US20080129420A1 - Embedded antenna and filter apparatus and methodology - Google Patents
Embedded antenna and filter apparatus and methodology Download PDFInfo
- Publication number
- US20080129420A1 US20080129420A1 US12/015,738 US1573808A US2008129420A1 US 20080129420 A1 US20080129420 A1 US 20080129420A1 US 1573808 A US1573808 A US 1573808A US 2008129420 A1 US2008129420 A1 US 2008129420A1
- Authority
- US
- United States
- Prior art keywords
- stripline
- circuit board
- printed circuit
- quarter
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
- H01P1/2039—Galvanic coupling between Input/Output
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/02—Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
- H01P3/08—Microstrips; Strip lines
- H01P3/081—Microstriplines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2208—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
- H01Q1/2233—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in consumption-meter devices, e.g. electricity, gas or water meters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/528—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the re-radiation of a support structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/1006—Non-printed filter
Definitions
- the present subject matter generally concerns improved apparatus and methodology for providing radio frequency communication to and/or from electricity meters. More particularly, the present subject matter concerns combined radio frequency filter and antenna configurations achieving improved transmission characteristics to and/or from associated electricity meters.
- the present subject matter concerns both apparatus and methodology in such areas, including the use of embedded components in relation to printed circuit board components, for forming a transmitter or transceiver associated with an electricity meter.
- a general object of metrology is to monitor a physical phenomenon to permit a record of the monitored event(s). If the ability to communicate recorded measurements or monitored data is impeded, then the basic purpose of the metering device and/or effort fails. Such basic function and purpose of metering devices can be applied to a number of contexts.
- One broad area of measurement relates, for example, to utility meters. These may include the monitoring of consumption of a variety of forms of energy or other commodities, such as electricity, water, gas, and oil, to name a few.
- a mechanical form of register was used for utility meters. Such an approach provided a relatively dependable field device with certain inherent functional advantages. For example, if the flow of the consumable commodity being measured was interrupted, the mechanical form of gauge simply stopped in its place, automatically reflecting the previous accumulation without other arrangements being required, and without any loss of such accumulated data. After resumption of the flow of the commodity, the mechanical register could then simply begin to add additional flow values to the previous accumulation, so that accurate data was reflected at all times regardless of intermittent commodity flow interruptions.
- the gauge or register required no separate power supply since it was operated directly by the commodity flow.
- the mechanical register could be electrically powered.
- the measurement function was temporarily moot so no measurement functionality was lost even though the gauge itself would be temporarily without power.
- U.S. Pat. No. 6,078,785 to Bush for Demand Reporting of Electricity Consumption by Radio in Relays to a Base Station, and Demand Relays Wattmeters So Reporting Over a Wide Area discloses an electricity meter including an antenna that may correspond to a loop integral to a non conductive portion of the case.
- RF radio frequency
- Another broader present aspect is to accomplish improved automated meter reading communications and/or improved command and control communications from and/or to an electricity meter.
- Another more particular aspect of certain embodiments of the present subject matter relates to providing reduced interference in out of band signals from transmitters (or transceivers) associated with utility meters.
- transmitters or transceivers
- One exemplary embodiment of the present subject matter relates to an improved antenna design that manages in a positive manner the unavoidable radio frequency (RF) parasitics presented by mechanical association of an antenna within a metallic housing environment, thus providing for improved efficiency of radiation.
- RF radio frequency
- exemplary embodiments of the present subject matter may make use of embedded filters to limit harmonic radiation that may impair the operation of other nearby electronic equipment.
- embedded filters may employ a design utilizing a multilayer printed circuit board and thereby limit the need for other expensive components.
- exemplary embodiments of the present subject matter relate to a utility meter, having a metrology portion, a transmitter portion configured to transmit radio frequency signals at a predetermined frequency, and a display portion.
- the transmitter portion may advantageously further comprise a printed circuit board supporting a transmitter, and there may be provided with the utility meter an antenna and a filter respectively embedded in such circuit board.
- Such an exemplary filter configuration preferably involves the filter being connected between the transmitter and the antenna. Additional details of the filter may be specified in some embodiments thereof (though not necessarily required in others) in which the filter comprises a predetermined number of quarter-wave tuned resonators tuned to a predetermined number of selected harmonics of the predetermined frequency.
- present embodiments may relate to an electricity meter with embedded radio frequency features to provide control of out of band harmonic radiation.
- Such present exemplary electricity meters may include, for example, a metrology portion, a printed circuit board, a transmitter supported on such a printed circuit board and configured to transmit radio frequency signals at a predetermined frequency, an antenna embedded in such a printed circuit board, and a filter embedded in such printed circuit board.
- the filter may preferably be connected between the transmitter and the antenna and may preferably comprise one of a stripline filter and a microline filter.
- the result is enhanced electricity meter data signal communications for effective communication of data such as for automated meter reading communications or related.
- Certain present exemplary embodiments relate in greater manner to a stripline filter for reducing harmonic radiation from a transmitter designed for operation at a predetermined frequency.
- Such an exemplary filter may comprise a stripline transmission line extending from a first terminal to a second terminal, a first pair of quarter-wave tuned resonators tuned to a first predetermined harmonic of a predetermined frequency and coupled to the stripline transmission line, and a second pair of quarter-wave tuned resonators tuned to a second predetermined harmonic of the predetermined frequency and coupled to the stripline transmission line.
- a printed circuit board may be provided, where the stripline transmission line, the first pair of quarter-wave tuned resonators, the second pair of quarter-wave tuned resonators, and the fifth quarter-wave tuned resonator are all embedded in the printed circuit board.
- all such features may be formed on, rather than embedded in, the associated printed circuit board.
- one exemplary such present methodology relates to a method for reducing harmonic frequency radiation from a printed circuit board, comprising the steps of: providing a printed circuit board and including thereon a transmitting portion configured for transmission of radio frequency signals at a predetermined frequency; embedding in such printed circuit board an antenna, with such antenna configured so as to radiate the predetermined frequency; embedding in the printed circuit board a filter, such filter including at least one paired portion tuned to a predetermined harmonic of the predetermined frequency; and connecting the filter between the transmitting portion and the antenna.
- each such embedded filter may be configured to minimize uncontrollable surface radiation otherwise resulting from the use of individual filter components.
- FIG. 1 is a diagrammatic illustration of an exemplary configuration of an exemplary filter constructed in accordance with the present subject matter
- FIGS. 2 a through 2 d inclusive, represent examples of equivalent circuits at different frequencies of the exemplary filter illustrated in FIG. 1 ;
- FIG. 3 representatively illustrates the mounting of an antenna within a utility meter in accordance with the present subject matter.
- the present subject matter is particularly concerned with improved apparatus and methodology for the transmission of radio frequency (RF) signals relating to metrology operations within utility meters, for example, such as electric meters.
- RF radio frequency
- a medium-powered RF transmitter operating in the 900 MHz (mega Hertz) ISM (Industrial, Scientific, Medical) band of frequencies (generally 902 MHz to 928 MHz) generates considerable power output at the third, fourth and fifth harmonics that fall into FCC (Federal Communications Commission) restricted bands.
- FCC Federal Communications Commission
- FIG. 1 a diagrammatic illustration is shown of an exemplary configuration of a stripline filter 10 constructed in accordance with the present subject matter.
- the present subject matter provides an economical stripline filter 10 that may be incorporated into a regular multi-layer printed circuit board, and which otherwise addresses many of the concerns identified with respect to previous developments in the art. More specifically, the stripline filter 10 in accordance with present subject matter avoids the use of individual components that may themselves be a source of uncontrollable radiation.
- the stripline filter 10 in accordance with the present subject matter comprises a transmission line portion generally 12 extending between a first port 20 and a second port 22 .
- Such ports 20 and 22 may be designated as input and output ports, although the order may be electrically reversed, as the exemplary filter structure illustrated is symmetrical. Such symmetry may not be exhibited, however, in other designs so that symmetry of filter design is not a necessary limitation of the present subject matter.
- the stripline filter 10 in accordance with the present subject matter may correspond, for example, to a plurality of bowed quarter-wave resonators generally arranged in pairs and distributed along the transmission line 12 .
- Such quarter-wave resonators may be configured as notch filters, whereas low-pass or band-pass filters may have been types of filters previously employed in other configurations (i.e., non-stripline embodiments) of filters.
- quarter-wave resonators 30 and 32 may each be tuned to the third harmonic of the transmitter operating frequency. In the exemplary configuration, such frequency may correspond to about 2,700 MHz or 2.7 GHz (i.e., three times the base or fundamental frequency of 900 MHz), as well understood by those of ordinary skill in the art.
- resonators 40 and 42 may correspond to quarter-wave resonators tuned to the fourth harmonic of the exemplary base 900 MHz frequency
- resonator 50 may correspond to a quarter-wave resonator tuned to the fifth harmonic of the exemplary base 900 MHz frequency.
- FIGS. 2 a through 2 d individually correspond to equivalent circuit representations of the stripline filter 10 corresponding to the base frequency and harmonics thereof particularly of interest (i.e., third, fourth, and fifth) according to the present subject matter.
- FIG. 2 a representatively illustrates an equivalent circuit of the stripline filter 10 as it may appear electrically while operating at a fundamental frequency within the 900 MHz ISM frequency band.
- the stripline filter 10 may be represented as a series and parallel configuration of substantially symmetrically arranged transmission lines of selected lengths. More specifically, in the case of the fundamental frequency representation of FIG. 2 a , ports 20 and 22 (Port 1 and Port 2 , respectively), as shown, may both be considered to be equivalently coupled to the junction of a 1/16 wavelength transmission line and a 1/12 wavelength transmission line, the opposite ends of each of which may be representatively shown as coupled to a common ground plane.
- the Greek symbol lambda ( ⁇ ) is understood to represent wavelength.
- Coupled to the junction points of the two ⁇ /16 and ⁇ /12 series coupled transmission lines are a pair of series connected ⁇ /12 transmissions lines whose common connection point may be represented as coupled by way of a ⁇ /20 transmission line connected to the previously mentioned common reference plane (see upper portion of the illustration of FIG. 2 a ).
- the just described equivalent representation of the stripline filter 10 may be further reduced as represented by the unmarked right-hand side arrow head to a simpler form illustrated on the right hand portion of FIG. 2 a .
- Such reduced or simplified illustration and representation corresponds to a pair of capacitors coupled respectively to ports 20 and 22 and a corresponding representation of a common ground plane together with a single transmission line segment of approximately ⁇ /4 coupled between port 20 and port 22 .
- the third, fourth and fifth harmonic operational equivalents may correspond to elements as illustrated in FIGS. 2 b through 2 d , respectively.
- the initial representation in each of such equivalent circuit representations is structurally identical to that illustrated in FIG. 2 a representing the fundamental frequency equivalent of the stripline filter 10 except that the various lengths of the transmission line representations for each differ as illustrated in the corresponding Figures.
- the second, reduced component equivalent circuit representations (right-hand portions of each respective illustration of FIGS. 2 b through 2 d ) differ somewhat from that of the fundament frequency to the various harmonic frequencies as illustrated, respectively, in the right hand portion of each of the FIGS. 2 a through 2 d .
- those of ordinary skill in the art will understand that such illustrations make use of indicated capacitors (illustrations of right-hand side of FIGS. 2 a and 2 b ) or inductors (illustrations of right-hand side of FIGS. 2 c and 2 d ), as well as various nodes, connections with common ground planes, and specific exemplary approximated transmission line lengths.
- FIG. 3 an additional aspect of the present technology will be discussed in more detail, more specifically involving a methodology for providing an embedded antenna for association with a transmitter or transceiver associated with a utility meter, such as an electricity meter.
- an electricity meter generally 100 that includes, in an installed configuration, a metallic housing 110 to which may be couple a metrology assembly generally 130 that may be plugged into matching connectors (not shown) positioned within a circular opening 120 within the face of the metallic housing 110 .
- the metrology assembly or components 130 of the exemplary representative electric meter 100 are representatively illustrated as corresponding to a metrology circuit board 140 , a radio frequency (RF) transmitter or transceiver board 150 and a display panel 160 .
- Display panel 160 may correspond to a liquid crystal display (LCD) or any other type of display as may be selected from those known in the art or yet to be developed. The particular form of (or even the presence of) a display does not form a limitation to the present subject matter.
- each of such components i.e., the metrology board 140 , the transmitter/transceiver board 150 and the display panel 160
- suitable interconnections not shown but well understood to those of ordinary skill in the art
- an antenna 170 may be embedded into the printed circuit board on which the components corresponding to the transmitter/transceiver are mounted. Antenna 170 may be embedded in the same manner as was previously discussed with respect to the stripline filter 10 with reference to FIG. 1 and FIGS. 2 a through 2 d , respectively. In certain embodiments of the present subject matter, both the antenna 170 and stripline filter 10 may be embedded together as parts of a multi-layer printed circuit board otherwise corresponding to (i.e., serving as) the transmitter/transceiver board 150 . In other embodiments, antenna 170 may be formed on the printed circuit board rather than embedded therein.
- housing or meter case 110 may be operatively associated with antenna 170 for forming a portion or all of a radiating element of the antenna, once the meter with case 110 is fully assembled.
- Design principles relating to specific placement of the antenna 170 within, for example, the transmitter/transceiver board 150 will take into consideration antenna orientation as well as the physical presence and effect on the antenna radiation pattern that the electricity meter housing and any connecting conduits and electrical wiring may have on the antenna performance.
- the antenna may also be designed to provide radiation in two orthogonal polarizations, i.e., dual polarization characteristics, in order to increase transmission range and reliability, all in accordance with the present subject matter. In many cases, electricity meters will not be within the line of sight of transmitters/transceivers wishing to communicate with the electricity meter. In such case polarization diversity may be of assistance in improving the reliability of such non line of sight communications.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Transmitters (AREA)
- Transceivers (AREA)
Abstract
Apparatus and methodology are disclosed for providing effective transmission of data to and/or from an electricity meter by providing embedded radio frequency components. An antenna and stripline or microline filter arrangement are provided as embedded components in association with a transmitter or transceiver portion of the electricity meter's metrology circuitry so as to provide control of out of band harmonic radiation and to provide enhanced signal transmission to and/or from the electricity meter, to accomplish automated meter reading communications or similar. The antenna element is configured and mounted such that, once the electricity meter is fully assembled, the meter case itself can be used as part of a radiating element. An overall resulting integrated design can achieve greater economy utilizing printed circuit board approaches with no additional parts, and with less uncontrolled surface radiation because of the otherwise buried or embedded structure.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/604,973, entitled “EMBEDDED ANTENNA AND FILTER APPARATUS AND METHODOLOGY”, filed Aug. 27, 2004, and of U.S. Regular patent application Ser. No. 11/211,153, filed Aug. 24, 2005, both of which are incorporated herein by reference for all purposes.
- The present subject matter generally concerns improved apparatus and methodology for providing radio frequency communication to and/or from electricity meters. More particularly, the present subject matter concerns combined radio frequency filter and antenna configurations achieving improved transmission characteristics to and/or from associated electricity meters.
- The present subject matter concerns both apparatus and methodology in such areas, including the use of embedded components in relation to printed circuit board components, for forming a transmitter or transceiver associated with an electricity meter.
- A general object of metrology is to monitor a physical phenomenon to permit a record of the monitored event(s). If the ability to communicate recorded measurements or monitored data is impeded, then the basic purpose of the metering device and/or effort fails. Such basic function and purpose of metering devices can be applied to a number of contexts. One broad area of measurement relates, for example, to utility meters. These may include the monitoring of consumption of a variety of forms of energy or other commodities, such as electricity, water, gas, and oil, to name a few.
- Historically, a mechanical form of register was used for utility meters. Such an approach provided a relatively dependable field device with certain inherent functional advantages. For example, if the flow of the consumable commodity being measured was interrupted, the mechanical form of gauge simply stopped in its place, automatically reflecting the previous accumulation without other arrangements being required, and without any loss of such accumulated data. After resumption of the flow of the commodity, the mechanical register could then simply begin to add additional flow values to the previous accumulation, so that accurate data was reflected at all times regardless of intermittent commodity flow interruptions.
- Also, in many instances, the gauge or register required no separate power supply since it was operated directly by the commodity flow. In the case of electricity meters, the mechanical register could be electrically powered. Hence, when power was lost, the measurement function was temporarily moot so no measurement functionality was lost even though the gauge itself would be temporarily without power.
- As the technology of metering devices progressed, mechanical registers began to be replaced with more electrical-based devices and electronic forms of registers. In addition, data transmission devices have been introduced that permit remote reading and/or control of utility meters, thus relieving utility companies of the need to visually inspect meters to obtain periodic reading, or of the need to visit a meter to undertake certain communications (for example, such as instructions) directed to the meter.
- For example, in the case of an electricity meter, electric power is already flowing to and through the metering or measuring device. Such fact makes for a convenient supply of electricity, without having to attempt to rely on battery operation or some other source of electrical power. Thus, there is a ready source available to provide power for onboard transmitters and/or transceivers that may be used to transmit collected data to a remote location and/or to receive various command and/or control signals designed to modify or control the operation of the utility meter.
- Regardless of such uses for communications, an inherent problem exists due in part to the fact that, when a relatively large number of such devices are in use, interference with other such devices or with other devices operating on similar frequencies, can create errors in the reception of transmitted data or control signals to or from the utility meter. Prior attempts have been made to address such technical problem.
- U.S. Pat. No. 6,737,985 to Garrard et al. for Remote Metering, issued May 18>2004, discloses an electricity meter including, among other features, an
antenna system 120. - U.S. Pat. No. 6,078,785 to Bush for Demand Reporting of Electricity Consumption by Radio in Relays to a Base Station, and Demand Relays Wattmeters So Reporting Over a Wide Area, issued Jun. 20, 2000, discloses an electricity meter including an antenna that may correspond to a loop integral to a non conductive portion of the case.
- A 2000 article entitled “Current Affairs—Advances in AMR technology” briefly discusses the use of PCS wireless modems with automated electricity meter reading systems using proprietary antenna fully contained within the meter chassis.
- In view of the recognized features encountered in the prior art and addressed by the present subject matter, improved apparatus and methodology for transmission of radio frequency (RF) signals relating to metrology operations within electric meters are disclosed. More particularly, a particular aspect of certain embodiments of the present subject matter involves improved antenna radiation patterns from antennas coupled to transmitters or transceivers associated with utility meters.
- Another broader present aspect is to accomplish improved automated meter reading communications and/or improved command and control communications from and/or to an electricity meter.
- Another more particular aspect of certain embodiments of the present subject matter relates to providing reduced interference in out of band signals from transmitters (or transceivers) associated with utility meters. In such context, it is a general aspect of the present subject matter to provide for reduced harmonic frequency radiation from low-cost transmitters associated with utility meters.
- It is another of the broader aspects of the present subject matter to advantageously utilize embedded radio frequency components. More particularly, for example, in such context, it is a present advantage to in certain embodiments provide for stripline or microline filter arrangements combined with antenna features, all in an embedded context.
- It is a still further present advantage, for some particular present embodiments, to provide an antenna element configured and mounted such that, once the electricity meter is fully assembled, the meter case itself contributes as a part or all of a radiating element.
- Additional aspects and advantages of the present subject matter are set forth in, or will be apparent to those of ordinary skill in the art from, the detailed description herein. Also, it should be further appreciated that the modifications and variations to the specifically illustrated, referenced, and discussed features and steps hereof may be practiced in various embodiments and uses of this subject matter without departing from the spirit and scope thereof, by virtue of present reference thereto. Such variations may include, but are not limited to, substitution of equivalent means and features or steps for those shown, referenced, or discussed, and the functional, operational, or positional reversal of various parts, features, steps, or the like.
- Still further, it is to be understood that different embodiments, as well as different presently preferred embodiments, of this subject matter may include various combinations or configurations of presently disclosed steps or features, or their equivalents (including combinations of steps or features or configurations thereof not expressly referenced in the figures or stated in the detailed description).
- One exemplary embodiment of the present subject matter relates to an improved antenna design that manages in a positive manner the unavoidable radio frequency (RF) parasitics presented by mechanical association of an antenna within a metallic housing environment, thus providing for improved efficiency of radiation.
- Other exemplary embodiments of the present subject matter may make use of embedded filters to limit harmonic radiation that may impair the operation of other nearby electronic equipment. As another aspect of the present subject matter, such embedded filters may employ a design utilizing a multilayer printed circuit board and thereby limit the need for other expensive components.
- Other exemplary embodiments of the present subject matter relate to a utility meter, having a metrology portion, a transmitter portion configured to transmit radio frequency signals at a predetermined frequency, and a display portion. In such embodiment, the transmitter portion may advantageously further comprise a printed circuit board supporting a transmitter, and there may be provided with the utility meter an antenna and a filter respectively embedded in such circuit board. Such an exemplary filter configuration preferably involves the filter being connected between the transmitter and the antenna. Additional details of the filter may be specified in some embodiments thereof (though not necessarily required in others) in which the filter comprises a predetermined number of quarter-wave tuned resonators tuned to a predetermined number of selected harmonics of the predetermined frequency.
- Still further, other present embodiments may relate to an electricity meter with embedded radio frequency features to provide control of out of band harmonic radiation. Such present exemplary electricity meters may include, for example, a metrology portion, a printed circuit board, a transmitter supported on such a printed circuit board and configured to transmit radio frequency signals at a predetermined frequency, an antenna embedded in such a printed circuit board, and a filter embedded in such printed circuit board. The filter may preferably be connected between the transmitter and the antenna and may preferably comprise one of a stripline filter and a microline filter. In such exemplary present electricity meters provided with embedded radio frequency features, the result is enhanced electricity meter data signal communications for effective communication of data such as for automated meter reading communications or related.
- Certain present exemplary embodiments relate in greater manner to a stripline filter for reducing harmonic radiation from a transmitter designed for operation at a predetermined frequency. Such an exemplary filter may comprise a stripline transmission line extending from a first terminal to a second terminal, a first pair of quarter-wave tuned resonators tuned to a first predetermined harmonic of a predetermined frequency and coupled to the stripline transmission line, and a second pair of quarter-wave tuned resonators tuned to a second predetermined harmonic of the predetermined frequency and coupled to the stripline transmission line. In certain of such exemplary stripline filter embodiments, a printed circuit board may be provided, where the stripline transmission line, the first pair of quarter-wave tuned resonators, the second pair of quarter-wave tuned resonators, and the fifth quarter-wave tuned resonator are all embedded in the printed circuit board. In other, alternative stripline filter embodiments, all such features may be formed on, rather than embedded in, the associated printed circuit board.
- Still further present aspects relate to corresponding methodology, it being intended as understood by those of ordinary skill in the art that such corresponding methodology equally forms part of the present disclosure. Broadly speaking, one exemplary such present methodology relates to a method for reducing harmonic frequency radiation from a printed circuit board, comprising the steps of: providing a printed circuit board and including thereon a transmitting portion configured for transmission of radio frequency signals at a predetermined frequency; embedding in such printed circuit board an antenna, with such antenna configured so as to radiate the predetermined frequency; embedding in the printed circuit board a filter, such filter including at least one paired portion tuned to a predetermined harmonic of the predetermined frequency; and connecting the filter between the transmitting portion and the antenna.
- In accordance with aspects of certain embodiments of the present subject matter, each such embedded filter may be configured to minimize uncontrollable surface radiation otherwise resulting from the use of individual filter components.
- Additional embodiments of the present subject matter, not necessarily expressed in this summarized section, may include and incorporate various combinations of aspects of features, components, or steps referenced in the summarized objectives above, and/or other features, components, or steps as otherwise discussed in this application. Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the remainder of the specification.
- A full and enabling disclosure of the present subject matter, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
-
FIG. 1 is a diagrammatic illustration of an exemplary configuration of an exemplary filter constructed in accordance with the present subject matter; -
FIGS. 2 a through 2 d, inclusive, represent examples of equivalent circuits at different frequencies of the exemplary filter illustrated inFIG. 1 ; and -
FIG. 3 representatively illustrates the mounting of an antenna within a utility meter in accordance with the present subject matter. - Repeat use of reference characters throughout the present specification and appended drawings is intended to represent same or analogous features, elements or steps of the present subject matter.
- As discussed in the Brief Summary of the Invention section, the present subject matter is particularly concerned with improved apparatus and methodology for the transmission of radio frequency (RF) signals relating to metrology operations within utility meters, for example, such as electric meters. As a general non-limiting example, a medium-powered RF transmitter operating in the 900 MHz (mega Hertz) ISM (Industrial, Scientific, Medical) band of frequencies (generally 902 MHz to 928 MHz) generates considerable power output at the third, fourth and fifth harmonics that fall into FCC (Federal Communications Commission) restricted bands. Thus, specific harmonics filtering is needed to bring the level of emissions under government regulated limits.
- Traditional designs utilize lumped band-pass and/or low-pass filters to carry out the task of harmonic suppression. Implementation of such filters has been difficult, mostly due to creation of parasitic pass-bands and uncontrolled radiation from the filter itself. In addition, the use of individual components adds unnecessarily to the overall cost of such filters.
- With specific reference to
FIG. 1 , a diagrammatic illustration is shown of an exemplary configuration of astripline filter 10 constructed in accordance with the present subject matter. The present subject matter provides aneconomical stripline filter 10 that may be incorporated into a regular multi-layer printed circuit board, and which otherwise addresses many of the concerns identified with respect to previous developments in the art. More specifically, thestripline filter 10 in accordance with present subject matter avoids the use of individual components that may themselves be a source of uncontrollable radiation. - As illustrated in
FIG. 1 , thestripline filter 10 in accordance with the present subject matter comprises a transmission line portion generally 12 extending between afirst port 20 and asecond port 22.Such ports - With further reference to
FIG. 1 , thestripline filter 10 in accordance with the present subject matter may correspond, for example, to a plurality of bowed quarter-wave resonators generally arranged in pairs and distributed along thetransmission line 12. Such quarter-wave resonators may be configured as notch filters, whereas low-pass or band-pass filters may have been types of filters previously employed in other configurations (i.e., non-stripline embodiments) of filters. Thus, quarter-wave resonators - In like manner,
resonators resonator 50 may correspond to a quarter-wave resonator tuned to the fifth harmonic of the exemplary base 900 MHz frequency. -
FIGS. 2 a through 2 d individually correspond to equivalent circuit representations of thestripline filter 10 corresponding to the base frequency and harmonics thereof particularly of interest (i.e., third, fourth, and fifth) according to the present subject matter. - In particular,
FIG. 2 a representatively illustrates an equivalent circuit of thestripline filter 10 as it may appear electrically while operating at a fundamental frequency within the 900 MHz ISM frequency band. As illustrated inFIG. 2 a, with respect to a fundamental operating frequency, thestripline filter 10 may be represented as a series and parallel configuration of substantially symmetrically arranged transmission lines of selected lengths. More specifically, in the case of the fundamental frequency representation ofFIG. 2 a,ports 20 and 22 (Port 1 andPort 2, respectively), as shown, may both be considered to be equivalently coupled to the junction of a 1/16 wavelength transmission line and a 1/12 wavelength transmission line, the opposite ends of each of which may be representatively shown as coupled to a common ground plane. As is customary in representations like those ofFIGS. 2 a through 2 d, the Greek symbol lambda (λ) is understood to represent wavelength. - Coupled to the junction points of the two λ/16 and λ/12 series coupled transmission lines are a pair of series connected λ/12 transmissions lines whose common connection point may be represented as coupled by way of a λ/20 transmission line connected to the previously mentioned common reference plane (see upper portion of the illustration of
FIG. 2 a). - With further reference to
FIG. 2 a, it will be observed that the just described equivalent representation of thestripline filter 10 may be further reduced as represented by the unmarked right-hand side arrow head to a simpler form illustrated on the right hand portion ofFIG. 2 a. Such reduced or simplified illustration and representation corresponds to a pair of capacitors coupled respectively toports port 20 andport 22. - In accordance with the present technology, the third, fourth and fifth harmonic operational equivalents may correspond to elements as illustrated in
FIGS. 2 b through 2 d, respectively. As will be observed from an examination of such Figures, the initial representation in each of such equivalent circuit representations is structurally identical to that illustrated inFIG. 2 a representing the fundamental frequency equivalent of thestripline filter 10 except that the various lengths of the transmission line representations for each differ as illustrated in the corresponding Figures. - In addition to the above noted differences in lengths of transmission line representations for the various harmonics, the second, reduced component equivalent circuit representations (right-hand portions of each respective illustration of
FIGS. 2 b through 2 d) differ somewhat from that of the fundament frequency to the various harmonic frequencies as illustrated, respectively, in the right hand portion of each of theFIGS. 2 a through 2 d. However, in each instance, those of ordinary skill in the art will understand that such illustrations make use of indicated capacitors (illustrations of right-hand side ofFIGS. 2 a and 2 b) or inductors (illustrations of right-hand side ofFIGS. 2 c and 2 d), as well as various nodes, connections with common ground planes, and specific exemplary approximated transmission line lengths. - With reference now to
FIG. 3 , an additional aspect of the present technology will be discussed in more detail, more specifically involving a methodology for providing an embedded antenna for association with a transmitter or transceiver associated with a utility meter, such as an electricity meter. - Illustrated in
FIG. 3 is an electricity meter generally 100 that includes, in an installed configuration, ametallic housing 110 to which may be couple a metrology assembly generally 130 that may be plugged into matching connectors (not shown) positioned within acircular opening 120 within the face of themetallic housing 110. The metrology assembly orcomponents 130 of the exemplary representativeelectric meter 100 are representatively illustrated as corresponding to ametrology circuit board 140, a radio frequency (RF) transmitter ortransceiver board 150 and adisplay panel 160.Display panel 160 may correspond to a liquid crystal display (LCD) or any other type of display as may be selected from those known in the art or yet to be developed. The particular form of (or even the presence of) a display does not form a limitation to the present subject matter. Each of such components (i.e., themetrology board 140, the transmitter/transceiver board 150 and the display panel 160) are coupled together by suitable interconnections (not shown but well understood to those of ordinary skill in the art) as may be specifically required in a given embodiment of the present subject matter to permit proper operation of the exemplary representative electricity meter. - With further reference to the transmitter/
transceiver board 150, anantenna 170 may be embedded into the printed circuit board on which the components corresponding to the transmitter/transceiver are mounted.Antenna 170 may be embedded in the same manner as was previously discussed with respect to thestripline filter 10 with reference toFIG. 1 andFIGS. 2 a through 2 d, respectively. In certain embodiments of the present subject matter, both theantenna 170 andstripline filter 10 may be embedded together as parts of a multi-layer printed circuit board otherwise corresponding to (i.e., serving as) the transmitter/transceiver board 150. In other embodiments,antenna 170 may be formed on the printed circuit board rather than embedded therein. Similarly, a microline filter arrangement may be practiced in place of a stripline filter. Also, optionally, housing ormeter case 110 may be operatively associated withantenna 170 for forming a portion or all of a radiating element of the antenna, once the meter withcase 110 is fully assembled. - Design principles relating to specific placement of the
antenna 170 within, for example, the transmitter/transceiver board 150 will take into consideration antenna orientation as well as the physical presence and effect on the antenna radiation pattern that the electricity meter housing and any connecting conduits and electrical wiring may have on the antenna performance. The antenna may also be designed to provide radiation in two orthogonal polarizations, i.e., dual polarization characteristics, in order to increase transmission range and reliability, all in accordance with the present subject matter. In many cases, electricity meters will not be within the line of sight of transmitters/transceivers wishing to communicate with the electricity meter. In such case polarization diversity may be of assistance in improving the reliability of such non line of sight communications. - While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, the scope of the present disclosure is by way of example rather than by way of limitation, and the subject disclosure does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.
Claims (8)
1. A stripline filter for reducing harmonic radiation from a transmitter designed for operation at a predetermined frequency, comprising:
a stripline transmission line extending from a first terminal to a second terminal;
a first pair of quarter-wave tuned resonators tuned to a first predetermined harmonic of a predetermined frequency and coupled to said stripline transmission line; and
a second pair of quarter-wave tuned resonators tuned to a second predetermined harmonic of said predetermined frequency and coupled to said stripline transmission line.
2. A stripline filter as in claim 1 , further comprising a fifth quarter-wave tuned resonator tuned to a third predetermined harmonic of said predetermined frequency and coupled to said stripline transmission line.
3. A stripline filter as in claim 2 , wherein said first and second pair of quarter-wave tuned resonators and said fifth quarter-wave tuned resonator are coupled to said stripline transmission line in a symmetrical configuration so that said first terminal and said second terminal are electrically interchangeable.
4. A stripline filter as in claim 2 , further comprising:
a printed circuit board; and
wherein said stripline transmission line, said first pair of quarter-wave tuned resonators, said second pair of quarter-wave tuned resonators, and said fifth quarter-wave tuned resonator are embedded in said printed circuit board.
5. A stripline filter as in claim 4 , wherein said printed circuit board is a multi-layer printed circuit board.
6. A stripline filter as in claim 4 , wherein said first predetermined harmonic is the third harmonic of said predetermined frequency, said second predetermined harmonic is the fourth harmonic of said predetermined frequency, and the third predetermined harmonic is the fifth harmonic of said predetermined frequency.
7. A stripline filter as in claim 2 , further comprising:
a printed circuit board; and
wherein said stripline transmission line, said first pair of quarter-wave tuned resonators, said second pair of quarter-wave tuned resonators, and said fifth quarter-wave tuned resonator are formed on said printed circuit board.
8. A stripline filter as in claim 7 , wherein said printed circuit board is a multi-layer printed circuit board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/015,738 US20080129420A1 (en) | 2004-08-27 | 2008-01-17 | Embedded antenna and filter apparatus and methodology |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60497304P | 2004-08-27 | 2004-08-27 | |
US11/211,153 US7372373B2 (en) | 2004-08-27 | 2005-08-24 | Embedded antenna and filter apparatus and methodology |
US12/015,738 US20080129420A1 (en) | 2004-08-27 | 2008-01-17 | Embedded antenna and filter apparatus and methodology |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/211,153 Division US7372373B2 (en) | 2004-08-27 | 2005-08-24 | Embedded antenna and filter apparatus and methodology |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080129420A1 true US20080129420A1 (en) | 2008-06-05 |
Family
ID=36000569
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/211,153 Expired - Fee Related US7372373B2 (en) | 2004-08-27 | 2005-08-24 | Embedded antenna and filter apparatus and methodology |
US12/015,738 Abandoned US20080129420A1 (en) | 2004-08-27 | 2008-01-17 | Embedded antenna and filter apparatus and methodology |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/211,153 Expired - Fee Related US7372373B2 (en) | 2004-08-27 | 2005-08-24 | Embedded antenna and filter apparatus and methodology |
Country Status (10)
Country | Link |
---|---|
US (2) | US7372373B2 (en) |
EP (2) | EP2287818A1 (en) |
JP (1) | JP2008538662A (en) |
KR (1) | KR20070057874A (en) |
AU (1) | AU2005280191A1 (en) |
BR (1) | BRPI0514714A (en) |
CA (1) | CA2577933C (en) |
MX (1) | MX2007002132A (en) |
TW (1) | TW200629640A (en) |
WO (1) | WO2006026329A2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110006911A1 (en) * | 2009-07-10 | 2011-01-13 | Aclara RF Systems Inc. | Planar dipole antenna |
DE102009050606A1 (en) * | 2009-10-24 | 2011-04-28 | Hager Electro Gmbh & Co. Kg | Electronic electricity meter for use by electronic installations of building, has retaining slot and connection terminal provided at insulated housing for electrically and mechanically coupling auxiliary device at electricity meter |
US20110316653A1 (en) * | 2009-05-20 | 2011-12-29 | Tamrat Akale | Tunable bandpass filter |
US8437883B2 (en) | 2009-05-07 | 2013-05-07 | Dominion Resources, Inc | Voltage conservation using advanced metering infrastructure and substation centralized voltage control |
US9325174B2 (en) | 2013-03-15 | 2016-04-26 | Dominion Resources, Inc. | Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis |
US9354641B2 (en) | 2013-03-15 | 2016-05-31 | Dominion Resources, Inc. | Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis |
US9367075B1 (en) | 2013-03-15 | 2016-06-14 | Dominion Resources, Inc. | Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis |
US9563218B2 (en) | 2013-03-15 | 2017-02-07 | Dominion Resources, Inc. | Electric power system control with measurement of energy demand and energy efficiency using t-distributions |
US9847639B2 (en) | 2013-03-15 | 2017-12-19 | Dominion Energy, Inc. | Electric power system control with measurement of energy demand and energy efficiency |
US10732656B2 (en) | 2015-08-24 | 2020-08-04 | Dominion Energy, Inc. | Systems and methods for stabilizer control |
CN112055914A (en) * | 2018-05-08 | 2020-12-08 | 索尼公司 | Filter circuit and communication apparatus |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7843391B2 (en) | 2006-09-15 | 2010-11-30 | Itron, Inc. | RF local area network antenna design |
JP5294013B2 (en) * | 2008-12-25 | 2013-09-18 | 富士通株式会社 | Filter, communication module, and communication device |
CA2794596A1 (en) * | 2009-04-07 | 2010-10-14 | Alpha Micro Components U.S.A., Inc. | Smart meter cover with integral, untethered antenna elements for ami communications |
DE102009019547A1 (en) * | 2009-04-30 | 2010-11-11 | Kathrein-Werke Kg | A filter assembly |
US8605457B2 (en) | 2009-12-23 | 2013-12-10 | Itron, Inc. | Antenna for wireless utility meters |
US8842712B2 (en) | 2011-03-24 | 2014-09-23 | Gregory C. Hancock | Methods and apparatuses for reception of frequency-hopping spread spectrum radio transmissions |
JP6282029B2 (en) * | 2012-03-08 | 2018-02-21 | キヤノン株式会社 | Device that emits or receives electromagnetic waves |
US9319808B2 (en) * | 2012-11-19 | 2016-04-19 | Gn Resound A/S | Hearing aid having a near field resonant parasitic element |
US20140327583A1 (en) * | 2013-05-01 | 2014-11-06 | Travis Sparks | Range extending system for subterranean rf devices |
JP6322870B2 (en) * | 2013-05-07 | 2018-05-16 | パナソニックIpマネジメント株式会社 | Flow rate measuring device and wireless device used for flow rate measuring device |
JP6411026B2 (en) * | 2014-01-06 | 2018-10-24 | 株式会社東芝 | Remote meter reading device |
USD774024S1 (en) * | 2014-01-22 | 2016-12-13 | Agc Automotive Americas R&D, Inc. | Antenna |
US9406996B2 (en) | 2014-01-22 | 2016-08-02 | Agc Automotive Americas R&D, Inc. | Window assembly with transparent layer and an antenna element |
USD787476S1 (en) * | 2014-01-22 | 2017-05-23 | Agc Automotive Americas R&D, Inc. | Antenna |
US9806398B2 (en) | 2014-01-22 | 2017-10-31 | Agc Automotive Americas R&D, Inc. | Window assembly with transparent layer and an antenna element |
US9466870B2 (en) | 2014-03-31 | 2016-10-11 | Elster Solutions, Llc | Electricity meter antenna configuration |
US9893426B2 (en) | 2015-10-26 | 2018-02-13 | Verizon Patent And Licensing Inc. | PCB embedded radiator antenna with exposed tuning stub |
USD874446S1 (en) * | 2018-04-17 | 2020-02-04 | Airgain Incorporated | Antenna |
US11201395B2 (en) | 2019-09-09 | 2021-12-14 | Honeywell International Inc. | Camouflaged single branch dual band antenna for use with power meter |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4963843A (en) * | 1988-10-31 | 1990-10-16 | Motorola, Inc. | Stripline filter with combline resonators |
US5153542A (en) * | 1991-06-05 | 1992-10-06 | Motorola Inc. | Multidielectric microstrip filter |
US5801597A (en) * | 1997-02-05 | 1998-09-01 | Lucent Technologies Inc. | Printed-circuit board-mountable ferrite EMI filter |
US5801605A (en) * | 1996-08-26 | 1998-09-01 | Microphase Corporation | Distributed TEM filter with interdigital array of resonators |
US5923232A (en) * | 1997-07-11 | 1999-07-13 | Honeywell Inc. | Mechanism for elimination of corona effect in high power RF circuitry at extended altitudes |
US5977847A (en) * | 1997-01-30 | 1999-11-02 | Nec Corporation | Microstrip band elimination filter |
US6023608A (en) * | 1996-04-26 | 2000-02-08 | Lk-Products Oy | Integrated filter construction |
US6078785A (en) * | 1996-10-15 | 2000-06-20 | Bush; E. William | Demand reporting of electricity consumption by radio in relays to a base station, and demand relays wattmeters so reporting over a wide area |
US6104821A (en) * | 1996-10-02 | 2000-08-15 | Siemens Audiologische Technik Gmbh | Electrical hearing aid device with high frequency electromagnetic radiation protection |
US6150898A (en) * | 1996-03-22 | 2000-11-21 | Matsushita Electric Industrial Co., Ltd. | Low-pass filter with directional coupler and cellular phone |
US6175727B1 (en) * | 1998-01-09 | 2001-01-16 | Texas Instruments Israel Ltd. | Suspended printed inductor and LC-type filter constructed therefrom |
US20020070824A1 (en) * | 2000-12-11 | 2002-06-13 | Hitoshi Nitta | Noise filter and high frequency transmitter using noise filter |
US20030107458A1 (en) * | 2001-12-12 | 2003-06-12 | Motorola, Inc. | Method and apparatus for creating a radio frequency filter |
US6636406B1 (en) * | 1997-04-08 | 2003-10-21 | X2Y Attenuators, Llc | Universal multi-functional common conductive shield structure for electrical circuitry and energy conditioning |
US6737985B1 (en) * | 1997-12-16 | 2004-05-18 | Advanced Technology Ramar Limited | Remote metering |
US6781486B2 (en) * | 2002-06-27 | 2004-08-24 | Harris Corporation | High efficiency stepped impedance filter |
US6801101B2 (en) * | 1999-04-06 | 2004-10-05 | Murata Manufacturing Co., Ltd. | Dielectric filter, dielectric duplexer, and communication apparatus |
US6876056B2 (en) * | 2001-04-19 | 2005-04-05 | Interuniversitair Microelektronica Centrum (Imec) | Method and system for fabrication of integrated tunable/switchable passive microwave and millimeter wave modules |
US7111271B2 (en) * | 1999-12-28 | 2006-09-19 | Intel Corporation | Inductive filters and methods of fabrication thereof |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3662294A (en) * | 1970-05-05 | 1972-05-09 | Motorola Inc | Microstrip impedance matching circuit with harmonic terminations |
US4074214A (en) * | 1976-09-20 | 1978-02-14 | Motorola, Inc. | Microwave filter |
US4185252A (en) * | 1978-05-10 | 1980-01-22 | The United States Of America As Represented By The Secretary Of The Army | Microstrip open ring resonator oscillators |
JP2513146B2 (en) * | 1993-09-20 | 1996-07-03 | 日本電気株式会社 | High efficiency amplifier circuit |
US6208266B1 (en) * | 1995-08-23 | 2001-03-27 | Scientific Telemetry Corporation | Remote data acquisition and processing system |
US6246677B1 (en) * | 1996-09-06 | 2001-06-12 | Innovatec Communications, Llc | Automatic meter reading data communication system |
WO1998010394A1 (en) * | 1996-09-06 | 1998-03-12 | Innovatec Corporation | Automatic meter reading data communication system |
US5847683A (en) * | 1996-10-28 | 1998-12-08 | Motorola, Inc. | Transmission line antenna and utility meter using same |
JPH10303640A (en) * | 1997-04-25 | 1998-11-13 | Nippon Telegr & Teleph Corp <Ntt> | Antenna system |
JP2000091806A (en) * | 1998-09-09 | 2000-03-31 | Nec Corp | Band elimination filter |
JP3949296B2 (en) * | 1998-11-09 | 2007-07-25 | 日本碍子株式会社 | Antenna device |
US6163276A (en) * | 1999-05-17 | 2000-12-19 | Cellnet Data Systems, Inc. | System for remote data collection |
JP4213309B2 (en) * | 1999-08-25 | 2009-01-21 | マルヤス工業株式会社 | Wireless mat switch device |
JP2001184587A (en) * | 1999-12-27 | 2001-07-06 | Nabco Ltd | Guiding radio wave transmitting device |
JP2001244717A (en) * | 2000-03-02 | 2001-09-07 | Matsushita Electric Ind Co Ltd | Wireless information household electrical appliance |
US6329949B1 (en) * | 2000-03-09 | 2001-12-11 | Avaya Technology Corp. | Transceiver stacked assembly |
JP3415105B2 (en) * | 2000-07-27 | 2003-06-09 | 船井電機株式会社 | Power consumption display device and power consumption display system |
FR2821993B1 (en) * | 2001-03-09 | 2003-06-20 | Thomson Csf | LIGHTNING LIGHTNING PROTECTION CIRCUIT |
US20030179149A1 (en) * | 2001-11-26 | 2003-09-25 | Schlumberger Electricity, Inc. | Embedded antenna apparatus for utility metering applications |
US20030134591A1 (en) * | 2002-01-17 | 2003-07-17 | Roberts Mark Gary | Digital remote signaling system |
-
2005
- 2005-08-24 US US11/211,153 patent/US7372373B2/en not_active Expired - Fee Related
- 2005-08-25 JP JP2007530105A patent/JP2008538662A/en active Pending
- 2005-08-25 CA CA2577933A patent/CA2577933C/en not_active Expired - Fee Related
- 2005-08-25 MX MX2007002132A patent/MX2007002132A/en active IP Right Grant
- 2005-08-25 WO PCT/US2005/030193 patent/WO2006026329A2/en active Application Filing
- 2005-08-25 EP EP10189337A patent/EP2287818A1/en not_active Withdrawn
- 2005-08-25 AU AU2005280191A patent/AU2005280191A1/en not_active Abandoned
- 2005-08-25 KR KR1020077006981A patent/KR20070057874A/en not_active Application Discontinuation
- 2005-08-25 EP EP05791230.5A patent/EP1782497B1/en not_active Not-in-force
- 2005-08-25 BR BRPI0514714-0A patent/BRPI0514714A/en not_active IP Right Cessation
- 2005-08-26 TW TW094129391A patent/TW200629640A/en unknown
-
2008
- 2008-01-17 US US12/015,738 patent/US20080129420A1/en not_active Abandoned
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4963843A (en) * | 1988-10-31 | 1990-10-16 | Motorola, Inc. | Stripline filter with combline resonators |
US5153542A (en) * | 1991-06-05 | 1992-10-06 | Motorola Inc. | Multidielectric microstrip filter |
US6150898A (en) * | 1996-03-22 | 2000-11-21 | Matsushita Electric Industrial Co., Ltd. | Low-pass filter with directional coupler and cellular phone |
US6023608A (en) * | 1996-04-26 | 2000-02-08 | Lk-Products Oy | Integrated filter construction |
US5801605A (en) * | 1996-08-26 | 1998-09-01 | Microphase Corporation | Distributed TEM filter with interdigital array of resonators |
US6104821A (en) * | 1996-10-02 | 2000-08-15 | Siemens Audiologische Technik Gmbh | Electrical hearing aid device with high frequency electromagnetic radiation protection |
US6078785A (en) * | 1996-10-15 | 2000-06-20 | Bush; E. William | Demand reporting of electricity consumption by radio in relays to a base station, and demand relays wattmeters so reporting over a wide area |
US5977847A (en) * | 1997-01-30 | 1999-11-02 | Nec Corporation | Microstrip band elimination filter |
US5801597A (en) * | 1997-02-05 | 1998-09-01 | Lucent Technologies Inc. | Printed-circuit board-mountable ferrite EMI filter |
US6636406B1 (en) * | 1997-04-08 | 2003-10-21 | X2Y Attenuators, Llc | Universal multi-functional common conductive shield structure for electrical circuitry and energy conditioning |
US5923232A (en) * | 1997-07-11 | 1999-07-13 | Honeywell Inc. | Mechanism for elimination of corona effect in high power RF circuitry at extended altitudes |
US6737985B1 (en) * | 1997-12-16 | 2004-05-18 | Advanced Technology Ramar Limited | Remote metering |
US6175727B1 (en) * | 1998-01-09 | 2001-01-16 | Texas Instruments Israel Ltd. | Suspended printed inductor and LC-type filter constructed therefrom |
US6801101B2 (en) * | 1999-04-06 | 2004-10-05 | Murata Manufacturing Co., Ltd. | Dielectric filter, dielectric duplexer, and communication apparatus |
US7111271B2 (en) * | 1999-12-28 | 2006-09-19 | Intel Corporation | Inductive filters and methods of fabrication thereof |
US20020070824A1 (en) * | 2000-12-11 | 2002-06-13 | Hitoshi Nitta | Noise filter and high frequency transmitter using noise filter |
US6876056B2 (en) * | 2001-04-19 | 2005-04-05 | Interuniversitair Microelektronica Centrum (Imec) | Method and system for fabrication of integrated tunable/switchable passive microwave and millimeter wave modules |
US20030107458A1 (en) * | 2001-12-12 | 2003-06-12 | Motorola, Inc. | Method and apparatus for creating a radio frequency filter |
US6781486B2 (en) * | 2002-06-27 | 2004-08-24 | Harris Corporation | High efficiency stepped impedance filter |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8437883B2 (en) | 2009-05-07 | 2013-05-07 | Dominion Resources, Inc | Voltage conservation using advanced metering infrastructure and substation centralized voltage control |
US8577510B2 (en) | 2009-05-07 | 2013-11-05 | Dominion Resources, Inc. | Voltage conservation using advanced metering infrastructure and substation centralized voltage control |
US20110316653A1 (en) * | 2009-05-20 | 2011-12-29 | Tamrat Akale | Tunable bandpass filter |
US8242862B2 (en) * | 2009-05-20 | 2012-08-14 | Raytheon Company | Tunable bandpass filter |
US8760243B2 (en) | 2009-05-20 | 2014-06-24 | Raytheon Company | Tunable bandpass filter |
US20110006911A1 (en) * | 2009-07-10 | 2011-01-13 | Aclara RF Systems Inc. | Planar dipole antenna |
US8427337B2 (en) | 2009-07-10 | 2013-04-23 | Aclara RF Systems Inc. | Planar dipole antenna |
DE102009050606A1 (en) * | 2009-10-24 | 2011-04-28 | Hager Electro Gmbh & Co. Kg | Electronic electricity meter for use by electronic installations of building, has retaining slot and connection terminal provided at insulated housing for electrically and mechanically coupling auxiliary device at electricity meter |
US9678520B2 (en) | 2013-03-15 | 2017-06-13 | Dominion Resources, Inc. | Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis |
US10476273B2 (en) | 2013-03-15 | 2019-11-12 | Dominion Energy, Inc. | Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis |
US9367075B1 (en) | 2013-03-15 | 2016-06-14 | Dominion Resources, Inc. | Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis |
US9553453B2 (en) | 2013-03-15 | 2017-01-24 | Dominion Resources, Inc. | Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis |
US9563218B2 (en) | 2013-03-15 | 2017-02-07 | Dominion Resources, Inc. | Electric power system control with measurement of energy demand and energy efficiency using t-distributions |
US9582020B2 (en) | 2013-03-15 | 2017-02-28 | Dominion Resources, Inc. | Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis |
US9325174B2 (en) | 2013-03-15 | 2016-04-26 | Dominion Resources, Inc. | Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis |
US9847639B2 (en) | 2013-03-15 | 2017-12-19 | Dominion Energy, Inc. | Electric power system control with measurement of energy demand and energy efficiency |
US9887541B2 (en) | 2013-03-15 | 2018-02-06 | Dominion Energy, Inc. | Electric power system control with measurement of energy demand and energy efficiency using T-distributions |
US10274985B2 (en) | 2013-03-15 | 2019-04-30 | Dominion Energy, Inc. | Maximizing of energy delivery system compatibility with voltage optimization |
US10386872B2 (en) | 2013-03-15 | 2019-08-20 | Dominion Energy, Inc. | Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis |
US9354641B2 (en) | 2013-03-15 | 2016-05-31 | Dominion Resources, Inc. | Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis |
US10666048B2 (en) | 2013-03-15 | 2020-05-26 | Dominion Energy, Inc. | Electric power system control with measurement of energy demand and energy efficiency using t-distributions |
US11550352B2 (en) | 2013-03-15 | 2023-01-10 | Dominion Energy, Inc. | Maximizing of energy delivery system compatibility with voltage optimization |
US10768655B2 (en) | 2013-03-15 | 2020-09-08 | Dominion Energy, Inc. | Maximizing of energy delivery system compatibility with voltage optimization |
US10775815B2 (en) | 2013-03-15 | 2020-09-15 | Dominion Energy, Inc. | Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis |
US10784688B2 (en) | 2013-03-15 | 2020-09-22 | Dominion Energy, Inc. | Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis |
US11132012B2 (en) | 2013-03-15 | 2021-09-28 | Dominion Energy, Inc. | Maximizing of energy delivery system compatibility with voltage optimization |
US11353907B2 (en) | 2015-08-24 | 2022-06-07 | Dominion Energy, Inc. | Systems and methods for stabilizer control |
US10732656B2 (en) | 2015-08-24 | 2020-08-04 | Dominion Energy, Inc. | Systems and methods for stabilizer control |
US11755049B2 (en) | 2015-08-24 | 2023-09-12 | Dominion Energy, Inc. | Systems and methods for stabilizer control |
CN112055914A (en) * | 2018-05-08 | 2020-12-08 | 索尼公司 | Filter circuit and communication apparatus |
US11374295B2 (en) | 2018-05-08 | 2022-06-28 | Sony Group Corporation | Filter circuit and communication device |
Also Published As
Publication number | Publication date |
---|---|
CA2577933A1 (en) | 2006-03-09 |
KR20070057874A (en) | 2007-06-07 |
WO2006026329A3 (en) | 2008-10-09 |
EP1782497A4 (en) | 2009-07-22 |
MX2007002132A (en) | 2007-10-16 |
TW200629640A (en) | 2006-08-16 |
CA2577933C (en) | 2013-05-21 |
EP1782497B1 (en) | 2015-11-11 |
AU2005280191A1 (en) | 2006-03-09 |
WO2006026329A2 (en) | 2006-03-09 |
EP1782497A2 (en) | 2007-05-09 |
EP2287818A1 (en) | 2011-02-23 |
JP2008538662A (en) | 2008-10-30 |
US20060055610A1 (en) | 2006-03-16 |
BRPI0514714A (en) | 2008-06-24 |
US7372373B2 (en) | 2008-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7372373B2 (en) | Embedded antenna and filter apparatus and methodology | |
KR100836213B1 (en) | Antenna, radio device, method of designing antenna, and method of measuring operating frequency of antenna | |
US7259952B2 (en) | Process control instrument intrinsic safety barrier | |
US7805265B2 (en) | Method and apparatus for measuring electric circuit parameters | |
JP2011193151A (en) | High-frequency coupler, and communication device | |
JP2014217051A (en) | Radio communication equipment | |
CN102545942A (en) | Wireless communication device | |
JP5322177B2 (en) | Electromagnetic coupler and information communication equipment using the same | |
JP2012147119A (en) | Electromagnetic coupler, and information communication device having the same | |
EP1733453A1 (en) | Consumption meter with integrated dual band antenna | |
US7161536B2 (en) | GPS receiver module | |
CN102332640B (en) | Electromagnetic coupler and information communication device including same | |
CN115516327B (en) | electromagnetic field sensor | |
CN211507856U (en) | Standing wave detection board | |
CN101421763A (en) | Embedded antenna and filter apparatus and methodology | |
US20160069943A1 (en) | Wireless module, electronic module, and measuring method | |
CN110994111A (en) | Standing wave detection board | |
US7365684B2 (en) | Antenna having a filter and a signal feed-in point | |
US11201395B2 (en) | Camouflaged single branch dual band antenna for use with power meter | |
JP2001242782A (en) | Teaching material device for studying high-frequency electronic circuit | |
CN210244378U (en) | High-performance ultrahigh frequency read-write module | |
JP3186286U (en) | Wireless module inspection jig | |
KR200304761Y1 (en) | An adapter for measuring RF cable loss coeficient of mobile communication terminal test equipment | |
JP2004023421A (en) | Radio adapter | |
KR20050061769A (en) | Directional coupler for waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |