US20080030369A1 - Telemetered characteristic monitor system and method of using the same - Google Patents
Telemetered characteristic monitor system and method of using the same Download PDFInfo
- Publication number
- US20080030369A1 US20080030369A1 US11/906,516 US90651607A US2008030369A1 US 20080030369 A1 US20080030369 A1 US 20080030369A1 US 90651607 A US90651607 A US 90651607A US 2008030369 A1 US2008030369 A1 US 2008030369A1
- Authority
- US
- United States
- Prior art keywords
- sensor
- characteristic monitor
- monitor system
- user
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 12
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 24
- 239000008103 glucose Substances 0.000 claims description 24
- 238000007920 subcutaneous administration Methods 0.000 claims description 23
- 210000001519 tissue Anatomy 0.000 claims description 12
- 238000012544 monitoring process Methods 0.000 claims description 8
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 6
- 102000004877 Insulin Human genes 0.000 claims description 3
- 108090001061 Insulin Proteins 0.000 claims description 3
- 229940125396 insulin Drugs 0.000 claims description 3
- 238000007912 intraperitoneal administration Methods 0.000 claims description 3
- 206010033675 panniculitis Diseases 0.000 claims 2
- 210000004304 subcutaneous tissue Anatomy 0.000 claims 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 19
- 238000001802 infusion Methods 0.000 abstract description 14
- 229940079593 drug Drugs 0.000 abstract description 11
- 239000003814 drug Substances 0.000 abstract description 11
- 238000003780 insertion Methods 0.000 description 25
- 230000037431 insertion Effects 0.000 description 25
- 239000010410 layer Substances 0.000 description 14
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 239000010409 thin film Substances 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 5
- 210000001124 body fluid Anatomy 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000010839 body fluid Substances 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 210000003722 extracellular fluid Anatomy 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000004078 waterproofing Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229940107161 cholesterol Drugs 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000002218 hypoglycaemic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920002631 room-temperature vulcanizate silicone Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 239000004590 silicone sealant Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1495—Calibrating or testing of in-vivo probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1486—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
- A61B5/14865—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6848—Needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6848—Needles
- A61B5/6849—Needles in combination with a needle set
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0204—Operational features of power management
- A61B2560/0214—Operational features of power management of power generation or supply
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0223—Operational features of calibration, e.g. protocols for calibrating sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/172—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
- A61M5/1723—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
- A61M2005/1726—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure the body parameters being measured at, or proximate to, the infusion site
Definitions
- This invention relates to telemetered subcutaneous sensor devices and, in particular embodiments, to devices and methods for wireless communication between an implantable subcutaneous sensor set at a selected insertion site within the body of a user and a remotely located characteristic monitor.
- glucose sensors have been developed for use in obtaining an indication of blood glucose levels in a diabetic patient. Such readings are useful in monitoring and/or adjusting a treatment regimen which typically includes the regular administration of insulin to the patient.
- blood glucose readings improve medical therapies with semi-automated medication infusion pumps of the external type, as generally described in U.S. Pat. Nos. 4,562,751; 4,678,408; and 4,685,903; or automated implantable medication infusion pumps, as generally described in U.S. Pat. No. 4,573,994, which are herein incorporated by reference.
- flexible subcutaneous sensors are constructed in accordance with thin film mask techniques in which an elongated sensor includes thin film conductive elements encased between flexible insulative layers of polyimide sheets or similar material.
- Such thin film sensors typically include a plurality of exposed electrodes at one end for subcutaneous placement with a user's interstitial fluid, blood, or the like, and a corresponding exposed plurality of conductive contacts at another end for convenient external electrical connection with a suitable monitoring device through a wire or cable.
- Typical thin film sensors are described in commonly assigned U.S. Pat. Nos. 5,390,671; 5,391,250; 5,482,473; and 5,586,553 which are incorporated by reference herein. See also U.S. Pat. No. 5,299,571.
- Drawbacks to the use of implantable sensors arise from the use of a wired connection between the implantable sensor set and the monitor.
- the use of the wire or cable is an additional inconvenience to users that already utilize an external infusion pump that includes an infusion insertion set and tube to infuse the medication.
- the preferred site for some sensing device may be inconvenient for connection by wire to a characteristic monitor.
- the wire or cable negates the very benefit of having an internal device without external wires or cables.
- Type 2 diabetics who do not necessarily need or use an infusion pump, the use of a cable is seen as an inconvenience that may inhibit use of the device.
- the use of a wire or cable limits a user's ability to position the monitor, since it can be placed no further away than the ultimate length of the wire or cable.
- the user must normally wear the monitor, which can be problematic. For example, removal of the monitor for sleeping can be difficult, since a user would tend to become “tangled” in the wire or cable, between the sensor and the monitor, during the normal tossing and turning that occurs during sleep.
- the more connections the user must deal with e.g., infusion pump and catheter and/or monitor with wire to sensor), the more complicated it is to use the devices, and the less likely the user will maintain compliance with the medical regimen due to perceived and actual difficulties with all of the wires and cables.
- a telemetered characteristic monitor system includes a remotely located data receiving device, a sensor for producing signal indicative of a characteristic of a user, and a transmitter device.
- the transmitter device includes a housing, a sensor connector, a processor, and a transmitter.
- a potentiostat within the transmitter device may be coupled to the sensor connector and applies power to the sensor.
- the sensor connector receives the produced signals from the sensor.
- the processor is coupled to the sensor connector and processes the signals from the sensor for delivery to the remotely located data receiving device.
- the transmitter is coupled to the processor for wirelessly transmitting the processed signals to the remotely located data receiving device.
- the data receiving device is a characteristic monitor.
- the data receiving device is a data receiver that provides data to another device, an RF programmer, a medication delivery device (such as an infusion pump), or the like.
- the transmitter of the transmitter device transmits the processed signals by radio frequencies.
- the sensor may be implanted in and/or through subcutaneous, dermal, sub-dermal, intra-peritoneal or peritoneal tissue, and the sensor connector of the transmitter device includes a cable that is connected to the sensor.
- the implantable sensor can be configured for a wired connection to a characteristic monitor, and the sensor connector of the transmitter device is formed to connect to the configured implantable sensor.
- Still further embodiments of the transmitter device include a receiver to receive data and instructions from the characteristic monitor, or the like.
- Embodiments of the transmitter device may include a bio-compatible adhesive to secure the housing to a skin surface of the user.
- the housing of the transmitter device is less than about 3.0 inches in diameter by 0.5 inches thick.
- the housing is resistant to fluids when immersed in a fluid, operable in a temperature range of 0° C. to 50° C., and has an operable life of at least 3 months. If the sensor is fully implanted, the transmitter that is connected to the sensor may be secured by sutures, sewing rings, or the like.
- FIG. 1 is a is a perspective view illustrating a subcutaneous sensor insertion set and telemetered characteristic monitor transmitter device embodying the novel features of the invention
- FIG. 2 is an enlarged longitudinal vertical section taken generally on the line 2 - 2 of FIG. 1 ;
- FIG. 3 is an enlarged longitudinal sectional of a slotted insertion needle used in the insertion set of FIGS. 1 and 2 ;
- FIG. 4 is an enlarged transverse section taken generally on the line 4 - 4 of FIG. 3 ;
- FIG. 5 is an enlarged transverse section taken generally on the line 5 - 5 of FIG. 3 ;
- FIG. 6 is an enlarged fragmented sectional view corresponding generally with the encircled region 6 of FIG. 2 ;
- FIG. 7 is an enlarged transverse section taken generally on the line 7 - 7 of FIG. 2 .
- FIG. 8 ( a ) is a top plan and partial cut-away view of the telemetered characteristic monitor transmitter device in accordance with the embodiment shown in FIG. 1 .
- FIG. 8 ( b ) is a simplified block diagram of the printed circuit board of the telemetered characteristic monitor transmitter device in accordance with the embodiments shown in FIG. 1 .
- FIG. 9 is a timing diagram illustrating an embodiment of a message and timing format used by the telemetered characteristic monitor transmitter device shown in FIG. 1 .
- FIG. 10 is a simplified block diagram of a characteristic monitor used in accordance with an embodiment of the present invention.
- FIG. 11 is a timing diagram for the characteristic monitor shown in FIG. 10 .
- FIG. 12 is another timing diagram for the characteristic monitor shown in FIG. 10 .
- FIG. 13 is a simplified block diagram of a telemetered characteristic monitor transmitter and sensor set system in accordance with another embodiment of the present invention.
- FIG. 14 is a simplified block diagram of a telemetered characteristic monitor transmitter and characteristic monitor system in accordance with still another embodiment of the present invention.
- the invention is embodied in a telemetered characteristic monitor transmitter coupled to a sensor set, that may be implanted in and/or through subcutaneous, dermal, sub-dermal, inter-peritoneal or peritoneal tissue, that transmits data from the sensor set to the characteristic monitor for determining body characteristics.
- the sensor set and monitor are for determining glucose levels in the blood and/or body fluids of the user without the use of, or necessity of, a wire or cable connection between the transmitter and the monitor.
- the senor set may also include the capability to be programmed or calibrated using data received by the telemetered characteristic monitor transmitter device, or may be calibrated at the monitor device (or receiver).
- the telemetered characteristic monitor system is primarily adapted for use in subcutaneous human tissue. However, still further embodiments may be placed in other types of tissue, such as muscle, lymph, organ tissue, veins, arteries or the like, and used in animal tissue. Embodiments may provide sensor readings on an intermittent or continuous basis.
- the telemetered characteristic monitor system 1 in accordance with a preferred embodiment of the present invention include a percutaneous sensor set 10 , a telemetered characteristic monitor transmitter device 100 and a characteristic monitor 200 .
- the percutaneous sensor set 10 utilizes an electrode-type sensor, as described in more detail below.
- the system may use other types of sensors, such as chemical based, optical based or the like.
- the sensors may be of a type that is used on the external surface of the skin or placed below the skin layer of the user. Preferred embodiments of a surface mounted sensor would utilize interstitial fluid harvested from underneath the skin.
- the telemetered characteristic monitor transmitter 100 generally includes the capability to transmit data.
- the telemetered characteristic monitor transmitter 100 may include a receiver, or the like, to facilitate two-way communication between the sensor set 10 and the characteristic monitor 200 .
- the characteristic monitor 200 utilizes the transmitted data to determine the characteristic reading.
- the characteristic monitor 200 may be replaced with a data receiver, storage and/or transmitting device for later processing of the transmitted data or programming of the telemetered characteristic monitor transmitter 100 .
- a relay or repeater 4 may be used with a telemetered characteristic monitor transmitter 100 and a characteristic monitor 200 to increase the distance that the telemetered characteristic monitor transmitter 100 can be used with the characteristic monitor 200 , as shown in FIG. 13 .
- the relay 4 could be used to provide information to parents of children using the telemetered characteristic monitor transmitter 100 and the sensor set 10 from a distance. The information could be used when children are in another room during sleep or doing activities in a location remote from the parents.
- the relay 4 can include the capability to sound an alarm.
- the relay 4 may be capable of providing telemetered characteristic monitor transmitter 100 data from the sensor set 10 , as well as other data, to a remotely located individual via a modem connected to the relay 4 for display on a monitor, pager or the like.
- the data may also be downloaded through a Communication-Station 8 to a remotely located computer 6 such as a PC, lap top, or the like, over communication lines, by modem or wireless connection, as shown in FIG. 14 .
- some embodiments may omit the Communication Station 8 and uses a direct modem or wireless connection to the computer 6 .
- the telemetered characteristic monitor transmitter 100 transmits to an RF programmer, which acts as a relay, or shuttle, for data transmission between the sensor set 10 and a PC, laptop, Communication-station, a data processor, or the like.
- the telemetered characteristic monitor transmitter 100 may transmit an alarm to a remotely located device, such as a communication-station, modem or the like to summon help.
- further embodiments may include the capability for simultaneous monitoring of multiple sensors and/or include a sensor for multiple measurements.
- Still further embodiments of the telemetered characteristic monitor transmitter 100 may have and use an input port for direct (e.g., wired) connection to a programming or data readout device and/or be used for calibration of the sensor set 10 .
- any port would be water proof (or water resistant) or include a water proof, or water resistant, removable cover.
- the purpose of the telemetered characteristic monitor system I is to provide for better treatment and control in an outpatient or a home use environment.
- the monitor system 1 can provide indications of glucose levels, a hypoglycemia/hyperglycemia alert and outpatient diagnostics. It is also useful as an evaluation tool under a physician's supervision.
- the monitor system 1 also removes inconvenience by separating the monitor electronics into two separate devices; a telemetered characteristic monitor transmitter 100 , which attaches to the implantable sensor set 10 ; and a characteristic monitor 200 (or other receiver), which is carried like a pager.
- a telemetered characteristic monitor transmitter 100 which attaches to the implantable sensor set 10
- a characteristic monitor 200 or other receiver
- This provides several advantages over wire connected devices. For instance, the user can more easily conceal the presence of the monitor system 1 , since a wire will not be visible (or cumbersome), within clothing. Such remote communication also provides greater convenience and flexibility in the placement of the sensor. It also makes it is easier to protect the characteristic monitor 200 , which can be removed from the user's body during showers, exercise, sleep or the like.
- the use of multiple components facilitates upgrades or replacements, since one module or the other can be modified or replaced without requiring complete replacement of the monitor system 1 .
- the use of multiple components can improve the economics of manufacturing, since some components may require replacement on a more frequent basis, sizing requirements may be different for each module, there may be different assembly environment requirements, and modifications can be made without affecting the other components.
- the telemetered characteristic monitor transmitter 100 takes characteristic information, such as glucose data or the like, from the percutaneous sensor set 10 and transmits it via wireless telemetry to the characteristic monitor 200 , which displays and logs the received glucose readings. Logged data can be downloaded from the characteristic monitor 200 to a personal computer, laptop, or the like, for detailed data analysis.
- the telemetered characteristic monitor system 1 may be used in a hospital environment or the like. Still further embodiments of the present invention may include one or more buttons (on the telemetered characteristic monitor transmitter 100 or characteristic monitor 200 ) to record data and events for later analysis, correlation, or the like.
- the telemetered characteristic monitor transmitter 100 may include a transmit on/off button for compliance with safety standards and regulations to temporarily suspend transmissions.
- buttons can include a sensor on/off button to conserve power and to assist in initializing the sensor set 10 .
- the telemetered characteristic monitor transmitter 100 and characteristic monitor 200 may also be combined with other medical devices to combine other patient data through a common data network and telemetry system.
- the percutaneous sensor set 10 would monitor the temperature of the sensor set 10 , which can then be used to improve the calibration of the sensor.
- the enzyme reaction activity may have a known temperature coefficient. The relationship between temperature and enzyme activity can be used to adjust the sensor values to more accurately reflect the actual characteristic levels.
- the oxygen saturation level can be determined by measuring signals from the various electrodes of the sensor set 10 . Once obtained, the oxygen saturation level may be used in calibration of the sensor set 10 due to changes in the oxygen saturation levels, and its effects on the chemical reactions in the sensor set 10 . For instance, as the oxygen level goes lower the sensor sensitivity may be lowered. The oxygen level can be utilized in calibration of the sensor set 10 by adjusting for the changing oxygen saturation. In alternative embodiments, temperature measurements may be used in conjunction with other readings to determine the required sensor calibration.
- a percutaneous sensor set 10 is provided for subcutaneous placement of an active portion of a flexible sensor 12 (see FIG. 2 ), or the like, at a selected site in the body of a user.
- the subcutaneous or percutaneous portion of the sensor set 10 includes a hollow, slotted insertion needle 14 , and a cannula 16 .
- the needle 14 is used to facilitate quick and easy subcutaneous placement of the cannula 16 at the subcutaneous insertion site.
- Inside the cannula 16 is a sensing portion 18 of the sensor 12 to expose one or more sensor electrodes 20 to the user's bodily fluids through a window 22 formed in the cannula 16 .
- the insertion needle 14 is withdrawn to leave the cannula 16 with the sensing portion 18 and the sensor electrodes 20 in place at the selected insertion site.
- the percutaneous sensor set 10 facilitates accurate placement of a flexible thin film electrochemical sensor 12 of the type used for monitoring specific blood parameters representative of a user's condition.
- the sensor 12 monitors glucose levels in the body, and may be used in conjunction with automated or semi-automated medication infusion pumps of the external or implantable type as described in U.S. Pat. No. 4,562,751; 4,678,408; 4,685,903 or 4,573,994, to control delivery of insulin to a diabetic patient.
- Preferred embodiments of the flexible electrochemical sensor 12 are constructed in accordance with thin film mask techniques to include elongated thin film conductors embedded or encased between layers of a selected insulative material such as polyimide film or sheet, and membranes.
- the sensor electrodes 20 at a tip end of the sensing portion 18 are exposed through one of the insulative layers for direct contact with patient blood or other body fluids, when the sensing portion 18 (or active portion) of the sensor 12 is subcutaneously placed at an insertion site.
- the sensing portion 18 is joined to a connection portion 24 (see FIG. 2 ) that terminates in conductive contact pads, or the like, which are also exposed through one of the insulative layers.
- other types of implantable sensors such as chemical based, optical based, or the like, may be used.
- connection portion 24 and the contact pads are generally adapted for a direct wired electrical connection to a suitable monitor 200 for monitoring a user's condition in response to signals derived from the sensor electrodes 20 .
- a suitable monitor 200 for monitoring a user's condition in response to signals derived from the sensor electrodes 20 .
- connection portion 24 may be conveniently connected electrically to the monitor 200 or a telemetered characteristic monitor transmitter 100 by a connector block 28 (or the like) as shown and described in U.S. Pat. No.
- subcutaneous sensor sets 10 are configured or formed to work with either a wired or a wireless characteristic monitor system.
- the proximal part of the sensor 12 is mounted in a mounting base 30 adapted for placement onto the skin of a user.
- the mounting base 30 is a pad having an underside surface coated with a suitable pressure sensitive adhesive layer 32 , with a peel-off paper strip 34 normally provided to cover and protect the adhesive layer 32 , until the sensor set 10 is ready for use.
- the mounting base 30 includes upper and lower layers 36 and 38 , with the connection portion 24 of the flexible sensor 12 being sandwiched between the layers 36 and 38 .
- the connection portion 24 has a forward section joined to the active sensing portion 18 of the sensor 12 , which is folded angularly to extend downwardly through a bore 40 formed in the lower base layer 38 .
- the adhesive layer 32 includes an anti-bacterial agent to reduce the chance of infection; however, alternative embodiments may omit the agent.
- the mounting base is generally rectangular, but alternative embodiments may be other shapes, such as circular, oval, hour-glass, butterfly, irregular, or the like.
- the insertion needle 14 is adapted for slide-fit reception through a needle port 42 formed in the upper base layer 36 and further through the lower bore 40 in the lower base layer 38 .
- the insertion needle 14 has a sharpened tip 44 and an open slot 46 which extends longitudinally from the tip 44 at the underside of the needle 14 to a position at least within the bore 40 in the lower base layer 36 .
- the insertion needle 14 may have a full round cross-sectional shape, and may be closed off at a rear end of the needle 14 . Further description of the needle 14 and the sensor set 10 are found in U.S. Pat. No. 5,586,553, entitled “TRANSCUTANEOUS SENSOR INSERTION SET” and co-pending U.S. patent application Ser. No. 08/871,831, entitled “DISPOSABLE SENSOR INSERTION ASSEMBLY,” which are herein incorporated by reference.
- the cannula 16 is best shown in FIGS. 6 and 7 , and includes a first portion 48 having partly-circular cross-section to fit within the insertion needle 14 that extends downwardly from the mounting base 30 .
- the first portion 48 may be formed with a solid core; rather than a hollow core.
- the cannula 16 is constructed from a suitable medical grade plastic or elastomer, such as polytetrafluoroethylene, silicone, or the like.
- the cannula 16 also defines an open lumen 50 in a second portion 52 for receiving, protecting and guideably supporting the sensing portion 18 of the sensor 12 .
- the cannula 16 has one end fitted into the bore 40 formed in the lower layer 38 of the mounting base 30 , and the cannula 16 is secured to the mounting base 30 by a suitable adhesive, ultrasonic welding, snap fit or other selected attachment method. From the mounting base 30 , the cannula 16 extends angularly downwardly with the first portion 48 nested within the insertion needle 14 , and terminates before the needle tip 44 . At least one window 22 is formed in the lumen 50 near the implanted end 54 , in general alignment with the sensor electrodes 20 , to permit direct electrode exposure to the user's bodily fluid when the sensor 12 is subcutaneously placed. Alternatively, a membrane can cover this area with a porosity that controls rapid diffusion of glucose through the membrane.
- the telemetered characteristic monitor transmitter 100 is coupled to a sensor set 10 by a cable 102 through a connector 104 that is electrically coupled to the connector block 28 of the connector portion 24 of the sensor set 10 .
- the cable 102 may be omitted, and the telemetered characteristic monitor transmitter 100 may include an appropriate connector (not shown) for direct connection to the connector portion 24 of the sensor set 10 or the sensor set 10 may be modified to have the connector portion 24 positioned at a different location, such as for example, on the top of the sensor set 10 to facilitate placement of the telemetered characteristic monitor transmitter over the subcutaneous sensor set 10 .
- the cable 102 and the connector 104 may be formed as add-on adapters to fit different types of connectors on different types or kinds of sensor sets. The use of adapters would facilitate adaptation of the telemetered characteristic monitor transmitter 100 to work with a wide variety of sensor systems.
- the telemetered characteristic monitor transmitter 100 may omit the cable 102 and connector 104 and is instead optically couple with an implanted sensor, in the subcutaneous, dermal, sub-dermal, inter-peritoneal or peritoneal tissue, to interrogate the implanted sensor using visible, and/or IR frequencies, either transmitting to and receiving a signal from the implanted sensor or receiving a signal from the implanted sensor.
- the telemetered characteristic monitor 100 (also known as Potentiostat Transmitter Device) includes a housing 106 that supports a printed circuit board 108 , batteries 110 , antenna 112 , and the cable 102 with the connector 104 .
- the housing 106 is formed from an upper case 114 and a lower case 116 that are sealed with an ultrasonic weld to form a waterproof (or resistant) seal to permit cleaning by immersion (or swabbing) with water, cleaners, alcohol or the like.
- the upper and lower case 114 and 116 are formed from a medical grade plastic.
- the upper case 114 and lower case 116 may be connected together by other methods, such as snap fits, sealing rings, RTV (silicone sealant) and bonded together, or the like, or formed from other materials, such as metal, composites, ceramics, or the like.
- the separate case can be eliminated and the assembly is simply potted in epoxy or other moldable materials that is compatible with the electronics and reasonably moisture resistant.
- the housing 106 is disk or oval shaped. However, in alternative embodiments, other shapes, such as hour glass, rectangular or the like, may be used.
- Preferred embodiments of the housing 106 are sized in the range of 2.0 square inches by 0.35 inches thick to minimize weight, discomfort and the noticeability of the telemetered characteristic monitor transmitter 100 on the body of the user. However, larger or smaller sizes, such as 1.0 square inches and 0.25 inches thick or less, and 3.0 square inches and 0.5 inches thick or more, may be used. Also, the housing may simply be formed from potted epoxy, or other material, especially if the battery life relative to the device cost is long enough, or if the device is rechargeable.
- the lower case 116 may have an underside surface coated with a suitable pressure sensitive adhesive layer 118 , with a peel-off paper strip 120 normally provided to cover and protect the adhesive layer 118 , until the sensor set telemetered characteristic monitor transmitter 100 is ready for use.
- the adhesive layer 118 includes an anti-bacterial agent to reduce the chance of infection; however, alternative embodiments may omit the agent.
- the adhesive layer 118 may be omitted and the telemetered characteristic monitor transmitter 100 is secured to the body by other methods, such as an adhesive overdressing, straps, belts, clips or the like.
- the cable 102 and connector 104 are similar to (but not necessarily identical to) shortened versions of a cable and connector that are used to provide a standard wired connection between the sensor set 10 and the characteristic monitor 200 .
- the cable 102 should also include a flexible strain relief portion (not shown) to minimize strain on the sensor set 10 and prevent movement of the inserted sensor 12 , which can lead to discomfort or dislodging of the sensor set 10 .
- the flexible strain relief portion is intended to minimize sensor artifacts generated by user movements that might cause the sensing area of the sensor set 10 to move relative to the body tissues in contact with the sensing area of the sensor set 10 .
- the printed circuit board 108 of the telemetered characteristic monitor transmitter 100 includes a sensor interface 122 , processing electronics 124 , timers 126 , and data formatting electronics 128 , as shown in FIG. 8 ( b ).
- the sensor interface 122 , processing electronics 124 , timers 126 , and data formatting electronics 128 are formed as separate semiconductor chips; however, alternative embodiments may combine the various semiconductor chips into a single customized semiconductor chip.
- the sensor interface 122 connects with the cable 102 that is connected with the sensor set 10 . In preferred embodiments, the sensor interface is permanently connected to the cable 102 .
- the sensor interface 122 may be configured in the form of a jack to accept different types of cables that provide adaptability of the telemetered characteristic monitor transmitter 100 to work with different types of sensors and/or sensors placed in different locations of the user's body.
- the printed circuit board 108 , and associated electronics are capable of operating in a temperature range of 0° C. and 50° C. However, larger or smaller temperature ranges may be used.
- the battery assembly will use a weld tab design to connect power to the system.
- it can use three series silver oxide 357 battery cells 110 , or the like.
- different battery chemistries may be used, such as lithium based chemistries, alkaline batteries, nickel metalhydride, or the like, and different numbers of batteries can be used.
- the sensor interface 122 will include circuitry and/or a mechanism for detecting connection to the sensor set 10 . This would provide the capability to save power and to more quickly and efficiently start initialization of the sensor set 10 .
- the batteries 110 have a life in the range of 3 months to 2 years, and provide a low battery warning alarm.
- Alternative embodiments may provide longer or shorter battery lifetimes, or include a power port, solar cells or an inductive coil to permit recharging of rechargeable batteries in the telemetered characteristic monitor transmitter 100 .
- the telemetered characteristic monitor transmitter 100 provides power, through the cable 102 and cable connector 104 to the sensor set 10 .
- the power is used to monitor and drive the sensor set 10 .
- the power connection is also used to speed the initialization of the sensor 12 , when it is first placed under the skin.
- the use of an initialization process can reduce the time for sensor 12 stabilization from several hours to an hour or less.
- the preferred initialization procedure uses a two step process. First, a high voltage (preferably between 1.0-1.2 volts—although other voltages may be used) is applied to the sensor 12 for 1 to 2 minutes (although different time periods may be used) to allow the sensor 12 to stabilize.
- a lower voltage (preferably between 0.5-0.6 volts—although other voltages may be used) is applied for the remainder of the initialization process (typically 58 minutes or less).
- a lower voltage preferably between 0.5-0.6 volts—although other voltages may be used
- Other embodiments may omit the initialization/stabilization process, if not required by the sensor or if timing is not a factor.
- a reading may be transmitted from the sensor set 10 and the telemetered characteristic monitor transmitter 100 to the characteristic monitor 200 , and then the user will input a calibrating glucose reading into characteristic monitor 200 .
- a fluid containing a known value of glucose may be injected into the site around the sensor set 10 , and then the reading is sent to the characteristic monitor 200 and the user inputs the known concentration value, presses a button (not shown) or otherwise instructs the monitor to calibrate using the known value.
- the telemetered characteristic monitor transmitter 100 checks to determine if the sensor set 10 is still connected. If the sensor set 10 is no longer connected, the telemetered characteristic monitor transmitter 100 will abort the stabilization process and sound an alarm (or send a signal to the characteristic monitor 200 to sound an alarm).
- the transmissions (or telemetry) of the telemetered characteristic monitor transmitter 100 will contain at least the following information: a unique ID code that uniquely identifies each telemetered characteristic monitor transmitter 100 , a sensor characteristic data signal representative of the measured characteristic value (e.g., glucose or the like) from the sensor 18 of the subcutaneous sensor set 10 , a counter electrode voltage, a low battery flag, and error detection bits (such as CRC).
- FIG. 9 and Table 1 illustrate a preferred message format for the telemetry of the telemetered characteristic monitor transmitter 100 .
- different message protocols and structures may be used. TABLE 1 Message format 1.
- Message Type: 4 bits (1010 transmitter 100, 15 others for pump/ppc protocol)
- CRC 8 bits Total 56 bits(.times.
- Preferred embodiments utilize a time-slicing transmission protocol.
- Use of the time slicing protocol facilitates the use of multiple signals on the same frequency bands or to the same receiver from multiple transmitters.
- the time-slicing may also be used to obviate the need for a receiver in the telemetered characteristic monitor transmitter 100 .
- the use of intermittent transmission reduces the amount of power required to operate the transmitter 100 and to extend the life of the device. It also saves power in the characteristic monitor 200 by reducing the amount of time the characteristic monitor 200 must spend in the receive mode.
- the telemetered characteristic monitor transmitter 100 when the telemetered characteristic monitor transmitter 100 is connected to the sensor set 10 , it detects the connection and is activated. Next, if desired or necessary, the telemetered characteristic monitor transmitter 100 initializes the sensor 12 of the sensor set 10 . After (or in some cases during) initialization, the telemetered characteristic monitor transmitter 100 sends out a message of between 100-150 ms length every 5 minutes. Although other timing intervals ranging from 1 second to 30 minutes may be used.
- the message is transmitted in a pseudo-randomly selected time window within the 128 seconds following the 5 minute interval.
- the telemetered characteristic transmitter 100 utilizes its own unique ID as a random-seed to set up a table of transmission time windows that defines the order in which the telemetered characteristic monitor 100 will transmit a message following the 5 minute interval. The order is repeated after the table is set-up. Included in the message sent will be the message count number, which indicates where in the sequence of time windows the telemetered characteristic monitor transmitter is currently transmitting.
- the characteristic monitor 200 uses the unique ID code of the telemetered characteristic monitor transmitter 100 to set up a corresponding table in the characteristic monitor 200 and the received message count to synchronize the characteristic monitor 200 with the current position in the table being used by the telemetered characteristic monitor transmitter 100 to predict the next time window to be used.
- the use of pseudo-random time windows prevents multiple transmitters from continuously interfering with other transmitting devices that are temporarily, or inadvertently, synchronized with the telemetered characteristic monitor transmitter 100 .
- the characteristic monitor 200 acquires the transmitted message, and determines the time window in which the characteristic monitor 200 must be in a receive mode to acquire the next message.
- the characteristic monitor 200 then places itself in the receive mode every 5 minutes (although other timing intervals from 1 second to 30 minutes may be used) to receive the next message and data from the telemetered characteristic monitor transmitter 100 at the next predicted time window.
- the characteristic monitor 200 needs only be in the receive mode for 1 second (i.e., 1 time window); rather than 128 seconds (128 time windows).
- the characteristic monitor 200 may not use the unique ID and the message count and may remain in the receive mode during the entire period (e.g., for 128 time windows) during which a transmission is possible.
- other embodiments may cause the characteristic monitor 200 to enter the receive mode 1 time window ahead and stay on for 1 time window longer to maximize the likelihood of receiving the next transmission.
- the telemetered characteristic monitor transmitter 100 and/or characteristic monitor 200 may utilize other methods or numbers to determine when transmission time windows are selected.
- Alternative message time-slicing transmission parameters such as message length, number of time windows, frequency of transmissions, or the like, that are larger or smaller than those described above, may also be used.
- Preferred embodiments transmit the data and/or information at a data rate between 1000 Hz to 4000 Hz modulated onto a high frequency carrier wave.
- alternative embodiments may use smaller or larger transmission rates, with the rate being selected based on user environment, power requirements, interference issues, redundancy criteria, or the like.
- the characteristic monitor 200 may continue to attempt to receive the next message by entering the receive mode at the next anticipated transmission time or may expand to enter the receive mode to cover all time windows until the next message is received.
- the telemetered characteristic monitor transmitter 100 may transmit at one time window for all cases (typically the choice of window may be randomly selected at connection of a sensor set 10 or set at the factory). This permits the characteristic monitor 200 to be in the receive mode for even shorter periods of time (i.e., approximately 200 ms to bracket the telemetered characteristic monitor transmitter 100 transmission instead of the 128 seconds (or 1 second if able to predict the next time window) needed to bracket 128 windows) to conserve power in the characteristic monitor 200 .
- the characteristic monitor 200 will be in a non-receive mode for 299.8 seconds and in a receive mode for 200 ms.
- the non-receive mode and receive mode periods will be determined by the message length and expected frequency of transmission. It is also noted that in a system where the receiver must cover a range of time windows, the receiver may lock on to a particular range of time windows to permit the receiver being in the receive mode for shorter periods of time.
- the use of these transmission protocols obviates the need for a transmitter and receiver in both the telemetered characteristic monitor transmitter 100 and characteristic monitor 200 , which reduces costs, simplifies the system design, reduces power consumption and the like.
- alternative embodiments may include the capability for two-way communication, if desirable.
- the telemetered characteristic monitor transmitter 100 transmits continuously and the characteristic monitor 200 enters the receive mode when desired or required to determine a characteristic value, such as a glucose level or the like.
- the telemetered characteristic monitor transmitter 100 will have the ability to uniquely identify itself to the characteristic monitor 200 .
- the telemetered characteristic monitor transmitter 100 will have an operating range to the characteristic monitor 200 of at least 10 feet. In alternative embodiments, larger or smaller ranges may be used, with the selection being dependent on the environment in which the telemetered characteristic monitor transmitter 100 will be used, the size and needs of the user, power requirements, and the like.
- the telemetered characteristic monitor transmitter 100 can be combined with a sensor set 10 as a single unit. This would be particularly well adapted where batteries and the transmitter can be made cheaply enough to facilitate changing the transmitter 100 with each new sensor set 10 .
- the characteristic monitor 200 includes a telemetry receiver 202 , a Telemetry Decoder (TD) 204 and a host micro-controller (Host) 206 for communication with the telemetered characteristic monitor transmitter 100 .
- the TD 204 is used to decode a received telemetry signal from the transmitter device and forward the decoded signal to the Host 206 .
- the Host 206 is a microprocessor for data reduction, data storage, user interface, or the like.
- the telemetry receiver 202 receives the characteristic data (e.g., glucose data) from the telemetered characteristic monitor transmitter, and passes it to the TD 204 for decoding and formatting.
- characteristic data e.g., glucose data
- the data is transferred to the Host 206 for processing, where calibration information, based upon user entered characteristic readings (e.g., blood glucose readings), is performed to determine the corresponding characteristic level (e.g., glucose level) from measurement in the characteristic data (e.g., glucose data).
- the Host 206 also provides for storage of historical characteristic data, and can download the data to a personal computer, lap-top, or the like, via a com-station, wireless connection, modem or the like.
- the counter electrode voltage is included in the message from the telemetered characteristic monitor transmitter 100 and is used as a diagnostic signal.
- the raw current signal values generally range from 0 to 999, which represents sensor electrode current in the range between 0.0 to 99.9 nanoAmperes, and is converted to characteristic values, such as glucose values in the range of 40 to 400 mg/dl. However, in alternative embodiments, larger or smaller ranges may be used.
- characteristic values such as glucose values in the range of 40 to 400 mg/dl. However, in alternative embodiments, larger or smaller ranges may be used.
- the values are then displayed on the characteristic monitor 200 or stored in data memory for later recall.
- the characteristic monitor 200 also includes circuitry in the TD 204 to uniquely mate it to an identified telemetered characteristic monitor transmitter 100 .
- the identification number of the telemetered characteristic monitor transmitter 100 is entered manually by the user using keys located on the characteristic monitor 200 .
- the characteristic monitor 200 includes a “learn ID” mode.
- the “learn ID” mode is best suited for the home environment, since multiple telemetered characteristic monitor transmitters 100 , typically encountered in a hospital setting, are less likely to cause confusion in the characteristic monitor 200 when it attempts to learn an ID code.
- the characteristic monitor 200 will include the ability to learn or be reprogrammed to work with a different (or replacement) telemetered characteristic monitor transmitter 100 .
- the preferred operating distance is at least 10 feet. In alternative embodiments, larger or smaller ranges may be used, with the selection being dependent on the environment in which the telemetered characteristic monitor transmitter 100 will be used, the size and needs of the user, power requirements, and the like. Furthermore, if the characteristic monitor 200 does not receive a transmission from the identified telemetered characteristic monitor transmitter 100 after a certain period of time (e.g., one or more missed transmissions), an alarm will be sounded.
- the characteristic monitor 200 utilizes a two processor system, in which the Host 206 is the master processor and the TD 204 is a slave processor dedicated to telemetry processing.
- a first communication protocol between the Host 206 and the TD 204 is shown in FIG. 11 .
- the first protocol uses a serial peripheral interface (SPI) 208 and two control lines 210 and 212 ; one control line (chip select—CSPIC) 210 is used by Host 206 to wake up the TD 204 to initiate telemetry receiving task; and the other control line (data ready—DR) 212 is used by the TD 204 to indicate to the Host 206 that the telemetry data from the telemetered characteristic monitor transmitter has been received and is ready to be transferred to the HCO 8 206 .
- the Host 206 Upon receiving data through the SPI 208 , the Host 206 sends an acknowledgment through the SPI 208 to the TD 204 .
- fixed length data blocks are used. However, in alternative embodiments, variable length data blocks may be used.
- the Host 206 may pull the Chip Select (CSPIC) 210 high at any time to abort the telemetry data transfer from the TD 204 .
- an additional line (not shown) may be used to reset the TD 204 .
- FIG. 12 shows a second, more complex, alternative protocol that is used by the Host 206 and the TD 204 .
- the TD 204 and Host 206 may be combined together in a single semiconductor chip to obviate the need for dual processors and to reduce the space needed for the electronics.
- the functions of the TD 204 and Host 206 may be allocated differently between one or more processors.
- the characteristic monitor may include a display 214 that is used to display the results of the measurement received from the sensor 18 in the sensor set 10 via the telemetered characteristic monitor transmitter 100 .
- the results and information displayed includes, but is not limited to, trending information of the characteristic (e.g., rate of change of glucose), graphs of historical data, average characteristic levels (e.g., glucose), or the like. Alternative embodiments include the ability to scroll through the data.
- the display 214 may also be used with buttons (not shown) on the characteristic monitor to program or update data in the characteristic monitor 200 . It is noted that the typical user can be expected to have somewhat diminished visual and tactile abilities due to complications from diabetes or other conditions.
- buttons should be configured and adapted to the needs of a user with diminished visual and tactile abilities.
- the value can be conveyed to the user by audio signals, such as beeps, speech or the like.
- Still further embodiments may use a touch screen instead of (or in some cases addition to) buttons to facilitate water proofing and to ease changes in the characteristic monitor 200 hardware to accommodate improvements or upgrades.
- the characteristic monitor uses batteries (not shown) to provide power to the characteristic monitor.
- batteries for example, a plurality of silver oxide batteries may be used.
- different battery chemistries may be used, such as lithium based, alkaline based, nickel metalhydride, or the like, and different numbers of batteries can be used.
- the batteries have a life in the range of 1 month to 2 years, and provide a low battery warning alarm.
- Alternative embodiments may provide longer or shorter battery lifetimes, or include a power port, solar cells or an induction coil to permit recharging of rechargeable batteries in the characteristic monitor 200 .
- the batteries are not replaceable to facilitate waterproofing the housing 106 .
- the characteristic monitor 200 may be replaced by a different device.
- the telemetered characteristic monitor transmitter 100 communicates with an RF programmer (not shown) that is also used to program and obtain data from an infusion pump or the like.
- the RF programmer may also be used to update and program the transmitter 100 , if the transmitter 100 includes a receiver for remote programming, calibration or data receipt.
- the RF programmer can be used to store data obtained from the sensor 18 and then provide it to either an infusion pump, characteristic monitor, computer or the like for analysis.
- the transmitter 100 may transmit the data to a medication delivery device, such as an infusion pump or the like, as part of a closed loop system.
- the transmitter 100 would include a transmitter to receive updates or requests for additional sensor data.
- An example of one type of RF programmer can be found in U.S. patent application Ser. No. 60/096,994 filed Aug. 18, 1998 and is entitled “INFUSION DEVICE WITH REMOTE PROGRAMMING, CARBOHYDRATE CALCULATOR AND/OR VIBRATION ALARM CAPABILITIES,” or U.S. patent application Ser. No. 09/334,858 filed Jun. 17, 1999 and is entitled “EXTERNAL INFUSION DEVICE WITH REMOTE PROGRAMMING, BOLUS ESTIMATOR AND/OR VIBRATION ALARM CAPABILITIES,” both of which are herein incorporated by reference.
- the telemetered characteristic monitor transmitter can include a modem, or the like, to transfer data to and from a healthcare professional. Further embodiments, can receive updated programming or instructions via a modem connection.
- the sensor set 10 permits quick and easy subcutaneous placement of the active sensing portion 18 at a selected site within the body of the user. More specifically, the peel-off strip 34 (see FIG. 1 ) is removed from the mounting base 30 , at which time the mounting base 30 can be pressed onto and seated upon the patient's skin. During this step, the insertion needle 14 pierces the user's skin and carries the protective cannula 16 with the sensing portion 18 to the appropriate subcutaneous placement site. During insertion, the cannula 16 provides a stable support and guide structure to carry the flexible sensor 12 to the desired placement site.
- the insertion needle 14 When the sensor 12 is subcutaneously placed, with the mounting base 30 seated upon the user's skin, the insertion needle 14 can be slidably withdrawn from the user. During this withdrawal step, the insertion needle 14 slides over the first portion 48 of the protective cannula 16 , leaving the sensing portion 18 with electrodes 20 directly exposed to the user's body fluids via the window 22 .
- Further description of the needle 14 and the sensor set 10 are found in U.S. Pat. No. 5,586,553, entitled “TRANSCUTANEOUS SENSOR INSERTION SET”; co-pending U.S. patent application Ser. No. 08/871,831, entitled “DISPOSABLE SENSOR INSERTION ASSEMBLY”; and co-pending U.S. patent application Ser. No.
- connection portion 24 of the sensor set 10 connects to the cable 102 of the telemetered characteristic monitor transmitter 100 , so that the sensor 12 can then be used over a prolonged period of time for taking blood chemistry or other characteristic readings, such as blood glucose readings in a diabetic patient.
- Preferred embodiments of the telemetered characteristic monitor transmitter 100 detect the connection of the sensor 12 to activate the telemetered characteristic monitor transmitter 100 .
- connection of the sensor 12 may activate a switch or close a circuit to turn the telemetered characteristic monitor transmitter 100 on.
- the use of a connection detection provides the capability to maximize the battery and shelf life of the telemetered characteristic monitor transmitter prior to use, such as during manufacturing, test and storage.
- Alternative embodiments of the present invention may utilize an on/off switch (or button) on the telemetered characteristic monitor transmitter 100 .
- the transmitter 100 is then affixed to the user's body with an adhesive overdressing.
- the peel-off strip 34 (see FIG. 1 ) is removed from the lower case 116 , at which time the lower case 116 can be pressed onto and seated upon the patient's skin.
- the user then activates the transmitter 100 , or the transmitter is activated by detection of the connection to the sensor 12 of the sensor set 10 .
- the act of connecting (and disconnecting) the sensor 12 activates (and deactivates) the telemetered characteristic monitor 100 , and no other interface is required.
- the sensor set 10 is connected to the transmitter 100 prior to placement of the sensor 12 to avoid possible movement or dislodging of the sensor 12 during attachment of the transmitter 100 .
- the transmitter may be attached to the user prior to attaching the sensor set 10 to the transmitter 100 .
- the user then programs the characteristic monitor (or it learns) the identification of the transmitter 100 and verifies proper operation and calibration of the transmitter 100 .
- the characteristic monitor 200 and transmitter 100 then work to transmit and receive sensor data to determine characteristic levels.
- the sensor 12 is automatically initialized and readings are periodically transmitted, together with other information, to the characteristic monitor 200 .
- a sensor set 10 After a sensor set 10 has been used for a period of time, it is replaced. The user will disconnect the sensor set 10 from the cable 102 of the telemetered characteristic monitor transmitter 100 . In preferred embodiments, the telemetered characteristic monitor transmitter 100 is removed and posited adjacent the new site for a new sensor set 10 . In alternative embodiments, the user does not need to remove the transmitter 100 . A new sensor set 10 and sensor 12 are attached to the transmitter 100 and connected to the user's body. Monitoring then continues, as with the previous sensor 12 . If the user must replace the telemetered characteristic monitor transmitter 100 , the user disconnects the transmitter 100 from the sensor set 10 and the user's body. The user then connects a new transmitter 100 , and reprograms the characteristic monitor (or learns) to work with the new transmitter 100 . Monitoring then continues, as with the previous sensor 12 .
- Additional embodiments of the present invention may include a vibrator alarm (or optional indicator such as an L.E.D.) in either or both the telemetered characteristic monitor transmitter 100 and the characteristic monitor 200 to provide a tactile (vibration) alarm to the user, such as sensor set malfunction, improper connection, low battery, missed message, bad data, transmitter interference, or the like.
- a vibration alarm provides additional reminders to an audio alarm, which could be important with someone suffering an acute reaction, or to have non-audio alarms to preserve and conceal the presence of the telemetered characteristic monitor system 1 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Optics & Photonics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Emergency Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Selective Calling Equipment (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Geophysics And Detection Of Objects (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
A telemetered characteristic monitor system includes a remotely located data receiving device, a sensor for producing signal indicative of a characteristic of a user, and a transmitter device. The transmitter device includes a housing, a sensor connector, a processor, and a transmitter. The transmitter receives the signals from the sensor and wirelessly transmits the processed signals to the remotely located data receiving device. The processor coupled to the sensor processes the signals from the sensor for transmission to the remotely located data receiving device. The data receiving device may be a characteristic monitor, a data receiver that provides data to another device, an RF programmer for a medical device, a medication delivery device (such as an infusion pump), or the like.
Description
- This application is a continuation of U.S. patent application Ser. No. 11/225,790, filed Sep. 12, 2005, which is a continuation of U.S. patent application Ser. No. 10/898,589, filed on Jul. 23, 2004 and issued as U.S. Pat. No. 7,098,803 on Aug. 29, 2006, which is a continuation of U.S. patent application Ser. No. 09/465,715, filed on Dec. 17, 1999 and issued as U.S. Pat. No. 6,809,653 on Oct. 26, 2005, which is a continuation of U.S. patent application Ser. No. 09/377,472, filed on Aug. 19, 1999 and later abandoned, which claimed priority from U.S. Provisional Application Ser. No. 60/103,812, filed on Oct. 8, 1998, each of which is herein incorporated by reference.
- This invention relates to telemetered subcutaneous sensor devices and, in particular embodiments, to devices and methods for wireless communication between an implantable subcutaneous sensor set at a selected insertion site within the body of a user and a remotely located characteristic monitor.
- Over the years, a variety of implantable electrochemical sensors have been developed for detecting and/or quantifying specific agents or compositions in a patient's blood. For instance, glucose sensors have been developed for use in obtaining an indication of blood glucose levels in a diabetic patient. Such readings are useful in monitoring and/or adjusting a treatment regimen which typically includes the regular administration of insulin to the patient. Thus, blood glucose readings improve medical therapies with semi-automated medication infusion pumps of the external type, as generally described in U.S. Pat. Nos. 4,562,751; 4,678,408; and 4,685,903; or automated implantable medication infusion pumps, as generally described in U.S. Pat. No. 4,573,994, which are herein incorporated by reference.
- Generally, small and flexible electrochemical sensors can be used to obtain periodic readings over an extended period of time. In one form, flexible subcutaneous sensors are constructed in accordance with thin film mask techniques in which an elongated sensor includes thin film conductive elements encased between flexible insulative layers of polyimide sheets or similar material. Such thin film sensors typically include a plurality of exposed electrodes at one end for subcutaneous placement with a user's interstitial fluid, blood, or the like, and a corresponding exposed plurality of conductive contacts at another end for convenient external electrical connection with a suitable monitoring device through a wire or cable. Typical thin film sensors are described in commonly assigned U.S. Pat. Nos. 5,390,671; 5,391,250; 5,482,473; and 5,586,553 which are incorporated by reference herein. See also U.S. Pat. No. 5,299,571.
- Drawbacks to the use of implantable sensors arise from the use of a wired connection between the implantable sensor set and the monitor. The use of the wire or cable is an additional inconvenience to users that already utilize an external infusion pump that includes an infusion insertion set and tube to infuse the medication. Also, the preferred site for some sensing device may be inconvenient for connection by wire to a characteristic monitor. For implantable pumps, the wire or cable negates the very benefit of having an internal device without external wires or cables. For
Type 2 diabetics, who do not necessarily need or use an infusion pump, the use of a cable is seen as an inconvenience that may inhibit use of the device. In addition, the use of a wire or cable limits a user's ability to position the monitor, since it can be placed no further away than the ultimate length of the wire or cable. Thus, the user must normally wear the monitor, which can be problematic. For example, removal of the monitor for sleeping can be difficult, since a user would tend to become “tangled” in the wire or cable, between the sensor and the monitor, during the normal tossing and turning that occurs during sleep. Furthermore, the more connections the user must deal with (e.g., infusion pump and catheter and/or monitor with wire to sensor), the more complicated it is to use the devices, and the less likely the user will maintain compliance with the medical regimen due to perceived and actual difficulties with all of the wires and cables. - It is an object of an embodiment of the present invention to provide an improved telemetered implantable sensor set (such as a subcutaneous or percutaneous sensor) and monitor connection device, which obviates for practical purposes, the above mentioned limitations.
- According to an embodiment of the invention, a telemetered characteristic monitor system includes a remotely located data receiving device, a sensor for producing signal indicative of a characteristic of a user, and a transmitter device. In preferred embodiments, the transmitter device includes a housing, a sensor connector, a processor, and a transmitter. A potentiostat within the transmitter device may be coupled to the sensor connector and applies power to the sensor. The sensor connector receives the produced signals from the sensor. The processor is coupled to the sensor connector and processes the signals from the sensor for delivery to the remotely located data receiving device. The transmitter is coupled to the processor for wirelessly transmitting the processed signals to the remotely located data receiving device. In preferred embodiments, the data receiving device is a characteristic monitor. However, in other embodiments, the data receiving device is a data receiver that provides data to another device, an RF programmer, a medication delivery device (such as an infusion pump), or the like.
- In particular embodiments, the transmitter of the transmitter device transmits the processed signals by radio frequencies. In other embodiments, the sensor may be implanted in and/or through subcutaneous, dermal, sub-dermal, intra-peritoneal or peritoneal tissue, and the sensor connector of the transmitter device includes a cable that is connected to the sensor. Also, the implantable sensor can be configured for a wired connection to a characteristic monitor, and the sensor connector of the transmitter device is formed to connect to the configured implantable sensor. Still further embodiments of the transmitter device include a receiver to receive data and instructions from the characteristic monitor, or the like.
- Embodiments of the transmitter device (when used with a subcutaneous or percutaneous sensor) may include a bio-compatible adhesive to secure the housing to a skin surface of the user. Preferably, the housing of the transmitter device is less than about 3.0 inches in diameter by 0.5 inches thick. In addition, the housing is resistant to fluids when immersed in a fluid, operable in a temperature range of 0° C. to 50° C., and has an operable life of at least 3 months. If the sensor is fully implanted, the transmitter that is connected to the sensor may be secured by sutures, sewing rings, or the like.
- Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, various features of embodiments of the invention.
- A detailed description of embodiments of the invention will be made with reference to the accompanying drawings, wherein like numerals designate corresponding parts in the several figures.
-
FIG. 1 is a is a perspective view illustrating a subcutaneous sensor insertion set and telemetered characteristic monitor transmitter device embodying the novel features of the invention; -
FIG. 2 is an enlarged longitudinal vertical section taken generally on the line 2-2 ofFIG. 1 ; -
FIG. 3 is an enlarged longitudinal sectional of a slotted insertion needle used in the insertion set ofFIGS. 1 and 2 ; -
FIG. 4 is an enlarged transverse section taken generally on the line 4-4 ofFIG. 3 ; -
FIG. 5 is an enlarged transverse section taken generally on the line 5-5 ofFIG. 3 ; -
FIG. 6 is an enlarged fragmented sectional view corresponding generally with theencircled region 6 ofFIG. 2 ; and -
FIG. 7 is an enlarged transverse section taken generally on the line 7-7 ofFIG. 2 . -
FIG. 8 (a) is a top plan and partial cut-away view of the telemetered characteristic monitor transmitter device in accordance with the embodiment shown inFIG. 1 . -
FIG. 8 (b) is a simplified block diagram of the printed circuit board of the telemetered characteristic monitor transmitter device in accordance with the embodiments shown inFIG. 1 . -
FIG. 9 is a timing diagram illustrating an embodiment of a message and timing format used by the telemetered characteristic monitor transmitter device shown inFIG. 1 . -
FIG. 10 is a simplified block diagram of a characteristic monitor used in accordance with an embodiment of the present invention. -
FIG. 11 is a timing diagram for the characteristic monitor shown inFIG. 10 . -
FIG. 12 is another timing diagram for the characteristic monitor shown inFIG. 10 . -
FIG. 13 is a simplified block diagram of a telemetered characteristic monitor transmitter and sensor set system in accordance with another embodiment of the present invention. -
FIG. 14 is a simplified block diagram of a telemetered characteristic monitor transmitter and characteristic monitor system in accordance with still another embodiment of the present invention. - As shown in the drawings for purposes of illustration, the invention is embodied in a telemetered characteristic monitor transmitter coupled to a sensor set, that may be implanted in and/or through subcutaneous, dermal, sub-dermal, inter-peritoneal or peritoneal tissue, that transmits data from the sensor set to the characteristic monitor for determining body characteristics. In preferred embodiments of the present invention, the sensor set and monitor are for determining glucose levels in the blood and/or body fluids of the user without the use of, or necessity of, a wire or cable connection between the transmitter and the monitor. However, it will be recognized that further embodiments of the invention may be used to determine the levels of other agents, characteristics or compositions, such as hormones, cholesterol, medication concentrations, pH, oxygen saturation, viral loads (e.g., HIV), or the like. In other embodiments, the sensor set may also include the capability to be programmed or calibrated using data received by the telemetered characteristic monitor transmitter device, or may be calibrated at the monitor device (or receiver). The telemetered characteristic monitor system is primarily adapted for use in subcutaneous human tissue. However, still further embodiments may be placed in other types of tissue, such as muscle, lymph, organ tissue, veins, arteries or the like, and used in animal tissue. Embodiments may provide sensor readings on an intermittent or continuous basis.
- The telemetered
characteristic monitor system 1, in accordance with a preferred embodiment of the present invention include a percutaneous sensor set 10, a telemetered characteristicmonitor transmitter device 100 and acharacteristic monitor 200. The percutaneous sensor set 10 utilizes an electrode-type sensor, as described in more detail below. However, in alternative embodiments, the system may use other types of sensors, such as chemical based, optical based or the like. In further alternative embodiments, the sensors may be of a type that is used on the external surface of the skin or placed below the skin layer of the user. Preferred embodiments of a surface mounted sensor would utilize interstitial fluid harvested from underneath the skin. The telemeteredcharacteristic monitor transmitter 100 generally includes the capability to transmit data. However, in alternative embodiments, the telemeteredcharacteristic monitor transmitter 100 may include a receiver, or the like, to facilitate two-way communication between the sensor set 10 and thecharacteristic monitor 200. Thecharacteristic monitor 200 utilizes the transmitted data to determine the characteristic reading. However, in alternative embodiments, thecharacteristic monitor 200 may be replaced with a data receiver, storage and/or transmitting device for later processing of the transmitted data or programming of the telemeteredcharacteristic monitor transmitter 100. - In addition, a relay or
repeater 4 may be used with a telemeteredcharacteristic monitor transmitter 100 and acharacteristic monitor 200 to increase the distance that the telemeteredcharacteristic monitor transmitter 100 can be used with thecharacteristic monitor 200, as shown inFIG. 13 . For example, therelay 4 could be used to provide information to parents of children using the telemeteredcharacteristic monitor transmitter 100 and the sensor set 10 from a distance. The information could be used when children are in another room during sleep or doing activities in a location remote from the parents. In further embodiments, therelay 4 can include the capability to sound an alarm. In addition, therelay 4 may be capable of providing telemeteredcharacteristic monitor transmitter 100 data from the sensor set 10, as well as other data, to a remotely located individual via a modem connected to therelay 4 for display on a monitor, pager or the like. The data may also be downloaded through a Communication-Station 8 to a remotely locatedcomputer 6 such as a PC, lap top, or the like, over communication lines, by modem or wireless connection, as shown inFIG. 14 . Also, some embodiments may omit theCommunication Station 8 and uses a direct modem or wireless connection to thecomputer 6. In further embodiments, the telemeteredcharacteristic monitor transmitter 100 transmits to an RF programmer, which acts as a relay, or shuttle, for data transmission between the sensor set 10 and a PC, laptop, Communication-station, a data processor, or the like. In further alternatives, the telemeteredcharacteristic monitor transmitter 100 may transmit an alarm to a remotely located device, such as a communication-station, modem or the like to summon help. In addition, further embodiments may include the capability for simultaneous monitoring of multiple sensors and/or include a sensor for multiple measurements. - Still further embodiments of the telemetered
characteristic monitor transmitter 100 may have and use an input port for direct (e.g., wired) connection to a programming or data readout device and/or be used for calibration of the sensor set 10. Preferably, any port would be water proof (or water resistant) or include a water proof, or water resistant, removable cover. - The purpose of the telemetered characteristic monitor system I (see
FIG. 2 ) is to provide for better treatment and control in an outpatient or a home use environment. For example, themonitor system 1 can provide indications of glucose levels, a hypoglycemia/hyperglycemia alert and outpatient diagnostics. It is also useful as an evaluation tool under a physician's supervision. - The
monitor system 1 also removes inconvenience by separating the monitor electronics into two separate devices; a telemeteredcharacteristic monitor transmitter 100, which attaches to the implantable sensor set 10; and a characteristic monitor 200 (or other receiver), which is carried like a pager. This provides several advantages over wire connected devices. For instance, the user can more easily conceal the presence of themonitor system 1, since a wire will not be visible (or cumbersome), within clothing. Such remote communication also provides greater convenience and flexibility in the placement of the sensor. It also makes it is easier to protect thecharacteristic monitor 200, which can be removed from the user's body during showers, exercise, sleep or the like. In addition, the use of multiple components (e.g.,transmitter 100 and characteristic monitor 200) facilitates upgrades or replacements, since one module or the other can be modified or replaced without requiring complete replacement of themonitor system 1. Further, the use of multiple components can improve the economics of manufacturing, since some components may require replacement on a more frequent basis, sizing requirements may be different for each module, there may be different assembly environment requirements, and modifications can be made without affecting the other components. - The telemetered
characteristic monitor transmitter 100 takes characteristic information, such as glucose data or the like, from the percutaneous sensor set 10 and transmits it via wireless telemetry to thecharacteristic monitor 200, which displays and logs the received glucose readings. Logged data can be downloaded from thecharacteristic monitor 200 to a personal computer, laptop, or the like, for detailed data analysis. In further embodiments, the telemeteredcharacteristic monitor system 1 may be used in a hospital environment or the like. Still further embodiments of the present invention may include one or more buttons (on the telemeteredcharacteristic monitor transmitter 100 or characteristic monitor 200) to record data and events for later analysis, correlation, or the like. In addition, the telemeteredcharacteristic monitor transmitter 100 may include a transmit on/off button for compliance with safety standards and regulations to temporarily suspend transmissions. Further buttons can include a sensor on/off button to conserve power and to assist in initializing the sensor set 10. The telemeteredcharacteristic monitor transmitter 100 andcharacteristic monitor 200 may also be combined with other medical devices to combine other patient data through a common data network and telemetry system. - Further embodiments of the percutaneous sensor set 10 would monitor the temperature of the sensor set 10, which can then be used to improve the calibration of the sensor. For instance, for a glucose sensor, the enzyme reaction activity may have a known temperature coefficient. The relationship between temperature and enzyme activity can be used to adjust the sensor values to more accurately reflect the actual characteristic levels. In addition to temperature measurements, the oxygen saturation level can be determined by measuring signals from the various electrodes of the sensor set 10. Once obtained, the oxygen saturation level may be used in calibration of the sensor set 10 due to changes in the oxygen saturation levels, and its effects on the chemical reactions in the sensor set 10. For instance, as the oxygen level goes lower the sensor sensitivity may be lowered. The oxygen level can be utilized in calibration of the sensor set 10 by adjusting for the changing oxygen saturation. In alternative embodiments, temperature measurements may be used in conjunction with other readings to determine the required sensor calibration.
- As shown in
FIGS. 1-7 , a percutaneous sensor set 10 is provided for subcutaneous placement of an active portion of a flexible sensor 12 (seeFIG. 2 ), or the like, at a selected site in the body of a user. The subcutaneous or percutaneous portion of the sensor set 10 includes a hollow, slottedinsertion needle 14, and acannula 16. Theneedle 14 is used to facilitate quick and easy subcutaneous placement of thecannula 16 at the subcutaneous insertion site. Inside thecannula 16 is asensing portion 18 of thesensor 12 to expose one ormore sensor electrodes 20 to the user's bodily fluids through awindow 22 formed in thecannula 16. After insertion, theinsertion needle 14 is withdrawn to leave thecannula 16 with the sensingportion 18 and thesensor electrodes 20 in place at the selected insertion site. - In preferred embodiments, the percutaneous sensor set 10 facilitates accurate placement of a flexible thin
film electrochemical sensor 12 of the type used for monitoring specific blood parameters representative of a user's condition. Preferably, thesensor 12 monitors glucose levels in the body, and may be used in conjunction with automated or semi-automated medication infusion pumps of the external or implantable type as described in U.S. Pat. No. 4,562,751; 4,678,408; 4,685,903 or 4,573,994, to control delivery of insulin to a diabetic patient. - Preferred embodiments of the flexible
electrochemical sensor 12 are constructed in accordance with thin film mask techniques to include elongated thin film conductors embedded or encased between layers of a selected insulative material such as polyimide film or sheet, and membranes. Thesensor electrodes 20 at a tip end of thesensing portion 18 are exposed through one of the insulative layers for direct contact with patient blood or other body fluids, when the sensing portion 18 (or active portion) of thesensor 12 is subcutaneously placed at an insertion site. The sensingportion 18 is joined to a connection portion 24 (seeFIG. 2 ) that terminates in conductive contact pads, or the like, which are also exposed through one of the insulative layers. In alternative embodiments, other types of implantable sensors, such as chemical based, optical based, or the like, may be used. - As is known in the art, and illustrated schematically in
FIG. 2 , theconnection portion 24 and the contact pads are generally adapted for a direct wired electrical connection to asuitable monitor 200 for monitoring a user's condition in response to signals derived from thesensor electrodes 20. Further description of flexible thin film sensors of this general type are be found in U.S. Pat. No. 5,391,250, entitled METHOD OF FABRICATING THIN FILM SENSORS, which is herein incorporated by reference. Theconnection portion 24 may be conveniently connected electrically to themonitor 200 or a telemeteredcharacteristic monitor transmitter 100 by a connector block 28 (or the like) as shown and described in U.S. Pat. No. 5,482,473, entitled FLEX CIRCUIT CONNECTOR, which is also herein incorporated by reference. Thus, in accordance with embodiments of the present invention, subcutaneous sensor sets 10 are configured or formed to work with either a wired or a wireless characteristic monitor system. - The proximal part of the
sensor 12 is mounted in a mountingbase 30 adapted for placement onto the skin of a user. As shown, the mountingbase 30 is a pad having an underside surface coated with a suitable pressure sensitiveadhesive layer 32, with a peel-offpaper strip 34 normally provided to cover and protect theadhesive layer 32, until the sensor set 10 is ready for use. As shown inFIGS. 1 and 2 , the mountingbase 30 includes upper andlower layers connection portion 24 of theflexible sensor 12 being sandwiched between thelayers connection portion 24 has a forward section joined to theactive sensing portion 18 of thesensor 12, which is folded angularly to extend downwardly through abore 40 formed in thelower base layer 38. In preferred embodiments, theadhesive layer 32 includes an anti-bacterial agent to reduce the chance of infection; however, alternative embodiments may omit the agent. In the illustrated embodiment, the mounting base is generally rectangular, but alternative embodiments may be other shapes, such as circular, oval, hour-glass, butterfly, irregular, or the like. - The
insertion needle 14 is adapted for slide-fit reception through aneedle port 42 formed in theupper base layer 36 and further through thelower bore 40 in thelower base layer 38. As shown, theinsertion needle 14 has a sharpenedtip 44 and anopen slot 46 which extends longitudinally from thetip 44 at the underside of theneedle 14 to a position at least within thebore 40 in thelower base layer 36. Above the mountingbase 30, theinsertion needle 14 may have a full round cross-sectional shape, and may be closed off at a rear end of theneedle 14. Further description of theneedle 14 and the sensor set 10 are found in U.S. Pat. No. 5,586,553, entitled “TRANSCUTANEOUS SENSOR INSERTION SET” and co-pending U.S. patent application Ser. No. 08/871,831, entitled “DISPOSABLE SENSOR INSERTION ASSEMBLY,” which are herein incorporated by reference. - The
cannula 16 is best shown inFIGS. 6 and 7 , and includes afirst portion 48 having partly-circular cross-section to fit within theinsertion needle 14 that extends downwardly from the mountingbase 30. In alternative embodiments, thefirst portion 48 may be formed with a solid core; rather than a hollow core. In preferred embodiments, thecannula 16 is constructed from a suitable medical grade plastic or elastomer, such as polytetrafluoroethylene, silicone, or the like. Thecannula 16 also defines anopen lumen 50 in asecond portion 52 for receiving, protecting and guideably supporting thesensing portion 18 of thesensor 12. Thecannula 16 has one end fitted into thebore 40 formed in thelower layer 38 of the mountingbase 30, and thecannula 16 is secured to the mountingbase 30 by a suitable adhesive, ultrasonic welding, snap fit or other selected attachment method. From the mountingbase 30, thecannula 16 extends angularly downwardly with thefirst portion 48 nested within theinsertion needle 14, and terminates before theneedle tip 44. At least onewindow 22 is formed in thelumen 50 near the implantedend 54, in general alignment with thesensor electrodes 20, to permit direct electrode exposure to the user's bodily fluid when thesensor 12 is subcutaneously placed. Alternatively, a membrane can cover this area with a porosity that controls rapid diffusion of glucose through the membrane. - As shown in
FIGS. 1, 2 and 8(a), the telemeteredcharacteristic monitor transmitter 100 is coupled to a sensor set 10 by acable 102 through aconnector 104 that is electrically coupled to theconnector block 28 of theconnector portion 24 of the sensor set 10. In alternative embodiments, thecable 102 may be omitted, and the telemeteredcharacteristic monitor transmitter 100 may include an appropriate connector (not shown) for direct connection to theconnector portion 24 of the sensor set 10 or the sensor set 10 may be modified to have theconnector portion 24 positioned at a different location, such as for example, on the top of the sensor set 10 to facilitate placement of the telemetered characteristic monitor transmitter over the subcutaneous sensor set 10. This would minimize the amount of skin surface covered or contacted by medical devices, and tend to minimize movement of the sensor set 10 relative to the telemeteredcharacteristic monitor transmitter 100. In further alternative embodiments, thecable 102 and theconnector 104 may be formed as add-on adapters to fit different types of connectors on different types or kinds of sensor sets. The use of adapters would facilitate adaptation of the telemeteredcharacteristic monitor transmitter 100 to work with a wide variety of sensor systems. In further embodiments, the telemeteredcharacteristic monitor transmitter 100 may omit thecable 102 andconnector 104 and is instead optically couple with an implanted sensor, in the subcutaneous, dermal, sub-dermal, inter-peritoneal or peritoneal tissue, to interrogate the implanted sensor using visible, and/or IR frequencies, either transmitting to and receiving a signal from the implanted sensor or receiving a signal from the implanted sensor. - The telemetered characteristic monitor 100 (also known as Potentiostat Transmitter Device) includes a
housing 106 that supports a printedcircuit board 108,batteries 110,antenna 112, and thecable 102 with theconnector 104. In preferred embodiments, thehousing 106 is formed from anupper case 114 and alower case 116 that are sealed with an ultrasonic weld to form a waterproof (or resistant) seal to permit cleaning by immersion (or swabbing) with water, cleaners, alcohol or the like. In preferred embodiments, the upper andlower case upper case 114 andlower case 116 may be connected together by other methods, such as snap fits, sealing rings, RTV (silicone sealant) and bonded together, or the like, or formed from other materials, such as metal, composites, ceramics, or the like. In other embodiments, the separate case can be eliminated and the assembly is simply potted in epoxy or other moldable materials that is compatible with the electronics and reasonably moisture resistant. In preferred embodiments, thehousing 106 is disk or oval shaped. However, in alternative embodiments, other shapes, such as hour glass, rectangular or the like, may be used. Preferred embodiments of thehousing 106 are sized in the range of 2.0 square inches by 0.35 inches thick to minimize weight, discomfort and the noticeability of the telemeteredcharacteristic monitor transmitter 100 on the body of the user. However, larger or smaller sizes, such as 1.0 square inches and 0.25 inches thick or less, and 3.0 square inches and 0.5 inches thick or more, may be used. Also, the housing may simply be formed from potted epoxy, or other material, especially if the battery life relative to the device cost is long enough, or if the device is rechargeable. - As shown, the
lower case 116 may have an underside surface coated with a suitable pressure sensitiveadhesive layer 118, with a peel-offpaper strip 120 normally provided to cover and protect theadhesive layer 118, until the sensor set telemeteredcharacteristic monitor transmitter 100 is ready for use. In preferred embodiments, theadhesive layer 118 includes an anti-bacterial agent to reduce the chance of infection; however, alternative embodiments may omit the agent. In further alternative embodiments, theadhesive layer 118 may be omitted and the telemeteredcharacteristic monitor transmitter 100 is secured to the body by other methods, such as an adhesive overdressing, straps, belts, clips or the like. - In preferred embodiments, the
cable 102 andconnector 104 are similar to (but not necessarily identical to) shortened versions of a cable and connector that are used to provide a standard wired connection between the sensor set 10 and thecharacteristic monitor 200. This allows the telemeteredcharacteristic monitor transmitter 100 to be used with existing sensor sets 10, and avoids the necessity to re-certify theconnector portion 24 of the sensor set 10 for use with a wireless connection. Thecable 102 should also include a flexible strain relief portion (not shown) to minimize strain on the sensor set 10 and prevent movement of the insertedsensor 12, which can lead to discomfort or dislodging of the sensor set 10. The flexible strain relief portion is intended to minimize sensor artifacts generated by user movements that might cause the sensing area of the sensor set 10 to move relative to the body tissues in contact with the sensing area of the sensor set 10. - The printed
circuit board 108 of the telemeteredcharacteristic monitor transmitter 100 includes asensor interface 122, processingelectronics 124,timers 126, anddata formatting electronics 128, as shown inFIG. 8 (b). In preferred embodiments, thesensor interface 122, processingelectronics 124,timers 126, anddata formatting electronics 128 are formed as separate semiconductor chips; however, alternative embodiments may combine the various semiconductor chips into a single customized semiconductor chip. Thesensor interface 122 connects with thecable 102 that is connected with the sensor set 10. In preferred embodiments, the sensor interface is permanently connected to thecable 102. However, in alternative embodiments, thesensor interface 122 may be configured in the form of a jack to accept different types of cables that provide adaptability of the telemeteredcharacteristic monitor transmitter 100 to work with different types of sensors and/or sensors placed in different locations of the user's body. In preferred embodiments, the printedcircuit board 108, and associated electronics, are capable of operating in a temperature range of 0° C. and 50° C. However, larger or smaller temperature ranges may be used. - Preferably, the battery assembly will use a weld tab design to connect power to the system. For example, it can use three series silver oxide 357
battery cells 110, or the like. However, it is understood that different battery chemistries may be used, such as lithium based chemistries, alkaline batteries, nickel metalhydride, or the like, and different numbers of batteries can be used. In further embodiments, thesensor interface 122 will include circuitry and/or a mechanism for detecting connection to the sensor set 10. This would provide the capability to save power and to more quickly and efficiently start initialization of the sensor set 10. In preferred embodiments, thebatteries 110 have a life in the range of 3 months to 2 years, and provide a low battery warning alarm. Alternative embodiments may provide longer or shorter battery lifetimes, or include a power port, solar cells or an inductive coil to permit recharging of rechargeable batteries in the telemeteredcharacteristic monitor transmitter 100. - In preferred embodiments, the telemetered
characteristic monitor transmitter 100 provides power, through thecable 102 andcable connector 104 to the sensor set 10. The power is used to monitor and drive the sensor set 10. The power connection is also used to speed the initialization of thesensor 12, when it is first placed under the skin. The use of an initialization process can reduce the time forsensor 12 stabilization from several hours to an hour or less. The preferred initialization procedure uses a two step process. First, a high voltage (preferably between 1.0-1.2 volts—although other voltages may be used) is applied to thesensor 12 for 1 to 2 minutes (although different time periods may be used) to allow thesensor 12 to stabilize. Then, a lower voltage (preferably between 0.5-0.6 volts—although other voltages may be used) is applied for the remainder of the initialization process (typically 58 minutes or less). Other stabilization/initialization procedures using differing currents, currents and voltages, different numbers of steps, or the like, may be used. Other embodiments may omit the initialization/stabilization process, if not required by the sensor or if timing is not a factor. - At the completion of the stabilizing process, a reading may be transmitted from the sensor set 10 and the telemetered
characteristic monitor transmitter 100 to thecharacteristic monitor 200, and then the user will input a calibrating glucose reading intocharacteristic monitor 200. In alternative embodiments, a fluid containing a known value of glucose may be injected into the site around the sensor set 10, and then the reading is sent to thecharacteristic monitor 200 and the user inputs the known concentration value, presses a button (not shown) or otherwise instructs the monitor to calibrate using the known value. During the calibration process, the telemeteredcharacteristic monitor transmitter 100 checks to determine if the sensor set 10 is still connected. If the sensor set 10 is no longer connected, the telemeteredcharacteristic monitor transmitter 100 will abort the stabilization process and sound an alarm (or send a signal to thecharacteristic monitor 200 to sound an alarm). - Preferably, the transmissions (or telemetry) of the telemetered
characteristic monitor transmitter 100 will contain at least the following information: a unique ID code that uniquely identifies each telemeteredcharacteristic monitor transmitter 100, a sensor characteristic data signal representative of the measured characteristic value (e.g., glucose or the like) from thesensor 18 of the subcutaneous sensor set 10, a counter electrode voltage, a low battery flag, and error detection bits (such as CRC).FIG. 9 and Table 1 illustrate a preferred message format for the telemetry of the telemeteredcharacteristic monitor transmitter 100. However, it will be understood that different message protocols and structures may be used.TABLE 1 Message format 1. Encoding method: OOK MANCHESTER (1 = 1/0, 0 = 0/1 sequence, where 1 = transmitter (TX) on) 2. Clock rate 1024 Hz (512 Hz symbol/bit rate). 3. Message format: Preamble: 4 bits (0101, want only one transition per bit) Message Type: 4 bits (1010 = transmitter 15 others for pump/ppc protocol) Unique ID #: 16 bits (65536 unique numbers) Message count #: 4 bits (also determines TX time slot) Working 12 bits (9 MSBs + 3 magnitude bits = Electrode: 16 bit range - converted by the characteristic monitor 200 into a value representative of characteristic level, such as glucose level) Low battery flag: 1 bit (0 = ok, 1 = low) Counter Voltage: 7 bits (0-1.2 V typ., 8 bit a/d 3.2 V FS) CRC: 8 bits Total 56 bits(.times. 1/512 hz = 109 mS) 4. Message TX interval: 300 seconds (5 min) + 1-16 seconds pseudo- random delay (TX time slot) 5. TX duty cycle: 56 bits*1/512 Hz* 1/300S*1/2 = 1.823e−4 - Preferred embodiments utilize a time-slicing transmission protocol. Use of the time slicing protocol facilitates the use of multiple signals on the same frequency bands or to the same receiver from multiple transmitters. The time-slicing may also be used to obviate the need for a receiver in the telemetered
characteristic monitor transmitter 100. For instance, the use of intermittent transmission reduces the amount of power required to operate thetransmitter 100 and to extend the life of the device. It also saves power in thecharacteristic monitor 200 by reducing the amount of time thecharacteristic monitor 200 must spend in the receive mode. - In preferred embodiments, when the telemetered
characteristic monitor transmitter 100 is connected to the sensor set 10, it detects the connection and is activated. Next, if desired or necessary, the telemeteredcharacteristic monitor transmitter 100 initializes thesensor 12 of the sensor set 10. After (or in some cases during) initialization, the telemeteredcharacteristic monitor transmitter 100 sends out a message of between 100-150 ms length every 5 minutes. Although other timing intervals ranging from 1 second to 30 minutes may be used. - Preferably, the message is transmitted in a pseudo-randomly selected time window within the 128 seconds following the 5 minute interval. In preferred embodiments, the telemetered
characteristic transmitter 100 utilizes its own unique ID as a random-seed to set up a table of transmission time windows that defines the order in which the telemeteredcharacteristic monitor 100 will transmit a message following the 5 minute interval. The order is repeated after the table is set-up. Included in the message sent will be the message count number, which indicates where in the sequence of time windows the telemetered characteristic monitor transmitter is currently transmitting. Thecharacteristic monitor 200 uses the unique ID code of the telemeteredcharacteristic monitor transmitter 100 to set up a corresponding table in thecharacteristic monitor 200 and the received message count to synchronize thecharacteristic monitor 200 with the current position in the table being used by the telemeteredcharacteristic monitor transmitter 100 to predict the next time window to be used. The use of pseudo-random time windows prevents multiple transmitters from continuously interfering with other transmitting devices that are temporarily, or inadvertently, synchronized with the telemeteredcharacteristic monitor transmitter 100. Thecharacteristic monitor 200 acquires the transmitted message, and determines the time window in which thecharacteristic monitor 200 must be in a receive mode to acquire the next message. Thecharacteristic monitor 200 then places itself in the receive mode every 5 minutes (although other timing intervals from 1 second to 30 minutes may be used) to receive the next message and data from the telemeteredcharacteristic monitor transmitter 100 at the next predicted time window. Thus, thecharacteristic monitor 200 needs only be in the receive mode for 1 second (i.e., 1 time window); rather than 128 seconds (128 time windows). In alternative embodiments, thecharacteristic monitor 200 may not use the unique ID and the message count and may remain in the receive mode during the entire period (e.g., for 128 time windows) during which a transmission is possible. In addition, other embodiments may cause thecharacteristic monitor 200 to enter the receivemode 1 time window ahead and stay on for 1 time window longer to maximize the likelihood of receiving the next transmission. In further alternative embodiments, the telemeteredcharacteristic monitor transmitter 100 and/orcharacteristic monitor 200 may utilize other methods or numbers to determine when transmission time windows are selected. Alternative message time-slicing transmission parameters, such as message length, number of time windows, frequency of transmissions, or the like, that are larger or smaller than those described above, may also be used. Preferred embodiments transmit the data and/or information at a data rate between 1000 Hz to 4000 Hz modulated onto a high frequency carrier wave. However, alternative embodiments may use smaller or larger transmission rates, with the rate being selected based on user environment, power requirements, interference issues, redundancy criteria, or the like. - If a transmitted message is not received by the
characteristic monitor 200 after a predetermined period of time, an alarm will be sounded or provided. In addition, thecharacteristic monitor 200 may continue to attempt to receive the next message by entering the receive mode at the next anticipated transmission time or may expand to enter the receive mode to cover all time windows until the next message is received. - In another alternative embodiment, if there is little or no likelihood of interference from other telemetered
characteristic monitor transmitter 100, such as by message length, frequency selections or the like, the telemeteredcharacteristic monitor transmitter 100 may transmit at one time window for all cases (typically the choice of window may be randomly selected at connection of a sensor set 10 or set at the factory). This permits thecharacteristic monitor 200 to be in the receive mode for even shorter periods of time (i.e., approximately 200 ms to bracket the telemeteredcharacteristic monitor transmitter 100 transmission instead of the 128 seconds (or 1 second if able to predict the next time window) needed tobracket 128 windows) to conserve power in thecharacteristic monitor 200. For instance, in this scenario, thecharacteristic monitor 200 will be in a non-receive mode for 299.8 seconds and in a receive mode for 200 ms. In particular embodiments the non-receive mode and receive mode periods will be determined by the message length and expected frequency of transmission. It is also noted that in a system where the receiver must cover a range of time windows, the receiver may lock on to a particular range of time windows to permit the receiver being in the receive mode for shorter periods of time. - The use of these transmission protocols obviates the need for a transmitter and receiver in both the telemetered
characteristic monitor transmitter 100 andcharacteristic monitor 200, which reduces costs, simplifies the system design, reduces power consumption and the like. However, alternative embodiments may include the capability for two-way communication, if desirable. In further embodiments, the telemeteredcharacteristic monitor transmitter 100 transmits continuously and thecharacteristic monitor 200 enters the receive mode when desired or required to determine a characteristic value, such as a glucose level or the like. - In preferred embodiments, the telemetered
characteristic monitor transmitter 100 will have the ability to uniquely identify itself to thecharacteristic monitor 200. The telemeteredcharacteristic monitor transmitter 100 will have an operating range to thecharacteristic monitor 200 of at least 10 feet. In alternative embodiments, larger or smaller ranges may be used, with the selection being dependent on the environment in which the telemeteredcharacteristic monitor transmitter 100 will be used, the size and needs of the user, power requirements, and the like. - In further alternative embodiments, the telemetered
characteristic monitor transmitter 100 can be combined with a sensor set 10 as a single unit. This would be particularly well adapted where batteries and the transmitter can be made cheaply enough to facilitate changing thetransmitter 100 with each new sensor set 10. - As shown in
FIG. 10 , thecharacteristic monitor 200 includes atelemetry receiver 202, a Telemetry Decoder (TD) 204 and a host micro-controller (Host) 206 for communication with the telemeteredcharacteristic monitor transmitter 100. TheTD 204 is used to decode a received telemetry signal from the transmitter device and forward the decoded signal to theHost 206. TheHost 206 is a microprocessor for data reduction, data storage, user interface, or the like. Thetelemetry receiver 202 receives the characteristic data (e.g., glucose data) from the telemetered characteristic monitor transmitter, and passes it to theTD 204 for decoding and formatting. After complete receipt of the data by theTD 204, the data is transferred to theHost 206 for processing, where calibration information, based upon user entered characteristic readings (e.g., blood glucose readings), is performed to determine the corresponding characteristic level (e.g., glucose level) from measurement in the characteristic data (e.g., glucose data). TheHost 206 also provides for storage of historical characteristic data, and can download the data to a personal computer, lap-top, or the like, via a com-station, wireless connection, modem or the like. For example, in preferred embodiments, the counter electrode voltage is included in the message from the telemeteredcharacteristic monitor transmitter 100 and is used as a diagnostic signal. The raw current signal values generally range from 0 to 999, which represents sensor electrode current in the range between 0.0 to 99.9 nanoAmperes, and is converted to characteristic values, such as glucose values in the range of 40 to 400 mg/dl. However, in alternative embodiments, larger or smaller ranges may be used. The values are then displayed on thecharacteristic monitor 200 or stored in data memory for later recall. - The
characteristic monitor 200 also includes circuitry in theTD 204 to uniquely mate it to an identified telemeteredcharacteristic monitor transmitter 100. In preferred embodiments, the identification number of the telemeteredcharacteristic monitor transmitter 100 is entered manually by the user using keys located on thecharacteristic monitor 200. In alternative embodiments, thecharacteristic monitor 200 includes a “learn ID” mode. Generally, the “learn ID” mode is best suited for the home environment, since multiple telemeteredcharacteristic monitor transmitters 100, typically encountered in a hospital setting, are less likely to cause confusion in thecharacteristic monitor 200 when it attempts to learn an ID code. In addition, thecharacteristic monitor 200 will include the ability to learn or be reprogrammed to work with a different (or replacement) telemeteredcharacteristic monitor transmitter 100. The preferred operating distance is at least 10 feet. In alternative embodiments, larger or smaller ranges may be used, with the selection being dependent on the environment in which the telemeteredcharacteristic monitor transmitter 100 will be used, the size and needs of the user, power requirements, and the like. Furthermore, if thecharacteristic monitor 200 does not receive a transmission from the identified telemeteredcharacteristic monitor transmitter 100 after a certain period of time (e.g., one or more missed transmissions), an alarm will be sounded. - In preferred embodiments, the
characteristic monitor 200 utilizes a two processor system, in which theHost 206 is the master processor and theTD 204 is a slave processor dedicated to telemetry processing. A first communication protocol between theHost 206 and theTD 204 is shown inFIG. 11 . The first protocol uses a serial peripheral interface (SPI) 208 and twocontrol lines Host 206 to wake up theTD 204 to initiate telemetry receiving task; and the other control line (data ready—DR) 212 is used by theTD 204 to indicate to theHost 206 that the telemetry data from the telemetered characteristic monitor transmitter has been received and is ready to be transferred to theHCO8 206. Upon receiving data through theSPI 208, theHost 206 sends an acknowledgment through theSPI 208 to theTD 204. In preferred embodiments, fixed length data blocks are used. However, in alternative embodiments, variable length data blocks may be used. In preferred embodiments, theHost 206 may pull the Chip Select (CSPIC) 210 high at any time to abort the telemetry data transfer from theTD 204. Alternatively, an additional line (not shown) may be used to reset theTD 204.FIG. 12 shows a second, more complex, alternative protocol that is used by theHost 206 and theTD 204. - In alternative embodiments, the
TD 204 and Host 206 may be combined together in a single semiconductor chip to obviate the need for dual processors and to reduce the space needed for the electronics. In further embodiments, the functions of theTD 204 and Host 206 may be allocated differently between one or more processors. - As shown in
FIG. 2 , the characteristic monitor may include adisplay 214 that is used to display the results of the measurement received from thesensor 18 in the sensor set 10 via the telemeteredcharacteristic monitor transmitter 100. The results and information displayed includes, but is not limited to, trending information of the characteristic (e.g., rate of change of glucose), graphs of historical data, average characteristic levels (e.g., glucose), or the like. Alternative embodiments include the ability to scroll through the data. Thedisplay 214 may also be used with buttons (not shown) on the characteristic monitor to program or update data in thecharacteristic monitor 200. It is noted that the typical user can be expected to have somewhat diminished visual and tactile abilities due to complications from diabetes or other conditions. Thus, thedisplay 214 and buttons should be configured and adapted to the needs of a user with diminished visual and tactile abilities. In alternative embodiments, the value can be conveyed to the user by audio signals, such as beeps, speech or the like. Still further embodiments may use a touch screen instead of (or in some cases addition to) buttons to facilitate water proofing and to ease changes in thecharacteristic monitor 200 hardware to accommodate improvements or upgrades. - Preferably, the characteristic monitor uses batteries (not shown) to provide power to the characteristic monitor. For example, a plurality of silver oxide batteries may be used. However, it is understood that different battery chemistries may be used, such as lithium based, alkaline based, nickel metalhydride, or the like, and different numbers of batteries can be used. In preferred embodiments, the batteries have a life in the range of 1 month to 2 years, and provide a low battery warning alarm. Alternative embodiments may provide longer or shorter battery lifetimes, or include a power port, solar cells or an induction coil to permit recharging of rechargeable batteries in the
characteristic monitor 200. In preferred embodiments, the batteries are not replaceable to facilitate waterproofing thehousing 106. - In further embodiments of the present invention, the
characteristic monitor 200 may be replaced by a different device. For example, in one embodiment, the telemeteredcharacteristic monitor transmitter 100 communicates with an RF programmer (not shown) that is also used to program and obtain data from an infusion pump or the like. The RF programmer may also be used to update and program thetransmitter 100, if thetransmitter 100 includes a receiver for remote programming, calibration or data receipt. The RF programmer can be used to store data obtained from thesensor 18 and then provide it to either an infusion pump, characteristic monitor, computer or the like for analysis. In further embodiments, thetransmitter 100 may transmit the data to a medication delivery device, such as an infusion pump or the like, as part of a closed loop system. This would allow the medication delivery device to compare sensor results with medication delivery data and either sound alarms when appropriate or suggest corrections to the medication delivery regimen. In preferred embodiments, thetransmitter 100 would include a transmitter to receive updates or requests for additional sensor data. An example of one type of RF programmer can be found in U.S. patent application Ser. No. 60/096,994 filed Aug. 18, 1998 and is entitled “INFUSION DEVICE WITH REMOTE PROGRAMMING, CARBOHYDRATE CALCULATOR AND/OR VIBRATION ALARM CAPABILITIES,” or U.S. patent application Ser. No. 09/334,858 filed Jun. 17, 1999 and is entitled “EXTERNAL INFUSION DEVICE WITH REMOTE PROGRAMMING, BOLUS ESTIMATOR AND/OR VIBRATION ALARM CAPABILITIES,” both of which are herein incorporated by reference. - In further embodiments, the telemetered characteristic monitor transmitter can include a modem, or the like, to transfer data to and from a healthcare professional. Further embodiments, can receive updated programming or instructions via a modem connection.
- In use, the sensor set 10 permits quick and easy subcutaneous placement of the
active sensing portion 18 at a selected site within the body of the user. More specifically, the peel-off strip 34 (seeFIG. 1 ) is removed from the mountingbase 30, at which time the mountingbase 30 can be pressed onto and seated upon the patient's skin. During this step, theinsertion needle 14 pierces the user's skin and carries theprotective cannula 16 with the sensingportion 18 to the appropriate subcutaneous placement site. During insertion, thecannula 16 provides a stable support and guide structure to carry theflexible sensor 12 to the desired placement site. When thesensor 12 is subcutaneously placed, with the mountingbase 30 seated upon the user's skin, theinsertion needle 14 can be slidably withdrawn from the user. During this withdrawal step, theinsertion needle 14 slides over thefirst portion 48 of theprotective cannula 16, leaving thesensing portion 18 withelectrodes 20 directly exposed to the user's body fluids via thewindow 22. Further description of theneedle 14 and the sensor set 10 are found in U.S. Pat. No. 5,586,553, entitled “TRANSCUTANEOUS SENSOR INSERTION SET”; co-pending U.S. patent application Ser. No. 08/871,831, entitled “DISPOSABLE SENSOR INSERTION ASSEMBLY”; and co-pending U.S. patent application Ser. No. 09/161,128, filed Sep. 25, 1998, entitled “A SUBCUTANEOUS IMPLANTABLE SENSOR SET HAVING THE CAPABILITY TO REMOVE OR DELIVER FLUIDS TO AN INSERTION SITE,” which are herein incorporated by reference. - Next, the user connects the
connection portion 24 of the sensor set 10 to thecable 102 of the telemeteredcharacteristic monitor transmitter 100, so that thesensor 12 can then be used over a prolonged period of time for taking blood chemistry or other characteristic readings, such as blood glucose readings in a diabetic patient. Preferred embodiments of the telemeteredcharacteristic monitor transmitter 100 detect the connection of thesensor 12 to activate the telemeteredcharacteristic monitor transmitter 100. For instance, connection of thesensor 12 may activate a switch or close a circuit to turn the telemeteredcharacteristic monitor transmitter 100 on. The use of a connection detection provides the capability to maximize the battery and shelf life of the telemetered characteristic monitor transmitter prior to use, such as during manufacturing, test and storage. Alternative embodiments of the present invention may utilize an on/off switch (or button) on the telemeteredcharacteristic monitor transmitter 100. - The
transmitter 100 is then affixed to the user's body with an adhesive overdressing. Alternatively, the peel-off strip 34 (seeFIG. 1 ) is removed from thelower case 116, at which time thelower case 116 can be pressed onto and seated upon the patient's skin. The user then activates thetransmitter 100, or the transmitter is activated by detection of the connection to thesensor 12 of the sensor set 10. Generally, the act of connecting (and disconnecting) thesensor 12 activates (and deactivates) the telemeteredcharacteristic monitor 100, and no other interface is required. In alternative steps, the sensor set 10 is connected to thetransmitter 100 prior to placement of thesensor 12 to avoid possible movement or dislodging of thesensor 12 during attachment of thetransmitter 100. Also, the transmitter may be attached to the user prior to attaching the sensor set 10 to thetransmitter 100. - The user then programs the characteristic monitor (or it learns) the identification of the
transmitter 100 and verifies proper operation and calibration of thetransmitter 100. Thecharacteristic monitor 200 andtransmitter 100 then work to transmit and receive sensor data to determine characteristic levels. Thus, once a user attaches atransmitter 100 to a sensor set 10, thesensor 12 is automatically initialized and readings are periodically transmitted, together with other information, to thecharacteristic monitor 200. - After a sensor set 10 has been used for a period of time, it is replaced. The user will disconnect the sensor set 10 from the
cable 102 of the telemeteredcharacteristic monitor transmitter 100. In preferred embodiments, the telemeteredcharacteristic monitor transmitter 100 is removed and posited adjacent the new site for a new sensor set 10. In alternative embodiments, the user does not need to remove thetransmitter 100. A new sensor set 10 andsensor 12 are attached to thetransmitter 100 and connected to the user's body. Monitoring then continues, as with theprevious sensor 12. If the user must replace the telemeteredcharacteristic monitor transmitter 100, the user disconnects thetransmitter 100 from the sensor set 10 and the user's body. The user then connects anew transmitter 100, and reprograms the characteristic monitor (or learns) to work with thenew transmitter 100. Monitoring then continues, as with theprevious sensor 12. - Additional embodiments of the present invention may include a vibrator alarm (or optional indicator such as an L.E.D.) in either or both the telemetered
characteristic monitor transmitter 100 and thecharacteristic monitor 200 to provide a tactile (vibration) alarm to the user, such as sensor set malfunction, improper connection, low battery, missed message, bad data, transmitter interference, or the like. The use of a vibration alarm provides additional reminders to an audio alarm, which could be important with someone suffering an acute reaction, or to have non-audio alarms to preserve and conceal the presence of the telemeteredcharacteristic monitor system 1. - While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.
- The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Claims (24)
1. A telemetered characteristic monitor system for monitoring a characteristic of a user, the system comprising:
a remotely located data receiving device that is configured to be worn on a body of the user and is concealable within clothing;
a first sensor for producing a signal indicative of a first characteristic of the user;
a second sensor for producing a second signal indicative of a second characteristic of the user; and
a transmitter device including:
a housing;
a processor within the housing adapted to receive signals from the first sensor and to process the signals from the first sensor for delivery to the remotely located data receiving device; and
a transmitter coupled to the processor for wirelessly transmitting the processed signals to the remotely located data receiving device.
2. The telemetered characteristic monitor system of claim 1 , wherein the processor is further adapted to receive signals from the second sensor and to process the signals from the second sensor for delivery to the remotely located data receiving device.
3. The telemetered characteristic monitor system of claim 1 , wherein the first characteristic and the second characteristic are the same characteristic of the user.
4. The telemetered characteristic monitor system of claim 1 , wherein the size of the housing is not greater than 2.0 square inches by 0.35 inch thick.
5. The telemetered characteristic monitor system of claim 1 , wherein the size of the housing is not greater than 1.0 square inch by 0.25 inch thick.
6. The telemetered characteristic monitor system of claim 1 , further comprising a sensor set including the first and second sensors and a connector coupled to at least one of the first sensor and the second sensor, wherein the transmitter device further comprises a sensor connector that is directly connected to the connector of the sensor set without any intermediate cable between the two.
7. The telemetered characteristic monitor system of claim 1 , wherein each of the first sensor and the second sensor has a sensing portion, and the sensing portion of at least one of the first sensor and the second sensor is implanted in tissue selected from the group consisting of subcutaneous, sub-dermal, intra-peritoneal, and peritoneal tissue.
8. The telemetered characteristic monitor system of claim 1 , wherein each of the first sensor and the second sensor has a sensing portion that is implanted in the user's subcutaneous tissue.
9. The telemetered characteristic monitor system of claim 1 , wherein at least one of the first sensor and the second sensor is a percutaneous sensor.
10. The telemetered characteristic monitor system of claim 1 , wherein the transmitter device further includes a wireless receiver to receive data and instructions from the data receiving device.
11. The telemetered characteristic monitor system of claim 1 , wherein the data receiving device is an insulin pump.
12. The telemetered characteristic monitor system of claim 1 , wherein the transmitter transmits the processed signals by radio frequencies.
13. The telemetered characteristic monitor system of claim 1 , wherein the first characteristic of the user is a glucose level in the body of the user.
14. A telemetered characteristic monitor system for monitoring a characteristic of a user, the system comprising:
a plurality of sensors, each of which is for producing a signal indicative of a characteristic of the user; and
a transmitter device including a housing, a processor within the housing coupled to the plurality of sensors to process the signals from the plurality of sensors, and a transmitter coupled to the processor for wirelessly transmitting the processed signals to a remotely located data receiving device that is configured to be worn on a body of the user and is concealable within the user's clothing.
15. The telemetered characteristic monitor system of claim 14 , wherein a first sensor produces a signal indicative of a first characteristic of the user, and a second sensor also produces a signal indicative of the first characteristic of the user.
16. The telemetered characteristic monitor system of claim 14 , wherein a first sensor produces a signal indicative of a first characteristic of the user, and a second sensor produces a signal indicative of a second characteristic of the user, said second characteristic being different from the first characteristic.
17. The telemetered characteristic monitor system of claim 14 , wherein the size of the housing is not greater than 2.0 square inches by 0.35 inch thick.
18. The telemetered characteristic monitor system of claim 14 , wherein the size of the housing is not greater than 1.0 square inch by 0.25 inch thick.
19. The telemetered characteristic monitor system of claim 14 , further comprising a sensor set including the plurality of sensors and a connector coupled to at least one of the plurality of sensors, wherein the transmitter device further comprises a sensor connector that is directly connected to the connector of the sensor set without any intermediate cable between the two.
20. The telemetered characteristic monitor system of claim 14 , wherein the transmitter device further includes a wireless receiver to receive data and instructions from the data receiving device.
21. The telemetered characteristic monitor system of claim 14 , wherein the transmitter transmits the processed signals by radio frequencies.
22. The telemetered characteristic monitor system of claim 14 , wherein each of the plurality of sensors has a sensing portion, and the sensing portion of at least one of the plurality of sensors is implanted in tissue selected from the group consisting of subcutaneous, sub-dermal, intra-peritoneal, and peritoneal tissue.
23. The telemetered characteristic monitor system of claim 14 , wherein each of the plurality of sensors has a sensing portion that is implanted in the user's subcutaneous tissue.
24. The telemetered characteristic monitor system of claim 14 , wherein at least one of said plurality of sensors is a percutaneous sensor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/906,516 US20080030369A1 (en) | 1998-10-08 | 2007-10-02 | Telemetered characteristic monitor system and method of using the same |
US13/424,698 US20120179015A1 (en) | 1998-10-08 | 2012-03-20 | Telemetered characteristic monitor system and method of using the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10381298P | 1998-10-08 | 1998-10-08 | |
US37747299A | 1999-08-19 | 1999-08-19 | |
US09/465,715 US6809653B1 (en) | 1998-10-08 | 1999-12-17 | Telemetered characteristic monitor system and method of using the same |
US10/898,589 US7098803B2 (en) | 1998-10-08 | 2004-07-23 | Telemetered characteristic monitor system and method of using the same |
US11/225,790 US7324012B2 (en) | 1998-10-08 | 2005-09-12 | Telemetered characteristic monitor system and method of using the same |
US11/906,516 US20080030369A1 (en) | 1998-10-08 | 2007-10-02 | Telemetered characteristic monitor system and method of using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/225,790 Continuation US7324012B2 (en) | 1998-10-08 | 2005-09-12 | Telemetered characteristic monitor system and method of using the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/424,698 Continuation US20120179015A1 (en) | 1998-10-08 | 2012-03-20 | Telemetered characteristic monitor system and method of using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080030369A1 true US20080030369A1 (en) | 2008-02-07 |
Family
ID=26800879
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/465,715 Expired - Lifetime US6809653B1 (en) | 1998-10-08 | 1999-12-17 | Telemetered characteristic monitor system and method of using the same |
US10/898,589 Expired - Fee Related US7098803B2 (en) | 1998-10-08 | 2004-07-23 | Telemetered characteristic monitor system and method of using the same |
US11/225,790 Expired - Fee Related US7324012B2 (en) | 1998-10-08 | 2005-09-12 | Telemetered characteristic monitor system and method of using the same |
US11/225,296 Expired - Fee Related US7602310B2 (en) | 1998-10-08 | 2005-09-12 | Telemetered characteristic monitor system and method of using the same |
US11/906,516 Abandoned US20080030369A1 (en) | 1998-10-08 | 2007-10-02 | Telemetered characteristic monitor system and method of using the same |
US13/424,698 Abandoned US20120179015A1 (en) | 1998-10-08 | 2012-03-20 | Telemetered characteristic monitor system and method of using the same |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/465,715 Expired - Lifetime US6809653B1 (en) | 1998-10-08 | 1999-12-17 | Telemetered characteristic monitor system and method of using the same |
US10/898,589 Expired - Fee Related US7098803B2 (en) | 1998-10-08 | 2004-07-23 | Telemetered characteristic monitor system and method of using the same |
US11/225,790 Expired - Fee Related US7324012B2 (en) | 1998-10-08 | 2005-09-12 | Telemetered characteristic monitor system and method of using the same |
US11/225,296 Expired - Fee Related US7602310B2 (en) | 1998-10-08 | 2005-09-12 | Telemetered characteristic monitor system and method of using the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/424,698 Abandoned US20120179015A1 (en) | 1998-10-08 | 2012-03-20 | Telemetered characteristic monitor system and method of using the same |
Country Status (8)
Country | Link |
---|---|
US (6) | US6809653B1 (en) |
EP (3) | EP1413245B1 (en) |
JP (2) | JP4469504B2 (en) |
AT (1) | ATE514372T1 (en) |
AU (1) | AU6255699A (en) |
CA (3) | CA2666434A1 (en) |
DK (1) | DK1413245T3 (en) |
WO (1) | WO2000019887A1 (en) |
Cited By (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030163088A1 (en) * | 2002-02-28 | 2003-08-28 | Blomquist Michael L. | Programmable medical infusion pump |
US20030163789A1 (en) * | 2002-02-28 | 2003-08-28 | Blomquist Michael L. | Programmable medical infusion pump displaying a banner |
US20050182306A1 (en) * | 2004-02-17 | 2005-08-18 | Therasense, Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US20050246416A1 (en) * | 2004-02-23 | 2005-11-03 | Blomquist Michael L | Server for medical device |
US20070203407A1 (en) * | 2006-02-28 | 2007-08-30 | Abbott Diabetes Care, Inc. | Analyte sensors and methods of use |
US20080033361A1 (en) * | 2006-08-03 | 2008-02-07 | Smiths Medical Md, Inc. | Interface for medical infusion pump |
US20080034323A1 (en) * | 2006-08-03 | 2008-02-07 | Blomquist Michael L | Interface for medical infusion pump |
US20080033749A1 (en) * | 2006-08-03 | 2008-02-07 | Blomquist Michael L | Interface for medical infusion pump |
US20080126969A1 (en) * | 2006-08-03 | 2008-05-29 | Blomquist Michael L | Interface for medical infusion pump |
US20080161666A1 (en) * | 2006-12-29 | 2008-07-03 | Abbott Diabetes Care, Inc. | Analyte devices and methods |
US20080200897A1 (en) * | 2007-02-19 | 2008-08-21 | Abbott Diabetes Care, Inc. | Modular combination of medication infusion and analyte monitoring |
US20080206799A1 (en) * | 2007-02-27 | 2008-08-28 | Michael Blomquist | Carbohydrate ratio testing using frequent blood glucose input |
US20080228056A1 (en) * | 2007-03-13 | 2008-09-18 | Michael Blomquist | Basal rate testing using frequent blood glucose input |
US20080255808A1 (en) * | 2007-04-14 | 2008-10-16 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in medical communication system |
US20080281179A1 (en) * | 2007-05-08 | 2008-11-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and methods |
US20080281171A1 (en) * | 2007-05-08 | 2008-11-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and methods |
US20080278332A1 (en) * | 2007-05-08 | 2008-11-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and methods |
US20080288180A1 (en) * | 2007-05-14 | 2008-11-20 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20080287761A1 (en) * | 2007-05-14 | 2008-11-20 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20080294294A1 (en) * | 2007-05-24 | 2008-11-27 | Michael Blomquist | Expert system for insulin pump therapy |
US20080300534A1 (en) * | 2007-05-30 | 2008-12-04 | Michael Blomquist | Insulin pump based expert system |
US20080312841A1 (en) * | 2007-05-14 | 2008-12-18 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20090036747A1 (en) * | 2007-07-31 | 2009-02-05 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20090177147A1 (en) * | 2008-01-07 | 2009-07-09 | Michael Blomquist | Insulin pump with insulin therapy coaching |
US20090177154A1 (en) * | 2008-01-08 | 2009-07-09 | Michael Blomquist | Insulin pump with convenience features |
US20090257911A1 (en) * | 2008-04-10 | 2009-10-15 | Abbott Diabetes Care Inc. | Method and System for Sterilizing an Analyte Sensor |
US20100076293A1 (en) * | 2007-06-21 | 2010-03-25 | Abbott Diabetes Care Inc. | Health Monitor |
US7734323B2 (en) | 2007-01-24 | 2010-06-08 | Smiths Medical Asd, Inc. | Correction factor testing using frequent blood glucose input |
US20100168379A1 (en) * | 2007-06-12 | 2010-07-01 | Solvay (Societe Anonyme) | Epichlorohydrin, manufacturing process and use |
US20100171610A1 (en) * | 2003-04-28 | 2010-07-08 | Abbott Diabetes Care Inc. | Method and Apparatus for Providing Peak Detection Circuitry for Data Communication Systems |
US20100247775A1 (en) * | 2009-03-31 | 2010-09-30 | Abbott Diabetes Care Inc. | Precise Fluid Dispensing Method and Device |
US20100262078A1 (en) * | 2009-03-31 | 2010-10-14 | Smiths Medical Asd, Inc. | Systems and methods to address air, leaks and occlusions in an insulin pump system |
US20100274108A1 (en) * | 2005-09-30 | 2010-10-28 | Abbott Diabetes Care Inc. | Method and Apparatus for Providing Rechargeable Power in Data Monitoring and Management Systems |
US20100309001A1 (en) * | 2003-04-04 | 2010-12-09 | Abbott Diabetes Care Inc. | Method and System for Transferring Analyte Test Data |
US20110004084A1 (en) * | 2003-10-31 | 2011-01-06 | Abbott Diabetes Care Inc. | Method of Calibrating an Analyte-Measurement Device, and Associated Methods, Devices and Systems |
US20110040251A1 (en) * | 2008-01-09 | 2011-02-17 | Michael Blomquist | Infusion pump with add-on modules |
US20110044333A1 (en) * | 2008-05-30 | 2011-02-24 | Abbott Diabetes Care Inc. | Close Proximity Communication Device and Methods |
US20110054282A1 (en) * | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Analyte Monitoring System and Methods for Managing Power and Noise |
US20110137239A1 (en) * | 2009-12-04 | 2011-06-09 | Debelser David | Advanced step therapy delivery for an ambulatory infusion pump and system |
US20110184268A1 (en) * | 2010-01-22 | 2011-07-28 | Abbott Diabetes Care Inc. | Method, Device and System for Providing Analyte Sensor Calibration |
US20110224525A1 (en) * | 2005-10-31 | 2011-09-15 | Abbott Diabetes Care Inc. | Method and Apparatus for Providing Data Communication in Data Monitoring and Management Systems |
US8029443B2 (en) | 2003-07-15 | 2011-10-04 | Abbott Diabetes Care Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US8115635B2 (en) | 2005-02-08 | 2012-02-14 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US8133197B2 (en) | 2008-05-02 | 2012-03-13 | Smiths Medical Asd, Inc. | Display for pump |
US8149131B2 (en) | 2006-08-03 | 2012-04-03 | Smiths Medical Asd, Inc. | Interface for medical infusion pump |
US8239166B2 (en) | 2007-05-14 | 2012-08-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8346399B2 (en) | 2002-02-28 | 2013-01-01 | Tandem Diabetes Care, Inc. | Programmable insulin pump |
US8444560B2 (en) | 2007-05-14 | 2013-05-21 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8456301B2 (en) | 2007-05-08 | 2013-06-04 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8460243B2 (en) | 2003-06-10 | 2013-06-11 | Abbott Diabetes Care Inc. | Glucose measuring module and insulin pump combination |
US8461985B2 (en) | 2007-05-08 | 2013-06-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8471714B2 (en) | 2005-05-17 | 2013-06-25 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8506482B2 (en) | 2006-02-28 | 2013-08-13 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US8543183B2 (en) | 2006-03-31 | 2013-09-24 | Abbott Diabetes Care Inc. | Analyte monitoring and management system and methods therefor |
US8560038B2 (en) | 2007-05-14 | 2013-10-15 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8593287B2 (en) | 2007-05-08 | 2013-11-26 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8593109B2 (en) | 2006-03-31 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8597188B2 (en) | 2007-06-21 | 2013-12-03 | Abbott Diabetes Care Inc. | Health management devices and methods |
US8635046B2 (en) | 2010-06-23 | 2014-01-21 | Abbott Diabetes Care Inc. | Method and system for evaluating analyte sensor response characteristics |
US8710993B2 (en) | 2011-11-23 | 2014-04-29 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US8880138B2 (en) | 2005-09-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Device for channeling fluid and methods of use |
US9008743B2 (en) | 2007-04-14 | 2015-04-14 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9069536B2 (en) | 2011-10-31 | 2015-06-30 | Abbott Diabetes Care Inc. | Electronic devices having integrated reset systems and methods thereof |
US9088452B2 (en) | 2009-04-29 | 2015-07-21 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US9125548B2 (en) | 2007-05-14 | 2015-09-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9204827B2 (en) | 2007-04-14 | 2015-12-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9226701B2 (en) | 2009-04-28 | 2016-01-05 | Abbott Diabetes Care Inc. | Error detection in critical repeating data in a wireless sensor system |
US9317656B2 (en) | 2011-11-23 | 2016-04-19 | Abbott Diabetes Care Inc. | Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof |
US9357957B2 (en) | 2010-01-21 | 2016-06-07 | Arkray, Inc. | Measuring apparatus, measuring system, electric power supply apparatus, and electric power supply method |
US9474475B1 (en) | 2013-03-15 | 2016-10-25 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
US9532737B2 (en) | 2011-02-28 | 2017-01-03 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US9574914B2 (en) | 2007-05-08 | 2017-02-21 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US9588210B2 (en) | 2010-02-26 | 2017-03-07 | Arkray, Inc. | Analysis apparatus, analysis method and analysis system |
US9615780B2 (en) | 2007-04-14 | 2017-04-11 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9622691B2 (en) | 2011-10-31 | 2017-04-18 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US9662056B2 (en) | 2008-09-30 | 2017-05-30 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US9669160B2 (en) | 2014-07-30 | 2017-06-06 | Tandem Diabetes Care, Inc. | Temporary suspension for closed-loop medicament therapy |
US9750444B2 (en) | 2009-09-30 | 2017-09-05 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US9795326B2 (en) | 2009-07-23 | 2017-10-24 | Abbott Diabetes Care Inc. | Continuous analyte measurement systems and systems and methods for implanting them |
US9907492B2 (en) | 2012-09-26 | 2018-03-06 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US9913600B2 (en) | 2007-06-29 | 2018-03-13 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US9936910B2 (en) | 2009-07-31 | 2018-04-10 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring and therapy management system accuracy |
US9962091B2 (en) | 2002-12-31 | 2018-05-08 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US9968306B2 (en) | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US9980669B2 (en) | 2011-11-07 | 2018-05-29 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
US10002233B2 (en) | 2007-05-14 | 2018-06-19 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10016561B2 (en) | 2013-03-15 | 2018-07-10 | Tandem Diabetes Care, Inc. | Clinical variable determination |
US10022499B2 (en) | 2007-02-15 | 2018-07-17 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US10076285B2 (en) | 2013-03-15 | 2018-09-18 | Abbott Diabetes Care Inc. | Sensor fault detection using analyte sensor data pattern comparison |
US10111608B2 (en) | 2007-04-14 | 2018-10-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US10132793B2 (en) | 2012-08-30 | 2018-11-20 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US10136845B2 (en) | 2011-02-28 | 2018-11-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US10136816B2 (en) | 2009-08-31 | 2018-11-27 | Abbott Diabetes Care Inc. | Medical devices and methods |
US10159433B2 (en) | 2006-02-28 | 2018-12-25 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US10357606B2 (en) | 2013-03-13 | 2019-07-23 | Tandem Diabetes Care, Inc. | System and method for integration of insulin pumps and continuous glucose monitoring |
US10433773B1 (en) | 2013-03-15 | 2019-10-08 | Abbott Diabetes Care Inc. | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
US10569016B2 (en) | 2015-12-29 | 2020-02-25 | Tandem Diabetes Care, Inc. | System and method for switching between closed loop and open loop control of an ambulatory infusion pump |
US10610135B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10682460B2 (en) | 2013-01-28 | 2020-06-16 | Smiths Medical Asd, Inc. | Medication safety devices and methods |
US10963417B2 (en) | 2004-06-04 | 2021-03-30 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US11006871B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11213226B2 (en) | 2010-10-07 | 2022-01-04 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods |
US11229382B2 (en) | 2013-12-31 | 2022-01-25 | Abbott Diabetes Care Inc. | Self-powered analyte sensor and devices using the same |
US11553883B2 (en) | 2015-07-10 | 2023-01-17 | Abbott Diabetes Care Inc. | System, device and method of dynamic glucose profile response to physiological parameters |
US11596330B2 (en) | 2017-03-21 | 2023-03-07 | Abbott Diabetes Care Inc. | Methods, devices and system for providing diabetic condition diagnosis and therapy |
US11676694B2 (en) | 2012-06-07 | 2023-06-13 | Tandem Diabetes Care, Inc. | Device and method for training users of ambulatory medical devices |
US11717225B2 (en) | 2014-03-30 | 2023-08-08 | Abbott Diabetes Care Inc. | Method and apparatus for determining meal start and peak events in analyte monitoring systems |
US11793936B2 (en) | 2009-05-29 | 2023-10-24 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
US11872368B2 (en) | 2018-04-10 | 2024-01-16 | Tandem Diabetes Care, Inc. | System and method for inductively charging a medical device |
US11883164B2 (en) | 2004-07-13 | 2024-01-30 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
Families Citing this family (939)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10361802B1 (en) | 1999-02-01 | 2019-07-23 | Blanding Hovenweep, Llc | Adaptive pattern recognition based control system and method |
US8352400B2 (en) | 1991-12-23 | 2013-01-08 | Hoffberg Steven M | Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore |
SE9700384D0 (en) * | 1997-02-04 | 1997-02-04 | Biacore Ab | Analytical method and apparatus |
US9155496B2 (en) | 1997-03-04 | 2015-10-13 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US7657297B2 (en) | 2004-05-03 | 2010-02-02 | Dexcom, Inc. | Implantable analyte sensor |
US6558321B1 (en) * | 1997-03-04 | 2003-05-06 | Dexcom, Inc. | Systems and methods for remote monitoring and modulation of medical devices |
US7899511B2 (en) | 2004-07-13 | 2011-03-01 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US8527026B2 (en) | 1997-03-04 | 2013-09-03 | Dexcom, Inc. | Device and method for determining analyte levels |
US6001067A (en) | 1997-03-04 | 1999-12-14 | Shults; Mark C. | Device and method for determining analyte levels |
US6391005B1 (en) | 1998-03-30 | 2002-05-21 | Agilent Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6949816B2 (en) | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
US8974386B2 (en) * | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US7384396B2 (en) | 1998-07-21 | 2008-06-10 | Spectrx Inc. | System and method for continuous analyte monitoring |
US6558320B1 (en) | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
CA2340005C (en) | 1998-08-26 | 2014-05-06 | Sensors For Medicine And Science, Inc. | Optical-based sensing devices |
CA2666434A1 (en) * | 1998-10-08 | 2000-04-13 | Medtronic Minimed, Inc. | Telemetered characteristic monitor system |
US7621893B2 (en) | 1998-10-29 | 2009-11-24 | Medtronic Minimed, Inc. | Methods and apparatuses for detecting occlusions in an ambulatory infusion pump |
US7766873B2 (en) | 1998-10-29 | 2010-08-03 | Medtronic Minimed, Inc. | Method and apparatus for detecting occlusions in an ambulatory infusion pump |
US8527392B2 (en) * | 1998-12-08 | 2013-09-03 | Ebay Inc. | Method and apparatus for holding a two-stage live auction for on-site and on-line bidders |
US7966078B2 (en) * | 1999-02-01 | 2011-06-21 | Steven Hoffberg | Network media appliance system and method |
US7806886B2 (en) | 1999-06-03 | 2010-10-05 | Medtronic Minimed, Inc. | Apparatus and method for controlling insulin infusion with state variable feedback |
US7844687B1 (en) | 1999-10-06 | 2010-11-30 | Gelvin David C | Method for internetworked hybrid wireless integrated network sensors (WINS) |
US6850150B1 (en) * | 2000-11-21 | 2005-02-01 | Nokia Mobile Phones Ltd. | Portable device |
US20030065308A1 (en) | 2000-01-21 | 2003-04-03 | Lebel Ronald J. | Ambulatory medical apparatus with hand held communication device |
CA2396613C (en) * | 2000-01-21 | 2008-03-18 | Medical Research Group, Inc. | Microprocessor controlled ambulatory medical apparatus with hand held communication device |
US6574503B2 (en) * | 2000-04-26 | 2003-06-03 | Medtronic, Inc. | GUI coding for identification of displayable data quality from medical devices |
US7553280B2 (en) * | 2000-06-29 | 2009-06-30 | Sensors For Medicine And Science, Inc. | Implanted sensor processing system and method |
EP1332440B1 (en) * | 2000-10-04 | 2012-04-11 | Insulet Corporation | Data collection assembly for patient infusion system |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
EP1347705B1 (en) * | 2000-12-21 | 2005-12-07 | Insulet Corporation | Medical apparatus remote control |
US6560471B1 (en) * | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
AU2002309528A1 (en) | 2001-04-02 | 2002-10-15 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
CN100520372C (en) * | 2001-05-04 | 2009-07-29 | 医药及科学传感器公司 | Electro-optical sensing device with reference channel |
US20020173769A1 (en) | 2001-05-18 | 2002-11-21 | Gray Larry B. | Infusion set for a fluid pump |
US8034026B2 (en) | 2001-05-18 | 2011-10-11 | Deka Products Limited Partnership | Infusion pump assembly |
JP4209767B2 (en) | 2001-06-12 | 2009-01-14 | ペリカン テクノロジーズ インコーポレイテッド | Self-optimized cutting instrument with adaptive means for temporary changes in skin properties |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
ES2352998T3 (en) | 2001-06-12 | 2011-02-24 | Pelikan Technologies Inc. | LANCETA ELECTRIC ACTUATOR. |
US7025774B2 (en) | 2001-06-12 | 2006-04-11 | Pelikan Technologies, Inc. | Tissue penetration device |
WO2002100254A2 (en) | 2001-06-12 | 2002-12-19 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
EP1277438A1 (en) * | 2001-07-10 | 2003-01-22 | Agilent Technologies, Inc. (a Delaware corporation) | System for point of care diagnosis and/or analysis |
US20030032874A1 (en) | 2001-07-27 | 2003-02-13 | Dexcom, Inc. | Sensor head for use with implantable devices |
US6702857B2 (en) | 2001-07-27 | 2004-03-09 | Dexcom, Inc. | Membrane for use with implantable devices |
US20080177154A1 (en) * | 2001-08-13 | 2008-07-24 | Novo Nordisk A/S | Portable Device and Method Of Communicating Medical Data Information |
US6827702B2 (en) | 2001-09-07 | 2004-12-07 | Medtronic Minimed, Inc. | Safety limits for closed-loop infusion pump control |
US8152789B2 (en) | 2001-10-23 | 2012-04-10 | Medtronic Minimed, Inc. | System and method for providing closed loop infusion formulation delivery |
US6993393B2 (en) * | 2001-12-19 | 2006-01-31 | Cardiac Pacemakers, Inc. | Telemetry duty cycle management system for an implantable medical device |
US7729776B2 (en) * | 2001-12-19 | 2010-06-01 | Cardiac Pacemakers, Inc. | Implantable medical device with two or more telemetry systems |
US7022072B2 (en) | 2001-12-27 | 2006-04-04 | Medtronic Minimed, Inc. | System for monitoring physiological characteristics |
US10080529B2 (en) | 2001-12-27 | 2018-09-25 | Medtronic Minimed, Inc. | System for monitoring physiological characteristics |
US20050027182A1 (en) | 2001-12-27 | 2005-02-03 | Uzair Siddiqui | System for monitoring physiological characteristics |
US7399277B2 (en) | 2001-12-27 | 2008-07-15 | Medtronic Minimed, Inc. | System for monitoring physiological characteristics |
US7247162B1 (en) | 2002-01-14 | 2007-07-24 | Edwards Lifesciences Corporation | Direct access atherectomy devices |
US6985773B2 (en) | 2002-02-07 | 2006-01-10 | Cardiac Pacemakers, Inc. | Methods and apparatuses for implantable medical device telemetry power management |
US8010174B2 (en) | 2003-08-22 | 2011-08-30 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US9247901B2 (en) | 2003-08-22 | 2016-02-02 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US8364229B2 (en) | 2003-07-25 | 2013-01-29 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US9282925B2 (en) | 2002-02-12 | 2016-03-15 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US8260393B2 (en) | 2003-07-25 | 2012-09-04 | Dexcom, Inc. | Systems and methods for replacing signal data artifacts in a glucose sensor data stream |
US7613491B2 (en) | 2002-05-22 | 2009-11-03 | Dexcom, Inc. | Silicone based membranes for use in implantable glucose sensors |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7198606B2 (en) | 2002-04-19 | 2007-04-03 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with analyte sensing |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7175642B2 (en) | 2002-04-19 | 2007-02-13 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7226978B2 (en) | 2002-05-22 | 2007-06-05 | Dexcom, Inc. | Techniques to improve polyurethane membranes for implantable glucose sensors |
JP2005533545A (en) | 2002-07-24 | 2005-11-10 | エム2・メディカル・アクティーゼルスカブ | Infusion pump system, infusion pump unit, infusion pump |
US20040068230A1 (en) | 2002-07-24 | 2004-04-08 | Medtronic Minimed, Inc. | System for providing blood glucose measurements to an infusion device |
US7278983B2 (en) | 2002-07-24 | 2007-10-09 | Medtronic Minimed, Inc. | Physiological monitoring device for controlling a medication infusion device |
US8512276B2 (en) | 2002-07-24 | 2013-08-20 | Medtronic Minimed, Inc. | System for providing blood glucose measurements to an infusion device |
US7162289B2 (en) * | 2002-09-27 | 2007-01-09 | Medtronic Minimed, Inc. | Method and apparatus for enhancing the integrity of an implantable sensor device |
US6916159B2 (en) | 2002-10-09 | 2005-07-12 | Therasense, Inc. | Device and method employing shape memory alloy |
US7993108B2 (en) | 2002-10-09 | 2011-08-09 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US7727181B2 (en) * | 2002-10-09 | 2010-06-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
WO2004041330A2 (en) | 2002-11-05 | 2004-05-21 | M 2 Medical A/S | A disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device |
US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US20040106163A1 (en) * | 2002-11-12 | 2004-06-03 | Workman Jerome James | Non-invasive measurement of analytes |
AU2003287735A1 (en) * | 2002-11-12 | 2004-06-03 | Argose, Inc. | Non-invasive measurement of analytes |
US20040122353A1 (en) | 2002-12-19 | 2004-06-24 | Medtronic Minimed, Inc. | Relay device for transferring information between a sensor system and a fluid delivery system |
DK1583571T3 (en) | 2002-12-23 | 2008-06-16 | M2 Medical As | Medication dispensing device for insulin |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
EP1599124B1 (en) * | 2003-02-07 | 2010-03-31 | Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California | Surgical drain with sensors for tissue monitoring |
WO2004090492A2 (en) * | 2003-04-02 | 2004-10-21 | F.O.B. Instruments, Inc. | Fast response probe for a food thermometer |
KR101287928B1 (en) * | 2003-04-15 | 2013-07-22 | 센세오닉스, 인코포레이티드 | Printed circuit device with integrated antenna and implantable sensor processing system with integrated printed circuit board antenna |
ES2737835T3 (en) | 2003-04-23 | 2020-01-16 | Valeritas Inc | Hydraulically driven pump for long-term medication administration |
WO2004107975A2 (en) | 2003-05-30 | 2004-12-16 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US8066639B2 (en) * | 2003-06-10 | 2011-11-29 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
WO2006001797A1 (en) | 2004-06-14 | 2006-01-05 | Pelikan Technologies, Inc. | Low pain penetrating |
US8071028B2 (en) | 2003-06-12 | 2011-12-06 | Abbott Diabetes Care Inc. | Method and apparatus for providing power management in data communication systems |
DE10327254B4 (en) † | 2003-06-17 | 2010-01-28 | Disetronic Licensing Ag | Modular infusion pump |
US7761130B2 (en) | 2003-07-25 | 2010-07-20 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8423113B2 (en) | 2003-07-25 | 2013-04-16 | Dexcom, Inc. | Systems and methods for processing sensor data |
US7074307B2 (en) | 2003-07-25 | 2006-07-11 | Dexcom, Inc. | Electrode systems for electrochemical sensors |
US9763609B2 (en) | 2003-07-25 | 2017-09-19 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US20190357827A1 (en) | 2003-08-01 | 2019-11-28 | Dexcom, Inc. | Analyte sensor |
US8886273B2 (en) | 2003-08-01 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US6931327B2 (en) | 2003-08-01 | 2005-08-16 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US7955261B2 (en) | 2003-08-01 | 2011-06-07 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US8761856B2 (en) | 2003-08-01 | 2014-06-24 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US7519408B2 (en) | 2003-11-19 | 2009-04-14 | Dexcom, Inc. | Integrated receiver for continuous analyte sensor |
US20070208245A1 (en) * | 2003-08-01 | 2007-09-06 | Brauker James H | Transcutaneous analyte sensor |
US8160669B2 (en) | 2003-08-01 | 2012-04-17 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7591801B2 (en) | 2004-02-26 | 2009-09-22 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
US7494465B2 (en) | 2004-07-13 | 2009-02-24 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8845536B2 (en) | 2003-08-01 | 2014-09-30 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7774145B2 (en) | 2003-08-01 | 2010-08-10 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8788006B2 (en) | 2003-08-01 | 2014-07-22 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US8626257B2 (en) | 2003-08-01 | 2014-01-07 | Dexcom, Inc. | Analyte sensor |
US9135402B2 (en) | 2007-12-17 | 2015-09-15 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8369919B2 (en) | 2003-08-01 | 2013-02-05 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8275437B2 (en) | 2003-08-01 | 2012-09-25 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20140121989A1 (en) | 2003-08-22 | 2014-05-01 | Dexcom, Inc. | Systems and methods for processing analyte sensor data |
US8065161B2 (en) | 2003-11-13 | 2011-11-22 | Hospira, Inc. | System for maintaining drug information and communicating with medication delivery devices |
US9123077B2 (en) * | 2003-10-07 | 2015-09-01 | Hospira, Inc. | Medication management system |
US20060089855A1 (en) * | 2003-10-07 | 2006-04-27 | Holland Geoffrey N | Medication management system |
US20050278194A1 (en) * | 2003-10-07 | 2005-12-15 | Holland Geoffrey N | Medication management system |
US7490021B2 (en) * | 2003-10-07 | 2009-02-10 | Hospira, Inc. | Method for adjusting pump screen brightness |
US20060100907A1 (en) * | 2003-10-07 | 2006-05-11 | Holland Geoffrey N | Medication management system |
US20060089854A1 (en) * | 2003-10-07 | 2006-04-27 | Holland Geoffrey N | Medication management system |
US7895053B2 (en) * | 2003-10-07 | 2011-02-22 | Hospira, Inc. | Medication management system |
WO2005037095A1 (en) | 2003-10-14 | 2005-04-28 | Pelikan Technologies, Inc. | Method and apparatus for a variable user interface |
EP1527792A1 (en) * | 2003-10-27 | 2005-05-04 | Novo Nordisk A/S | Medical injection device mountable to the skin |
KR20060099520A (en) | 2003-10-21 | 2006-09-19 | 노보 노르디스크 에이/에스 | Medical skin mountable device |
USD914881S1 (en) | 2003-11-05 | 2021-03-30 | Abbott Diabetes Care Inc. | Analyte sensor electronic mount |
US9247900B2 (en) | 2004-07-13 | 2016-02-02 | Dexcom, Inc. | Analyte sensor |
US20080200788A1 (en) * | 2006-10-04 | 2008-08-21 | Dexcorn, Inc. | Analyte sensor |
WO2005057168A2 (en) | 2003-12-05 | 2005-06-23 | Dexcom, Inc. | Calibration techniques for a continuous analyte sensor |
US8364230B2 (en) | 2006-10-04 | 2013-01-29 | Dexcom, Inc. | Analyte sensor |
US8364231B2 (en) | 2006-10-04 | 2013-01-29 | Dexcom, Inc. | Analyte sensor |
US8425417B2 (en) | 2003-12-05 | 2013-04-23 | Dexcom, Inc. | Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device |
US8425416B2 (en) | 2006-10-04 | 2013-04-23 | Dexcom, Inc. | Analyte sensor |
US8532730B2 (en) | 2006-10-04 | 2013-09-10 | Dexcom, Inc. | Analyte sensor |
US11633133B2 (en) | 2003-12-05 | 2023-04-25 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8287453B2 (en) | 2003-12-05 | 2012-10-16 | Dexcom, Inc. | Analyte sensor |
US8423114B2 (en) | 2006-10-04 | 2013-04-16 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
EP3263032B1 (en) | 2003-12-09 | 2024-01-24 | Dexcom, Inc. | Signal processing for continuous analyte sensor |
WO2005055821A1 (en) * | 2003-12-11 | 2005-06-23 | Novo Nordisk A/S | Reduction of settling time for an electrochemical sensor |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
EP1706026B1 (en) | 2003-12-31 | 2017-03-01 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for improving fluidic flow and sample capture |
WO2005072794A2 (en) | 2004-01-29 | 2005-08-11 | M 2 Medical A/S | Disposable medicine dispensing device |
US8808228B2 (en) | 2004-02-26 | 2014-08-19 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
US7862624B2 (en) * | 2004-04-06 | 2011-01-04 | Bao Tran | Nano-particles on fabric or textile |
US7319903B2 (en) * | 2004-04-07 | 2008-01-15 | Cardiac Pacemakers, Inc. | System and method for RF transceiver duty cycling in an implantable medical device |
US7359753B2 (en) | 2004-04-07 | 2008-04-15 | Cardiac Pacemakers, Inc. | System and method for RF wake-up of implantable medical device |
AU2005233602B2 (en) * | 2004-04-12 | 2010-02-18 | Baker Hughes Incorporated | Completion with telescoping perforation & fracturing tool |
US8792955B2 (en) | 2004-05-03 | 2014-07-29 | Dexcom, Inc. | Transcutaneous analyte sensor |
WO2006011062A2 (en) | 2004-05-20 | 2006-02-02 | Albatros Technologies Gmbh & Co. Kg | Printable hydrogel for biosensors |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
CA2816310C (en) | 2004-06-03 | 2016-09-06 | Medtronic Minimed, Inc. | System for monitoring physiological characteristics |
US20070100222A1 (en) * | 2004-06-14 | 2007-05-03 | Metronic Minimed, Inc. | Analyte sensing apparatus for hospital use |
US9089636B2 (en) | 2004-07-02 | 2015-07-28 | Valeritas, Inc. | Methods and devices for delivering GLP-1 and uses thereof |
US7783333B2 (en) | 2004-07-13 | 2010-08-24 | Dexcom, Inc. | Transcutaneous medical device with variable stiffness |
US8452368B2 (en) | 2004-07-13 | 2013-05-28 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8565848B2 (en) | 2004-07-13 | 2013-10-22 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20060270922A1 (en) * | 2004-07-13 | 2006-11-30 | Brauker James H | Analyte sensor |
US8886272B2 (en) * | 2004-07-13 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US7344500B2 (en) * | 2004-07-27 | 2008-03-18 | Medtronic Minimed, Inc. | Sensing system with auxiliary display |
US7539541B2 (en) * | 2004-08-09 | 2009-05-26 | Cardiac Pacemakers, Inc. | Automatic power control for a radio frequency transceiver of an implantable device |
US7805263B2 (en) * | 2004-11-08 | 2010-09-28 | Koninklijke Philips Electronics N.V. | Wireless battery status management for medical devices |
US7648482B2 (en) | 2004-11-22 | 2010-01-19 | Intelliject, Inc. | Devices, systems, and methods for medicament delivery |
US7947017B2 (en) | 2004-11-22 | 2011-05-24 | Intelliject, Inc. | Devices, systems and methods for medicament delivery |
US11590286B2 (en) | 2004-11-22 | 2023-02-28 | Kaleo, Inc. | Devices, systems and methods for medicament delivery |
GB2453069B (en) | 2004-11-22 | 2009-12-09 | Intelliject Llc | Devices,systems and methods for medicament delivery |
US7648483B2 (en) | 2004-11-22 | 2010-01-19 | Intelliject, Inc. | Devices, systems and methods for medicament delivery |
US10737028B2 (en) | 2004-11-22 | 2020-08-11 | Kaleo, Inc. | Devices, systems and methods for medicament delivery |
US7303543B1 (en) | 2004-12-03 | 2007-12-04 | Medtronic Minimed, Inc. | Medication infusion set |
DE602005016298D1 (en) | 2004-12-06 | 2009-10-08 | Novo Nordisk As | VENTILATED DEVICE AT THE SKIN |
US7978063B2 (en) * | 2004-12-13 | 2011-07-12 | Koninklijke Philips Electronics N.V. | Wireless network having body coupled communication for mobile patient monitoring |
US20060131616A1 (en) * | 2004-12-21 | 2006-06-22 | Devaney Douglas E | Copperless flexible circuit |
US8333714B2 (en) | 2006-09-10 | 2012-12-18 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
US7697967B2 (en) | 2005-12-28 | 2010-04-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US9398882B2 (en) | 2005-09-30 | 2016-07-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor and data processing device |
US7883464B2 (en) | 2005-09-30 | 2011-02-08 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
US20070027381A1 (en) * | 2005-07-29 | 2007-02-01 | Therasense, Inc. | Inserter and methods of use |
US10226207B2 (en) | 2004-12-29 | 2019-03-12 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
US9788771B2 (en) | 2006-10-23 | 2017-10-17 | Abbott Diabetes Care Inc. | Variable speed sensor insertion devices and methods of use |
US7731657B2 (en) | 2005-08-30 | 2010-06-08 | Abbott Diabetes Care Inc. | Analyte sensor introducer and methods of use |
US8512243B2 (en) | 2005-09-30 | 2013-08-20 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US8571624B2 (en) | 2004-12-29 | 2013-10-29 | Abbott Diabetes Care Inc. | Method and apparatus for mounting a data transmission device in a communication system |
US20110190603A1 (en) * | 2009-09-29 | 2011-08-04 | Stafford Gary A | Sensor Inserter Having Introducer |
US9743862B2 (en) | 2011-03-31 | 2017-08-29 | Abbott Diabetes Care Inc. | Systems and methods for transcutaneously implanting medical devices |
US20090105569A1 (en) | 2006-04-28 | 2009-04-23 | Abbott Diabetes Care, Inc. | Introducer Assembly and Methods of Use |
US8613703B2 (en) | 2007-05-31 | 2013-12-24 | Abbott Diabetes Care Inc. | Insertion devices and methods |
US9572534B2 (en) | 2010-06-29 | 2017-02-21 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US9259175B2 (en) | 2006-10-23 | 2016-02-16 | Abbott Diabetes Care, Inc. | Flexible patch for fluid delivery and monitoring body analytes |
FI20055027A (en) * | 2005-01-19 | 2006-07-20 | Polar Electro Oy | System, performance meter, server and computer program |
US20060166629A1 (en) * | 2005-01-24 | 2006-07-27 | Therasense, Inc. | Method and apparatus for providing EMC Class-B compliant RF transmitter for data monitoring an detection systems |
US9022980B2 (en) | 2005-02-01 | 2015-05-05 | Kaleo, Inc. | Medical injector simulation device |
US7731686B2 (en) | 2005-02-01 | 2010-06-08 | Intelliject, Inc. | Devices, systems and methods for medicament delivery |
US8226610B2 (en) | 2005-02-01 | 2012-07-24 | Intelliject, Inc. | Medical injector with compliance tracking and monitoring |
GB2440039A (en) | 2005-02-01 | 2008-01-16 | Intelliject Llc | Devices, systems and methods for medicament delivery |
US8206360B2 (en) | 2005-02-01 | 2012-06-26 | Intelliject, Inc. | Devices, systems and methods for medicament delivery |
US8231573B2 (en) | 2005-02-01 | 2012-07-31 | Intelliject, Inc. | Medicament delivery device having an electronic circuit system |
US8361026B2 (en) | 2005-02-01 | 2013-01-29 | Intelliject, Inc. | Apparatus and methods for self-administration of vaccines and other medicaments |
US7704229B2 (en) | 2005-02-03 | 2010-04-27 | Medtronic Minimed, Inc. | Insertion device |
WO2006090873A1 (en) * | 2005-02-25 | 2006-08-31 | Ultizyme International Ltd. | Fuel cell-type enzyme sensor |
US7689176B2 (en) * | 2005-03-07 | 2010-03-30 | Codman NeuroSciences Sárl | Telemetry system employing DC balanced encoding |
US20090076360A1 (en) | 2007-09-13 | 2009-03-19 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8133178B2 (en) | 2006-02-22 | 2012-03-13 | Dexcom, Inc. | Analyte sensor |
JP2008535548A (en) | 2005-03-21 | 2008-09-04 | アボット ダイアビーティーズ ケア インコーポレイテッド | Method and system for providing an integrated pharmaceutical infusion / specimen monitoring system |
JP2006263105A (en) * | 2005-03-23 | 2006-10-05 | Fuji Photo Film Co Ltd | Biological information collection system |
WO2006105794A1 (en) | 2005-04-06 | 2006-10-12 | M 2 Medical A/S | An actuator |
EP1877116A1 (en) | 2005-04-13 | 2008-01-16 | Novo Nordisk A/S | Medical skin mountable device and system |
US7308292B2 (en) | 2005-04-15 | 2007-12-11 | Sensors For Medicine And Science, Inc. | Optical-based sensing devices |
US8060174B2 (en) | 2005-04-15 | 2011-11-15 | Dexcom, Inc. | Analyte sensing biointerface |
US7664553B2 (en) | 2005-04-27 | 2010-02-16 | Cardiac Pacemakers, Inc. | System and method for enabling communications with implantable medical devices |
US8112240B2 (en) | 2005-04-29 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing leak detection in data monitoring and management systems |
US9233203B2 (en) | 2005-05-06 | 2016-01-12 | Medtronic Minimed, Inc. | Medical needles for damping motion |
US20060253085A1 (en) * | 2005-05-06 | 2006-11-09 | Medtronic Minimed, Inc. | Dual insertion set |
US20060272652A1 (en) * | 2005-06-03 | 2006-12-07 | Medtronic Minimed, Inc. | Virtual patient software system for educating and treating individuals with diabetes |
US7620437B2 (en) * | 2005-06-03 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US20080262320A1 (en) * | 2005-06-28 | 2008-10-23 | Schaefer Timothy M | System for Monitoring a Physical Parameter of a Subject |
US20070016449A1 (en) * | 2005-06-29 | 2007-01-18 | Gary Cohen | Flexible glucose analysis using varying time report deltas and configurable glucose target ranges |
US20070066956A1 (en) * | 2005-07-27 | 2007-03-22 | Medtronic Minimed, Inc. | Systems and methods for entering temporary basal rate pattern in an infusion device |
US20070093786A1 (en) * | 2005-08-16 | 2007-04-26 | Medtronic Minimed, Inc. | Watch controller for a medical device |
US20090227855A1 (en) | 2005-08-16 | 2009-09-10 | Medtronic Minimed, Inc. | Controller device for an infusion pump |
US7737581B2 (en) | 2005-08-16 | 2010-06-15 | Medtronic Minimed, Inc. | Method and apparatus for predicting end of battery life |
CN101365374B (en) | 2005-08-31 | 2011-11-16 | 弗吉尼亚大学专利基金委员会 | Improving accuracy of continuous glucose sensors |
US9089713B2 (en) | 2005-08-31 | 2015-07-28 | Michael Sasha John | Methods and systems for semi-automatic adjustment of medical monitoring and treatment |
US7713240B2 (en) | 2005-09-13 | 2010-05-11 | Medtronic Minimed, Inc. | Modular external infusion device |
US20090118682A1 (en) * | 2005-09-13 | 2009-05-07 | Novo Nordisk A/S | Reservoir Device With Inspection Aid For Detection Of Drug Condition |
US9072476B2 (en) | 2005-09-23 | 2015-07-07 | Medtronic Minimed, Inc. | Flexible sensor apparatus |
US7725148B2 (en) | 2005-09-23 | 2010-05-25 | Medtronic Minimed, Inc. | Sensor with layered electrodes |
US8551046B2 (en) | 2006-09-18 | 2013-10-08 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US8409142B2 (en) | 2005-09-26 | 2013-04-02 | Asante Solutions, Inc. | Operating an infusion pump system |
US8057436B2 (en) | 2005-09-26 | 2011-11-15 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US8105279B2 (en) | 2005-09-26 | 2012-01-31 | M2 Group Holdings, Inc. | Dispensing fluid from an infusion pump system |
US7534226B2 (en) | 2005-09-26 | 2009-05-19 | M2 Group Holdings, Inc. | Dispensing fluid from an infusion pump system |
EP2162168B1 (en) | 2005-09-26 | 2018-11-07 | Bigfoot Biomedical, Inc. | Modular infusion pump having two different energy sources |
US8545445B2 (en) | 2006-02-09 | 2013-10-01 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US9521968B2 (en) * | 2005-09-30 | 2016-12-20 | Abbott Diabetes Care Inc. | Analyte sensor retention mechanism and methods of use |
US20080287870A1 (en) * | 2005-10-17 | 2008-11-20 | Nov Nordisk A/S | Vented Drug Reservoir Unit |
US7766829B2 (en) | 2005-11-04 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
DE602006008494D1 (en) | 2005-11-08 | 2009-09-24 | M2 Medical As | INFUSION PUMP SYSTEM |
US8192394B2 (en) | 2005-11-08 | 2012-06-05 | Asante Solutions, Inc. | Method and system for manual and autonomous control of an infusion pump |
US20090134043A1 (en) * | 2005-11-10 | 2009-05-28 | Kevin Ward | Non-biofouling, universal redox electrode and measurement system |
US20070118030A1 (en) * | 2005-11-22 | 2007-05-24 | Isense Corporation | Method and apparatus for analyte data telemetry |
US7963917B2 (en) * | 2005-12-05 | 2011-06-21 | Echo Therapeutics, Inc. | System and method for continuous non-invasive glucose monitoring |
US20090118592A1 (en) * | 2005-12-08 | 2009-05-07 | Novo Nordisk A/S | Medical System Comprising a Sensor Device |
DE102005059131B4 (en) * | 2005-12-10 | 2009-12-03 | Fresenius Medical Care Deutschland Gmbh | Arrangement of medical treatment units and peripheral devices |
WO2007120363A2 (en) | 2005-12-28 | 2007-10-25 | Abbott Diabetes Care, Inc. | Medical device insertion |
US11298058B2 (en) | 2005-12-28 | 2022-04-12 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US7985330B2 (en) * | 2005-12-30 | 2011-07-26 | Medtronic Minimed, Inc. | Method and system for detecting age, hydration, and functional states of sensors using electrochemical impedance spectroscopy |
US20070169533A1 (en) | 2005-12-30 | 2007-07-26 | Medtronic Minimed, Inc. | Methods and systems for detecting the hydration of sensors |
US8114268B2 (en) * | 2005-12-30 | 2012-02-14 | Medtronic Minimed, Inc. | Method and system for remedying sensor malfunctions detected by electrochemical impedance spectroscopy |
US8114269B2 (en) | 2005-12-30 | 2012-02-14 | Medtronic Minimed, Inc. | System and method for determining the point of hydration and proper time to apply potential to a glucose sensor |
US20070173712A1 (en) * | 2005-12-30 | 2007-07-26 | Medtronic Minimed, Inc. | Method of and system for stabilization of sensors |
US7774038B2 (en) | 2005-12-30 | 2010-08-10 | Medtronic Minimed, Inc. | Real-time self-calibrating sensor system and method |
US9757061B2 (en) | 2006-01-17 | 2017-09-12 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US7736310B2 (en) | 2006-01-30 | 2010-06-15 | Abbott Diabetes Care Inc. | On-body medical device securement |
US8344966B2 (en) | 2006-01-31 | 2013-01-01 | Abbott Diabetes Care Inc. | Method and system for providing a fault tolerant display unit in an electronic device |
US11364335B2 (en) | 2006-02-09 | 2022-06-21 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US12070574B2 (en) | 2006-02-09 | 2024-08-27 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US11478623B2 (en) | 2006-02-09 | 2022-10-25 | Deka Products Limited Partnership | Infusion pump assembly |
US11027058B2 (en) | 2006-02-09 | 2021-06-08 | Deka Products Limited Partnership | Infusion pump assembly |
JP2009525801A (en) * | 2006-02-09 | 2009-07-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Apparatus for monitoring patient status and treatment based on the status |
US10010669B2 (en) | 2006-02-09 | 2018-07-03 | Deka Products Limited Partnership | Systems and methods for fluid delivery |
US11497846B2 (en) | 2006-02-09 | 2022-11-15 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
EP1986543B2 (en) * | 2006-02-22 | 2022-03-09 | DexCom, Inc. | Analyte sensor |
US7981034B2 (en) | 2006-02-28 | 2011-07-19 | Abbott Diabetes Care Inc. | Smart messages and alerts for an infusion delivery and management system |
EP1991110B1 (en) | 2006-03-09 | 2018-11-07 | DexCom, Inc. | Systems and methods for processing analyte sensor data |
WO2007104755A1 (en) | 2006-03-13 | 2007-09-20 | Novo Nordisk A/S | Secure pairing of electronic devices using dual means of communication |
US8920343B2 (en) | 2006-03-23 | 2014-12-30 | Michael Edward Sabatino | Apparatus for acquiring and processing of physiological auditory signals |
AU2007233231B2 (en) | 2006-03-30 | 2011-02-24 | Mannkind Corporation | Multi-cartridge fluid delivery device |
US9326709B2 (en) | 2010-03-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
US8346335B2 (en) | 2008-03-28 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US9392969B2 (en) | 2008-08-31 | 2016-07-19 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
US8473022B2 (en) | 2008-01-31 | 2013-06-25 | Abbott Diabetes Care Inc. | Analyte sensor with time lag compensation |
US7653425B2 (en) | 2006-08-09 | 2010-01-26 | Abbott Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
US8374668B1 (en) | 2007-10-23 | 2013-02-12 | Abbott Diabetes Care Inc. | Analyte sensor with lag compensation |
US7630748B2 (en) | 2006-10-25 | 2009-12-08 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US9339217B2 (en) | 2011-11-25 | 2016-05-17 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods of use |
US8140312B2 (en) | 2007-05-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and system for determining analyte levels |
US8224415B2 (en) | 2009-01-29 | 2012-07-17 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US8226891B2 (en) | 2006-03-31 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US9675290B2 (en) | 2012-10-30 | 2017-06-13 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
US7618369B2 (en) | 2006-10-02 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for dynamically updating calibration parameters for an analyte sensor |
US8073008B2 (en) | 2006-04-28 | 2011-12-06 | Medtronic Minimed, Inc. | Subnetwork synchronization and variable transmit synchronization techniques for a wireless medical device network |
US20070255126A1 (en) | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Data communication in networked fluid infusion systems |
US20070253021A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Identification of devices in a medical device network and wireless data communication techniques utilizing device identifiers |
US7942844B2 (en) | 2006-04-28 | 2011-05-17 | Medtronic Minimed, Inc. | Remote monitoring for networked fluid infusion systems |
US20070258395A1 (en) * | 2006-04-28 | 2007-11-08 | Medtronic Minimed, Inc. | Wireless data communication protocols for a medical device network |
US20070270677A1 (en) * | 2006-05-22 | 2007-11-22 | Steve Thuss | Interactive device for monitoring and reporting glucose levels |
US20090054749A1 (en) * | 2006-05-31 | 2009-02-26 | Abbott Diabetes Care, Inc. | Method and System for Providing Data Transmission in a Data Management System |
WO2007143225A2 (en) | 2006-06-07 | 2007-12-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and method |
US20090171269A1 (en) * | 2006-06-29 | 2009-07-02 | Abbott Diabetes Care, Inc. | Infusion Device and Methods Therefor |
US9119582B2 (en) | 2006-06-30 | 2015-09-01 | Abbott Diabetes Care, Inc. | Integrated analyte sensor and infusion device and methods therefor |
US8206296B2 (en) | 2006-08-07 | 2012-06-26 | Abbott Diabetes Care Inc. | Method and system for providing integrated analyte monitoring and infusion system therapy management |
US8932216B2 (en) | 2006-08-07 | 2015-01-13 | Abbott Diabetes Care Inc. | Method and system for providing data management in integrated analyte monitoring and infusion system |
US9056165B2 (en) | 2006-09-06 | 2015-06-16 | Medtronic Minimed, Inc. | Intelligent therapy recommendation algorithm and method of using the same |
DK2083673T3 (en) | 2006-09-29 | 2012-09-24 | Medingo Ltd | FLUID DISTRIBUTION SYSTEM WITH ELECTROCHEMICAL DETECTION OF ANALYTIC CONCENTRATION LEVELS |
US8275438B2 (en) | 2006-10-04 | 2012-09-25 | Dexcom, Inc. | Analyte sensor |
US7831287B2 (en) | 2006-10-04 | 2010-11-09 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8298142B2 (en) | 2006-10-04 | 2012-10-30 | Dexcom, Inc. | Analyte sensor |
US8562528B2 (en) | 2006-10-04 | 2013-10-22 | Dexcom, Inc. | Analyte sensor |
US8449464B2 (en) | 2006-10-04 | 2013-05-28 | Dexcom, Inc. | Analyte sensor |
US8478377B2 (en) | 2006-10-04 | 2013-07-02 | Dexcom, Inc. | Analyte sensor |
US8447376B2 (en) | 2006-10-04 | 2013-05-21 | Dexcom, Inc. | Analyte sensor |
US8202267B2 (en) | 2006-10-10 | 2012-06-19 | Medsolve Technologies, Inc. | Method and apparatus for infusing liquid to a body |
US20080091466A1 (en) | 2006-10-16 | 2008-04-17 | Hospira, Inc. | System and method for comparing and utilizing activity information and configuration information from multiple device management systems |
US8135548B2 (en) | 2006-10-26 | 2012-03-13 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
EP1918837A1 (en) * | 2006-10-31 | 2008-05-07 | F. Hoffmann-La Roche AG | Method for processing a chronological sequence of measurements of a time dependent parameter |
US8579853B2 (en) | 2006-10-31 | 2013-11-12 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US20080119710A1 (en) * | 2006-10-31 | 2008-05-22 | Abbott Diabetes Care, Inc. | Medical devices and methods of using the same |
US20080119705A1 (en) | 2006-11-17 | 2008-05-22 | Medtronic Minimed, Inc. | Systems and Methods for Diabetes Management Using Consumer Electronic Devices |
EP2601883A1 (en) * | 2006-12-22 | 2013-06-12 | Medingo Ltd. | Fluid delivery with in vivo electrochemical analyte sensing |
WO2008077914A2 (en) * | 2006-12-27 | 2008-07-03 | Disetronic Licensing Ag | Portable medical appliance with encapsulated function modules |
TWI308640B (en) * | 2006-12-27 | 2009-04-11 | Ind Tech Res Inst | Portable partial discharge detection device and method thereof |
US8845530B2 (en) | 2007-01-02 | 2014-09-30 | Isense Corporation | Resposable biosensor assembly and method of sensing |
US10154804B2 (en) | 2007-01-31 | 2018-12-18 | Medtronic Minimed, Inc. | Model predictive method and system for controlling and supervising insulin infusion |
US8738107B2 (en) | 2007-05-10 | 2014-05-27 | Medtronic Minimed, Inc. | Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement |
US8838195B2 (en) | 2007-02-06 | 2014-09-16 | Medtronic Minimed, Inc. | Optical systems and methods for ratiometric measurement of blood glucose concentration |
EP2121077A1 (en) | 2007-02-09 | 2009-11-25 | Deka Products Limited Partnership | Automated insertion assembly |
US8121857B2 (en) | 2007-02-15 | 2012-02-21 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
US8732188B2 (en) | 2007-02-18 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
US8369916B2 (en) * | 2007-02-23 | 2013-02-05 | Becton, Dickinson And Company | Optical fiber connector |
EP1972275B1 (en) * | 2007-03-20 | 2015-10-28 | Roche Diagnostics GmbH | System for in vivo measurement of an analyte concentration |
EP1972267A1 (en) | 2007-03-20 | 2008-09-24 | Roche Diagnostics GmbH | System for in vivo measurement of an analyte concentration |
US7768387B2 (en) | 2007-04-14 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US20080269714A1 (en) | 2007-04-25 | 2008-10-30 | Medtronic Minimed, Inc. | Closed loop/semi-closed loop therapy modification system |
EP2147305A4 (en) * | 2007-04-27 | 2010-05-05 | Abbott Diabetes Care Inc | Test strip identification using conductive patterns |
US8404396B2 (en) | 2007-05-14 | 2013-03-26 | Brigham Young University | Fuel cell and method for generating electric power |
US7996158B2 (en) | 2007-05-14 | 2011-08-09 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US7833190B1 (en) * | 2007-05-17 | 2010-11-16 | Petisamaria Hall | Breast pump |
US20200037875A1 (en) | 2007-05-18 | 2020-02-06 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US7981102B2 (en) | 2007-05-21 | 2011-07-19 | Asante Solutions, Inc. | Removable controller for an infusion pump |
US7833196B2 (en) | 2007-05-21 | 2010-11-16 | Asante Solutions, Inc. | Illumination instrument for an infusion pump |
US7794426B2 (en) | 2007-05-21 | 2010-09-14 | Asante Solutions, Inc. | Infusion pump system with contamination-resistant features |
US7892199B2 (en) | 2007-05-21 | 2011-02-22 | Asante Solutions, Inc. | Occlusion sensing for an infusion pump |
US20080300572A1 (en) | 2007-06-01 | 2008-12-04 | Medtronic Minimed, Inc. | Wireless monitor for a personal medical device system |
CA2688184A1 (en) | 2007-06-08 | 2008-12-18 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
US8444595B2 (en) * | 2007-06-15 | 2013-05-21 | Animas Corporation | Methods to pair a medical device and at least a remote controller for such medical device |
US9391670B2 (en) | 2007-06-15 | 2016-07-12 | Animas Corporation | Methods for secure communication and pairing of a medical infusion device and a remote controller for such medical device |
US8449523B2 (en) | 2007-06-15 | 2013-05-28 | Animas Corporation | Method of operating a medical device and at least a remote controller for such medical device |
US8932250B2 (en) * | 2007-06-15 | 2015-01-13 | Animas Corporation | Systems and methods to pair a medical device and a remote controller for such medical device |
AU2013205279B2 (en) * | 2007-06-21 | 2015-09-24 | Abbott Diabetes Care Inc. | Health monitor |
US8641618B2 (en) * | 2007-06-27 | 2014-02-04 | Abbott Diabetes Care Inc. | Method and structure for securing a monitoring device element |
US7980141B2 (en) * | 2007-07-27 | 2011-07-19 | Robert Connor | Wearable position or motion sensing systems or methods |
US7768386B2 (en) | 2007-07-31 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9968742B2 (en) | 2007-08-29 | 2018-05-15 | Medtronic Minimed, Inc. | Combined sensor and infusion set using separated sites |
US20120046533A1 (en) | 2007-08-29 | 2012-02-23 | Medtronic Minimed, Inc. | Combined sensor and infusion sets |
US20090143725A1 (en) * | 2007-08-31 | 2009-06-04 | Abbott Diabetes Care, Inc. | Method of Optimizing Efficacy of Therapeutic Agent |
US7828528B2 (en) | 2007-09-06 | 2010-11-09 | Asante Solutions, Inc. | Occlusion sensing system for infusion pumps |
US7717903B2 (en) | 2007-09-06 | 2010-05-18 | M2 Group Holdings, Inc. | Operating an infusion pump system |
US8287514B2 (en) | 2007-09-07 | 2012-10-16 | Asante Solutions, Inc. | Power management techniques for an infusion pump system |
US7935105B2 (en) | 2007-09-07 | 2011-05-03 | Asante Solutions, Inc. | Data storage for an infusion pump system |
US7935076B2 (en) | 2007-09-07 | 2011-05-03 | Asante Solutions, Inc. | Activity sensing techniques for an infusion pump system |
US7879026B2 (en) | 2007-09-07 | 2011-02-01 | Asante Solutions, Inc. | Controlled adjustment of medicine dispensation from an infusion pump device |
US10561845B2 (en) * | 2007-09-24 | 2020-02-18 | Medtronic, Inc. | Therapy adjustment based on patient event indication |
US7934912B2 (en) | 2007-09-27 | 2011-05-03 | Curlin Medical Inc | Peristaltic pump assembly with cassette and mounting pin arrangement |
US8062008B2 (en) | 2007-09-27 | 2011-11-22 | Curlin Medical Inc. | Peristaltic pump and removable cassette therefor |
US8083503B2 (en) | 2007-09-27 | 2011-12-27 | Curlin Medical Inc. | Peristaltic pump assembly and regulator therefor |
EP2227132B1 (en) | 2007-10-09 | 2023-03-08 | DexCom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US8377031B2 (en) | 2007-10-23 | 2013-02-19 | Abbott Diabetes Care Inc. | Closed loop control system with safety parameters and methods |
US8409093B2 (en) | 2007-10-23 | 2013-04-02 | Abbott Diabetes Care Inc. | Assessing measures of glycemic variability |
US8000918B2 (en) | 2007-10-23 | 2011-08-16 | Edwards Lifesciences Corporation | Monitoring and compensating for temperature-related error in an electrochemical sensor |
US8216138B1 (en) | 2007-10-23 | 2012-07-10 | Abbott Diabetes Care Inc. | Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration |
US20090247984A1 (en) * | 2007-10-24 | 2009-10-01 | Masimo Laboratories, Inc. | Use of microneedles for small molecule metabolite reporter delivery |
US8417312B2 (en) | 2007-10-25 | 2013-04-09 | Dexcom, Inc. | Systems and methods for processing sensor data |
US20090112626A1 (en) * | 2007-10-30 | 2009-04-30 | Cary Talbot | Remote wireless monitoring, processing, and communication of patient data |
US20090113295A1 (en) * | 2007-10-30 | 2009-04-30 | Halpern Arieh S | Graphical display for physiological patient data |
US7783442B2 (en) * | 2007-10-31 | 2010-08-24 | Medtronic Minimed, Inc. | System and methods for calibrating physiological characteristic sensors |
US8019721B2 (en) | 2007-12-07 | 2011-09-13 | Roche Diagnostics Operations, Inc. | Method and system for enhanced data transfer |
US8103241B2 (en) * | 2007-12-07 | 2012-01-24 | Roche Diagnostics Operations, Inc. | Method and system for wireless device communication |
US8078592B2 (en) * | 2007-12-07 | 2011-12-13 | Roche Diagnostics Operations, Inc. | System and method for database integrity checking |
US8402151B2 (en) | 2007-12-07 | 2013-03-19 | Roche Diagnostics Operations, Inc. | Dynamic communication stack |
US7979136B2 (en) * | 2007-12-07 | 2011-07-12 | Roche Diagnostics Operation, Inc | Method and system for multi-device communication |
US7875022B2 (en) * | 2007-12-12 | 2011-01-25 | Asante Solutions, Inc. | Portable infusion pump and media player |
US9839395B2 (en) | 2007-12-17 | 2017-12-12 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8636670B2 (en) | 2008-05-13 | 2014-01-28 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US9717896B2 (en) | 2007-12-18 | 2017-08-01 | Gearbox, Llc | Treatment indications informed by a priori implant information |
US20090287120A1 (en) | 2007-12-18 | 2009-11-19 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
US9026370B2 (en) | 2007-12-18 | 2015-05-05 | Hospira, Inc. | User interface improvements for medical devices |
US20090164239A1 (en) | 2007-12-19 | 2009-06-25 | Abbott Diabetes Care, Inc. | Dynamic Display Of Glucose Information |
US8313467B2 (en) | 2007-12-27 | 2012-11-20 | Medtronic Minimed, Inc. | Reservoir pressure equalization systems and methods |
US10188787B2 (en) | 2007-12-31 | 2019-01-29 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US9526830B2 (en) | 2007-12-31 | 2016-12-27 | Deka Products Limited Partnership | Wearable pump assembly |
RU2510758C2 (en) | 2007-12-31 | 2014-04-10 | Дека Продактс Лимитед Партнершип | Infusion pump assembly |
US8900188B2 (en) | 2007-12-31 | 2014-12-02 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US8881774B2 (en) | 2007-12-31 | 2014-11-11 | Deka Research & Development Corp. | Apparatus, system and method for fluid delivery |
US9456955B2 (en) | 2007-12-31 | 2016-10-04 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US10080704B2 (en) | 2007-12-31 | 2018-09-25 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US8915866B2 (en) | 2008-01-18 | 2014-12-23 | Warsaw Orthopedic, Inc. | Implantable sensor and associated methods |
USD612279S1 (en) | 2008-01-18 | 2010-03-23 | Lifescan Scotland Limited | User interface in an analyte meter |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US8708961B2 (en) | 2008-01-28 | 2014-04-29 | Medsolve Technologies, Inc. | Apparatus for infusing liquid to a body |
CA2715628A1 (en) | 2008-02-21 | 2009-08-27 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
FR2928553B1 (en) * | 2008-03-14 | 2012-03-02 | Sophysa Sa | METHOD FOR REGULATING LCR DRAINAGE |
USD611853S1 (en) | 2008-03-21 | 2010-03-16 | Lifescan Scotland Limited | Analyte test meter |
USD615431S1 (en) | 2008-03-21 | 2010-05-11 | Lifescan Scotland Limited | Analyte test meter |
USD612275S1 (en) | 2008-03-21 | 2010-03-23 | Lifescan Scotland, Ltd. | Analyte test meter |
IL197532A0 (en) | 2008-03-21 | 2009-12-24 | Lifescan Scotland Ltd | Analyte testing method and system |
US8396528B2 (en) | 2008-03-25 | 2013-03-12 | Dexcom, Inc. | Analyte sensor |
US11730407B2 (en) | 2008-03-28 | 2023-08-22 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8682408B2 (en) | 2008-03-28 | 2014-03-25 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
WO2009121026A1 (en) * | 2008-03-28 | 2009-10-01 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US20090247850A1 (en) * | 2008-03-28 | 2009-10-01 | Nellcor Puritan Bennett Llc | Manually Powered Oximeter |
US8583204B2 (en) | 2008-03-28 | 2013-11-12 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8207860B2 (en) * | 2008-04-28 | 2012-06-26 | Medtronic Minimed, Inc. | Automobile physiological monitoring system and method for using the same |
USD994111S1 (en) | 2008-05-12 | 2023-08-01 | Kaleo, Inc. | Medicament delivery device cover |
US8021344B2 (en) | 2008-07-28 | 2011-09-20 | Intelliject, Inc. | Medicament delivery device configured to produce an audible output |
US9295786B2 (en) | 2008-05-28 | 2016-03-29 | Medtronic Minimed, Inc. | Needle protective device for subcutaneous sensors |
US8591410B2 (en) | 2008-05-30 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US8924159B2 (en) | 2008-05-30 | 2014-12-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
USD611151S1 (en) | 2008-06-10 | 2010-03-02 | Lifescan Scotland, Ltd. | Test meter |
WO2010009172A1 (en) | 2008-07-14 | 2010-01-21 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
USD611489S1 (en) | 2008-07-25 | 2010-03-09 | Lifescan, Inc. | User interface display for a glucose meter |
US8700114B2 (en) | 2008-07-31 | 2014-04-15 | Medtronic Minmed, Inc. | Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them |
US7959598B2 (en) | 2008-08-20 | 2011-06-14 | Asante Solutions, Inc. | Infusion pump systems and methods |
CN102204122B (en) * | 2008-08-28 | 2014-12-10 | 艾森斯公司 | Method and system for communication between wireless devices |
US20100057040A1 (en) | 2008-08-31 | 2010-03-04 | Abbott Diabetes Care, Inc. | Robust Closed Loop Control And Methods |
US8622988B2 (en) | 2008-08-31 | 2014-01-07 | Abbott Diabetes Care Inc. | Variable rate closed loop control and methods |
US9943644B2 (en) | 2008-08-31 | 2018-04-17 | Abbott Diabetes Care Inc. | Closed loop control with reference measurement and methods thereof |
US8734422B2 (en) | 2008-08-31 | 2014-05-27 | Abbott Diabetes Care Inc. | Closed loop control with improved alarm functions |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
EP3795987B1 (en) | 2008-09-19 | 2023-10-25 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
USD611372S1 (en) | 2008-09-19 | 2010-03-09 | Lifescan Scotland Limited | Analyte test meter |
CA2737461A1 (en) | 2008-09-19 | 2010-03-25 | Tandem Diabetes Care, Inc. | Solute concentration measurement device and related methods |
US8986208B2 (en) | 2008-09-30 | 2015-03-24 | Abbott Diabetes Care Inc. | Analyte sensor sensitivity attenuation mitigation |
US9180245B2 (en) | 2008-10-10 | 2015-11-10 | Deka Products Limited Partnership | System and method for administering an infusible fluid |
US8262616B2 (en) | 2008-10-10 | 2012-09-11 | Deka Products Limited Partnership | Infusion pump assembly |
US8066672B2 (en) | 2008-10-10 | 2011-11-29 | Deka Products Limited Partnership | Infusion pump assembly with a backup power supply |
US8708376B2 (en) | 2008-10-10 | 2014-04-29 | Deka Products Limited Partnership | Medium connector |
US8267892B2 (en) | 2008-10-10 | 2012-09-18 | Deka Products Limited Partnership | Multi-language / multi-processor infusion pump assembly |
US8016789B2 (en) | 2008-10-10 | 2011-09-13 | Deka Products Limited Partnership | Pump assembly with a removable cover assembly |
US8223028B2 (en) | 2008-10-10 | 2012-07-17 | Deka Products Limited Partnership | Occlusion detection system and method |
JP5479706B2 (en) * | 2008-10-17 | 2014-04-23 | オリンパスメディカルシステムズ株式会社 | Medical information system, in-subject information display method, and in-subject information display program |
EP3315958B1 (en) | 2008-11-04 | 2021-09-15 | PHC Holdings Corporation | Measurement device |
US8208973B2 (en) | 2008-11-05 | 2012-06-26 | Medtronic Minimed, Inc. | System and method for variable beacon timing with wireless devices |
US9326707B2 (en) | 2008-11-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US9330237B2 (en) | 2008-12-24 | 2016-05-03 | Medtronic Minimed, Inc. | Pattern recognition and filtering in a therapy management system |
US9289168B2 (en) | 2008-12-29 | 2016-03-22 | Medtronic Minimed, Inc. | System and/or method for glucose sensor calibration |
US10471207B2 (en) | 2008-12-29 | 2019-11-12 | Medtronic Minimed, Inc. | System and/or method for glucose sensor calibration |
US8103456B2 (en) | 2009-01-29 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US8560082B2 (en) | 2009-01-30 | 2013-10-15 | Abbott Diabetes Care Inc. | Computerized determination of insulin pump therapy parameters using real time and retrospective data processing |
US20100198196A1 (en) * | 2009-01-30 | 2010-08-05 | Abbott Diabetes Care, Inc. | Therapy Delivery Device Programming Tool |
WO2010111660A1 (en) | 2009-03-27 | 2010-09-30 | Dexcom, Inc. | Methods and systems for promoting glucose management |
US8497777B2 (en) | 2009-04-15 | 2013-07-30 | Abbott Diabetes Care Inc. | Analyte monitoring system having an alert |
WO2010121229A1 (en) | 2009-04-16 | 2010-10-21 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US8271106B2 (en) | 2009-04-17 | 2012-09-18 | Hospira, Inc. | System and method for configuring a rule set for medical event management and responses |
WO2010129375A1 (en) | 2009-04-28 | 2010-11-11 | Abbott Diabetes Care Inc. | Closed loop blood glucose control algorithm analysis |
US8483967B2 (en) | 2009-04-29 | 2013-07-09 | Abbott Diabetes Care Inc. | Method and system for providing real time analyte sensor calibration with retrospective backfill |
US20100278738A1 (en) * | 2009-05-04 | 2010-11-04 | Sitzman Thomas J | Method to detect and monitor ischemia in transplanted organs and tissues |
WO2010141922A1 (en) | 2009-06-04 | 2010-12-09 | Abbott Diabetes Care Inc. | Method and system for updating a medical device |
US8613892B2 (en) | 2009-06-30 | 2013-12-24 | Abbott Diabetes Care Inc. | Analyte meter with a moveable head and methods of using the same |
US20110027453A1 (en) | 2009-07-02 | 2011-02-03 | Dexcom, Inc. | Continuous analyte sensors and methods of making same |
US9351677B2 (en) | 2009-07-02 | 2016-05-31 | Dexcom, Inc. | Analyte sensor with increased reference capacity |
US20110009813A1 (en) | 2009-07-09 | 2011-01-13 | Medtronic Minimed, Inc. | Panning a display of a portable medical device |
US8344847B2 (en) | 2009-07-09 | 2013-01-01 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device |
JP5961111B2 (en) | 2009-07-15 | 2016-08-02 | デカ・プロダクツ・リミテッド・パートナーシップ | Apparatus, system, and method for an infusion pump assembly |
ES2984897T3 (en) | 2009-07-23 | 2024-10-31 | Abbott Diabetes Care Inc | Real-time management of data relating to physiological control of glucose levels |
US11169010B2 (en) * | 2009-07-27 | 2021-11-09 | Integra Lifesciences Switzerland Sàrl | Method for the calibration of an implantable sensor |
EP2459251B1 (en) | 2009-07-30 | 2014-03-12 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
WO2011025999A1 (en) * | 2009-08-29 | 2011-03-03 | Abbott Diabetes Care Inc. | Analyte sensor |
WO2011026147A1 (en) | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Analyte signal processing device and methods |
US20110106126A1 (en) * | 2009-08-31 | 2011-05-05 | Michael Love | Inserter device including rotor subassembly |
WO2011026150A1 (en) * | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Flexible mounting unit and cover for a medical device |
WO2011026149A1 (en) * | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Mounting unit having a sensor and associated circuitry |
DK4147999T3 (en) | 2009-08-31 | 2024-09-09 | Abbott Diabetes Care Inc | Displays for a medical device |
US8487758B2 (en) | 2009-09-02 | 2013-07-16 | Medtronic Minimed, Inc. | Medical device having an intelligent alerting scheme, and related operating methods |
US9554739B2 (en) | 2009-09-29 | 2017-01-31 | Covidien Lp | Smart cable for coupling a medical sensor to an electronic patient monitor |
US9320461B2 (en) | 2009-09-29 | 2016-04-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing notification function in analyte monitoring systems |
CN102724913A (en) | 2009-09-30 | 2012-10-10 | 德克斯康公司 | Transcutaneous analyte sensor |
US20110082711A1 (en) | 2009-10-06 | 2011-04-07 | Masimo Laboratories, Inc. | Personal digital assistant or organizer for monitoring glucose levels |
WO2011044386A1 (en) * | 2009-10-07 | 2011-04-14 | Abbott Diabetes Care Inc. | Sensor inserter assembly having rotatable trigger |
WO2011053881A1 (en) | 2009-10-30 | 2011-05-05 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US8386042B2 (en) | 2009-11-03 | 2013-02-26 | Medtronic Minimed, Inc. | Omnidirectional accelerometer device and medical device incorporating same |
US8452570B2 (en) * | 2009-12-18 | 2013-05-28 | Roche Diagnostics Operations, Inc. | Systems and apparatuses for testing blood glucose measurement engines |
US8574201B2 (en) | 2009-12-22 | 2013-11-05 | Medtronic Minimed, Inc. | Syringe piston with check valve seal |
US8755269B2 (en) | 2009-12-23 | 2014-06-17 | Medtronic Minimed, Inc. | Ranking and switching of wireless channels in a body area network of medical devices |
US8070723B2 (en) | 2009-12-31 | 2011-12-06 | Medtronic Minimed, Inc. | Activity guard |
JP5462776B2 (en) * | 2010-01-19 | 2014-04-02 | アークレイ株式会社 | Measuring apparatus and measuring method |
EP2525848B1 (en) | 2010-01-22 | 2016-08-03 | DEKA Products Limited Partnership | System for shape-memory alloy wire control |
USD924406S1 (en) | 2010-02-01 | 2021-07-06 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US9041730B2 (en) | 2010-02-12 | 2015-05-26 | Dexcom, Inc. | Receivers for analyzing and displaying sensor data |
US9078610B2 (en) * | 2010-02-22 | 2015-07-14 | Covidien Lp | Motion energy harvesting with wireless sensors |
US8653976B2 (en) * | 2010-03-10 | 2014-02-18 | Dripmate A/S | Combination of a portable monitoring device and a portable drip infusion set and a method of monitoring a portable drip infusion set |
US10448872B2 (en) | 2010-03-16 | 2019-10-22 | Medtronic Minimed, Inc. | Analyte sensor apparatuses having improved electrode configurations and methods for making and using them |
DK3622883T3 (en) | 2010-03-24 | 2021-07-19 | Abbott Diabetes Care Inc | Introduces medical devices and methods for introducing and using medical devices |
JP2011212118A (en) * | 2010-03-31 | 2011-10-27 | Terumo Corp | Bodily fluid component measurement system |
JP2011212117A (en) | 2010-03-31 | 2011-10-27 | Terumo Corp | Bodily fluid component measurement system |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
DE202011110481U1 (en) * | 2010-05-09 | 2014-04-08 | Labstyle Innovation Ltd. | Fluid Tester |
USD669165S1 (en) | 2010-05-27 | 2012-10-16 | Asante Solutions, Inc. | Infusion pump |
US9215995B2 (en) | 2010-06-23 | 2015-12-22 | Medtronic Minimed, Inc. | Sensor systems having multiple probes and electrode arrays |
US9336353B2 (en) | 2010-06-25 | 2016-05-10 | Dexcom, Inc. | Systems and methods for communicating sensor data between communication devices of a glucose monitoring system |
US11064921B2 (en) | 2010-06-29 | 2021-07-20 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US10092229B2 (en) | 2010-06-29 | 2018-10-09 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
US20120088997A1 (en) * | 2010-10-12 | 2012-04-12 | Anthony Guiseppi-Elie | Implantable biochip for managing trauma--induced hemorrhage |
US8603033B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device and related assembly having an offset element for a piezoelectric speaker |
US8401194B2 (en) | 2010-10-15 | 2013-03-19 | Roche Diagnostics Operations, Inc. | Diabetes care kit that is preconfigured to establish a secure bidirectional communication link between a blood glucose meter and insulin pump |
US8454554B2 (en) | 2010-10-15 | 2013-06-04 | Roche Diagnostics Operations, Inc. | Use of a handheld medical device as a communications mediator between a personal computer-based configurator and another networked medical device |
US8861731B2 (en) | 2010-10-15 | 2014-10-14 | Roche Diagnostics Operations, Inc. | Efficient procedure for pairing medical devices for wireless communication with limited user interaction |
US8603032B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device with membrane keypad sealing element, and related manufacturing method |
US8562565B2 (en) | 2010-10-15 | 2013-10-22 | Medtronic Minimed, Inc. | Battery shock absorber for a portable medical device |
US8495918B2 (en) | 2010-10-20 | 2013-07-30 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8479595B2 (en) | 2010-10-20 | 2013-07-09 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8474332B2 (en) | 2010-10-20 | 2013-07-02 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
EP2632334B1 (en) | 2010-10-27 | 2020-09-09 | Dexcom, Inc. | Continuous analyte monitor data recording device operable in a blinded mode |
US9402569B2 (en) | 2010-10-28 | 2016-08-02 | Medtronic Minimed, Inc. | System and/or method for glucose sensor calibration |
EP2641533A1 (en) * | 2010-11-16 | 2013-09-25 | Terumo Kabushiki Kaisha | Sensor system, and method for using sensor system |
US8672874B2 (en) | 2010-12-22 | 2014-03-18 | Roche Diagnoistics Operations, Inc. | Communication protocol that supports pass-thru communication |
US8197444B1 (en) | 2010-12-22 | 2012-06-12 | Medtronic Minimed, Inc. | Monitoring the seating status of a fluid reservoir in a fluid infusion device |
US8469942B2 (en) | 2010-12-22 | 2013-06-25 | Medtronic Minimed, Inc. | Occlusion detection for a fluid infusion device |
US8628510B2 (en) | 2010-12-22 | 2014-01-14 | Medtronic Minimed, Inc. | Monitoring the operating health of a force sensor in a fluid infusion device |
US8690855B2 (en) * | 2010-12-22 | 2014-04-08 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
RU2625272C2 (en) | 2011-01-06 | 2017-07-12 | Конинклейке Филипс Электроникс Н.В. | Patient monitoring system and method for patient physiological state monitoring |
US8627816B2 (en) | 2011-02-28 | 2014-01-14 | Intelliject, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US9173999B2 (en) | 2011-01-26 | 2015-11-03 | Kaleo, Inc. | Devices and methods for delivering medicaments from a multi-chamber container |
US8939943B2 (en) | 2011-01-26 | 2015-01-27 | Kaleo, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US8852152B2 (en) | 2011-02-09 | 2014-10-07 | Asante Solutions, Inc. | Infusion pump systems and methods |
US8532775B2 (en) | 2011-02-18 | 2013-09-10 | Medtronic, Inc. | Modular medical device programmer |
US8352034B2 (en) | 2011-02-18 | 2013-01-08 | Medtronic, Inc. | Medical device programmer with adjustable kickstand |
US11266823B2 (en) | 2011-02-22 | 2022-03-08 | Medtronic Minimed, Inc. | Retractable sealing assembly for a fluid reservoir of a fluid infusion device |
US9283318B2 (en) | 2011-02-22 | 2016-03-15 | Medtronic Minimed, Inc. | Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir |
US8864726B2 (en) | 2011-02-22 | 2014-10-21 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir having a movable septum |
US9463309B2 (en) | 2011-02-22 | 2016-10-11 | Medtronic Minimed, Inc. | Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir |
US9393399B2 (en) | 2011-02-22 | 2016-07-19 | Medtronic Minimed, Inc. | Sealing assembly for a fluid reservoir of a fluid infusion device |
US8614596B2 (en) | 2011-02-28 | 2013-12-24 | Medtronic Minimed, Inc. | Systems and methods for initializing a voltage bus and medical devices incorporating same |
US9101305B2 (en) | 2011-03-09 | 2015-08-11 | Medtronic Minimed, Inc. | Glucose sensor product and related manufacturing and packaging methods |
US8454581B2 (en) | 2011-03-16 | 2013-06-04 | Asante Solutions, Inc. | Infusion pump systems and methods |
US8564447B2 (en) | 2011-03-18 | 2013-10-22 | Medtronic Minimed, Inc. | Battery life indication techniques for an electronic device |
US9018893B2 (en) | 2011-03-18 | 2015-04-28 | Medtronic Minimed, Inc. | Power control techniques for an electronic device |
JP5837570B2 (en) * | 2011-03-25 | 2015-12-24 | テルモ株式会社 | Body fluid component measurement system |
WO2012131828A1 (en) | 2011-03-29 | 2012-10-04 | テルモ株式会社 | Data transfer device and data transfer system |
US9028410B2 (en) | 2011-04-08 | 2015-05-12 | Dexcom, Inc. | Systems and methods for processing and transmitting sensor data |
EP4324399A3 (en) | 2011-04-15 | 2024-05-15 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
US9008744B2 (en) | 2011-05-06 | 2015-04-14 | Medtronic Minimed, Inc. | Method and apparatus for continuous analyte monitoring |
US8795231B2 (en) | 2011-05-10 | 2014-08-05 | Medtronic Minimed, Inc. | Automated reservoir fill system |
US8585657B2 (en) | 2011-06-21 | 2013-11-19 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US9240002B2 (en) | 2011-08-19 | 2016-01-19 | Hospira, Inc. | Systems and methods for a graphical interface including a graphical representation of medical data |
US9642568B2 (en) | 2011-09-06 | 2017-05-09 | Medtronic Minimed, Inc. | Orthogonally redundant sensor systems and methods |
US8808230B2 (en) | 2011-09-07 | 2014-08-19 | Asante Solutions, Inc. | Occlusion detection for an infusion pump system |
WO2013037375A1 (en) * | 2011-09-13 | 2013-03-21 | Dripmate A/S | Portable monitoring device for remotely monitoring a medical device |
US9730160B2 (en) | 2011-09-23 | 2017-08-08 | Dexcom, Inc. | Systems and methods for processing and transmitting sensor data |
DK2760432T3 (en) | 2011-09-27 | 2019-06-11 | Medtronic Minimed Inc | PROCEDURE FOR FUNCTIONALIZING A POROSE MEMBRANE COVER ON AN OPTICAL SENSOR FOR PROMOTING ANTITROMBOGENT INTERMEDIATE |
JP6033874B2 (en) | 2011-10-21 | 2016-11-30 | ホスピーラ インコーポレイテッド | Medical device update system |
US9989522B2 (en) | 2011-11-01 | 2018-06-05 | Medtronic Minimed, Inc. | Methods and materials for modulating start-up time and air removal in dry sensors |
US8999720B2 (en) | 2011-11-17 | 2015-04-07 | Medtronic Minimed, Inc. | Aqueous radiation protecting formulations and methods for making and using them |
JP6211529B2 (en) | 2011-12-11 | 2017-10-11 | アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. | Sample sensor device |
CA2798716A1 (en) * | 2011-12-13 | 2013-06-13 | Peermedical Ltd. | Removable tip endoscope |
WO2013090709A1 (en) | 2011-12-16 | 2013-06-20 | Hospira, Inc. | System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy |
US9610401B2 (en) | 2012-01-13 | 2017-04-04 | Medtronic Minimed, Inc. | Infusion set component with modular fluid channel element |
US11524151B2 (en) | 2012-03-07 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US9700253B2 (en) | 2012-03-16 | 2017-07-11 | Dexcom, Inc. | Systems and methods for processing analyte sensor data |
US8603027B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Occlusion detection using pulse-width modulation and medical device incorporating same |
US8603026B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US8523803B1 (en) | 2012-03-20 | 2013-09-03 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
WO2013149186A1 (en) | 2012-03-30 | 2013-10-03 | Insulet Corporation | Fluid delivery device with transcutaneous access tool, insertion mechansim and blood glucose monitoring for use therewith |
AU2013239778B2 (en) | 2012-03-30 | 2017-09-28 | Icu Medical, Inc. | Air detection system and method for detecting air in a pump of an infusion system |
US9180242B2 (en) | 2012-05-17 | 2015-11-10 | Tandem Diabetes Care, Inc. | Methods and devices for multiple fluid transfer |
US9522235B2 (en) | 2012-05-22 | 2016-12-20 | Kaleo, Inc. | Devices and methods for delivering medicaments from a multi-chamber container |
US9493807B2 (en) | 2012-05-25 | 2016-11-15 | Medtronic Minimed, Inc. | Foldover sensors and methods for making and using them |
US9555186B2 (en) | 2012-06-05 | 2017-01-31 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US20130338630A1 (en) | 2012-06-07 | 2013-12-19 | Medtronic Minimed, Inc. | Diabetes therapy management system for recommending adjustments to an insulin infusion device |
US9408567B2 (en) | 2012-06-08 | 2016-08-09 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9588582B2 (en) | 2013-09-17 | 2017-03-07 | Medibotics Llc | Motion recognition clothing (TM) with two different sets of tubes spanning a body joint |
US9582072B2 (en) | 2013-09-17 | 2017-02-28 | Medibotics Llc | Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways |
US10716510B2 (en) | 2013-09-17 | 2020-07-21 | Medibotics | Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration |
US10602965B2 (en) | 2013-09-17 | 2020-03-31 | Medibotics | Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll |
US10321873B2 (en) | 2013-09-17 | 2019-06-18 | Medibotics Llc | Smart clothing for ambulatory human motion capture |
US9333292B2 (en) | 2012-06-26 | 2016-05-10 | Medtronic Minimed, Inc. | Mechanically actuated fluid infusion device |
US10881339B2 (en) | 2012-06-29 | 2021-01-05 | Dexcom, Inc. | Use of sensor redundancy to detect sensor failures |
US10598627B2 (en) | 2012-06-29 | 2020-03-24 | Dexcom, Inc. | Devices, systems, and methods to compensate for effects of temperature on implantable sensors |
US8454557B1 (en) | 2012-07-19 | 2013-06-04 | Asante Solutions, Inc. | Infusion pump system and method |
US8454562B1 (en) | 2012-07-20 | 2013-06-04 | Asante Solutions, Inc. | Infusion pump system and method |
AU2013296555B2 (en) | 2012-07-31 | 2017-10-19 | Icu Medical, Inc. | Patient care system for critical medications |
US8808269B2 (en) | 2012-08-21 | 2014-08-19 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US9682188B2 (en) | 2012-08-21 | 2017-06-20 | Medtronic Minimed, Inc. | Reservoir fluid volume estimator and medical device incorporating same |
US10496797B2 (en) | 2012-08-30 | 2019-12-03 | Medtronic Minimed, Inc. | Blood glucose validation for a closed-loop operating mode of an insulin infusion system |
US10130767B2 (en) | 2012-08-30 | 2018-11-20 | Medtronic Minimed, Inc. | Sensor model supervisor for a closed-loop insulin infusion system |
US9878096B2 (en) | 2012-08-30 | 2018-01-30 | Medtronic Minimed, Inc. | Generation of target glucose values for a closed-loop operating mode of an insulin infusion system |
US9526834B2 (en) | 2012-08-30 | 2016-12-27 | Medtronic Minimed, Inc. | Safeguarding measures for a closed-loop insulin infusion system |
US9623179B2 (en) | 2012-08-30 | 2017-04-18 | Medtronic Minimed, Inc. | Safeguarding techniques for a closed-loop insulin infusion system |
US9849239B2 (en) | 2012-08-30 | 2017-12-26 | Medtronic Minimed, Inc. | Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system |
KR102147850B1 (en) | 2012-08-30 | 2020-08-26 | 메드트로닉 미니메드 인코포레이티드 | Safeguarding techniques for a closed-loop insulin infusion system |
US9662445B2 (en) | 2012-08-30 | 2017-05-30 | Medtronic Minimed, Inc. | Regulating entry into a closed-loop operating mode of an insulin infusion system |
US9003091B2 (en) * | 2012-10-18 | 2015-04-07 | Hewlett-Packard Development Company, L.P. | Flow control for a Serial Peripheral Interface bus |
US9119528B2 (en) | 2012-10-30 | 2015-09-01 | Dexcom, Inc. | Systems and methods for providing sensitive and specific alarms |
JP6534616B2 (en) | 2012-11-07 | 2019-06-26 | メドトロニック ミニメド インコーポレイテッド | Dry insertion and one point in vivo calibration of optical analyte sensor |
US9265455B2 (en) * | 2012-11-13 | 2016-02-23 | Medtronic Minimed, Inc. | Methods and systems for optimizing sensor function by the application of voltage |
US8870818B2 (en) | 2012-11-15 | 2014-10-28 | Medtronic Minimed, Inc. | Systems and methods for alignment and detection of a consumable component |
US10194840B2 (en) | 2012-12-06 | 2019-02-05 | Medtronic Minimed, Inc. | Microarray electrodes useful with analyte sensors and methods for making and using them |
US9427523B2 (en) | 2012-12-10 | 2016-08-30 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US20140276536A1 (en) | 2013-03-14 | 2014-09-18 | Asante Solutions, Inc. | Infusion Pump System and Methods |
WO2014106056A2 (en) | 2012-12-27 | 2014-07-03 | Kaleo, Inc. | Devices, systems and methods for locating and interacting with medicament delivery systems |
US9033924B2 (en) | 2013-01-18 | 2015-05-19 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9522223B2 (en) | 2013-01-18 | 2016-12-20 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9107994B2 (en) | 2013-01-18 | 2015-08-18 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US10426383B2 (en) | 2013-01-22 | 2019-10-01 | Medtronic Minimed, Inc. | Muting glucose sensor oxygen response and reducing electrode edge growth with pulsed current plating |
US9308321B2 (en) | 2013-02-18 | 2016-04-12 | Medtronic Minimed, Inc. | Infusion device having gear assembly initialization |
US9446186B2 (en) | 2013-03-01 | 2016-09-20 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
AU2014225658B2 (en) | 2013-03-06 | 2018-05-31 | Icu Medical, Inc. | Medical device communication method |
US9173998B2 (en) | 2013-03-14 | 2015-11-03 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US9242043B2 (en) | 2013-03-15 | 2016-01-26 | Tandem Diabetes Care, Inc. | Field update of an ambulatory infusion pump system |
US8920381B2 (en) | 2013-04-12 | 2014-12-30 | Medtronic Minimed, Inc. | Infusion set with improved bore configuration |
US10046112B2 (en) | 2013-05-24 | 2018-08-14 | Icu Medical, Inc. | Multi-sensor infusion system for detecting air or an occlusion in the infusion system |
US9338819B2 (en) | 2013-05-29 | 2016-05-10 | Medtronic Minimed, Inc. | Variable data usage personal medical system and method |
ES2845748T3 (en) | 2013-05-29 | 2021-07-27 | Icu Medical Inc | Infusion system and method of use that prevent oversaturation of an analog-digital converter |
AU2014274146B2 (en) | 2013-05-29 | 2019-01-24 | Icu Medical, Inc. | Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system |
US9457141B2 (en) | 2013-06-03 | 2016-10-04 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9446187B2 (en) | 2013-06-03 | 2016-09-20 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10194864B2 (en) | 2013-06-21 | 2019-02-05 | Medtronic Minimed, Inc. | Anchoring apparatus and method for attaching device on body |
EP4309699A3 (en) | 2013-07-03 | 2024-04-24 | DEKA Products Limited Partnership | Apparatus and system for fluid delivery |
US9561324B2 (en) | 2013-07-19 | 2017-02-07 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9433731B2 (en) | 2013-07-19 | 2016-09-06 | Medtronic Minimed, Inc. | Detecting unintentional motor motion and infusion device incorporating same |
US9402949B2 (en) | 2013-08-13 | 2016-08-02 | Medtronic Minimed, Inc. | Detecting conditions associated with medical device operations using matched filters |
US9889257B2 (en) | 2013-08-21 | 2018-02-13 | Medtronic Minimed, Inc. | Systems and methods for updating medical devices |
US9880528B2 (en) | 2013-08-21 | 2018-01-30 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US9259528B2 (en) | 2013-08-22 | 2016-02-16 | Medtronic Minimed, Inc. | Fluid infusion device with safety coupling |
US20150066531A1 (en) | 2013-08-30 | 2015-03-05 | James D. Jacobson | System and method of monitoring and managing a remote infusion regimen |
US9662436B2 (en) | 2013-09-20 | 2017-05-30 | Icu Medical, Inc. | Fail-safe drug infusion therapy system |
US8979808B1 (en) | 2013-10-14 | 2015-03-17 | Medtronic Minimed, Inc. | On-body injector and method of use |
US9265881B2 (en) | 2013-10-14 | 2016-02-23 | Medtronic Minimed, Inc. | Therapeutic agent injection device |
US8979799B1 (en) | 2013-10-14 | 2015-03-17 | Medtronic Minimed, Inc. | Electronic injector |
US9375537B2 (en) | 2013-10-14 | 2016-06-28 | Medtronic Minimed, Inc. | Therapeutic agent injection device |
US10881789B2 (en) | 2013-10-24 | 2021-01-05 | Trustees Of Boston University | Infusion system for preventing mischanneling of multiple medicaments |
US9936905B2 (en) | 2013-10-25 | 2018-04-10 | Medtronic Minimed, Inc. | Sensor with optical interface |
US9226709B2 (en) | 2013-11-04 | 2016-01-05 | Medtronic Minimed, Inc. | ICE message system and method |
CN105706423A (en) | 2013-11-07 | 2016-06-22 | 德克斯康公司 | Systems and methods for transmitting and continuous monitoring of analyte values |
US10311972B2 (en) | 2013-11-11 | 2019-06-04 | Icu Medical, Inc. | Medical device system performance index |
CA2930830C (en) | 2013-11-19 | 2019-12-03 | Hospira, Inc. | Infusion pump automation system and method |
US9267875B2 (en) | 2013-11-21 | 2016-02-23 | Medtronic Minimed, Inc. | Accelerated life testing device and method |
US10569015B2 (en) | 2013-12-02 | 2020-02-25 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9750877B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Predicted time to assess and/or control a glycemic state |
US9750878B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Closed-loop control of glucose according to a predicted blood glucose trajectory |
US9849240B2 (en) | 2013-12-12 | 2017-12-26 | Medtronic Minimed, Inc. | Data modification for predictive operations and devices incorporating same |
US10105488B2 (en) | 2013-12-12 | 2018-10-23 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US10945630B2 (en) | 2013-12-16 | 2021-03-16 | Medtronic Minimed, Inc. | Use of Electrochemical Impedance Spectroscopy (EIS) in gross failure analysis |
US9943256B2 (en) | 2013-12-16 | 2018-04-17 | Medtronic Minimed, Inc. | Methods and systems for improving the reliability of orthogonally redundant sensors |
US9779226B2 (en) | 2013-12-18 | 2017-10-03 | Medtronic Minimed, Inc. | Fingerprint enhanced authentication for medical devices in wireless networks |
US9143941B2 (en) | 2013-12-18 | 2015-09-22 | Medtronic Minimed, Inc. | Secure communication by user selectable communication range |
US9694132B2 (en) | 2013-12-19 | 2017-07-04 | Medtronic Minimed, Inc. | Insertion device for insertion set |
WO2015107681A1 (en) | 2014-01-17 | 2015-07-23 | 任天堂株式会社 | Information processing system, information processing server, information processing program, and information providing method |
US9399096B2 (en) | 2014-02-06 | 2016-07-26 | Medtronic Minimed, Inc. | Automatic closed-loop control adjustments and infusion systems incorporating same |
US9861748B2 (en) | 2014-02-06 | 2018-01-09 | Medtronic Minimed, Inc. | User-configurable closed-loop notifications and infusion systems incorporating same |
JP6636442B2 (en) | 2014-02-28 | 2020-01-29 | アイシーユー・メディカル・インコーポレーテッド | Infusion systems and methods utilizing dual wavelength optical in-pipe air detection |
US9388805B2 (en) | 2014-03-24 | 2016-07-12 | Medtronic Minimed, Inc. | Medication pump test device and method of use |
US9610402B2 (en) | 2014-03-24 | 2017-04-04 | Medtronic Minimed, Inc. | Transcutaneous conduit insertion mechanism with a living hinge for use with a fluid infusion patch pump device |
US9689830B2 (en) | 2014-04-03 | 2017-06-27 | Medtronic Minimed, Inc. | Sensor detection pads with integrated fuse |
US9707336B2 (en) | 2014-04-07 | 2017-07-18 | Medtronic Minimed, Inc. | Priming detection system and method of using the same |
US10441717B2 (en) | 2014-04-15 | 2019-10-15 | Insulet Corporation | Monitoring a physiological parameter associated with tissue of a host to confirm delivery of medication |
US10001450B2 (en) | 2014-04-18 | 2018-06-19 | Medtronic Minimed, Inc. | Nonlinear mapping technique for a physiological characteristic sensor |
US10232113B2 (en) | 2014-04-24 | 2019-03-19 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for regulating insulin on board |
CA2945647C (en) | 2014-04-30 | 2023-08-08 | Hospira, Inc. | Patient care system with conditional alarm forwarding |
US9681828B2 (en) | 2014-05-01 | 2017-06-20 | Medtronic Minimed, Inc. | Physiological characteristic sensors and methods for forming such sensors |
US10275572B2 (en) | 2014-05-01 | 2019-04-30 | Medtronic Minimed, Inc. | Detecting blockage of a reservoir cavity during a seating operation of a fluid infusion device |
US10152049B2 (en) | 2014-05-19 | 2018-12-11 | Medtronic Minimed, Inc. | Glucose sensor health monitoring and related methods and systems |
US10007765B2 (en) | 2014-05-19 | 2018-06-26 | Medtronic Minimed, Inc. | Adaptive signal processing for infusion devices and related methods and systems |
US10274349B2 (en) | 2014-05-19 | 2019-04-30 | Medtronic Minimed, Inc. | Calibration factor adjustments for infusion devices and related methods and systems |
JP2017517302A (en) | 2014-05-29 | 2017-06-29 | ホスピーラ インコーポレイテッド | Infusion system and pump with configurable closed loop delivery rate catchup |
US9901305B2 (en) | 2014-06-13 | 2018-02-27 | Medtronic Minimed, Inc. | Physiological sensor history backfill system and method |
US9724470B2 (en) | 2014-06-16 | 2017-08-08 | Icu Medical, Inc. | System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy |
US9629901B2 (en) | 2014-07-01 | 2017-04-25 | Bigfoot Biomedical, Inc. | Glucagon administration system and methods |
US9517307B2 (en) | 2014-07-18 | 2016-12-13 | Kaleo, Inc. | Devices and methods for delivering opioid antagonists including formulations for naloxone |
US11185627B2 (en) | 2014-07-21 | 2021-11-30 | Medtronic Minimed, Inc. | Smart connection interface |
US10137246B2 (en) | 2014-08-06 | 2018-11-27 | Bigfoot Biomedical, Inc. | Infusion pump assembly and method |
US11974847B2 (en) | 2014-08-07 | 2024-05-07 | Nintendo Co., Ltd. | Information processing system, information processing device, storage medium storing information processing program, and information processing method |
US9717845B2 (en) | 2014-08-19 | 2017-08-01 | Medtronic Minimed, Inc. | Geofencing for medical devices |
US20160051755A1 (en) | 2014-08-25 | 2016-02-25 | Medtronic Minimed, Inc. | Low cost fluid delivery device |
US9919096B2 (en) | 2014-08-26 | 2018-03-20 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US9539383B2 (en) | 2014-09-15 | 2017-01-10 | Hospira, Inc. | System and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein |
US9839753B2 (en) | 2014-09-26 | 2017-12-12 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US9833563B2 (en) | 2014-09-26 | 2017-12-05 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US10279126B2 (en) | 2014-10-07 | 2019-05-07 | Medtronic Minimed, Inc. | Fluid conduit assembly with gas trapping filter in the fluid flow path |
US9841014B2 (en) | 2014-10-20 | 2017-12-12 | Medtronic Minimed, Inc. | Insulin pump data acquisition device and system |
US9592335B2 (en) | 2014-10-20 | 2017-03-14 | Medtronic Minimed, Inc. | Insulin pump data acquisition device |
WO2016065190A1 (en) | 2014-10-23 | 2016-04-28 | Abbott Diabetes Care Inc. | Electrodes having at least one sensing structure and methods for making and using the same |
US9833564B2 (en) | 2014-11-25 | 2017-12-05 | Medtronic Minimed, Inc. | Fluid conduit assembly with air venting features |
US9731067B2 (en) | 2014-11-25 | 2017-08-15 | Medtronic Minimed, Inc. | Mechanical injection pump and method of use |
US9901675B2 (en) | 2014-11-25 | 2018-02-27 | Medtronic Minimed, Inc. | Infusion set insertion device and method of use |
US9987420B2 (en) | 2014-11-26 | 2018-06-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US10195341B2 (en) | 2014-11-26 | 2019-02-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US9636453B2 (en) | 2014-12-04 | 2017-05-02 | Medtronic Minimed, Inc. | Advance diagnosis of infusion device operating mode viability |
US9943645B2 (en) | 2014-12-04 | 2018-04-17 | Medtronic Minimed, Inc. | Methods for operating mode transitions and related infusion devices and systems |
US9937292B2 (en) | 2014-12-09 | 2018-04-10 | Medtronic Minimed, Inc. | Systems for filling a fluid infusion device reservoir |
US10307535B2 (en) | 2014-12-19 | 2019-06-04 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US11344668B2 (en) | 2014-12-19 | 2022-05-31 | Icu Medical, Inc. | Infusion system with concurrent TPN/insulin infusion |
US10265031B2 (en) | 2014-12-19 | 2019-04-23 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for automatic alert clearing |
US9717848B2 (en) | 2015-01-22 | 2017-08-01 | Medtronic Minimed, Inc. | Data derived pre-bolus delivery |
US9872954B2 (en) | 2015-03-02 | 2018-01-23 | Medtronic Minimed, Inc. | Belt clip |
US10850024B2 (en) | 2015-03-02 | 2020-12-01 | Icu Medical, Inc. | Infusion system, device, and method having advanced infusion features |
US10307528B2 (en) | 2015-03-09 | 2019-06-04 | Medtronic Minimed, Inc. | Extensible infusion devices and related methods |
CA2980004C (en) | 2015-03-24 | 2023-10-10 | Kaleo, Inc. | Devices and methods for delivering a lyophilized medicament |
US10449298B2 (en) | 2015-03-26 | 2019-10-22 | Medtronic Minimed, Inc. | Fluid injection devices and related methods |
US9878097B2 (en) | 2015-04-29 | 2018-01-30 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US10130757B2 (en) | 2015-05-01 | 2018-11-20 | Medtronic Minimed, Inc. | Method and system for leakage detection in portable medical devices |
US10213139B2 (en) | 2015-05-14 | 2019-02-26 | Abbott Diabetes Care Inc. | Systems, devices, and methods for assembling an applicator and sensor control device |
EP3294134B1 (en) | 2015-05-14 | 2020-07-08 | Abbott Diabetes Care Inc. | Inserter system for a compact medical device and corresponding method |
EP3304370B1 (en) | 2015-05-26 | 2020-12-30 | ICU Medical, Inc. | Infusion pump system and method with multiple drug library editor source capability |
US9999721B2 (en) | 2015-05-26 | 2018-06-19 | Medtronic Minimed, Inc. | Error handling in infusion devices with distributed motor control and related operating methods |
US10137243B2 (en) | 2015-05-26 | 2018-11-27 | Medtronic Minimed, Inc. | Infusion devices with distributed motor control and related operating methods |
US10575767B2 (en) | 2015-05-29 | 2020-03-03 | Medtronic Minimed, Inc. | Method for monitoring an analyte, analyte sensor and analyte monitoring apparatus |
US9993594B2 (en) | 2015-06-22 | 2018-06-12 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and rotor position sensors |
US9879668B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor |
US10010668B2 (en) | 2015-06-22 | 2018-07-03 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and a force sensor |
US9878095B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements |
US9987425B2 (en) | 2015-06-22 | 2018-06-05 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and sensor contact elements |
WO2017004345A1 (en) | 2015-06-30 | 2017-01-05 | Kaleo, Inc. | Auto-injectors for administration of a medicament within a prefilled syringe |
CA2991058A1 (en) | 2015-07-08 | 2017-01-12 | Trustees Of Boston University | Infusion system and components thereof |
US10463297B2 (en) | 2015-08-21 | 2019-11-05 | Medtronic Minimed, Inc. | Personalized event detection methods and related devices and systems |
US20170053084A1 (en) | 2015-08-21 | 2017-02-23 | Medtronic Minimed, Inc. | Data analytics and reporting of glucose-related information |
US10543314B2 (en) | 2015-08-21 | 2020-01-28 | Medtronic Minimed, Inc. | Personalized parameter modeling with signal calibration based on historical data |
US10201657B2 (en) | 2015-08-21 | 2019-02-12 | Medtronic Minimed, Inc. | Methods for providing sensor site rotation feedback and related infusion devices and systems |
US10293108B2 (en) | 2015-08-21 | 2019-05-21 | Medtronic Minimed, Inc. | Infusion devices and related patient ratio adjustment methods |
US10117992B2 (en) | 2015-09-29 | 2018-11-06 | Medtronic Minimed, Inc. | Infusion devices and related rescue detection methods |
US9992818B2 (en) | 2015-10-06 | 2018-06-05 | Medtronic Minimed, Inc. | Protocol translation device |
US9757511B2 (en) | 2015-10-19 | 2017-09-12 | Medtronic Minimed, Inc. | Personal medical device and method of use with restricted mode challenge |
US11501867B2 (en) | 2015-10-19 | 2022-11-15 | Medtronic Minimed, Inc. | Medical devices and related event pattern presentation methods |
US11666702B2 (en) | 2015-10-19 | 2023-06-06 | Medtronic Minimed, Inc. | Medical devices and related event pattern treatment recommendation methods |
US10146911B2 (en) | 2015-10-23 | 2018-12-04 | Medtronic Minimed, Inc. | Medical devices and related methods and systems for data transfer |
US10037722B2 (en) | 2015-11-03 | 2018-07-31 | Medtronic Minimed, Inc. | Detecting breakage in a display element |
US10827959B2 (en) | 2015-11-11 | 2020-11-10 | Medtronic Minimed, Inc. | Sensor set |
US20170127985A1 (en) * | 2015-11-11 | 2017-05-11 | Medtronic Minimed, Inc. | Sensor set |
WO2017091624A1 (en) | 2015-11-24 | 2017-06-01 | Insulet Corporation | Wearable automated medication delivery system |
WO2017091584A1 (en) | 2015-11-25 | 2017-06-01 | Insulet Corporation | Wearable medication delivery device |
US10449306B2 (en) | 2015-11-25 | 2019-10-22 | Medtronics Minimed, Inc. | Systems for fluid delivery with wicking membrane |
US9848805B2 (en) | 2015-12-18 | 2017-12-26 | Medtronic Minimed, Inc. | Biostable glucose permeable polymer |
US10327686B2 (en) | 2015-12-28 | 2019-06-25 | Medtronic Minimed, Inc. | Sensor systems, devices, and methods for continuous glucose monitoring |
US20170185733A1 (en) | 2015-12-28 | 2017-06-29 | Medtronic Minimed, Inc. | Retrospective sensor systems, devices, and methods |
US10349872B2 (en) | 2015-12-28 | 2019-07-16 | Medtronic Minimed, Inc. | Methods, systems, and devices for sensor fusion |
US20170184527A1 (en) | 2015-12-28 | 2017-06-29 | Medtronic Minimed, Inc. | Sensor systems, devices, and methods for continuous glucose monitoring |
CA3008629A1 (en) | 2015-12-28 | 2017-07-06 | Medtronic Minimed, Inc. | Methods for continuous glucose monitoring |
US20170181672A1 (en) | 2015-12-28 | 2017-06-29 | Medtronic Minimed, Inc. | Sensor systems, devices, and methods for continuous glucose monitoring |
US10327680B2 (en) | 2015-12-28 | 2019-06-25 | Medtronic Minimed, Inc. | Sensor systems, devices, and methods for continuous glucose monitoring |
EP4026488B1 (en) | 2015-12-30 | 2023-07-19 | Dexcom, Inc. | Transcutaneous analyte sensor systems and methods |
US10449294B1 (en) | 2016-01-05 | 2019-10-22 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
CA3009409A1 (en) | 2016-01-05 | 2017-07-13 | Bigfoot Biomedical, Inc. | Operating multi-modal medicine delivery systems |
US10610643B2 (en) | 2016-01-14 | 2020-04-07 | Bigfoot Biomedical, Inc. | Occlusion resolution in medication delivery devices, systems, and methods |
US10790054B1 (en) | 2016-12-07 | 2020-09-29 | Medtronic Minimed, Inc. | Method and apparatus for tracking of food intake and other behaviors and providing relevant feedback |
CN109068983B (en) | 2016-01-28 | 2021-03-23 | 克鲁有限公司 | Method and apparatus for tracking food intake and other behaviors and providing relevant feedback |
USD809134S1 (en) | 2016-03-10 | 2018-01-30 | Bigfoot Biomedical, Inc. | Infusion pump assembly |
US20170290535A1 (en) | 2016-04-08 | 2017-10-12 | Medtronic Minimed, Inc. | Analyte sensor with indicators |
US10765348B2 (en) | 2016-04-08 | 2020-09-08 | Medtronic Minimed, Inc. | Sensor and transmitter product |
US10631787B2 (en) | 2016-04-08 | 2020-04-28 | Medtronic Minimed, Inc. | Sensor and transmitter product |
US10765369B2 (en) | 2016-04-08 | 2020-09-08 | Medtronic Minimed, Inc. | Analyte sensor |
US10589038B2 (en) | 2016-04-27 | 2020-03-17 | Medtronic Minimed, Inc. | Set connector systems for venting a fluid reservoir |
US10426389B2 (en) | 2016-04-28 | 2019-10-01 | Medtronic Minimed, Inc. | Methods, systems, and devices for electrode capacitance calculation and application |
US9970893B2 (en) | 2016-04-28 | 2018-05-15 | Medtronic Minimed, Inc. | Methods, systems, and devices for electrode capacitance calculation and application |
US10324058B2 (en) | 2016-04-28 | 2019-06-18 | Medtronic Minimed, Inc. | In-situ chemistry stack for continuous glucose sensors |
AU2017264784B2 (en) | 2016-05-13 | 2022-04-21 | Icu Medical, Inc. | Infusion pump system and method with common line auto flush |
US10086133B2 (en) | 2016-05-26 | 2018-10-02 | Medtronic Minimed, Inc. | Systems for set connector assembly with lock |
US10086134B2 (en) | 2016-05-26 | 2018-10-02 | Medtronic Minimed, Inc. | Systems for set connector assembly with lock |
US9968737B2 (en) | 2016-05-26 | 2018-05-15 | Medtronic Minimed, Inc. | Systems for set connector assembly with lock |
US11134872B2 (en) | 2016-06-06 | 2021-10-05 | Medtronic Minimed, Inc. | Thermally stable glucose limiting membrane for glucose sensors |
US11179078B2 (en) | 2016-06-06 | 2021-11-23 | Medtronic Minimed, Inc. | Polycarbonate urea/urethane polymers for use with analyte sensors |
EP3468635B1 (en) | 2016-06-10 | 2024-09-25 | ICU Medical, Inc. | Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion |
NZ750032A (en) | 2016-07-14 | 2020-05-29 | Icu Medical Inc | Multi-communication path selection and security system for a medical device |
US10485924B2 (en) | 2016-09-06 | 2019-11-26 | Medtronic Minimed, Inc. | Pump clip for a fluid infusion device |
CN109715052B (en) * | 2016-09-21 | 2020-12-11 | 威里利生命科学有限责任公司 | System and method for activating circuitry of an implanted device |
US11229751B2 (en) | 2016-09-27 | 2022-01-25 | Bigfoot Biomedical, Inc. | Personalizing preset meal sizes in insulin delivery system |
US11097051B2 (en) | 2016-11-04 | 2021-08-24 | Medtronic Minimed, Inc. | Methods and apparatus for detecting and reacting to insufficient hypoglycemia response |
US20180150614A1 (en) | 2016-11-28 | 2018-05-31 | Medtronic Minimed, Inc. | Interactive patient guidance for medical devices |
US10238030B2 (en) | 2016-12-06 | 2019-03-26 | Medtronic Minimed, Inc. | Wireless medical device with a complementary split ring resonator arrangement for suppression of electromagnetic interference |
CA3037432A1 (en) | 2016-12-12 | 2018-06-21 | Bigfoot Biomedical, Inc. | Alarms and alerts for medication delivery devices and related systems and methods |
USD836769S1 (en) | 2016-12-12 | 2018-12-25 | Bigfoot Biomedical, Inc. | Insulin delivery controller |
US10854323B2 (en) | 2016-12-21 | 2020-12-01 | Medtronic Minimed, Inc. | Infusion systems and related personalized bolusing methods |
US10709834B2 (en) | 2016-12-21 | 2020-07-14 | Medtronic Minimed, Inc. | Medication fluid infusion set component with integrated physiological analyte sensor, and corresponding fluid infusion device |
US10272201B2 (en) | 2016-12-22 | 2019-04-30 | Medtronic Minimed, Inc. | Insertion site monitoring methods and related infusion devices and systems |
EP3558420B1 (en) | 2016-12-23 | 2024-09-18 | Kaleo, Inc. | Medicament delivery device and methods for delivering drugs to infants and children |
JP7175898B2 (en) | 2017-01-06 | 2022-11-21 | トラスティーズ オブ ボストン ユニバーシティ | Injection system and its components |
JP2020507841A (en) | 2017-01-17 | 2020-03-12 | カレオ,インコーポレイテッド | Drug delivery device with wireless connection and event detection |
US11197949B2 (en) | 2017-01-19 | 2021-12-14 | Medtronic Minimed, Inc. | Medication infusion components and systems |
US10821225B2 (en) | 2017-01-20 | 2020-11-03 | Medtronic Minimed, Inc. | Cannulas for drug delivery devices |
EP3570735A4 (en) | 2017-01-23 | 2020-10-21 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
US10500135B2 (en) | 2017-01-30 | 2019-12-10 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10532165B2 (en) | 2017-01-30 | 2020-01-14 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10552580B2 (en) | 2017-02-07 | 2020-02-04 | Medtronic Minimed, Inc. | Infusion system consumables and related calibration methods |
US10363365B2 (en) | 2017-02-07 | 2019-07-30 | Medtronic Minimed, Inc. | Infusion devices and related consumable calibration methods |
US10646649B2 (en) | 2017-02-21 | 2020-05-12 | Medtronic Minimed, Inc. | Infusion devices and fluid identification apparatuses and methods |
US11207463B2 (en) | 2017-02-21 | 2021-12-28 | Medtronic Minimed, Inc. | Apparatuses, systems, and methods for identifying an infusate in a reservoir of an infusion device |
WO2018156548A1 (en) | 2017-02-22 | 2018-08-30 | Insulet Corporation | Needle insertion mechanisms for drug containers |
US11986288B2 (en) | 2017-03-06 | 2024-05-21 | Medtronic Minimed, Inc. | Colorometric sensor for the non-invasive screening of glucose in sweat in pre and type 2 diabetes |
US11134868B2 (en) | 2017-03-17 | 2021-10-05 | Medtronic Minimed, Inc. | Metal pillar device structures and methods for making and using them in electrochemical and/or electrocatalytic applications |
US20180272066A1 (en) | 2017-03-24 | 2018-09-27 | Medtronic Minimed, Inc. | Patient management systems and adherence recommendation methods |
US11512384B2 (en) | 2017-05-11 | 2022-11-29 | Medtronic Minimed, Inc. | Analyte sensors and methods for fabricating analyte sensors |
USD839294S1 (en) | 2017-06-16 | 2019-01-29 | Bigfoot Biomedical, Inc. | Display screen with graphical user interface for closed-loop medication delivery |
US11395631B2 (en) | 2017-06-23 | 2022-07-26 | Dexcom, Inc. | Transcutaneous analyte sensors, applicators therefor, and associated methods |
US10856784B2 (en) | 2017-06-30 | 2020-12-08 | Medtronic Minimed, Inc. | Sensor initialization methods for faster body sensor response |
US11389088B2 (en) | 2017-07-13 | 2022-07-19 | Bigfoot Biomedical, Inc. | Multi-scale display of blood glucose information |
US10596295B2 (en) | 2017-08-28 | 2020-03-24 | Medtronic Minimed, Inc. | Adhesive patch arrangement for a physiological characteristic sensor, and related sensor assembly |
US11412960B2 (en) | 2017-08-28 | 2022-08-16 | Medtronic Minimed, Inc. | Pedestal for sensor assembly packaging and sensor introducer removal |
US10932699B2 (en) * | 2017-09-13 | 2021-03-02 | Dexcom, Inc. | Invasive biosensor alignment and retention |
US11344235B2 (en) | 2017-09-13 | 2022-05-31 | Medtronic Minimed, Inc. | Methods, systems, and devices for calibration and optimization of glucose sensors and sensor output |
US10874300B2 (en) | 2017-09-26 | 2020-12-29 | Medtronic Minimed, Inc. | Waferscale physiological characteristic sensor package with integrated wireless transmitter |
WO2019067367A1 (en) | 2017-09-26 | 2019-04-04 | Insulet Corporation | Needle mechanism module for drug delivery device |
US10525244B2 (en) | 2017-09-28 | 2020-01-07 | Medtronic Minimed, Inc. | Microneedle arrays and methods for fabricating microneedle arrays |
US10524730B2 (en) | 2017-09-28 | 2020-01-07 | Medtronic Minimed, Inc. | Medical devices with microneedle arrays and methods for operating such medical devices |
US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
EP3700416B1 (en) | 2017-10-24 | 2024-06-26 | Dexcom, Inc. | Pre-connected analyte sensors |
US11676734B2 (en) | 2017-11-15 | 2023-06-13 | Medtronic Minimed, Inc. | Patient therapy management system that leverages aggregated patient population data |
US11147931B2 (en) | 2017-11-17 | 2021-10-19 | Insulet Corporation | Drug delivery device with air and backflow elimination |
US20190175082A1 (en) | 2017-12-13 | 2019-06-13 | Medtronic Minimed, Inc. | Pseudo-orthogonal redundant glucose sensors, systems, and methods |
US11213230B2 (en) | 2017-12-13 | 2022-01-04 | Medtronic Minimed, Inc. | Optional sensor calibration in continuous glucose monitoring |
US11471082B2 (en) | 2017-12-13 | 2022-10-18 | Medtronic Minimed, Inc. | Complex redundancy in continuous glucose monitoring |
AU2018385249B2 (en) | 2017-12-13 | 2024-02-01 | Medtronic Minimed, Inc. | Methods and systems for continuous glucose monitoring |
US10089055B1 (en) | 2017-12-27 | 2018-10-02 | Icu Medical, Inc. | Synchronized display of screen content on networked devices |
US11439352B2 (en) | 2018-01-17 | 2022-09-13 | Medtronic Minimed, Inc. | Medical device with adhesive patch longevity |
US12042284B2 (en) | 2018-01-23 | 2024-07-23 | Medtronic Minimed, Inc. | Implantable polymer surfaces exhibiting reduced in vivo inflammatory responses |
US11186859B2 (en) | 2018-02-07 | 2021-11-30 | Medtronic Minimed, Inc. | Multilayer electrochemical analyte sensors and methods for making and using them |
US11220735B2 (en) | 2018-02-08 | 2022-01-11 | Medtronic Minimed, Inc. | Methods for controlling physical vapor deposition metal film adhesion to substrates and surfaces |
US11583213B2 (en) | 2018-02-08 | 2023-02-21 | Medtronic Minimed, Inc. | Glucose sensor electrode design |
US11672446B2 (en) | 2018-03-23 | 2023-06-13 | Medtronic Minimed, Inc. | Insulin delivery recommendations based on nutritional information |
US11158413B2 (en) | 2018-04-23 | 2021-10-26 | Medtronic Minimed, Inc. | Personalized closed loop medication delivery system that utilizes a digital twin of the patient |
US11147919B2 (en) | 2018-04-23 | 2021-10-19 | Medtronic Minimed, Inc. | Methodology to recommend and implement adjustments to a fluid infusion device of a medication delivery system |
US11523972B2 (en) | 2018-04-24 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11367526B2 (en) | 2018-05-07 | 2022-06-21 | Medtronic Minimed, Inc. | Proactive patient guidance using augmented reality |
USD926325S1 (en) | 2018-06-22 | 2021-07-27 | Dexcom, Inc. | Wearable medical monitoring device |
WO2020018433A1 (en) | 2018-07-16 | 2020-01-23 | Kaleo, Inc. | Medicament delivery devices with wireless connectivity and compliance detection |
WO2020018388A1 (en) | 2018-07-17 | 2020-01-23 | Icu Medical, Inc. | Updating infusion pump drug libraries and operational software in a networked environment |
US10950339B2 (en) | 2018-07-17 | 2021-03-16 | Icu Medical, Inc. | Converting pump messages in new pump protocol to standardized dataset messages |
US10861592B2 (en) | 2018-07-17 | 2020-12-08 | Icu Medical, Inc. | Reducing infusion pump network congestion by staggering updates |
CA3106519A1 (en) | 2018-07-17 | 2020-01-23 | Icu Medical, Inc. | Systems and methods for facilitating clinical messaging in a network environment |
US10692595B2 (en) | 2018-07-26 | 2020-06-23 | Icu Medical, Inc. | Drug library dynamic version management |
AU2019309766B2 (en) | 2018-07-26 | 2024-06-13 | Icu Medical, Inc. | Drug library management system |
US11761077B2 (en) | 2018-08-01 | 2023-09-19 | Medtronic Minimed, Inc. | Sputtering techniques for biosensors |
US11122697B2 (en) | 2018-08-07 | 2021-09-14 | Medtronic Minimed, Inc. | Method of fabricating an electronic medical device, including overmolding an assembly with thermoplastic material |
US11021731B2 (en) | 2018-08-23 | 2021-06-01 | Medtronic Minimed, Inc. | Analyte sensing layers, analyte sensors and methods for fabricating the same |
US11241532B2 (en) | 2018-08-29 | 2022-02-08 | Insulet Corporation | Drug delivery system with sensor having optimized communication and infusion site |
US10828419B2 (en) | 2018-09-04 | 2020-11-10 | Medtronic Minimed, Inc. | Infusion set with pivoting metal cannula and strain relief |
US11547799B2 (en) | 2018-09-20 | 2023-01-10 | Medtronic Minimed, Inc. | Patient day planning systems and methods |
US11097052B2 (en) | 2018-09-28 | 2021-08-24 | Medtronic Minimed, Inc. | Insulin infusion device with configurable target blood glucose value for automatic basal insulin delivery operation |
US11071821B2 (en) | 2018-09-28 | 2021-07-27 | Medtronic Minimed, Inc. | Insulin infusion device with efficient confirmation routine for blood glucose measurements |
US10894126B2 (en) | 2018-09-28 | 2021-01-19 | Medtronic Minimed, Inc. | Fluid infusion system that automatically determines and delivers a correction bolus |
US10980942B2 (en) | 2018-09-28 | 2021-04-20 | Medtronic Minimed, Inc. | Infusion devices and related meal bolus adjustment methods |
US10946140B2 (en) | 2018-10-11 | 2021-03-16 | Medtronic Minimed, Inc. | Systems and methods for measurement of fluid delivery |
US20200116748A1 (en) | 2018-10-11 | 2020-04-16 | Medtronic Minimed, Inc. | Systems and methods for measurement of fluid delivery |
US20200135320A1 (en) | 2018-10-31 | 2020-04-30 | Medtronic Minimed, Inc. | Automated detection of a physical behavior event and corresponding adjustment of a medication dispensing system based on historical events |
US20200289373A1 (en) | 2018-10-31 | 2020-09-17 | Medtronic Minimed, Inc. | Automated detection of a physical behavior event and corresponding adjustment of a physiological characteristic sensor device |
US11363986B2 (en) | 2018-10-31 | 2022-06-21 | Medtronic Minimed, Inc. | Automated detection of a physical behavior event and corresponding adjustment of a medication dispensing system |
US11367517B2 (en) | 2018-10-31 | 2022-06-21 | Medtronic Minimed, Inc. | Gesture-based detection of a physical behavior event based on gesture sensor data and supplemental information from at least one external source |
US11382541B2 (en) | 2018-11-16 | 2022-07-12 | Medtronic Minimed, Inc. | Miniaturized analyte sensor |
US11540750B2 (en) | 2018-12-19 | 2023-01-03 | Medtronic Minimed, Inc | Systems and methods for physiological characteristic monitoring |
US11439752B2 (en) | 2019-02-01 | 2022-09-13 | Medtronic Minimed, Inc. | Methods and devices for occlusion detection using actuator sensors |
US12114972B2 (en) | 2019-02-01 | 2024-10-15 | Medtronic Minimed, Inc. | Methods, systems, and devices for continuous glucose monitoring |
US11389587B2 (en) | 2019-02-06 | 2022-07-19 | Medtronic Minimed, Inc. | Patient monitoring systems and related presentation methods |
US11191899B2 (en) | 2019-02-12 | 2021-12-07 | Medtronic Minimed, Inc. | Infusion systems and related personalized bolusing methods |
US12082910B2 (en) | 2019-02-12 | 2024-09-10 | Medtronic Minimed, Inc. | Miniaturized noninvasive glucose sensor and continuous glucose monitoring system |
US11311215B2 (en) | 2019-04-04 | 2022-04-26 | Medtronic Minimed, Inc. | Measurement of device materials using non-Faradaic electrochemical impedance spectroscopy |
US11986629B2 (en) | 2019-06-11 | 2024-05-21 | Medtronic Minimed, Inc. | Personalized closed loop optimization systems and methods |
US11317867B2 (en) | 2019-04-23 | 2022-05-03 | Medtronic Minimed, Inc. | Flexible physiological characteristic sensor assembly |
US11224361B2 (en) | 2019-04-23 | 2022-01-18 | Medtronic Minimed, Inc. | Flexible physiological characteristic sensor assembly |
WO2020227403A1 (en) | 2019-05-08 | 2020-11-12 | Icu Medical, Inc. | Threshold signature based medical device management |
US10939488B2 (en) | 2019-05-20 | 2021-03-02 | Medtronic Minimed, Inc. | Method and system for controlling communication between devices of a wireless body area network for an medical device system |
USD1002852S1 (en) | 2019-06-06 | 2023-10-24 | Abbott Diabetes Care Inc. | Analyte sensor device |
US11642454B2 (en) | 2019-06-06 | 2023-05-09 | Medtronic Minimed, Inc. | Fluid infusion systems |
US11448611B2 (en) | 2019-07-03 | 2022-09-20 | Medtronic Minimed, Inc. | Structurally reinforced sensor and method for manufacturing the same |
CN115243746A (en) | 2019-07-16 | 2022-10-25 | 贝塔仿生公司 | Mobile device and components thereof |
US11617828B2 (en) | 2019-07-17 | 2023-04-04 | Medtronic Minimed, Inc. | Reservoir connection interface with detectable signature |
US11718865B2 (en) | 2019-07-26 | 2023-08-08 | Medtronic Minimed, Inc. | Methods to improve oxygen delivery to implantable sensors |
US11523757B2 (en) | 2019-08-01 | 2022-12-13 | Medtronic Minimed, Inc. | Micro-pillar working electrodes design to reduce backflow of hydrogen peroxide in glucose sensor |
US20220039755A1 (en) | 2020-08-06 | 2022-02-10 | Medtronic Minimed, Inc. | Machine learning-based system for estimating glucose values |
US11617522B2 (en) | 2019-08-06 | 2023-04-04 | Medtronic Minimed, Inc. | Sensor inserter with disposal lockout state |
US11883208B2 (en) | 2019-08-06 | 2024-01-30 | Medtronic Minimed, Inc. | Machine learning-based system for estimating glucose values based on blood glucose measurements and contextual activity data |
CA3145580A1 (en) | 2019-08-09 | 2021-02-18 | Kaleo, Inc. | Devices and methods for delivery of substances within a prefilled syringe |
US11724045B2 (en) | 2019-08-21 | 2023-08-15 | Medtronic Minimed, Inc. | Connection of a stopper and piston in a fluid delivery device |
US20210060244A1 (en) | 2019-08-28 | 2021-03-04 | Medtronic Minimed, Inc. | Method and system for verifying whether a non-medical client device is operating correctly with a medical device controlled by the non-medical client device and causing a notification to be generated |
US11992656B2 (en) | 2019-08-29 | 2024-05-28 | Medtronic Minimed, Inc. | Controlling medical infusion device operation and features based on detected patient sleeping status |
US11654235B2 (en) | 2019-09-12 | 2023-05-23 | Medtronic Minimed, Inc. | Sensor calibration using fabrication measurements |
US11565044B2 (en) | 2019-09-12 | 2023-01-31 | Medtronic Minimed, Inc. | Manufacturing controls for sensor calibration using fabrication measurements |
US11213623B2 (en) | 2019-09-20 | 2022-01-04 | Medtronic Minimed, Inc. | Infusion systems and related personalized bolusing methods |
US11241537B2 (en) | 2019-09-20 | 2022-02-08 | Medtronic Minimed, Inc. | Contextual personalized closed-loop adjustment methods and systems |
US11511099B2 (en) | 2019-10-08 | 2022-11-29 | Medtronic Minimed, Inc. | Apparatus for detecting mating of a cap with a fluid delivery device and method |
US11638545B2 (en) | 2019-10-16 | 2023-05-02 | Medtronic Minimed, Inc. | Reducing sensor foreign body response via high surface area metal structures |
US11496083B2 (en) | 2019-11-15 | 2022-11-08 | Medtronic Minimed, Inc. | Devices and methods for controlling electromechanical actuators |
US11944784B2 (en) | 2019-11-18 | 2024-04-02 | Medtronic Minimed, Inc. | Combined analyte sensor and infusion set |
US11324881B2 (en) | 2019-11-21 | 2022-05-10 | Medtronic Minimed, Inc. | Systems for wearable infusion port and associated pump |
US11559624B2 (en) | 2019-11-21 | 2023-01-24 | Medtronic Minimed, Inc. | Systems for wearable infusion port and associated pump |
US11278671B2 (en) | 2019-12-04 | 2022-03-22 | Icu Medical, Inc. | Infusion pump with safety sequence keypad |
US11670425B2 (en) | 2019-12-09 | 2023-06-06 | Medtronic Minimed, Inc. | Translation modeling methods and systems for simulating sensor measurements |
EP4191600A1 (en) | 2019-12-13 | 2023-06-07 | Medtronic MiniMed, Inc. | Method and system for training a mathematical model of a user based on data received from a discrete insulin therapy system |
US11938301B2 (en) | 2019-12-13 | 2024-03-26 | Medtronic Minimed, Inc. | Controlling medication delivery system operation and features based on automatically detected muscular movements |
US11786655B2 (en) | 2019-12-13 | 2023-10-17 | Medtronic Minimed, Inc. | Context-sensitive predictive operation of a medication delivery system in response to gesture-indicated activity changes |
US12133969B2 (en) | 2019-12-13 | 2024-11-05 | Medtronic Minimed, Inc. | Translating therapy parameters of an insulin therapy system to translated therapy parameters for use at a different insulin therapy system |
US11488700B2 (en) | 2019-12-13 | 2022-11-01 | Medtronic Minimed, Inc. | Medical device configuration procedure guidance responsive to detected gestures |
US11690573B2 (en) | 2019-12-18 | 2023-07-04 | Medtronic Minimed, Inc. | Systems for skin patch gravity resistance |
US11375955B2 (en) | 2019-12-18 | 2022-07-05 | Medtronic Minimed, Inc. | Systems for skin patch gravity resistance |
US11821022B2 (en) | 2019-12-23 | 2023-11-21 | Medtronic Minimed, Inc. | Ethylene oxide absorption layer for analyte sensing and method |
US11244753B2 (en) | 2020-01-30 | 2022-02-08 | Medtronic Minimed, Inc. | Activity monitoring systems and methods |
US11957488B2 (en) | 2020-02-07 | 2024-04-16 | Medtronic Minimed, Inc. | Systems for medical device breathability |
US11833327B2 (en) | 2020-03-06 | 2023-12-05 | Medtronic Minimed, Inc. | Analyte sensor configuration and calibration based on data collected from a previously used analyte sensor |
US11278661B2 (en) | 2020-03-10 | 2022-03-22 | Beta Bionics, Inc. | Infusion system and components thereof |
USD1031975S1 (en) | 2020-03-10 | 2024-06-18 | Beta Bionics, Inc. | Medicament infusion pump device |
USD958167S1 (en) | 2020-03-23 | 2022-07-19 | Companion Medical, Inc. | Display screen with graphical user interface |
US20210298648A1 (en) | 2020-03-24 | 2021-09-30 | Medtronic Minimed, Inc. | Calibration of a noninvasive physiological characteristic sensor based on data collected from a continuous analyte sensor |
USD958817S1 (en) | 2020-03-31 | 2022-07-26 | Medtronic Minimed, Inc. | Display screen with graphical user interface |
US11596359B2 (en) | 2020-04-09 | 2023-03-07 | Medtronic Minimed, Inc. | Methods and systems for mitigating sensor error propagation |
US11690955B2 (en) | 2020-04-23 | 2023-07-04 | Medtronic Minimed, Inc. | Continuous analyte sensor quality measures and related therapy actions for an automated therapy delivery system |
US11583631B2 (en) | 2020-04-23 | 2023-02-21 | Medtronic Minimed, Inc. | Intuitive user interface features and related functionality for a therapy delivery system |
US11272884B2 (en) | 2020-06-04 | 2022-03-15 | Medtronic Minimed, Inc. | Liner for adhesive skin patch |
US12064236B2 (en) | 2020-06-11 | 2024-08-20 | Medtronic Minimed, Inc. | Methods, systems, and devices for improved sensors for continuous glucose monitoring |
WO2022020184A1 (en) | 2020-07-21 | 2022-01-27 | Icu Medical, Inc. | Fluid transfer devices and methods of use |
US11960311B2 (en) | 2020-07-28 | 2024-04-16 | Medtronic Minimed, Inc. | Linear voltage regulator with isolated supply current |
US11650248B2 (en) | 2020-07-28 | 2023-05-16 | Medtronic Minimed, Inc. | Electrical current measurement system |
US12082924B2 (en) | 2020-07-31 | 2024-09-10 | Medtronic Minimed, Inc. | Sensor identification and integrity check design |
US11445807B2 (en) | 2020-07-31 | 2022-09-20 | Medtronic Minimed, Inc. | Pump clip with tube clamp for a fluid infusion device |
US11839743B2 (en) | 2020-10-07 | 2023-12-12 | Medtronic Minimed, Inc. | Graphic user interface for automated infusate delivery |
US11737783B2 (en) | 2020-10-16 | 2023-08-29 | Medtronic Minimed, Inc. | Disposable medical device introduction system |
US11844930B2 (en) | 2020-10-29 | 2023-12-19 | Medtronic Minimed, Inc. | User-mountable electronic device with accelerometer-based activation feature |
US11806503B2 (en) | 2020-10-29 | 2023-11-07 | Medtronic Minimed, Inc. | Removable wearable device and related attachment methods |
US20220133999A1 (en) * | 2020-10-30 | 2022-05-05 | Medtronic, Inc. | Monitoring of physiological parameters with impedance measurement |
US11534086B2 (en) | 2020-10-30 | 2022-12-27 | Medtronic Minimed, Inc. | Low-profile wearable medical device |
US11951281B2 (en) | 2020-11-11 | 2024-04-09 | Medtronic Minimed, Inc. | Fluid conduit insertion devices |
US11135360B1 (en) | 2020-12-07 | 2021-10-05 | Icu Medical, Inc. | Concurrent infusion with common line auto flush |
USD999913S1 (en) | 2020-12-21 | 2023-09-26 | Abbott Diabetes Care Inc | Analyte sensor inserter |
US11998330B2 (en) | 2021-01-29 | 2024-06-04 | Medtronic Minimed, Inc. | Interference rejection membranes useful with analyte sensors |
EP4288971A1 (en) | 2021-02-02 | 2023-12-13 | Medtronic MiniMed, Inc. | Dynamic adjustments of physiological data |
US11904146B2 (en) | 2021-06-08 | 2024-02-20 | Medtronic Minimed, Inc. | Medicine injection devices, systems, and methods for medicine administration and tracking |
US11792714B2 (en) | 2021-06-16 | 2023-10-17 | Medtronic Minimed, Inc. | Medicine administration in dynamic networks |
US11817285B2 (en) | 2021-09-02 | 2023-11-14 | Medtronic Minimed, Inc. | Ingress-tolerant input devices comprising sliders |
US11587742B1 (en) | 2021-09-02 | 2023-02-21 | Medtronic Minimed, Inc. | Ingress-tolerant input devices |
US11896447B2 (en) | 2022-03-14 | 2024-02-13 | Medtronic Minimed, Inc. | Safeguards against separation from portable medicine delivery devices |
US12011293B2 (en) | 2022-04-26 | 2024-06-18 | Medtronic Minimed, Inc. | Energy management based on a closed switch configuration |
US11997806B2 (en) | 2022-04-26 | 2024-05-28 | Medtronic Minimed, Inc. | Energy management based on an open switch configuration |
Citations (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US650381A (en) * | 1899-03-31 | 1900-05-29 | Internat Facsimilegraph Company | Facsimile telegraph. |
US4431004A (en) * | 1981-10-27 | 1984-02-14 | Bessman Samuel P | Implantable glucose sensor |
US4433072A (en) * | 1978-12-15 | 1984-02-21 | Hospal-Sodip, S.A. | Mixtures of polymers for medical use |
US4494950A (en) * | 1982-01-19 | 1985-01-22 | The Johns Hopkins University | Plural module medication delivery system |
US4562751A (en) * | 1984-01-06 | 1986-01-07 | Nason Clyde K | Solenoid drive apparatus for an external infusion pump |
US4671288A (en) * | 1985-06-13 | 1987-06-09 | The Regents Of The University Of California | Electrochemical cell sensor for continuous short-term use in tissues and blood |
US4678408A (en) * | 1984-01-06 | 1987-07-07 | Pacesetter Infusion, Ltd. | Solenoid drive apparatus for an external infusion pump |
US4685903A (en) * | 1984-01-06 | 1987-08-11 | Pacesetter Infusion, Ltd. | External infusion pump apparatus |
US4731726A (en) * | 1986-05-19 | 1988-03-15 | Healthware Corporation | Patient-operated glucose monitor and diabetes management system |
US4871351A (en) * | 1984-09-28 | 1989-10-03 | Vladimir Feingold | Implantable medication infusion system |
US5080653A (en) * | 1990-04-16 | 1992-01-14 | Pacesetter Infusion, Ltd. | Infusion pump with dual position syringe locator |
US5097122A (en) * | 1990-04-16 | 1992-03-17 | Pacesetter Infusion, Ltd. | Medication infusion system having optical motion sensor to detect drive mechanism malfunction |
US5101814A (en) * | 1989-08-11 | 1992-04-07 | Palti Yoram Prof | System for monitoring and controlling blood glucose |
US5108819A (en) * | 1990-02-14 | 1992-04-28 | Eli Lilly And Company | Thin film electrical component |
US5113869A (en) * | 1990-08-21 | 1992-05-19 | Telectronics Pacing Systems, Inc. | Implantable ambulatory electrocardiogram monitor |
US5284140A (en) * | 1992-02-11 | 1994-02-08 | Eli Lilly And Company | Acrylic copolymer membranes for biosensors |
US5299571A (en) * | 1993-01-22 | 1994-04-05 | Eli Lilly And Company | Apparatus and method for implantation of sensors |
US5320725A (en) * | 1989-08-02 | 1994-06-14 | E. Heller & Company | Electrode and method for the detection of hydrogen peroxide |
US5322063A (en) * | 1991-10-04 | 1994-06-21 | Eli Lilly And Company | Hydrophilic polyurethane membranes for electrochemical glucose sensors |
US5356786A (en) * | 1991-03-04 | 1994-10-18 | E. Heller & Company | Interferant eliminating biosensor |
US5390671A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Transcutaneous sensor insertion set |
US5391250A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Method of fabricating thin film sensors |
US5411647A (en) * | 1992-11-23 | 1995-05-02 | Eli Lilly And Company | Techniques to improve the performance of electrochemical sensors |
US5430434A (en) * | 1993-02-24 | 1995-07-04 | Lederer; Gabor | Portable surgical early warning device |
US5482473A (en) * | 1994-05-09 | 1996-01-09 | Minimed Inc. | Flex circuit connector |
US5497772A (en) * | 1993-11-19 | 1996-03-12 | Alfred E. Mann Foundation For Scientific Research | Glucose monitoring system |
US5543326A (en) * | 1994-03-04 | 1996-08-06 | Heller; Adam | Biosensor including chemically modified enzymes |
US5569186A (en) * | 1994-04-25 | 1996-10-29 | Minimed Inc. | Closed loop infusion pump system with removable glucose sensor |
US5593852A (en) * | 1993-12-02 | 1997-01-14 | Heller; Adam | Subcutaneous glucose electrode |
US5665222A (en) * | 1995-10-11 | 1997-09-09 | E. Heller & Company | Soybean peroxidase electrochemical sensor |
US5665065A (en) * | 1995-05-26 | 1997-09-09 | Minimed Inc. | Medication infusion device with blood glucose data input |
US5711861A (en) * | 1995-11-22 | 1998-01-27 | Ward; W. Kenneth | Device for monitoring changes in analyte concentration |
US5724025A (en) * | 1993-10-21 | 1998-03-03 | Tavori; Itzchak | Portable vital signs monitor |
US5741211A (en) * | 1995-10-26 | 1998-04-21 | Medtronic, Inc. | System and method for continuous monitoring of diabetes-related blood constituents |
US5750926A (en) * | 1995-08-16 | 1998-05-12 | Alfred E. Mann Foundation For Scientific Research | Hermetically sealed electrical feedthrough for use with implantable electronic devices |
US5779665A (en) * | 1997-05-08 | 1998-07-14 | Minimed Inc. | Transdermal introducer assembly |
US5791344A (en) * | 1993-11-19 | 1998-08-11 | Alfred E. Mann Foundation For Scientific Research | Patient monitoring system |
US5862803A (en) * | 1993-09-04 | 1999-01-26 | Besson; Marcus | Wireless medical diagnosis and monitoring equipment |
US5904708A (en) * | 1998-03-19 | 1999-05-18 | Medtronic, Inc. | System and method for deriving relative physiologic signals |
US5917346A (en) * | 1997-09-12 | 1999-06-29 | Alfred E. Mann Foundation | Low power current to frequency converter circuit for use in implantable sensors |
US5929601A (en) * | 1997-12-22 | 1999-07-27 | Lifecor, Inc. | Battery management apparatus for portable electronic devices |
US6043437A (en) * | 1996-12-20 | 2000-03-28 | Alfred E. Mann Foundation | Alumina insulation for coating implantable components and other microminiature devices |
US6049727A (en) * | 1996-07-08 | 2000-04-11 | Animas Corporation | Implantable sensor and system for in vivo measurement and control of fluid constituent levels |
US6081736A (en) * | 1997-10-20 | 2000-06-27 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems adapted for long term use |
US6088608A (en) * | 1997-10-20 | 2000-07-11 | Alfred E. Mann Foundation | Electrochemical sensor and integrity tests therefor |
US6103033A (en) * | 1998-03-04 | 2000-08-15 | Therasense, Inc. | Process for producing an electrochemical biosensor |
US6119028A (en) * | 1997-10-20 | 2000-09-12 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces |
US6120676A (en) * | 1997-02-06 | 2000-09-19 | Therasense, Inc. | Method of using a small volume in vitro analyte sensor |
US6175752B1 (en) * | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6259937B1 (en) * | 1997-09-12 | 2001-07-10 | Alfred E. Mann Foundation | Implantable substrate sensor |
US20010018356A1 (en) * | 1998-04-24 | 2001-08-30 | Cathey David A. | Power-saving mode for portable communication devices |
US6379301B1 (en) * | 1997-01-10 | 2002-04-30 | Health Hero Network, Inc. | Diabetes management system and method for controlling blood glucose |
US20020082665A1 (en) * | 1999-07-07 | 2002-06-27 | Medtronic, Inc. | System and method of communicating between an implantable medical device and a remote computer system or health care provider |
US20020109621A1 (en) * | 2000-04-18 | 2002-08-15 | Motorola, Inc. | Wireless system protocol for telemetry monitoring |
US20030061234A1 (en) * | 2001-09-25 | 2003-03-27 | Ali Mohammed Zamshed | Application location register routing |
US20030061232A1 (en) * | 2001-09-21 | 2003-03-27 | Dun & Bradstreet Inc. | Method and system for processing business data |
US20030078560A1 (en) * | 2001-09-07 | 2003-04-24 | Miller Michael E. | Method and system for non-vascular sensor implantation |
US6554798B1 (en) * | 1998-08-18 | 2003-04-29 | Medtronic Minimed, Inc. | External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities |
US6560741B1 (en) * | 1999-02-24 | 2003-05-06 | Datastrip (Iom) Limited | Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same |
US6558320B1 (en) * | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US20030088166A1 (en) * | 1998-03-04 | 2003-05-08 | Therasense, Inc. | Electrochemical analyte sensor |
US6579690B1 (en) * | 1997-12-05 | 2003-06-17 | Therasense, Inc. | Blood analyte monitoring through subcutaneous measurement |
US6591125B1 (en) * | 2000-06-27 | 2003-07-08 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US6592745B1 (en) * | 1998-10-08 | 2003-07-15 | Therasense, Inc. | Method of using a small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US6605201B1 (en) * | 1999-11-15 | 2003-08-12 | Therasense, Inc. | Transition metal complexes with bidentate ligand having an imidazole ring and sensor constructed therewith |
US20030152823A1 (en) * | 1998-06-17 | 2003-08-14 | Therasense, Inc. | Biological fuel cell and methods |
US6616819B1 (en) * | 1999-11-04 | 2003-09-09 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US20030168338A1 (en) * | 2001-09-21 | 2003-09-11 | Therasense, Inc. | Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking |
US20030176183A1 (en) * | 2001-04-02 | 2003-09-18 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
US6623501B2 (en) * | 2000-04-05 | 2003-09-23 | Therasense, Inc. | Reusable ceramic skin-piercing device |
US6676816B2 (en) * | 2001-05-11 | 2004-01-13 | Therasense, Inc. | Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes |
US6689265B2 (en) * | 1995-10-11 | 2004-02-10 | Therasense, Inc. | Electrochemical analyte sensors using thermostable soybean peroxidase |
US20040064156A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Method and apparatus for enhancing the integrity of an implantable sensor device |
US20040064133A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic-Minimed | Implantable sensor method and system |
US20040074785A1 (en) * | 2002-10-18 | 2004-04-22 | Holker James D. | Analyte sensors and methods for making them |
US6733471B1 (en) * | 1998-03-16 | 2004-05-11 | Medtronic, Inc. | Hemostatic system and components for extracorporeal circuit |
US20040093167A1 (en) * | 2002-11-08 | 2004-05-13 | Braig James R. | Analyte detection system with software download capabilities |
US6746582B2 (en) * | 2000-05-12 | 2004-06-08 | Therasense, Inc. | Electrodes with multilayer membranes and methods of making the electrodes |
US20040111017A1 (en) * | 1999-06-18 | 2004-06-10 | Therasense, Inc. | Mass transport limited in vivo analyte sensor |
US6893545B2 (en) * | 1997-09-12 | 2005-05-17 | Therasense, Inc. | Biosensor |
US6916159B2 (en) * | 2002-10-09 | 2005-07-12 | Therasense, Inc. | Device and method employing shape memory alloy |
US6932894B2 (en) * | 2001-05-15 | 2005-08-23 | Therasense, Inc. | Biosensor membranes composed of polymers containing heterocyclic nitrogens |
US20050214585A1 (en) * | 2004-03-23 | 2005-09-29 | Seagate Technology Llc | Anti-ferromagnetically coupled granular-continuous magnetic recording media |
US20060202859A1 (en) * | 1998-10-08 | 2006-09-14 | Mastrototaro John J | Telemetered characteristic monitor system and method of using the same |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US103812A (en) | 1870-05-31 | Richard a | ||
US4573994A (en) | 1979-04-27 | 1986-03-04 | The Johns Hopkins University | Refillable medication infusion apparatus |
EP0098592A3 (en) * | 1982-07-06 | 1985-08-21 | Fujisawa Pharmaceutical Co., Ltd. | Portable artificial pancreas |
SE8302733D0 (en) | 1983-05-13 | 1983-05-13 | Wallac Oy | A METHOD OF CALIBRATING LIQUID SCINTILLATION COUNTERS |
US4781798A (en) | 1985-04-19 | 1988-11-01 | The Regents Of The University Of California | Transparent multi-oxygen sensor array and method of using same |
US4703756A (en) | 1986-05-06 | 1987-11-03 | The Regents Of The University Of California | Complete glucose monitoring system with an implantable, telemetered sensor module |
GB2201248B (en) * | 1987-02-24 | 1991-04-17 | Ici Plc | Enzyme electrode sensors |
US4953552A (en) | 1989-04-21 | 1990-09-04 | Demarzo Arthur P | Blood glucose monitoring system |
US5264105A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5262035A (en) | 1989-08-02 | 1993-11-16 | E. Heller And Company | Enzyme electrodes |
US5264104A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5165407A (en) | 1990-04-19 | 1992-11-24 | The University Of Kansas | Implantable glucose sensor |
US5262305A (en) | 1991-03-04 | 1993-11-16 | E. Heller & Company | Interferant eliminating biosensors |
US5353786A (en) * | 1992-01-24 | 1994-10-11 | Wilk Peter J | Surgical lighting method |
US5376070A (en) * | 1992-09-29 | 1994-12-27 | Minimed Inc. | Data transfer system for an infusion pump |
US5371687A (en) | 1992-11-20 | 1994-12-06 | Boehringer Mannheim Corporation | Glucose test data acquisition and management system |
US5499243A (en) * | 1993-01-22 | 1996-03-12 | Hall; Dennis R. | Method and apparatus for coordinating transfer of information between a base station and a plurality of radios |
US5417222A (en) | 1994-01-21 | 1995-05-23 | Hewlett-Packard Company | Patient monitoring system |
US5536249A (en) | 1994-03-09 | 1996-07-16 | Visionary Medical Products, Inc. | Pen-type injector with a microprocessor and blood characteristic monitor |
EP0672427A1 (en) | 1994-03-17 | 1995-09-20 | Siemens-Elema AB | System for infusion of medicine into the body of a patient |
US5370622A (en) | 1994-04-28 | 1994-12-06 | Minimed Inc. | Proctective case for a medication infusion pump |
DE4415896A1 (en) * | 1994-05-05 | 1995-11-09 | Boehringer Mannheim Gmbh | Analysis system for monitoring the concentration of an analyte in the blood of a patient |
US5545191A (en) * | 1994-05-06 | 1996-08-13 | Alfred E. Mann Foundation For Scientific Research | Method for optimally positioning and securing the external unit of a transcutaneous transducer of the skin of a living body |
US5586553A (en) | 1995-02-16 | 1996-12-24 | Minimed Inc. | Transcutaneous sensor insertion set |
US5704351A (en) * | 1995-02-28 | 1998-01-06 | Mortara Instrument, Inc. | Multiple channel biomedical digital telemetry transmitter |
US5882494A (en) | 1995-03-27 | 1999-03-16 | Minimed, Inc. | Polyurethane/polyurea compositions containing silicone for biosensor membranes |
US5786439A (en) | 1996-10-24 | 1998-07-28 | Minimed Inc. | Hydrophilic, swellable coatings for biosensors |
US5752976A (en) * | 1995-06-23 | 1998-05-19 | Medtronic, Inc. | World wide patient location and data telemetry system for implantable medical devices |
US5722999A (en) * | 1995-08-02 | 1998-03-03 | Pacesetter, Inc. | System and method for storing and displaying historical medical data measured by an implantable medical device |
US5972199A (en) | 1995-10-11 | 1999-10-26 | E. Heller & Company | Electrochemical analyte sensors using thermostable peroxidase |
US5944659A (en) * | 1995-11-13 | 1999-08-31 | Vitalcom Inc. | Architecture for TDMA medical telemetry system |
US5748103A (en) * | 1995-11-13 | 1998-05-05 | Vitalcom, Inc. | Two-way TDMA telemetry system with power conservation features |
JPH09201338A (en) * | 1996-01-26 | 1997-08-05 | Hiromichi Omura | Flexible living body information signal generating device |
JP4555919B2 (en) * | 1997-03-17 | 2010-10-06 | ノンインベイシブ モニタリング システムズ インコーポレイテッド | Physiological signature feedback system |
US5954643A (en) | 1997-06-09 | 1999-09-21 | Minimid Inc. | Insertion set for a transcutaneous sensor |
WO1999006108A1 (en) * | 1997-08-01 | 1999-02-11 | Alfred E. Mann Foundation For Scientific Research | Implantable device with improved battery recharging and powering configuration |
US5999849A (en) | 1997-09-12 | 1999-12-07 | Alfred E. Mann Foundation | Low power rectifier circuit for implantable medical device |
US5999848A (en) | 1997-09-12 | 1999-12-07 | Alfred E. Mann Foundation | Daisy chainable sensors and stimulators for implantation in living tissue |
US6248067B1 (en) | 1999-02-05 | 2001-06-19 | Minimed Inc. | Analyte sensor and holter-type monitor system and method of using the same |
US6254586B1 (en) * | 1998-09-25 | 2001-07-03 | Minimed Inc. | Method and kit for supplying a fluid to a subcutaneous placement site |
US5951521A (en) * | 1998-09-25 | 1999-09-14 | Minimed Inc. | Subcutaneous implantable sensor set having the capability to remove deliver fluids to an insertion site |
CA2666434A1 (en) * | 1998-10-08 | 2000-04-13 | Medtronic Minimed, Inc. | Telemetered characteristic monitor system |
US6544798B1 (en) * | 1999-02-26 | 2003-04-08 | Ventana Medical Systems, Inc. | Removal of embedding media from biological samples and cell conditioning on automated staining instruments |
US7247138B2 (en) * | 1999-07-01 | 2007-07-24 | Medtronic Minimed, Inc. | Reusable analyte sensor site and method of using the same |
US6250309B1 (en) * | 1999-07-21 | 2001-06-26 | Medtronic Inc | System and method for transferring information relating to an implantable medical device to a remote location |
US6895263B2 (en) | 2000-02-23 | 2005-05-17 | Medtronic Minimed, Inc. | Real time self-adjusting calibration algorithm |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6671554B2 (en) | 2001-09-07 | 2003-12-30 | Medtronic Minimed, Inc. | Electronic lead for a medical implant device, method of making same, and method and apparatus for inserting same |
US20030212379A1 (en) | 2002-02-26 | 2003-11-13 | Bylund Adam David | Systems and methods for remotely controlling medication infusion and analyte monitoring |
KR101759958B1 (en) | 2008-11-18 | 2017-07-20 | 엘지전자 주식회사 | Method for processing non-real time service and broadcast receiver |
-
1999
- 1999-09-20 CA CA002666434A patent/CA2666434A1/en not_active Abandoned
- 1999-09-20 AT AT03078678T patent/ATE514372T1/en not_active IP Right Cessation
- 1999-09-20 JP JP2000573250A patent/JP4469504B2/en not_active Expired - Fee Related
- 1999-09-20 CA CA002666429A patent/CA2666429A1/en not_active Abandoned
- 1999-09-20 EP EP03078678A patent/EP1413245B1/en not_active Expired - Lifetime
- 1999-09-20 AU AU62556/99A patent/AU6255699A/en not_active Abandoned
- 1999-09-20 DK DK03078678.4T patent/DK1413245T3/en active
- 1999-09-20 EP EP10167458A patent/EP2229879A1/en not_active Withdrawn
- 1999-09-20 CA CA002345043A patent/CA2345043C/en not_active Expired - Fee Related
- 1999-09-20 WO PCT/US1999/021703 patent/WO2000019887A1/en not_active Application Discontinuation
- 1999-09-20 EP EP99949741A patent/EP1119285A1/en not_active Withdrawn
- 1999-12-17 US US09/465,715 patent/US6809653B1/en not_active Expired - Lifetime
-
2004
- 2004-07-23 US US10/898,589 patent/US7098803B2/en not_active Expired - Fee Related
-
2005
- 2005-09-12 US US11/225,790 patent/US7324012B2/en not_active Expired - Fee Related
- 2005-09-12 US US11/225,296 patent/US7602310B2/en not_active Expired - Fee Related
-
2007
- 2007-10-02 US US11/906,516 patent/US20080030369A1/en not_active Abandoned
-
2009
- 2009-09-16 JP JP2009213868A patent/JP5048737B2/en not_active Expired - Fee Related
-
2012
- 2012-03-20 US US13/424,698 patent/US20120179015A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US650381A (en) * | 1899-03-31 | 1900-05-29 | Internat Facsimilegraph Company | Facsimile telegraph. |
US4433072A (en) * | 1978-12-15 | 1984-02-21 | Hospal-Sodip, S.A. | Mixtures of polymers for medical use |
US4431004A (en) * | 1981-10-27 | 1984-02-14 | Bessman Samuel P | Implantable glucose sensor |
US4494950A (en) * | 1982-01-19 | 1985-01-22 | The Johns Hopkins University | Plural module medication delivery system |
US4562751A (en) * | 1984-01-06 | 1986-01-07 | Nason Clyde K | Solenoid drive apparatus for an external infusion pump |
US4678408A (en) * | 1984-01-06 | 1987-07-07 | Pacesetter Infusion, Ltd. | Solenoid drive apparatus for an external infusion pump |
US4685903A (en) * | 1984-01-06 | 1987-08-11 | Pacesetter Infusion, Ltd. | External infusion pump apparatus |
US4871351A (en) * | 1984-09-28 | 1989-10-03 | Vladimir Feingold | Implantable medication infusion system |
US4671288A (en) * | 1985-06-13 | 1987-06-09 | The Regents Of The University Of California | Electrochemical cell sensor for continuous short-term use in tissues and blood |
US4731726A (en) * | 1986-05-19 | 1988-03-15 | Healthware Corporation | Patient-operated glucose monitor and diabetes management system |
US5320725A (en) * | 1989-08-02 | 1994-06-14 | E. Heller & Company | Electrode and method for the detection of hydrogen peroxide |
US5101814A (en) * | 1989-08-11 | 1992-04-07 | Palti Yoram Prof | System for monitoring and controlling blood glucose |
US5108819A (en) * | 1990-02-14 | 1992-04-28 | Eli Lilly And Company | Thin film electrical component |
US5403700A (en) * | 1990-02-14 | 1995-04-04 | Eli Lilly And Company | Method of making a thin film electrical component |
US5080653A (en) * | 1990-04-16 | 1992-01-14 | Pacesetter Infusion, Ltd. | Infusion pump with dual position syringe locator |
US5097122A (en) * | 1990-04-16 | 1992-03-17 | Pacesetter Infusion, Ltd. | Medication infusion system having optical motion sensor to detect drive mechanism malfunction |
US5113869A (en) * | 1990-08-21 | 1992-05-19 | Telectronics Pacing Systems, Inc. | Implantable ambulatory electrocardiogram monitor |
US6514718B2 (en) * | 1991-03-04 | 2003-02-04 | Therasense, Inc. | Subcutaneous glucose electrode |
US6881551B2 (en) * | 1991-03-04 | 2005-04-19 | Therasense, Inc. | Subcutaneous glucose electrode |
US5356786A (en) * | 1991-03-04 | 1994-10-18 | E. Heller & Company | Interferant eliminating biosensor |
US5322063A (en) * | 1991-10-04 | 1994-06-21 | Eli Lilly And Company | Hydrophilic polyurethane membranes for electrochemical glucose sensors |
US5284140A (en) * | 1992-02-11 | 1994-02-08 | Eli Lilly And Company | Acrylic copolymer membranes for biosensors |
US5411647A (en) * | 1992-11-23 | 1995-05-02 | Eli Lilly And Company | Techniques to improve the performance of electrochemical sensors |
US5299571A (en) * | 1993-01-22 | 1994-04-05 | Eli Lilly And Company | Apparatus and method for implantation of sensors |
US5430434A (en) * | 1993-02-24 | 1995-07-04 | Lederer; Gabor | Portable surgical early warning device |
US5957854A (en) * | 1993-09-04 | 1999-09-28 | Besson; Marcus | Wireless medical diagnosis and monitoring equipment |
US20040015058A1 (en) * | 1993-09-04 | 2004-01-22 | Motorola, Inc. | Wireless medical diagnosis and monitoring equipment |
US5862803A (en) * | 1993-09-04 | 1999-01-26 | Besson; Marcus | Wireless medical diagnosis and monitoring equipment |
US5724025A (en) * | 1993-10-21 | 1998-03-03 | Tavori; Itzchak | Portable vital signs monitor |
US5660163A (en) * | 1993-11-19 | 1997-08-26 | Alfred E. Mann Foundation For Scientific Research | Glucose sensor assembly |
US5497772A (en) * | 1993-11-19 | 1996-03-12 | Alfred E. Mann Foundation For Scientific Research | Glucose monitoring system |
US5791344A (en) * | 1993-11-19 | 1998-08-11 | Alfred E. Mann Foundation For Scientific Research | Patient monitoring system |
US6083710A (en) * | 1993-12-02 | 2000-07-04 | E. Heller & Company | Electrochemical analyte measurement system |
US5593852A (en) * | 1993-12-02 | 1997-01-14 | Heller; Adam | Subcutaneous glucose electrode |
US5965380A (en) * | 1993-12-02 | 1999-10-12 | E. Heller & Company | Subcutaneous glucose electrode |
US6121009A (en) * | 1993-12-02 | 2000-09-19 | E. Heller & Company | Electrochemical analyte measurement system |
US5543326A (en) * | 1994-03-04 | 1996-08-06 | Heller; Adam | Biosensor including chemically modified enzymes |
US5391250A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Method of fabricating thin film sensors |
US5390671A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Transcutaneous sensor insertion set |
US5569186A (en) * | 1994-04-25 | 1996-10-29 | Minimed Inc. | Closed loop infusion pump system with removable glucose sensor |
US5482473A (en) * | 1994-05-09 | 1996-01-09 | Minimed Inc. | Flex circuit connector |
US5665065A (en) * | 1995-05-26 | 1997-09-09 | Minimed Inc. | Medication infusion device with blood glucose data input |
US5750926A (en) * | 1995-08-16 | 1998-05-12 | Alfred E. Mann Foundation For Scientific Research | Hermetically sealed electrical feedthrough for use with implantable electronic devices |
US6689265B2 (en) * | 1995-10-11 | 2004-02-10 | Therasense, Inc. | Electrochemical analyte sensors using thermostable soybean peroxidase |
US5665222A (en) * | 1995-10-11 | 1997-09-09 | E. Heller & Company | Soybean peroxidase electrochemical sensor |
US5741211A (en) * | 1995-10-26 | 1998-04-21 | Medtronic, Inc. | System and method for continuous monitoring of diabetes-related blood constituents |
US5711861A (en) * | 1995-11-22 | 1998-01-27 | Ward; W. Kenneth | Device for monitoring changes in analyte concentration |
US6049727A (en) * | 1996-07-08 | 2000-04-11 | Animas Corporation | Implantable sensor and system for in vivo measurement and control of fluid constituent levels |
US6043437A (en) * | 1996-12-20 | 2000-03-28 | Alfred E. Mann Foundation | Alumina insulation for coating implantable components and other microminiature devices |
US6379301B1 (en) * | 1997-01-10 | 2002-04-30 | Health Hero Network, Inc. | Diabetes management system and method for controlling blood glucose |
US6607658B1 (en) * | 1997-02-06 | 2003-08-19 | Therasense, Inc. | Integrated lancing and measurement device and analyte measuring methods |
US6120676A (en) * | 1997-02-06 | 2000-09-19 | Therasense, Inc. | Method of using a small volume in vitro analyte sensor |
US5779665A (en) * | 1997-05-08 | 1998-07-14 | Minimed Inc. | Transdermal introducer assembly |
US5917346A (en) * | 1997-09-12 | 1999-06-29 | Alfred E. Mann Foundation | Low power current to frequency converter circuit for use in implantable sensors |
US6893545B2 (en) * | 1997-09-12 | 2005-05-17 | Therasense, Inc. | Biosensor |
US6259937B1 (en) * | 1997-09-12 | 2001-07-10 | Alfred E. Mann Foundation | Implantable substrate sensor |
US6081736A (en) * | 1997-10-20 | 2000-06-27 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems adapted for long term use |
US6088608A (en) * | 1997-10-20 | 2000-07-11 | Alfred E. Mann Foundation | Electrochemical sensor and integrity tests therefor |
US6119028A (en) * | 1997-10-20 | 2000-09-12 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces |
US6579690B1 (en) * | 1997-12-05 | 2003-06-17 | Therasense, Inc. | Blood analyte monitoring through subcutaneous measurement |
US5929601A (en) * | 1997-12-22 | 1999-07-27 | Lifecor, Inc. | Battery management apparatus for portable electronic devices |
US20030088166A1 (en) * | 1998-03-04 | 2003-05-08 | Therasense, Inc. | Electrochemical analyte sensor |
US6103033A (en) * | 1998-03-04 | 2000-08-15 | Therasense, Inc. | Process for producing an electrochemical biosensor |
US6733471B1 (en) * | 1998-03-16 | 2004-05-11 | Medtronic, Inc. | Hemostatic system and components for extracorporeal circuit |
US5904708A (en) * | 1998-03-19 | 1999-05-18 | Medtronic, Inc. | System and method for deriving relative physiologic signals |
US20010018356A1 (en) * | 1998-04-24 | 2001-08-30 | Cathey David A. | Power-saving mode for portable communication devices |
US6175752B1 (en) * | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6565509B1 (en) * | 1998-04-30 | 2003-05-20 | Therasense, Inc. | Analyte monitoring device and methods of use |
US20030152823A1 (en) * | 1998-06-17 | 2003-08-14 | Therasense, Inc. | Biological fuel cell and methods |
US6554798B1 (en) * | 1998-08-18 | 2003-04-29 | Medtronic Minimed, Inc. | External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities |
US20060202859A1 (en) * | 1998-10-08 | 2006-09-14 | Mastrototaro John J | Telemetered characteristic monitor system and method of using the same |
US6592745B1 (en) * | 1998-10-08 | 2003-07-15 | Therasense, Inc. | Method of using a small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US6618934B1 (en) * | 1998-10-08 | 2003-09-16 | Therasense, Inc. | Method of manufacturing small volume in vitro analyte sensor |
US6560741B1 (en) * | 1999-02-24 | 2003-05-06 | Datastrip (Iom) Limited | Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same |
US20040111017A1 (en) * | 1999-06-18 | 2004-06-10 | Therasense, Inc. | Mass transport limited in vivo analyte sensor |
US20020082665A1 (en) * | 1999-07-07 | 2002-06-27 | Medtronic, Inc. | System and method of communicating between an implantable medical device and a remote computer system or health care provider |
US6616819B1 (en) * | 1999-11-04 | 2003-09-09 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US6749740B2 (en) * | 1999-11-04 | 2004-06-15 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US6942518B2 (en) * | 1999-11-04 | 2005-09-13 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US6605200B1 (en) * | 1999-11-15 | 2003-08-12 | Therasense, Inc. | Polymeric transition metal complexes and uses thereof |
US6605201B1 (en) * | 1999-11-15 | 2003-08-12 | Therasense, Inc. | Transition metal complexes with bidentate ligand having an imidazole ring and sensor constructed therewith |
US6558320B1 (en) * | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6623501B2 (en) * | 2000-04-05 | 2003-09-23 | Therasense, Inc. | Reusable ceramic skin-piercing device |
US20020109621A1 (en) * | 2000-04-18 | 2002-08-15 | Motorola, Inc. | Wireless system protocol for telemetry monitoring |
US6746582B2 (en) * | 2000-05-12 | 2004-06-08 | Therasense, Inc. | Electrodes with multilayer membranes and methods of making the electrodes |
US6591125B1 (en) * | 2000-06-27 | 2003-07-08 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US20030176183A1 (en) * | 2001-04-02 | 2003-09-18 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
US6676816B2 (en) * | 2001-05-11 | 2004-01-13 | Therasense, Inc. | Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes |
US6932894B2 (en) * | 2001-05-15 | 2005-08-23 | Therasense, Inc. | Biosensor membranes composed of polymers containing heterocyclic nitrogens |
US20030078560A1 (en) * | 2001-09-07 | 2003-04-24 | Miller Michael E. | Method and system for non-vascular sensor implantation |
US20030168338A1 (en) * | 2001-09-21 | 2003-09-11 | Therasense, Inc. | Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking |
US20030061232A1 (en) * | 2001-09-21 | 2003-03-27 | Dun & Bradstreet Inc. | Method and system for processing business data |
US20030061234A1 (en) * | 2001-09-25 | 2003-03-27 | Ali Mohammed Zamshed | Application location register routing |
US20040064133A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic-Minimed | Implantable sensor method and system |
US20040064156A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Method and apparatus for enhancing the integrity of an implantable sensor device |
US6916159B2 (en) * | 2002-10-09 | 2005-07-12 | Therasense, Inc. | Device and method employing shape memory alloy |
US20040074785A1 (en) * | 2002-10-18 | 2004-04-22 | Holker James D. | Analyte sensors and methods for making them |
US20040093167A1 (en) * | 2002-11-08 | 2004-05-13 | Braig James R. | Analyte detection system with software download capabilities |
US20050214585A1 (en) * | 2004-03-23 | 2005-09-29 | Seagate Technology Llc | Anti-ferromagnetically coupled granular-continuous magnetic recording media |
Cited By (308)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8250483B2 (en) | 2002-02-28 | 2012-08-21 | Smiths Medical Asd, Inc. | Programmable medical infusion pump displaying a banner |
US20030163088A1 (en) * | 2002-02-28 | 2003-08-28 | Blomquist Michael L. | Programmable medical infusion pump |
US8346399B2 (en) | 2002-02-28 | 2013-01-01 | Tandem Diabetes Care, Inc. | Programmable insulin pump |
US8504179B2 (en) | 2002-02-28 | 2013-08-06 | Smiths Medical Asd, Inc. | Programmable medical infusion pump |
US20030163789A1 (en) * | 2002-02-28 | 2003-08-28 | Blomquist Michael L. | Programmable medical infusion pump displaying a banner |
US9962091B2 (en) | 2002-12-31 | 2018-05-08 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US10039881B2 (en) | 2002-12-31 | 2018-08-07 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US10750952B2 (en) | 2002-12-31 | 2020-08-25 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US8560250B2 (en) | 2003-04-04 | 2013-10-15 | Abbott Laboratories | Method and system for transferring analyte test data |
US8437966B2 (en) | 2003-04-04 | 2013-05-07 | Abbott Diabetes Care Inc. | Method and system for transferring analyte test data |
US20100309001A1 (en) * | 2003-04-04 | 2010-12-09 | Abbott Diabetes Care Inc. | Method and System for Transferring Analyte Test Data |
US8483974B2 (en) | 2003-04-04 | 2013-07-09 | Abbott Diabetes Care Inc. | Method and system for transferring analyte test data |
US8682598B2 (en) | 2003-04-04 | 2014-03-25 | Abbott Laboratories | Method and system for transferring analyte test data |
US8512246B2 (en) | 2003-04-28 | 2013-08-20 | Abbott Diabetes Care Inc. | Method and apparatus for providing peak detection circuitry for data communication systems |
US20100171610A1 (en) * | 2003-04-28 | 2010-07-08 | Abbott Diabetes Care Inc. | Method and Apparatus for Providing Peak Detection Circuitry for Data Communication Systems |
US8460243B2 (en) | 2003-06-10 | 2013-06-11 | Abbott Diabetes Care Inc. | Glucose measuring module and insulin pump combination |
US8029443B2 (en) | 2003-07-15 | 2011-10-04 | Abbott Diabetes Care Inc. | Glucose measuring device integrated into a holster for a personal area network device |
US8684930B2 (en) | 2003-10-31 | 2014-04-01 | Abbott Diabetes Care Inc. | Method of calibrating an analyte-measurement device, and associated methods, devices and systems |
US20110004084A1 (en) * | 2003-10-31 | 2011-01-06 | Abbott Diabetes Care Inc. | Method of Calibrating an Analyte-Measurement Device, and Associated Methods, Devices and Systems |
US8771183B2 (en) | 2004-02-17 | 2014-07-08 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US20050182306A1 (en) * | 2004-02-17 | 2005-08-18 | Therasense, Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US8954336B2 (en) | 2004-02-23 | 2015-02-10 | Smiths Medical Asd, Inc. | Server for medical device |
US20050246416A1 (en) * | 2004-02-23 | 2005-11-03 | Blomquist Michael L | Server for medical device |
US11507530B2 (en) | 2004-06-04 | 2022-11-22 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US11182332B2 (en) | 2004-06-04 | 2021-11-23 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US12056079B2 (en) | 2004-06-04 | 2024-08-06 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US10963417B2 (en) | 2004-06-04 | 2021-03-30 | Abbott Diabetes Care Inc. | Systems and methods for managing diabetes care data |
US11883164B2 (en) | 2004-07-13 | 2024-01-30 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US8223021B2 (en) | 2005-02-08 | 2012-07-17 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8115635B2 (en) | 2005-02-08 | 2012-02-14 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8358210B2 (en) | 2005-02-08 | 2013-01-22 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8390455B2 (en) | 2005-02-08 | 2013-03-05 | Abbott Diabetes Care Inc. | RF tag on test strips, test strip vials and boxes |
US8542122B2 (en) | 2005-02-08 | 2013-09-24 | Abbott Diabetes Care Inc. | Glucose measurement device and methods using RFID |
US10610135B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918318B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US11051726B2 (en) | 2005-03-10 | 2021-07-06 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US11000213B2 (en) | 2005-03-10 | 2021-05-11 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10925524B2 (en) | 2005-03-10 | 2021-02-23 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610137B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610136B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10898114B2 (en) | 2005-03-10 | 2021-01-26 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918316B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10743801B2 (en) | 2005-03-10 | 2020-08-18 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10716498B2 (en) | 2005-03-10 | 2020-07-21 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918317B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10709364B2 (en) | 2005-03-10 | 2020-07-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10856787B2 (en) | 2005-03-10 | 2020-12-08 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10617336B2 (en) | 2005-03-10 | 2020-04-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US8471714B2 (en) | 2005-05-17 | 2013-06-25 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8653977B2 (en) | 2005-05-17 | 2014-02-18 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US9332944B2 (en) | 2005-05-17 | 2016-05-10 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8880138B2 (en) | 2005-09-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Device for channeling fluid and methods of use |
US20100274108A1 (en) * | 2005-09-30 | 2010-10-28 | Abbott Diabetes Care Inc. | Method and Apparatus for Providing Rechargeable Power in Data Monitoring and Management Systems |
US20110224525A1 (en) * | 2005-10-31 | 2011-09-15 | Abbott Diabetes Care Inc. | Method and Apparatus for Providing Data Communication in Data Monitoring and Management Systems |
US8638220B2 (en) | 2005-10-31 | 2014-01-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing data communication in data monitoring and management systems |
US20110046465A1 (en) * | 2006-02-28 | 2011-02-24 | Abbott Diabetes Care Inc. | Analyte Sensors and Methods of Use |
US7822455B2 (en) | 2006-02-28 | 2010-10-26 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US10117614B2 (en) | 2006-02-28 | 2018-11-06 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US9031630B2 (en) | 2006-02-28 | 2015-05-12 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US20070203407A1 (en) * | 2006-02-28 | 2007-08-30 | Abbott Diabetes Care, Inc. | Analyte sensors and methods of use |
US7826879B2 (en) | 2006-02-28 | 2010-11-02 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US11179072B2 (en) | 2006-02-28 | 2021-11-23 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US10159433B2 (en) | 2006-02-28 | 2018-12-25 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US9844329B2 (en) | 2006-02-28 | 2017-12-19 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US10945647B2 (en) | 2006-02-28 | 2021-03-16 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US11872039B2 (en) | 2006-02-28 | 2024-01-16 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US11179071B2 (en) | 2006-02-28 | 2021-11-23 | Abbott Diabetes Care Inc | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US8506482B2 (en) | 2006-02-28 | 2013-08-13 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US11064916B2 (en) | 2006-02-28 | 2021-07-20 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US20090292188A1 (en) * | 2006-02-28 | 2009-11-26 | Abbott Diabetes Care Inc. | Analyte Sensors and Methods of Use |
US8543183B2 (en) | 2006-03-31 | 2013-09-24 | Abbott Diabetes Care Inc. | Analyte monitoring and management system and methods therefor |
US8593109B2 (en) | 2006-03-31 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US9380971B2 (en) | 2006-03-31 | 2016-07-05 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US9743863B2 (en) | 2006-03-31 | 2017-08-29 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8933664B2 (en) | 2006-03-31 | 2015-01-13 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8858526B2 (en) | 2006-08-03 | 2014-10-14 | Smiths Medical Asd, Inc. | Interface for medical infusion pump |
US20080033361A1 (en) * | 2006-08-03 | 2008-02-07 | Smiths Medical Md, Inc. | Interface for medical infusion pump |
US20080034323A1 (en) * | 2006-08-03 | 2008-02-07 | Blomquist Michael L | Interface for medical infusion pump |
US8965707B2 (en) | 2006-08-03 | 2015-02-24 | Smiths Medical Asd, Inc. | Interface for medical infusion pump |
US10437963B2 (en) | 2006-08-03 | 2019-10-08 | Smiths Medical Asd, Inc. | Interface for medical infusion pump |
US20080033749A1 (en) * | 2006-08-03 | 2008-02-07 | Blomquist Michael L | Interface for medical infusion pump |
US8435206B2 (en) | 2006-08-03 | 2013-05-07 | Smiths Medical Asd, Inc. | Interface for medical infusion pump |
US10255408B2 (en) | 2006-08-03 | 2019-04-09 | Smiths Medical Asd, Inc. | Interface for medical infusion pump |
US20080126969A1 (en) * | 2006-08-03 | 2008-05-29 | Blomquist Michael L | Interface for medical infusion pump |
US8149131B2 (en) | 2006-08-03 | 2012-04-03 | Smiths Medical Asd, Inc. | Interface for medical infusion pump |
US9740829B2 (en) | 2006-08-03 | 2017-08-22 | Smiths Medical Asd, Inc. | Interface for medical infusion pump |
US8952794B2 (en) | 2006-08-03 | 2015-02-10 | Smiths Medical Asd, Inc. | Interface for medical infusion pump |
US20080161666A1 (en) * | 2006-12-29 | 2008-07-03 | Abbott Diabetes Care, Inc. | Analyte devices and methods |
US8208984B2 (en) | 2007-01-24 | 2012-06-26 | Smiths Medical Asd, Inc. | Correction factor testing using frequent blood glucose input |
US20100222765A1 (en) * | 2007-01-24 | 2010-09-02 | Smiths Medical Asd, Inc. | Correction factor testing using frequent blood glucose input |
US7734323B2 (en) | 2007-01-24 | 2010-06-08 | Smiths Medical Asd, Inc. | Correction factor testing using frequent blood glucose input |
US10022499B2 (en) | 2007-02-15 | 2018-07-17 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US10617823B2 (en) | 2007-02-15 | 2020-04-14 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US20080200897A1 (en) * | 2007-02-19 | 2008-08-21 | Abbott Diabetes Care, Inc. | Modular combination of medication infusion and analyte monitoring |
US9636450B2 (en) | 2007-02-19 | 2017-05-02 | Udo Hoss | Pump system modular components for delivering medication and analyte sensing at seperate insertion sites |
US20080206799A1 (en) * | 2007-02-27 | 2008-08-28 | Michael Blomquist | Carbohydrate ratio testing using frequent blood glucose input |
US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US9801545B2 (en) | 2007-03-01 | 2017-10-31 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US9095290B2 (en) | 2007-03-01 | 2015-08-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US20080228056A1 (en) * | 2007-03-13 | 2008-09-18 | Michael Blomquist | Basal rate testing using frequent blood glucose input |
US11291763B2 (en) | 2007-03-13 | 2022-04-05 | Tandem Diabetes Care, Inc. | Basal rate testing using frequent blood glucose input |
US20080255808A1 (en) * | 2007-04-14 | 2008-10-16 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9008743B2 (en) | 2007-04-14 | 2015-04-14 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9615780B2 (en) | 2007-04-14 | 2017-04-11 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9204827B2 (en) | 2007-04-14 | 2015-12-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US8140142B2 (en) | 2007-04-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US10111608B2 (en) | 2007-04-14 | 2018-10-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US11039767B2 (en) | 2007-04-14 | 2021-06-22 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US10349877B2 (en) | 2007-04-14 | 2019-07-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US20080281179A1 (en) * | 2007-05-08 | 2008-11-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and methods |
US9177456B2 (en) | 2007-05-08 | 2015-11-03 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US10952611B2 (en) | 2007-05-08 | 2021-03-23 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9649057B2 (en) | 2007-05-08 | 2017-05-16 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8456301B2 (en) | 2007-05-08 | 2013-06-04 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8461985B2 (en) | 2007-05-08 | 2013-06-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9000929B2 (en) | 2007-05-08 | 2015-04-07 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9574914B2 (en) | 2007-05-08 | 2017-02-21 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US20080278332A1 (en) * | 2007-05-08 | 2008-11-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and methods |
US10653317B2 (en) | 2007-05-08 | 2020-05-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9035767B2 (en) | 2007-05-08 | 2015-05-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US11696684B2 (en) | 2007-05-08 | 2023-07-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US10178954B2 (en) | 2007-05-08 | 2019-01-15 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US20080281171A1 (en) * | 2007-05-08 | 2008-11-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and methods |
US9949678B2 (en) | 2007-05-08 | 2018-04-24 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US9314198B2 (en) | 2007-05-08 | 2016-04-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8593287B2 (en) | 2007-05-08 | 2013-11-26 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9125548B2 (en) | 2007-05-14 | 2015-09-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10634662B2 (en) | 2007-05-14 | 2020-04-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11076785B2 (en) | 2007-05-14 | 2021-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20080288180A1 (en) * | 2007-05-14 | 2008-11-20 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20080287761A1 (en) * | 2007-05-14 | 2008-11-20 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10031002B2 (en) | 2007-05-14 | 2018-07-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8612163B2 (en) | 2007-05-14 | 2013-12-17 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11300561B2 (en) | 2007-05-14 | 2022-04-12 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11828748B2 (en) | 2007-05-14 | 2023-11-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10976304B2 (en) | 2007-05-14 | 2021-04-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20080312841A1 (en) * | 2007-05-14 | 2008-12-18 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11119090B2 (en) | 2007-05-14 | 2021-09-14 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US11125592B2 (en) | 2007-05-14 | 2021-09-21 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10002233B2 (en) | 2007-05-14 | 2018-06-19 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9483608B2 (en) | 2007-05-14 | 2016-11-01 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9060719B2 (en) | 2007-05-14 | 2015-06-23 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8600681B2 (en) | 2007-05-14 | 2013-12-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10119956B2 (en) | 2007-05-14 | 2018-11-06 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8571808B2 (en) | 2007-05-14 | 2013-10-29 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10143409B2 (en) | 2007-05-14 | 2018-12-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10820841B2 (en) | 2007-05-14 | 2020-11-03 | Abbot Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8560038B2 (en) | 2007-05-14 | 2013-10-15 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8444560B2 (en) | 2007-05-14 | 2013-05-21 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10261069B2 (en) | 2007-05-14 | 2019-04-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10653344B2 (en) | 2007-05-14 | 2020-05-19 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8103471B2 (en) | 2007-05-14 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9737249B2 (en) | 2007-05-14 | 2017-08-22 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10045720B2 (en) | 2007-05-14 | 2018-08-14 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8682615B2 (en) | 2007-05-14 | 2014-03-25 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8260558B2 (en) | 2007-05-14 | 2012-09-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8239166B2 (en) | 2007-05-14 | 2012-08-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9797880B2 (en) | 2007-05-14 | 2017-10-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9804150B2 (en) | 2007-05-14 | 2017-10-31 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10463310B2 (en) | 2007-05-14 | 2019-11-05 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9801571B2 (en) | 2007-05-14 | 2017-10-31 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9008803B2 (en) | 2007-05-24 | 2015-04-14 | Tandem Diabetes Care, Inc. | Expert system for insulin pump therapy |
US9474856B2 (en) | 2007-05-24 | 2016-10-25 | Tandem Diabetes Care, Inc. | Expert system for infusion pump therapy |
US7751907B2 (en) | 2007-05-24 | 2010-07-06 | Smiths Medical Asd, Inc. | Expert system for insulin pump therapy |
US20080294294A1 (en) * | 2007-05-24 | 2008-11-27 | Michael Blomquist | Expert system for insulin pump therapy |
US8219222B2 (en) | 2007-05-24 | 2012-07-10 | Smiths Medical Asd, Inc. | Expert system for pump therapy |
US10943687B2 (en) | 2007-05-24 | 2021-03-09 | Tandem Diabetes Care, Inc. | Expert system for insulin pump therapy |
US11257580B2 (en) | 2007-05-24 | 2022-02-22 | Tandem Diabetes Care, Inc. | Expert system for insulin pump therapy |
US20100274751A1 (en) * | 2007-05-24 | 2010-10-28 | Smith Medical Asd, Inc. | Expert system for insulin pump therapy |
US11848089B2 (en) | 2007-05-24 | 2023-12-19 | Tandem Diabetes Care, Inc. | Expert system for insulin pump therapy |
US10357607B2 (en) | 2007-05-24 | 2019-07-23 | Tandem Diabetes Care, Inc. | Correction factor testing using frequent blood glucose input |
US11986292B2 (en) | 2007-05-30 | 2024-05-21 | Tandem Diabetes Care, Inc. | Insulin pump based expert system |
US11576594B2 (en) | 2007-05-30 | 2023-02-14 | Tandem Diabetes Care, Inc. | Insulin pump based expert system |
US8221345B2 (en) | 2007-05-30 | 2012-07-17 | Smiths Medical Asd, Inc. | Insulin pump based expert system |
US9833177B2 (en) | 2007-05-30 | 2017-12-05 | Tandem Diabetes Care, Inc. | Insulin pump based expert system |
US20080300534A1 (en) * | 2007-05-30 | 2008-12-04 | Michael Blomquist | Insulin pump based expert system |
US11298053B2 (en) | 2007-05-30 | 2022-04-12 | Tandem Diabetes Care, Inc. | Insulin pump based expert system |
US8657779B2 (en) | 2007-05-30 | 2014-02-25 | Tandem Diabetes Care, Inc. | Insulin pump based expert system |
US20100168379A1 (en) * | 2007-06-12 | 2010-07-01 | Solvay (Societe Anonyme) | Epichlorohydrin, manufacturing process and use |
US11264133B2 (en) | 2007-06-21 | 2022-03-01 | Abbott Diabetes Care Inc. | Health management devices and methods |
US8597188B2 (en) | 2007-06-21 | 2013-12-03 | Abbott Diabetes Care Inc. | Health management devices and methods |
US20100076293A1 (en) * | 2007-06-21 | 2010-03-25 | Abbott Diabetes Care Inc. | Health Monitor |
US11276492B2 (en) | 2007-06-21 | 2022-03-15 | Abbott Diabetes Care Inc. | Health management devices and methods |
US8617069B2 (en) | 2007-06-21 | 2013-12-31 | Abbott Diabetes Care Inc. | Health monitor |
US10856785B2 (en) | 2007-06-29 | 2020-12-08 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US11678821B2 (en) | 2007-06-29 | 2023-06-20 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US9913600B2 (en) | 2007-06-29 | 2018-03-13 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US8834366B2 (en) | 2007-07-31 | 2014-09-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor calibration |
US9398872B2 (en) | 2007-07-31 | 2016-07-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor calibration |
US20090036747A1 (en) * | 2007-07-31 | 2009-02-05 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20090177147A1 (en) * | 2008-01-07 | 2009-07-09 | Michael Blomquist | Insulin pump with insulin therapy coaching |
US10052049B2 (en) | 2008-01-07 | 2018-08-21 | Tandem Diabetes Care, Inc. | Infusion pump with blood glucose alert delay |
US8718949B2 (en) | 2008-01-07 | 2014-05-06 | Tandem Diabetes Care, Inc. | Insulin pump with blood glucose modules |
US20110033833A1 (en) * | 2008-01-07 | 2011-02-10 | Michael Blomquist | Pump with therapy coaching |
US11302433B2 (en) | 2008-01-07 | 2022-04-12 | Tandem Diabetes Care, Inc. | Diabetes therapy coaching |
US8801657B2 (en) | 2008-01-07 | 2014-08-12 | Tandem Diabetes Care, Inc. | Pump with therapy coaching |
US20090177154A1 (en) * | 2008-01-08 | 2009-07-09 | Michael Blomquist | Insulin pump with convenience features |
US8414523B2 (en) | 2008-01-09 | 2013-04-09 | Tandem Diabetes Care, Inc. | Infusion pump with add-on modules |
US20110040251A1 (en) * | 2008-01-09 | 2011-02-17 | Michael Blomquist | Infusion pump with add-on modules |
US9889250B2 (en) | 2008-01-09 | 2018-02-13 | Tandem Diabetes Care, Inc. | Infusion pump with temperature monitoring |
US8840582B2 (en) | 2008-01-09 | 2014-09-23 | Tandem Diabetes Care, Inc. | Infusion pump with activity monitoring |
US10773015B2 (en) | 2008-01-09 | 2020-09-15 | Tandem Diabetes Care, Inc. | Infusion pump incorporating information from personal information manager devices |
US11850394B2 (en) | 2008-01-09 | 2023-12-26 | Tandem Diabetes Care, Inc. | Infusion pump with add-on modules |
US8802006B2 (en) | 2008-04-10 | 2014-08-12 | Abbott Diabetes Care Inc. | Method and system for sterilizing an analyte sensor |
US20090257911A1 (en) * | 2008-04-10 | 2009-10-15 | Abbott Diabetes Care Inc. | Method and System for Sterilizing an Analyte Sensor |
US8252229B2 (en) | 2008-04-10 | 2012-08-28 | Abbott Diabetes Care Inc. | Method and system for sterilizing an analyte sensor |
US11488549B2 (en) | 2008-05-02 | 2022-11-01 | Tandem Diabetes Care, Inc. | Display for pump |
US10726100B2 (en) | 2008-05-02 | 2020-07-28 | Tandem Diabetes Care, Inc. | Display for pump |
US8133197B2 (en) | 2008-05-02 | 2012-03-13 | Smiths Medical Asd, Inc. | Display for pump |
US11580918B2 (en) | 2008-05-02 | 2023-02-14 | Tandem Diabetes Care, Inc. | Display for pump |
US20110044333A1 (en) * | 2008-05-30 | 2011-02-24 | Abbott Diabetes Care Inc. | Close Proximity Communication Device and Methods |
US8737259B2 (en) | 2008-05-30 | 2014-05-27 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US11770210B2 (en) | 2008-05-30 | 2023-09-26 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US8509107B2 (en) | 2008-05-30 | 2013-08-13 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US9184875B2 (en) | 2008-05-30 | 2015-11-10 | Abbott Diabetes Care, Inc. | Close proximity communication device and methods |
US9831985B2 (en) | 2008-05-30 | 2017-11-28 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
US11202592B2 (en) | 2008-09-30 | 2021-12-21 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US11484234B2 (en) | 2008-09-30 | 2022-11-01 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US11013439B2 (en) | 2008-09-30 | 2021-05-25 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US9662056B2 (en) | 2008-09-30 | 2017-05-30 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US11464434B2 (en) | 2008-09-30 | 2022-10-11 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US11202591B2 (en) | 2009-02-03 | 2021-12-21 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11213229B2 (en) | 2009-02-03 | 2022-01-04 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11006872B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11006870B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11166656B2 (en) | 2009-02-03 | 2021-11-09 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11006871B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US8608699B2 (en) | 2009-03-31 | 2013-12-17 | Tandem Diabetes Care, Inc. | Systems and methods to address air, leaks and occlusions in an insulin pump system |
US9119917B2 (en) | 2009-03-31 | 2015-09-01 | Tandem Diabetes Care, Inc. | Systems and methods to address air, leaks and occlusions in an insulin pump system |
US20100262078A1 (en) * | 2009-03-31 | 2010-10-14 | Smiths Medical Asd, Inc. | Systems and methods to address air, leaks and occlusions in an insulin pump system |
US20100247775A1 (en) * | 2009-03-31 | 2010-09-30 | Abbott Diabetes Care Inc. | Precise Fluid Dispensing Method and Device |
US9226701B2 (en) | 2009-04-28 | 2016-01-05 | Abbott Diabetes Care Inc. | Error detection in critical repeating data in a wireless sensor system |
US10617296B2 (en) | 2009-04-29 | 2020-04-14 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US9088452B2 (en) | 2009-04-29 | 2015-07-21 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US9693688B2 (en) | 2009-04-29 | 2017-07-04 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US9949639B2 (en) | 2009-04-29 | 2018-04-24 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US10172518B2 (en) | 2009-04-29 | 2019-01-08 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US11793936B2 (en) | 2009-05-29 | 2023-10-24 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
US11872370B2 (en) | 2009-05-29 | 2024-01-16 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
US9795326B2 (en) | 2009-07-23 | 2017-10-24 | Abbott Diabetes Care Inc. | Continuous analyte measurement systems and systems and methods for implanting them |
US10827954B2 (en) | 2009-07-23 | 2020-11-10 | Abbott Diabetes Care Inc. | Continuous analyte measurement systems and systems and methods for implanting them |
US10660554B2 (en) | 2009-07-31 | 2020-05-26 | Abbott Diabetes Care Inc. | Methods and devices for analyte monitoring calibration |
US11234625B2 (en) | 2009-07-31 | 2022-02-01 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring and therapy management system accuracy |
US9936910B2 (en) | 2009-07-31 | 2018-04-10 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring and therapy management system accuracy |
US10429250B2 (en) | 2009-08-31 | 2019-10-01 | Abbott Diabetes Care, Inc. | Analyte monitoring system and methods for managing power and noise |
US11150145B2 (en) | 2009-08-31 | 2021-10-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
US20110054282A1 (en) * | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Analyte Monitoring System and Methods for Managing Power and Noise |
USD1010133S1 (en) | 2009-08-31 | 2024-01-02 | Abbott Diabetes Care Inc. | Analyte sensor assembly |
US8993331B2 (en) | 2009-08-31 | 2015-03-31 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
US11635332B2 (en) | 2009-08-31 | 2023-04-25 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
US10136816B2 (en) | 2009-08-31 | 2018-11-27 | Abbott Diabetes Care Inc. | Medical devices and methods |
US10492685B2 (en) | 2009-08-31 | 2019-12-03 | Abbott Diabetes Care Inc. | Medical devices and methods |
US9750444B2 (en) | 2009-09-30 | 2017-09-05 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US11259725B2 (en) | 2009-09-30 | 2022-03-01 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US10765351B2 (en) | 2009-09-30 | 2020-09-08 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US11090432B2 (en) | 2009-12-04 | 2021-08-17 | Smiths Medical Asd, Inc. | Advanced step therapy delivery for an ambulatory infusion pump and system |
US20110137239A1 (en) * | 2009-12-04 | 2011-06-09 | Debelser David | Advanced step therapy delivery for an ambulatory infusion pump and system |
US8882701B2 (en) | 2009-12-04 | 2014-11-11 | Smiths Medical Asd, Inc. | Advanced step therapy delivery for an ambulatory infusion pump and system |
US10016559B2 (en) | 2009-12-04 | 2018-07-10 | Smiths Medical Asd, Inc. | Advanced step therapy delivery for an ambulatory infusion pump and system |
US9357957B2 (en) | 2010-01-21 | 2016-06-07 | Arkray, Inc. | Measuring apparatus, measuring system, electric power supply apparatus, and electric power supply method |
US20110184268A1 (en) * | 2010-01-22 | 2011-07-28 | Abbott Diabetes Care Inc. | Method, Device and System for Providing Analyte Sensor Calibration |
US9588210B2 (en) | 2010-02-26 | 2017-03-07 | Arkray, Inc. | Analysis apparatus, analysis method and analysis system |
US8635046B2 (en) | 2010-06-23 | 2014-01-21 | Abbott Diabetes Care Inc. | Method and system for evaluating analyte sensor response characteristics |
US11213226B2 (en) | 2010-10-07 | 2022-01-04 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods |
US11534089B2 (en) | 2011-02-28 | 2022-12-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US11627898B2 (en) | 2011-02-28 | 2023-04-18 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US9532737B2 (en) | 2011-02-28 | 2017-01-03 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US10136845B2 (en) | 2011-02-28 | 2018-11-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US9913619B2 (en) | 2011-10-31 | 2018-03-13 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US9069536B2 (en) | 2011-10-31 | 2015-06-30 | Abbott Diabetes Care Inc. | Electronic devices having integrated reset systems and methods thereof |
US9465420B2 (en) | 2011-10-31 | 2016-10-11 | Abbott Diabetes Care Inc. | Electronic devices having integrated reset systems and methods thereof |
US11406331B2 (en) | 2011-10-31 | 2022-08-09 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US9622691B2 (en) | 2011-10-31 | 2017-04-18 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US9980669B2 (en) | 2011-11-07 | 2018-05-29 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
US10939859B2 (en) | 2011-11-23 | 2021-03-09 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US9289179B2 (en) | 2011-11-23 | 2016-03-22 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US9317656B2 (en) | 2011-11-23 | 2016-04-19 | Abbott Diabetes Care Inc. | Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof |
US8710993B2 (en) | 2011-11-23 | 2014-04-29 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US10136847B2 (en) | 2011-11-23 | 2018-11-27 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US9743872B2 (en) | 2011-11-23 | 2017-08-29 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US11676694B2 (en) | 2012-06-07 | 2023-06-13 | Tandem Diabetes Care, Inc. | Device and method for training users of ambulatory medical devices |
US10942164B2 (en) | 2012-08-30 | 2021-03-09 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US10345291B2 (en) | 2012-08-30 | 2019-07-09 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US10132793B2 (en) | 2012-08-30 | 2018-11-20 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US10656139B2 (en) | 2012-08-30 | 2020-05-19 | Abbott Diabetes Care Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US11950936B2 (en) | 2012-09-17 | 2024-04-09 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US11612363B2 (en) | 2012-09-17 | 2023-03-28 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US9968306B2 (en) | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US10842420B2 (en) | 2012-09-26 | 2020-11-24 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US9907492B2 (en) | 2012-09-26 | 2018-03-06 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US11896371B2 (en) | 2012-09-26 | 2024-02-13 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US10881784B2 (en) | 2013-01-28 | 2021-01-05 | Smiths Medical Asd, Inc. | Medication safety devices and methods |
US10682460B2 (en) | 2013-01-28 | 2020-06-16 | Smiths Medical Asd, Inc. | Medication safety devices and methods |
US11607492B2 (en) | 2013-03-13 | 2023-03-21 | Tandem Diabetes Care, Inc. | System and method for integration and display of data of insulin pumps and continuous glucose monitoring |
US10357606B2 (en) | 2013-03-13 | 2019-07-23 | Tandem Diabetes Care, Inc. | System and method for integration of insulin pumps and continuous glucose monitoring |
US9474475B1 (en) | 2013-03-15 | 2016-10-25 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
US10016561B2 (en) | 2013-03-15 | 2018-07-10 | Tandem Diabetes Care, Inc. | Clinical variable determination |
US10076285B2 (en) | 2013-03-15 | 2018-09-18 | Abbott Diabetes Care Inc. | Sensor fault detection using analyte sensor data pattern comparison |
US10874336B2 (en) | 2013-03-15 | 2020-12-29 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
US10433773B1 (en) | 2013-03-15 | 2019-10-08 | Abbott Diabetes Care Inc. | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
US11229382B2 (en) | 2013-12-31 | 2022-01-25 | Abbott Diabetes Care Inc. | Self-powered analyte sensor and devices using the same |
US11717225B2 (en) | 2014-03-30 | 2023-08-08 | Abbott Diabetes Care Inc. | Method and apparatus for determining meal start and peak events in analyte monitoring systems |
US9669160B2 (en) | 2014-07-30 | 2017-06-06 | Tandem Diabetes Care, Inc. | Temporary suspension for closed-loop medicament therapy |
US11553883B2 (en) | 2015-07-10 | 2023-01-17 | Abbott Diabetes Care Inc. | System, device and method of dynamic glucose profile response to physiological parameters |
US11638781B2 (en) | 2015-12-29 | 2023-05-02 | Tandem Diabetes Care, Inc. | System and method for switching between closed loop and open loop control of an ambulatory infusion pump |
US10569016B2 (en) | 2015-12-29 | 2020-02-25 | Tandem Diabetes Care, Inc. | System and method for switching between closed loop and open loop control of an ambulatory infusion pump |
US11596330B2 (en) | 2017-03-21 | 2023-03-07 | Abbott Diabetes Care Inc. | Methods, devices and system for providing diabetic condition diagnosis and therapy |
US11872368B2 (en) | 2018-04-10 | 2024-01-16 | Tandem Diabetes Care, Inc. | System and method for inductively charging a medical device |
Also Published As
Publication number | Publication date |
---|---|
JP2002526137A (en) | 2002-08-20 |
EP1413245B1 (en) | 2011-06-29 |
US6809653B1 (en) | 2004-10-26 |
EP1413245A2 (en) | 2004-04-28 |
US7324012B2 (en) | 2008-01-29 |
WO2000019887A9 (en) | 2000-08-31 |
JP4469504B2 (en) | 2010-05-26 |
CA2666429A1 (en) | 2000-04-13 |
CA2666434A1 (en) | 2000-04-13 |
US7602310B2 (en) | 2009-10-13 |
US20040263354A1 (en) | 2004-12-30 |
US20120179015A1 (en) | 2012-07-12 |
US20060001550A1 (en) | 2006-01-05 |
JP2009291643A (en) | 2009-12-17 |
CA2345043A1 (en) | 2000-04-13 |
JP5048737B2 (en) | 2012-10-17 |
US7098803B2 (en) | 2006-08-29 |
US20060007017A1 (en) | 2006-01-12 |
AU6255699A (en) | 2000-04-26 |
CA2345043C (en) | 2009-08-11 |
EP1119285A1 (en) | 2001-08-01 |
ATE514372T1 (en) | 2011-07-15 |
EP1413245A3 (en) | 2004-10-27 |
EP2229879A1 (en) | 2010-09-22 |
WO2000019887A1 (en) | 2000-04-13 |
DK1413245T3 (en) | 2011-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7324012B2 (en) | Telemetered characteristic monitor system and method of using the same | |
US20060202859A1 (en) | Telemetered characteristic monitor system and method of using the same | |
EP1148808B1 (en) | Holter-type monitor system comprising an analyte sensor | |
US20090085768A1 (en) | Glucose sensor transceiver | |
US20100277119A1 (en) | Medical Device Charging System | |
US8579813B2 (en) | Handheld personal data assistant (PDA) with a medical device and method of using the same | |
CA2388689A1 (en) | Characteristic monitor system for use with analyte sensor | |
JP2008535548A (en) | Method and system for providing an integrated pharmaceutical infusion / specimen monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |