US20080108238A1 - Loading a Socket and/or Adapter Device with a Semiconductor Component - Google Patents

Loading a Socket and/or Adapter Device with a Semiconductor Component Download PDF

Info

Publication number
US20080108238A1
US20080108238A1 US11/971,083 US97108308A US2008108238A1 US 20080108238 A1 US20080108238 A1 US 20080108238A1 US 97108308 A US97108308 A US 97108308A US 2008108238 A1 US2008108238 A1 US 2008108238A1
Authority
US
United States
Prior art keywords
socket
loading
instance
component
adapter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/971,083
Inventor
Holger Hoppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/971,083 priority Critical patent/US20080108238A1/en
Publication of US20080108238A1 publication Critical patent/US20080108238A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C2029/5602Interface to device under test

Definitions

  • the invention relates to a socket and/or adapter device, in particular for testing a semiconductor component, loaded into the socket and/or adapter device, and to an apparatus and a process for loading a socket and/or adapter device with a corresponding semiconductor component, and to a precision alignment device to be used in a corresponding procedure.
  • Semiconductor components for instance corresponding integrated (analog and/or digital) computer circuits, semiconductor memory components, for instance functional memory components (PLAs, PALs, etc.) and table memory components (e.g., ROMs or RAMs, in particular SRAMs and DRAMs) are subjected to extensive testing during the manufacturing process.
  • semiconductor memory components for instance functional memory components (PLAs, PALs, etc.)
  • table memory components e.g., ROMs or RAMs, in particular SRAMs and DRAMs
  • a so-called wafer i.e., a thin disk of monocrystalline silicon
  • the wafer is appropriately treated (for instance subjected in succession to numerous coating, exposure, etching, diffusion and implantation process steps, etc.), and then for instance sliced up (or scored and snapped off), so instance sliced up (or scored and snapped off), so that the individual components become available.
  • the, individually available components are each individually loaded into special housings or packages (for instance, so-called TSOP or FBGA housings etc.) and then, by means of appropriate trays, transported to a corresponding further station, especially a test station (and/or in succession to several other test stations).
  • special housings or packages for instance, so-called TSOP or FBGA housings etc.
  • the above test station may for instance be a so-called “burn-in” testing station (at which, by creating extreme conditions (for instance increased temperatures) artificial aging of the components is caused) in particular a “burn-in” test station, at which the so-called burn-in test procedure is performed, i.e., a test done under extreme conditions (for instance increased temperature, for instance above 80° or 100° C., increased operational voltage, etc.).
  • a burn-in testing station at which, by creating extreme conditions (for instance increased temperatures) artificial aging of the components is caused
  • a “burn-in” test station at which the so-called burn-in test procedure is performed, i.e., a test done under extreme conditions (for instance increased temperature, for instance above 80° or 100° C., increased operational voltage, etc.).
  • each individual component present in the above-mentioned housings, is loaded into a corresponding adapter and/or socket, connected to a corresponding test apparatus and then the component in each housing is tested.
  • Loading the (burn-in) adapter and/or socket with a component to be tested can be done with the help of one or several appropriate loading apparatuses (“loaders”).
  • a grabber device for instance a loader head, provided at an appropriate loading apparatus (loader)
  • loader can be provided with a partial vacuum, with the help of which a component can be removed from a tray and then, by means of an appropriate (for instance a swiveling or shifting) motion of the grabber device and/or the “loader head”, positioned above a so-called precision alignment device.
  • the component positioned above the precision alignment device can be dropped by the loader of the grabber device, by reducing the vacuum, into one of the recesses provided with appropriate tapered guiding planes on the precision alignment device.
  • the component and/or component housing is (pre- or coarsely) aligned by being dropped into the corresponding precision alignment recess.
  • the component can again be removed by the above loading apparatus (and/or by any additional loading apparatus) from the recess provided in the precision alignment device (for instance by creating a partial vacuum at the grabber device and/or the loader head provided at the above or at any additional loading apparatus).
  • the component can be positioned above a corresponding (burn-in) adapter and/or socket by means of an appropriate (for instance a swiveling or shifting) motion of the grabber device and/or the loader head.
  • Conventional (burn-in) adapters and/or sockets may for instance consist of a base element and a cover (“lid”), which is adjustable in a vertical direction in relation to the base element by means of corresponding spring sections attached to the base element.
  • the adapter and/or socket can be “opened”, whereafter the component suspended above the adapter and/or socket by the above loader the grabber device can be dropped into the adapter and/or socket by reducing the vacuum.
  • Appropriate tapered guiding planes can be provided inside the adapter and/or socket, for the purpose of aligning the component and/or the component housing when it falls into the adapter.
  • the invention discloses a socket and/or adapter device, in particular for semiconductor components, as well as a novel apparatus and a novel process for loading a socket and/or adapter device with a corresponding semiconductor component.
  • an apparatus especially a loader head, is provided for loading a socket and/or adapter device with a semiconductor component, whereby the apparatus includes a device, especially a mechanical device, for opening the socket and/or adapter device.
  • the device includes one or more appropriate attachments, such as attachments provided with one or more corresponding tapered planes.
  • the device is designed such that when the apparatus is moved towards the socket and/or adapter device, contacts and/or latches provided at the socket and/or adapter device are opened by the device, in particular the attachments.
  • the socket and/or adapter device will have no cover and/or lid.
  • socket and/or adapter device in particular the socket contacts and/or latches, are directly opened by the device (without a socket and/or adapter cover being provided at all).
  • the socket and/or adapter device By dispensing with a socket and/or adapter cover the socket and/or adapter device can be produced considerably more simply and cheaply than conventional sockets and/or adapter devices.
  • FIG. 1 shows various stations passed through during the manufacture of corresponding semiconductor components
  • FIG. 2 shows a perspective representation of the grabber device of the loading machine used in the “burn-in” test system shown in FIG. 1 , of a tray and a precision alignment device;
  • FIG. 3 shows a view from below of the grabber device shown in FIG. 2 ;
  • FIG. 4 shows a sectional view of the grabber device shown in FIGS. 2 and 3 , and the precision alignment device alignment shown in FIG. 2 ;
  • FIG. 5 shows a perspective representation of the grabber device, and of an adapter and/or socket
  • FIG. 6 shows a highly simplified representation of a grabber device attachment shown in FIGS. 2, 3 and 5 , a contact operating device, and a V-shaped socket contact, at closed and open settings of the socket contact.
  • FIG. 1 some stations A, B, C, D (of several further stations not shown here) passed through by the corresponding semiconductor components 3 a , 3 b , 3 c , 3 d during the manufacture of the semiconductor components 3 a , 3 b , 3 c , 3 d are schematically represented.
  • Station A serves to subject the semiconductor components 3 a , 3 b , 3 c , 3 d , still present on a silicon disk or wafer 2 , to one or more test procedures (for instance by means of an appropriate test system, such as a test apparatus 6 and a semiconductor component test card and/or probe card 8 (which has been provided with contact pins 9 for contacting corresponding contacts on the semiconductor components 3 a , 3 b , 3 c , 3 d )).
  • an appropriate test system such as a test apparatus 6 and a semiconductor component test card and/or probe card 8 (which has been provided with contact pins 9 for contacting corresponding contacts on the semiconductor components 3 a , 3 b , 3 c , 3 d )).
  • the wafer 2 has been subjected to conventional coating, exposure, etching, diffusion and implantation process steps etc.
  • functional memory components i.e., PLAs, PALs, etc.
  • table memory components for instance ROMs or RAMs
  • wafer 2 is (fully automatically) transported to the next station B (see arrow F), where (after wafer 2 has had foil glued to it in a recognized fashion) it is sliced up by means of an appropriate machine 7 (or for instance scored and snapped off), so that the individual semiconductor components 3 a , 3 b , 3 c , 3 d become available.
  • the components 3 a , 3 b , 3 c , 3 d are then (again fully automatically, for instance by means of an appropriate conveyer machine) transported to the next test station (here a loading station C) for instance directly (and/or individually) or alternatively by means of a tray (see arrow G).
  • the components 3 a , 3 b , 3 c , 3 d are, each individually, loaded in fully automatic fashion into corresponding housings 11 a , 11 b , 11 c , 11 d and/or packages (see arrows Ka, Kb, Kc, Kd), with the help of machine 10 (loading machine) and the housings 11 a , 11 b , 11 c , 11 d are then closed, in recognized fashion, so that the semiconductor component contacts provided on the semiconductor components 3 a , 3 b , 3 c , 3 d make contact with corresponding housing contacts provided at each housing 11 a , 11 b , 11 c , 11 d.
  • Conventional TSOP housings or for instance conventional FBGA housings, etc., may be used for the housings 11 a , 11 b , 11 c , 11 d.
  • the housings 11 a , 11 b , 11 c , 11 d , together with the semiconductor components 3 a , 3 b , 3 c , 3 d are conveyed to a further station D, for instance a testing station (see arrow H), and/or in succession to several further stations, especially testing stations (not shown here).
  • Station D may be, for example, a so-called “burn-in” station, especially a burn-in testing station.
  • burn-in test procedures can be performed at the burn-in station, i.e., tests done under extreme conditions (for instance increased temperatures, for instance above 80° C. or above 100° C., and/or increased operating voltages, etc.).
  • the housings 11 a , 11 b , 11 c , 11 d are loaded with the help of one or more appropriate machines (for instance a loading machine 13 , “loader”) (and where appropriate, a further loading machine (a “loader”, not shown here)) into specially designed “coverless” (burn-in) sockets and/or (burn-in) adapters 12 a , 12 b , 12 c , 12 d.
  • a loading machine 13 “loader”
  • a further loading machine a “loader”, not shown here
  • the loading machine 13 (and correspondingly also the further loading machine, where provided) has, as shown in FIGS. 1 and 2 , a grabber device and/or a loader head 13 a.
  • the grabber device 13 a is first positioned, for example, as shown in FIG. 2 , directly above the corresponding tray 17 (and/or more accurately: directly above the corresponding component 3 a and/or component housing 11 a ), similar to conventional loading machines, whereupon a suitable vacuum is created at the grabber device and/or the loader head 13 a (and/or more accurately: below the grabber device and/or the loader head 13 a ).
  • the component 3 a arranged in a corresponding housing 11 a and lying on tray 17 (similarly constructed to conventional trays) is moved upwards in the direction of arrow N, as shown in FIG. 2 , and firmly held by the underside 13 b of the grabber device 13 a , as shown in FIG. 3 , (essentially in the middle of several centering devices 18 a , 18 b , 18 c , 18 d , more accurately described below) i.e., the component 3 a is removed from tray 17 .
  • the grabber device 13 a by means of an appropriate movement (for instance swiveling or shifting) of the grabber device 13 a and/or the loader head 13 a (for instance first upwards in the direction of the arrow M shown in FIG. 2 , and then laterally in the direction of the arrow L shown in FIG. 2 , etc.), the grabber device 13 a , together with the component 3 a and/or component housing 11 a held at the underside 13 b of the grabber device 13 a , by the vacuum being maintained, is positioned above the precision alignment device 19 , shown to the right in FIG. 2 , (more accurately: above a centering recess 22 of the precision alignment device 19 ).
  • an appropriate movement for instance swiveling or shifting
  • the precision alignment device 19 is similarly constructed to conventional precision alignment devices, yet has been provided, as shown in FIG. 2 and FIG. 4 , with several centering holes 20 a , 20 b , 20 c , 20 d on the underside 13 b of the grabber device 13 a for receiving the above centering devices 18 a , 18 b , 18 c , 18 d.
  • the centering holes 20 a , 20 b , 20 c , 20 d are essentially circular in section and reach, with an essentially constant inside diameter, partially or completely downwards through the whole precision alignment device 19 in a vertical direction from the upper side of the precision alignment device 19 .
  • the centering devices 18 a , 18 b , 18 c , 18 d provided on the grabber device 13 a reach vertically downwards from the underside of the grabber device.
  • Each of the centering devices 18 a , 18 b , 18 c , 18 d (here: four, alternatively for instance two or three, etc.) has, as is for instance apparent from FIG. 3 when seen from below, an essentially circular cross section.
  • the vertical axes of the centering devices 18 a , 18 b , 18 c , 18 d running centrally through the conical sections of the centering devices 18 a , 18 b , 18 c , 18 d , are, when the grabber device 13 a has been correspondingly aligned, in alignment with the central vertical axes of the corresponding centering openings 20 a , 20 b , 20 c , 20 d of the precision alignment device 19 .
  • each centering opening 20 a , 20 b , 20 c , 20 d is essentially identical to the maximum outside diameter of the corresponding conical sections 21 b of each centering device 18 a , 18 b , 18 c , 18 d (at the top end of the corresponding conical sections 21 b ), i.e., the outside diameter of the corresponding cylindrical sections 21 a of each of the centering devices 18 a , 18 b , 18 c , and/or 18 d is somewhat smaller.
  • the grabber device 13 a and/or the loader head 13 a is supported on a “floating” bearing in relation to the other parts of the loading machine 13 .
  • the centering devices 18 a , 18 b , 18 b , 18 c (and/or their conical sections 21 b ) provided on the underside of the grabber device 13 a are inserted into each corresponding centering opening 20 a , 20 b , 20 c , 20 d of the precision alignment device 19 .
  • the grabber device 13 a Due to the above-mentioned “floating” bearing of the grabber device 13 a (i.e., due to its lateral flexibility) the grabber device 13 a , not yet accurately centered and/or aligned in relation to the precision alignment device 19 and/or its centering-recess 22 , is centered and/or aligned (i.e., moved slightly laterally as shown by the arrows Q and R in FIG.
  • the component 3 a and/or component-housing 11 a suspended above the precision alignment device 19 and/or its centering recess 22 , is then dropped into the centering recess 22 by the grabber device 13 a (for instance arrow P in FIGS. 2 and 4 ) by releasing the vacuum.
  • the centering recess has, as is for instance shown in FIG. 4 , tapered sides 22 a , 22 b.
  • the tapered sides 22 a , 22 b run at an angle downwards and inwards from the inside edges of the centering recess 22 on the upper side of the precision alignment device 19 .
  • the dimensions of the centering-recess 22 essentially correspond with the dimensions of component 3 a and/or component housings 11 a (for instance the width, as shown in FIG. 4 , of the centering recess 22 in the above-mentioned lower point essentially corresponds with the width of component 3 a and/or the component-housing 11 a , and the length of the centering recess 22 essentially corresponds with the length of the component 3 a and/or component housing 11 a ).
  • component 3 a and/or the component housing 11 a and thereby also the grabber device 13 a is appropriately aligned and/or centered in relation to the precision alignment device 19 (i.e., moved slightly in a lateral direction when falling into the centering recess 22 , so that when, after falling into the centering recess 22 , the central axis a of the component 3 a and/or component housing 11 a coincides with the corresponding central axis b of the centering recess 22 ).
  • the grabber device 13 a of the above loading machine 13 (or, for example, a grabber device of an additional loading machine, if provided, such as the one mentioned above) for instance at the setting of the grabber device 13 a shown in FIG. 4 , or at a setting in which the grabber device 13 a has been moved even further downwards until the underside 13 b of the grabber device 13 a touches the component 3 a and/or component housing 11 a , can again remove the component 3 a and/or component-housing 11 a from the centering recess 22 provided in the precision alignment device 19 (for instance by (again) creating a vacuum at the grabber device 13 a and/or the loader head 13 a (and/or more accurately: underneath the grabber device 13 a and/or the loader head 13 a ).
  • the grabber device 13 a and/or the loader head 13 a are held, while the vacuum is maintained, for instance together with the centered and/or aligned component 3 a and/or component-housing 11 a at the underside 13 b of the grabber device 13 a , in position above a corresponding (burn-in) socket and/or (burn-in) adapter 12 a , 12 b , 12 c , 12 d ( FIG. 5 ).
  • the (burn-in) adapters and/or sockets 12 a , 12 b , 12 c , 12 d each has, in contrast to conventional (burn-in) sockets and/or adapters, a base element 24 but no cover (which in conventional (burn-in) sockets and/or adapters has been fitted above a corresponding base element, and is vertically moveable in relation to the base element 24 , for instance in a vertical direction, due to spring elements fitted in between).
  • (burn-in) adapters and/or sockets 12 a , 12 b , 12 c , 12 d in contrast to conventional sockets and/or adapters, have no tapered component guiding planes and/or “guide” devices.
  • the sockets and/or adapters 12 a , 12 b , 12 c , 12 d and/or more accurately: the sockets and/or adapter base elements 24 can otherwise be constructed essentially similar or identical to conventional “burn in” sockets and/or “burn in” adapters (and/or more accurately: to corresponding sockets and/or adapter base elements), for instance correspondingly similar or identical to the base elements of conventional “open top” sockets, in particular TSOP sockets (or for instance correspondingly similar or identical to the base elements of FBGA “burn in” sockets, etc.), for instance correspondingly similar or identical to the burn in sockets base elements in the model range NP367 of the Yamaichi company (here for instance schematically represented).
  • the openings provided in the base element 24 can in the present embodiment be used as centering holes 23 a , 23 b , 23 c , 23 d (instead of as attachment points for springs).
  • centering openings may also be provided in the base element 24 as an alternative.
  • the centering openings 23 a , 23 b , 23 c , 23 d have, similar to the centering openings 20 a , 20 b , 20 c , 20 d provided in the precision alignment device 19 , a substantially circular cross-section, and run vertically downwards, with an essentially constant inside diameter, in each case from corresponding corner areas on the upper side of the base element 24 of the socket and/or adapter—passing partially or wholly through the entire base element 24 .
  • the central vertical axes a of the centering devices 18 a each passing through the middle of the conical sections 21 a of the centering devices 18 a , 18 b , 18 c , 18 d , 18 b , 18 c , 18 d coincide, when the grabber device 13 a is appropriately aligned, with the corresponding central axes running vertically through the corresponding centering openings 23 a , 23 b , 23 c , 23 d of the adapter and/or socket 12 a.
  • each centering opening 23 a , 23 b , 23 c , 23 d essentially coincides, just as is the case with the corresponding centering openings 20 a , 20 b , 20 c , 20 d of the precision alignment device 19 , with the maximum dimension of the outside diameter of the conical sections 21 b provided on each centering device 18 a , 18 b , 18 c , 18 d (at the top end of the corresponding conical sections 21 b ), i.e., with the outside diameter of the corresponding cylindrical sections 21 a of each centering device 18 a , 18 b , 18 c , 18 d.
  • the grabber device 13 a and/or the loader head 13 a are attached by means of a “floating” bearing in relation to the other parts of the machine 13 .
  • the centering devices 18 a , 18 b , 18 c , 18 d provided at the bottom of the grabber device 13 a are inserted into each centering opening 23 a , 23 b , 23 c , 23 d of the socket and/or adapter 12 a.
  • the grabber device 13 a As a result of the above-mentioned “floating” attachment of the grabber device 13 a (i.e. its ability to move laterally) the grabber device 13 a , not yet exactly centered and/or aligned, is centered and/or aligned in relation to the adapter and/or socket 12 a as shown in FIG.
  • Conventional sockets and/or adapters in particular the contacts and latches provided there
  • This function of the cover is taken over, in the case of the present “coverless” socket and/or adapter 12 a , by the grabber device 13 a , in particular by the special attachments (shown schematically here) 28 a , 28 b , 28 c (and/or pins 28 a , 28 b , 28 c or studs 28 a , 28 b , 28 c ) which have been provided on the grabber device 13 a in addition to the above-mentioned centering devices 18 a , 18 b , 18 c , 18 d.
  • the attachments 28 a , 28 b , 28 c may be constructed correspondingly similar or identical to attachments and/or pins provided on the underside of conventional socket and/or adapter covers, for instance similar or identical to attachments and/or pins provided on conventional “open top” socket covers, in particular “burn-in” socket covers, for instance TSOP socket covers (or for instance FBGA socket covers, etc.), or for instance correspondingly similar or identical to the attachments and/or pins provided on the burn-in socket covers of sockets in the NP367 model range of the Yamaichi company (here, for example, schematically represented), etc. (in particular corresponding to the respective design of the socket base elements 24 ).
  • tapered planes 29 (labeled in FIG. 6 ), can be provided on the attachments 28 a , 28 b , 28 c and/or pins 28 a , 28 b , 28 c , similar or identical to attachments and/or pins provided at the underside of conventional socket and/or adapter covers, with which in order to open and close the above-mentioned socket contacts and latches (mechanical) devices at the socket base element 24 can be operated.
  • the grabber device 13 a is moved vertically downwards, from the setting shown in FIG. 3 above the adapter and/or socket 12 a in the direction of the arrow U, that the attachments 28 a , 28 b , 28 c and/or pins 28 a , 28 b , 28 c provided at the bottom of the cover (correspondingly similarly to the attachments and/or pins provided on conventional sockets and/or adapters) “open” the sockets and/or adapters 12 a provided there.
  • the vertical movement of the attachments 28 a , 28 b , 28 c and/or pins 28 a , 28 b , 28 c can be converted into an appropriate horizontal movement, corresponding to that of an operating mechanism (arrow Z, FIG. 6 ) by means of a corresponding mechanical device 30 provided at or attached to the socket and/or adapter 12 a (for instance a device also containing the corresponding tapered planes 31 ).
  • the shanks of a V-shaped contact terminal 32 of the socket and/or adapter 12 a can be moved apart (on a horizontal plane) thereby being prepared to receive a component and/or component housing connection (shown in FIG. 6 schematically as an example and represented in highly simplified form).
  • the grabber device 13 a is forced downwards in the direction of arrow U, until the component 3 a and/or component-housing 11 a , still held, by the vacuum being maintained, at the underside 13 b of the grabber device 13 a touches the top of the base element 24 in the inner part of the socket 12 a , and the connections of the component 3 a and/or component housing 11 a are inserted into the corresponding (wide open) contact terminals 32 of the socket and/or adapter 12 a . Then the vacuum is released and the component 3 a and/or component-housing 11 a released.
  • the component 3 a and/or component-housing 11 a is gently placed into the adapter and/or socket 12 a , and not, as with conventional grabber devices, aligned with the help of tapered guide planes provided at the sockets and/or adapter by being dropped into the adapter and/or socket.
  • This gentle placing action is possible because the component 3 a and/or the component-housing 11 a has already been relatively accurately aligned in relation to the grabber device 13 a by means of the process described above (i.e., at the precision alignment device 19 ), and by inserting the centering devices 18 a , 18 b , 18 c , 18 d of the grabber device 13 a into the centering openings 23 a , 23 b , 23 c , 23 d , provided at the socket and/or adapter 12 a , the grabber device 13 a is additionally aligned with relatively high accuracy in relation to the socket and/or adapter 12 a.
  • the grabber device 13 a with attachments and/or pins 28 a , 28 b , 28 c (and the centering devices 18 a , 18 b , 18 c , 18 d ) is retracted, vertically upwards, whereby (in corresponding fashion, as if the cover of a conventional adapter and/or socket 12 a had been released, i.e., moved upwards again) the adapter and/or socket 12 and/or the contacts and latches provided there is “locked” again.
  • the grabber device 13 a (or it being the case the above further grabber device) can load a multitude of further adapters and/or sockets 12 b , 12 c , 12 d , and/or the component-housings 11 b , 11 c , 11 d etc., similarly constructed to the socket and/or adapter 12 a shown in FIG. 5 , with components 3 b , 3 c , 3 d , etc. (for instance at a rate of more than 100 or 1,000 adapters and/or sockets per hour).
  • sockets and/or adapters 12 a , 12 b , 12 c , 12 d (for instance more than 50, 100 or 200 sockets and/or adapters 12 a , 12 b , 12 c , 12 d ) have been connected, as can be seen in FIG. 1 , to one and the same card 14 and/or board 14 at testing station D (and/or to one and the same test card and/or test board 14 ) (for instance more than 50, 100 or 200 sockets and/or adapters 12 a , 12 b , 12 c , 12 d ).
  • test-board 14 (and thereby also the semiconductor components 3 a , 3 b , 3 c , 3 d and/or housing 11 a , 11 b , 11 c , 11 d loaded into the sockets and/or adapters 12 a , 12 b , 12 c , 12 d ) are loaded, as shown in FIG. 1 , with the help of an appropriate machine into an “oven” 15 that can be shut (and/or into an apparatus 15 , with which extreme conditions can be created for the above semiconductor components 3 a , 3 b , 3 c , 3 d (for instance increased temperatures, for instance above 70° C., 100° C., or 150° C., and/or increased component operating voltages, etc.)).
  • test-card 14 and/or the test board 14 is in each case, in the conventional manner, connected to a test apparatus 4 , for instance by means of lines 16 .
  • test signals being generated by the test apparatus 4 to be relayed, for instance by means of the above lines 16 , to the test card 14 , and from there to the sockets 12 a , 12 b , 12 c , 12 d , and their socket contact pins (not shown here) by means of the card contacts.
  • test signals are then relayed via the above socket connections and the housing connections making contact with them, to the housings 11 a , 11 b , 11 c , 11 d , and from there via the above housing contacts and the semiconductor component contacts making contact with them, to the semiconductor components 3 a , 3 b , 3 c , 3 d to be tested.
  • the signals emitted in reaction to the test signals applied to corresponding semiconductor component contacts are then scanned by housing contacts (in contact with them) and led via the sockets 12 a , 12 b , 12 c , 12 d , the card 14 and lines 16 to the test apparatus 4 , where the signals can then be evaluated.
  • the test system 1 which includes, among other things, the test apparatus 4 , the card 14 and the sockets 12 a , 12 b , 12 c , 12 d , can perform a conventional test procedure, for instance a conventional “burn-in” test (or several similar tests in succession), in which and/or in the course of which for instance the functionality of the semiconductor components 3 a , 3 b , 3 c , 3 d can be evaluated (for instance while or after the semiconductor components are being or have been subjected to the above-mentioned extreme conditions in the above “oven 15 or the apparatus 15 for a relatively long period of time (for instance for more than 30 minutes, and/or more than one hour)).
  • a conventional “burn-in” test or several similar tests in succession

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

A process, device and a mechanism for loading a socket and/or adapter device with a semiconductor component is disclosed. The mechanism has a device, in particular a mechanical device, for instance an appropriate attachment, for opening the socket and/or adapter device.

Description

  • This application is a continuation of U.S. patent application Ser. No. 11/012,715, which was filed Dec. 16, 2004, which application claims priority to German Application No. 103 59 648.8, which was filed Dec. 18, 2003. Both of these applications are incorporated herein by reference.
  • TECHNICAL FIELD
  • The invention relates to a socket and/or adapter device, in particular for testing a semiconductor component, loaded into the socket and/or adapter device, and to an apparatus and a process for loading a socket and/or adapter device with a corresponding semiconductor component, and to a precision alignment device to be used in a corresponding procedure.
  • BACKGROUND
  • Semiconductor components, for instance corresponding integrated (analog and/or digital) computer circuits, semiconductor memory components, for instance functional memory components (PLAs, PALs, etc.) and table memory components (e.g., ROMs or RAMs, in particular SRAMs and DRAMs) are subjected to extensive testing during the manufacturing process.
  • For the simultaneous, combined manufacture of numerous (generally identical) semiconductor components, a so-called wafer (i.e., a thin disk of monocrystalline silicon) is used.
  • The wafer is appropriately treated (for instance subjected in succession to numerous coating, exposure, etching, diffusion and implantation process steps, etc.), and then for instance sliced up (or scored and snapped off), so instance sliced up (or scored and snapped off), so that the individual components become available.
  • After the wafer has been sliced up (and/or scored and snapped off) the, individually available components, are each individually loaded into special housings or packages (for instance, so-called TSOP or FBGA housings etc.) and then, by means of appropriate trays, transported to a corresponding further station, especially a test station (and/or in succession to several other test stations).
  • The above test station may for instance be a so-called “burn-in” testing station (at which, by creating extreme conditions (for instance increased temperatures) artificial aging of the components is caused) in particular a “burn-in” test station, at which the so-called burn-in test procedure is performed, i.e., a test done under extreme conditions (for instance increased temperature, for instance above 80° or 100° C., increased operational voltage, etc.).
  • At the (test) station each individual component, present in the above-mentioned housings, is loaded into a corresponding adapter and/or socket, connected to a corresponding test apparatus and then the component in each housing is tested.
  • Loading the (burn-in) adapter and/or socket with a component to be tested can be done with the help of one or several appropriate loading apparatuses (“loaders”).
  • For doing this, a grabber device, for instance a loader head, provided at an appropriate loading apparatus (loader), can be provided with a partial vacuum, with the help of which a component can be removed from a tray and then, by means of an appropriate (for instance a swiveling or shifting) motion of the grabber device and/or the “loader head”, positioned above a so-called precision alignment device.
  • Then the component positioned above the precision alignment device can be dropped by the loader of the grabber device, by reducing the vacuum, into one of the recesses provided with appropriate tapered guiding planes on the precision alignment device.
  • By means of the tapered guiding planes it can be achieved that the component and/or component housing is (pre- or coarsely) aligned by being dropped into the corresponding precision alignment recess.
  • Next the component can again be removed by the above loading apparatus (and/or by any additional loading apparatus) from the recess provided in the precision alignment device (for instance by creating a partial vacuum at the grabber device and/or the loader head provided at the above or at any additional loading apparatus).
  • Then the component can be positioned above a corresponding (burn-in) adapter and/or socket by means of an appropriate (for instance a swiveling or shifting) motion of the grabber device and/or the loader head.
  • Conventional (burn-in) adapters and/or sockets may for instance consist of a base element and a cover (“lid”), which is adjustable in a vertical direction in relation to the base element by means of corresponding spring sections attached to the base element.
  • By appropriate downward pressure on the adapter and/or socket cover, the adapter and/or socket can be “opened”, whereafter the component suspended above the adapter and/or socket by the above loader the grabber device can be dropped into the adapter and/or socket by reducing the vacuum.
  • Appropriate tapered guiding planes can be provided inside the adapter and/or socket, for the purpose of aligning the component and/or the component housing when it falls into the adapter.
  • When the adapter and/or the socket cover is then released again, it is forced upwards by the above-mentioned spring sections, whereby it is achieved that connections provided on the corresponding component (and/or component housing) make contact with connections provided on the corresponding adapter and/or socket, i.e., until the adapter and/or socket is “closed” so that the above test procedure can then be performed on the component.
  • In the manufacture/testing of semiconductor components the above-mentioned (burn-in) adapters and/or sockets are usually required in relatively large numbers.
  • Conventional (burn-in) adapters and/or sockets are relatively expensive, due to the costly precision engineering of basic socket components and covers, which is needed to avoid faulty contacts between component (and/or component housings) and adapters and/or socket connections.
  • SUMMARY OF THE INVENTION
  • The invention discloses a socket and/or adapter device, in particular for semiconductor components, as well as a novel apparatus and a novel process for loading a socket and/or adapter device with a corresponding semiconductor component.
  • In one embodiment of the invention, an apparatus, especially a loader head, is provided for loading a socket and/or adapter device with a semiconductor component, whereby the apparatus includes a device, especially a mechanical device, for opening the socket and/or adapter device.
  • Particularly advantageously the device includes one or more appropriate attachments, such as attachments provided with one or more corresponding tapered planes.
  • Advantageously the device is designed such that when the apparatus is moved towards the socket and/or adapter device, contacts and/or latches provided at the socket and/or adapter device are opened by the device, in particular the attachments.
  • In a preferred embodiment the socket and/or adapter device will have no cover and/or lid.
  • Particularly advantageously the function assumed by a corresponding cover in conventional socket and/or adapter devices is taken over by the apparatus, in particular by the above-mentioned device.
  • In another embodiment the socket and/or adapter device, in particular the socket contacts and/or latches, are directly opened by the device (without a socket and/or adapter cover being provided at all).
  • By dispensing with a socket and/or adapter cover the socket and/or adapter device can be produced considerably more simply and cheaply than conventional sockets and/or adapter devices.
  • In this way the total cost of manufacturing and/or testing of semiconductor components can be reduced.
  • In addition, by dispensing with the socket and/or adapter cover the circulation of air in the “burn-in” station (which is adversely affected in conventional socket and/or adapter devices by the socket and/or adapter covers provided) can be improved.
  • In this way any unintended excessive heating of semiconductor components loaded into the corresponding socket and/or adapter in the “burn in” station can be prevented, which, when conventional socket and/or adapter devices are used, can lead to damage to or destruction of the semiconductor components.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is described in detail below with reference to exemplary embodiments and the attached drawings. In the drawings:
  • FIG. 1 shows various stations passed through during the manufacture of corresponding semiconductor components;
  • FIG. 2 shows a perspective representation of the grabber device of the loading machine used in the “burn-in” test system shown in FIG. 1, of a tray and a precision alignment device;
  • FIG. 3 shows a view from below of the grabber device shown in FIG. 2;
  • FIG. 4 shows a sectional view of the grabber device shown in FIGS. 2 and 3, and the precision alignment device alignment shown in FIG. 2;
  • FIG. 5 shows a perspective representation of the grabber device, and of an adapter and/or socket; and
  • FIG. 6 shows a highly simplified representation of a grabber device attachment shown in FIGS. 2, 3 and 5, a contact operating device, and a V-shaped socket contact, at closed and open settings of the socket contact.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • In FIG. 1, some stations A, B, C, D (of several further stations not shown here) passed through by the corresponding semiconductor components 3 a, 3 b, 3 c, 3 d during the manufacture of the semiconductor components 3 a, 3 b, 3 c, 3 d are schematically represented.
  • Station A serves to subject the semiconductor components 3 a, 3 b, 3 c, 3 d, still present on a silicon disk or wafer 2, to one or more test procedures (for instance by means of an appropriate test system, such as a test apparatus 6 and a semiconductor component test card and/or probe card 8 (which has been provided with contact pins 9 for contacting corresponding contacts on the semiconductor components 3 a, 3 b, 3 c, 3 d)).
  • At stations not shown here and upstream from the stations A, B, C, D shown in FIG. 1, the wafer 2 has been subjected to conventional coating, exposure, etching, diffusion and implantation process steps etc.
  • The semiconductor components 3 a, 3 b, 3 c, 3 d may be integrated (analog and/or digital) computer circuits, or semiconductor memory components, for instance functional memory components (i.e., PLAs, PALs, etc.), and table memory components, (for instance ROMs or RAMs), in particular SRAMs or DRAMs (here for instance DRAMs (Dynamic Random Access Memories and/or Dynamic Read-Write Memories) with double data rate (DDR DRAMs=Double Data Rate-DRAMs), preferably high-speed DDR DRAMs.
  • When the test procedure has been successfully completed at station A, wafer 2 is (fully automatically) transported to the next station B (see arrow F), where (after wafer 2 has had foil glued to it in a recognized fashion) it is sliced up by means of an appropriate machine 7 (or for instance scored and snapped off), so that the individual semiconductor components 3 a, 3 b, 3 c, 3 d become available.
  • After wafer 2 has been sliced up at station B, the components 3 a, 3 b, 3 c, 3 d are then (again fully automatically, for instance by means of an appropriate conveyer machine) transported to the next test station (here a loading station C) for instance directly (and/or individually) or alternatively by means of a tray (see arrow G).
  • At the loading station C the components 3 a, 3 b, 3 c, 3 d are, each individually, loaded in fully automatic fashion into corresponding housings 11 a, 11 b, 11 c, 11 d and/or packages (see arrows Ka, Kb, Kc, Kd), with the help of machine 10 (loading machine) and the housings 11 a, 11 b, 11 c, 11 d are then closed, in recognized fashion, so that the semiconductor component contacts provided on the semiconductor components 3 a, 3 b, 3 c, 3 d make contact with corresponding housing contacts provided at each housing 11 a, 11 b, 11 c, 11 d.
  • Conventional TSOP housings or for instance conventional FBGA housings, etc., may be used for the housings 11 a, 11 b, 11 c, 11 d.
  • Next, the housings 11 a, 11 b, 11 c, 11 d, together with the semiconductor components 3 a, 3 b, 3 c, 3 d, again fully automatically, for instance by means of a corresponding conveyer, and where appropriate, by using a corresponding tray 17 (for instance one shown in FIG. 2) are conveyed to a further station D, for instance a testing station (see arrow H), and/or in succession to several further stations, especially testing stations (not shown here).
  • Station D (or one or several of the above further stations, not shown here) may be, for example, a so-called “burn-in” station, especially a burn-in testing station.
  • At the burn-in station artificial aging of the components 3 a, 3 b, 3 c, 3 d is caused by extreme conditions (for instance increased temperatures) being generated.
  • Additionally one or several burn-in test procedures can be performed at the burn-in station, i.e., tests done under extreme conditions (for instance increased temperatures, for instance above 80° C. or above 100° C., and/or increased operating voltages, etc.).
  • At station D the housings 11 a, 11 b, 11 c, 11 d, as is more closely described below, are loaded with the help of one or more appropriate machines (for instance a loading machine 13, “loader”) (and where appropriate, a further loading machine (a “loader”, not shown here)) into specially designed “coverless” (burn-in) sockets and/or (burn-in) adapters 12 a, 12 b, 12 c, 12 d.
  • The loading machine 13 (and correspondingly also the further loading machine, where provided) has, as shown in FIGS. 1 and 2, a grabber device and/or a loader head 13 a.
  • To load a (burn-in) socket and/or (burn-in) adapter 12 a with a corresponding component 3 a and/or component-housing 11 a, the grabber device 13 a is first positioned, for example, as shown in FIG. 2, directly above the corresponding tray 17 (and/or more accurately: directly above the corresponding component 3 a and/or component housing 11 a), similar to conventional loading machines, whereupon a suitable vacuum is created at the grabber device and/or the loader head 13 a (and/or more accurately: below the grabber device and/or the loader head 13 a).
  • In this way the component 3 a, arranged in a corresponding housing 11 a and lying on tray 17 (similarly constructed to conventional trays) is moved upwards in the direction of arrow N, as shown in FIG. 2, and firmly held by the underside 13 b of the grabber device 13 a, as shown in FIG. 3, (essentially in the middle of several centering devices 18 a, 18 b, 18 c, 18 d, more accurately described below) i.e., the component 3 a is removed from tray 17.
  • Next, by means of an appropriate movement (for instance swiveling or shifting) of the grabber device 13 a and/or the loader head 13 a (for instance first upwards in the direction of the arrow M shown in FIG. 2, and then laterally in the direction of the arrow L shown in FIG. 2, etc.), the grabber device 13 a, together with the component 3 a and/or component housing 11 a held at the underside 13 b of the grabber device 13 a, by the vacuum being maintained, is positioned above the precision alignment device 19, shown to the right in FIG. 2, (more accurately: above a centering recess 22 of the precision alignment device 19).
  • The precision alignment device 19 is similarly constructed to conventional precision alignment devices, yet has been provided, as shown in FIG. 2 and FIG. 4, with several centering holes 20 a, 20 b, 20 c, 20 d on the underside 13 b of the grabber device 13 a for receiving the above centering devices 18 a, 18 b, 18 c, 18 d.
  • The centering holes 20 a, 20 b, 20 c, 20 d are essentially circular in section and reach, with an essentially constant inside diameter, partially or completely downwards through the whole precision alignment device 19 in a vertical direction from the upper side of the precision alignment device 19.
  • As shown in FIGS. 2 and 4, the centering devices 18 a, 18 b, 18 c, 18 d provided on the grabber device 13 a reach vertically downwards from the underside of the grabber device. Each of the centering devices 18 a, 18 b, 18 c, 18 d (here: four, alternatively for instance two or three, etc.) has, as is for instance apparent from FIG. 3 when seen from below, an essentially circular cross section.
  • As shown in FIG. 4, the vertical axes of the centering devices 18 a, 18 b, 18 c, 18 d, running centrally through the conical sections of the centering devices 18 a, 18 b, 18 c, 18 d, are, when the grabber device 13 a has been correspondingly aligned, in alignment with the central vertical axes of the corresponding centering openings 20 a, 20 b, 20 c, 20 d of the precision alignment device 19.
  • The inside diameter of each centering opening 20 a, 20 b, 20 c, 20 d is essentially identical to the maximum outside diameter of the corresponding conical sections 21 b of each centering device 18 a, 18 b, 18 c, 18 d (at the top end of the corresponding conical sections 21 b), i.e., the outside diameter of the corresponding cylindrical sections 21 a of each of the centering devices 18 a, 18 b, 18 c, and/or 18 d is somewhat smaller.
  • The grabber device 13 a and/or the loader head 13 a is supported on a “floating” bearing in relation to the other parts of the loading machine 13.
  • When the grabber device 13 a is moved from the position shown at the top right-hand side in FIG. 2, i.e., from above the precision alignment device 19 (and/or above the centering recess 22 of the precision alignment device 19), in the direction of the arrow O, vertically downwards, to for instance the position shown in FIG. 4 (or even further downwards), the centering devices 18 a, 18 b, 18 b, 18 c (and/or their conical sections 21 b) provided on the underside of the grabber device 13 a, are inserted into each corresponding centering opening 20 a, 20 b, 20 c, 20 d of the precision alignment device 19.
  • Due to the above-mentioned “floating” bearing of the grabber device 13 a (i.e., due to its lateral flexibility) the grabber device 13 a, not yet accurately centered and/or aligned in relation to the precision alignment device 19 and/or its centering-recess 22, is centered and/or aligned (i.e., moved slightly laterally as shown by the arrows Q and R in FIG. 2 so that once the centering devices 18 a, 18 b, 18 b, 18 c have been inserted into each of the corresponding centering openings 20 a, 20 b, 20 c, 20 d, the central axes a of the centering devices 18 a, 18 b, 18 b, 18 c coincide with the corresponding central axes a of the centering openings 20 a, 20 b, 20 c, 20 d of the precision alignment device 19.)
  • The component 3 a and/or component-housing 11 a, suspended above the precision alignment device 19 and/or its centering recess 22, is then dropped into the centering recess 22 by the grabber device 13 a (for instance arrow P in FIGS. 2 and 4) by releasing the vacuum.
  • The centering recess has, as is for instance shown in FIG. 4, tapered sides 22 a, 22 b.
  • The tapered sides 22 a, 22 b run at an angle downwards and inwards from the inside edges of the centering recess 22 on the upper side of the precision alignment device 19.
  • At a lower point inside the centering recess 22 the dimensions of the centering-recess 22 essentially correspond with the dimensions of component 3 a and/or component housings 11 a (for instance the width, as shown in FIG. 4, of the centering recess 22 in the above-mentioned lower point essentially corresponds with the width of component 3 a and/or the component-housing 11 a, and the length of the centering recess 22 essentially corresponds with the length of the component 3 a and/or component housing 11 a).
  • By means of the guiding tapers 22 a, 22 b it can be achieved that component 3 a and/or the component housing 11 a and thereby also the grabber device 13 a is appropriately aligned and/or centered in relation to the precision alignment device 19 (i.e., moved slightly in a lateral direction when falling into the centering recess 22, so that when, after falling into the centering recess 22, the central axis a of the component 3 a and/or component housing 11 a coincides with the corresponding central axis b of the centering recess 22).
  • Next the grabber device 13 a of the above loading machine 13 (or, for example, a grabber device of an additional loading machine, if provided, such as the one mentioned above) for instance at the setting of the grabber device 13 a shown in FIG. 4, or at a setting in which the grabber device 13 a has been moved even further downwards until the underside 13 b of the grabber device 13 a touches the component 3 a and/or component housing 11 a, can again remove the component 3 a and/or component-housing 11 a from the centering recess 22 provided in the precision alignment device 19 (for instance by (again) creating a vacuum at the grabber device 13 a and/or the loader head 13 a (and/or more accurately: underneath the grabber device 13 a and/or the loader head 13 a).
  • Hereby the component 3 a and/or component-housing 11 a, inserted in the centering recess 22, is pulled upwards against the direction of the arrow P shown in FIGS. 2 and 4, and, as shown in FIG. 3, again held at the underside 13 b of the grabber device 13 a (by now due to the centering of the component 3 a in relation to the precision alignment device 19, and the centering of the grabber device 13 a in relation to the precision alignment device 19, for instance exactly in the middle between the above-mentioned centering devices 18 a, 18 b, 18 c, 18 d, i.e., in a way that exactly aligns it, in particular, centers it in relation to the grabber device 13 a).
  • Next, by appropriately moving (for instance by swiveling and/or shifting) the grabber device 13 a and/or the loader head 13 a (for instance initially upwards in the direction of the arrow S shown in FIG. 2, and then laterally in the direction of the arrow T shown in FIG. 2 and FIG. 5, etc.) the grabber device 13 a is held, while the vacuum is maintained, for instance together with the centered and/or aligned component 3 a and/or component-housing 11 a at the underside 13 b of the grabber device 13 a, in position above a corresponding (burn-in) socket and/or (burn-in) adapter 12 a, 12 b, 12 c, 12 d (FIG. 5).
  • As is clear from FIG. 5, the (burn-in) adapters and/or sockets 12 a, 12 b, 12 c, 12 d each has, in contrast to conventional (burn-in) sockets and/or adapters, a base element 24 but no cover (which in conventional (burn-in) sockets and/or adapters has been fitted above a corresponding base element, and is vertically moveable in relation to the base element 24, for instance in a vertical direction, due to spring elements fitted in between).
  • Furthermore the (burn-in) adapters and/or sockets 12 a, 12 b, 12 c, 12 d, in contrast to conventional sockets and/or adapters, have no tapered component guiding planes and/or “guide” devices.
  • The sockets and/or adapters 12 a, 12 b, 12 c, 12 d and/or more accurately: the sockets and/or adapter base elements 24 (used here without covers), can otherwise be constructed essentially similar or identical to conventional “burn in” sockets and/or “burn in” adapters (and/or more accurately: to corresponding sockets and/or adapter base elements), for instance correspondingly similar or identical to the base elements of conventional “open top” sockets, in particular TSOP sockets (or for instance correspondingly similar or identical to the base elements of FBGA “burn in” sockets, etc.), for instance correspondingly similar or identical to the burn in sockets base elements in the model range NP367 of the Yamaichi company (here for instance schematically represented).
  • As is apparent from FIG. 5 and is more closely described below, the openings provided in the base element 24 (and used in conventional socket base elements for attaching springs) can in the present embodiment be used as centering holes 23 a, 23 b, 23 c, 23 d (instead of as attachment points for springs). Naturally, separate centering openings may also be provided in the base element 24 as an alternative.
  • The centering openings 23 a, 23 b, 23 c, 23 d have, similar to the centering openings 20 a, 20 b, 20 c, 20 d provided in the precision alignment device 19, a substantially circular cross-section, and run vertically downwards, with an essentially constant inside diameter, in each case from corresponding corner areas on the upper side of the base element 24 of the socket and/or adapter—passing partially or wholly through the entire base element 24.
  • As is clear from FIG. 5, the central vertical axes a of the centering devices 18 a, each passing through the middle of the conical sections 21 a of the centering devices 18 a, 18 b, 18 c, 18 d, 18 b, 18 c, 18 d coincide, when the grabber device 13 a is appropriately aligned, with the corresponding central axes running vertically through the corresponding centering openings 23 a, 23 b, 23 c, 23 d of the adapter and/or socket 12 a.
  • The inside diameter of each centering opening 23 a, 23 b, 23 c, 23 d essentially coincides, just as is the case with the corresponding centering openings 20 a, 20 b, 20 c, 20 d of the precision alignment device 19, with the maximum dimension of the outside diameter of the conical sections 21 b provided on each centering device 18 a, 18 b, 18 c, 18 d (at the top end of the corresponding conical sections 21 b), i.e., with the outside diameter of the corresponding cylindrical sections 21 a of each centering device 18 a, 18 b, 18 c, 18 d.
  • As already described above, the grabber device 13 a and/or the loader head 13 a are attached by means of a “floating” bearing in relation to the other parts of the machine 13.
  • When the grabber device 13 a is moved vertically downwards from the setting shown in FIG. 5 above the adapter and/or socket 12 a, in the direction of the arrow U, the centering devices 18 a, 18 b, 18 c, 18 d provided at the bottom of the grabber device 13 a, are inserted into each centering opening 23 a, 23 b, 23 c, 23 d of the socket and/or adapter 12 a.
  • As a result of the above-mentioned “floating” attachment of the grabber device 13 a (i.e. its ability to move laterally) the grabber device 13 a, not yet exactly centered and/or aligned, is centered and/or aligned in relation to the adapter and/or socket 12 a as shown in FIG. 5 by the arrows X and Y, e.g., moved laterally to a certain extent, so that once the centering devices 18 a, 18 b, 18 b, 18 c have been inserted into the centering openings 23 a, 23 b, 23 c, 23 d provided in each case, the central axes a of the centering devices 18 a, 18 b, 18 b, 18 c coincide with the corresponding central axes of the centering openings 23 a, 23 b, 23 c, 23 d of the socket and/or adapter 12 a. Conventional sockets and/or adapters (in particular the contacts and latches provided there) can be “opened” by means of appropriately depressing the adapter and/or socket covers (in the direction of arrow V shown in FIG. 5) and after the adapter and/or socket covers have been released, can again be “closed”.
  • This function of the cover (in particular opening and closing the above-mentioned socket contacts and latches) is taken over, in the case of the present “coverless” socket and/or adapter 12 a, by the grabber device 13 a, in particular by the special attachments (shown schematically here) 28 a, 28 b, 28 c (and/or pins 28 a, 28 b, 28 c or studs 28 a, 28 b, 28 c) which have been provided on the grabber device 13 a in addition to the above-mentioned centering devices 18 a, 18 b, 18 c, 18 d.
  • These reach down vertically, as is apparent from FIGS. 2, 3 and 5, downward from the underside 13 b of the grabber device 13 a.
  • The attachments 28 a, 28 b, 28 c (and/or pins 28 a, 28 b, 28 c or studs 28 a, 28 b, 28 c) may be constructed correspondingly similar or identical to attachments and/or pins provided on the underside of conventional socket and/or adapter covers, for instance similar or identical to attachments and/or pins provided on conventional “open top” socket covers, in particular “burn-in” socket covers, for instance TSOP socket covers (or for instance FBGA socket covers, etc.), or for instance correspondingly similar or identical to the attachments and/or pins provided on the burn-in socket covers of sockets in the NP367 model range of the Yamaichi company (here, for example, schematically represented), etc. (in particular corresponding to the respective design of the socket base elements 24).
  • For example, tapered planes 29 (labeled in FIG. 6), can be provided on the attachments 28 a, 28 b, 28 c and/or pins 28 a, 28 b, 28 c, similar or identical to attachments and/or pins provided at the underside of conventional socket and/or adapter covers, with which in order to open and close the above-mentioned socket contacts and latches (mechanical) devices at the socket base element 24 can be operated.
  • In the present embodiment the grabber device 13 a is moved vertically downwards, from the setting shown in FIG. 3 above the adapter and/or socket 12 a in the direction of the arrow U, that the attachments 28 a, 28 b, 28 c and/or pins 28 a, 28 b, 28 c provided at the bottom of the cover (correspondingly similarly to the attachments and/or pins provided on conventional sockets and/or adapters) “open” the sockets and/or adapters 12 a provided there.
  • Thereby for instance, correspondingly similar to conventional sockets and/or adapters, the vertical movement of the attachments 28 a, 28 b, 28 c and/or pins 28 a, 28 b, 28 c (for instance arrow U, shown in FIGS. 5 and 6) can be converted into an appropriate horizontal movement, corresponding to that of an operating mechanism (arrow Z, FIG. 6) by means of a corresponding mechanical device 30 provided at or attached to the socket and/or adapter 12 a (for instance a device also containing the corresponding tapered planes 31).
  • With the help of the mechanical device 30 and/or a corresponding operating mechanism (and/or its movement in a horizontal direction) the shanks of a V-shaped contact terminal 32 of the socket and/or adapter 12 a, (initially slightly) open towards the top end and pre-tensioned towards a “closed” setting by means of corresponding spring devices connected to operating mechanism(s), can be moved apart (on a horizontal plane) thereby being prepared to receive a component and/or component housing connection (shown in FIG. 6 schematically as an example and represented in highly simplified form).
  • Advantageously the grabber device 13 a is forced downwards in the direction of arrow U, until the component 3 a and/or component-housing 11 a, still held, by the vacuum being maintained, at the underside 13 b of the grabber device 13 a touches the top of the base element 24 in the inner part of the socket 12 a, and the connections of the component 3 a and/or component housing 11 a are inserted into the corresponding (wide open) contact terminals 32 of the socket and/or adapter 12 a. Then the vacuum is released and the component 3 a and/or component-housing 11 a released.
  • In other words, the component 3 a and/or component-housing 11 a is gently placed into the adapter and/or socket 12 a, and not, as with conventional grabber devices, aligned with the help of tapered guide planes provided at the sockets and/or adapter by being dropped into the adapter and/or socket.
  • This gentle placing action is possible because the component 3 a and/or the component-housing 11 a has already been relatively accurately aligned in relation to the grabber device 13 a by means of the process described above (i.e., at the precision alignment device 19), and by inserting the centering devices 18 a, 18 b, 18 c, 18 d of the grabber device 13 a into the centering openings 23 a, 23 b, 23 c, 23 d, provided at the socket and/or adapter 12 a, the grabber device 13 a is additionally aligned with relatively high accuracy in relation to the socket and/or adapter 12 a.
  • After the component 3 a and/or component housings 11 a have been placed into sockets 12 a, the grabber device 13 a, with attachments and/or pins 28 a, 28 b, 28 c (and the centering devices 18 a, 18 b, 18 c, 18 d) is retracted, vertically upwards, whereby (in corresponding fashion, as if the cover of a conventional adapter and/or socket 12 a had been released, i.e., moved upwards again) the adapter and/or socket 12 and/or the contacts and latches provided there is “locked” again.
  • In this way secure electrical contact is made between the terminals provided on each component 3 a (and/or component housing 11 a) and the terminals provided at the adapter and/or socket 12 a (for instance by the shank of the above-mentioned V-shaped contact terminal 32, again released by attachments and/or pins 28 a, 28 b, 28 c, being forced, by means of spring pressure provided by the above-mentioned spring devices against a component and/or component housing contact, which has been inserted into contact terminal 32).
  • In similar fashion to that described above, the grabber device 13 a (or it being the case the above further grabber device) can load a multitude of further adapters and/or sockets 12 b, 12 c, 12 d, and/or the component- housings 11 b, 11 c, 11 d etc., similarly constructed to the socket and/or adapter 12 a shown in FIG. 5, with components 3 b, 3 c, 3 d, etc. (for instance at a rate of more than 100 or 1,000 adapters and/or sockets per hour).
  • In each case, several of these sockets and/or adapters 12 a, 12 b, 12 c, 12 d (for instance more than 50, 100 or 200 sockets and/or adapters 12 a, 12 b, 12 c, 12 d) have been connected, as can be seen in FIG. 1, to one and the same card 14 and/or board 14 at testing station D (and/or to one and the same test card and/or test board 14) (for instance more than 50, 100 or 200 sockets and/or adapters 12 a, 12 b, 12 c, 12 d).
  • The test-board 14 (and thereby also the semiconductor components 3 a, 3 b, 3 c, 3 d and/or housing 11 a, 11 b, 11 c, 11 d loaded into the sockets and/or adapters 12 a, 12 b, 12 c, 12 d) are loaded, as shown in FIG. 1, with the help of an appropriate machine into an “oven” 15 that can be shut (and/or into an apparatus 15, with which extreme conditions can be created for the above semiconductor components 3 a, 3 b, 3 c, 3 d (for instance increased temperatures, for instance above 70° C., 100° C., or 150° C., and/or increased component operating voltages, etc.)).
  • The test-card 14 and/or the test board 14 is in each case, in the conventional manner, connected to a test apparatus 4, for instance by means of lines 16.
  • This causes the test signals being generated by the test apparatus 4 to be relayed, for instance by means of the above lines 16, to the test card 14, and from there to the sockets 12 a, 12 b, 12 c, 12 d, and their socket contact pins (not shown here) by means of the card contacts.
  • From the sockets 12 a, 12 b, 12 c, 12 d the test signals are then relayed via the above socket connections and the housing connections making contact with them, to the housings 11 a, 11 b, 11 c, 11 d, and from there via the above housing contacts and the semiconductor component contacts making contact with them, to the semiconductor components 3 a, 3 b, 3 c, 3 d to be tested.
  • The signals emitted in reaction to the test signals applied to corresponding semiconductor component contacts are then scanned by housing contacts (in contact with them) and led via the sockets 12 a, 12 b, 12 c, 12 d, the card 14 and lines 16 to the test apparatus 4, where the signals can then be evaluated.
  • Thereby the test system 1, which includes, among other things, the test apparatus 4, the card 14 and the sockets 12 a, 12 b, 12 c, 12 d, can perform a conventional test procedure, for instance a conventional “burn-in” test (or several similar tests in succession), in which and/or in the course of which for instance the functionality of the semiconductor components 3 a, 3 b, 3 c, 3 d can be evaluated (for instance while or after the semiconductor components are being or have been subjected to the above-mentioned extreme conditions in the above “oven 15 or the apparatus 15 for a relatively long period of time (for instance for more than 30 minutes, and/or more than one hour)).

Claims (24)

1. A mechanism for loading a socket with a semiconductor component, comprising a device for opening the socket.
2. The mechanism according to claim 1, wherein contacts provided at the socket are opened by the device for opening the socket.
3. The mechanism according to claim 1, wherein the device for opening the socket is an attachment to the mechanism which is provided with a corresponding tapered plane.
4. The mechanism according to claim 1, wherein the device is designed such that when the mechanism is moved toward the socket, contacts provided at the socket are opened by the device.
5. The mechanism according to claim 1, further comprising an aligning device that aligns the mechanism in relation to the socket.
6. The mechanism according to claim 5, wherein the aligning device has a tapered plane.
7. The mechanism according to claim 6, wherein the aligning device has a conical section.
8. The mechanism according to claim 7, wherein the aligning device is a recess provided at the mechanism.
9. The mechanism according to claim 5, wherein the socket comprises a further alignment facilitating mechanism.
10. The mechanism according to claim 5, wherein the aligning device attached to the mechanism is additionally used for aligning the mechanism in relation to a precision alignment device.
11. A socket for semiconductor components, comprising a base element and contacts to be opened by a semiconductor component loading mechanism for loading the socket.
12. The socket according to claim 11, wherein a mechanical device is provided for opening the socket.
13. The socket according to claim 11, further comprising a facility for aligning the semiconductor component loading mechanism in relation to the socket.
14. The socket according to claim 13, wherein the facility is a recess provided at the socket.
15. The socket according to claim 13, wherein, to align the mechanism in relation to the socket, the mechanism is provided with a device, working in conjunction with the alignment facility provided at the socket.
16. A process for loading a socket with a corresponding semiconductor component, comprising opening contacts in the socket with a socket loading mechanism.
17. The process according to claim 16, wherein the socket loading mechanism has a tapered plane.
18. The process according to claim 16, wherein the socket loading mechanism moves toward the contacts in the socket, which are opened by the socket loading mechanism.
19. The process according to claim 16, further comprising aligning the socket loading mechanism in relation to the socket.
20. The process according to claim 19, wherein the aligning is achieved by means of an alignment device provided on the socket loading mechanism.
21. The process according to claim 20, wherein the alignment device has a tapered plane.
22. The process according to claim 20, wherein, to align the socket loading mechanism in relation to the socket, a facility provided in the socket that works in conjunction with the alignment device provided at the mechanism.
23. The process according to claim 22, further comprising:
moving the loading socket mechanism toward the socket; and
inserting the attachment provided at the mechanism into the recess provided at the socket.
24. The process according to claim 23, further comprising aligning the mechanism in relation to a precision alignment device with assistance of the alignment device provided at the mechanism.
US11/971,083 2003-12-18 2008-01-08 Loading a Socket and/or Adapter Device with a Semiconductor Component Abandoned US20080108238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/971,083 US20080108238A1 (en) 2003-12-18 2008-01-08 Loading a Socket and/or Adapter Device with a Semiconductor Component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10359648.8 2003-12-18
DE10359648A DE10359648B4 (en) 2003-12-18 2003-12-18 A socket device for use in testing semiconductor devices, and an apparatus and method for loading a socket device with a corresponding semiconductor device
US11/012,715 US7453259B2 (en) 2003-12-18 2004-12-16 Loading a socket and/or adapter device with a semiconductor component
US11/971,083 US20080108238A1 (en) 2003-12-18 2008-01-08 Loading a Socket and/or Adapter Device with a Semiconductor Component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/012,715 Continuation US7453259B2 (en) 2003-12-18 2004-12-16 Loading a socket and/or adapter device with a semiconductor component

Publications (1)

Publication Number Publication Date
US20080108238A1 true US20080108238A1 (en) 2008-05-08

Family

ID=34683559

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/012,715 Expired - Fee Related US7453259B2 (en) 2003-12-18 2004-12-16 Loading a socket and/or adapter device with a semiconductor component
US11/971,083 Abandoned US20080108238A1 (en) 2003-12-18 2008-01-08 Loading a Socket and/or Adapter Device with a Semiconductor Component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/012,715 Expired - Fee Related US7453259B2 (en) 2003-12-18 2004-12-16 Loading a socket and/or adapter device with a semiconductor component

Country Status (2)

Country Link
US (2) US7453259B2 (en)
DE (1) DE10359648B4 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150241477A1 (en) * 2014-02-27 2015-08-27 Texas Instruments Incorporated Effective and efficient solution for pin to pad contactor on wide range of smd package tolerances using a reverse funnel design anvil handler mechanism
KR102335827B1 (en) * 2014-12-24 2021-12-08 삼성전자주식회사 apparatus for loading a prove card and system for managing the prove card with the unit
US10852321B2 (en) 2016-08-19 2020-12-01 Delta Design, Inc. Test handler head having reverse funnel design
US10566134B2 (en) * 2017-06-30 2020-02-18 Intel Corporation Apparatus, system, and method for handling magnetic devices

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573617A (en) * 1967-10-27 1971-04-06 Aai Corp Method and apparatus for testing packaged integrated circuits
US3904934A (en) * 1973-03-26 1975-09-09 Massachusetts Inst Technology Interconnection of planar electronic structures
US3984166A (en) * 1975-05-07 1976-10-05 Burroughs Corporation Semiconductor device package having lead frame structure with integral spring contacts
US4133592A (en) * 1975-11-11 1979-01-09 Amp Incorporated Stacked printed circuit boards and circuit board system
US4340860A (en) * 1980-05-19 1982-07-20 Trigon Integrated circuit carrier package test probe
US4730156A (en) * 1983-06-06 1988-03-08 Nissan Motor Company, Limited Self-monitor system for microprocessor for detecting erroneous connection of terminals
US4733462A (en) * 1986-06-24 1988-03-29 Sony Corporation Apparatus for positioning circuit components at predetermined positions and method therefor
US4744768A (en) * 1987-02-10 1988-05-17 Minnesota Mining And Manufacturing Company Coupling connector
US4747784A (en) * 1986-05-16 1988-05-31 Daymarc Corporation Contactor for integrated circuits
US4865219A (en) * 1987-04-20 1989-09-12 Logan - Barlow Serving platter for pizza pan
US4927369A (en) * 1989-02-22 1990-05-22 Amp Incorporated Electrical connector for high density usage
US4969826A (en) * 1989-12-06 1990-11-13 Amp Incorporated High density connector for an IC chip carrier
USRE33466E (en) * 1986-02-07 1990-12-04 Mitsubishi Denki Kabushiki Kaisha Industrial robot with automatic centering
US5073117A (en) * 1989-03-30 1991-12-17 Texas Instruments Incorporated Flip-chip test socket adaptor and method
US5199889A (en) * 1991-11-12 1993-04-06 Jem Tech Leadless grid array socket
US5247246A (en) * 1987-04-17 1993-09-21 Everett Charles Technologies, Inc. Testing of integrated circuit devices on loaded printed circuit boards
US5273441A (en) * 1992-11-12 1993-12-28 The Whitaker Corporation SMA burn-in socket
US5314223A (en) * 1993-02-26 1994-05-24 The Whitaker Corporation Vacuum placement system and method, and tool for use therein
US6734683B2 (en) * 2001-09-27 2004-05-11 Intel Corporation Method and apparatus for in-circuit testing of sockets

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126529A (en) 1994-08-31 1996-07-10 株式会社爱德万测试 Device for positioning IC
US6279225B1 (en) * 1996-06-05 2001-08-28 Schlumberger Technologies, Inc. Apparatus for handling packaged IC's
JPH10160794A (en) * 1996-12-02 1998-06-19 Mitsubishi Electric Corp Ic-attaching/detaching device and its attaching/detaching head
US6402528B2 (en) * 1999-11-30 2002-06-11 Texas Instruments Incorporated Electronic part mounting device
KR100351052B1 (en) * 2000-03-30 2002-09-05 삼성전자 주식회사 Loader for semiconductor package processing having a guider and method for using the same

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573617A (en) * 1967-10-27 1971-04-06 Aai Corp Method and apparatus for testing packaged integrated circuits
US3904934A (en) * 1973-03-26 1975-09-09 Massachusetts Inst Technology Interconnection of planar electronic structures
US3984166A (en) * 1975-05-07 1976-10-05 Burroughs Corporation Semiconductor device package having lead frame structure with integral spring contacts
US4133592A (en) * 1975-11-11 1979-01-09 Amp Incorporated Stacked printed circuit boards and circuit board system
US4340860A (en) * 1980-05-19 1982-07-20 Trigon Integrated circuit carrier package test probe
US4730156A (en) * 1983-06-06 1988-03-08 Nissan Motor Company, Limited Self-monitor system for microprocessor for detecting erroneous connection of terminals
USRE33466E (en) * 1986-02-07 1990-12-04 Mitsubishi Denki Kabushiki Kaisha Industrial robot with automatic centering
US4747784A (en) * 1986-05-16 1988-05-31 Daymarc Corporation Contactor for integrated circuits
US4733462A (en) * 1986-06-24 1988-03-29 Sony Corporation Apparatus for positioning circuit components at predetermined positions and method therefor
US4744768A (en) * 1987-02-10 1988-05-17 Minnesota Mining And Manufacturing Company Coupling connector
US5247246A (en) * 1987-04-17 1993-09-21 Everett Charles Technologies, Inc. Testing of integrated circuit devices on loaded printed circuit boards
US4865219A (en) * 1987-04-20 1989-09-12 Logan - Barlow Serving platter for pizza pan
US4927369A (en) * 1989-02-22 1990-05-22 Amp Incorporated Electrical connector for high density usage
US5073117A (en) * 1989-03-30 1991-12-17 Texas Instruments Incorporated Flip-chip test socket adaptor and method
US4969826A (en) * 1989-12-06 1990-11-13 Amp Incorporated High density connector for an IC chip carrier
US5199889A (en) * 1991-11-12 1993-04-06 Jem Tech Leadless grid array socket
US5273441A (en) * 1992-11-12 1993-12-28 The Whitaker Corporation SMA burn-in socket
US5314223A (en) * 1993-02-26 1994-05-24 The Whitaker Corporation Vacuum placement system and method, and tool for use therein
US6734683B2 (en) * 2001-09-27 2004-05-11 Intel Corporation Method and apparatus for in-circuit testing of sockets

Also Published As

Publication number Publication date
US20050170689A1 (en) 2005-08-04
DE10359648B4 (en) 2013-05-16
DE10359648A1 (en) 2005-07-21
US7453259B2 (en) 2008-11-18

Similar Documents

Publication Publication Date Title
US7114976B2 (en) Test socket and test system for semiconductor components with easily removable nest
US6573739B1 (en) IC testing apparatus
KR100390636B1 (en) Testing Apparatus for Electronic Device
KR101176858B1 (en) Test method for yielding a known good die
US6304073B1 (en) IC testing apparatus
KR102012608B1 (en) Wafer inspection method and wafer inspection apparatus
US6636060B1 (en) Insert for electric devices testing apparatus
EP0360396A2 (en) Force delivery system for improved precision membrane probe
US5872458A (en) Method for electrically contacting semiconductor devices in trays and test contactor useful therefor
KR101762835B1 (en) A test device
US20080108238A1 (en) Loading a Socket and/or Adapter Device with a Semiconductor Component
US7392582B2 (en) Socket and/or adapter device, and an apparatus and process for loading a socket and/or adapter device with a corresponding semi-conductor component
US20060187647A1 (en) Test kit semiconductor package and method of testing semiconductor package using the same
CN106862093B (en) Plug-in for test handler
US6717432B2 (en) Single axis manipulator with controlled compliance
US7061227B2 (en) Apparatus and method for calibrating a semiconductor test system
KR100291382B1 (en) Tray for testing semiconductor device
JP2913344B2 (en) An inspection device and an inspection method for a semiconductor element.
US20070072448A1 (en) Apparatus and method for loading a socket or adapter device with a semiconductor component
KR100465372B1 (en) Carrier Module for Semiconductor Test Handler
KR102658477B1 (en) Apparatus for testing semiconductor package
KR20000003128A (en) Contact point correction device for semiconductor device
CN108802595B (en) Carrier for electronic component testing device
KR20100080025A (en) Apparatus and method for testing a wafer
TW202317996A (en) Electronic component testing device, socket and loading frame wherein the electronic component testing device includes a test head and a processor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION