWIYMIKLPA-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- 229920000291 Poly(9,9-dioctylfluorene) Polymers 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 150000001716 carbazoles Chemical class 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000000412 dendrimer Substances 0.000 description 2
- 229920000736 dendritic polymer Polymers 0.000 description 2
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 2
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 2
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 239000011970 polystyrene sulfonate Substances 0.000 description 2
- 229960002796 polystyrene sulfonate Drugs 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- PFZLGKHSYILJTH-UHFFFAOYSA-N thieno[2,3-c]thiophene Chemical compound S1C=C2SC=CC2=C1 PFZLGKHSYILJTH-UHFFFAOYSA-N 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 2
- ONUFSRWQCKNVSL-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-(2,3,4,5,6-pentafluorophenyl)benzene Chemical group FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F ONUFSRWQCKNVSL-UHFFFAOYSA-N 0.000 description 1
- GOYDNIKZWGIXJT-UHFFFAOYSA-N 1,2-difluorobenzene Chemical compound FC1=CC=CC=C1F GOYDNIKZWGIXJT-UHFFFAOYSA-N 0.000 description 1
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OZUNPRDEUXITBO-UHFFFAOYSA-N 1-(4-chlorophenyl)sulfonyl-4-[4-(4-chlorophenyl)sulfonylphenyl]benzene Chemical group C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC=C(C=2C=CC(=CC=2)S(=O)(=O)C=2C=CC(Cl)=CC=2)C=C1 OZUNPRDEUXITBO-UHFFFAOYSA-N 0.000 description 1
- MONGUDQJUIVFPI-UHFFFAOYSA-N 1-(benzenesulfonyl)-4-fluorobenzene Chemical compound C1=CC(F)=CC=C1S(=O)(=O)C1=CC=CC=C1 MONGUDQJUIVFPI-UHFFFAOYSA-N 0.000 description 1
- HTDQSWDEWGSAMN-UHFFFAOYSA-N 1-bromo-2-methoxybenzene Chemical compound COC1=CC=CC=C1Br HTDQSWDEWGSAMN-UHFFFAOYSA-N 0.000 description 1
- MJEPOVIWHVRBIT-UHFFFAOYSA-N 1-chloro-4-(4-chlorophenyl)sulfanylbenzene Chemical compound C1=CC(Cl)=CC=C1SC1=CC=C(Cl)C=C1 MJEPOVIWHVRBIT-UHFFFAOYSA-N 0.000 description 1
- PZDAAZQDQJGXSW-UHFFFAOYSA-N 1-fluoro-4-(4-fluorophenyl)benzene Chemical group C1=CC(F)=CC=C1C1=CC=C(F)C=C1 PZDAAZQDQJGXSW-UHFFFAOYSA-N 0.000 description 1
- PLVUIVUKKJTSDM-UHFFFAOYSA-N 1-fluoro-4-(4-fluorophenyl)sulfonylbenzene Chemical compound C1=CC(F)=CC=C1S(=O)(=O)C1=CC=C(F)C=C1 PLVUIVUKKJTSDM-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- HQCHAOKWWKLXQH-UHFFFAOYSA-N 2,6-Dichloro-para-phenylenediamine Chemical compound NC1=CC(Cl)=C(N)C(Cl)=C1 HQCHAOKWWKLXQH-UHFFFAOYSA-N 0.000 description 1
- KFDDOSKBEZKAMI-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenylbenzo[h]quinoline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=CC(C)=CC=1C1=CC=CC=C1 KFDDOSKBEZKAMI-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- RIKNNBBGYSDYAX-UHFFFAOYSA-N 2-[1-[2-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]-n,n-bis(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C(=CC=CC=1)C1(CCCCC1)C=1C(=CC=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 RIKNNBBGYSDYAX-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- SLRMQYXOBQWXCR-UHFFFAOYSA-N 2154-56-5 Chemical compound [CH2]C1=CC=CC=C1 SLRMQYXOBQWXCR-UHFFFAOYSA-N 0.000 description 1
- ZVFQEOPUXVPSLB-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-phenyl-5-(4-phenylphenyl)-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=C(C=2C=CC=CC=2)C=C1 ZVFQEOPUXVPSLB-UHFFFAOYSA-N 0.000 description 1
- WEHZNZTWKUYVIY-UHFFFAOYSA-N 3-oxabicyclo[3.2.2]nona-1(7),5,8-triene-2,4-dione Chemical compound O=C1OC(=O)C2=CC=C1C=C2 WEHZNZTWKUYVIY-UHFFFAOYSA-N 0.000 description 1
- OKISUZLXOYGIFP-UHFFFAOYSA-N 4,4'-dichlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(Cl)C=C1 OKISUZLXOYGIFP-UHFFFAOYSA-N 0.000 description 1
- YTBRNEUEFCNVHC-UHFFFAOYSA-N 4,4'-dichlorobiphenyl Chemical group C1=CC(Cl)=CC=C1C1=CC=C(Cl)C=C1 YTBRNEUEFCNVHC-UHFFFAOYSA-N 0.000 description 1
- GPAPPPVRLPGFEQ-UHFFFAOYSA-N 4,4'-dichlorodiphenyl sulfone Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC=C(Cl)C=C1 GPAPPPVRLPGFEQ-UHFFFAOYSA-N 0.000 description 1
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- YGBCLRRWZQSURU-UHFFFAOYSA-N 4-[(diphenylhydrazinylidene)methyl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1C=NN(C=1C=CC=CC=1)C1=CC=CC=C1 YGBCLRRWZQSURU-UHFFFAOYSA-N 0.000 description 1
- PGDARWFJWJKPLY-UHFFFAOYSA-N 4-[2-[3-[4-(diethylamino)phenyl]-2-phenyl-1,3-dihydropyrazol-5-yl]ethenyl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1C=CC1=CC(C=2C=CC(=CC=2)N(CC)CC)N(C=2C=CC=CC=2)N1 PGDARWFJWJKPLY-UHFFFAOYSA-N 0.000 description 1
- UGVRJVHOJNYEHR-UHFFFAOYSA-N 4-chlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=CC=C1 UGVRJVHOJNYEHR-UHFFFAOYSA-N 0.000 description 1
- 125000004860 4-ethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])C([H])([H])[H] 0.000 description 1
- MVIXNQZIMMIGEL-UHFFFAOYSA-N 4-methyl-n-[4-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVIXNQZIMMIGEL-UHFFFAOYSA-N 0.000 description 1
- 125000004199 4-trifluoromethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C(F)(F)F 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- BGJNRQSGJHVURK-UHFFFAOYSA-N 5-chloroisoindole-1,3-dione Chemical compound ClC1=CC=C2C(=O)NC(=O)C2=C1 BGJNRQSGJHVURK-UHFFFAOYSA-N 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 229910018170 Al—Au Inorganic materials 0.000 description 1
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- MMWCQWOKHLEYSP-UHFFFAOYSA-N BisPhenol A bis(chloroformate) Chemical compound C=1C=C(OC(Cl)=O)C=CC=1C(C)(C)C1=CC=C(OC(Cl)=O)C=C1 MMWCQWOKHLEYSP-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- OVCKCHGMFOOCAF-UHFFFAOYSA-K BrB(Br)Br.C1=CC=C2C(=C1)NC1=C2C=CC=C1.COC1=CC=C(Br)C=C1.COC1=CC=C(N2C3=CC=C(C4=CC5=C(C=C4)N(C4=CC=C(OC)C=C4)C4=CC=CC=C45)C=C3C3=C2C=CC=C3)C=C1.COC1=CC=C(N2C3=CC=CC=C3C3=C2C=CC=C3)C=C1.Cl[Fe](Cl)Cl.OC1=CC=C(N2C3=CC=C(C4=CC5=C(C=C4)N(C4=CC=C(O)C=C4)C4=CC=CC=C45)C=C3C3=C2C=CC=C3)C=C1 Chemical compound BrB(Br)Br.C1=CC=C2C(=C1)NC1=C2C=CC=C1.COC1=CC=C(Br)C=C1.COC1=CC=C(N2C3=CC=C(C4=CC5=C(C=C4)N(C4=CC=C(OC)C=C4)C4=CC=CC=C45)C=C3C3=C2C=CC=C3)C=C1.COC1=CC=C(N2C3=CC=CC=C3C3=C2C=CC=C3)C=C1.Cl[Fe](Cl)Cl.OC1=CC=C(N2C3=CC=C(C4=CC5=C(C=C4)N(C4=CC=C(O)C=C4)C4=CC=CC=C45)C=C3C3=C2C=CC=C3)C=C1 OVCKCHGMFOOCAF-UHFFFAOYSA-K 0.000 description 1
- HLWYYNFBQUXPLQ-UHFFFAOYSA-N C1CCC(C#N)(C#N)CC1OC(C)(C)OC1CCCCC1 Chemical compound C1CCC(C#N)(C#N)CC1OC(C)(C)OC1CCCCC1 HLWYYNFBQUXPLQ-UHFFFAOYSA-N 0.000 description 1
- UHFLJIHBWJQRRG-UHFFFAOYSA-N CC1=CC=C(N2C3=CC=C(C4=CC5=C(C=C4)N(C4=CC=C(O)C=C4)C4=CC=CC=C45)C=C3C3=C2C=CC=C3)C=C1 Chemical compound CC1=CC=C(N2C3=CC=C(C4=CC5=C(C=C4)N(C4=CC=C(O)C=C4)C4=CC=CC=C45)C=C3C3=C2C=CC=C3)C=C1 UHFLJIHBWJQRRG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- LOMVENUNSWAXEN-UHFFFAOYSA-N Methyl oxalate Chemical compound COC(=O)C(=O)OC LOMVENUNSWAXEN-UHFFFAOYSA-N 0.000 description 1
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- UJOJIBQOYNBSPY-UHFFFAOYSA-N [4-(4-chlorobenzoyl)phenyl]-(4-chlorophenyl)methanone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(C(=O)C=2C=CC(Cl)=CC=2)C=C1 UJOJIBQOYNBSPY-UHFFFAOYSA-N 0.000 description 1
- LLJNTLUXOZPFQB-UHFFFAOYSA-N [4-(4-fluorobenzoyl)phenyl]-(4-fluorophenyl)methanone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=C(C(=O)C=2C=CC(F)=CC=2)C=C1 LLJNTLUXOZPFQB-UHFFFAOYSA-N 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- LYWKAJZTPLXHEM-UHFFFAOYSA-M bis(diethylamino)methylidene-diethylazanium;chloride Chemical compound [Cl-].CCN(CC)C(N(CC)CC)=[N+](CC)CC LYWKAJZTPLXHEM-UHFFFAOYSA-M 0.000 description 1
- TZSMWSKOPZEMAJ-UHFFFAOYSA-N bis[(2-methoxyphenyl)methyl] carbonate Chemical compound COC1=CC=CC=C1COC(=O)OCC1=CC=CC=C1OC TZSMWSKOPZEMAJ-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 125000005998 bromoethyl group Chemical group 0.000 description 1
- XZCJVWCMJYNSQO-UHFFFAOYSA-N butyl pbd Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)O1 XZCJVWCMJYNSQO-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004775 chlorodifluoromethyl group Chemical group FC(F)(Cl)* 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- GZYYOTJXMDCAJN-UHFFFAOYSA-N cyclohexyloxymethoxycyclohexane Chemical compound C1CCCCC1OCOC1CCCCC1 GZYYOTJXMDCAJN-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- BULYQPQVGJVSJD-UHFFFAOYSA-N diphenyl(sulfanylidene)-lambda5-phosphane Chemical group C=1C=CC=CC=1P(=S)C1=CC=CC=C1 BULYQPQVGJVSJD-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 125000004970 halomethyl group Chemical group 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001883 metal evaporation Methods 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- KVKFRMCSXWQSNT-UHFFFAOYSA-N n,n'-dimethylethane-1,2-diamine Chemical compound CNCCNC KVKFRMCSXWQSNT-UHFFFAOYSA-N 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002103 osmometry Methods 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 238000005691 oxidative coupling reaction Methods 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- QBDSZLJBMIMQRS-UHFFFAOYSA-N p-Cumylphenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=CC=C1 QBDSZLJBMIMQRS-UHFFFAOYSA-N 0.000 description 1
- NKTOLZVEWDHZMU-UHFFFAOYSA-N p-cumyl phenol Natural products CC1=CC=C(C)C(O)=C1 NKTOLZVEWDHZMU-UHFFFAOYSA-N 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- NJBFOOCLYDNZJN-UHFFFAOYSA-N pipobroman Chemical compound BrCCC(=O)N1CCN(C(=O)CCBr)CC1 NJBFOOCLYDNZJN-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
- C07D209/88—Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/68—Polyesters containing atoms other than carbon, hydrogen and oxygen
- C08G63/685—Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
- C08G63/6854—Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/04—Aromatic polycarbonates
- C08G64/06—Aromatic polycarbonates not containing aliphatic unsaturation
- C08G64/08—Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
- C08G64/12—Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1085—Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31721—Of polyimide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- the invention relates generally to compounds comprising bis-carbazole units that are difunctional.
- the invention also relates to monomers comprising bis-carbazole units and polymers, dendrimers and hyper-branched materials derived therefrom.
- OLEDs Organic light emitting devices
- LCDs liquid crystal displays Due to their high luminous efficiencies, OLEDs are seen as having the potential to replace incandescent, and perhaps even fluorescent, lamps for certain types of applications.
- One approach to achieve full-color OLEDs includes energy transfer from host to emissive guest molecules. For this to be realized, the triplet energy state of the host has to be higher than the guest molecule.
- Carbazole derivatives have shown promise to perform well as host molecule in the presence of metal containing emissive guest molecules. Often used in this respect is poly(N-vinyl carbazole). However, quantum efficiencies of devices that use poly(N-vinyl carbazole) is still at the range of about 60 to 80%. Thus, there is a need in the art to develop OLEDs having device quantum efficiencies, while still maintaining the potential for the molecules to host red, green, and blue emissive complexes.
- the invention relates to a compound of formula I
- R 1 , R 2 , R 3 , R 5 , R 6 and R 7 are independently at each occurrence a C 1 -C 20 aliphatic radical, a C 3 -C 20 aromatic radical, or a C 3 -C 20 cycloaliphatic radical;
- R 4 and R 8 are independently at each occurrence a hydrogen, a C 1 -C 20 aliphatic radical, a C 3 -C 20 aromatic radical, or a C 3 -C 20 cycloaliphatic radical;
- a and e are independently at each occurrence 0, or an integer ranging from 1 to 4; and
- b, c, d and f are independently 0 or an integer ranging from 1 to 3.
- the invention relates to a polymer comprising structural units of formula II
- R 1 , R 2 , R 3 , R 5 , R 6 and R 7 are independently at each occurrence a C 1 -C 20 aliphatic radical, a C 3 -C 20 aromatic radical, or a C 3 -C 20 cycloaliphatic radical;
- R 4 and R 8 are independently at each occurrence a hydrogen, a C 1 -C 20 aliphatic radical, a C 3 -C 20 aromatic radical, or a C 3 -C 20 cycloaliphatic radical;
- a and e are independently at each occurrence 0, or an integer ranging from 1 to 4; and
- b, c, d and f are independently 0 or an integer ranging from 1 to 3.
- the invention relates to a light emitting device comprising at least one electrode, at least one hole injection layer, at least one light emissive layer; wherein the light emissive layer comprises a polymer comprising structural units of formula II
- FIG. 1 shows the emission spectra of the samples from Example 5 and Comparative Example 5.
- FIG. 2 shows the triplet excited states decay profiles of the phosphorescent dye in the presence and absence of bis(9-(hydroxyphenyl)carbazol-3-yl).
- FIG. 3 shows a plot of quantum efficiency (cd/A) and a plot of power efficiency (lm/w) as a function of bias voltage (V) for the exemplary OLED devices.
- the invention relates to a compound comprising bis-carbazole units of formula I.
- Compounds of formula I may generally be regarded as bis-carbazole compounds.
- the 3-, 6-, 3′-, 6′-positions may be susceptible to oxidative coupling reactions, and it may be advantageous to protect one or more of these positions.
- R 4 and R 8 are t-butyl groups, while in still other embodiments, R 4 and R 8 are triarylsilyl groups, particularly triphenylsilyl, or trialkylsilyl groups, and in yet other embodiments, R 4 and R 8 are diphenyl phosphine oxide or diphenyl phosphine sulfide groups.
- a wide variety of groups may be used to substitute the bis-carbazole at the 6,6′ positions, and these may include, but not limited to, methyl, ethyl, methoxy, tolyl, methylcyclohexyl, and halomethyl.
- the invention relates to a monomer of formula I, wherein b, c, d and f are all 0, which has the formula
- the present invention relates to polymers having structural units of formula II.
- the polymers are prepared by copolymerizing one or more monomers of formula I with one or more comonomers to result in polycarbonates, copolycarbonates, polyarylates, copolyarylates, copolyestercarbonates, polyethers, polyether sulfones, polyether imides, and combinations thereof, in the form of random, block or graft copolymers, or dendrimers or hyper-branched materials.
- the monomer of formula I may be copolymerized with phosgene, or phosgene and a bisphenol, or with a diaryl carbonate or bishaloformate to provide a polycarbonate.
- exemplary monomers to make polycarbonates include diphenyl carbonate, bis(methylsalicyl)carbonate, bisphenol A bischloroformate, resorcinol bischloroformate, and combinations thereof.
- copolymerization with phosgene and bisphenol A results in a polymer comprising structural units of formula
- the resulting polymer comprises structural units of formula
- a monomer of formula I may be reacted with bisphenol A and diphenyl carbonate in the presence of a minute amount of a basic catalyst such as sodium hydroxide at a temperature in a range between about 150 and 300° C. at subatmospheric pressure.
- a basic catalyst such as sodium hydroxide
- the monomer of formula I may be copolymerized with a carboxylate ester, a carboxylic anhydride, or a carboxylic acid halide to yield a polyester.
- exemplary comonomers that may be used to make polyesters include terephthaloyl chloride, terephthalic anhydride, naphthoic dianhydride, succinic anhydride, dimethyl oxalate, and combinations thereof.
- the monomer of formula I may be copolymerized with one or more dihaloarylsulfone monomer to yield a polyether sulfone.
- Dihaloarylsulfones may include bis(4-fluorophenyl)sulfone, bis(4-chlorophenyl)sulfone, 4,4′-bis((4-chlorophenyl)sulfonyl)-1,1-biphenyl and combinations thereof.
- the monomer of formula I may be copolymerized with one or more dihaloaryl monomers to yield a polyether.
- dihaloaryl monomers include 1,6-dichlorobenzene, 4,4′-dichlorobiphenyl, 4,4′-dichlorodiphenylsulfide, 1,6-difluorobenzene, 4,4′-difluorobiphenyl, 4,4′-difluorodiphenylsulfie, and combinations thereof.
- the monomer of formula I may be copolymerized with decafluorobiphenyl in N-methyl-2-pyrollidone (NMP), in the presence of a base such as potassium carbonate, at the temperature between about 100 and about 250° C.
- NMP N-methyl-2-pyrollidone
- the monomer of formula I may be copolymerized with dihalobenzophenone monomer to yield a polyetherketone.
- dihalobenzophenone monomers include 1,4-bis(4′-chlorobenzoyl)benzene, 1,4-bis(4′-fluorobenzoyl)benzene, 1-(4′-chlorobenzoyl-4-(4′′-fluorobenzoyl)benzene, and combinations thereof.
- the monomer of formula I together with the disodium salt of bisphenol A may be reacted with 4,4′-dichlorobenzophenone in orthodichlorobenzene at a temperature between about 100 and about 250° C. in the presence of a phase transfer catalyst such as hexaethyl guanidinium chloride.
- the monomer of formula I may be copolymerized with a bis(halophthalimide) such as bis(4-chlorophthalimide) to obtain a polyetherimide.
- a bis(halophthalimide) such as bis(4-chlorophthalimide)
- Other bis(halophthalimide)s include 1,3-bis[N-(4-fluorophthalimido)]benzene, 1,4-bis[N-(4-fluorophthalimido)]benzene, 1,3-bis[N-(3-fluorophthalimido)]benzene, 1,4-bis[N-(3-fluorophthalimido)]benzene, 4,4′-bis[N-(4-fluorophthalimido)]phenyl ether, 4,4′-bis[N-(3-fluorophthalimido)]phenyl ether, 4,4′-bis[N-(4-chlorophthalimido)]phenyl ether,
- Reaction conditions useful for the preparation of the polymers of the present invention include the use of polar solvents and bases of suitable strength.
- polar solvents include chloroform, methylene chloride, orthodichlorobenzene, veratrole, anisole, and combinations thereof.
- exemplary bases include triethylamine, sodium hydroxide, potassium hydroxide, and combinations thereof.
- Suitable catalysts may also be employed to effect the polymerization reaction.
- the polymerization reaction may be conducted at a suitable temperature that ranges from about room temperature to about the boiling point of the solvent of choice.
- the polymerization may also be conducted at atmospheric pressure, subatmospheric pressures, or superatmospheric pressures.
- the polymerization reaction is conducted for a time period necessary to achieve polymer of a suitable molecular weight.
- the molecular weight of a polymer is determined by any of the techniques known to those skilled in the art, and include viscosity measurements, light scattering, and osmometry.
- the molecular weight of a polymer is typically represented as a number average molecular weight M n , or weight average molecular weight, M w .
- a particularly useful technique to determine molecular weight averages is gel permeation chromatography (GPC), from wherein both number average and weight average molecular weights are obtained.
- GPC gel permeation chromatography
- Molecular weight of the polymers is not critical, and in some embodiments, polymers of M w greater than 30,000 grams per mole (g/mol) are desirable, in other embodiments, polymers of M w greater than 50,000 g/mol are desirable, while in yet other embodiments, polymer of M w greater than 80,000 g/mol are desirable.
- the polymerization reaction may be controlled the addition of a suitable monofunctional reactant, sometimes also referred to in the art as “end-capping agents”, or “chain stoppers”.
- chain stopper serves to limit polymer molecular weight.
- Suitable phenolic chain stoppers include phenol and p-cumylphenol.
- Suitable aromatic halide chain stoppers include, 4-chlorophenyl phenyl sulfone, 4-fluorophenyl phenyl sulfone, and 4-chlorophenyl phenyl ketone.
- Polymers provided in the present invention may find use in a wide variety of applications that include, but are not limited to, light emitting electrochemical cells, photo detectors, photo conductive cells, photo switches, and display devices.
- the invention relates to a light emitting comprising at least one electrode, at least one hole injection layer, at least one light emissive layer; wherein the light emissive layer comprises a polymer comprising structural units of formula II.
- An organic light emitting device typically comprises multiple layers which include in the simplest case, an anode layer and a corresponding cathode layer with an organic electroluminescent layer disposed between said anode and said cathode.
- a voltage bias is applied across the electrodes, electrons are injected by the cathode into the electroluminescent layer while electrons are removed from (or “holes” are “injected” into) the electroluminescent layer from the anode.
- Light emission occurs as holes combine with electrons within the electroluminescent layer to form singlet or triplet excitons, light emission occurring as singlet excitons transfer energy to the environment by radiative decay.
- an organic light emitting device in addition to the anode, cathode and light emitting material
- Other components which may be present in an organic light emitting device in addition to the anode, cathode and light emitting material include hole injection layers, electron injection layers, and electron transport layers.
- the electron transport layer need not be in contact with the cathode, and frequently the electron transport layer is not an efficient hole transporter and thus it serves to block holes migrating toward the cathode.
- the majority of charge carriers (i.e. holes and electrons) present in the electron transport layer are electrons and light emission can occur through recombination of holes and electrons present in the electron transport layer.
- Additional components which may be present in an organic light emitting device include hole transport layers, hole transporting emission (emitting) layers and electron transporting emission (emitting) layers.
- Compounds of formula I have triplet energy states that are useful in applications such as organic light emitting devices (OLEDs), as they may give rise to highly efficient devices. Further, the triplet energy of these compounds may be high enough that it may be greater than those of guest dyes used in devices, and thus may serve as host molecules.
- the compounds of the present invention are particularly well suited for use in hole transport layers in organic light emitting devices.
- the present invention relates to an organic light emitting device comprising the compounds as a constituent of a hole transport layer of an organic light emitting device.
- the organic electroluminescent layer is a layer within an organic light emitting device which when in operation contains a significant concentration of both electrons and holes and provides sites for exciton formation and light emission.
- a hole injection layer is a layer in contact with the anode which promotes the injection of holes from the anode into the interior layers of the OLED; and an electron injection layer is a layer in contact with the cathode that promotes the injection of electrons from the cathode into the OLED;
- an electron transport layer is a layer which facilitates conduction of electrons from cathode to a charge recombination site.
- the electron transport layer need not be in contact with the cathode, and frequently the electron transport layer is not an efficient hole transporter and thus it serves to block holes migrating toward the cathode.
- the majority of charge carriers (i.e. holes and electrons) present in the electron transport layer are electrons and light emission can occur through recombination of holes and electrons present in the electron transport layer.
- a hole transport layer is a layer which when the OLED is in operation facilitates conduction of holes from the anode to charge recombination sites and which need not be in contact with the anode.
- a hole transporting emission layer is a layer in which when the OLED is in operation facilitates the conduction of holes to charge recombination sites, and in which the majority of charge carriers are holes, and in which emission occurs not only through recombination with residual electrons, but also through the transfer of energy from a charge recombination zone elsewhere in the device.
- An electron transporting emission layer is a layer in which when the OLED is in operation facilitates the conduction of electrons to charge recombination sites, and in which the majority of charge carriers are electrons, and in which emission occurs not only through recombination with residual holes, but also through the transfer of energy from a charge recombination zone elsewhere in the device.
- Materials suitable for use as the anode include materials having a bulk conductivity of at least about 100 ohms per square, as measured by a four-point probe technique.
- Indium tin oxide (ITO) is frequently used as the anode because it is substantially transparent to light transmission and thus facilitates the escape of light emitted from electro-active organic layer.
- Other materials which may be utilized as the anode layer include tin oxide, indium oxide, zinc oxide, indium zinc oxide, zinc indium tin oxide, antimony oxide, and mixtures thereof.
- Materials suitable for use as the cathode include by zero valent metals which can inject negative charge carriers (electrons) into the inner layer(s) of the OLED.
- Various zero valent metals suitable for use as the cathode 20 include K, Li, Na, Cs, Mg, Ca, Sr, Ba, Al, Ag, Au, In, Sn, Zn, Zr, Sc, Y, elements of the lanthanide series, alloys thereof, and mixtures thereof.
- Suitable alloy materials for use as the cathode layer include Ag—Mg, Al—Li, In—Mg, Al—Ca, and Al—Au alloys.
- Layered non-alloy structures may also be employed in the cathode, such as a thin layer of a metal such as calcium, or a metal fluoride, such as LiF, covered by a thicker layer of a zero valent metal, such as aluminum or silver.
- the cathode may be composed of a single zero valent metal, and especially of aluminum metal.
- Light emitting devices include polymers having formula IV in the hole injection layer.
- the polymers may be used in place of, or in addition to traditional materials such as poly(3,4-ethylenedioxythiophene), which is commercially available from H.C. Stark, Inc. under the BAYTRON® tradename, and polymers based on the thieno[3,4b]thiophene (TT) monomer, commercially available from Air Products Corporation.
- the polymers may be blended with PEDOT to form a hole injection layer.
- Materials suitable for use in hole transporting layers include 1,1-bis((di-4-tolylamino)phenyl)cyclohexane, N,N′-bis(4-methylphenyl)-N,N′-bis(4-ethylphenyl)(1,1′-(3,3′-dimethyl)biphenyl)-4,4′-diamine, tetrakis-(3-methylphenyl)-N,N,N′,N′-2,5-phenylenediamine, phenyl-4-N,N-diphenylaminostyrene, p-(diethylamino)benzaldehyde diphenylhydrazone, triphenylamine, 1-phenyl-3-(p-(diethylamino)styryl)-5-(p-(diethylamino)phenyl)pyrazoline, 1,2-trans-bis(9H-carbazol-9-yl)cyclobutane, N,N
- Materials suitable for use as the electron transport layer include poly(9,9-dioctyl fluorene), tris(8-hydroxyquinolato) aluminum (Alq 3 ), 2,9-dimethyl-4,7-diphenyl-1,1-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole, 3-(4-biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazole, 1,3,4-oxadiazole-containing polymers, 1,3,4-triazole-containing polymers, quinoxaline-containing polymers, and cyano-PPV.
- Materials suitable for use in the light emitting layer include electroluminescent polymers such as poly(9,9-dioctyl fluorene) and copolymers thereof, such as F8-TFB.
- polymers comprising structural units of formula II may form part of the hole collection layer, while in another aspect, polymers comprising structural units of formula II form part of the hole injection layer.
- the present invention relates to more efficient organic light emitting devices comprising polymers comprising structural units of formula II.
- aromatic radical refers to an array of atoms having a valence of at least one comprising at least one aromatic group.
- the array of atoms having a valence of at least one comprising at least one aromatic group may include heteroatoms such as nitrogen, sulfur, selenium, silicon and oxygen, or may be composed exclusively of carbon and hydrogen.
- aromatic radical includes but is not limited to phenyl, pyridyl, furanyl, thienyl, naphthyl, phenylene, and biphenyl radicals.
- the aromatic radical contains at least one aromatic group.
- the aromatic radical may also include nonaromatic components.
- a benzyl group is an aromatic radical which comprises a phenyl ring (the aromatic group) and a methylene group (the nonaromatic component).
- a tetrahydronaphthyl radical is an aromatic radical comprising an aromatic group (C 6 H 3 ) fused to a nonaromatic component —(CH 2 ) 4 —.
- aromatic radical is defined herein to encompass a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, haloaromatic groups, conjugated dienyl groups, alcohol groups, ether groups, aldehydes groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like.
- the 4-methylphenyl radical is a C 7 aromatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group.
- the 2-nitrophenyl group is a C 6 aromatic radical comprising a nitro group, the nitro group being a functional group.
- Aromatic radicals include halogenated aromatic radicals such as 4-trifluoromethylphenyl, hexafluoroisopropylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CF 3 ) 2 PhO—), 4-chloromethylphen-1-yl, 3-trifluorovinyl-2-thienyl, 3-trichloromethylphen-1-yl (i.e., 3-CCl 3 Ph-), 4-(3-bromoprop-1-yl)phen-1-yl (i.e., 4-BrCH 2 CH 2 CH 2 Ph-), and the like.
- halogenated aromatic radicals such as 4-trifluoromethylphenyl, hexafluoroisopropylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CF 3 ) 2 PhO—), 4-chloromethylphen-1-yl, 3-trifluorovinyl-2-thienyl, 3-trich
- aromatic radicals include 4-allyloxyphen-1-oxy, 4-aminophen-1-yl (i.e., 4-H 2 NPh-), 3-aminocarbonylphen-1-yl (i.e., NH 2 COPh-), 4-benzoylphen-1-yl, dicyanomethylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CN) 2 PhO—), 3-methylphen-1-yl, methylenebis(4-phen-1-yloxy) (i.e., —OPhCH 2 PhO—), 2-ethylphen-1-yl, phenylethenyl, 3-formyl-2-thienyl, 2-hexyl-5-furanyl, hexamethylene-1,6-bis(4-phen-1-yloxy) (i.e., —OPh(CH 2 ) 6 PhO—), 4-hydroxymethylphen-1-yl (i.e., 4-HOCH 2 Ph-), 4-mer
- a C 3 -C 10 aromatic radical includes aromatic radicals containing at least three but no more than 10 carbon atoms.
- the aromatic radical 1-imidazolyl (C 3 H 2 N 2 —) represents a C 3 aromatic radical.
- the benzyl radical (C 7 H 7 —) represents a C 7 aromatic radical.
- cycloaliphatic radical refers to a radical having a valence of at least one, and comprising an array of atoms which is cyclic but which is not aromatic. As defined herein a “cycloaliphatic radical” does not contain an aromatic group.
- a “cycloaliphatic radical” may comprise one or more noncyclic components.
- a cyclohexylmethyl group (C 6 H 11 CH 2 —) is an cycloaliphatic radical which comprises a cyclohexyl ring (the array of atoms which is cyclic but which is not aromatic) and a methylene group (the noncyclic component).
- the cycloaliphatic radical may include heteroatoms such as nitrogen, sulfur, selenium, silicon and oxygen, or may be composed exclusively of carbon and hydrogen.
- the term “cycloaliphatic radical” is defined herein to encompass a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, conjugated dienyl groups, alcohol groups, ether groups, aldehyde groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like.
- the 4-methylcyclopent-1-yl radical is a C 6 cycloaliphatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group.
- the 2-nitrocyclobut-1-yl radical is a C 4 cycloaliphatic radical comprising a nitro group, the nitro group being a functional group.
- a cycloaliphatic radical may comprise one or more halogen atoms which may be the same or different. Halogen atoms include, for example; fluorine, chlorine, bromine, and iodine.
- Cycloaliphatic radicals comprising one or more halogen atoms include 2-trifluoromethylcyclohex-1-yl, 4-bromodifluoromethylcyclooct-1-yl, 2-chlorodifluoromethylcyclohex-1-yl, hexafluoroisopropylidene-2,2-bis(cyclohex-4-yl) (i.e., —C 6 H 10 C(CF 3 ) 2 C 6 H 10 —), 2-chloromethylcyclohex-1-yl, 3-difluoromethylenecyclohex-1-yl, 4-trichloromethylcyclohex-1-yloxy, 4-bromodichloromethylcyclohex-1-ylthio, 2-bromoethylcyclopent-1-yl, 2-bromopropylcyclohex-1-yloxy (e.g.
- cycloaliphatic radicals include 4-allyloxycyclohex-1-yl, 4-aminocyclohex-1-yl (i.e., H 2 C 6 H 10 —), 4-aminocarbonylcyclopent-1-yl (i.e., NH 2 COC 5 H 8 —), 4-acetyloxycyclohex-1-yl, 2,2-dicyanoisopropylidenebis(cyclohex-4-yloxy) (i.e., —OC 6 H 10 C(CN) 2 C 6 H 10 O—), 3-methylcyclohex-1-yl, methylenebis(cyclohex-4-yloxy) (i.e., —OC 6 H 10 CH 2 C 6 H 10 O—), 1-ethylcyclobut-1-yl, cyclopropylethenyl, 3-formyl-2-terahydrofuranyl, 2-hexyl-5
- a C 3 -C 10 cycloaliphatic radical includes cycloaliphatic radicals containing at least three but no more than 10 carbon atoms.
- the cycloaliphatic radical 2-tetrahydrofuranyl (C 4 H 7 O—) represents a C 4 cycloaliphatic radical.
- the cyclohexylmethyl radical (C 6 H 11 CH 2 —) represents a C 7 cycloaliphatic radical.
- aliphatic radical refers to an organic radical having a valence of at least one consisting of a linear or branched array of atoms which is not cyclic. Aliphatic radicals are defined to comprise at least one carbon atom. The array of atoms comprising the aliphatic radical may include heteroatoms such as nitrogen, sulfur, silicon, selenium and oxygen or may be composed exclusively of carbon and hydrogen.
- aliphatic radical is defined herein to encompass, as part of the “linear or branched array of atoms which is not cyclic” organic radicals substituted with a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, conjugated dienyl groups, alcohol groups, ether groups, aldehyde groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like.
- functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, conjugated dienyl groups, alcohol groups, ether groups, aldehyde groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like.
- the 4-methylpent-1-yl radical is a C 6 aliphatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group.
- the 4-nitrobut-1-yl group is a C 4 aliphatic radical comprising a nitro group, the nitro group being a functional group.
- An aliphatic radical may be a haloalkyl group which comprises one or more halogen atoms which may be the same or different. Halogen atoms include, for example; fluorine, chlorine, bromine, and iodine.
- Aliphatic radicals comprising one or more halogen atoms include the alkyl halides trifluoromethyl, bromodifluoromethyl, chlorodifluoromethyl, hexafluoroisopropylidene, chloromethyl, difluorovinylidene, trichloromethyl, bromodichloromethyl, bromoethyl, 2-bromotrimethylene (e.g. —CH 2 CHBrCH 2 —), and the like.
- aliphatic radicals include allyl, aminocarbonyl (i.e., —CONH 2 ), carbonyl, 2,2-dicyanoisopropylidene (i.e., —CH 2 C(CN) 2 CH 2 —), methyl (i.e., —CH 3 ), methylene (i.e., —CH 2 —), ethyl, ethylene, formyl (i.e. —CHO), hexyl, hexamethylene, hydroxymethyl (i.e.
- —CH 2 OH mercaptomethyl
- methylthio i.e., —SCH 3
- methylthiomethyl i.e., —CH 2 SCH 3
- methoxy, methoxycarbonyl i.e., CH 3 OCO—
- nitromethyl i.e., —CH 2 NO 2
- thiocarbonyl trimethylsilyl (i.e. (CH 3 ) 3 Si—), t-butyldimethylsilyl, 3-trimethyoxysilypropyl (i.e., (CH 3 O) 3 SiCH 2 CH 2 CH 2 —), vinyl, vinylidene, and the like.
- a C 1 -C 10 aliphatic radical contains at least one but no more than 10 carbon atoms.
- a methyl group i.e., CH 3 —
- a decyl group i.e., CH 3 (CH2) 9 -
- CH 3 (CH2) 9 - is an example of a C 10 aliphatic radical.
- any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value.
- the amount of a component or a value of a process variable such as, for example, temperature, pressure, time and the like is, for example, from 1 to 90, preferably from 20 to 80, more preferably from 30 to 70, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 etc. are expressly enumerated in this specification.
- one unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate.
- Polystyrene (PS) used in the triplet measurements was a GPC standard having weight average molecular weight of 18,700 and was obtained from Aldrich Chemical Co., Milwaukee, Wis., USA.
- a green phosphorescent dye, tris(2-(4-tolyl)phenylpyridine)iridium, [Ir(mppy) 3 ] was purchased from American Dye Sources, Canada and used as received. Glass pre-coated with indium tin oxide (ITO) (Applied Films).
- ITO indium tin oxide
- PEDOT:PSS Poly(3,4-ethylendioxythiophene/polystyrene sulfonate
- N,N′-diphenyl-N-N′′-(bis(3-methylphenyl)-[1,1-biphenyl]-4-4′-diamine (TPD) and 2-(4-biphenyllyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) was used as a hole injection material and an electron injection material, respectively.
- TPD and PBD were purchased from Aldrich and used as received. All other chemicals and reagents are obtained from Aldrich Chemical Co., Milwaukee, Wis., USA. Flash chromatography was carried out by Fisher Scientific (100-200 mesh) or Aldrich (60-350 mesh) silica gel, prepacked silical gel column by Isco. Thin layer chromatography was carried out on commercially available pre-coated glass plates (Analtech, GF, 250 microns).
- Method 1 A flask containing a mixture of 5.025 g (0.03 mol) carbazole, 7.3 g (0.04 mol) 4-bromoanisole, 12.5 g (0.09 mol) K 2 CO 3 in 200 ml toluene was evacuated and charged with argon for three times, after which 2 mol % Pd (OAc) 2 and 0.1 g tris(t-butyl)phosphine were added. The mixture was stirred for one week under argon. Fresh Pd(OAc) 2 and Pt(t-Bu) 3 were added after two days. After the mixture was allowed to cool and water was added. The organic layer was separated, dried over MgSO 4 , and concentrated. After column chromatography, white crystals were obtained.
- a dry reaction vessel equipped with a magnetic stirring bar under nitrogen atmosphere charged with compound 3 bis(9-(hydroxyphenyl)carbazol-3-yl) (0.346 g, 0.6697 mmol), BPA-bischloroformate (0.237 g, 0.6697 mmol), and 8 mL of dry methylene chloride.
- the resulting milky solution was immersed in an ice-salt bath for 15 minutes and then charged with 0.25 mL (1.79 mmol) of dry triethylamine.
- the mixture was maintained at 0-5° C. with stirring for 1 h, allowed to warm to room temperature, and stirred for an additional hour.
- the resulting polymer was dried at 80° C. in a vacuum oven overnight.
- GPC Gel permeation chromatography
- the triplet energy levels were obtained using a Perkin Elmer LS55 spectrofluorimeter equipped with an uncooled R928 red sensitive photo multiplier tube.
- the typical procedure was to place a sample in a clean laboratory mortar and immerse the sample in liquid nitrogen at least 2 minutes prior to the measurement to ensure thermal equilibrium. Then the sample was optically excited. Emission spectra were obtained by using the delayed collection feature of the LS55, in which the detection is gated at time delayed from the initial 20 ⁇ s excitation pulse.
- the sample for triplet energy levels was prepared in the following manner: 10 mg of bis[9-(hydroxyphenyl)carbazol-3-yl] was dissolved in 1 ml anhydrous THF. The solution was then spin-coated onto a pre-cleaned quartz substrate.
- the sample for triplet energy levels was prepared in the following manner: A mixture of 1 wt % tris(2-(4-tolyl)phenylpyridine)iridium (Ir(mppy) 3 ) in polystyrene (PS) was prepared by mixing of 0.010 ml of 1 wt % Ir(mppy) 3 (10 mg of Ir(mppy) 3 in 1 ml THF) with 1.0 ml of 1 wt % PS in THF, which was then spin-coated onto a pre-cleaned quartz substrate.
- FIG. 1 shows the emission spectra of the two samples.
- the sample from Example 5 has a greater triplet energy level relative to the sample from Comparative Example 1. For instance, the first emission peak of the sample from Example 5 appears at 2.7 eV relative to the 2.4 eV of the sample from Comparative Example 1.
- the lifetime of triplet excited states were measured using an Edinburgh CD920 spectrometer equipped with a cooled R928 photo multiplier tube. The typical procedure was to place a sample in a vacuum dewer and then pump down to 4*10E ⁇ 5 torr. Then the sample was optically excited at 394 nm with a pulsed diode laser (class HIB, 390-420 nm, maximum power of 5 mW). Time resolved emission spectra were measured at 540 nm.
- a pulsed diode laser class HIB, 390-420 nm, maximum power of 5 mW
- a mixture of 1 wt % Ir(mppy) 3 in bis[9-(hydroxyphenyl)carbazol-3-yl] was prepared by mixing 0.010 ml of 1 wt % Ir(mppy) 3 (10 mg of Ir(mppy) 3 in 1 ml THF) with 1.0 ml of 1 wt % bis[9-(hydroxyphenyl)carbazol-3-yl] in THF. The solution was then spin-coated onto a pre-cleaned quartz substrate.
- a mixture of 1 wt % Ir(mppy) 3 in polystyrene was prepared by mixing 0.010 ml of 1 wt % Ir(mppy) 3 (10 mg of Ir(mppy) 3 in 1 ml THF) with 1.0 ml of 1 wt % PS in THF. The solution was spin-coated onto a pre-cleaned quartz substrate.
- FIG. 2 shows the triplet excited states decay profiles of the phosphorescent dye in the presence and absence of bis(9-(hydroxyphenyl)carbazol-3-yl).
- the phosphorescent dye had comparable triplet decay profiles (equivalently lifetimes) when dispersed in bis(9-(hydroxyphenyl)carbazol-3-yl) relative to an insulating polystyrene matrix.
- the data is consistent with data obtained from triplet energy measurements and suggests that there is no energy transfer from the dye [Ir(mppy) 3 ] to the host ⁇ either PS or bis[9-(hydroxyphenyl)carbazol-3-yl] ⁇ .
- bis[9-(hydroxyphenyl)carbazol-3-yl] is suitable as a host material for Ir(mppy) 3 in phosphorescent OLEDs.
- ITO indium tin oxide
- PEDOT:PSS poly (3,4-ethylendioxythiophene/polystyrene sulfonate
- N,N′-diphenyl-N-N′′-bis(3-methylphenyl)-[1,1-biphenyl]4-4′-diamine (TPD) and 2-(4-biphenyllyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) was used as a hole injection material and an electron injection material, respectively.
- a mixture solution of bis[9-(hydroxyphenyl)carbazol-3-yl]:PBD:TPD:Ir(mppy) 3 (61:24:9:6) was prepared by mixing 1.220 ml of 1.5 wt % of bis[9-(hydroxyphenyl)carbazol-3-yl] in chlorobenzene (CB), 0.240 ml of 3.0 wt % of PBD in CB, 0.090 ml of 3.0 wt % TPD in CB and 0.18 ml of 1 wt % of Ir(mppy) 3 in CB. Then the mixture solution was spin-coated onto the PEDOT:PSS and then baked at 70° C. for 10 mins.
- CB chlorobenzene
- the device fabrication was finished with the deposition of a CsF (4 nm)/Al (100 nm) via thermal evaporation at a based pressure of 2*10E ⁇ 6 Torr. Following metal evaporation, the devices were encapsulated using a glass slide sealed with an optical adhesive (Norland® 68, obtained from Norland Products Inc, New Jersey, U.S.A.
- Performance of OLEDs was characterized by measuring current-voltage-luminance (I-V-L) characteristics.
- a photodiode calibrated with a luminance meter (Minolta LS-110) was used to measure the luminance (in units of candela per square meter, cd/m2).
- FIG. 3 shows that the maximum quantum efficiency, represented by diamonds, is 21.9 cd/A, and the maximum power efficiency, represented by squares, achieved was 14.2 lm/w. This is comparable to the state-of-the-art (27 cd/A and 14.1 lm/w) polymeric phosphorescent device as described in X. H. Yang, D. Neher, D. Hertel and T. K. Daubler, “Highly efficient single-layer polymer electrophosphorescent devices”, Adv. Mater. Vol 16, pp 161-166, 2004.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Polyesters Or Polycarbonates (AREA)
- Indole Compounds (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Polyethers (AREA)
Abstract
R1, R2, and R4 are independently at each occurrence a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; R3 and R5 are independently at each occurrence hydrogen, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; and
a, b and d are independently 0 or an integer ranging from 1 to 3.
The invention further relates to polymers derived from compounds of formula I. The polymers may be polyesters, polyethers, polycarbonates, polyestercarbonates, polyetherketones, or polyethersulfones. Compounds and polymers of the invention find use in light emitting devices.
Description
- The invention relates generally to compounds comprising bis-carbazole units that are difunctional. The invention also relates to monomers comprising bis-carbazole units and polymers, dendrimers and hyper-branched materials derived therefrom.
- Organic light emitting devices (OLEDs), which make use of thin film materials that emit light when subjected to a voltage bias, are expected to become an increasingly popular form of flat panel display technology. This is because OLEDs have a wide variety of potential applications, including cellphones, personal digital assistants (PDAs), computer displays, informational displays in vehicles, television monitors, as well as light sources for general illumination. Due to their bright colors, wide viewing angle, compatibility with full motion video, broad temperature ranges, thin and conformable form factor, low power requirements and the potential for low cost manufacturing processes, OLEDs are seen as a future replacement technology for cathode ray tubes (CRTs) and liquid crystal displays (LCDs). Due to their high luminous efficiencies, OLEDs are seen as having the potential to replace incandescent, and perhaps even fluorescent, lamps for certain types of applications.
- One approach to achieve full-color OLEDs includes energy transfer from host to emissive guest molecules. For this to be realized, the triplet energy state of the host has to be higher than the guest molecule. Carbazole derivatives have shown promise to perform well as host molecule in the presence of metal containing emissive guest molecules. Often used in this respect is poly(N-vinyl carbazole). However, quantum efficiencies of devices that use poly(N-vinyl carbazole) is still at the range of about 60 to 80%. Thus, there is a need in the art to develop OLEDs having device quantum efficiencies, while still maintaining the potential for the molecules to host red, green, and blue emissive complexes.
- In one aspect, the invention relates to a compound of formula I
- wherein
R1, R2, R3, R5, R6 and R7 are independently at each occurrence a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; R4 and R8 are independently at each occurrence a hydrogen, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical;
a and e are independently at eachoccurrence 0, or an integer ranging from 1 to 4; and
b, c, d and f are independently 0 or an integer ranging from 1 to 3. - In another aspect, the invention relates to a polymer comprising structural units of formula II
- wherein
R1, R2, R3, R5, R6 and R7 are independently at each occurrence a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical; R4 and R8 are independently at each occurrence a hydrogen, a C1-C20 aliphatic radical, a C3-C20 aromatic radical, or a C3-C20 cycloaliphatic radical;
a and e are independently at eachoccurrence 0, or an integer ranging from 1 to 4; and
b, c, d and f are independently 0 or an integer ranging from 1 to 3.
In yet another aspect, the invention relates to a light emitting device comprising at least one electrode, at least one hole injection layer, at least one light emissive layer; wherein the light emissive layer comprises a polymer comprising structural units of formula II - These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
-
FIG. 1 shows the emission spectra of the samples from Example 5 and Comparative Example 5. -
FIG. 2 shows the triplet excited states decay profiles of the phosphorescent dye in the presence and absence of bis(9-(hydroxyphenyl)carbazol-3-yl). -
FIG. 3 shows a plot of quantum efficiency (cd/A) and a plot of power efficiency (lm/w) as a function of bias voltage (V) for the exemplary OLED devices. - In one aspect, the invention relates to a compound comprising bis-carbazole units of formula I. Compounds of formula I may generally be regarded as bis-carbazole compounds. In some cases, the 3-, 6-, 3′-, 6′-positions may be susceptible to oxidative coupling reactions, and it may be advantageous to protect one or more of these positions. Thus, in some embodiments, R4 and R8 are t-butyl groups, while in still other embodiments, R4 and R8 are triarylsilyl groups, particularly triphenylsilyl, or trialkylsilyl groups, and in yet other embodiments, R4 and R8 are diphenyl phosphine oxide or diphenyl phosphine sulfide groups. A wide variety of groups may be used to substitute the bis-carbazole at the 6,6′ positions, and these may include, but not limited to, methyl, ethyl, methoxy, tolyl, methylcyclohexyl, and halomethyl. In a particular aspect, the invention relates to a monomer of formula I, wherein b, c, d and f are all 0, which has the formula
- In another aspect, the present invention relates to polymers having structural units of formula II. The polymers are prepared by copolymerizing one or more monomers of formula I with one or more comonomers to result in polycarbonates, copolycarbonates, polyarylates, copolyarylates, copolyestercarbonates, polyethers, polyether sulfones, polyether imides, and combinations thereof, in the form of random, block or graft copolymers, or dendrimers or hyper-branched materials.
- Accordingly, in some embodiments, the monomer of formula I may be copolymerized with phosgene, or phosgene and a bisphenol, or with a diaryl carbonate or bishaloformate to provide a polycarbonate. Exemplary monomers to make polycarbonates include diphenyl carbonate, bis(methylsalicyl)carbonate, bisphenol A bischloroformate, resorcinol bischloroformate, and combinations thereof. For example, copolymerization with phosgene and bisphenol A results in a polymer comprising structural units of formula
- in addition to the structural units of formula II. Thus, in one particular embodiment, the resulting polymer comprises structural units of formula
- For example, a monomer of formula I may be reacted with bisphenol A and diphenyl carbonate in the presence of a minute amount of a basic catalyst such as sodium hydroxide at a temperature in a range between about 150 and 300° C. at subatmospheric pressure.
- In other embodiments, the monomer of formula I may be copolymerized with a carboxylate ester, a carboxylic anhydride, or a carboxylic acid halide to yield a polyester. Exemplary comonomers that may be used to make polyesters include terephthaloyl chloride, terephthalic anhydride, naphthoic dianhydride, succinic anhydride, dimethyl oxalate, and combinations thereof.
- In yet other embodiments, the monomer of formula I may be copolymerized with one or more dihaloarylsulfone monomer to yield a polyether sulfone. Dihaloarylsulfones may include bis(4-fluorophenyl)sulfone, bis(4-chlorophenyl)sulfone, 4,4′-bis((4-chlorophenyl)sulfonyl)-1,1-biphenyl and combinations thereof.
- In other embodiments, the monomer of formula I may be copolymerized with one or more dihaloaryl monomers to yield a polyether. Exemplary dihaloaryl monomers include 1,6-dichlorobenzene, 4,4′-dichlorobiphenyl, 4,4′-dichlorodiphenylsulfide, 1,6-difluorobenzene, 4,4′-difluorobiphenyl, 4,4′-difluorodiphenylsulfie, and combinations thereof. For example, the monomer of formula I may be copolymerized with decafluorobiphenyl in N-methyl-2-pyrollidone (NMP), in the presence of a base such as potassium carbonate, at the temperature between about 100 and about 250° C.
- In another embodiment, the monomer of formula I may be copolymerized with dihalobenzophenone monomer to yield a polyetherketone. Other dihalobenzophenone monomers include 1,4-bis(4′-chlorobenzoyl)benzene, 1,4-bis(4′-fluorobenzoyl)benzene, 1-(4′-chlorobenzoyl-4-(4″-fluorobenzoyl)benzene, and combinations thereof. For example, the monomer of formula I together with the disodium salt of bisphenol A may be reacted with 4,4′-dichlorobenzophenone in orthodichlorobenzene at a temperature between about 100 and about 250° C. in the presence of a phase transfer catalyst such as hexaethyl guanidinium chloride.
- In another embodiment, the monomer of formula I may be copolymerized with a bis(halophthalimide) such as bis(4-chlorophthalimide) to obtain a polyetherimide. Other bis(halophthalimide)s include 1,3-bis[N-(4-fluorophthalimido)]benzene, 1,4-bis[N-(4-fluorophthalimido)]benzene, 1,3-bis[N-(3-fluorophthalimido)]benzene, 1,4-bis[N-(3-fluorophthalimido)]benzene, 4,4′-bis[N-(4-fluorophthalimido)]phenyl ether, 4,4′-bis[N-(3-fluorophthalimido)]phenyl ether, 4,4′-bis[N-(4-chlorophthalimido)]phenyl ether, 4,4′-bis[N-(3-chlorophthalimido)]phenyl ether, 1,3-bis[N-(4-chlorophthalimido)]benzene, 1,4-bis[N-(4-chlorophthalimido)]benzene, 1,3-bis[N-(3-chlorophthalimido)]benzene, 1,4-bis[N-(3-chlorophthalimido)]benzene, 1-[N-(4-chlorophthalimido)]-3-[N-(3-chlorophthalimido)benzene, 1-[N-(4-chlorophthalimido)]-4-[N-(3-chlorophthalimido)benzene, and combinations thereof.
- Reaction conditions useful for the preparation of the polymers of the present invention include the use of polar solvents and bases of suitable strength. Exemplary solvents include chloroform, methylene chloride, orthodichlorobenzene, veratrole, anisole, and combinations thereof. Exemplary bases include triethylamine, sodium hydroxide, potassium hydroxide, and combinations thereof. Suitable catalysts may also be employed to effect the polymerization reaction.
- In certain embodiments, the polymerization reaction may be conducted at a suitable temperature that ranges from about room temperature to about the boiling point of the solvent of choice. The polymerization may also be conducted at atmospheric pressure, subatmospheric pressures, or superatmospheric pressures. The polymerization reaction is conducted for a time period necessary to achieve polymer of a suitable molecular weight. The molecular weight of a polymer is determined by any of the techniques known to those skilled in the art, and include viscosity measurements, light scattering, and osmometry. The molecular weight of a polymer is typically represented as a number average molecular weight Mn, or weight average molecular weight, Mw. A particularly useful technique to determine molecular weight averages is gel permeation chromatography (GPC), from wherein both number average and weight average molecular weights are obtained. Molecular weight of the polymers is not critical, and in some embodiments, polymers of Mw greater than 30,000 grams per mole (g/mol) are desirable, in other embodiments, polymers of Mw greater than 50,000 g/mol are desirable, while in yet other embodiments, polymer of Mw greater than 80,000 g/mol are desirable.
- The polymerization reaction may be controlled the addition of a suitable monofunctional reactant, sometimes also referred to in the art as “end-capping agents”, or “chain stoppers”. The chain stopper serves to limit polymer molecular weight. Suitable phenolic chain stoppers include phenol and p-cumylphenol. Suitable aromatic halide chain stoppers include, 4-chlorophenyl phenyl sulfone, 4-fluorophenyl phenyl sulfone, and 4-chlorophenyl phenyl ketone.
- Polymers provided in the present invention may find use in a wide variety of applications that include, but are not limited to, light emitting electrochemical cells, photo detectors, photo conductive cells, photo switches, and display devices. Thus, in one aspect, the invention relates to a light emitting comprising at least one electrode, at least one hole injection layer, at least one light emissive layer; wherein the light emissive layer comprises a polymer comprising structural units of formula II.
- An organic light emitting device typically comprises multiple layers which include in the simplest case, an anode layer and a corresponding cathode layer with an organic electroluminescent layer disposed between said anode and said cathode. When a voltage bias is applied across the electrodes, electrons are injected by the cathode into the electroluminescent layer while electrons are removed from (or “holes” are “injected” into) the electroluminescent layer from the anode. Light emission occurs as holes combine with electrons within the electroluminescent layer to form singlet or triplet excitons, light emission occurring as singlet excitons transfer energy to the environment by radiative decay.
- Other components which may be present in an organic light emitting device in addition to the anode, cathode and light emitting material include hole injection layers, electron injection layers, and electron transport layers. The electron transport layer need not be in contact with the cathode, and frequently the electron transport layer is not an efficient hole transporter and thus it serves to block holes migrating toward the cathode. During operation of an organic light emitting device comprising an electron transport layer, the majority of charge carriers (i.e. holes and electrons) present in the electron transport layer are electrons and light emission can occur through recombination of holes and electrons present in the electron transport layer. Additional components which may be present in an organic light emitting device include hole transport layers, hole transporting emission (emitting) layers and electron transporting emission (emitting) layers.
- Compounds of formula I have triplet energy states that are useful in applications such as organic light emitting devices (OLEDs), as they may give rise to highly efficient devices. Further, the triplet energy of these compounds may be high enough that it may be greater than those of guest dyes used in devices, and thus may serve as host molecules. The compounds of the present invention are particularly well suited for use in hole transport layers in organic light emitting devices. In one embodiment, the present invention relates to an organic light emitting device comprising the compounds as a constituent of a hole transport layer of an organic light emitting device.
- The organic electroluminescent layer is a layer within an organic light emitting device which when in operation contains a significant concentration of both electrons and holes and provides sites for exciton formation and light emission. A hole injection layer is a layer in contact with the anode which promotes the injection of holes from the anode into the interior layers of the OLED; and an electron injection layer is a layer in contact with the cathode that promotes the injection of electrons from the cathode into the OLED; an electron transport layer is a layer which facilitates conduction of electrons from cathode to a charge recombination site. The electron transport layer need not be in contact with the cathode, and frequently the electron transport layer is not an efficient hole transporter and thus it serves to block holes migrating toward the cathode. During operation of an organic light emitting device comprising an electron transport layer, the majority of charge carriers (i.e. holes and electrons) present in the electron transport layer are electrons and light emission can occur through recombination of holes and electrons present in the electron transport layer. A hole transport layer is a layer which when the OLED is in operation facilitates conduction of holes from the anode to charge recombination sites and which need not be in contact with the anode. A hole transporting emission layer is a layer in which when the OLED is in operation facilitates the conduction of holes to charge recombination sites, and in which the majority of charge carriers are holes, and in which emission occurs not only through recombination with residual electrons, but also through the transfer of energy from a charge recombination zone elsewhere in the device. An electron transporting emission layer is a layer in which when the OLED is in operation facilitates the conduction of electrons to charge recombination sites, and in which the majority of charge carriers are electrons, and in which emission occurs not only through recombination with residual holes, but also through the transfer of energy from a charge recombination zone elsewhere in the device.
- Materials suitable for use as the anode include materials having a bulk conductivity of at least about 100 ohms per square, as measured by a four-point probe technique. Indium tin oxide (ITO) is frequently used as the anode because it is substantially transparent to light transmission and thus facilitates the escape of light emitted from electro-active organic layer. Other materials which may be utilized as the anode layer include tin oxide, indium oxide, zinc oxide, indium zinc oxide, zinc indium tin oxide, antimony oxide, and mixtures thereof.
- Materials suitable for use as the cathode include by zero valent metals which can inject negative charge carriers (electrons) into the inner layer(s) of the OLED. Various zero valent metals suitable for use as the
cathode 20 include K, Li, Na, Cs, Mg, Ca, Sr, Ba, Al, Ag, Au, In, Sn, Zn, Zr, Sc, Y, elements of the lanthanide series, alloys thereof, and mixtures thereof. Suitable alloy materials for use as the cathode layer include Ag—Mg, Al—Li, In—Mg, Al—Ca, and Al—Au alloys. Layered non-alloy structures may also be employed in the cathode, such as a thin layer of a metal such as calcium, or a metal fluoride, such as LiF, covered by a thicker layer of a zero valent metal, such as aluminum or silver. In particular, the cathode may be composed of a single zero valent metal, and especially of aluminum metal. - Light emitting devices according to the present invention include polymers having formula IV in the hole injection layer. The polymers may be used in place of, or in addition to traditional materials such as poly(3,4-ethylenedioxythiophene), which is commercially available from H.C. Stark, Inc. under the BAYTRON® tradename, and polymers based on the thieno[3,4b]thiophene (TT) monomer, commercially available from Air Products Corporation. In particular, the polymers may be blended with PEDOT to form a hole injection layer.
- Materials suitable for use in hole transporting layers include 1,1-bis((di-4-tolylamino)phenyl)cyclohexane, N,N′-bis(4-methylphenyl)-N,N′-bis(4-ethylphenyl)(1,1′-(3,3′-dimethyl)biphenyl)-4,4′-diamine, tetrakis-(3-methylphenyl)-N,N,N′,N′-2,5-phenylenediamine, phenyl-4-N,N-diphenylaminostyrene, p-(diethylamino)benzaldehyde diphenylhydrazone, triphenylamine, 1-phenyl-3-(p-(diethylamino)styryl)-5-(p-(diethylamino)phenyl)pyrazoline, 1,2-trans-bis(9H-carbazol-9-yl)cyclobutane, N,N,N′,N′-tetrakis(4-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine, copper phthalocyanine, polyvinylcarbazole, (phenylmethyl)polysilane; poly(3,4-ethylendioxythiophene) (PEDOT), polyaniline, polyvinylcarbazole, triaryldiamine, tetraphenyldiamine, aromatic tertiary amines, hydrazone derivatives, carbazole derivatives, triazole derivatives, imidazole derivatives, oxadiazole derivatives having an amino group, and polythiophenes as disclosed in U.S. Pat. No. 6,023,371.
- Materials suitable for use as the electron transport layer include poly(9,9-dioctyl fluorene), tris(8-hydroxyquinolato) aluminum (Alq3), 2,9-dimethyl-4,7-diphenyl-1,1-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole, 3-(4-biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazole, 1,3,4-oxadiazole-containing polymers, 1,3,4-triazole-containing polymers, quinoxaline-containing polymers, and cyano-PPV.
- Materials suitable for use in the light emitting layer include electroluminescent polymers such as poly(9,9-dioctyl fluorene) and copolymers thereof, such as F8-TFB.
- In one aspect, polymers comprising structural units of formula II may form part of the hole collection layer, while in another aspect, polymers comprising structural units of formula II form part of the hole injection layer. Thus, in one aspect, the present invention relates to more efficient organic light emitting devices comprising polymers comprising structural units of formula II.
- As used herein, the term “aromatic radical” refers to an array of atoms having a valence of at least one comprising at least one aromatic group. The array of atoms having a valence of at least one comprising at least one aromatic group may include heteroatoms such as nitrogen, sulfur, selenium, silicon and oxygen, or may be composed exclusively of carbon and hydrogen. As used herein, the term “aromatic radical” includes but is not limited to phenyl, pyridyl, furanyl, thienyl, naphthyl, phenylene, and biphenyl radicals. As noted, the aromatic radical contains at least one aromatic group. The aromatic group is invariably a cyclic structure having 4n+2 “delocalized” electrons where “n” is an integer equal to 1 or greater, as illustrated by phenyl groups (n=1), thienyl groups (n=1), furanyl groups (n=1), naphthyl groups (n=2), azulenyl groups (n=2), and anthraceneyl groups (n=3). The aromatic radical may also include nonaromatic components. For example, a benzyl group is an aromatic radical which comprises a phenyl ring (the aromatic group) and a methylene group (the nonaromatic component). Similarly a tetrahydronaphthyl radical is an aromatic radical comprising an aromatic group (C6H3) fused to a nonaromatic component —(CH2)4—. For convenience, the term “aromatic radical” is defined herein to encompass a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, haloaromatic groups, conjugated dienyl groups, alcohol groups, ether groups, aldehydes groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like. For example, the 4-methylphenyl radical is a C7 aromatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group. Similarly, the 2-nitrophenyl group is a C6 aromatic radical comprising a nitro group, the nitro group being a functional group. Aromatic radicals include halogenated aromatic radicals such as 4-trifluoromethylphenyl, hexafluoroisopropylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CF3)2PhO—), 4-chloromethylphen-1-yl, 3-trifluorovinyl-2-thienyl, 3-trichloromethylphen-1-yl (i.e., 3-CCl3Ph-), 4-(3-bromoprop-1-yl)phen-1-yl (i.e., 4-BrCH2CH2CH2Ph-), and the like. Further examples of aromatic radicals include 4-allyloxyphen-1-oxy, 4-aminophen-1-yl (i.e., 4-H2NPh-), 3-aminocarbonylphen-1-yl (i.e., NH2COPh-), 4-benzoylphen-1-yl, dicyanomethylidenebis(4-phen-1-yloxy) (i.e., —OPhC(CN)2PhO—), 3-methylphen-1-yl, methylenebis(4-phen-1-yloxy) (i.e., —OPhCH2PhO—), 2-ethylphen-1-yl, phenylethenyl, 3-formyl-2-thienyl, 2-hexyl-5-furanyl, hexamethylene-1,6-bis(4-phen-1-yloxy) (i.e., —OPh(CH2)6PhO—), 4-hydroxymethylphen-1-yl (i.e., 4-HOCH2Ph-), 4-mercaptomethylphen-1-yl (i.e., 4-HSCH2Ph-), 4-methylthiophen-1-yl (i.e., 4-CH3SPh-), 3-methoxyphen-1-yl, 2-methoxycarbonylphen-1-yloxy (e.g. methyl salicyl), 2-nitromethylphen-1-yl (i.e., 2-NO2CH2Ph), 3-trimethylsilylphen-1-yl, 4-t-butyldimethylsilylphenl-1-yl, 4-vinylphen-1-yl, vinylidenebis(phenyl), and the like. The term “a C3-C10 aromatic radical” includes aromatic radicals containing at least three but no more than 10 carbon atoms. The aromatic radical 1-imidazolyl (C3H2N2—) represents a C3 aromatic radical. The benzyl radical (C7H7—) represents a C7 aromatic radical.
- As used herein the term “cycloaliphatic radical” refers to a radical having a valence of at least one, and comprising an array of atoms which is cyclic but which is not aromatic. As defined herein a “cycloaliphatic radical” does not contain an aromatic group. A “cycloaliphatic radical” may comprise one or more noncyclic components. For example, a cyclohexylmethyl group (C6H11CH2—) is an cycloaliphatic radical which comprises a cyclohexyl ring (the array of atoms which is cyclic but which is not aromatic) and a methylene group (the noncyclic component). The cycloaliphatic radical may include heteroatoms such as nitrogen, sulfur, selenium, silicon and oxygen, or may be composed exclusively of carbon and hydrogen. For convenience, the term “cycloaliphatic radical” is defined herein to encompass a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, conjugated dienyl groups, alcohol groups, ether groups, aldehyde groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like. For example, the 4-methylcyclopent-1-yl radical is a C6 cycloaliphatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group. Similarly, the 2-nitrocyclobut-1-yl radical is a C4 cycloaliphatic radical comprising a nitro group, the nitro group being a functional group. A cycloaliphatic radical may comprise one or more halogen atoms which may be the same or different. Halogen atoms include, for example; fluorine, chlorine, bromine, and iodine. Cycloaliphatic radicals comprising one or more halogen atoms include 2-trifluoromethylcyclohex-1-yl, 4-bromodifluoromethylcyclooct-1-yl, 2-chlorodifluoromethylcyclohex-1-yl, hexafluoroisopropylidene-2,2-bis(cyclohex-4-yl) (i.e., —C6H10C(CF3)2C6H10—), 2-chloromethylcyclohex-1-yl, 3-difluoromethylenecyclohex-1-yl, 4-trichloromethylcyclohex-1-yloxy, 4-bromodichloromethylcyclohex-1-ylthio, 2-bromoethylcyclopent-1-yl, 2-bromopropylcyclohex-1-yloxy (e.g. CH3CHBrCH2C6H10O—), and the like. Further examples of cycloaliphatic radicals include 4-allyloxycyclohex-1-yl, 4-aminocyclohex-1-yl (i.e., H2C6H10—), 4-aminocarbonylcyclopent-1-yl (i.e., NH2COC5H8—), 4-acetyloxycyclohex-1-yl, 2,2-dicyanoisopropylidenebis(cyclohex-4-yloxy) (i.e., —OC6H10C(CN)2C6H10O—), 3-methylcyclohex-1-yl, methylenebis(cyclohex-4-yloxy) (i.e., —OC6H10CH2C6H10O—), 1-ethylcyclobut-1-yl, cyclopropylethenyl, 3-formyl-2-terahydrofuranyl, 2-hexyl-5-tetrahydrofuranyl, hexamethylene-1,6-bis(cyclohex-4-yloxy) (i.e., —OC6H10(CH2)6C6H10O—), 4-hydroxymethylcyclohex-1-yl (i.e., 4-HOCH2C6H10—), 4-mercaptomethylcyclohex-1-yl (i.e., 4-HSCH2C6H10—), 4-methylthiocyclohex-1-yl (i.e., 4-CH3SC6H10—), 4-methoxycyclohex-1-yl, 2-methoxycarbonylcyclohex-1-yloxy (2-CH3OCOC6H10O—), 4-nitromethylcyclohex-1-yl (i.e., NO2CH2C6H10—), 3-trimethylsilylcyclohex-1-yl, 2-t-butyldimethylsilylcyclopent-1-yl, 4-trimethoxysilylethylcyclohex-1-yl (e.g. (CH3O)3SiCH2CH2C6H10—), 4-vinylcyclohexen-1-yl, vinylidenebis(cyclohexyl), and the like. The term “a C3-C10 cycloaliphatic radical” includes cycloaliphatic radicals containing at least three but no more than 10 carbon atoms. The cycloaliphatic radical 2-tetrahydrofuranyl (C4H7O—) represents a C4 cycloaliphatic radical. The cyclohexylmethyl radical (C6H11CH2—) represents a C7 cycloaliphatic radical.
- As used herein the term “aliphatic radical” refers to an organic radical having a valence of at least one consisting of a linear or branched array of atoms which is not cyclic. Aliphatic radicals are defined to comprise at least one carbon atom. The array of atoms comprising the aliphatic radical may include heteroatoms such as nitrogen, sulfur, silicon, selenium and oxygen or may be composed exclusively of carbon and hydrogen. For convenience, the term “aliphatic radical” is defined herein to encompass, as part of the “linear or branched array of atoms which is not cyclic” organic radicals substituted with a wide range of functional groups such as alkyl groups, alkenyl groups, alkynyl groups, haloalkyl groups, conjugated dienyl groups, alcohol groups, ether groups, aldehyde groups, ketone groups, carboxylic acid groups, acyl groups (for example carboxylic acid derivatives such as esters and amides), amine groups, nitro groups, and the like. For example, the 4-methylpent-1-yl radical is a C6 aliphatic radical comprising a methyl group, the methyl group being a functional group which is an alkyl group. Similarly, the 4-nitrobut-1-yl group is a C4 aliphatic radical comprising a nitro group, the nitro group being a functional group. An aliphatic radical may be a haloalkyl group which comprises one or more halogen atoms which may be the same or different. Halogen atoms include, for example; fluorine, chlorine, bromine, and iodine. Aliphatic radicals comprising one or more halogen atoms include the alkyl halides trifluoromethyl, bromodifluoromethyl, chlorodifluoromethyl, hexafluoroisopropylidene, chloromethyl, difluorovinylidene, trichloromethyl, bromodichloromethyl, bromoethyl, 2-bromotrimethylene (e.g. —CH2CHBrCH2—), and the like. Further examples of aliphatic radicals include allyl, aminocarbonyl (i.e., —CONH2), carbonyl, 2,2-dicyanoisopropylidene (i.e., —CH2C(CN)2CH2—), methyl (i.e., —CH3), methylene (i.e., —CH2—), ethyl, ethylene, formyl (i.e. —CHO), hexyl, hexamethylene, hydroxymethyl (i.e. —CH2OH), mercaptomethyl (i.e., —CH2SH), methylthio (i.e., —SCH3), methylthiomethyl (i.e., —CH2SCH3), methoxy, methoxycarbonyl (i.e., CH3OCO—), nitromethyl (i.e., —CH2NO2), thiocarbonyl, trimethylsilyl (i.e. (CH3)3Si—), t-butyldimethylsilyl, 3-trimethyoxysilypropyl (i.e., (CH3O)3SiCH2CH2CH2—), vinyl, vinylidene, and the like. By way of further example, a C1-C10 aliphatic radical contains at least one but no more than 10 carbon atoms. A methyl group (i.e., CH3—) is an example of a C1 aliphatic radical. A decyl group (i.e., CH3(CH2)9-) is an example of a C10 aliphatic radical.
- Any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value. As an example, if it is stated that the amount of a component or a value of a process variable such as, for example, temperature, pressure, time and the like is, for example, from 1 to 90, preferably from 20 to 80, more preferably from 30 to 70, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 etc. are expressly enumerated in this specification. For values which are less than one, one unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner.
- Polystyrene (PS) used in the triplet measurements was a GPC standard having weight average molecular weight of 18,700 and was obtained from Aldrich Chemical Co., Milwaukee, Wis., USA. A green phosphorescent dye, tris(2-(4-tolyl)phenylpyridine)iridium, [Ir(mppy)3] was purchased from American Dye Sources, Canada and used as received. Glass pre-coated with indium tin oxide (ITO) (Applied Films). Poly(3,4-ethylendioxythiophene/polystyrene sulfonate (PEDOT:PSS) was purchased from H.C. Starck Co., GmbH, Leverkusen, Germany. N,N′-diphenyl-N-N″-(bis(3-methylphenyl)-[1,1-biphenyl]-4-4′-diamine (TPD) and 2-(4-biphenyllyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) was used as a hole injection material and an electron injection material, respectively. Both TPD and PBD were purchased from Aldrich and used as received. All other chemicals and reagents are obtained from Aldrich Chemical Co., Milwaukee, Wis., USA. Flash chromatography was carried out by Fisher Scientific (100-200 mesh) or Aldrich (60-350 mesh) silica gel, prepacked silical gel column by Isco. Thin layer chromatography was carried out on commercially available pre-coated glass plates (Analtech, GF, 250 microns).
- Molecular weights were determined relative to polystyrene standards on a Perkin Elmer Series 200 GPC equipped with a Polymer Laboratories size exclusion column (PLgel 5 μm MIXED-C, 300×7.5 mm kept at 40° C.) using chloroform with 3.6% v/v isopropanol as the mobile phase. NMR spectra were measured on a Bruker 400 or Bruker Advance 500 spectrometers.
- The synthesis of the bis(9-(hydroxyphenyl)carbazol-3-yl) was done in a three-step process as shown in
scheme 1. This was achieved by the addition of p-bromoanisole to carbazole followed by coupling of the N-(4-methoxyphenyl) carbazole using FeCl3 catalyst, and finally deprotecting the methoxy group to give rise to the dihydroxy compound. - Method 1: A flask containing a mixture of 5.025 g (0.03 mol) carbazole, 7.3 g (0.04 mol) 4-bromoanisole, 12.5 g (0.09 mol) K2CO3 in 200 ml toluene was evacuated and charged with argon for three times, after which 2 mol % Pd (OAc)2 and 0.1 g tris(t-butyl)phosphine were added. The mixture was stirred for one week under argon. Fresh Pd(OAc)2 and Pt(t-Bu)3 were added after two days. After the mixture was allowed to cool and water was added. The organic layer was separated, dried over MgSO4, and concentrated. After column chromatography, white crystals were obtained.
- Method 2: To a three neck round bottom flask, was charged bromoanisole (18.7 g, 100 mmol), carbazole (16.7 mg, 100 mmol), potassium phosphate (21 g, 154 mmol) and copper iodide (1 g, 5 mmol). Dioxane (400 ml) was added and subsequently, the reaction flask was flushed with N2. Dimethylethylene diamine (1 g, 5 mmol) was then added to the reaction flask via syringe. The reaction mixture was then heated at 95° C. for 24 h under nitrogen. Then, the solution was cooled down to room temperature, and 50 mL of H2O was added. The reaction mixture was extracted with methylene chloride and the organic and aqueous phase was separated. The organic phase was further washed twice with 50 mL of water and once with 50 mL of brine and dried over Na2SO4. The solvent was removed under vacuum to afford the crude product. Recrystallization from methanol gave 17.99 g of white crystals of
compound 1. 1H NMR (CDCl3) δ 8.17 (d, 2H), 7.48 (d, 2H), 7.43 (dt, 2H), 7.36 (d, 2H), 7.31 (dt, 2H), 7.14 (d, 2H), 3.96 (s, 3H). 13C NMR (CDCl3): δ 159, 141, 130, 129, 126, 123, 120, 120, 115, 110, 56. EI-MS: 273(M+), 258. - To a stirred solution of 8.03 g (29.4 mmol) of
compound 1 in 500 mL chloroform under argon atmosphere was added at once 9.67 g (59.6 mmol) of iron(III)chloride. After stirring at room temperature for 40 hours, 250 mL of water was added. The organic layer was separated was extracted thrice with 250 mL of water and filtered through a pad of basic alumina. Then, a small amount of methylene chloride was used to rinse the pad. The filtrate was dried over Na2SO4, filtered and concentrated under vacuum. The mixture was purified by recrystallizing from THF/hexanes to afford theproduct compound 2 as white crystals at 52% yield. 1H NMR (CDCl3): d 8.49 (d, 2H), 8.28 (d, 2H), 7.81 (dd, 2H), 7.54 (d, 4H), 7.47 (d, 2H), 7.46 (dt, 2H), 7.40 (d, 2H), 7.35 (dt, 2H), 7.18 (d, 4H), 3.97 (s, 6H). 13C NMR (CDCl3): d 159, 142, 141, 134, 130, 129, 126, 126, 124, 123, 120, 120, 119, 115, 110, 110, 56. EI-MS (M+): 544. - 0.544 g of compound 2 (1 mmol) was added to a 15 mL of anhydrous CH2Cl2 in a 50 mL round-bottom flask and stirred with a magnetic stir bar. Solution was cooled in an ice-bath to 0° C. under a nitrogen atmosphere. Boron tribromide (2.4 mmol, 2.4 mL 1M in CH2Cl2) was added via syringe dropwise to solution. The flask was removed from the ice-bath and allowed to equilibrate to room temperature, followed by one hour of stirring. The solution was decanted into 10 mL of ice water in a 50 mL beaker. After 30 minutes of hydrolysis with stirring, the organic layer was extracted with 2×10 mL of CH2Cl2. The organic layer was washed with 2×15 mL of cold water to neutralize any excess BBr3. Solution was dried with sodium sulfate and the solvent was evaporated using a rotary evaporator to afford 0.46 g (90%) solid. Recrystallization from THF/hexanes afforded 0.346 g of product used in the following polymerization. 1H NMR (CDCl3): d 8.47 (b, 2H), 8.26 (d, 2H), 7.79 (dd, 2H), 7.49 (d, 4H), 7.45 (d, 2H), 7.38 (dt, 2H), 7.33 (d, 2H), 7.10 (d, 4H). EI-MS (M+): 516.
- A dry reaction vessel equipped with a magnetic stirring bar under nitrogen atmosphere, charged with
compound 3 bis(9-(hydroxyphenyl)carbazol-3-yl) (0.346 g, 0.6697 mmol), BPA-bischloroformate (0.237 g, 0.6697 mmol), and 8 mL of dry methylene chloride. The resulting milky solution was immersed in an ice-salt bath for 15 minutes and then charged with 0.25 mL (1.79 mmol) of dry triethylamine. The mixture was maintained at 0-5° C. with stirring for 1 h, allowed to warm to room temperature, and stirred for an additional hour. Then the mixture was diluted with 5 mL CH2Cl2, 1.0 mL of 10% NaHCO3 was added, and the mixture was stirred for 10 min and then transferred to a separatory funnel. The aqueous phase was discarded and the organic phase was washed successively with equal volumes of 1 N HCl (1×) and water (2×). The solution was concentrated to 4 mL and then precipitated into 40 mL of methanol. The collected polymer was redissolved in 10 mL of CH2Cl2 and this solution was added slowly to 1000 mL of boiling, deionized water. The solids were again collected, air-dried, redissolved in fresh CH2Cl2 (12 mL) and reprecipitated again into methanol. The resulting polymer was dried at 80° C. in a vacuum oven overnight. GPC (Gel permeation chromatography) analysis showed the polymer had a weight average molecular weight Mw of 31,500 k, and a polydispersity index PDI of 3.18. - The triplet energy levels were obtained using a Perkin Elmer LS55 spectrofluorimeter equipped with an uncooled R928 red sensitive photo multiplier tube. The typical procedure was to place a sample in a clean laboratory mortar and immerse the sample in liquid nitrogen at least 2 minutes prior to the measurement to ensure thermal equilibrium. Then the sample was optically excited. Emission spectra were obtained by using the delayed collection feature of the LS55, in which the detection is gated at time delayed from the initial 20 μs excitation pulse.
- The sample for triplet energy levels was prepared in the following manner: 10 mg of bis[9-(hydroxyphenyl)carbazol-3-yl] was dissolved in 1 ml anhydrous THF. The solution was then spin-coated onto a pre-cleaned quartz substrate.
- The sample for triplet energy levels was prepared in the following manner: A mixture of 1 wt % tris(2-(4-tolyl)phenylpyridine)iridium (Ir(mppy)3) in polystyrene (PS) was prepared by mixing of 0.010 ml of 1 wt % Ir(mppy)3 (10 mg of Ir(mppy)3 in 1 ml THF) with 1.0 ml of 1 wt % PS in THF, which was then spin-coated onto a pre-cleaned quartz substrate.
-
FIG. 1 shows the emission spectra of the two samples. The sample from Example 5 has a greater triplet energy level relative to the sample from Comparative Example 1. For instance, the first emission peak of the sample from Example 5 appears at 2.7 eV relative to the 2.4 eV of the sample from Comparative Example 1. - The lifetime of triplet excited states were measured using an Edinburgh CD920 spectrometer equipped with a cooled R928 photo multiplier tube. The typical procedure was to place a sample in a vacuum dewer and then pump down to 4*10E−5 torr. Then the sample was optically excited at 394 nm with a pulsed diode laser (class HIB, 390-420 nm, maximum power of 5 mW). Time resolved emission spectra were measured at 540 nm.
- A mixture of 1 wt % Ir(mppy)3 in bis[9-(hydroxyphenyl)carbazol-3-yl] was prepared by mixing 0.010 ml of 1 wt % Ir(mppy)3 (10 mg of Ir(mppy)3 in 1 ml THF) with 1.0 ml of 1 wt % bis[9-(hydroxyphenyl)carbazol-3-yl] in THF. The solution was then spin-coated onto a pre-cleaned quartz substrate.
- A mixture of 1 wt % Ir(mppy)3 in polystyrene was prepared by mixing 0.010 ml of 1 wt % Ir(mppy)3 (10 mg of Ir(mppy)3 in 1 ml THF) with 1.0 ml of 1 wt % PS in THF. The solution was spin-coated onto a pre-cleaned quartz substrate.
-
FIG. 2 shows the triplet excited states decay profiles of the phosphorescent dye in the presence and absence of bis(9-(hydroxyphenyl)carbazol-3-yl). The phosphorescent dye had comparable triplet decay profiles (equivalently lifetimes) when dispersed in bis(9-(hydroxyphenyl)carbazol-3-yl) relative to an insulating polystyrene matrix. The data is consistent with data obtained from triplet energy measurements and suggests that there is no energy transfer from the dye [Ir(mppy)3] to the host {either PS or bis[9-(hydroxyphenyl)carbazol-3-yl]}. Thus, bis[9-(hydroxyphenyl)carbazol-3-yl] is suitable as a host material for Ir(mppy)3 in phosphorescent OLEDs. - Glass pre-coated with indium tin oxide (ITO) was used as the substrate. A layer (c.a. 65 nm) of poly (3,4-ethylendioxythiophene/polystyrene sulfonate (PEDOT:PSS), was deposited onto ultraviolet-ozone treated ITO substrates via spin-coating and then baked for 1 hour at 180° C. in air. N,N′-diphenyl-N-N″-bis(3-methylphenyl)-[1,1-biphenyl]4-4′-diamine (TPD) and 2-(4-biphenyllyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) was used as a hole injection material and an electron injection material, respectively. A mixture solution of bis[9-(hydroxyphenyl)carbazol-3-yl]:PBD:TPD:Ir(mppy)3 (61:24:9:6) was prepared by mixing 1.220 ml of 1.5 wt % of bis[9-(hydroxyphenyl)carbazol-3-yl] in chlorobenzene (CB), 0.240 ml of 3.0 wt % of PBD in CB, 0.090 ml of 3.0 wt % TPD in CB and 0.18 ml of 1 wt % of Ir(mppy)3 in CB. Then the mixture solution was spin-coated onto the PEDOT:PSS and then baked at 70° C. for 10 mins. The device fabrication was finished with the deposition of a CsF (4 nm)/Al (100 nm) via thermal evaporation at a based pressure of 2*10E−6 Torr. Following metal evaporation, the devices were encapsulated using a glass slide sealed with an optical adhesive (Norland® 68, obtained from Norland Products Inc, New Jersey, U.S.A.
- Performance of OLEDs was characterized by measuring current-voltage-luminance (I-V-L) characteristics. A photodiode calibrated with a luminance meter (Minolta LS-110) was used to measure the luminance (in units of candela per square meter, cd/m2).
FIG. 3 shows that the maximum quantum efficiency, represented by diamonds, is 21.9 cd/A, and the maximum power efficiency, represented by squares, achieved was 14.2 lm/w. This is comparable to the state-of-the-art (27 cd/A and 14.1 lm/w) polymeric phosphorescent device as described in X. H. Yang, D. Neher, D. Hertel and T. K. Daubler, “Highly efficient single-layer polymer electrophosphorescent devices”, Adv. Mater.Vol 16, pp 161-166, 2004. - While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Claims (33)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/610,032 US7381985B1 (en) | 2006-12-13 | 2006-12-13 | Bis-carbazole monomers and polymers |
KR1020097012058A KR101474578B1 (en) | 2006-12-13 | 2007-11-16 | Bis-carbazole monomers and polymers |
AT07864508T ATE513811T1 (en) | 2006-12-13 | 2007-11-16 | BIS-CARBAZOLE MONOMERS AND POLYMERS |
PCT/US2007/084912 WO2008076569A1 (en) | 2006-12-13 | 2007-11-16 | Bis-carbazole monomers and polymers |
JP2009541455A JP5583410B2 (en) | 2006-12-13 | 2007-11-16 | Biscarbazole monomers and polymers |
EP20070864508 EP2102159B1 (en) | 2006-12-13 | 2007-11-16 | Bis-carbazole monomers and polymers |
CN2007800452863A CN101547900B (en) | 2006-12-13 | 2007-11-16 | Bis-carbazole monomers and polymers |
TW96144823A TWI460162B (en) | 2006-12-13 | 2007-11-26 | Bis-carbazole monomers and polymers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/610,032 US7381985B1 (en) | 2006-12-13 | 2006-12-13 | Bis-carbazole monomers and polymers |
Publications (2)
Publication Number | Publication Date |
---|---|
US7381985B1 US7381985B1 (en) | 2008-06-03 |
US20080145665A1 true US20080145665A1 (en) | 2008-06-19 |
Family
ID=39315306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/610,032 Active US7381985B1 (en) | 2006-12-13 | 2006-12-13 | Bis-carbazole monomers and polymers |
Country Status (8)
Country | Link |
---|---|
US (1) | US7381985B1 (en) |
EP (1) | EP2102159B1 (en) |
JP (1) | JP5583410B2 (en) |
KR (1) | KR101474578B1 (en) |
CN (1) | CN101547900B (en) |
AT (1) | ATE513811T1 (en) |
TW (1) | TWI460162B (en) |
WO (1) | WO2008076569A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080135806A1 (en) * | 2006-12-11 | 2008-06-12 | General Electric Company | Carbazolyl polymers for organic electronic devices |
US20100331509A1 (en) * | 2007-12-20 | 2010-12-30 | Georgia Tech Research Corporation | Carbazole-based hole transport and/or electron blocking materials and/or host polymer materials |
CN102597158A (en) * | 2009-11-03 | 2012-07-18 | 第一毛织株式会社 | Compound for an organic photoelectric device, and organic photoelectric device comprising same |
US8828561B2 (en) | 2009-11-03 | 2014-09-09 | Cheil Industries, Inc. | Compound for organic photoelectric device and organic photoelectric device including the same |
US10522764B2 (en) | 2012-08-10 | 2019-12-31 | Lms Co., Ltd. | Compound, light-emitting element comprising same and electronic device comprising the light-emitting element |
US11812626B2 (en) | 2011-02-16 | 2023-11-07 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
US11871592B2 (en) | 2011-03-23 | 2024-01-09 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
US12100795B2 (en) | 2011-02-16 | 2024-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
US12150325B2 (en) | 2011-02-16 | 2024-11-19 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010005697A1 (en) * | 2010-01-25 | 2011-07-28 | Merck Patent GmbH, 64293 | Connections for electronic devices |
WO2011122132A1 (en) * | 2010-03-31 | 2011-10-06 | 出光興産株式会社 | Material for organic electroluminescence element, and organic electroluminescence element using same |
KR20120012431A (en) * | 2010-07-30 | 2012-02-09 | 롬엔드하스전자재료코리아유한회사 | Electroluminescent device using the electroluminescent compounds |
ES2561152T3 (en) * | 2012-03-30 | 2016-02-24 | Sabic Global Technologies B.V. | Polyetherimides, manufacturing processes and molded articles therefrom |
WO2014025231A2 (en) * | 2012-08-10 | 2014-02-13 | 주식회사 엘엠에스 | Novel compound, light-emitting element comprising same and electronic device comprising the light-emitting element |
CN105461613B (en) * | 2015-12-17 | 2018-02-09 | 吉林大学 | Carbazole derivates grafted monomers, preparation method and its application in polyarylether polymer |
JP7276059B2 (en) * | 2019-10-07 | 2023-05-18 | 三菱ケミカル株式会社 | Composition for organic electroluminescent device, organic electroluminescent device, display device and lighting device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030008172A1 (en) * | 2001-04-10 | 2003-01-09 | Mario Leclerc | Conjugated polycarbazole derivatives in Organic Light Emitting Diodes |
US20030027016A1 (en) * | 2000-04-21 | 2003-02-06 | Tdk Corporation | Organic EL device |
US20050118430A1 (en) * | 2002-02-20 | 2005-06-02 | Yasuhiro Doi | Resin composition and optical element |
US20050116622A1 (en) * | 2002-03-18 | 2005-06-02 | Shih-Chun Lo | Phosphorescent dendrimers for use in light-emitting devices |
US20060003183A1 (en) * | 2004-06-30 | 2006-01-05 | Eastman Kodak Company | Organic element for electroluminescent devices |
US20060073357A1 (en) * | 2003-02-12 | 2006-04-06 | Klemens Brunner | Carbazole compounds and use of such compounds in organic electroluminiscent devices |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62264056A (en) * | 1986-05-12 | 1987-11-17 | Canon Inc | Electrophotographic sensitive body |
JPS6313048A (en) * | 1986-07-04 | 1988-01-20 | Canon Inc | Electrophotographic sensitive body |
JPS6313047A (en) * | 1986-07-04 | 1988-01-20 | Canon Inc | Electrophotographic sensitive body |
JPS6340160A (en) * | 1986-08-06 | 1988-02-20 | Fuji Xerox Co Ltd | Organic semiconductor and electrophotographic sensitive body for which said organic semiconductor is used |
JP3139321B2 (en) * | 1994-03-31 | 2001-02-26 | 東レ株式会社 | Light emitting element |
JPH11144876A (en) * | 1997-11-12 | 1999-05-28 | Toray Ind Inc | Luminescent element |
KR100346984B1 (en) * | 2000-02-08 | 2002-07-31 | 삼성에스디아이 주식회사 | Hole Transporting Compound Having Good Thermal Stability for Organic Electroluminescent Devices and Method for the Same |
JP2003133075A (en) * | 2001-07-25 | 2003-05-09 | Toray Ind Inc | Luminescent element |
JP2006510231A (en) * | 2002-12-13 | 2006-03-23 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electroluminescent device |
JP4411851B2 (en) * | 2003-03-19 | 2010-02-10 | コニカミノルタホールディングス株式会社 | Organic electroluminescence device |
JP2007507863A (en) * | 2003-10-02 | 2007-03-29 | ナショナル リサーチ カウンシル オブ カナダ | 2,7-Carbazolenvinylene derivatives as novel materials in the fabrication of organic-based electronic devices |
-
2006
- 2006-12-13 US US11/610,032 patent/US7381985B1/en active Active
-
2007
- 2007-11-16 KR KR1020097012058A patent/KR101474578B1/en active IP Right Grant
- 2007-11-16 CN CN2007800452863A patent/CN101547900B/en active Active
- 2007-11-16 AT AT07864508T patent/ATE513811T1/en not_active IP Right Cessation
- 2007-11-16 EP EP20070864508 patent/EP2102159B1/en active Active
- 2007-11-16 WO PCT/US2007/084912 patent/WO2008076569A1/en active Application Filing
- 2007-11-16 JP JP2009541455A patent/JP5583410B2/en active Active
- 2007-11-26 TW TW96144823A patent/TWI460162B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030027016A1 (en) * | 2000-04-21 | 2003-02-06 | Tdk Corporation | Organic EL device |
US20030008172A1 (en) * | 2001-04-10 | 2003-01-09 | Mario Leclerc | Conjugated polycarbazole derivatives in Organic Light Emitting Diodes |
US20050118430A1 (en) * | 2002-02-20 | 2005-06-02 | Yasuhiro Doi | Resin composition and optical element |
US20050116622A1 (en) * | 2002-03-18 | 2005-06-02 | Shih-Chun Lo | Phosphorescent dendrimers for use in light-emitting devices |
US20060073357A1 (en) * | 2003-02-12 | 2006-04-06 | Klemens Brunner | Carbazole compounds and use of such compounds in organic electroluminiscent devices |
US20060003183A1 (en) * | 2004-06-30 | 2006-01-05 | Eastman Kodak Company | Organic element for electroluminescent devices |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7851579B2 (en) | 2006-12-11 | 2010-12-14 | General Electric Company | Carbazolyl polymers for organic electronic devices |
US20080135806A1 (en) * | 2006-12-11 | 2008-06-12 | General Electric Company | Carbazolyl polymers for organic electronic devices |
US8546505B2 (en) * | 2007-12-20 | 2013-10-01 | Georgia Tech Research Corporation | Carbazole-based hole transport and/or electron blocking materials and/or host polymer materials |
US20100331509A1 (en) * | 2007-12-20 | 2010-12-30 | Georgia Tech Research Corporation | Carbazole-based hole transport and/or electron blocking materials and/or host polymer materials |
US9450193B2 (en) | 2009-11-03 | 2016-09-20 | Samsung Sdi Co., Ltd. | Compound for organic photoelectric device and organic photoelectric device including the same |
US8828561B2 (en) | 2009-11-03 | 2014-09-09 | Cheil Industries, Inc. | Compound for organic photoelectric device and organic photoelectric device including the same |
CN102597158A (en) * | 2009-11-03 | 2012-07-18 | 第一毛织株式会社 | Compound for an organic photoelectric device, and organic photoelectric device comprising same |
US9478755B2 (en) | 2009-11-03 | 2016-10-25 | Cheil Industries, Inc. | Compound for organic photoelectric device and organic photoelectric device including the same |
US11812626B2 (en) | 2011-02-16 | 2023-11-07 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
US12100795B2 (en) | 2011-02-16 | 2024-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
US12150325B2 (en) | 2011-02-16 | 2024-11-19 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
US11871592B2 (en) | 2011-03-23 | 2024-01-09 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
US10522764B2 (en) | 2012-08-10 | 2019-12-31 | Lms Co., Ltd. | Compound, light-emitting element comprising same and electronic device comprising the light-emitting element |
Also Published As
Publication number | Publication date |
---|---|
KR20090097872A (en) | 2009-09-16 |
CN101547900B (en) | 2012-11-28 |
KR101474578B1 (en) | 2014-12-18 |
WO2008076569A1 (en) | 2008-06-26 |
US7381985B1 (en) | 2008-06-03 |
TW200835684A (en) | 2008-09-01 |
JP2010513293A (en) | 2010-04-30 |
TWI460162B (en) | 2014-11-11 |
EP2102159B1 (en) | 2011-06-22 |
JP5583410B2 (en) | 2014-09-03 |
ATE513811T1 (en) | 2011-07-15 |
CN101547900A (en) | 2009-09-30 |
EP2102159A1 (en) | 2009-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7381985B1 (en) | Bis-carbazole monomers and polymers | |
US7635777B2 (en) | Carbazolyl monomers and polymers | |
EP2162457B1 (en) | Carbazolyl polymers for organic electronic devices | |
US7740942B2 (en) | Opto-electronic devices containing sulfonated copolymers | |
US8512879B2 (en) | Polymer for optoelectronic device | |
US20080145697A1 (en) | Opto-electronic devices containing sulfonated light-emitting copolymers | |
US7955720B2 (en) | Polymer comprising phenyl pyridine units | |
US20100327735A1 (en) | Fluorene dimers and trimers | |
US8101699B2 (en) | Electron-transporting polymers | |
US8865905B2 (en) | Organic compounds | |
US20110077373A1 (en) | Polymer and optoelectronic device comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YE, QING;LIU, JIE;CELLA, JAMES ANTHONY;AND OTHERS;REEL/FRAME:018783/0853;SIGNING DATES FROM 20070104 TO 20070110 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:038439/0315 Effective date: 20151222 |
|
AS | Assignment |
Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:038490/0022 Effective date: 20151222 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |