US20070275975A1 - 3-quinuclidinyl amino-substituted biaryl derivatives - Google Patents
3-quinuclidinyl amino-substituted biaryl derivatives Download PDFInfo
- Publication number
- US20070275975A1 US20070275975A1 US11/749,779 US74977907A US2007275975A1 US 20070275975 A1 US20070275975 A1 US 20070275975A1 US 74977907 A US74977907 A US 74977907A US 2007275975 A1 US2007275975 A1 US 2007275975A1
- Authority
- US
- United States
- Prior art keywords
- oct
- yloxy
- azabicyclo
- mmol
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 279
- 238000000034 method Methods 0.000 claims abstract description 71
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 22
- 125000003118 aryl group Chemical group 0.000 claims abstract description 21
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 10
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- -1 —N(R1) Inorganic materials 0.000 claims description 90
- 125000000217 alkyl group Chemical group 0.000 claims description 64
- 229910052739 hydrogen Inorganic materials 0.000 claims description 42
- 239000001257 hydrogen Substances 0.000 claims description 42
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 26
- 230000000694 effects Effects 0.000 claims description 24
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 21
- 150000003839 salts Chemical class 0.000 claims description 20
- 125000005129 aryl carbonyl group Chemical group 0.000 claims description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 19
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 17
- 150000002148 esters Chemical class 0.000 claims description 16
- 229910052736 halogen Inorganic materials 0.000 claims description 16
- 150000002367 halogens Chemical class 0.000 claims description 16
- 208000024827 Alzheimer disease Diseases 0.000 claims description 15
- 208000035475 disorder Diseases 0.000 claims description 15
- 150000001408 amides Chemical class 0.000 claims description 13
- 206010012289 Dementia Diseases 0.000 claims description 12
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 11
- 239000000651 prodrug Substances 0.000 claims description 11
- 229940002612 prodrug Drugs 0.000 claims description 11
- 208000002193 Pain Diseases 0.000 claims description 10
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 claims description 10
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 10
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 9
- 201000000980 schizophrenia Diseases 0.000 claims description 9
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 claims description 8
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 8
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 claims description 8
- 208000010877 cognitive disease Diseases 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 claims description 8
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 claims description 7
- 210000003169 central nervous system Anatomy 0.000 claims description 6
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 6
- HJGPCEZSLYWLJP-INIZCTEOSA-N 2-amino-4-[2-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrimidin-5-yl]phenol Chemical compound C1=C(O)C(N)=CC(C=2C=NC(O[C@@H]3C4CCN(CC4)C3)=NC=2)=C1 HJGPCEZSLYWLJP-INIZCTEOSA-N 0.000 claims description 5
- AWANSIVVPLQSPK-UHFFFAOYSA-N 3-[2-(1-azabicyclo[2.2.2]octan-3-yloxy)pyrimidin-5-yl]aniline Chemical compound NC1=CC=CC(C=2C=NC(OC3C4CCN(CC4)C3)=NC=2)=C1 AWANSIVVPLQSPK-UHFFFAOYSA-N 0.000 claims description 5
- AMKPGBPKDJVHLM-UHFFFAOYSA-N 4-[2-(1-azabicyclo[2.2.2]octan-3-yloxy)pyrimidin-5-yl]aniline Chemical compound C1=CC(N)=CC=C1C(C=N1)=CN=C1OC1C(CC2)CCN2C1 AMKPGBPKDJVHLM-UHFFFAOYSA-N 0.000 claims description 5
- ISBIHPVUHYXAMR-INIZCTEOSA-N 4-[2-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrimidin-5-yl]-2-nitroaniline Chemical compound C1=C([N+]([O-])=O)C(N)=CC=C1C(C=N1)=CN=C1O[C@@H]1C(CC2)CCN2C1 ISBIHPVUHYXAMR-INIZCTEOSA-N 0.000 claims description 5
- AMKPGBPKDJVHLM-INIZCTEOSA-N 4-[2-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrimidin-5-yl]aniline Chemical compound C1=CC(N)=CC=C1C(C=N1)=CN=C1O[C@@H]1C(CC2)CCN2C1 AMKPGBPKDJVHLM-INIZCTEOSA-N 0.000 claims description 5
- QXIDHMXVLHBARX-IBGZPJMESA-N 4-[4-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]phenyl]aniline Chemical compound C1=CC(N)=CC=C1C(C=C1)=CC=C1O[C@@H]1C(CC2)CCN2C1 QXIDHMXVLHBARX-IBGZPJMESA-N 0.000 claims description 5
- AGRQZDNWGSAPJT-UHFFFAOYSA-N 4-[5-(1-azabicyclo[2.2.2]octan-3-yloxy)pyrazin-2-yl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C(N=C1)=CN=C1OC1C(CC2)CCN2C1 AGRQZDNWGSAPJT-UHFFFAOYSA-N 0.000 claims description 5
- WBPOXMOIRUQBBH-UHFFFAOYSA-N 4-[5-(1-azabicyclo[2.2.2]octan-3-yloxy)pyrazin-2-yl]aniline Chemical compound C1=CC(N)=CC=C1C(N=C1)=CN=C1OC1C(CC2)CCN2C1 WBPOXMOIRUQBBH-UHFFFAOYSA-N 0.000 claims description 5
- WBPOXMOIRUQBBH-INIZCTEOSA-N 4-[5-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrazin-2-yl]aniline Chemical compound C1=CC(N)=CC=C1C(N=C1)=CN=C1O[C@@H]1C(CC2)CCN2C1 WBPOXMOIRUQBBH-INIZCTEOSA-N 0.000 claims description 5
- WBPOXMOIRUQBBH-MRXNPFEDSA-N 4-[5-[[(3s)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrazin-2-yl]aniline Chemical compound C1=CC(N)=CC=C1C(N=C1)=CN=C1O[C@H]1C(CC2)CCN2C1 WBPOXMOIRUQBBH-MRXNPFEDSA-N 0.000 claims description 5
- AUGAWWNFNWCDKR-HNNXBMFYSA-N 4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]-2,6-dibromoaniline Chemical compound C1=C(Br)C(N)=C(Br)C=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 AUGAWWNFNWCDKR-HNNXBMFYSA-N 0.000 claims description 5
- UJXDYVOHCLBFSH-INIZCTEOSA-N 4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]-2-bromoaniline Chemical compound C1=C(Br)C(N)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 UJXDYVOHCLBFSH-INIZCTEOSA-N 0.000 claims description 5
- LYAGMNSMCAELAS-INIZCTEOSA-N 4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]-2-nitroaniline Chemical compound C1=C([N+]([O-])=O)C(N)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 LYAGMNSMCAELAS-INIZCTEOSA-N 0.000 claims description 5
- XFHNUBRSJRCCEB-INIZCTEOSA-N 4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]aniline Chemical compound C1=CC(N)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 XFHNUBRSJRCCEB-INIZCTEOSA-N 0.000 claims description 5
- ZQRKQSYOTJBBDR-INIZCTEOSA-N 4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]benzene-1,2-diamine Chemical compound C1=C(N)C(N)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 ZQRKQSYOTJBBDR-INIZCTEOSA-N 0.000 claims description 5
- 239000003693 atypical antipsychotic agent Substances 0.000 claims description 5
- 229940127236 atypical antipsychotics Drugs 0.000 claims description 5
- 210000004204 blood vessel Anatomy 0.000 claims description 5
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 claims description 5
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 5
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 claims description 5
- OMYPFJQJMXSUMS-UHFFFAOYSA-N n-[4-[5-(1-azabicyclo[2.2.2]octan-3-yloxy)pyrazin-2-yl]phenyl]acetamide Chemical compound C1=CC(NC(=O)C)=CC=C1C(N=C1)=CN=C1OC1C(CC2)CCN2C1 OMYPFJQJMXSUMS-UHFFFAOYSA-N 0.000 claims description 5
- 230000004770 neurodegeneration Effects 0.000 claims description 5
- AWANSIVVPLQSPK-INIZCTEOSA-N 3-[2-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrimidin-5-yl]aniline Chemical compound NC1=CC=CC(C=2C=NC(O[C@@H]3C4CCN(CC4)C3)=NC=2)=C1 AWANSIVVPLQSPK-INIZCTEOSA-N 0.000 claims description 4
- AWANSIVVPLQSPK-MRXNPFEDSA-N 3-[2-[[(3s)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrimidin-5-yl]aniline Chemical compound NC1=CC=CC(C=2C=NC(O[C@H]3C4CCN(CC4)C3)=NC=2)=C1 AWANSIVVPLQSPK-MRXNPFEDSA-N 0.000 claims description 4
- BCXNQUKLGPOBHU-IBGZPJMESA-N 3-[4-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]phenyl]aniline Chemical compound NC1=CC=CC(C=2C=CC(O[C@@H]3C4CCN(CC4)C3)=CC=2)=C1 BCXNQUKLGPOBHU-IBGZPJMESA-N 0.000 claims description 4
- NVXDZFLJTAFUMQ-UHFFFAOYSA-N 3-[6-(1-azabicyclo[2.2.2]octan-3-yloxy)pyridin-3-yl]aniline Chemical compound NC1=CC=CC(C=2C=NC(OC3C4CCN(CC4)C3)=CC=2)=C1 NVXDZFLJTAFUMQ-UHFFFAOYSA-N 0.000 claims description 4
- SSBABQYVIBEDGK-UHFFFAOYSA-N 4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-n-methylaniline Chemical compound C1=CC(NC)=CC=C1C(C=C1)=CC=C1OC1C(CC2)CCN2C1 SSBABQYVIBEDGK-UHFFFAOYSA-N 0.000 claims description 4
- PGCIBVNUKFOVDD-UHFFFAOYSA-N 4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-n-phenylaniline Chemical compound C1CN(C2)CCC1C2OC(C=C1)=CC=C1C(C=C1)=CC=C1NC1=CC=CC=C1 PGCIBVNUKFOVDD-UHFFFAOYSA-N 0.000 claims description 4
- QXIDHMXVLHBARX-UHFFFAOYSA-N 4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]aniline Chemical compound C1=CC(N)=CC=C1C(C=C1)=CC=C1OC1C(CC2)CCN2C1 QXIDHMXVLHBARX-UHFFFAOYSA-N 0.000 claims description 4
- SDPSTCILIWRECG-NRFANRHFSA-N 4-[4-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C(C=C1)=CC=C1O[C@@H]1C(CC2)CCN2C1 SDPSTCILIWRECG-NRFANRHFSA-N 0.000 claims description 4
- JBCUMWVZBCYUBR-UHFFFAOYSA-N 5-[2-(1-azabicyclo[2.2.2]octan-3-yloxy)pyrimidin-5-yl]-2-methylaniline Chemical compound C1=C(N)C(C)=CC=C1C(C=N1)=CN=C1OC1C(CC2)CCN2C1 JBCUMWVZBCYUBR-UHFFFAOYSA-N 0.000 claims description 4
- RASISPVNNKMWSW-FQEVSTJZSA-N 5-[4-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]phenyl]-2-methylaniline Chemical compound C1=C(N)C(C)=CC=C1C(C=C1)=CC=C1O[C@@H]1C(CC2)CCN2C1 RASISPVNNKMWSW-FQEVSTJZSA-N 0.000 claims description 4
- 208000030507 AIDS Diseases 0.000 claims description 4
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 claims description 4
- 201000010374 Down Syndrome Diseases 0.000 claims description 4
- 201000011240 Frontotemporal dementia Diseases 0.000 claims description 4
- 241000124008 Mammalia Species 0.000 claims description 4
- 208000000609 Pick Disease of the Brain Diseases 0.000 claims description 4
- 206010039966 Senile dementia Diseases 0.000 claims description 4
- 206010044688 Trisomy 21 Diseases 0.000 claims description 4
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 claims description 4
- 208000035231 inattentive type attention deficit hyperactivity disease Diseases 0.000 claims description 4
- 210000004558 lewy body Anatomy 0.000 claims description 4
- 208000027061 mild cognitive impairment Diseases 0.000 claims description 4
- JZFVNFDUXAYCFY-UHFFFAOYSA-N n-[4-(4-aminophenyl)phenyl]-1-azabicyclo[2.2.2]octan-3-amine Chemical compound C1=CC(N)=CC=C1C(C=C1)=CC=C1NC1C(CC2)CCN2C1 JZFVNFDUXAYCFY-UHFFFAOYSA-N 0.000 claims description 4
- BFGJYJYNTZJFGO-UHFFFAOYSA-N n-[4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]phenyl]methanesulfonamide Chemical compound C1=CC(NS(=O)(=O)C)=CC=C1C(C=C1)=CC=C1OC1C(CC2)CCN2C1 BFGJYJYNTZJFGO-UHFFFAOYSA-N 0.000 claims description 4
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 claims description 4
- BCXNQUKLGPOBHU-UHFFFAOYSA-N 3-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]aniline Chemical compound NC1=CC=CC(C=2C=CC(OC3C4CCN(CC4)C3)=CC=2)=C1 BCXNQUKLGPOBHU-UHFFFAOYSA-N 0.000 claims description 3
- QXIDHMXVLHBARX-LJQANCHMSA-N 4-[4-[[(3s)-1-azabicyclo[2.2.2]octan-3-yl]oxy]phenyl]aniline Chemical compound C1=CC(N)=CC=C1C(C=C1)=CC=C1O[C@H]1C(CC2)CCN2C1 QXIDHMXVLHBARX-LJQANCHMSA-N 0.000 claims description 3
- 208000000094 Chronic Pain Diseases 0.000 claims description 3
- 208000023105 Huntington disease Diseases 0.000 claims description 3
- 206010065390 Inflammatory pain Diseases 0.000 claims description 3
- 208000004550 Postoperative Pain Diseases 0.000 claims description 3
- 208000030886 Traumatic Brain injury Diseases 0.000 claims description 3
- 206010053648 Vascular occlusion Diseases 0.000 claims description 3
- 208000005298 acute pain Diseases 0.000 claims description 3
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 3
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 3
- 230000003292 diminished effect Effects 0.000 claims description 3
- 208000004296 neuralgia Diseases 0.000 claims description 3
- 208000021722 neuropathic pain Diseases 0.000 claims description 3
- 230000009529 traumatic brain injury Effects 0.000 claims description 3
- 208000021331 vascular occlusion disease Diseases 0.000 claims description 3
- 230000029663 wound healing Effects 0.000 claims description 3
- DPCGWFZOQBRZQF-UHFFFAOYSA-N 4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-n-(cyclohexylmethyl)aniline Chemical compound C=1C=C(C=2C=CC(OC3C4CCN(CC4)C3)=CC=2)C=CC=1NCC1CCCCC1 DPCGWFZOQBRZQF-UHFFFAOYSA-N 0.000 claims description 2
- RASISPVNNKMWSW-UHFFFAOYSA-N 5-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-2-methylaniline Chemical compound C1=C(N)C(C)=CC=C1C(C=C1)=CC=C1OC1C(CC2)CCN2C1 RASISPVNNKMWSW-UHFFFAOYSA-N 0.000 claims description 2
- HBNBGMJEJDTKNO-UHFFFAOYSA-N C1N(CC2)CCC2C1OC(C=C1)=CC=C1C(C=C1C2)=CC=C1N1CN2C2=CC=C(I)C=C2C1 Chemical compound C1N(CC2)CCC2C1OC(C=C1)=CC=C1C(C=C1C2)=CC=C1N1CN2C2=CC=C(I)C=C2C1 HBNBGMJEJDTKNO-UHFFFAOYSA-N 0.000 claims description 2
- ADGVFDLEJQELHZ-FQEVSTJZSA-N ethyl 2-[[4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]phenyl]hydrazinylidene]propanoate Chemical compound C1=CC(NN=C(C)C(=O)OCC)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 ADGVFDLEJQELHZ-FQEVSTJZSA-N 0.000 claims description 2
- 208000000509 infertility Diseases 0.000 claims description 2
- 230000036512 infertility Effects 0.000 claims description 2
- 231100000535 infertility Toxicity 0.000 claims description 2
- OMVHPNWJSDQJHX-UHFFFAOYSA-N n-[4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]phenyl]-4-methylaniline Chemical compound C1=CC(C)=CC=C1NC1=CC=C(C=2C=CC(OC3C4CCN(CC4)C3)=CC=2)C=C1 OMVHPNWJSDQJHX-UHFFFAOYSA-N 0.000 claims description 2
- WFUIPBUKXSQEPO-SFHVURJKSA-N n-[4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]phenyl]acetamide Chemical compound C1=CC(NC(=O)C)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 WFUIPBUKXSQEPO-SFHVURJKSA-N 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 9
- 102000047725 alpha7 Nicotinic Acetylcholine Receptor Human genes 0.000 claims 1
- 108700006085 alpha7 Nicotinic Acetylcholine Receptor Proteins 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 69
- 102000015296 acetylcholine-gated cation-selective channel activity proteins Human genes 0.000 abstract description 19
- 108040006409 acetylcholine-gated cation-selective channel activity proteins Proteins 0.000 abstract description 19
- 239000003446 ligand Substances 0.000 abstract description 17
- 230000001668 ameliorated effect Effects 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 174
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 157
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 130
- 239000000047 product Substances 0.000 description 129
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 114
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 112
- 238000005160 1H NMR spectroscopy Methods 0.000 description 109
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 109
- 239000007787 solid Substances 0.000 description 102
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 86
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 85
- 235000019439 ethyl acetate Nutrition 0.000 description 59
- 238000004587 chromatography analysis Methods 0.000 description 53
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 52
- 239000000377 silicon dioxide Substances 0.000 description 51
- 229910052681 coesite Inorganic materials 0.000 description 48
- 229910052906 cristobalite Inorganic materials 0.000 description 48
- 229910052682 stishovite Inorganic materials 0.000 description 48
- 229910052905 tridymite Inorganic materials 0.000 description 48
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 45
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 45
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 40
- 229910001868 water Inorganic materials 0.000 description 37
- 235000019441 ethanol Nutrition 0.000 description 34
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 32
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 29
- 102000019315 Nicotinic acetylcholine receptors Human genes 0.000 description 27
- 108050006807 Nicotinic acetylcholine receptors Proteins 0.000 description 27
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 26
- 230000002829 reductive effect Effects 0.000 description 25
- 239000000243 solution Substances 0.000 description 24
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 23
- 239000001530 fumaric acid Substances 0.000 description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Substances CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 22
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 20
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 20
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 20
- 239000002253 acid Substances 0.000 description 20
- 125000003545 alkoxy group Chemical group 0.000 description 19
- 102000005962 receptors Human genes 0.000 description 19
- 108020003175 receptors Proteins 0.000 description 19
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 18
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000126 substance Substances 0.000 description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical group [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 14
- 239000003921 oil Substances 0.000 description 14
- 235000019198 oils Nutrition 0.000 description 14
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 13
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical group I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 12
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 12
- 239000000706 filtrate Substances 0.000 description 12
- 238000006555 catalytic reaction Methods 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 11
- 229910052763 palladium Inorganic materials 0.000 description 11
- IVLICPVPXWEGCA-UHFFFAOYSA-N 3-quinuclidinol Chemical compound C1C[C@@H]2C(O)C[N@]1CC2 IVLICPVPXWEGCA-UHFFFAOYSA-N 0.000 description 10
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 239000012267 brine Substances 0.000 description 10
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 10
- 0 CC[Y]C1C*2CCC1CC2 Chemical compound CC[Y]C1C*2CCC1CC2 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 229960000583 acetic acid Drugs 0.000 description 9
- 230000027455 binding Effects 0.000 description 9
- 239000000284 extract Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 9
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 9
- 229910052718 tin Inorganic materials 0.000 description 9
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 239000002502 liposome Substances 0.000 description 8
- 229960002715 nicotine Drugs 0.000 description 8
- 231100000252 nontoxic Toxicity 0.000 description 8
- 230000003000 nontoxic effect Effects 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 7
- 150000001649 bromium compounds Chemical group 0.000 description 7
- 150000004820 halides Chemical class 0.000 description 7
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 7
- 238000002953 preparative HPLC Methods 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 6
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 6
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 6
- 125000000304 alkynyl group Chemical group 0.000 description 6
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 125000000753 cycloalkyl group Chemical group 0.000 description 6
- ANJTVLIZGCUXLD-UHFFFAOYSA-N ent-cytisine Natural products C1NCC2CN3C(=O)C=CC=C3C1C2 ANJTVLIZGCUXLD-UHFFFAOYSA-N 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000012458 free base Substances 0.000 description 6
- 125000004438 haloalkoxy group Chemical group 0.000 description 6
- 125000001188 haloalkyl group Chemical group 0.000 description 6
- 125000001072 heteroaryl group Chemical group 0.000 description 6
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 6
- JMZFEHDNIAQMNB-UHFFFAOYSA-N m-aminophenylboronic acid Chemical compound NC1=CC=CC(B(O)O)=C1 JMZFEHDNIAQMNB-UHFFFAOYSA-N 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- SBYHFKPVCBCYGV-UHFFFAOYSA-N quinuclidine Chemical compound C1CC2CCN1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-N 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 229940086542 triethylamine Drugs 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 239000000556 agonist Substances 0.000 description 5
- 125000005138 alkoxysulfonyl group Chemical group 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- CCRMAATUKBYMPA-UHFFFAOYSA-N trimethyltin Chemical compound C[Sn](C)C.C[Sn](C)C CCRMAATUKBYMPA-UHFFFAOYSA-N 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 239000005909 Kieselgur Substances 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 125000004423 acyloxy group Chemical group 0.000 description 4
- 235000010443 alginic acid Nutrition 0.000 description 4
- 229920000615 alginic acid Polymers 0.000 description 4
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 4
- 125000004414 alkyl thio group Chemical group 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 230000033115 angiogenesis Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 125000002619 bicyclic group Chemical group 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 229910000024 caesium carbonate Inorganic materials 0.000 description 4
- 125000002843 carboxylic acid group Chemical group 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000004296 chiral HPLC Methods 0.000 description 4
- 230000007278 cognition impairment Effects 0.000 description 4
- 230000003920 cognitive function Effects 0.000 description 4
- 229960001270 d- tartaric acid Drugs 0.000 description 4
- 230000006735 deficit Effects 0.000 description 4
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 4
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 238000003818 flash chromatography Methods 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- IBIKHMZPHNKTHM-RDTXWAMCSA-N merck compound 25 Chemical compound C1C[C@@H](C(O)=O)[C@H](O)CN1C(C1=C(F)C=CC=C11)=NN1C(=O)C1=C(Cl)C=CC=C1C1CC1 IBIKHMZPHNKTHM-RDTXWAMCSA-N 0.000 description 4
- XLTANAWLDBYGFU-VTLKBQQISA-N methyllycaconitine Chemical compound C([C@]12CN([C@@H]3[C@@]4(O)[C@]5(O)[C@H]6[C@@H](OC)[C@@H]([C@H](C5)OC)C[C@H]6[C@@]3([C@@H]1[C@@H]4OC)[C@@H](OC)CC2)CC)OC(=O)C1=CC=CC=C1N1C(=O)C[C@H](C)C1=O XLTANAWLDBYGFU-VTLKBQQISA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002674 ointment Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 125000005309 thioalkoxy group Chemical group 0.000 description 4
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- PLTGUDDQNWJILD-UHFFFAOYSA-N (3-amino-4-methylphenyl)boronic acid Chemical compound CC1=CC=C(B(O)O)C=C1N PLTGUDDQNWJILD-UHFFFAOYSA-N 0.000 description 3
- ZKMZPXWMMSBLNO-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-one Chemical compound C1CC2C(=O)CN1CC2 ZKMZPXWMMSBLNO-UHFFFAOYSA-N 0.000 description 3
- DIKFUZHWPMJLIM-UHFFFAOYSA-N 1-oxido-1-azoniabicyclo[2.2.2]octane;potassium Chemical compound [K].C1CC2CC[N+]1([O-])CC2 DIKFUZHWPMJLIM-UHFFFAOYSA-N 0.000 description 3
- WYBQOWXCLDXZNR-UHFFFAOYSA-N 2-(1,3,2-benzodioxaborol-2-yl)-1,3,2-benzodioxaborole Chemical compound O1C2=CC=CC=C2OB1B1OC2=CC=CC=C2O1 WYBQOWXCLDXZNR-UHFFFAOYSA-N 0.000 description 3
- NOLVABYTFMDREN-UHFFFAOYSA-N 3-chloro-1-azabicyclo[2.2.2]octane Chemical compound C1CC2C(Cl)CN1CC2 NOLVABYTFMDREN-UHFFFAOYSA-N 0.000 description 3
- ZNDJDQOECGBUNK-UHFFFAOYSA-N 4-(4-nitrophenyl)phenol Chemical compound C1=CC(O)=CC=C1C1=CC=C([N+]([O-])=O)C=C1 ZNDJDQOECGBUNK-UHFFFAOYSA-N 0.000 description 3
- ZEZKXPQIDURFKA-UHFFFAOYSA-N 5-bromo-2-iodopyrimidine Chemical compound BrC1=CN=C(I)N=C1 ZEZKXPQIDURFKA-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 241000416162 Astragalus gummifer Species 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- OOWNNCMFKFBNOF-UHFFFAOYSA-N CC(C)(C)c1ccc(C(C)(C)C)cc1 Chemical compound CC(C)(C)c1ccc(C(C)(C)C)cc1 OOWNNCMFKFBNOF-UHFFFAOYSA-N 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 229910004373 HOAc Inorganic materials 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 239000007832 Na2SO4 Substances 0.000 description 3
- 229910019213 POCl3 Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 229920001615 Tragacanth Polymers 0.000 description 3
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 3
- 235000010419 agar Nutrition 0.000 description 3
- 125000000676 alkoxyimino group Chemical group 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 235000012216 bentonite Nutrition 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- OFXHCDYNSSCEPG-UHFFFAOYSA-N benzyl n-[4-(6-oxo-1h-pyrazin-3-yl)phenyl]carbamate Chemical compound C=1C=CC=CC=1COC(=O)NC(C=C1)=CC=C1C1=CNC(=O)C=N1 OFXHCDYNSSCEPG-UHFFFAOYSA-N 0.000 description 3
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 230000007794 irritation Effects 0.000 description 3
- 230000013016 learning Effects 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 230000036407 pain Effects 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 150000003335 secondary amines Chemical class 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 125000003396 thiol group Chemical class [H]S* 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 235000010487 tragacanth Nutrition 0.000 description 3
- 239000000196 tragacanth Substances 0.000 description 3
- 229940116362 tragacanth Drugs 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- IVLICPVPXWEGCA-ZETCQYMHSA-N (3r)-1-azabicyclo[2.2.2]octan-3-ol Chemical compound C1CC2[C@@H](O)CN1CC2 IVLICPVPXWEGCA-ZETCQYMHSA-N 0.000 description 2
- LFMWZTSOMGDDJU-UHFFFAOYSA-N 1,4-diiodobenzene Chemical compound IC1=CC=C(I)C=C1 LFMWZTSOMGDDJU-UHFFFAOYSA-N 0.000 description 2
- REUAXQZIRFXQML-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-amine Chemical compound C1CC2C(N)CN1CC2 REUAXQZIRFXQML-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- GRAQCVKINYTYAC-WLHGVMLRSA-N 2-[4-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-phenyl]-8-iodo-6h,12h-5,11-methano-dibenzo[b,f][1,5]diazocine fumarate Chemical compound OC(=O)\C=C\C(O)=O.C1N(CC2)CCC2C1OC(C=C1)=CC=C1C(C=C1C2)=CC=C1N1CN2C2=CC=C(I)C=C2C1 GRAQCVKINYTYAC-WLHGVMLRSA-N 0.000 description 2
- CDDNLMGOLYMTSF-UHFFFAOYSA-N 3-(4-bromophenyl)-4,5-dihydro-1h-pyridazin-6-one Chemical compound C1=CC(Br)=CC=C1C1=NNC(=O)CC1 CDDNLMGOLYMTSF-UHFFFAOYSA-N 0.000 description 2
- MELSVWWAQPWVJO-UHFFFAOYSA-N 3-[4-(4-nitrophenyl)phenoxy]-1-azabicyclo[2.2.2]octane Chemical compound C1=CC([N+](=O)[O-])=CC=C1C(C=C1)=CC=C1OC1C(CC2)CCN2C1 MELSVWWAQPWVJO-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000007818 Grignard reagent Substances 0.000 description 2
- MXLCIECTLXVJNO-BDQAORGHSA-N OC(=O)C(F)(F)F.C1=CC(NN=C(C)C(=O)OCC)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 Chemical compound OC(=O)C(F)(F)F.C1=CC(NN=C(C)C(=O)OCC)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 MXLCIECTLXVJNO-BDQAORGHSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000012445 acidic reagent Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000030120 acrosome reaction Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 210000001638 cerebellum Anatomy 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 230000019771 cognition Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 229940027564 cytisine Drugs 0.000 description 2
- 125000005265 dialkylamine group Chemical group 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 230000008451 emotion Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 239000003885 eye ointment Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000004795 grignard reagents Chemical class 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- USOSSXYPOOERDY-FERBBOLQSA-N n-[4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]phenyl]acetamide;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.C1=CC(NC(=O)C)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 USOSSXYPOOERDY-FERBBOLQSA-N 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000001301 oxygen Chemical group 0.000 description 2
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 2
- 239000004031 partial agonist Substances 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- UFUASNAHBMBJIX-UHFFFAOYSA-N propan-1-one Chemical group CC[C]=O UFUASNAHBMBJIX-UHFFFAOYSA-N 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 239000003206 sterilizing agent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000011593 sulfur Chemical group 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 229960001367 tartaric acid Drugs 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- JXYWOIMIPBVOJN-UHFFFAOYSA-N tert-butyl n-[2-nitro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]carbamate Chemical compound C1=C([N+]([O-])=O)C(NC(=O)OC(C)(C)C)=CC=C1B1OC(C)(C)C(C)(C)O1 JXYWOIMIPBVOJN-UHFFFAOYSA-N 0.000 description 2
- HSJNIOYPTSKQBD-UHFFFAOYSA-N tert-butyl n-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]carbamate Chemical compound C1=CC(NC(=O)OC(C)(C)C)=CC=C1B1OC(C)(C)C(C)(C)O1 HSJNIOYPTSKQBD-UHFFFAOYSA-N 0.000 description 2
- 238000011285 therapeutic regimen Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 238000003828 vacuum filtration Methods 0.000 description 2
- CXNIUSPIQKWYAI-UHFFFAOYSA-N xantphos Chemical compound C=12OC3=C(P(C=4C=CC=CC=4)C=4C=CC=CC=4)C=CC=C3C(C)(C)C2=CC=CC=1P(C=1C=CC=CC=1)C1=CC=CC=C1 CXNIUSPIQKWYAI-UHFFFAOYSA-N 0.000 description 2
- 235000016804 zinc Nutrition 0.000 description 2
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical compound CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- MAVCNPUZAYHUCR-ZDUSSCGKSA-N (3r)-3-(4-bromophenoxy)-1-azabicyclo[2.2.2]octane Chemical compound C1=CC(Br)=CC=C1O[C@@H]1C(CC2)CCN2C1 MAVCNPUZAYHUCR-ZDUSSCGKSA-N 0.000 description 1
- CGQMKTZPTXMPGJ-ZDUSSCGKSA-N (3r)-3-(4-iodophenoxy)-1-azabicyclo[2.2.2]octane Chemical compound C1=CC(I)=CC=C1O[C@@H]1C(CC2)CCN2C1 CGQMKTZPTXMPGJ-ZDUSSCGKSA-N 0.000 description 1
- VIDWHSWBUCLWDV-JTQLQIEISA-N (3r)-3-(5-bromopyrimidin-2-yl)oxy-1-azabicyclo[2.2.2]octane Chemical compound N1=CC(Br)=CN=C1O[C@@H]1C(CC2)CCN2C1 VIDWHSWBUCLWDV-JTQLQIEISA-N 0.000 description 1
- MCAXDSHKPBDHIW-VIFPVBQESA-N (3r)-3-(6-chloropyridazin-3-yl)oxy-1-azabicyclo[2.2.2]octane Chemical compound N1=NC(Cl)=CC=C1O[C@@H]1C(CC2)CCN2C1 MCAXDSHKPBDHIW-VIFPVBQESA-N 0.000 description 1
- MELSVWWAQPWVJO-IBGZPJMESA-N (3r)-3-[4-(4-nitrophenyl)phenoxy]-1-azabicyclo[2.2.2]octane Chemical compound C1=CC([N+](=O)[O-])=CC=C1C(C=C1)=CC=C1O[C@@H]1C(CC2)CCN2C1 MELSVWWAQPWVJO-IBGZPJMESA-N 0.000 description 1
- HLOSYDKWWPUCJS-QHCPKHFHSA-N (3r)-3-[5-(3-nitro-4-phenylmethoxyphenyl)pyrimidin-2-yl]oxy-1-azabicyclo[2.2.2]octane Chemical compound [O-][N+](=O)C1=CC(C=2C=NC(O[C@@H]3C4CCN(CC4)C3)=NC=2)=CC=C1OCC1=CC=CC=C1 HLOSYDKWWPUCJS-QHCPKHFHSA-N 0.000 description 1
- XZAZRVBRYGGFRF-INIZCTEOSA-N (3r)-3-[6-(4-bromophenyl)pyridazin-3-yl]oxy-1-azabicyclo[2.2.2]octane Chemical compound C1=CC(Br)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 XZAZRVBRYGGFRF-INIZCTEOSA-N 0.000 description 1
- VUXLFCZEBGWWQH-INIZCTEOSA-N (3r)-3-[6-(4-iodophenyl)pyridazin-3-yl]oxy-1-azabicyclo[2.2.2]octane Chemical compound C1=CC(I)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 VUXLFCZEBGWWQH-INIZCTEOSA-N 0.000 description 1
- IVLICPVPXWEGCA-SSDOTTSWSA-N (3s)-1-azabicyclo[2.2.2]octan-3-ol Chemical compound C1CC2[C@H](O)CN1CC2 IVLICPVPXWEGCA-SSDOTTSWSA-N 0.000 description 1
- VIDWHSWBUCLWDV-SNVBAGLBSA-N (3s)-3-(5-bromopyrimidin-2-yl)oxy-1-azabicyclo[2.2.2]octane Chemical compound N1=CC(Br)=CN=C1O[C@H]1C(CC2)CCN2C1 VIDWHSWBUCLWDV-SNVBAGLBSA-N 0.000 description 1
- MELSVWWAQPWVJO-LJQANCHMSA-N (3s)-3-[4-(4-nitrophenyl)phenoxy]-1-azabicyclo[2.2.2]octane Chemical compound C1=CC([N+](=O)[O-])=CC=C1C(C=C1)=CC=C1O[C@H]1C(CC2)CCN2C1 MELSVWWAQPWVJO-LJQANCHMSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 229930182840 (S)-nicotine Natural products 0.000 description 1
- FIARMZDBEGVMLV-UHFFFAOYSA-N 1,1,2,2,2-pentafluoroethanolate Chemical group [O-]C(F)(F)C(F)(F)F FIARMZDBEGVMLV-UHFFFAOYSA-N 0.000 description 1
- YMOUROGRWIXNRP-UHFFFAOYSA-M 1,3-bis(2,6-dipropylphenyl)imidazol-1-ium;chloride Chemical compound [Cl-].CCCC1=CC=CC(CCC)=C1N1C=[N+](C=2C(=CC=CC=2CCC)CCC)C=C1 YMOUROGRWIXNRP-UHFFFAOYSA-M 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- JZJWCDQGIPQBAO-UHFFFAOYSA-N 1-(4-iodophenyl)ethanone Chemical compound CC(=O)C1=CC=C(I)C=C1 JZJWCDQGIPQBAO-UHFFFAOYSA-N 0.000 description 1
- OYEJRVVBERZWPD-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-ol;hydron;chloride Chemical compound Cl.C1CC2C(O)CN1CC2 OYEJRVVBERZWPD-UHFFFAOYSA-N 0.000 description 1
- RFDPHKHXPMDJJD-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-one;hydron;chloride Chemical compound Cl.C1CC2C(=O)CN1CC2 RFDPHKHXPMDJJD-UHFFFAOYSA-N 0.000 description 1
- AHKAOMZZTQULDS-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-yl benzoate Chemical compound C1N(CC2)CCC2C1OC(=O)C1=CC=CC=C1 AHKAOMZZTQULDS-UHFFFAOYSA-N 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- QXQAPNSHUJORMC-UHFFFAOYSA-N 1-chloro-4-propylbenzene Chemical compound CCCC1=CC=C(Cl)C=C1 QXQAPNSHUJORMC-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical class CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- VUQPJRPDRDVQMN-UHFFFAOYSA-N 1-chlorooctadecane Chemical class CCCCCCCCCCCCCCCCCCCl VUQPJRPDRDVQMN-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- XIVVYMDRWMNDQY-UHFFFAOYSA-N 2,8-diiodo-6h,12h-5,11-methano-dibenzo[b,f][1,5]diazocine Chemical compound C12=CC=C(I)C=C2CN2C3=CC=C(I)C=C3CN1C2 XIVVYMDRWMNDQY-UHFFFAOYSA-N 0.000 description 1
- DPZHKLJPVMYFCU-UHFFFAOYSA-N 2-(5-bromopyridin-2-yl)acetonitrile Chemical compound BrC1=CC=C(CC#N)N=C1 DPZHKLJPVMYFCU-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- YQLMEQFXTOIZJH-UHFFFAOYSA-N 2-[2-(4-iodophenyl)-2-oxoethyl]propanedioic acid Chemical compound OC(=O)C(C(O)=O)CC(=O)C1=CC=C(I)C=C1 YQLMEQFXTOIZJH-UHFFFAOYSA-N 0.000 description 1
- FSIBMLJFLPWMTD-UHFFFAOYSA-N 2-bromo-1-(4-iodophenyl)ethanone Chemical compound BrCC(=O)C1=CC=C(I)C=C1 FSIBMLJFLPWMTD-UHFFFAOYSA-N 0.000 description 1
- 125000004777 2-fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 125000006022 2-methyl-2-propenyl group Chemical group 0.000 description 1
- 229940080296 2-naphthalenesulfonate Drugs 0.000 description 1
- WMPPDTMATNBGJN-UHFFFAOYSA-N 2-phenylethylbromide Chemical class BrCCC1=CC=CC=C1 WMPPDTMATNBGJN-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- JADVVTZXHQUFLS-UHFFFAOYSA-N 3,4-dichloropyridazine Chemical compound ClC1=CC=NN=C1Cl JADVVTZXHQUFLS-UHFFFAOYSA-N 0.000 description 1
- GUSWJGOYDXFJSI-UHFFFAOYSA-N 3,6-dichloropyridazine Chemical compound ClC1=CC=C(Cl)N=N1 GUSWJGOYDXFJSI-UHFFFAOYSA-N 0.000 description 1
- AIOVQWFBJVWQHC-UHFFFAOYSA-N 3-(4-bromophenyl)-6-chloropyridazine Chemical compound N1=NC(Cl)=CC=C1C1=CC=C(Br)C=C1 AIOVQWFBJVWQHC-UHFFFAOYSA-N 0.000 description 1
- CGQMKTZPTXMPGJ-UHFFFAOYSA-N 3-(4-iodophenoxy)-1-azabicyclo[2.2.2]octane Chemical compound C1=CC(I)=CC=C1OC1C(CC2)CCN2C1 CGQMKTZPTXMPGJ-UHFFFAOYSA-N 0.000 description 1
- ZSTRNAWXVSBSPR-UHFFFAOYSA-N 3-(4-iodophenyl)-1h-pyridazin-6-one Chemical compound C1=CC(I)=CC=C1C1=NNC(=O)C=C1 ZSTRNAWXVSBSPR-UHFFFAOYSA-N 0.000 description 1
- IRDXRCQGRDDWEF-UHFFFAOYSA-N 3-(4-iodophenyl)-4,5-dihydro-1h-pyridazin-6-one Chemical compound C1=CC(I)=CC=C1C1=NNC(=O)CC1 IRDXRCQGRDDWEF-UHFFFAOYSA-N 0.000 description 1
- BCIOGGPNGDFPBO-UHFFFAOYSA-N 3-(4-phenylphenoxy)-1-azabicyclo[2.2.2]octane Chemical compound C1CN(C2)CCC1C2OC(C=C1)=CC=C1C1=CC=CC=C1 BCIOGGPNGDFPBO-UHFFFAOYSA-N 0.000 description 1
- KFCZEBVNBBGBRJ-UHFFFAOYSA-N 3-(5-bromopyridin-2-yl)oxy-1-azabicyclo[2.2.2]octane Chemical compound N1=CC(Br)=CC=C1OC1C(CC2)CCN2C1 KFCZEBVNBBGBRJ-UHFFFAOYSA-N 0.000 description 1
- VIDWHSWBUCLWDV-UHFFFAOYSA-N 3-(5-bromopyrimidin-2-yl)oxy-1-azabicyclo[2.2.2]octane Chemical compound N1=CC(Br)=CN=C1OC1C(CC2)CCN2C1 VIDWHSWBUCLWDV-UHFFFAOYSA-N 0.000 description 1
- IBDRWFGYLTUMAZ-SBWPJONASA-N 3-[2-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrimidin-5-yl]aniline;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.NC1=CC=CC(C=2C=NC(O[C@@H]3C4CCN(CC4)C3)=NC=2)=C1 IBDRWFGYLTUMAZ-SBWPJONASA-N 0.000 description 1
- IBDRWFGYLTUMAZ-RWKFXIDCSA-N 3-[2-[[(3s)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrimidin-5-yl]aniline;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.NC1=CC=CC(C=2C=NC(O[C@H]3C4CCN(CC4)C3)=NC=2)=C1 IBDRWFGYLTUMAZ-RWKFXIDCSA-N 0.000 description 1
- CONMPLSEOMAVMA-UHFFFAOYSA-N 3-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]aniline;hydrochloride Chemical compound Cl.NC1=CC=CC(C=2C=CC(OC3C4CCN(CC4)C3)=CC=2)=C1 CONMPLSEOMAVMA-UHFFFAOYSA-N 0.000 description 1
- UDGSTIFRWKWWRC-UHFFFAOYSA-N 3-[4-(4-iodophenyl)phenoxy]-1-azabicyclo[2.2.2]octane Chemical compound C1=CC(I)=CC=C1C(C=C1)=CC=C1OC1C(CC2)CCN2C1 UDGSTIFRWKWWRC-UHFFFAOYSA-N 0.000 description 1
- HEGVSPNQQZQPSQ-UTOQZODRSA-N 3-[4-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]phenyl]aniline;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.NC1=CC=CC(C=2C=CC(O[C@@H]3C4CCN(CC4)C3)=CC=2)=C1 HEGVSPNQQZQPSQ-UTOQZODRSA-N 0.000 description 1
- UYBBJSXZXFSIIR-UHFFFAOYSA-N 3-[6-(1-azabicyclo[2.2.2]octan-3-yloxy)pyridin-3-yl]aniline;hydrochloride Chemical compound Cl.NC1=CC=CC(C=2C=NC(OC3C4CCN(CC4)C3)=CC=2)=C1 UYBBJSXZXFSIIR-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- XKBGIHNQXQWNFJ-UHFFFAOYSA-N 3-chloro-6-(4-iodophenyl)pyridazine Chemical compound N1=NC(Cl)=CC=C1C1=CC=C(I)C=C1 XKBGIHNQXQWNFJ-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-M 3-phenylpropionate Chemical compound [O-]C(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-M 0.000 description 1
- ZODFRCZNTXLDDW-UHFFFAOYSA-N 4-(4-bromophenyl)-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)C1=CC=C(Br)C=C1 ZODFRCZNTXLDDW-UHFFFAOYSA-N 0.000 description 1
- WJXIAMCDWSUSEI-UHFFFAOYSA-N 4-(4-iodophenyl)phenol Chemical compound C1=CC(O)=CC=C1C1=CC=C(I)C=C1 WJXIAMCDWSUSEI-UHFFFAOYSA-N 0.000 description 1
- JMMBAIBGWVZWNW-UHFFFAOYSA-N 4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-n-(cyclohexylmethyl)aniline;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.C=1C=C(C=2C=CC(OC3C4CCN(CC4)C3)=CC=2)C=CC=1NCC1CCCCC1 JMMBAIBGWVZWNW-UHFFFAOYSA-N 0.000 description 1
- VKXICKTZWRDSIX-UHFFFAOYSA-N 4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-n-benzyl-n-methylaniline Chemical compound C=1C=C(C=2C=CC(OC3C4CCN(CC4)C3)=CC=2)C=CC=1N(C)CC1=CC=CC=C1 VKXICKTZWRDSIX-UHFFFAOYSA-N 0.000 description 1
- UUSNPVFQUHBGKF-UHFFFAOYSA-N 4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-n-methylaniline;hydrochloride Chemical compound Cl.C1=CC(NC)=CC=C1C(C=C1)=CC=C1OC1C(CC2)CCN2C1 UUSNPVFQUHBGKF-UHFFFAOYSA-N 0.000 description 1
- ZJSYZUVJRHNFME-WLHGVMLRSA-N 4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-n-phenylaniline;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.C1CN(C2)CCC1C2OC(C=C1)=CC=C1C(C=C1)=CC=C1NC1=CC=CC=C1 ZJSYZUVJRHNFME-WLHGVMLRSA-N 0.000 description 1
- COGJAXFLCUVNJD-SLISQCDCSA-N 4-[4-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]phenyl]-n,n-dimethylaniline;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.C1=CC(N(C)C)=CC=C1C(C=C1)=CC=C1O[C@@H]1C(CC2)CCN2C1 COGJAXFLCUVNJD-SLISQCDCSA-N 0.000 description 1
- QISOBCMNUJQOJU-UHFFFAOYSA-N 4-bromo-1h-pyrazole-5-carboxylic acid Chemical compound OC(=O)C=1NN=CC=1Br QISOBCMNUJQOJU-UHFFFAOYSA-N 0.000 description 1
- HUELJXGNXNSEQJ-UHFFFAOYSA-N 4-bromo-2-nitro-1-phenylmethoxybenzene Chemical compound [O-][N+](=O)C1=CC(Br)=CC=C1OCC1=CC=CC=C1 HUELJXGNXNSEQJ-UHFFFAOYSA-N 0.000 description 1
- ZCWBZRBJSPWUPG-UHFFFAOYSA-N 4-bromo-2-nitroaniline Chemical compound NC1=CC=C(Br)C=C1[N+]([O-])=O ZCWBZRBJSPWUPG-UHFFFAOYSA-N 0.000 description 1
- CUTFAPGINUFNQM-UHFFFAOYSA-N 4-bromo-2-nitrophenol Chemical compound OC1=CC=C(Br)C=C1[N+]([O-])=O CUTFAPGINUFNQM-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- VLVCDUSVTXIWGW-UHFFFAOYSA-N 4-iodoaniline Chemical compound NC1=CC=C(I)C=C1 VLVCDUSVTXIWGW-UHFFFAOYSA-N 0.000 description 1
- LGGDIHCLABGAQY-WLHGVMLRSA-N 5-[2-(1-azabicyclo[2.2.2]octan-3-yloxy)pyrimidin-5-yl]-2-methylaniline;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.C1=C(N)C(C)=CC=C1C(C=N1)=CN=C1OC1C(CC2)CCN2C1 LGGDIHCLABGAQY-WLHGVMLRSA-N 0.000 description 1
- MYLNBCPDGHAEIC-UHFFFAOYSA-N 5-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-2-methylaniline;hydrochloride Chemical compound Cl.C1=C(N)C(C)=CC=C1C(C=C1)=CC=C1OC1C(CC2)CCN2C1 MYLNBCPDGHAEIC-UHFFFAOYSA-N 0.000 description 1
- BDFJYSQYKGEDKZ-WNGBCCIYSA-N 5-[4-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]phenyl]-2-methylaniline;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.C1=C(N)C(C)=CC=C1C(C=C1)=CC=C1O[C@@H]1C(CC2)CCN2C1 BDFJYSQYKGEDKZ-WNGBCCIYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- PEAOEIWYQVXZMB-UHFFFAOYSA-N 5-bromo-2-chloropyridine Chemical compound ClC1=CC=C(Br)C=N1 PEAOEIWYQVXZMB-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- WTFUTSCZYYCBAY-SXBRIOAWSA-N 6-[(E)-C-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-N-hydroxycarbonimidoyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C/C(=N/O)/C1=CC2=C(NC(O2)=O)C=C1 WTFUTSCZYYCBAY-SXBRIOAWSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- AEDIEHCEZSEMPS-QBFIMZEMSA-N C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.CB(C)B(C)C.CC.CC.CC.CC.CC1=CC=CC=C1.CCC.CCC.CCC.NC1=CC=CC=C1.N[C@H]1CN2CCC1CC2.O=C1CN2CCC1CC2 Chemical compound C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.CB(C)B(C)C.CC.CC.CC.CC.CC1=CC=CC=C1.CCC.CCC.CCC.NC1=CC=CC=C1.N[C@H]1CN2CCC1CC2.O=C1CN2CCC1CC2 AEDIEHCEZSEMPS-QBFIMZEMSA-N 0.000 description 1
- RNOVUIDRJNSMIK-METGMWMISA-N C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.CCC.CCC.CCC.CCC.NC1=CC=CC=C1.O=C1CN2CCC1CC2 Chemical compound C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(N[C@H]2CN3CCC2CC3)C=C1.CCC.CCC.CCC.CCC.NC1=CC=CC=C1.O=C1CN2CCC1CC2 RNOVUIDRJNSMIK-METGMWMISA-N 0.000 description 1
- JFCNYYNVNPYOHX-MZTITXCWSA-N C1=CC=C(O[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(O[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(O[C@H]2CN3CCC2CC3)C=C1.CB(C)B(C)C.CB(C)B(C)C.CC.CC.CC.CC.CC1=CC=CC=C1.CCC.CCC.CCC.CCC.OC1=CC=CC=C1.O[C@@H]1CN2CCC1CC2.O[C@H]1CN2CCC1CC2 Chemical compound C1=CC=C(O[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(O[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(O[C@H]2CN3CCC2CC3)C=C1.CB(C)B(C)C.CB(C)B(C)C.CC.CC.CC.CC.CC1=CC=CC=C1.CCC.CCC.CCC.CCC.OC1=CC=CC=C1.O[C@@H]1CN2CCC1CC2.O[C@H]1CN2CCC1CC2 JFCNYYNVNPYOHX-MZTITXCWSA-N 0.000 description 1
- FBQKTZXFHWRITI-CQNSZCCWSA-N C1=CC=C(O[C@H]2CN3CCC2CC3)C=C1.CC(C)(C)O[K].CC1=CC=C(C2=CC=C(O[C@H]3CN4CCC3CC4)C=C2)C=C1.CC1=CC=C(C2=CC=C(O[C@H]3CN4CCC3CC4)C=C2)C=C1.CCC.CCC.CCC.CCC1=CN=C(C)C=C1.IC1=CC=CC=C1.OC1=CC=CC=C1.O[C@@H]1CN2CCC1CC2.O[C@H]1CN2CCC1CC2.O[C@H]1CN2CCC1CC2.S Chemical compound C1=CC=C(O[C@H]2CN3CCC2CC3)C=C1.CC(C)(C)O[K].CC1=CC=C(C2=CC=C(O[C@H]3CN4CCC3CC4)C=C2)C=C1.CC1=CC=C(C2=CC=C(O[C@H]3CN4CCC3CC4)C=C2)C=C1.CCC.CCC.CCC.CCC1=CN=C(C)C=C1.IC1=CC=CC=C1.OC1=CC=CC=C1.O[C@@H]1CN2CCC1CC2.O[C@H]1CN2CCC1CC2.O[C@H]1CN2CCC1CC2.S FBQKTZXFHWRITI-CQNSZCCWSA-N 0.000 description 1
- ZMJHAVZGHJMZKB-BIFKFHCKSA-N C1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.CB(C)B(C)C.CC.CC.CC.CCC.CCC.CCC.Cl.ClC1CN2CCC1CC2.SC1=CC=CC=C1 Chemical compound C1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.C1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.CB(C)B(C)C.CC.CC.CC.CCC.CCC.CCC.Cl.ClC1CN2CCC1CC2.SC1=CC=CC=C1 ZMJHAVZGHJMZKB-BIFKFHCKSA-N 0.000 description 1
- MIVIGUDKNVEPSW-KWYMRXFVSA-N CB(C)B(C)C.CC.CC1=CN=C(C)C=C1.CC1=CN=C(O[C@H]2CN3CCC2CC3)C=C1.CC1=CN=C(O[C@H]2CN3CCC2CC3)C=C1.CCC.CCC.CCC1=CN=C(O[C@H]2CN3CCC2CC3)C=C1.OC1=CC=CC=C1.O[C@@H]1CN2CCC1CC2.S.[K]O[C@H]1CN2CCC1CC2 Chemical compound CB(C)B(C)C.CC.CC1=CN=C(C)C=C1.CC1=CN=C(O[C@H]2CN3CCC2CC3)C=C1.CC1=CN=C(O[C@H]2CN3CCC2CC3)C=C1.CCC.CCC.CCC1=CN=C(O[C@H]2CN3CCC2CC3)C=C1.OC1=CC=CC=C1.O[C@@H]1CN2CCC1CC2.S.[K]O[C@H]1CN2CCC1CC2 MIVIGUDKNVEPSW-KWYMRXFVSA-N 0.000 description 1
- CMCBIEWBXWMGQU-LFQVPQGGSA-N CCC.CCC1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.CCC1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.CCC1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.Cl.Cl=C1CN2CCC1CC2.SC1=CC=CC=C1 Chemical compound CCC.CCC1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.CCC1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.CCC1=CC=C(S[C@H]2CN3CCC2CC3)C=C1.Cl.Cl=C1CN2CCC1CC2.SC1=CC=CC=C1 CMCBIEWBXWMGQU-LFQVPQGGSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000009660 Cholinergic Receptors Human genes 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 208000028698 Cognitive impairment Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- XXRCUYVCPSWGCC-UHFFFAOYSA-N Ethyl pyruvate Chemical compound CCOC(=O)C(C)=O XXRCUYVCPSWGCC-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 201000002832 Lewy body dementia Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methyl-N-phenylamine Natural products CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 1
- 229910017833 NH2NH2.H2O Inorganic materials 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 244000264897 Persea americana var. americana Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- SRDJLLKVQVFHFV-TZXXFBNGSA-N [(3R)-1-azabicyclo[2.2.2]octan-3-yl] benzoate (2R,3R)-2,3-dihydroxybutanedioic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.O([C@@H]1C2CCN(CC2)C1)C(=O)C1=CC=CC=C1 SRDJLLKVQVFHFV-TZXXFBNGSA-N 0.000 description 1
- SRDJLLKVQVFHFV-KJCOKPRTSA-N [(3s)-1-azabicyclo[2.2.2]octan-3-yl] benzoate;(2s,3s)-2,3-dihydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)[C@H](O)C(O)=O.O([C@H]1C2CCN(CC2)C1)C(=O)C1=CC=CC=C1 SRDJLLKVQVFHFV-KJCOKPRTSA-N 0.000 description 1
- XLTANAWLDBYGFU-LSVDIXQKSA-N [3h]-mla Chemical compound C([C@]12[C@H]3[C@H](OC)[C@]4([C@]5(O)[C@H]6[C@@H](OC)[C@@H]([C@H](C5)OC)C[C@H]6[C@]3([C@@H]4N(CC)C2)[C@@H](OC)CC1)O)OC(=O)C=1C([3H])=CC=CC=1N1C(=O)C[C@H](C)C1=O XLTANAWLDBYGFU-LSVDIXQKSA-N 0.000 description 1
- VYFFJBWCHLBKRQ-UHFFFAOYSA-N [4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]-trimethylstannane Chemical compound C1=CC([Sn](C)(C)C)=CC=C1OC1C(CC2)CCN2C1 VYFFJBWCHLBKRQ-UHFFFAOYSA-N 0.000 description 1
- RIIPFHVHLXPMHQ-UHFFFAOYSA-N [4-(dimethylamino)phenyl]boronic acid Chemical compound CN(C)C1=CC=C(B(O)O)C=C1 RIIPFHVHLXPMHQ-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000003797 alkaloid derivatives Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001343 alkyl silanes Chemical group 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- NWCHELUCVWSRRS-UHFFFAOYSA-N atrolactic acid Chemical compound OC(=O)C(O)(C)C1=CC=CC=C1 NWCHELUCVWSRRS-UHFFFAOYSA-N 0.000 description 1
- JOTXKOXGEZBEEM-UHFFFAOYSA-N azanium;dichloromethane;hydroxide Chemical compound [NH4+].[OH-].ClCCl JOTXKOXGEZBEEM-UHFFFAOYSA-N 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- YLOOPJCTZYCBTB-UHFFFAOYSA-N benzyl n-[4-[5-(1-azabicyclo[2.2.2]octan-3-yloxy)pyrazin-2-yl]phenyl]carbamate Chemical compound C=1C=C(C=2N=CC(OC3C4CCN(CC4)C3)=NC=2)C=CC=1NC(=O)OCC1=CC=CC=C1 YLOOPJCTZYCBTB-UHFFFAOYSA-N 0.000 description 1
- YLOOPJCTZYCBTB-QHCPKHFHSA-N benzyl n-[4-[5-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrazin-2-yl]phenyl]carbamate Chemical compound C=1C=C(C=2N=CC(O[C@@H]3C4CCN(CC4)C3)=NC=2)C=CC=1NC(=O)OCC1=CC=CC=C1 YLOOPJCTZYCBTB-QHCPKHFHSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N beta-phenylpropanoic acid Natural products OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- MXQOYLRVSVOCQT-UHFFFAOYSA-N bis(tri-t-butylphosphine)palladium (0) Substances [Pd].CC(C)(C)P(C(C)(C)C)C(C)(C)C.CC(C)(C)P(C(C)(C)C)C(C)(C)C MXQOYLRVSVOCQT-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 229940045348 brown mixture Drugs 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229960004170 clozapine Drugs 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- AVKNGPAMCBSNSO-UHFFFAOYSA-N cyclohexylmethanamine Chemical compound NCC1CCCCC1 AVKNGPAMCBSNSO-UHFFFAOYSA-N 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- SNRCKKQHDUIRIY-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloromethane;dichloropalladium;iron(2+) Chemical compound [Fe+2].ClCCl.Cl[Pd]Cl.C1=C[CH-]C(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.C1=C[CH-]C(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 SNRCKKQHDUIRIY-UHFFFAOYSA-L 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- UVWQYWHKTZABSO-ILADVTTDSA-N de voachalotinol Chemical compound CN1C2=CC=CC=C2C(C[C@H]2[C@@H]3CO)=C1[C@H]1N2C/C(=C/C)[C@@H]3C1 UVWQYWHKTZABSO-ILADVTTDSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 150000008050 dialkyl sulfates Chemical class 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- LCSNDSFWVKMJCT-UHFFFAOYSA-N dicyclohexyl-(2-phenylphenyl)phosphane Chemical group C1CCCCC1P(C=1C(=CC=CC=1)C=1C=CC=CC=1)C1CCCCC1 LCSNDSFWVKMJCT-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- VGFZTNHWYHBLGE-UHFFFAOYSA-N diethyl 2-[2-(4-iodophenyl)-2-oxoethyl]propanedioate Chemical compound CCOC(=O)C(C(=O)OCC)CC(=O)C1=CC=C(I)C=C1 VGFZTNHWYHBLGE-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GAFRWLVTHPVQGK-UHFFFAOYSA-N dipentyl sulfate Chemical class CCCCCOS(=O)(=O)OCCCCC GAFRWLVTHPVQGK-UHFFFAOYSA-N 0.000 description 1
- SXZIXHOMFPUIRK-UHFFFAOYSA-N diphenylmethanimine Chemical compound C=1C=CC=CC=1C(=N)C1=CC=CC=C1 SXZIXHOMFPUIRK-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000003221 ear drop Substances 0.000 description 1
- 229940047652 ear drops Drugs 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000006125 ethylsulfonyl group Chemical group 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000028023 exocytosis Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000010575 fractional recrystallization Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000005059 halophenyl group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 229960003162 iloperidone Drugs 0.000 description 1
- XMXHEBAFVSFQEX-UHFFFAOYSA-N iloperidone Chemical compound COC1=CC(C(C)=O)=CC=C1OCCCN1CCC(C=2C3=CC=C(F)C=C3ON=2)CC1 XMXHEBAFVSFQEX-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 208000021267 infertility disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229940125425 inverse agonist Drugs 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- PCEBAZIVZVIQEO-UHFFFAOYSA-N iodocyclopentane Chemical compound IC1CCCC1 PCEBAZIVZVIQEO-UHFFFAOYSA-N 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- XJTQJERLRPWUGL-UHFFFAOYSA-N iodomethylbenzene Chemical compound ICC1=CC=CC=C1 XJTQJERLRPWUGL-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 125000004458 methylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])[H] 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DXASQZJWWGZNSF-UHFFFAOYSA-N n,n-dimethylmethanamine;sulfur trioxide Chemical group CN(C)C.O=S(=O)=O DXASQZJWWGZNSF-UHFFFAOYSA-N 0.000 description 1
- ANGKVUVZQVUVJO-UHFFFAOYSA-N n-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]acetamide Chemical compound C1=CC(NC(=O)C)=CC=C1B1OC(C)(C)C(C)(C)O1 ANGKVUVZQVUVJO-UHFFFAOYSA-N 0.000 description 1
- CWNJJAWMMPOKOD-WLHGVMLRSA-N n-[4-(4-aminophenyl)phenyl]-1-azabicyclo[2.2.2]octan-3-amine;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.C1=CC(N)=CC=C1C(C=C1)=CC=C1NC1C(CC2)CCN2C1 CWNJJAWMMPOKOD-WLHGVMLRSA-N 0.000 description 1
- MGVLJPZHNYENAK-UHFFFAOYSA-N n-[4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]phenyl]-4-methylaniline;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.C1=CC(C)=CC=C1NC1=CC=C(C=2C=CC(OC3C4CCN(CC4)C3)=CC=2)C=C1 MGVLJPZHNYENAK-UHFFFAOYSA-N 0.000 description 1
- PGPWQGOAYSNXKP-WLHGVMLRSA-N n-[4-[4-(1-azabicyclo[2.2.2]octan-3-yloxy)phenyl]phenyl]methanesulfonamide;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.C1=CC(NS(=O)(=O)C)=CC=C1C(C=C1)=CC=C1OC1C(CC2)CCN2C1 PGPWQGOAYSNXKP-WLHGVMLRSA-N 0.000 description 1
- FMBCGFRJNODVOF-NDEPHWFRSA-N n-[4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]phenyl]-1,1-diphenylmethanimine Chemical compound O([C@@H]1C2CCN(C1)CC2)C(N=N1)=CC=C1C(C=C1)=CC=C1N=C(C=1C=CC=CC=1)C1=CC=CC=C1 FMBCGFRJNODVOF-NDEPHWFRSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- RIWRFSMVIUAEBX-UHFFFAOYSA-N n-methyl-1-phenylmethanamine Chemical compound CNCC1=CC=CC=C1 RIWRFSMVIUAEBX-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- 229960005017 olanzapine Drugs 0.000 description 1
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229940041678 oral spray Drugs 0.000 description 1
- 239000000668 oral spray Substances 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 210000004681 ovum Anatomy 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 125000006678 phenoxycarbonyl group Chemical group 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229940075930 picrate Drugs 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-M picrate anion Chemical compound [O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-M 0.000 description 1
- 229950010765 pivalate Drugs 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 229960001534 risperidone Drugs 0.000 description 1
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000000698 schizophrenic effect Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003334 secondary amides Chemical class 0.000 description 1
- 230000009151 sensory gating Effects 0.000 description 1
- 230000031893 sensory processing Effects 0.000 description 1
- 230000000862 serotonergic effect Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical compound [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 1
- VALNWXMPJVPVLQ-UHFFFAOYSA-N tert-butyl n-(4-bromo-2-nitrophenyl)carbamate Chemical compound CC(C)(C)OC(=O)NC1=CC=C(Br)C=C1[N+]([O-])=O VALNWXMPJVPVLQ-UHFFFAOYSA-N 0.000 description 1
- CAVQXCZVUUGOLQ-UHFFFAOYSA-N tert-butyl n-[4-[2-(1-azabicyclo[2.2.2]octan-3-yloxy)pyrimidin-5-yl]phenyl]carbamate Chemical compound C1=CC(NC(=O)OC(C)(C)C)=CC=C1C(C=N1)=CN=C1OC1C(CC2)CCN2C1 CAVQXCZVUUGOLQ-UHFFFAOYSA-N 0.000 description 1
- YJFYGPTYTQEPPK-IBGZPJMESA-N tert-butyl n-[4-[2-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrimidin-5-yl]-2-nitrophenyl]carbamate Chemical compound C1=C([N+]([O-])=O)C(NC(=O)OC(C)(C)C)=CC=C1C(C=N1)=CN=C1O[C@@H]1C(CC2)CCN2C1 YJFYGPTYTQEPPK-IBGZPJMESA-N 0.000 description 1
- CAVQXCZVUUGOLQ-IBGZPJMESA-N tert-butyl n-[4-[2-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyrimidin-5-yl]phenyl]carbamate Chemical compound C1=CC(NC(=O)OC(C)(C)C)=CC=C1C(C=N1)=CN=C1O[C@@H]1C(CC2)CCN2C1 CAVQXCZVUUGOLQ-IBGZPJMESA-N 0.000 description 1
- FPVGXKBPZPTWBX-IBGZPJMESA-N tert-butyl n-[4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]-2-nitrophenyl]carbamate Chemical compound C1=C([N+]([O-])=O)C(NC(=O)OC(C)(C)C)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 FPVGXKBPZPTWBX-IBGZPJMESA-N 0.000 description 1
- JUKGCVJUVLGYLG-IBGZPJMESA-N tert-butyl n-amino-n-[4-[6-[[(3r)-1-azabicyclo[2.2.2]octan-3-yl]oxy]pyridazin-3-yl]phenyl]carbamate Chemical compound C1=CC(N(N)C(=O)OC(C)(C)C)=CC=C1C(N=N1)=CC=C1O[C@@H]1C(CC2)CCN2C1 JUKGCVJUVLGYLG-IBGZPJMESA-N 0.000 description 1
- DKACXUFSLUYRFU-UHFFFAOYSA-N tert-butyl n-aminocarbamate Chemical compound CC(C)(C)OC(=O)NN DKACXUFSLUYRFU-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- 229960000607 ziprasidone Drugs 0.000 description 1
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 description 1
- HDOZVRUNCMBHFH-UHFFFAOYSA-N zotepine Chemical compound CN(C)CCOC1=CC2=CC=CC=C2SC2=CC=C(Cl)C=C12 HDOZVRUNCMBHFH-UHFFFAOYSA-N 0.000 description 1
- 229960004496 zotepine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D453/00—Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
- C07D453/02—Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
Definitions
- the invention relates to 3-quinuclidinyl amino-substituted biaryl derivatives, compositions comprising such compounds, and methods of treating conditions and disorders using such compounds and compositions.
- Nicotinic acetylcholine receptors are widely distributed throughout the central (CNS) and peripheral (PNS) nervous systems. Such receptors play an important role in regulating CNS function, particularly by modulating release of a wide range of neurotransmitters, including, but not necessarily limited to acetylcholine, norepinephrine, dopamine, serotonin and GABA. Consequently, nicotinic receptors mediate a very wide range of physiological effects, and have been targeted for therapeutic treatment of disorders relating to cognitive function, learning and memory, neurodegeneration, pain and inflammation, psychosis and sensory gating, mood and emotion, among others.
- nAChRs are ion channels that are constructed from a pentameric assembly of subunit proteins. At least 12 subunit proteins, ⁇ 2- ⁇ 10 and ⁇ 2- ⁇ 4, have been identified in neuronal tissue. These subunits provide for a great variety of homomeric and heteromeric combinations that account for the diverse receptor subtypes. For example, the predominant receptor that is responsible for high affinity binding of nicotine in brain tissue has composition ( ⁇ 4) 2 ( ⁇ 2) 3 (the ⁇ 4 ⁇ 2 subtype), while another major population of receptors is comprised of the homomeric ( ⁇ 7) 5 (the ⁇ 7 subtype).
- Certain compounds like the plant alkaloid nicotine, interact with all subtypes of the nAChRs, accounting for the profound physiological effects of this compound. While nicotine has been demonstrated to have many beneficial properties, not all of the effects mediated by nicotine are desirable. For example, nicotine exerts gastrointestinal and cardiovascular side effects that interfere at therapeutic doses, and its addictive nature and acute toxicity are well-known. Ligands that are selective for interaction with only certain subtypes of the nAChR offer potential for achieving beneficial therapeutic effects with an improved margin for safety.
- the ⁇ 7 nAChRs have been shown to play a significant role in enhancing cognitive function, including aspects of learning, memory and attention (Levin, E. D., J. Neurobiol. 53: 633-640, 2002).
- ⁇ 7 nAChRs have been linked to conditions and disorders related to attention deficit disorder, attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), mild cognitive impairment, senile dementia, dementia associated with Lewy bodies, dementia associated with Down's syndrome, AIDS dementia, Pick's Disease, as well as cognitive deficits associated with schizophrenia, among other systemic activities.
- the activity at the ⁇ 7 nAChRs can be modified or regulated by the administration of ⁇ 7 nAChR ligands.
- the ligands can exhibit antagonist, agonist, partial agonist, or inverse agonist properties.
- ⁇ 7 ligands have potential in treatment of various cognitive disorders.
- the invention is directed to 3-quinuclidinyl amino-substituted biaryl derivative compounds as well as compositions comprising such compounds, and method of using the same.
- Compounds of the invention have the formula: or a pharmaceutically acceptable salt, ester, amide, or prodrug thereof, wherein:
- A is N or N + —O ⁇ ;
- n 0, 1, or 2;
- Y is selected from the group consisting of O, S, and —N(R 1 )—;
- Ar 1 is a group of the formula:
- Ar 2 is a group of the formula:
- X 1 , X 2 , X 3 , and X 4 are each independently selected from the group consisting of N and —C(R 2 );
- one of X 5 , X 6 , X 7 , X 8 and X 9 is —C and the others are each independently selected from the group consisting of N and —C(R 5 ), and group (b) is attached to Ar 1 through one of X 5 , X 6 , X 7 , X 8 and X 9 that is represented by C;
- one of X 10 , X 11 , X 12 , and X 13 is C and the others are each independently selected from the group consisting of N, —N(R 1 ), O, S and —C(R 5 ) and group (c) is attached to Ar 1 through one of X 10 , X 11 , X 12 , and X 13 that is represented by C;
- R 1 is hydrogen or alkyl
- R 2 at each occurrence is independently selected from the group consisting of hydrogen, halogen, alkyl, —OR 3 , and —NHR 4 ;
- R 2a is halogen or alkyl
- R 3 and R 4 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl;
- R 5 is selected from the group consisting of hydrogen, halogen, nitro, alkyl, aryl, alkylcarbonyl, arylcarbonyl, —OR 6 and —NR 8 R 9 ;
- R 6 is independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl;
- R 8 and R 9 are each independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, cycloalkylalkyl, alkylcarbonyl, —N ⁇ C(alkyl)(alkoxycarbonyl), alkoxycarbonyl, arylcarbonyl, aryloxycarbonyl, and alkylsulfonyl.
- compositions comprising compounds of the invention.
- Such compositions can be administered in accordance with a method of the invention, typically as part of a therapeutic regimen for treatment or prevention of conditions and disorders related to nAChR activity, and more particularly ⁇ 7 nAChR activity.
- Yet another aspect of the invention relates to a method of selectively modulating to nAChR activity, for example ⁇ 7 nAChR activity.
- the method is useful for treating and/or preventing conditions and disorders related to ⁇ 7 nAChR activity modulation in mammals.
- the method is useful for conditions and disorders related to attention deficit disorder, attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), mild cognitive impairment, senile dementia, AIDS dementia, Pick's Disease, dementia associated with Lewy bodies, dementia associated with Down's syndrome, amyotrophic lateral sclerosis, Huntington's disease, diminished CNS function associated with traumatic brain injury, acute pain, post-surgical pain, chronic pain, inflammatory pain, neuropathic pain, infertility, need for new blood vessel growth associated with wound healing, need for new blood vessel growth associated with vascularization of skin grafts, and lack of circulation, more particularly circulation around a vascular occlusion, among other systemic activities.
- ADHD attention deficit hyperactivity disorder
- AD Alzheimer's disease
- mild cognitive impairment senile dementia
- AIDS dementia dementia
- Pick's Disease dementia associated with Lewy bodies
- dementia associated with Down's syndrome dementia associated with Down's syndrome
- amyotrophic lateral sclerosis Huntington's disease
- compositions comprising the compounds, and methods for treating or preventing conditions and disorders by administering the compounds are further described herein.
- acyl as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein.
- Representative examples of acyl include, but are not limited to, acetyl, 1-oxopropyl, 2,2-dimethyl-1-oxopropyl, 1-oxobutyl, and 1-oxopentyl.
- acyloxy as used herein, means an acyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom.
- Representative examples of acyloxy include, but are not limited to, acetyloxy, propionyloxy, and isobutyryloxy.
- alkenyl as used herein, means a straight or branched chain hydrocarbon containing from 2 to 10 carbons and containing at least one carbon-carbon double bond formed by the removal of two hydrogens.
- Representative examples of alkenyl include, but are not limited to, ethenyl, 2-propenyl, 2-methyl-2-propenyl, 3-butenyl, 4-pentenyl, 5-hexenyl, 2-heptenyl, 2-methyl-1-heptenyl, and 3-decenyl.
- alkoxy means an alkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom.
- Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy.
- alkoxyalkoxy means an alkoxy group, as defined herein, appended to the parent molecular moiety through another alkoxy group, as defined herein.
- Representative examples of alkoxyalkoxy include, but are not limited to, tert-butoxymethoxy, 2-ethoxyethoxy, 2-methoxyethoxy, and methoxymethoxy.
- alkoxyalkyl as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of alkoxyalkyl include, but are not limited to, tert-butoxymethyl, 2-ethoxyethyl, 2-methoxyethyl, and methoxymethyl.
- alkoxycarbonyl means an alkoxy group, as defined herein, appended to the parent molecular moiety through a carbonyl group, represented by —C(O)—, as defined herein.
- Representative examples of alkoxycarbonyl include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, and tert-butoxycarbonyl.
- alkoxylmino as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through an imino group, as defined herein.
- Representative examples of alkoxyimino include, but are not limited to, ethoxy(imino)methyl and methoxy(imino)methyl.
- alkoxysulfonyl as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein.
- Representative examples of alkoxysulfonyl include, but are not limited to, methoxysulfonyl, ethoxysulfonyl and propoxysulfonyl.
- alkyl means a straight or branched chain hydrocarbon containing from 1 to 6 carbon atoms.
- Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, and n-hexyl.
- alkylcarbonyl as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein.
- Representative examples of alkylcarbonyl include, but are not limited to, acetyl, 1-oxopropyl, 2,2-dimethyl-1-oxopropyl, 1-oxobutyl, and 1-oxopentyl.
- alkylcarbonyloxy means an alkylcarbonyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom.
- Representative examples of alkylcarbonyloxy include, but are not limited to, acetyloxy, ethylcarbonyloxy, and tert-butylcarbonyloxy.
- alkylsulfonyl as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein.
- Representative examples of alkylsulfonyl include, but are not limited to, methylsulfonyl and ethylsulfonyl.
- alkylthio as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfur atom.
- Representative examples of alkylthio include, but are not limited, methylthio, ethylthio, tert-butylthio, and hexylthio.
- alkynyl as used herein, means a straight or branched chain hydrocarbon group containing from 2 to 10 carbon atoms and containing at least one carbon-carbon triple bond.
- Representative examples of alkynyl include, but are not limited, to acetylenyl, 1-propynyl, 2-propynyl, 3-butynyl, 2-pentynyl, and 1-butynyl.
- amido means an amino, alkylamino, or dialkylamino group appended to the parent molecular moiety through a carbonyl group, as defined herein.
- Representative examples of amido include, but are not limited to, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, and ethylmethylaminocarbonyl.
- aryl as used herein, means a monocyclic or bicyclic aromatic ring system. Representative examples of aryl include, but are not limited to, phenyl and naphthyl.
- aryl groups of this invention are substituted with 0, 1, 2, 3, 4, or 5 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylsulfonyl, alkynyl, amido, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halo, hydroxy, hydroxyalkyl, mercapto, nitro, thioalkoxy, —NR A R B , (NR A R B )alkyl, (NR A R B )alkoxy, (NR A R B )carbonyl, and (NR A R B )sulfonyl.
- substituted aryl groups can include, but are not limited to, tolyl.
- arylcarbonyl as used herein, means an aryl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein.
- Representative examples of arylcarbonyl include, but are not limited to, phenylcarbonyl, (methylaminophenyl)carbonyl, (dimethylaminophenyl)carbonyl, and (naphthyl)carbonyl.
- aryloxycarbonyl means an aryl-O— group, wherein the aryl group of aryl-O— is as defined herein, or a benzyl-O— group appended to the parent molecular moiety through a carbonyl group, represented by —C(O)—, as defined herein.
- alkoxycarbonyl include, but are not limited to, phenoxycarbonyl and benzyloxycarbonyl.
- carbonyl as used herein, means a —C(O)— group.
- cyano as used herein, means a —CN group.
- cycloalkyl as used herein, means a saturated cyclic hydrocarbon group containing from 3 to 8 carbons.
- Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
- the cycloalkyl groups of the invention are substituted with 0, 1, 2, 3, or 4 substituents selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkyl, alkynyl, amido, carboxy, cyano, ethylenedioxy, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, methylenedioxy, thioalkoxy, and —NR A R B .
- cycloalkylalkyl as used herein, means a cycloalkyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of cycloalkylalkyl include, but are not limited to, cyclopropylmethyl, 2-cyclobutylethyl, cyclopentylmethyl, cyclohexylmethyl, and 4-cycloheptylbutyl.
- halo or halogen means —Cl, —Br, —I or —F.
- haloalkoxy means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein.
- Representative examples of haloalkoxy include, but are not limited to, chloromethoxy, 2-fluoroethoxy, trifluoromethoxy, and pentafluoroethoxy.
- haloalkyl means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of haloalkyl include, but are not limited to, chloromethyl, 2-fluoroethyl, trifluoromethyl, pentafluoroethyl, and 2-chloro-3-fluoropentyl.
- heteroaryl means an aromatic five- or six-membered ring containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- the heteroaryl groups are connected to the parent molecular moiety through a carbon or nitrogen atom.
- heteroaryl include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, triazinyl, and triazolyl.
- heteroaryl groups of the invention are substituted with 0, 1, 2, or 3 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylcarbonyloxy, alkylsulfonyl, alkylthio, alkynyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halo, hydroxy, hydroxyalkyl, mercapto, nitro, —NR A R B , (NR A R B )alkyl, (NR A R B )alkoxy, (NR A R B )carbonyl, and (NR A R B )sulfonyl.
- bicyclic heteroaryl refers to fused aromatic nine- and ten-membered bicyclic rings containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof.
- the bicyclic heteroaryl groups are connected to the parent molecular moiety through a carbon or nitrogen atom.
- Representative examples of bicyclic heteroaryl rings include, but are not limited to, indolyl, benzothiazolyl, benzofuranyl, isoquinolinyl, and quinolinyl.
- Bicyclic heteroaryl groups of the invention are substituted with 0, 1, 2, or 3 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylcarbonyloxy, alkylsulfonyl, alkylthio, alkynyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halo, hydroxy, hydroxyalkyl, mercapto, nitro, —NR A R B , (NR A R B )alkyl, (NR A R B )alkoxy, (NR A R B )carbonyl, and (NR A R B )sulfonyl.
- hydroxy as used herein, means an —OH group.
- hydroxyalkyl as used herein, means at least one hydroxy group, as defined herein, is appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of hydroxyalkyl include, but are not limited to, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 2,3-dihydroxypentyl, and 2-ethyl-4-hydroxyheptyl.
- mercapto as used herein, means a —SH group.
- nitro as used herein, means a —NO 2 group.
- —NR A R B means two groups, R A and R B , which are appended to the parent molecular moiety through a nitrogen atom.
- R A and R B are each independently hydrogen, alkyl, alkylcarbonyl, or formyl.
- Representative examples of —NR A R B include, but are not limited to, amino, methylamino, acetylamino, and acetylmethylamino.
- (NR A R B )alkyl as used herein, means a —NR A R B group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of (NR A R B )alkyl include, but are not limited to, (amino)methyl, (dimethylamino)methyl, and (ethylamino)methyl.
- (NR A R B )alkoxy means a —NR A R B group, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein.
- Representative examples of (NR A R B )alkoxy include, but are not limited to, (amino)methoxy, (dimethylamino)methoxy, and (diethylamino)ethoxy.
- (NR A R B )carbonyl as used herein, means a —NR A R B group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein.
- Representative examples of (NR A R B )carbonyl include, but are not limited to, aminocarbonyl, (methylamino)carbonyl, (dimethylamino)carbonyl, and (ethylmethylamino)carbonyl.
- (NR A R B )sulfonyl as used herein, means a —NR A R B group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein.
- Representative examples of (NR A R B )sulfonyl include, but are not limited to, aminosulfonyl, (methylamino)sulfonyl, (dimethylamino)sulfonyl, and (ethylmethylamino)sulfonyl.
- sulfonyl as used herein means a —S(O) 2 — group.
- thioalkoxy as used herein means an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfur atom.
- Representative examples of thioalkoxy include, but are no limited to, methylthio, ethylthio, and propylthio.
- ⁇ 7 includes homomeric ( ⁇ 7) 5 receptors and ⁇ 7* receptors, which denote a nAChR containing at least one ⁇ 7 subunit.
- Compounds of the invention can have the formula (I) as described above. More particularly, compounds of formula (I) can include, but are not limited to, compounds wherein Ar 1 is a group of the formula:
- X 1 , X 2 . X 3 , and X 4 are each independently selected from the group consisting of N and —CR 2 , wherein R 2 at each occurrence is independently selected from the group consisting of hydrogen, halogen, alkyl, —OR 3 , and —NHR 4 ; and R 3 and R 4 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl.
- at least one of X 1 , X 2 , X 3 , and X 4 is —CR 2 , such that group of formula (a) contains 0, 1, 2, or 3 nitrogen atoms.
- Compounds of formula (I) can include, but are not limited to, compounds wherein Ar 2 is a group of the formula:
- X 5 , X 6 , X 7 , X 8 and X 9 are each independently selected from the group consisting of N and —CR 5 , wherein R 5 at each occurrence is as defined for a compound of formula (I), and preferably wherein R 5 is independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, —OR 6 , and —NHR 7 ; and R 6 and R 7 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl.
- At least one of X 5 , X 6 , X 7 , X 8 , and X 9 is —CR 5 , such that group of formula (b) contains 0, 1, 2, or 3 nitrogen atoms.
- a group of formula (b) is attached through an atom represented by one of X 5 ⁇ 6, X 7 , X 8 and X 9 .
- the atom represented by X 5 , X 6 , X 7 , X 8 and X 9 is carbon when it is attached to an atom from Ar 1 .
- X 10 , X 11 , X 12 , and X 13 are each independently selected from the group consisting of N, —N(R 1 ), S, O and —CR 5 , as previously defined for a formula (I), preferably wherein R 5 at each occurrence is independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, —OR 6 , and —NHR 7 ; and R 6 and R 7 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl.
- At least one of X 10 , X 11 , X 12 , and X 13 is —CR 5 , such that group of formula (c) contains 0, 1, 2, or 3 heteroatoms.
- a group of formula (c) is attached through an atom represented by one of X 10 , X 11 , X 12 , and X 13 .
- the atom represented by X 10 , X 11 , X 12 , and X 13 is carbon when it is attached to the bond from Ar 1 .
- R 2a is a substituent as defined for compounds of formula (I), wherein R 2a is hydrogen or alkyl.
- the substituent represented by R 2a can be substituted on any carbon on the 6-carbon ring moiety of group (d).
- the NR 8 R 9 substituent in a group of formula (b) or (c) can be attached at any position, and preferably is attached at the 3- or 4-position as shown above.
- the groups represented by R 8 and R 9 are each independently selected from the group consisting of R 8 and R 9 are each independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, cycloalkylalkyl, alkylcarbonyl, —N ⁇ C(alkyl)(alkoxycarbonyl), alkoxycarbonyl, arylcarbonyl, aryloxycarbonyl, and alkylsulfonyl and, more preferably, hydrogen, alkyl, alkoxycarbonyl, and aryloxycarbonyl.
- R 8 and R 9 are each independently selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, 4-methylphenyl, benzyloxycarbonyl, acetyl, cyclohexylmethyl, tert-butyloxycarbonyl, and —N ⁇ C(methyl)(ethoxycarbonyl).
- R 8 preferably is selected from the group consisting of hydrogen and methyl
- R 9 preferably is selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, 4-methylphenyl, benzyloxycarbonyl, acetyl, cyclohexylmethyl, tert-butyloxycarbonyl, and —N ⁇ C(methyl)(ethoxycarbonyl).
- R 5 , R 8 , and R 9 are as defined for formula (b) as previously described. More particularly, R 5 is selected from the group consisting of hydrogen, halogen, alkyl, aryl, alkylcarbonyl, arycarbonyl, OR 6 and NR 8 R 9 . R 8 and R 9 are each independently selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, benzyloxycarbonyl, acetyl, and butyloxycarbonyl.
- R 8 can be selected from the group consisting of hydrogen and methyl
- R 9 can be selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, benzyloxycarbonyl, acetyl, and butyloxycarbonyl.
- R 22 is as defined for a group of formula (d) as previously described and more, particularly, can be iodo or hydrogen.
- Stereoisomers may exist as stereoisomers wherein, asymmetric or chiral centers are present. These stereoisomers are “R” or “S” depending on the configuration of substituents around the chiral element.
- R and S used herein are configurations as defined in IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem., 1976, 45: 13-30.
- Stereoisomers include enantiomers and diastereomers, and mixtures of enantiomers or diastereomers.
- Individual stereoisomers of compounds of the invention may be prepared synthetically from commercially available starting materials which contain asymmetric or chiral centers or by preparation of racemic mixtures followed by resolution well-known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and optional liberation of the optically pure product from the auxiliary as described in Furniss, Hannaford, Smith, and Tatchell, “Vogel's Textbook of Practical Organic Chemistry”, 5th edition (1989), Longman Scientific & Technical, Essex CM20 2JE, England, or (2) direct separation of the mixture of optical enantiomers on chiral chromatographic columns or (3) fractional recrystallization methods.
- the reactions exemplified in the schemes are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being effected.
- the described transformations may require modifying the order of the synthetic steps or selecting one particular process scheme over another in order to obtain a desired compound of the invention, depending on the functionality present on the molecule.
- Nitrogen protecting groups can be used for protecting amine groups present in the described compounds. Such methods, and some suitable nitrogen protecting groups, are described in Greene and Wuts (Protective Groups In Organic Synthesis, Wiley and Sons, 1999).
- suitable nitrogen protecting groups include, but are not limited to, tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), benzyl (Bn), acetyl, and trifluoracetyl.
- the Boc protecting group may be removed by treatment with an acid such as trifluoroacetic acid or hydrochloric acid.
- the Cbz and Bn protecting groups may be removed by catalytic hydrogenation.
- the acetyl and trifluoracetyl protecting groups may be removed by a hydroxide ion.
- Quinuclidine ethers of general formula (8) wherein Ar 1 , Ar 2 , and R 9 are as defined in formula (I), can be prepared as described in Scheme 1.
- 3-Quinuclidinol of formula (1) is treated with a halophenyl iodide of formula (2), wherein X′ is bromide, chloride, or iodide, with CuI and Cs 2 CO 3 in 1,10-phenanthroline as described in Org. Lett., 2002, 4, 973, to obtain a halophenoxy quinuclidine of formula (4).
- a compound of formula can be obtained by treating 3-quinuclidinol with a halo phenyl alcohol of formula (3), wherein X′ is bromide, chloride, or iodide, and diethyl azodicarboxylate in the presence of a phosphine, such as triphenylphosphine.
- a phosphine such as triphenylphosphine
- Compounds of formula (4) can be treated with a hexamethylditin or diboron reagent of formula (9), such as bis(pinacolato)diboron and bis(catecholato)dibone, in the presence of a palladium catalyst to provide the corresponding tin or boron regent of formula (5), which is reacted with a desired halide of an amine-substituted aryl group represented by Ar 2 —NHR 9 of formula (6), wherein X′ is bromide, chloride, or iodide and Ar 2 and NHR 9 are as defined for a compound of formula (I) to provide compounds of formula (8).
- a hexamethylditin or diboron reagent of formula (9), such as bis(pinacolato)diboron and bis(catecholato)dibone in the presence of a palladium catalyst to provide the corresponding tin or boron regent of formula (5), which is reacted with
- halides of a desired Ar 2 group can be treated with a hexamethylditin or diboron reagent of formula (9), such as bis(pinacolato)diboron and bis(catecholato)diboron, in the presence of a palladium catalyst to provide a corresponding tin or boronic acid reagent that is reacted with a compound of formula (4) in the presence of a palladium catalyst to provide a compound of formula (8).
- a hexamethylditin or diboron reagent of formula (9), such as bis(pinacolato)diboron and bis(catecholato)diboron in the presence of a palladium catalyst to provide a corresponding tin or boronic acid reagent that is reacted with a compound of formula (4) in the presence of a palladium catalyst to provide a compound of formula (8).
- Quinuclidine ethers of formula (15), wherein Ar 1 is a nitrogen-containing heteroaryl, for example pyridazine, and Ar 2 and R 9 are as defined for compounds of formula (I), can be prepared as shown in Scheme 2.
- Potassium quinuclidinoxide (10) can be reacted with a dihaloaromatic ring, for example, dichloropyridazine, of formula (11), wherein Y 1 and Y 2 are halides, for example bromide, chloride, or iodide, and X 1 , X 2 , and X 3 are selected from N or CH, to obtain a quinuclidine ether of formula (12).
- the quinuclidine ether can be reacted with a tin, boron, zinc or Grignard reagent of a desired Ar 2 group substituted by —NHR 9 of formula (14), wherein Ar 2 and R 9 are as defined for a compound of formula (I), wherein M′ is Sn, B, Zn, or Mg, to provide an amino-biaryl quinuclidine ether of formula (15).
- the quinuclidine ether of formula (12) can be treated with a hexamethylditin or diboron reagent of formula (9), such as bis(pinacolato)diboron and bis(catecholato)diboron, to activate the aromatic group to provide (13), wherein M is tin or a boronic acid ester, and further treated with a halide of a desired Ar 2 substituted with —NHR 9 in the presence of a palladium catalyst to provide compounds of formula (15).
- a hexamethylditin or diboron reagent of formula (9), such as bis(pinacolato)diboron and bis(catecholato)diboron to activate the aromatic group to provide (13), wherein M is tin or a boronic acid ester
- a halide of a desired Ar 2 substituted with —NHR 9 in the presence of a palladium catalyst to provide compounds of formula (15).
- Quinuclidine ethers of formulas (26) and (27), wherein Ar 1 , Ar 2 , R 8 , and R 9 are as defined for compounds of formula (I), can be obtained by the methods described in Scheme 3.
- Compounds of formula (20) can be treated with 3-quinuclidinol in the presence of a phosphine, for example triphenylphosphine, and diethyl azodicarboxylate to provide compounds of formula (22).
- compounds of formula (21), wherein X′′ is bromide, chloride, iodide, NO 2 or NR 8 R 9 can be reacted with CuI, Cs 2 CO 3 in 1,10-phenanthroline as described in Org. Lett.
- Compounds of formula (22) can also be obtained by coupling 3-quinuclidinol with compounds of formula (21A) in the presence of t-BuOK.
- Compounds of formula (22), wherein X′′ is NO 2 can be reduced with hydrogen in the presence of a palladium catalyst and reacted with a chloride or bromide of a desired R 9 group of formula (23), wherein R 9 is hydrogen, alkyl, aryl, alkycarbonyl, alkoxycarbonyl, arylcarbonyl, or aryloxycarbonyl, to provide compounds of formula (26).
- the racemate of formula (31) can be resolved into its respective isomers by resolution with D-tartaric acid or via chiral HPLC chromatography on a Chiracel®-OD chromatography column using methods well-known in the art to provide the (R)- and (S)-isomers of formulas (31), respectively.
- Compounds of formula (31), wherein X′′ is bromide, chloride, or iodide, can be treated with a compound R 8 NHR 9 of formula (24), wherein R 8 and R 9 are as previously described for R 9 in compounds of formula (23), to provide a corresponding compound of formula (32).
- the racemate of formula (49) can be resolved into its respective isomers by resolution with D-tartaric acid or via chiral HPLC chromatography on a Chiracel®-OD chromatography column using methods well-known in the art to provide the (R)- and (S)-isomers of formulas (49), respectively.
- a compound of formula (49) can be obtained by treating 3-aminoquinuclidine (47) with haloaromatic group as described in formula (48) with Cs 2 CO 3 in the presence of palladium catalyst, preferably in toluene.
- a compound of formula (49) can be treated with a tin or boronic acid under conditions previously described to provide the corresponding tin or boronic acid reagent of formula (50), which can be reacted with the halide of a desired group represented by Ar 2 in a compound of formula (6) to provide a compound of formula (51).
- the compound of formula (49) is treated with a tin or boronic acid ester of the desired Ar 2 group in the presence of a palladium catalyst to provide a compound of formula (51).
- Quinuclidine biarylsulfides of formula (62) and (63), wherein Ar 1 , Ar 2 , R 8 , and R 9 are as defined for formula (I), can be obtained by the methods described in Scheme 6.
- 3-Chloroquinuclidine can be reacted with a halobiarylthiol of formula (60), wherein X′′ is bromide, chloride, iodide, NO 2 , or NR 8 R 9 , wherein R 8 and R 9 are as defined for a compound of formula (I), as described in J. Med. Chem. 1999, 42, 1306, to provide a racemic compound of formula (61).
- the racemate of formula (61) can be resolved into its respective isomers by resolution with D-tartaric acid or via is chiral HPLC chromatography on a Chiracel®-OD chromatography column using methods well-known in the art to provide the (R)- and (S)-isomers of formulas (61), respectively.
- Compounds of formula (61), wherein X′′ is NO 2 can be reduced with hydrogen in the presence of a palladium catalyst and reacted with a chloride or bromide of a desired R 9 group of formula (23), wherein R 9 is hydrogen, alkyl, aryl, alkycarbonyl, alkoxycarbonyl, arylcarbonyl, or aryloxycarbonyl, to provide compounds of formula (62).
- the compound of formula (77) can be treated with a tin, boron, zinc or Grignard reagent of a desired group for Ar 2 , as defined for a compound of formula (I), to provide a compound of formula (79).
- the compound of formula (77) can be reacted with hexamethylditin or diboron of formula (9), such as bis(pinacolato)diboron and bis(catecholato)diboron, in the presence of a palladium catalyst to provide a compound of formula (78), which is reacted with the halide of a desired Ar 2 group in the presence of a palladium catalyst to provide a compound of formula (79).
- Compounds of formula (I) wherein A is N can be converted to compounds of formula (I) wherein A is N + —O ⁇ by treatment with an oxidizing agent.
- the oxidizing agent include, but not limited to, aqueous hydrogen peroxide and m-chloroperbenzoic acid.
- the reaction is generally performed in a solvent such as, but not limited to, acetonitrile, water, dichloromethane, acetone or mixture thereof, preferably a mixture of acetonitrile and water, at a temperature from about room temperature to about 80° C., for a period of about 1 hour to about 4 days.
- the compounds and intermediates of the invention may be isolated and purified by methods well-known to those skilled in the art of organic synthesis.
- Examples of conventional methods for isolating and purifying compounds can include, but are not limited to, chromatography on solid supports such as silica gel, alumina, or silica derivatized with alkylsilane groups, by recrystallization at high or low temperature with an optional pretreatment with activated carbon, thin-layer chromatography, distillation at various pressures, sublimation under vacuum, and trituration, as described for instance in “Vogel's Textbook of Practical Organic Chemistry”, 5th edition (1989), by Furniss, Hannaford, Smith, and Tatchell, pub. Longman Scientific & Technical, Essex CM20 2JE, England.
- the compounds, of the invention have at least one basic nitrogen whereby the compound can be treated with an acid to form a desired salt.
- a compound may be reacted with an acid at or above room temperature to provide the desired salt, which is deposited, and collected by filtration after cooling.
- acids suitable for the reaction include, but are not limited to tartanc acid, lactic acid, succinic acid, as well as mandelic, atrolactic, methanesulfonic, ethanesulfonic, toluenesulfonic, naphthalenesulfonic, carbonic, fumaric, gluconic, acetic, propionic, salicylic, hydrochloric, hydrobromic, phosphoric, sulfuric, citric, or hydroxybutyric acid, camphorsulfonic, malic, phenylacetic, aspartic, glutamic, and the like.
- the invention also provides pharmaceutical compositions comprising a therapeutically effective amount of a compound of formula (I) in combination with a pharmaceutically acceptable carrier.
- the compositions comprise compounds of the invention formulated together with one or more non-toxic pharmaceutically acceptable carriers.
- the pharmaceutical compositions can be formulated for oral administration in solid or liquid form, for parenteral injection or for rectal administration.
- pharmaceutically acceptable carrier means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
- materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch: cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols; such a propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; iso
- compositions of this invention can be administered to humans and other mammals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments or drops), bucally or as an oral or nasal spray.
- parenterally refers to modes of administration, including intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous, intraarticular injection and infusion.
- compositions for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile injectable solutions or dispersions.
- suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like, and suitable mixtures thereof), vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate, or suitable mixtures thereof.
- Suitable fluidity of the composition may be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- compositions can also contain adjuvants such as preservative agents, wetting agents, emulsifying agents, and dispersing agents.
- adjuvants such as preservative agents, wetting agents, emulsifying agents, and dispersing agents.
- Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It also can be desirable to include isotonic agents, for example, sugars, sodium chloride and the like.
- Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- a parenterally administered drug form can be administered by dissolving or suspending the drug in an oil vehicle.
- Suspensions in addition to the active compounds, can contain suspending agents, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth, and mixtures thereof.
- suspending agents for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth, and mixtures thereof.
- the compounds of the invention can be incorporated into slow-release or targeted-delivery systems such as polymer matrices, liposomes, and microspheres. They may be sterilized, for example, by filtration through a bacteria-retaining filter or by incorporation of sterilizing agents in the form of sterile solid compositions, which may be dissolved in sterile water or some other sterile injectable medium immediately before use.
- Injectable depot forms are made by forming microencapsulated matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides) Depot injectable formulations also are prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
- the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
- sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation also can be a sterile injectable solution, suspension or emulsion in a nontoxic, parenterally acceptable diluent or solvent such as a solution in 1,3-butanediol.
- acceptable vehicles and solvents that can be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono- or diglycerides.
- fatty acids such as oleic acid are used in the preparation of injectables.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
- one or more compounds of the invention is mixed with at least one inert pharmaceutically acceptable carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and salicylic acid, b) binders such as carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia; c) humectants such as glycerol; d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; e) solution retarding agents such as paraffin; f) absorption accelerators such as quaternary ammonium compounds; g) wetting agents such as cetyl alcohol and glycerol monostearate; h
- compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugar as well as high molecular weight polyethylene glycols.
- the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well-known in the pharmaceutical formulating art. They can optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract in a delayed manner. Examples of materials useful for delaying release of the active agent can include polymeric substances and waxes.
- compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- suitable non-irritating carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and
- the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches.
- a desired compound of the invention is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required.
- Ophthalmic formulation, eardrops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
- the ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to the compounds of this invention, lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
- Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
- Liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes may be used.
- the present compositions in liposome form may contain, in addition to the compounds of the invention, stabilizers, preservatives, and the like.
- the preferred lipids are the natural and synthetic phospholipids and phosphatidylcholines (lecithins) used separately or together.
- Dosage forms for topical administration of a compound of this invention include powders, sprays, ointments and inhalants.
- the active compound is mixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers or propellants.
- Ophthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
- Aqueous liquid compositions of the invention also are particularly useful.
- the compounds of the invention can be used in the form of pharmaceutically acceptable salts, esters, or amides derived from inorganic or organic acids.
- pharmaceutically acceptable salts, esters and amides include salts, zwitterions, esters and amides of compounds of formula (I) which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
- pharmaceutically acceptable salt refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio.
- Pharmaceutically acceptable salts are well-known in the art. The salts can be prepared in situ during the final isolation and purification of the compounds of the invention or separately by reacting a free base function with a suitable organic acid.
- Representative acid addition salts include, but are not limited to acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isethionate), lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, phosphate, glutamate, bicarbonate, p-toluenesulfonate and undecanoate.
- the basic nitrogen-containing groups can be quaternized with such agents as lower alkyl halides such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides, dialkyl sulfates such as dimethyl, diethyl, dibutyl and diamyl sulfates; long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; arylalkyl halides such as benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.
- lower alkyl halides such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides, dialkyl sulfates such as dimethyl, diethyl, dibutyl and diamyl sulfates
- long chain halides such as dec
- acids which can be employed to form pharmaceutically acceptable acid addition salts include such inorganic acids as hydrochloric acid, hydrobromic acid, sulphuric acid and phosphoric acid and such organic acids as oxalic acid, maleic acid, succinic acid, and citric acid.
- Basic addition salts can be prepared in situ during the final isolation and purification of compounds of this invention by reacting a carboxylic acid-containing moiety with a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia or an organic primary, secondary or tertiary amine.
- a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia or an organic primary, secondary or tertiary amine.
- Pharmaceutically acceptable salts include, but are not limited to, cations based on alkali metals or alkaline earth metals such as lithium, sodium, potassium, calcium, magnesium, and aluminum salts, and the like, and nontoxic quaternary ammonia and amine cations including ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine and the such as.
- Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazine.
- esters of compounds of the invention refers to esters of compounds of the invention which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof.
- examples of pharmaceutically acceptable, non-toxic esters of the invention include C 1 -to-C 6 alkyl esters and C 5 -to-C 7 cycloalkyl esters, although C 1 -to-C 4 alkyl esters are preferred.
- Esters of the compounds of formula (I) can be prepared according to conventional methods.
- esters can be appended onto hydroxy groups by reaction of the compound that contains the hydroxy group with acid and an alkylcarboxylic acid such as acetic acid, or with acid and an arylcarboxylic acid such as benzoic acid.
- the pharmaceutically acceptable esters are prepared from compounds containing the carboxylic acid groups by reaction of the compound with base such as triethylamine and an alkyl halide, alkyl trifilate, for example with methyl iodide, benzyl iodide, cyclopentyl iodide. They also can be prepared by reaction of the compound with an acid such as hydrochloric acid and an alkylcarboxylic acid such as acetic acid, or with acid and an arylcarboxylic acid such as benzoic acid.
- pharmaceutically acceptable amide refers to non-toxic amides of the invention derived from ammonia, primary C 1 -to-C 6 alkyl amines and secondary C 1 -to-C 6 dialkyl amines. In the case of secondary amines, the amine can also be in the form of a 5- or 6-membered heterocycle containing one nitrogen atom. Amides derived from ammonia, C 1 -to-C 3 alkyl primary amides and C 1 -to-C 2 dialkyl secondary amides are preferred. Amides of the compounds of formula (I) can be prepared according to conventional methods.
- Pharmaceutically acceptable amides can be prepared from compounds containing primary or secondary amine groups by reaction of the compound that contains the amino group with an alkyl anhydride, aryl anhydride, acyl halide, or aroyl halide.
- the pharmaceutically acceptable esters are prepared from compounds containing the carboxylic acid groups by reaction of the compound with base such as triethylamine, a dehydrating agent such as dicyclohexyl carbodiimide or carbonyl diimidazole, and an alkyl amine, dialkylamine, for example with methylamine, diethylamine, piperidine.
- compositions can contain a compound of the invention in the form of a pharmaceutically acceptable prodrug.
- prodrug or “prodrug,” as used herein, represents those prodrugs of the compounds of the invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use.
- Prodrugs of the invention can be rapidly transformed in vivo to a parent compound of formula (I), for example, by hydrolysis in blood.
- a thorough discussion is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, V. 14 of the A.C.S. Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press (1987).
- the invention contemplates pharmaceutically active compounds either chemically synthesized or formed by in vivo biotransformation to compounds of formula (I).
- Compounds and compositions of the invention are useful for modulating the effects of nAChRs, and more particularly ⁇ 7 nAChRs.
- the compounds and compositions of the invention can be used for treating and preventing disorders modulated by ⁇ 7 nAChRs.
- disorders can be ameliorated by selectively modulating the ⁇ 7 nAChRs in a mammal, preferably by administering a compound or composition of the invention, either alone or in combination with another active agent, for example, as part of a therapeutic regimen.
- the compounds of the invention possess an affinity for nAChRs, and more particularly ⁇ 7 nAChRs.
- nAChRs possess an affinity for nAChRs, and more particularly ⁇ 7 nAChRs.
- ⁇ 7 nAChRs ligands the compounds of the invention can be useful for the treatment and prevention of a number of ⁇ 7 nAChR-mediated diseases or conditions.
- ⁇ 7 nAChRs have been shown to play a significant role in enhancing cognitive function, including aspects of learning, memory and attention (Levin, E. D., J. Neurobiol. 53: 633-640, 2002).
- ⁇ 7 ligands are suitable for the treatment of cognitive disorders including, for example, attention deficit disorder, attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), mild cognitive impairment, senile dementia, AIDS dementia, Pick's Disease, dementia associated with Lewy bodies, and dementia associated with Down's syndrome, as well as cognitive deficits associated with schizophrenia.
- ADHD attention deficit hyperactivity disorder
- AD attention deficit hyperactivity disorder
- AD Alzheimer's disease
- senile dementia AIDS dementia
- Pick's Disease dementia associated with Lewy bodies
- dementia associated with Down's syndrome as well as cognitive deficits associated with schizophrenia.
- ⁇ 7-containing nAChRs have been shown to be involved in the neuroprotective effects of nicotine both in vitro (Jonnala, R. B. and Buccafusco, J. J., J. Neurosci. Res. 66: 565-572, 2001) and in vivo (Shimohama, S. et al., Brain Res. 779: 359-363, 1998). More particularly, neurodegeneration underlies several progressive CNS disorders, including, but not limited to, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, dementia with Lewy bodies, as well as diminished CNS function resulting from traumatic brain injury.
- ⁇ 7 nAChRs the impaired function of ⁇ 7 nAChRs by ⁇ -amylold peptides linked to Alzheimer's disease has been implicated as a key factor in development of the cognitive deficits associated with the disease (Liu, Q.-S., Kawai, H., Berg, D. K., PNAS 98: 4734-4739, 2001).
- the activation of ⁇ 7 nAChRs has been shown to block this neurotoxicity (Kihara, T. et al., J. Biol. Chem. 276: 13541-13546, 2001).
- selective ligands that enhance ⁇ 7 activity can counter the deficits of Alzheimer's and other neurodegenerative diseases.
- Schizophrenia is a complex disease that is characterized by abnormalities in perception, cognition, and emotions. Significant evidence implicates the involvement of ⁇ 7 nAChRs in this disease, including a measured deficit of these receptors in post-mortem patients (Leonard, S. Eur. J. Pharmacol. 393: 237-242, 2000). Deficits in sensory processing (gating) are one of the hallmarks of schizophrenia. These deficits can be normalized by nicotinic ligands that operate at the ⁇ 7 nAChR (Adler L. E. et al., Schizophrenia Bull. 24: 189-202, 1998; Stevens, K. E. et al., Psychopharmacology 136: 320-327, 1998). Thus, ⁇ 7 ligands demonstrate potential in the treatment schizophrenia.
- Angiogenesis a process involved in the growth of new blood vessels, is important in beneficial systemic functions, such as wound healing, vascularization of skin grafts, and enhancement of circulation, for example, increased circulation around a vascular occlusion.
- Non-selective nAChR agonists like nicotine have been shown to stimulate angiogenesis (Heeschen, C. et al., Nature Medicine 7: 833-839, 2001).
- Improved angiogenesis has been shown to involve activation of the ⁇ 7 nAChR (Heeschen, C. et al, J. Clin. Invest. 110: 527-536, 2002). Therefore, nAChR ligands that are selective for the ⁇ 7 subtype offer improved potential for stimulating angiogenesis with an improved side effect profile.
- a population of ⁇ 7 nAChRs in the spinal cord modulate serotonergic transmission that have been associated with the pain-relieving effects of nicotinic compounds (Cordero-Erausquin, M. and Changeux, J.-P, PNAS 98:2803-2807, 2001).
- the ⁇ 7 nAChR ligands demonstrate therapeutic potential for the treatment of pain states, including acute pain, post-surgical pain, as well as chronic pain states including inflammatory pain and neuropathic pain.
- ⁇ 7 nAChRs are expressed on the surface of primary macrophages that are involved in the inflammation response, and that activation of the ⁇ 7 receptor inhibits release of TNF and other cytokines that trigger the inflammation response (Wang, H. et al Nature 421: 384-388, 2003). Therefore, selective ⁇ 7 ligands demonstrate potential for treating conditions involving inflammation and pain.
- the mammalian sperm acrosome reaction is an exocytosis process important in fertilization of the ovum by sperm.
- Activation of an ⁇ 7 nAChR on the sperm cell has been shown to be essential for the acrosome reaction (Son, J.-H. and Meizel, S. Biol. Reproduct. 68: 1348-1353 2003). Consequently, selective ⁇ 7 agents demonstrate utility for treating fertility disorders.
- Compounds of the invention are particularly useful for treating and preventing a condition or disorder affecting cognition, neurodegeneration, and schizophrenia.
- Cognitive impairment associated with schizophrenia often limits the ability of patients to function normally, a symptom not adequately treated by commonly available treatments, for example, treatment with an atypical antipsychotic.
- atypical antipsychotic Treatment with an atypical antipsychotic.
- Such cognitive deficit has been linked to dysfunction of the nicotinic cholinergic system, in particular with decreased activity at ⁇ 7 receptors.
- activators of ⁇ 7 receptors can provide useful treatment for enhancing cognitive function in schizophrenic patients who are being treated with atypical antipsychotics.
- atypical antipsychotic examples include, but are not limited to, clozapine, risperidone, olanzapine, quietapine, ziprasidone, zotepine, iloperidone, and the like.
- Actual dosage levels of active ingredients in the pharmaceutical compositions of this invention can be varied so as to obtain an amount of the active compound(s) that is effective to achieve the desired therapeutic response for a particular patient, compositions and mode of administration.
- the selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- a therapeutically effective amount of one of the compounds of the invention can be employed in pure form or, where such forms exist, in pharmaceutically acceptable salt, ester, amide or prodrug form.
- the compound can be administered as a pharmaceutical composition containing the compound of interest in combination with one or more pharmaceutically acceptable carriers.
- therapeutically effective amount means a sufficient amount of the compound to treat disorders, at a reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the compounds and compositions of the invention will be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well-known in the medical arts. For example, it is well within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- the total daily dose of the compounds of this invention administered to a human or lower animal range from about 0.10 mg/kg body weight to about 1 g/kg body weight. More preferable doses can be in the range of from about 0.10 mg/kg body weight to about 100 mg/kg body weight. If desired, the effective daily dose can be divided into multiple doses for purposes of administration. Consequently, single dose compositions may contain such amounts or submultiples thereof to make up the daily dose.
- Example 1A The product of Example 1A (330 mg, 1 mmol) in toluene (8 mL) was treated with 3-amino-phenylboronic acid (Lancaster, 276 mg, 2 mmol), Pd 2 (dba) 3 (Strem Chemicals, 18.3 mg, 0.02 mmol), 1,3-bis(2,6-di-1-propylphenyl)imidazolium chloride, 95%, 26.9 mg, 0.06 mmol), and Na 2 CO 3 (aqueous, 2M, 2 mL, 4 mmol) at 110° C. for 15 hours.
- Example 1A The product of Example 1A (165 mg, 0.5 mmol) was treated with 3-amino-phenylboronic acid (Lancaster, 137 mg, 1 mmol) according to the procedure of Example 1B.
- the title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:2, R f . 0.25) as an oil (38 mg, yield, 26%).
- Example 2B The product of Example 2B (38 mg, 0.13 mmol) in ethyl acetate/methanol (3 mL, 10:1) was treated with fumaric acid (17 mg, 0.14 mmol) at ambient temperature overnight.
- Example 1A The product of Example 1A (330 mg, 1 mmol) was treated with 3-amino-4-methyl-phenylboronic acid (Lancaster, 302 mg, 2 mmol) according to the procedure of Example 1B.
- the free base of the title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:2, R f . 0.10) as oil (230 mg, yield, 75%).
- the free base of the title compound (230 mg, 0.75 mmol) in ethyl acetate (5 mL) was treated with 4M HCl in 1,4-dioxane (0.5 mL, 2 mmol).
- Example 2A The product of Example 2A (165 mg, 0.5 mmol), was treated with 3-amino-4-methyl-phenylboronic acid (151 mg, 1 mmol) according to the procedure of Example 2B.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.25) as a solid (104 mg, yield, 68%).
- Example 4A The product of Example 4A in ethyl acetate/ethanol (v.1:1, 4 mL) was treated with fumaric acid (40 mg, 0.34 mmol) at ambient temperature for 15 hours. The title compound was obtained as a solid (115 mg, yield, 77%).
- Example 5A The product of Example 5A (33 mg, 0.1 mmol) in ethyl acetate/ethanol (3 mL, 1:1) was treated with fumaric acid (12 mg, 0.1 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (14 mg, yield, 36%).
- Example 5A The product of Example 5A (150 mg, 0.46 mmol) in methanol (5 mL) was treated with Pd/C (Aldrich, wt. 10%, 20 mg) at ambient temperature for 30 minutes. The mixture was filtered and the filtrate was concentrated under reduced pressure to provide the title compound (89 mg, yield, 65%).
- Example 5C The product of Example 5C (89 mg, 0.30 mmol) in ethyl acetate/ethanol (4.0 mL, 1:1) was treated with fumaric acid (35 mg, 0.30 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (67 mg, yield, 62%).
- (+/ ⁇ )-1-azabicyclo[2.2.2]oct-3-yl benzoate (Sigma, 17.9 g, 77.5 mmol) in ethanol (80%, 222 mL) was treated with (L)-tartaric acid (Aldrich, 99% ee, 11.63 g, 77.5 mmol) at ambient temperature for 1 week. The mixture was filtered and the filter cake dried under reduced pressure to provide the title compound (6.5 g), in ⁇ 80% enantiomeric excess as determined by HPLC chiralpak AD column 25 cm ⁇ 4 mm ID; ethanol:hexanes, 15:85; flow rate, 1 mL/minute; uv, 220 nm; Retention time: 13.3 minutes. The title compound was recrystallized from ethanol to provide the title compound in >98% enantiomeric excess. MS (DCl/NH 3 ) m/z 232 (M+H) + :
- Example 6A The product of Example 6A (4.5 g, 11.8 mmol) in methanol (40 mL) was treated with NaOH (15%, 40 mL) at 50° C. for 10 hours. The methanol was removed under reduced pressure and the residue was extracted with chloroform (4 ⁇ 80 mL). The extracts were combined, dried over MgSO 4 , dried, filtered, and the filtrate was concentrated to give the title product as a white solid (1.35 g, yield, 90%). MS (DCl/NH 3 ) m/z 128 (M+H) + .
- Example 6A The mother liquid of Example 6A was combined and concentrated under reduced pressure. The residue was treated with NaOH (1 N, 50 mL) at room temperature for 30 minutes and extracted with chloroform (3 ⁇ mL) The extracts were combined, dried (MgSO 4 ), filtered, and the filtrate was concentrated to give crude 1-azabicyclo[2.2.2]oct-3-yl benzoate (15.25 g, 66 mmol). The crude in ethanol (80%, 190 ml) was treated with (D)-tartaric acid (Aldrich, 97% ee, 9.9 g, 66 mmol) at room temperature for 3 days according to the procedure of Example 1A to provide the title compound in 92.3% enantiomeric excess (7.0 g, yield, 28%).
- Example 6C The product of Example 6C (7.0 g, 18.4 mmol) was treated with NaOH (aqueous) according to the procedure of Example 1B. The title product was obtained as white a solid (2.0 g, yield, 86%). MS (DCl/NH 3 ) m/z 128 (M+H) + .
- Example 6D The product of Example 6D (254 mg, 2 mmol) was treated with 4′-nitro-1,1′-biphenyl-4-ol (TCl, 215 mg, 1 mmol) according to the procedure of Example 5A.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.20) as a solid (384 mg, yield, 59%).
- Example 6E The product of Example 6E (384 mg, 1.18 mmol) in methanol (5 mL) was treated with Pd/C (Aldrich, wt. 10%, 50 mg) under H 2 according to the procedure of Example 5C to provide the title compound (170 mg, yield, 49%).
- Example 6F The product of Example 6F (170 mg, 0.58 mmol) in ethyl acetate/ethanol (5.0 mL, 1:1) was treated with fumaric acid (70 mg, 0.60 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (183 mg, yield, 48%).
- Example 6B The product of Example 6B (508 mg, 4 mmol) was treated with 4′-nitro-biphenyl-4-ol (TCl, 430 mg, 2 mmol) according to the procedure of Example 5A.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.20) as a solid (480 mg, yield, 74%).
- Example 7A The product of Example 7A (480 mg, 1.48 mmol) in methanol (5 mL) was treated with Pd/C (Aldrich, wt. 10%, 50 mg) at ambient temperature for 30 minutes. The reaction mixture was filtered through a short column of diatomaceous earth and the filtrate was concentrated under reduced pressure to provide the title compound (350 mg, yield, 80%).
- Example 7B The product of Example 7B (350 mg, 1.19 mmol) in ethyl acetate/ethanol (5.0 mL, 1:1) was treated with fumaric acid (140 mg, 1.20 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (376 mg, yield, 89%).
- Example 8A The product of Example 8A (405 mg, 1 mmol) in toluene (5 mL) was treated with benzyl(methyl)amine (Aldrich, 146 mg, 1.2 mmol), Pd 2 (dba) 3 (Strem Chemicals, 24 mg, 0.025 mmol), ( t Bu 3 P) 2 Pd (Strem Chemicals, 26 mg, 0.05 mmol), t BuONa (Aldrich, 105 mg 1.1 mmol) and heated at 110° C. under N 2 for 15 hours. The reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate (20 mL), and washed with brine (2 ⁇ 5 mL).
- Example 8B The product of Example 8B (200 mg, 0.50 mmol) in methanol (10 mL) was treated with Pd/C (Aldrich, 10% wt., 50 mg) at 60° C. under H 2 for 10 hours. The mixture was allowed to cool to room temperature and was filtered through a short column of diatomaceous earth. The filtrate was concentrated under reduced pressure to provide the title compound (20 mg, yield, 13%).
- Pd/C Aldrich, 10% wt., 50 mg
- Example 8C The product of Example 8C (20 mg, 0.07 mmol) in ethyl acetate (4 mL) was treated with 4M HCl in 1,4-dioxane (0.5 mL, 2 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (17 mg, yield, 55%).
- Example 9A The product of Example 9A (1.27 g, 10 mmol) was treated with 4-bromophenol-(Aldrich, 2.83 g, 10 mol) according to the procedure of Example 1A.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.30) as solid (400 mg, yield, 14%).
- Example 9B The product of Example 9B (282 mg, 1 mmol) was treated with N,N-dimethyl-4-amino-phenyl boronic acid (230 mg, 1.4 mmol) according to the procedure of Example 1B.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f .
- Example 9B The product of Example 9B (118 mg, 0.37 mmol) in ethyl acetate:ethanol (5 mL, 1:1), was treated with fumaric acid (46 mg, 0.4 mmol). The title compound was obtained as a solid (128.8 mg, yield, 79%).
- Example 5C The product of Example 5C (148 mg, 0.5 mmol) was treated with methansulfonyl chloride (Aldrich, 68 mg, 0.6 mmol) and triethyl amine (303 mg, 3 mmol) in CH 2 Cl 2 (5 ml) at 0° C. to room temperature for 3 h. The mixture was allowed to warm to room temperature and was concentrated under reduced pressure. The title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.3) as oil (20 mg, yield, 11%).
- Example 10A The product of Example 10A (20 mg, 0.05 mmol) in ethyl acetate/ethanol (3 mL, 1:1) was treated with fumaric acid (11 mg, 0.1 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (16 mg, yield, 54%).
- Example 8A The product of Example 8A (405 mg, 1 mmol) was treated with aniline (110 mg, 1.2 mmol) according to the procedure in Example 8B.
- the title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.25) as solid (200 mg, yield, 54%).
- Example 11A The product of Example 11A (200 mg, 0.54 mmol) in ethyl acetate:ethanol (5 mL, 1:1) was treated with fumaric acid (70 mg, 0.6 mmol). The title compound was obtained as a solid (197.8 mg, yield, 72%).
- Example 12A The product of Example 12A (283 mg, 1 mmol) was treated with 3-amino-phenylboronic acid (Lancaster, 274 mg, 2.0 mmol) according to the procedure of Example 1B.
- the title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.10) as solid (180 mg, yield, 61%).
- Example 12B The product of Example 12B (50 mg, 0.17 mmol) in ethyl acetate (5 mL) was treated with 4M HCl in 1,4-dioxane (0.2 mL, 0.8 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (30 mg, yield, 44%).
- Example 13A The product of Example 13A (0.68 g, 1.58 mmol) in ethanol (20 mL) was treated with Pd/C (Aldrich, 10% wt., 70 mg) under H 2 at ambient temperature for 4 hours. The mixture was filtered through a short column of diatomaceous earth and the filtrate was concentrated to give the title product as a solid (400 mg, yield, 86%).
- Example 13B The product of Example 13B (100 mg, 0.34 mmol) in ethyl acetate/ethanol (5 mL, 1:1) was treated with fumaric acid (47 mg, 0.4 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (109 mg, yield, 91%).
- Example 6D The product of Example 6D (155 mg, 1.2 mmol) was treated with benzyl 4-(5-hydroxypyrazin-2-yl)phenylcarbamate (Ref. EP146282A, 321 mg, 1 mmol) according to the procedure of Example 5A.
- the title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.3) as a solid (180 mg, yield, 42%).
- Example 15A The product of Example 15A (180 mg, 0.42 mmol) was treated with Pd/C (Aldrich, 10% wt., 20 mg) in EtOH (10 mL) under H 2 according to the procedure of Example 13B. The title compound was obtained as oil (125 mg, yield, 99%).
- 1 H NMR MeOH-d 4 , 300 MHz) ⁇ 1.47-1.62 (m, 1H), 1.64-1.90 (m, 2H), 1.97-2.12 (m, 1H), 2.19-2.27 (m, 1H), 2.73-3.03 (m, 5H), 3.34-3.44 (m, 1H), 5.07-5.14 (m, 1H), 6.78 (dt.
- Example 14B The product of Example 14B (125 mg, 0.42 mmol) was treated with fumaric acid (50 mg, 0.42 mmol) in ethyl acetate/EtOH (v. 1:1, 5 mL) at ambient temperature for 10 h. The title compound was obtained as solid (124.4 mg, yield, 81%).
- Example 9A The product of Example 9A (155 mg, 1.2 mmol) was treated with benzyl 4-(5-hydroxypyrazin-2-yl)phenylcarbamate (Ref. EP146282A, 321 mg, 1 mmol) according to the procedure of Example 5A.
- the title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.3) as solid (170 mg, yield, 40%).
- Example 15A The product of Example 15A (170 mg, 0.40 mmol) in ethanol (10 mL) was treated with Pd/C (Aldrich, 10% wt., 20 mg) under H 2 according to the procedure of Example 13B.
- the title compound was obtained as an oil (120 mg, yield, 99%).
- Example 15B The product of Example 15B (120 mg, 0.42 mmol) in ethyl acetate/ethanol (5 mL, 1:1) was treated with fumaric acid (50 mg, 0.42 mmol) at ambient temperature for 10 hours. The title compound was obtained as solid (106 mg, yield, 73%).
- Example 13B The product of Example 13B (160 mg, 0.54 mmol) in acetonitrile (5 mL) was treated with formaldehyde (Aldrich, 37%, 1 mL, 12 mmol) and NaBH(OAc) 3 (Aldrich, 343 mg, 1.62 mmol) at ambient temperature for 6 hours. The mixture treated with aqueous Na 2 CO 3 (saturated 5 mL) and extracted with ethyl acetate (3 ⁇ 10 mL). The extracts were combined and concentrated under reduced pressure. The title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f .
- Example 16A The product of Example 16A (130 mg, 0.40 mmol) in ethyl acetate/ethanol (5 mL, 1:1) was treated with fumaric acid (47 mg, 0.4 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (101 mg, yield, 63%).
- Example 13B The product of Example 13B (60 mg, 0.2 mmol) in dichloromethane (2 mL) was treated with acetic anhydride (Aldrich, 0.06 mL, 0.5 mmol) and triethyl amine (Aldrich, 0.25 mL, 1.8 mmol) at 0° C. to room temperature for 4 hours.
- the mixture was treated with aqueous Na 2 CO 3 (2M, 5 mL) and extracted with ethyl acetate (3 ⁇ 15 mL). The extracts were combined and concentrated under reduced pressure.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f .
- Example 17A The product of Example 17A (50 mg, 0.15 mmol) in ethyl acetate/ethanol (3 mL, 1:1) was treated with fumaric acid (23 mg, 0.2 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (40 mg, yield, 63%).
- Example 18A The product of Example 18A (283 mg, 1 mmol) in tetrahydrofuran (anhydrous, 10 mL) was treated with t-butyl[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-carbamate (Frontier, 319 mg, 1 mmol), Pd 2 (dba) 3 (Strem Chemicals, 24 mg, 0.025 mmol), ( t Bu 3 P) 2 Pd (Strem Chemicals, 26 mg, 0.05 mmol), K 2 CO 3 (Aldrich, 276 mg 2 mmol) and heated at 60° C. under N 2 for 15 hours.
- Example 18B The product of Example 18B (340 mg, 0.86 mmol) in CH 2 Cl 2 (6 mL) was treated with trifluoroacetic acid (Aldrich, 2 mL) at ambient temperature for 30 minutes and concentrated under reduced pressure. The title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.07) as solid (150 mg, yield, 58%).
- Example 18C The product of Example 18C (150 mg, 0.5 mmol) in ethyl acetate:ethanol (1:1, 5 mL) was treated with fumaric acid (58 mg, 0.5 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (178.2 mg, yield, 98%).
- Example 9A The product of Example 9A (509 mg, 4 mmol) was treated with potassium tert-butoxide (448 mg, 4 mmol) and 2-iodo-5-bromo-pyrimidine (Aldrich, 1.14 g, 4 mmol) according to the procedure of Example 18A.
- the title compound was purified by flash chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.15) as a solid (760 mg, yield, 67%).
- Example 19A The product of Example 19A (160 mg, 0.57 mmol) was coupled with t-butyl[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-carbamate (Frontier, 319 mg, 1 mmol) according to the procedure of Example 18B.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.20) as solid (150 mg, yield, 67%).
- Example 19B The product of Example 19B (150 mg, 0.38 mmol) was treated with trifluoroacetic acid (2 mL) according to the procedure of Example 18C.
- the title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.07) as solid (30 mg, yield, 26%).
- Example 19C The product of Example 19C (30 mg, 0.1 mmol) in ethyl acetate/ethanol (1:1, 2 mL) was treated with fumaric acid (12 mg, 0.1 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (13.6 mg, yield, 35%).
- Example 18A The product of Example 18A (160 mg, 0.57 mmol) was coupled with 3-aminophenylboronic acid (Lancaster, 157 mg, 1.14 mmol) according to the procedure of Example 1B.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.1) as solid (144 mg, yield, 86%).
- Example 20A The product of Example 20A (144 mg, 0.48 mmol) in ethyl acetate/ethanol (1:1, 5 mL) was treated with fumaric acid (58 mg, 0.5 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (122 mg, yield, 62%).
- Example 19A The product of Example 19A (280 mg, 1.0 mmol) was coupled with 3-aminophenylboronic acid (Lancaster, 276 mg, 2.0 mmol) according to the procedure of Example 1B.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.1) as a solid (230 mg, yield, 77%).
- Example 21A The product of Example 21A (230 mg, 0.77 mmol) in ethyl acetate:ethanol (1:1, 5 mL) was treated with fumaric acid (90 mg, 0.77 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (244 mg, yield, 75%).
- Example 6D The product of Example 6D (508 mg, 4 mmol) was treated with potassium tert-butoxide (448 mg, 4 mmol) and 2-iodo-5-bromo-pyrimidine (Aldrich, 1.14 g, 4 mmol) according to the procedure of Example 18A.
- the title compound was purified by flash chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.15) as a solid (780 mg, yield, 69%).
- Example 22A The product of Example 22A (284 mg, 1.0 mmol) was treated with 3-aminophenylboronic acid (Lancaster, 276 mg, 2.0 mmol) according to the procedure of Example 1B.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.1) as solid (285 mg, yield, 96%).
- Example 22B The product of Example 22B (284 mg, 0.96 mmol) in ethyl acetate:ethanol (1:1, 10 mL) was treated with fumaric acid (116 mg, 1.0 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (351 mg, yield, 87%).
- Example 18A The product of Example 18A (160 mg, 0.57 mmol) was treated with 3-amino-4-methyl-phenylboronic acid (Lancaster, 302 mg, 2.0 mmol) according to the procedure of Example 1B.
- the title product was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.1) as solid (45 mg, yield, 26%).
- Example 23A The product of Example 23A (45 mg, 0.14 mmol) in ethyl acetate/ethanol (1:1, 3 mL) was treated with fumaric acid (23 mg, 0.2 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (50 mg, yield, 78%).
- Example 24A The product of Example 24A (150 mg, 0.51 mmol) was treated with fumaric acid (Aldrich, 70 mg, 0.6 mmol) in ethyl acetate/methanol (10:1, 20 mL) at ambient temperature for 10 hours.
- fumaric acid Aldrich, 70 mg, 0.6 mmol
- Example 1C The product of Example 1C (124 mg, 0.33 mmol) was treated with H 2 O 2 (Aldrich, aq. 35%, 32 ⁇ L, 0.33 mmol) in acetonitrile (2 mL) and water (2 mL) at ambient temperature for 5 h. The mixture was quenched by Na 2 SO 3 solution carefully till no more peroxide was noticed, and it was then concentrated under vacuum. The title product was purified by preparative HPLC (XterraTM, column, Xterra RP-18, 5 ⁇ m, 30 ⁇ 100 mm. Eluting Solvent, MeCN/H 2 O (with 0.2% v. TFA), (v.
- Example 25A The product of Example 25A (50 mg, 0.16 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.5 mL) in EtOAc (5 mL) at ambient temperature for 1 hour to give the title compound as yellow solid (50.0 mg, 40%).
- 1 H NMR MeOH-D 4 , 300 MHz) ⁇ 2.07-2.41 (m, 3H), 2.46-2.64 (m, 2H), 3.67-3.95 (m, 5H), 4.24-4.38 (m, 1H), 5.03-5.18 (m, 1H), 7.05-7.18 (m, 3H), 7.37 (s, 1H), 7.41-7.47 (m, 2H), 7.58-7.67 (m, 2H) ppm.
- a Smith Process vessel (0.5-2 ml, Personal Chemistry) was charged with a stir bar. To the vessel was added the product of Example 1A (10 mg, 0.025 mmol) in toluene (0.8 mL) and 1,4-dioxane (0.4 mL). p-Toluidine (Aldrich, 4 mg, 0.038 mmol) and t-BuONa (Aldrich, 3.6 mg, 0.038 mmol,) were added to above solution.
- the Mixture was purged under N 2 followed by addition of Pd 2 (dba) 3 (Aldrich, 1 mg, 0.001 mmol,) and Pd(t-Bu 3 P) 2 (Strem Chemicals, 1.2 mg, 0.002 mmol).
- the reaction vessel was sealed and heated in microwave to 150° C. for 35 min in an EmryTM Optimizer microwave. After cooling, the reaction vessel was uncapped and filtered through a plug of silica, washed with MeOH. The filtrate was collected and dried.
- the title compound was purified by preparative HPLC (Gilson, column, Symmetry® C-8 7 ⁇ m, 40 ⁇ 100 mm. Eluting Solvent, MeCN/H 2 O (with 0.2% v. TFA) (v.
- Example 1A The product of Example 1A (10 mg, 0.025 mmol) was coupled with C-cyclohexyl-methylamine (Aldrich, 4.3 mg, 0.038 mmol) according to the procedure of Example 26.
- the title compound was purified by preparative HPLC (Gilson, column, Symmetry® C-8 7 ⁇ m, 40 ⁇ 100 mm. Eluting Solvent, MeCN/H 2 O (with 0.2% V. TFA) (v. 90/10 to 10/90 over 20 min.) Flow rate, 75 mL/min., uv, 254 nm) as solid (8.2 mg, yield, 65%).
- Example 1A The product of Example 1A (330 mg, 1 mmol) was coupled with hexamethylditin (Aldrich, 654 mg, 2 mmol) under the catalysis of Pd(PPh 3 ) 4 (Aldrich, 116 mg, 0.1 mmol) in toluene (10 mL) at 110° C. under N 2 for 2 hours. After the reaction was complete, it was cooled down to room temperature, diluted with EtOAc (50 mL) and washed with brine (2 ⁇ 5 mL). The organic solution was concentrated under reduced pressure and the title compound was purified by flash chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f .
- Example 29A The product of Example 29A (24.0 g, 95 mmol) was oxidized with bromine (Aldrich, 18.81 g, 6.1 mL, 104.5 mmol) in HOAc (Aldrich, 200 mL) at 100° C. for 1 h. The brown mixture was then cooled down to ambient temperature. The white solid was filtered off and the filtrate was washed with water (2 ⁇ 20 mL). The solid was collected and dried under vacuum to give the title compound (25.0 g, 100%).
- Example 29B The product of Example 29B (25.0 g, 100 mmol) was stirred in POCl 3 (Aldrich, 200 mL) at 100° C. for 18 h. Most of POCl 3 was then distilled off (around 150 mL was collected). The residue was then poured into 300 mL of ice/water and stirred vigorously for 1 h. The solid was filtered off. The filtrate was washed with water (2 ⁇ 50 mL) and dried under vacuum to give the title compound (26.2 g, 98%).
- POCl 3 Aldrich, 200 mL
- Most of POCl 3 was then distilled off (around 150 mL was collected). The residue was then poured into 300 mL of ice/water and stirred vigorously for 1 h. The solid was filtered off. The filtrate was washed with water (2 ⁇ 50 mL) and dried under vacuum to give the title compound (26.2 g, 98%).
- Example 29C The product of Example 29C (2.43 g, 9 mmol) was coupled with the product of Example 6B (1.27 g, 10 mmol) using t-BuOK (Aldrich, 1.12 g, 10 mmol) as base in THF (anhydrous, Aldrich, 50 mL) at ambient temperature for 10 h. After the reaction was complete, it was concentrated under reduced pressure. The residue was dissolved in CHCl 3 / t PrOH (v.10:1, 50 mL) and washed with brine (2 ⁇ 5 mL).
- Example 29D The product of Example 29D (360 mg, 1 mmol) was coupled with benzhydrylideneamine (Aldrich, 270 mg, 1.5 mmol) under the catalysis of Pd 2 (dba) 3 (Aldrich, 18.3 mg, 0.02 mmol) and Xantphos (Strem Chemicals, 36 mg, 0.06 mmol) with t-BuONa (Aldrich, 150 mg, 1.5 mmol) in toluene (anhydrous, Aldrich, 10 mL) at 100° C. for 2 h. The mixture was then cooled down to ambient temperature and diluted with EtOAc (50 mL), washed with water (2 ⁇ 5 mL).
- Example 29E The product of Example 29E (360 mg, 0.78 mmol) was treated with HCl (aq. 10%, 5 mL) in THF (5 mL) at ambient temperature for 4 h. It was then concentrated and the title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.1) as solid (210 mg, yield, 90%).
- Example 29F The product of Example 29F (50.0 mg, 0.17 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.25 mL, 1 mmol) In EtOAc (5 mL) at ambient temperature for 5 hours to give the title compound (55 mg, yield, 81%).
- Example 30A The product of Example 30A (20.0 mg, 0.05 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.1 mL, 0.4 mmol) in EtOAc (2 mL) at ambient temperature for 1 hour to give the title compound as white solid (20 mg, yield, 91%).
- Example 30A The product of Example 30A (70.0 mg, 0.15 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.1 mL, 0.4 mmol) in EtOAc (2 mL) at ambient temperature for 1 hour to give the title compound as white solid (40 mg, yield, 51%).
- diethyl malonate (Aldrich, 8.0 g, 50 mmol) was treated with sodium hydride (1.2 g, 50 mmol) in dry THF (120 mL) at 0° C. for 30 minute.
- the solution of the product of Example 32A (15.8 g, 48.6 mmol) in THF (30 mL) was then slowly added at 0° C. and the reaction mixture stirred additional 30 minutes at room temperature. It was quenched with water (10 mL) carefully and diluted with ethyl acetate (200 mL). The mixture was then washed with brine (3 ⁇ 20 mL). The organic solution was concentrated to give the title compound as oil (15 g, 74%).
- Example 32C The product of Example 32C (25 g, 71.8 mmol) was treated with hydrazine hydrate (55% aq., 16 mL, ⁇ 275 mmol) in ethanol (300 mL) at 78° C. for 60 hours according to the procedure of Example 29A. The title compound was obtained as white solid (20.5 g, 95.1%).
- Example 32D The product of Example 32D (20.5 g, 68.3 mmol) was treated with bromine (Aldrich, 12.0 g, 75 mmol) in glacial acetic acid (250 mL) at 100° C. for 1 h. according to the procedure of Example 29B. The title compound was obtained as solid (20.0 g, 98%).
- Example 32E The product of Example 32E (20.0 g, 66.7 mmol) was treated with POCl 3 (Aldrich, 200 mL) at 100° for 16 hours according to the procedure of Example 29C. The title compound was obtained as solid (19.2 g, 91%).
- Example 6B The product of Example 6B (1.27 g, 10 mmol) was coupled with the product of Example 32F (3.16 g, 10 mmol) according to the procedure of Example 29D. The title compound was obtained as solid (3.05 g, 75%).
- MS DCl/NH 3 ) m/z 408 (M+H) + .
- Example 32G The product of Example 32G (407 mg, 1 mmol) was coupled with hydrazinecarboxylic acid tert-butyl ester (Aldrich, 158 mg, 1.2 mmol) under the catalysis of CuI (Strem Chemicals, 14.3 mg, 0.075 mmol) with Cs 2 CO 3 (Strem Chemicals, 455 mg, 1.4 mmol) in dry DMF (Aldrich, 4 mL) at 80° C. for 16 hours. After the reaction went to completion, it was then cooled down to ambient temperature and diluted with ethyl acetate (50 mL), washed with water (2 ⁇ 10 mL).
- Example 66 The product of Example 66 (635 mg, 5 mmol) was coupled with 3,6-dichloropyridazine (Aldrich, 925 mg, 6.25 mmol) according to the procedure of Example 29D.
- the title compound was purified by chromatography (SiO 2 , CH 2 Cl 2 :MeOH:NH 3 .H 2 O, 90:10:1, R f . 0.20) as solid (750 mg, yield, 63%).
- Example 33A The product of Example 33A (182 mg, 0.76 mmol) was coupled with N-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetamide (TCl, 500 mg, 1.9 mmol) under the catalysis of dichlorobis(triphenylphosphine)palladium (II) (Aldrich, 53 mg, 0.076 mmol) and 2-(dicyclohexylphosphino)biphenyl (Strem Chemicals, 6.5 mg, 0.019 mmol) in 1 mL each of ethanol, p-dioxane, and 1 M aq. sodium carbonate at 150° C.
- Example 34A The product of Example 34A (10.05 g, 30 mmol) was coupled with bis(pinacolato)diboron (Aldrich, 9.14 g, 36 mmol) under the catalysis of PdCl 2 (dppf) 2 .CH 2 Cl 2 (Aldrich, 490 mg, 0.6 mmol) with KOAc (Aldrich, 6.0 g, 60 mmol) in dioxane (anhydrous, Aldrich, 150 mL) at 80° C. for 10 hours according to the procedure of Example 26A. The title compound was purified by chromatography (SiO 2 , hexane:EtOAc, 70:30, R f .
- Example 33A The product of Example 33A (240 mg, 1 mmol) was coupled with the product of Example 34B (0.72, 2 mmol) under the catalysis of Pd 2 (dba) 3 (24 mg, 0.025 mmol) and ( t Bu 3 P) 2 Pd (26 mg, 0.05 mmol) with CsF (Strem Chemicals, 228 mg, 1.5 mmol) in dioxane (8 mL) and DMF (Aldrich, 1 mL) at 80° C. under N 2 for 16 hours. After the reaction went to completion, it was cooled down to room temperature and diluted with EtOAc (50 mL), washed with brine (2 ⁇ 10 mL).
- Example 34C The product of Example 34C (350 mg, 0.79 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 2 mL, 8 mmol) in EtOH (5 mL) at ambient temperature for 1 h. The mixture was concentrated and the title compound was purified by chromatography (SiO 2 , EtOAc:MeOH (v. 2% NH 3 .H 2 O), 50:50, R f . 0.1) as white solid (250 mg, 93%).
- Example 34D The product of Example 34D (50 mg, 0.15 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.5 mL, 2 mmol) in EtOAc (5 mL) at ambient temperature for 1 h to provide the title compound as yellow solid (50 mg, 83%).
- Example 34D The product of Example 34D (200 mg, 0.59 mmol) was hydrogenated under the catalysis of Pd/C (Aldrich, 10 wt. %, 50 mg) in EtOH (10 mL) under hydrogen at ambient temperature for 10 h. After the reaction went to completion, the catalyst was removed through a short column of diatomaceous earth ( ⁇ 2 g) and the filtrate was washed with EtOH (2 ⁇ 5 mL). The ethanol solution was concentrated to give the title compound (180 mg, yield, 98%).
- Pd/C Aldrich, 10 wt. %, 50 mg
- Example 35A The product of Example 35A (50 mg, 0.16 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.5 mL, 2 mmol) in EtOAc (5 mL) at ambient temperature for 1 h to provide the title compound as yellow solid (32 mg, 48%).
- Example 19A The product of Example 19A (0.57 g, 2.0 mmol) was coupled with the product of Example 34B (1.50 g, 4 mmol) under the catalysis of Pd 2 (dba) 3 (24 mg, 0.025 mmol) and ( t Bu 3 P) 2 Pd (26 mg, 0.05 mmol) with CsF (Strem Chemicals, 1.80 g, 12.0 mmol) in dioxane (20 mL) and DMF (Aldrich, 2 mL) at 80° C. under N 2 for 16 hours according to the procedure of Example 34C.
- the title compound was purified by chromatography (SiO 2 , EtOAc:MeOH (v.
- Example 36A The product of Example 36A (100 mg, 0.23 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 2 mL, 8 mmol) in EtOH (5 mL) at ambient temperature for 1 h. The mixture was concentrated and the title compound was purified by chromatography (SiO 2 , EtOAc:MeOH (v. 2% NH 3 .H 2 O), 50:50, R f . 0.1) as white solid (50 mg, 64%).
- Example 36B The product of Example 36B (50 mg, 0.15 mmol) was treated with HCl Aldrich, 4 M in dioxane, 0.25 mL, 1 mmol) in EtOAc (5 mL) at ambient temperature for 1 hour to give the title compound as yellow solid.
- Example 37A The product of Example 37A (3.0 g, 10 mmol) was coupled with bis(pinacolato)diboron (Aldrich, 3.04 g, 12 mmol) according to the procedure of Example 28B.
- the title compound was purified by chromatography (SiO 2 , hexane:EtOAc, 70:30, R f . 0.5) as a solid (3.05 g, yield, 86%).
- Example 19A The product of Example 19A (1.42 g, 5 mmol) was coupled with the product of Example 37B (2.50 g, 7.0 mmol) according to the procedure of Example 20B.
- the title compound was purified by chromatography (SiO 2 , EtOAc:MeOH (v. 2% NH 3 .H 2 O), 50:50, R f . 0.3) as solid (1.75 g, 81%).
- Example 37C The product of Example 37C (380 mg, 0.88) was hydrogenated under the catalysis of Pd/C (Aldrich, 10 wt. %, 100 mg) according to the procedure of Example 28E. The title compound was obtained as yellow solid (220 mg, yield, 92%).
- 1 H NMR 300 MHz, CD 3 OD
- 1.95-2.35 m, 2H) 2.70-3.05 (m, 5H), 3.33-3.48 (m, 1H)
- MS DCl/NH 3 ): 313 (M+H) + .
- Example 37D The product of Example 37D (50 mg, 0.15 mmol) was treated with HCl Aldrich, 4 M in dioxane, 0.25 mL, 1 mmol) in EtOAc (5 mL) at ambient temperature for 1 hour to give the title compound as yellow solid.
- the compounds of the invention were evaluated according to the [3H]-methyllycaconitine (MLA) binding assay and considering the [3H]-cytisine binding assay, which were performed as described below.
- MAA [3H]-methyllycaconitine
- Binding conditions were modified from the procedures described in Pabreza L A, Dhawan, S, Kellar K J, [ 3 H]-Cytisine Binding to Nicotinic Cholinergic Receptors in Brain, Mol. Pharm. 39; 9-12, 1991.
- Membrane enriched fractions from rat brain minus cerebellum (ABS Inc., Wilmington, Del.) were slowly thawed at 4° C., washed and resuspended in 30 volumes of BSS-Tris buffer (120 mM NaCl/5 mM KCl/2 mM CaCl 2 /2 mM MgCl 2 /50 mM Tris-Cl, pH 7.4, 4° C.).
- Binding conditions were similar to those for [3H]-cytisine binding.
- Membrane enriched fractions from rat brain minus cerebellum (ABS Inc., Wilmington, Del.) were slowly thawed at 4° C., washed and resuspended in 30 volumes of BSS-Tris buffer (120 mM NaCl, 5 mM KCl, 2 mM CaCl 2 , 2 mM MgCl 2 , and 50 mM Tris-Cl, pH 7.4, 22° C.).
- Compounds of the invention had K i values of from about 1 nanomolar to about 10 micromolar when tested by the MLA assay, many having a K i of less than 1 micromolar.
- [3H]-Cytisine binding values of compounds of the invention ranged from about 50 nanomolar to at least 100 micromolar.
- Preferred compounds typically exhibited greater potency at 17 receptors compared to ⁇ 4 ⁇ 2 receptors.
- Compounds of the invention are ⁇ 7 nAChRs ligands that modulate function of ⁇ 7 nAChRs by altering the activity of the receptor.
- the compounds can be inverse agonists that inhibit the basal activity of the receptor or antagonists that completely block the action of receptor-activating agonists.
- the compounds also can be partial agonists that partially block or partially activate the ⁇ 7 nAChR receptor or agonists that activate the receptor.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Neurology (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Compounds of formula (I)
wherein A is N or N+—O−; n is 0, 1, or 2; Y is O, S, —NH—, and —N-alkyl-; Ar1 is both 6-membered aromatic rings; Ar2 is 5- or 6-membered aromatic rings with a —NR8R9 group, as defined herein. The compounds are useful in treating conditions or disorders prevented by or ameliorated by α7 nAChR ligands. Also disclosed are pharmaceutical compositions having compounds of formula (I) and methods for using such compounds and compositions.
wherein A is N or N+—O−; n is 0, 1, or 2; Y is O, S, —NH—, and —N-alkyl-; Ar1 is both 6-membered aromatic rings; Ar2 is 5- or 6-membered aromatic rings with a —NR8R9 group, as defined herein. The compounds are useful in treating conditions or disorders prevented by or ameliorated by α7 nAChR ligands. Also disclosed are pharmaceutical compositions having compounds of formula (I) and methods for using such compounds and compositions.
Description
- This application claims priority to U.S. Provisional Patent Application Ser. No. 60/531,877, filed Dec. 22, 2003, which is incorporated herein by reference.
- The invention relates to 3-quinuclidinyl amino-substituted biaryl derivatives, compositions comprising such compounds, and methods of treating conditions and disorders using such compounds and compositions.
- Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central (CNS) and peripheral (PNS) nervous systems. Such receptors play an important role in regulating CNS function, particularly by modulating release of a wide range of neurotransmitters, including, but not necessarily limited to acetylcholine, norepinephrine, dopamine, serotonin and GABA. Consequently, nicotinic receptors mediate a very wide range of physiological effects, and have been targeted for therapeutic treatment of disorders relating to cognitive function, learning and memory, neurodegeneration, pain and inflammation, psychosis and sensory gating, mood and emotion, among others.
- Many subtypes of the nAChR exist in the CNS and periphery. Each subtype has a different effect on regulating the overall physiological function. Typically, nAChRs are ion channels that are constructed from a pentameric assembly of subunit proteins. At least 12 subunit proteins, α2-α10 and β2-β4, have been identified in neuronal tissue. These subunits provide for a great variety of homomeric and heteromeric combinations that account for the diverse receptor subtypes. For example, the predominant receptor that is responsible for high affinity binding of nicotine in brain tissue has composition (α4)2(β2)3 (the α4β2 subtype), while another major population of receptors is comprised of the homomeric (α7)5 (the α7 subtype).
- Certain compounds, like the plant alkaloid nicotine, interact with all subtypes of the nAChRs, accounting for the profound physiological effects of this compound. While nicotine has been demonstrated to have many beneficial properties, not all of the effects mediated by nicotine are desirable. For example, nicotine exerts gastrointestinal and cardiovascular side effects that interfere at therapeutic doses, and its addictive nature and acute toxicity are well-known. Ligands that are selective for interaction with only certain subtypes of the nAChR offer potential for achieving beneficial therapeutic effects with an improved margin for safety.
- The α7 nAChRs have been shown to play a significant role in enhancing cognitive function, including aspects of learning, memory and attention (Levin, E. D., J. Neurobiol. 53: 633-640, 2002). For example, α7 nAChRs have been linked to conditions and disorders related to attention deficit disorder, attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), mild cognitive impairment, senile dementia, dementia associated with Lewy bodies, dementia associated with Down's syndrome, AIDS dementia, Pick's Disease, as well as cognitive deficits associated with schizophrenia, among other systemic activities. The activity at the α7 nAChRs can be modified or regulated by the administration of α7 nAChR ligands. The ligands can exhibit antagonist, agonist, partial agonist, or inverse agonist properties. Thus, α7 ligands have potential in treatment of various cognitive disorders.
- Although various classes of compounds demonstrating α7 nAChR-modulating activity exist, it would be beneficial to provide additional compounds demonstrating activity at the α7 nAChRs that can be incorporated into pharmaceutical compositions useful for therapeutic methods. Specifically, it would be beneficial to provide compounds that interact selectively with α7-containing neuronal nAChRs compared to other subtypes.
-
- A is N or N+—O−;
- n is 0, 1, or 2;
- Y is selected from the group consisting of O, S, and —N(R1)—;
-
-
- X1, X2, X3, and X4 are each independently selected from the group consisting of N and —C(R2);
- one of X5, X6, X7, X8 and X9 is —C and the others are each independently selected from the group consisting of N and —C(R5), and group (b) is attached to Ar1 through one of X5, X6, X7, X8 and X9 that is represented by C;
- one of X10, X11, X12, and X13 is C and the others are each independently selected from the group consisting of N, —N(R1), O, S and —C(R5) and group (c) is attached to Ar1 through one of X10, X11, X12, and X13 that is represented by C;
- R1 is hydrogen or alkyl;
- R2 at each occurrence is independently selected from the group consisting of hydrogen, halogen, alkyl, —OR3, and —NHR4;
- R2a is halogen or alkyl;
- R3 and R4 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl;
- R5 is selected from the group consisting of hydrogen, halogen, nitro, alkyl, aryl, alkylcarbonyl, arylcarbonyl, —OR6 and —NR8R9;
- R6 is independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl; and
- R8 and R9 are each independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, cycloalkylalkyl, alkylcarbonyl, —N═C(alkyl)(alkoxycarbonyl), alkoxycarbonyl, arylcarbonyl, aryloxycarbonyl, and alkylsulfonyl.
- Another aspect of the invention relates to pharmaceutical compositions comprising compounds of the invention. Such compositions can be administered in accordance with a method of the invention, typically as part of a therapeutic regimen for treatment or prevention of conditions and disorders related to nAChR activity, and more particularly α7 nAChR activity.
- Yet another aspect of the invention relates to a method of selectively modulating to nAChR activity, for example α7 nAChR activity. The method is useful for treating and/or preventing conditions and disorders related to α7 nAChR activity modulation in mammals. More particularly, the method is useful for conditions and disorders related to attention deficit disorder, attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), mild cognitive impairment, senile dementia, AIDS dementia, Pick's Disease, dementia associated with Lewy bodies, dementia associated with Down's syndrome, amyotrophic lateral sclerosis, Huntington's disease, diminished CNS function associated with traumatic brain injury, acute pain, post-surgical pain, chronic pain, inflammatory pain, neuropathic pain, infertility, need for new blood vessel growth associated with wound healing, need for new blood vessel growth associated with vascularization of skin grafts, and lack of circulation, more particularly circulation around a vascular occlusion, among other systemic activities.
- The compounds, compositions comprising the compounds, and methods for treating or preventing conditions and disorders by administering the compounds are further described herein.
- Definition of Terms
- Certain terms as used in the specification are intended to refer to the following definitions, as detailed below.
- The term “acyl” as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of acyl include, but are not limited to, acetyl, 1-oxopropyl, 2,2-dimethyl-1-oxopropyl, 1-oxobutyl, and 1-oxopentyl.
- The term “acyloxy” as used herein, means an acyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of acyloxy include, but are not limited to, acetyloxy, propionyloxy, and isobutyryloxy.
- The term “alkenyl” as used herein, means a straight or branched chain hydrocarbon containing from 2 to 10 carbons and containing at least one carbon-carbon double bond formed by the removal of two hydrogens. Representative examples of alkenyl include, but are not limited to, ethenyl, 2-propenyl, 2-methyl-2-propenyl, 3-butenyl, 4-pentenyl, 5-hexenyl, 2-heptenyl, 2-methyl-1-heptenyl, and 3-decenyl.
- The term “alkoxy” means an alkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy.
- The term “alkoxyalkoxy” as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through another alkoxy group, as defined herein. Representative examples of alkoxyalkoxy include, but are not limited to, tert-butoxymethoxy, 2-ethoxyethoxy, 2-methoxyethoxy, and methoxymethoxy.
- The term “alkoxyalkyl” as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of alkoxyalkyl include, but are not limited to, tert-butoxymethyl, 2-ethoxyethyl, 2-methoxyethyl, and methoxymethyl.
- The term “alkoxycarbonyl” means an alkoxy group, as defined herein, appended to the parent molecular moiety through a carbonyl group, represented by —C(O)—, as defined herein. Representative examples of alkoxycarbonyl include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, and tert-butoxycarbonyl.
- The term “alkoxylmino” as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through an imino group, as defined herein. Representative examples of alkoxyimino include, but are not limited to, ethoxy(imino)methyl and methoxy(imino)methyl.
- The term “alkoxysulfonyl” as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. Representative examples of alkoxysulfonyl include, but are not limited to, methoxysulfonyl, ethoxysulfonyl and propoxysulfonyl.
- The term “alkyl” means a straight or branched chain hydrocarbon containing from 1 to 6 carbon atoms. Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, and n-hexyl.
- The term “alkylcarbonyl” as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of alkylcarbonyl Include, but are not limited to, acetyl, 1-oxopropyl, 2,2-dimethyl-1-oxopropyl, 1-oxobutyl, and 1-oxopentyl.
- The term “alkylcarbonyloxy” as used herein, means an alkylcarbonyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of alkylcarbonyloxy include, but are not limited to, acetyloxy, ethylcarbonyloxy, and tert-butylcarbonyloxy.
- The term “alkylsulfonyl” as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. Representative examples of alkylsulfonyl include, but are not limited to, methylsulfonyl and ethylsulfonyl.
- The term “alkylthio” as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfur atom. Representative examples of alkylthio include, but are not limited, methylthio, ethylthio, tert-butylthio, and hexylthio.
- The term “alkynyl” as used herein, means a straight or branched chain hydrocarbon group containing from 2 to 10 carbon atoms and containing at least one carbon-carbon triple bond. Representative examples of alkynyl include, but are not limited, to acetylenyl, 1-propynyl, 2-propynyl, 3-butynyl, 2-pentynyl, and 1-butynyl.
- The term “amido” as used herein, means an amino, alkylamino, or dialkylamino group appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of amido include, but are not limited to, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, and ethylmethylaminocarbonyl.
- The term “aryl” as used herein, means a monocyclic or bicyclic aromatic ring system. Representative examples of aryl include, but are not limited to, phenyl and naphthyl.
- The aryl groups of this invention are substituted with 0, 1, 2, 3, 4, or 5 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylsulfonyl, alkynyl, amido, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halo, hydroxy, hydroxyalkyl, mercapto, nitro, thioalkoxy, —NRARB, (NRARB)alkyl, (NRARB)alkoxy, (NRARB)carbonyl, and (NRARB)sulfonyl. For example, substituted aryl groups can include, but are not limited to, tolyl.
- The term “arylcarbonyl” as used herein, means an aryl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of arylcarbonyl include, but are not limited to, phenylcarbonyl, (methylaminophenyl)carbonyl, (dimethylaminophenyl)carbonyl, and (naphthyl)carbonyl.
- The term “aryloxycarbonyl”, as used herein, means an aryl-O— group, wherein the aryl group of aryl-O— is as defined herein, or a benzyl-O— group appended to the parent molecular moiety through a carbonyl group, represented by —C(O)—, as defined herein. Representative examples of alkoxycarbonyl include, but are not limited to, phenoxycarbonyl and benzyloxycarbonyl.
- The term “carbonyl” as used herein, means a —C(O)— group.
- The term “carboxy” as used herein, means a —CO2H group.
- The term “cyano” as used herein, means a —CN group.
- The term “cycloalkyl” as used herein, means a saturated cyclic hydrocarbon group containing from 3 to 8 carbons. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
- The cycloalkyl groups of the invention are substituted with 0, 1, 2, 3, or 4 substituents selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkyl, alkynyl, amido, carboxy, cyano, ethylenedioxy, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, methylenedioxy, thioalkoxy, and —NRARB.
- The term “cycloalkylalkyl” as used herein, means a cycloalkyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of cycloalkylalkyl include, but are not limited to, cyclopropylmethyl, 2-cyclobutylethyl, cyclopentylmethyl, cyclohexylmethyl, and 4-cycloheptylbutyl.
- The term “formyl” as used herein, means a —C(O)H group.
- The term “halo” or “halogen” means —Cl, —Br, —I or —F.
- The term “haloalkoxy” as used herein, means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein. Representative examples of haloalkoxy include, but are not limited to, chloromethoxy, 2-fluoroethoxy, trifluoromethoxy, and pentafluoroethoxy.
- The term “haloalkyl” means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of haloalkyl include, but are not limited to, chloromethyl, 2-fluoroethyl, trifluoromethyl, pentafluoroethyl, and 2-chloro-3-fluoropentyl.
- The term “heteroaryl” means an aromatic five- or six-membered ring containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. The heteroaryl groups are connected to the parent molecular moiety through a carbon or nitrogen atom. Representative examples of heteroaryl include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, triazinyl, and triazolyl.
- The heteroaryl groups of the invention are substituted with 0, 1, 2, or 3 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylcarbonyloxy, alkylsulfonyl, alkylthio, alkynyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halo, hydroxy, hydroxyalkyl, mercapto, nitro, —NRARB, (NRARB)alkyl, (NRARB)alkoxy, (NRARB)carbonyl, and (NRARB)sulfonyl.
- The term “bicyclic heteroaryl” refers to fused aromatic nine- and ten-membered bicyclic rings containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. The bicyclic heteroaryl groups are connected to the parent molecular moiety through a carbon or nitrogen atom. Representative examples of bicyclic heteroaryl rings include, but are not limited to, indolyl, benzothiazolyl, benzofuranyl, isoquinolinyl, and quinolinyl. Bicyclic heteroaryl groups of the invention are substituted with 0, 1, 2, or 3 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylcarbonyloxy, alkylsulfonyl, alkylthio, alkynyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halo, hydroxy, hydroxyalkyl, mercapto, nitro, —NRARB, (NRARB)alkyl, (NRARB)alkoxy, (NRARB)carbonyl, and (NRARB)sulfonyl.
- The term “hydroxy” as used herein, means an —OH group.
- The term “hydroxyalkyl” as used herein, means at least one hydroxy group, as defined herein, is appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of hydroxyalkyl include, but are not limited to, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 2,3-dihydroxypentyl, and 2-ethyl-4-hydroxyheptyl.
- The term “mercapto” as used herein, means a —SH group.
- The term “nitro” as used herein, means a —NO2 group.
- The term “—NRARB” as used herein, means two groups, RA and RB, which are appended to the parent molecular moiety through a nitrogen atom. RA and RB are each independently hydrogen, alkyl, alkylcarbonyl, or formyl. Representative examples of —NRARB include, but are not limited to, amino, methylamino, acetylamino, and acetylmethylamino.
- The term “(NRARB)alkyl” as used herein, means a —NRARB group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of (NRARB)alkyl include, but are not limited to, (amino)methyl, (dimethylamino)methyl, and (ethylamino)methyl.
- The term “(NRARB)alkoxy” as used herein, means a —NRARB group, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein. Representative examples of (NRARB)alkoxy include, but are not limited to, (amino)methoxy, (dimethylamino)methoxy, and (diethylamino)ethoxy.
- The term “(NRARB)carbonyl” as used herein, means a —NRARB group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of (NRARB)carbonyl include, but are not limited to, aminocarbonyl, (methylamino)carbonyl, (dimethylamino)carbonyl, and (ethylmethylamino)carbonyl.
- The term “(NRARB)sulfonyl” as used herein, means a —NRARB group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. Representative examples of (NRARB)sulfonyl include, but are not limited to, aminosulfonyl, (methylamino)sulfonyl, (dimethylamino)sulfonyl, and (ethylmethylamino)sulfonyl.
- The term “sulfonyl” as used herein means a —S(O)2— group.
- The term “thioalkoxy” as used herein means an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfur atom. Representative examples of thioalkoxy include, but are no limited to, methylthio, ethylthio, and propylthio.
- Although typically it may be recognized that an asterisk is used to indicate that the exact subunit composition of a receptor is uncertain, for example α3b4* indicates a receptor that contains the α3 and β4 proteins in combination with other subunits, the term α7 as used herein is intended to include receptors wherein the exact subunit composition is both certain and uncertain. For example, as used herein α7 includes homomeric (α7)5 receptors and α7* receptors, which denote a nAChR containing at least one α7 subunit.
- Compounds of the Invention
-
- In a group of formula (a), X1, X2. X3, and X4 are each independently selected from the group consisting of N and —CR2, wherein R2 at each occurrence is independently selected from the group consisting of hydrogen, halogen, alkyl, —OR3, and —NHR4; and R3 and R4 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl. Preferably, at least one of X1, X2, X3, and X4 is —CR2, such that group of formula (a) contains 0, 1, 2, or 3 nitrogen atoms.
-
-
- In a group of formula (b), X5, X6, X7, X8 and X9 are each independently selected from the group consisting of N and —CR5, wherein R5 at each occurrence is as defined for a compound of formula (I), and preferably wherein R5 is independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, —OR6, and —NHR7; and R6 and R7 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl. Preferably, at least one of X5, X6, X7, X8, and X9 is —CR5, such that group of formula (b) contains 0, 1, 2, or 3 nitrogen atoms. A group of formula (b) is attached through an atom represented by one of X5×6, X7, X8 and X9. The atom represented by X5, X6, X7, X8 and X9 is carbon when it is attached to an atom from Ar1.
- In a group of formula (c), X10, X11, X12, and X13 are each independently selected from the group consisting of N, —N(R1), S, O and —CR5, as previously defined for a formula (I), preferably wherein R5 at each occurrence is independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, —OR6, and —NHR7; and R6 and R7 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl. Preferably, at least one of X10, X11, X12, and X13 is —CR5, such that group of formula (c) contains 0, 1, 2, or 3 heteroatoms. A group of formula (c) is attached through an atom represented by one of X10, X11, X12, and X13. The atom represented by X10, X11, X12, and X13 is carbon when it is attached to the bond from Ar1.
- In a group of formula (d), R2a is a substituent as defined for compounds of formula (I), wherein R2a is hydrogen or alkyl. The substituent represented by R2a can be substituted on any carbon on the 6-carbon ring moiety of group (d).
- The NR8R9 substituent in a group of formula (b) or (c) can be attached at any position, and preferably is attached at the 3- or 4-position as shown above. The groups represented by R8 and R9 are each independently selected from the group consisting of R8 and R9 are each independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, cycloalkylalkyl, alkylcarbonyl, —N═C(alkyl)(alkoxycarbonyl), alkoxycarbonyl, arylcarbonyl, aryloxycarbonyl, and alkylsulfonyl and, more preferably, hydrogen, alkyl, alkoxycarbonyl, and aryloxycarbonyl. More particularly, R8 and R9 are each independently selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, 4-methylphenyl, benzyloxycarbonyl, acetyl, cyclohexylmethyl, tert-butyloxycarbonyl, and —N═C(methyl)(ethoxycarbonyl). Even more particularly, R8 preferably is selected from the group consisting of hydrogen and methyl, and R9 preferably is selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, 4-methylphenyl, benzyloxycarbonyl, acetyl, cyclohexylmethyl, tert-butyloxycarbonyl, and —N═C(methyl)(ethoxycarbonyl).
- Specific examples of groups for Ar2 in a compound of formula (I) are, for example,
wherein R5, R8, and R9 are as defined for formula (b) as previously described. More particularly, R5 is selected from the group consisting of hydrogen, halogen, alkyl, aryl, alkylcarbonyl, arycarbonyl, OR6 and NR8R9. R8 and R9 are each independently selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, benzyloxycarbonyl, acetyl, and butyloxycarbonyl. More specifically, R8 can be selected from the group consisting of hydrogen and methyl, and R9 can be selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, benzyloxycarbonyl, acetyl, and butyloxycarbonyl. R22 is as defined for a group of formula (d) as previously described and more, particularly, can be iodo or hydrogen. - Specific embodiments contemplated as part of the invention include, but are not limited to, compounds of formula (I), as defined, wherein:
- 4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-3-amine;
- 4′-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]-1,1′-biphenyl-3-amine;
- 4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-4-methyl-1,1′-biphenyl-3-amine;
- 4′-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]-4-methyl-1,1′-biphenyl-3-amine;
- 4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-4-amine;
- 4′-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]-1,1′-biphenyl-4-amine;
- 4′-[(3S)-1-azabicyclo[2.2.2]oct-3-yloxy]-1,1′-biphenyl-4-amine;
- N-[4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-4-yl]-N-methylamine;
- N-{4′-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]-1,1′-biphenyl-4-yl}-N,N-dimethylamine;
- N-[4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-4-yl]methanesulfonamide:
- N-[4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-4-yl]-N-phenylamine:
- 3-[6-(1-azabicyclo[2.2.2]oct-3-yloxy)pyridin-3-yl]aniline;
- 4-[5-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrazin-2-yl]aniline;
- 4-{5-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrazin-2-yl}aniline;
- 4-{5-[(3S)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrazin-2-yl}aniline;
- N-{4-[5-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrazin-2-yl]phenyl}-N,N-dimethylamine;
- N-{4-[5-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrazin-2-yl]phenyl}acetamide;
- 4-[2-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrimidin-5-yl]aniline;
- 4-{2-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrimidin-5-yl}aniline;
- 3-[2-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrimidin-5-yl]aniline;
- 3-{2-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrimidin-5-yl}aniline;
- 3-{2-[(3S)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrimidin-5-yl}aniline;
- 5-[2-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrimidin-5-yl]-2-methylaniline;
- N-1-azabicyclo[2.2.2]oct-3-yl-1,1′-biphenyl-4,4′-diamine;
- 4′-(1-oxy-1-aza-bicyclo[2.2.2]oct-3-yloxy)-biphenyl-3-ylamine;
- [4′-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-biphenyl-4-yl]-p-tolyl-amine;
- [4′-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-biphenyl-4-yl]-cyclohexylmethyl-amine;
- 2-[4-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-phenyl]-8-iodo-6H,12H-5,11-methano-dibenzo[b,f][1,5]diazocine;
- 4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}phenylamine;
- 4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-2-bromo-phenylamine;
- 4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-2,6-dibromo-phenylamine;
- 2-({4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-phenyl}-hydrazono)-propionic acid ethyl ester;
- (R)—N-{4-[6-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-pyridazin-3-yl]-phenyl}-acetamide;
- 4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-2-nitro-phenylamine;
- 4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-benzene-1,2-diamine;
- 4-{2-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyrimidin-5-yl}-2-nitro-phenylamine; and
- 2-amino-4-{2-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyrimidin-5-yl}-phenol;
or pharmaceutically acceptable salts, esters, amides, and prodrugs thereof. - Compound names are assigned by using A
UTO NOM naming software, which is provided by MDL Information Systems GmbH (formerly known as Beilstein Informationssysteme) of Frankfurt, Germany, and is part of the CHEMDRAW® ULTRA v. 6.0.2 software suite. - Compounds of the invention may exist as stereoisomers wherein, asymmetric or chiral centers are present. These stereoisomers are “R” or “S” depending on the configuration of substituents around the chiral element. The terms “R” and “S” used herein are configurations as defined in IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem., 1976, 45: 13-30. The invention contemplates various stereoisomers and mixtures thereof and are specifically included within the scope of this invention. Stereoisomers include enantiomers and diastereomers, and mixtures of enantiomers or diastereomers. Individual stereoisomers of compounds of the invention may be prepared synthetically from commercially available starting materials which contain asymmetric or chiral centers or by preparation of racemic mixtures followed by resolution well-known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and optional liberation of the optically pure product from the auxiliary as described in Furniss, Hannaford, Smith, and Tatchell, “Vogel's Textbook of Practical Organic Chemistry”, 5th edition (1989), Longman Scientific & Technical, Essex CM20 2JE, England, or (2) direct separation of the mixture of optical enantiomers on chiral chromatographic columns or (3) fractional recrystallization methods.
- Methods for Preparing Compounds of the Invention
- As used in the descriptions of the schemes and the examples, certain abbreviations are intended to have the following meanings: Ac for acetyl; Bu for butyl; dba for dibenzylidine acetone; DEAD for diethyl azodicarboxylate; DMSO for dimethylsulfoxide; EtOAc for ethyl acetate; EtOH for ethanol; Et3N for triethylamine; Et2O for diethyl ether; HPLC for high pressure liquid chromatography; tPr for isopropyl; Me for methyl; MeOH for methanol; NBS for N-bromosuccinimide; OAc for acetoxy; o-tol. for o-toluene; Ph for phenyl; t-Bu for tert-butyl; and THF for tetrahydrofuran.
- The reactions exemplified in the schemes are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being effected. The described transformations may require modifying the order of the synthetic steps or selecting one particular process scheme over another in order to obtain a desired compound of the invention, depending on the functionality present on the molecule.
- Nitrogen protecting groups can be used for protecting amine groups present in the described compounds. Such methods, and some suitable nitrogen protecting groups, are described in Greene and Wuts (Protective Groups In Organic Synthesis, Wiley and Sons, 1999). For example, suitable nitrogen protecting groups include, but are not limited to, tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), benzyl (Bn), acetyl, and trifluoracetyl. More particularly, the Boc protecting group may be removed by treatment with an acid such as trifluoroacetic acid or hydrochloric acid. The Cbz and Bn protecting groups may be removed by catalytic hydrogenation. The acetyl and trifluoracetyl protecting groups may be removed by a hydroxide ion.
-
- Quinuclidine ethers of general formula (8), wherein Ar1, Ar2, and R9 are as defined in formula (I), can be prepared as described in Scheme 1. 3-Quinuclidinol of formula (1) is treated with a halophenyl iodide of formula (2), wherein X′ is bromide, chloride, or iodide, with CuI and Cs2CO3 in 1,10-phenanthroline as described in Org. Lett., 2002, 4, 973, to obtain a halophenoxy quinuclidine of formula (4). Alternatively, a compound of formula can be obtained by treating 3-quinuclidinol with a halo phenyl alcohol of formula (3), wherein X′ is bromide, chloride, or iodide, and diethyl azodicarboxylate in the presence of a phosphine, such as triphenylphosphine.
- Compounds of formula (4) can be treated with a hexamethylditin or diboron reagent of formula (9), such as bis(pinacolato)diboron and bis(catecholato)dibone, in the presence of a palladium catalyst to provide the corresponding tin or boron regent of formula (5), which is reacted with a desired halide of an amine-substituted aryl group represented by Ar2—NHR9 of formula (6), wherein X′ is bromide, chloride, or iodide and Ar2 and NHR9 are as defined for a compound of formula (I) to provide compounds of formula (8). Alternatively, halides of a desired Ar2 group can be treated with a hexamethylditin or diboron reagent of formula (9), such as bis(pinacolato)diboron and bis(catecholato)diboron, in the presence of a palladium catalyst to provide a corresponding tin or boronic acid reagent that is reacted with a compound of formula (4) in the presence of a palladium catalyst to provide a compound of formula (8).
- Quinuclidine ethers of formula (15), wherein Ar1 is a nitrogen-containing heteroaryl, for example pyridazine, and Ar2 and R9 are as defined for compounds of formula (I), can be prepared as shown in Scheme 2. Potassium quinuclidinoxide (10) can be reacted with a dihaloaromatic ring, for example, dichloropyridazine, of formula (11), wherein Y1 and Y2 are halides, for example bromide, chloride, or iodide, and X1, X2, and X3 are selected from N or CH, to obtain a quinuclidine ether of formula (12). The quinuclidine ether can be reacted with a tin, boron, zinc or Grignard reagent of a desired Ar2 group substituted by —NHR9 of formula (14), wherein Ar2 and R9 are as defined for a compound of formula (I), wherein M′ is Sn, B, Zn, or Mg, to provide an amino-biaryl quinuclidine ether of formula (15). Alternatively, the quinuclidine ether of formula (12) can be treated with a hexamethylditin or diboron reagent of formula (9), such as bis(pinacolato)diboron and bis(catecholato)diboron, to activate the aromatic group to provide (13), wherein M is tin or a boronic acid ester, and further treated with a halide of a desired Ar2 substituted with —NHR9 in the presence of a palladium catalyst to provide compounds of formula (15).
- Quinuclidine ethers of formulas (26) and (27), wherein Ar1, Ar2, R8, and R9 are as defined for compounds of formula (I), can be obtained by the methods described in Scheme 3. Compounds of formula (20) can be treated with 3-quinuclidinol in the presence of a phosphine, for example triphenylphosphine, and diethyl azodicarboxylate to provide compounds of formula (22). Alternatively, compounds of formula (21), wherein X″ is bromide, chloride, iodide, NO2 or NR8R9 can be reacted with CuI, Cs2CO3 in 1,10-phenanthroline as described in Org. Lett. 2002, 4, 973, to provide a desired compound of formula (22). Compounds of formula (22) can also be obtained by coupling 3-quinuclidinol with compounds of formula (21A) in the presence of t-BuOK. Compounds of formula (22), wherein X″ is NO2, can be reduced with hydrogen in the presence of a palladium catalyst and reacted with a chloride or bromide of a desired R9 group of formula (23), wherein R9 is hydrogen, alkyl, aryl, alkycarbonyl, alkoxycarbonyl, arylcarbonyl, or aryloxycarbonyl, to provide compounds of formula (26). Compounds of formula (22), wherein X″ is bromide, chloride, or iodide, can be treated with a compound R8NHR9 of formula (24), wherein R8 and R9 are as previously described for R9 in compounds of formula (23), to provide a corresponding compound of formula (27).
- Compounds of formulas (32) and (33), wherein Ar1, Ar2, R8, and R9 are as defined for compounds of formula (I), can be prepared as shown in Scheme 4. 3-Quinuclidinone and a haloblarylamine of formula (30), wherein X″ is bromide, chloride, iodide, NO2 or NR8R9, can be treated with sodium triacetoxy borohydride and Na2SO4 in acetic acid to provide a racemic compound of formula (31) as described in Tetrahedron Lett. 1996, 37, 6045. The racemate of formula (31) can be resolved into its respective isomers by resolution with D-tartaric acid or via chiral HPLC chromatography on a Chiracel®-OD chromatography column using methods well-known in the art to provide the (R)- and (S)-isomers of formulas (31), respectively. Compounds of formula (31), wherein X″ is bromide, chloride, or iodide, can be treated with a compound R8NHR9 of formula (24), wherein R8 and R9 are as previously described for R9 in compounds of formula (23), to provide a corresponding compound of formula (32). Compounds of formula (31), wherein X″ is NO2, can be reduced with hydrogen in the presence of a palladium catalyst and reacted with a chloride or bromide of a desired R9 group of formula (23), wherein R9 is hydrogen, alkyl, aryl, alkycarbonyl, alkoxycarbonyl, arylcarbonyl, or aryloxycarbonyl, to provide compounds of formula (33).
- Compounds of formula (51), wherein Y is —NH— and Ar1, Ar2, R8, and R9 are as described for compounds of formula (I), can be prepared as shown in Scheme 5. 3-Quinuclidinone (45) and a haloarylamine of formula (46), wherein X′ is bromide, chloride, or iodide, can be treated with sodium triacetoxy borohydride and Na2SO4 in acetic acid to provide a racemic compound of formula (49). The racemate of formula (49) can be resolved into its respective isomers by resolution with D-tartaric acid or via chiral HPLC chromatography on a Chiracel®-OD chromatography column using methods well-known in the art to provide the (R)- and (S)-isomers of formulas (49), respectively. Alternatively, a compound of formula (49) can be obtained by treating 3-aminoquinuclidine (47) with haloaromatic group as described in formula (48) with Cs2CO3 in the presence of palladium catalyst, preferably in toluene. A compound of formula (49) can be treated with a tin or boronic acid under conditions previously described to provide the corresponding tin or boronic acid reagent of formula (50), which can be reacted with the halide of a desired group represented by Ar2 in a compound of formula (6) to provide a compound of formula (51). Alternatively, the compound of formula (49) is treated with a tin or boronic acid ester of the desired Ar2 group in the presence of a palladium catalyst to provide a compound of formula (51).
- Quinuclidine biarylsulfides of formula (62) and (63), wherein Ar1, Ar2, R8, and R9 are as defined for formula (I), can be obtained by the methods described in Scheme 6. 3-Chloroquinuclidine can be reacted with a halobiarylthiol of formula (60), wherein X″ is bromide, chloride, iodide, NO2, or NR8R9, wherein R8 and R9 are as defined for a compound of formula (I), as described in J. Med. Chem. 1999, 42, 1306, to provide a racemic compound of formula (61). The racemate of formula (61) can be resolved into its respective isomers by resolution with D-tartaric acid or via is chiral HPLC chromatography on a Chiracel®-OD chromatography column using methods well-known in the art to provide the (R)- and (S)-isomers of formulas (61), respectively. Compounds of formula (61), wherein X″ is NO2, can be reduced with hydrogen in the presence of a palladium catalyst and reacted with a chloride or bromide of a desired R9 group of formula (23), wherein R9 is hydrogen, alkyl, aryl, alkycarbonyl, alkoxycarbonyl, arylcarbonyl, or aryloxycarbonyl, to provide compounds of formula (62). Compounds of formula (61), wherein X″ is bromide, chloride, or iodide, can be treated with a compound R3NHR9 of formula (24), wherein R8 and R9 are as previously described for R9 in compounds of formula (23), to provide a corresponding compound of formula (63).
- Compounds of formula (79), wherein Y is S and Ar1, Ar2, and R9 are as defined in a compound of formula (I), can be prepared as shown in Scheme 7. 3-Chloroquinuclidine (75) can be reacted with a haloarylthiol of formula (76), wherein X′ is bromide, chloride, or iodide, to provide a racemic compound of formula (77). The racemate of formula (77) can be resolved into its respective isomers by resolution with D-tartaric acid or via chiral HPLC chromatography on a Chiracel®-OD chromatography column using methods well-known in the art to provide the (R)- and (S)-isomers of formulas (77), respectively. The compound of formula (77) can be treated with a tin, boron, zinc or Grignard reagent of a desired group for Ar2, as defined for a compound of formula (I), to provide a compound of formula (79). Alternatively, the compound of formula (77) can be reacted with hexamethylditin or diboron of formula (9), such as bis(pinacolato)diboron and bis(catecholato)diboron, in the presence of a palladium catalyst to provide a compound of formula (78), which is reacted with the halide of a desired Ar2 group in the presence of a palladium catalyst to provide a compound of formula (79).
- Compounds of formula (I) wherein A is N can be converted to compounds of formula (I) wherein A is N+—O− by treatment with an oxidizing agent. Examples of the oxidizing agent include, but not limited to, aqueous hydrogen peroxide and m-chloroperbenzoic acid. The reaction is generally performed in a solvent such as, but not limited to, acetonitrile, water, dichloromethane, acetone or mixture thereof, preferably a mixture of acetonitrile and water, at a temperature from about room temperature to about 80° C., for a period of about 1 hour to about 4 days.
- The compounds and intermediates of the invention may be isolated and purified by methods well-known to those skilled in the art of organic synthesis. Examples of conventional methods for isolating and purifying compounds can include, but are not limited to, chromatography on solid supports such as silica gel, alumina, or silica derivatized with alkylsilane groups, by recrystallization at high or low temperature with an optional pretreatment with activated carbon, thin-layer chromatography, distillation at various pressures, sublimation under vacuum, and trituration, as described for instance in “Vogel's Textbook of Practical Organic Chemistry”, 5th edition (1989), by Furniss, Hannaford, Smith, and Tatchell, pub. Longman Scientific & Technical, Essex CM20 2JE, England.
- The compounds, of the invention have at least one basic nitrogen whereby the compound can be treated with an acid to form a desired salt. For example, a compound may be reacted with an acid at or above room temperature to provide the desired salt, which is deposited, and collected by filtration after cooling. Examples of acids suitable for the reaction include, but are not limited to tartanc acid, lactic acid, succinic acid, as well as mandelic, atrolactic, methanesulfonic, ethanesulfonic, toluenesulfonic, naphthalenesulfonic, carbonic, fumaric, gluconic, acetic, propionic, salicylic, hydrochloric, hydrobromic, phosphoric, sulfuric, citric, or hydroxybutyric acid, camphorsulfonic, malic, phenylacetic, aspartic, glutamic, and the like.
- Compositions of the Invention
- The invention also provides pharmaceutical compositions comprising a therapeutically effective amount of a compound of formula (I) in combination with a pharmaceutically acceptable carrier. The compositions comprise compounds of the invention formulated together with one or more non-toxic pharmaceutically acceptable carriers. The pharmaceutical compositions can be formulated for oral administration in solid or liquid form, for parenteral injection or for rectal administration.
- The term “pharmaceutically acceptable carrier,” as used herein, means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch: cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols; such a propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of one skilled in the art of formulations.
- The pharmaceutical compositions of this invention can be administered to humans and other mammals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments or drops), bucally or as an oral or nasal spray. The term “parenterally,” as used herein, refers to modes of administration, including intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous, intraarticular injection and infusion.
- Pharmaceutical compositions for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like, and suitable mixtures thereof), vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate, or suitable mixtures thereof. Suitable fluidity of the composition may be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- These compositions can also contain adjuvants such as preservative agents, wetting agents, emulsifying agents, and dispersing agents. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It also can be desirable to include isotonic agents, for example, sugars, sodium chloride and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- In some cases, in order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This can be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug can depend upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, a parenterally administered drug form can be administered by dissolving or suspending the drug in an oil vehicle.
- Suspensions, in addition to the active compounds, can contain suspending agents, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth, and mixtures thereof.
- If desired, and for more effective distribution, the compounds of the invention can be incorporated into slow-release or targeted-delivery systems such as polymer matrices, liposomes, and microspheres. They may be sterilized, for example, by filtration through a bacteria-retaining filter or by incorporation of sterilizing agents in the form of sterile solid compositions, which may be dissolved in sterile water or some other sterile injectable medium immediately before use.
- Injectable depot forms are made by forming microencapsulated matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides) Depot injectable formulations also are prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
- The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
- Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation also can be a sterile injectable solution, suspension or emulsion in a nontoxic, parenterally acceptable diluent or solvent such as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, one or more compounds of the invention is mixed with at least one inert pharmaceutically acceptable carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and salicylic acid, b) binders such as carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia; c) humectants such as glycerol; d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; e) solution retarding agents such as paraffin; f) absorption accelerators such as quaternary ammonium compounds; g) wetting agents such as cetyl alcohol and glycerol monostearate; h) absorbents such as kaolin and bentonite clay; and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugar as well as high molecular weight polyethylene glycols.
- The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well-known in the pharmaceutical formulating art. They can optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract in a delayed manner. Examples of materials useful for delaying release of the active agent can include polymeric substances and waxes.
- Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. A desired compound of the invention is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, eardrops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
- The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to the compounds of this invention, lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
- Compounds of the invention also can be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes may be used. The present compositions in liposome form may contain, in addition to the compounds of the invention, stabilizers, preservatives, and the like. The preferred lipids are the natural and synthetic phospholipids and phosphatidylcholines (lecithins) used separately or together.
- Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y., (1976), p 33 et seq.
- Dosage forms for topical administration of a compound of this invention include powders, sprays, ointments and inhalants. The active compound is mixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers or propellants. Ophthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention. Aqueous liquid compositions of the invention also are particularly useful.
- The compounds of the invention can be used in the form of pharmaceutically acceptable salts, esters, or amides derived from inorganic or organic acids. The term “pharmaceutically acceptable salts, esters and amides,” as used herein, include salts, zwitterions, esters and amides of compounds of formula (I) which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
- The term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well-known in the art. The salts can be prepared in situ during the final isolation and purification of the compounds of the invention or separately by reacting a free base function with a suitable organic acid.
- Representative acid addition salts include, but are not limited to acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isethionate), lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, phosphate, glutamate, bicarbonate, p-toluenesulfonate and undecanoate.
- Also, the basic nitrogen-containing groups can be quaternized with such agents as lower alkyl halides such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides, dialkyl sulfates such as dimethyl, diethyl, dibutyl and diamyl sulfates; long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; arylalkyl halides such as benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.
- Examples of acids which can be employed to form pharmaceutically acceptable acid addition salts include such inorganic acids as hydrochloric acid, hydrobromic acid, sulphuric acid and phosphoric acid and such organic acids as oxalic acid, maleic acid, succinic acid, and citric acid.
- Basic addition salts can be prepared in situ during the final isolation and purification of compounds of this invention by reacting a carboxylic acid-containing moiety with a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia or an organic primary, secondary or tertiary amine. Pharmaceutically acceptable salts include, but are not limited to, cations based on alkali metals or alkaline earth metals such as lithium, sodium, potassium, calcium, magnesium, and aluminum salts, and the like, and nontoxic quaternary ammonia and amine cations including ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine and the such as. Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazine.
- The term “pharmaceutically acceptable ester,” as used herein, refers to esters of compounds of the invention which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Examples of pharmaceutically acceptable, non-toxic esters of the invention include C1-to-C6 alkyl esters and C5-to-C7 cycloalkyl esters, although C1-to-C4 alkyl esters are preferred. Esters of the compounds of formula (I) can be prepared according to conventional methods. Pharmaceutically acceptable esters can be appended onto hydroxy groups by reaction of the compound that contains the hydroxy group with acid and an alkylcarboxylic acid such as acetic acid, or with acid and an arylcarboxylic acid such as benzoic acid. In the case of compounds containing carboxylic acid groups, the pharmaceutically acceptable esters are prepared from compounds containing the carboxylic acid groups by reaction of the compound with base such as triethylamine and an alkyl halide, alkyl trifilate, for example with methyl iodide, benzyl iodide, cyclopentyl iodide. They also can be prepared by reaction of the compound with an acid such as hydrochloric acid and an alkylcarboxylic acid such as acetic acid, or with acid and an arylcarboxylic acid such as benzoic acid.
- The term “pharmaceutically acceptable amide,” as used herein, refers to non-toxic amides of the invention derived from ammonia, primary C1-to-C6 alkyl amines and secondary C1-to-C6 dialkyl amines. In the case of secondary amines, the amine can also be in the form of a 5- or 6-membered heterocycle containing one nitrogen atom. Amides derived from ammonia, C1-to-C3 alkyl primary amides and C1-to-C2 dialkyl secondary amides are preferred. Amides of the compounds of formula (I) can be prepared according to conventional methods. Pharmaceutically acceptable amides can be prepared from compounds containing primary or secondary amine groups by reaction of the compound that contains the amino group with an alkyl anhydride, aryl anhydride, acyl halide, or aroyl halide. In the case of compounds containing carboxylic acid groups, the pharmaceutically acceptable esters are prepared from compounds containing the carboxylic acid groups by reaction of the compound with base such as triethylamine, a dehydrating agent such as dicyclohexyl carbodiimide or carbonyl diimidazole, and an alkyl amine, dialkylamine, for example with methylamine, diethylamine, piperidine. They also can be prepared by reaction of the compound with an acid such as sulfuric acid and an alkylcarboxylic acid such as acetic acid, or with acid and an arylcarboxylic acid such as benzoic acid under dehydrating conditions as with molecular sieves added. The composition can contain a compound of the invention in the form of a pharmaceutically acceptable prodrug.
- The term “pharmaceutically acceptable prodrug” or “prodrug,” as used herein, represents those prodrugs of the compounds of the invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use. Prodrugs of the invention can be rapidly transformed in vivo to a parent compound of formula (I), for example, by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, V. 14 of the A.C.S. Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press (1987).
- The invention contemplates pharmaceutically active compounds either chemically synthesized or formed by in vivo biotransformation to compounds of formula (I).
- Methods of the Invention
- Compounds and compositions of the invention are useful for modulating the effects of nAChRs, and more particularly α7 nAChRs. In particular, the compounds and compositions of the invention can be used for treating and preventing disorders modulated by α7 nAChRs. Typically, such disorders can be ameliorated by selectively modulating the α7 nAChRs in a mammal, preferably by administering a compound or composition of the invention, either alone or in combination with another active agent, for example, as part of a therapeutic regimen.
- The compounds of the invention, including but not limited to those specified in the examples, possess an affinity for nAChRs, and more particularly α7 nAChRs. As α7 nAChRs ligands, the compounds of the invention can be useful for the treatment and prevention of a number of α7 nAChR-mediated diseases or conditions.
- For example, α7 nAChRs have been shown to play a significant role in enhancing cognitive function, including aspects of learning, memory and attention (Levin, E. D., J. Neurobiol. 53: 633-640, 2002). As such, α7 ligands are suitable for the treatment of cognitive disorders including, for example, attention deficit disorder, attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), mild cognitive impairment, senile dementia, AIDS dementia, Pick's Disease, dementia associated with Lewy bodies, and dementia associated with Down's syndrome, as well as cognitive deficits associated with schizophrenia.
- In addition, α7-containing nAChRs have been shown to be involved in the neuroprotective effects of nicotine both in vitro (Jonnala, R. B. and Buccafusco, J. J., J. Neurosci. Res. 66: 565-572, 2001) and in vivo (Shimohama, S. et al., Brain Res. 779: 359-363, 1998). More particularly, neurodegeneration underlies several progressive CNS disorders, including, but not limited to, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, dementia with Lewy bodies, as well as diminished CNS function resulting from traumatic brain injury. For example, the impaired function of α7 nAChRs by β-amylold peptides linked to Alzheimer's disease has been implicated as a key factor in development of the cognitive deficits associated with the disease (Liu, Q.-S., Kawai, H., Berg, D. K., PNAS 98: 4734-4739, 2001). The activation of α7 nAChRs has been shown to block this neurotoxicity (Kihara, T. et al., J. Biol. Chem. 276: 13541-13546, 2001). As such, selective ligands that enhance α7 activity can counter the deficits of Alzheimer's and other neurodegenerative diseases.
- Schizophrenia is a complex disease that is characterized by abnormalities in perception, cognition, and emotions. Significant evidence implicates the involvement of α7 nAChRs in this disease, including a measured deficit of these receptors in post-mortem patients (Leonard, S. Eur. J. Pharmacol. 393: 237-242, 2000). Deficits in sensory processing (gating) are one of the hallmarks of schizophrenia. These deficits can be normalized by nicotinic ligands that operate at the α7 nAChR (Adler L. E. et al., Schizophrenia Bull. 24: 189-202, 1998; Stevens, K. E. et al., Psychopharmacology 136: 320-327, 1998). Thus, α7 ligands demonstrate potential in the treatment schizophrenia.
- Angiogenesis, a process involved in the growth of new blood vessels, is important in beneficial systemic functions, such as wound healing, vascularization of skin grafts, and enhancement of circulation, for example, increased circulation around a vascular occlusion. Non-selective nAChR agonists like nicotine have been shown to stimulate angiogenesis (Heeschen, C. et al., Nature Medicine 7: 833-839, 2001). Improved angiogenesis has been shown to involve activation of the α7 nAChR (Heeschen, C. et al, J. Clin. Invest. 110: 527-536, 2002). Therefore, nAChR ligands that are selective for the α7 subtype offer improved potential for stimulating angiogenesis with an improved side effect profile.
- A population of α7 nAChRs in the spinal cord modulate serotonergic transmission that have been associated with the pain-relieving effects of nicotinic compounds (Cordero-Erausquin, M. and Changeux, J.-P, PNAS 98:2803-2807, 2001). The α7 nAChR ligands demonstrate therapeutic potential for the treatment of pain states, including acute pain, post-surgical pain, as well as chronic pain states including inflammatory pain and neuropathic pain. Moreover, α7 nAChRs are expressed on the surface of primary macrophages that are involved in the inflammation response, and that activation of the α7 receptor inhibits release of TNF and other cytokines that trigger the inflammation response (Wang, H. et al Nature 421: 384-388, 2003). Therefore, selective α7 ligands demonstrate potential for treating conditions involving inflammation and pain.
- The mammalian sperm acrosome reaction is an exocytosis process important in fertilization of the ovum by sperm. Activation of an α7 nAChR on the sperm cell has been shown to be essential for the acrosome reaction (Son, J.-H. and Meizel, S. Biol. Reproduct. 68: 1348-1353 2003). Consequently, selective α7 agents demonstrate utility for treating fertility disorders.
- Compounds of the invention are particularly useful for treating and preventing a condition or disorder affecting cognition, neurodegeneration, and schizophrenia.
- Cognitive impairment associated with schizophrenia often limits the ability of patients to function normally, a symptom not adequately treated by commonly available treatments, for example, treatment with an atypical antipsychotic. (Rowley, M. et al., J. Med. Chem. 44: 477-501, 2001). Such cognitive deficit has been linked to dysfunction of the nicotinic cholinergic system, in particular with decreased activity at α7 receptors. (Friedman, J. I. et al., Biol Psychiatry, 51: 349-357, 2002). Thus, activators of α7 receptors can provide useful treatment for enhancing cognitive function in schizophrenic patients who are being treated with atypical antipsychotics. Accordingly, the combination of an α7 nAChR ligand and an atypical antipsychotic would offer improved therapeutic utility. Specific examples of suitable atypical antipsychotics include, but are not limited to, clozapine, risperidone, olanzapine, quietapine, ziprasidone, zotepine, iloperidone, and the like.
- Actual dosage levels of active ingredients in the pharmaceutical compositions of this invention can be varied so as to obtain an amount of the active compound(s) that is effective to achieve the desired therapeutic response for a particular patient, compositions and mode of administration. The selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- When used in the above or other treatments, a therapeutically effective amount of one of the compounds of the invention can be employed in pure form or, where such forms exist, in pharmaceutically acceptable salt, ester, amide or prodrug form. Alternatively, the compound can be administered as a pharmaceutical composition containing the compound of interest in combination with one or more pharmaceutically acceptable carriers. The phrase “therapeutically effective amount” of the compound of the invention means a sufficient amount of the compound to treat disorders, at a reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the compounds and compositions of the invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well-known in the medical arts. For example, it is well within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- The total daily dose of the compounds of this invention administered to a human or lower animal range from about 0.10 mg/kg body weight to about 1 g/kg body weight. More preferable doses can be in the range of from about 0.10 mg/kg body weight to about 100 mg/kg body weight. If desired, the effective daily dose can be divided into multiple doses for purposes of administration. Consequently, single dose compositions may contain such amounts or submultiples thereof to make up the daily dose.
- The compounds and processes of the invention will be better understood by reference to the following examples and reference examples, which are intended as an illustration of and not a limitation upon the scope of the invention.
- 3-Hydroxy quinuclidine (Aldrich, 2.54 g, 20 mmol) in toluene (anhydrous, Aldrich, 50 mL) was treated with 1,4-diiodobenzene (Aldrich, 7.9 g, 24 mmol), CuI (Strem Chemicals, 0.38 g, 2 mmol), and 1,10-phenanthroline (Aldrich, 0.72 g, 4 mmol) and heated at 110° C. for 40 hours. The reaction mixture was allowed to cool to room temperature, diluted with chloroform (100 mL), and washed with water (2×10 mL). The organic phase was concentrated and the title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.20) as an oil (3.7 g, yield, 56%). 1H NMR (MeOH-d4, 300 MHz) δ 1.40-1.56 (m, 1H), 1.64-1.80 (m, 2H), 1.90-2.08 (m, 1H), 2.10-2.21 (m, 1H), 2.60-3.00 (m, 5H), 3.34-3.40 (m, 1H), 4.46 (m, 1H), 6.73 (d, J=8.8 Hz, 2H), 7.56 (d, J=8.8, Hz, 2H), ppm. MS (DCl/NH3) m/z 330 (M+H)+:
- The product of Example 1A (330 mg, 1 mmol) in toluene (8 mL) was treated with 3-amino-phenylboronic acid (Lancaster, 276 mg, 2 mmol), Pd2(dba)3 (Strem Chemicals, 18.3 mg, 0.02 mmol), 1,3-bis(2,6-di-1-propylphenyl)imidazolium chloride, 95%, 26.9 mg, 0.06 mmol), and Na2CO3 (aqueous, 2M, 2 mL, 4 mmol) at 110° C. for 15 hours. The reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate (20 mL), and washed with brine (2×5 mL). The organic phase was concentrated and the title compound was purified by chromatography (SiO2, CH2:Cl2:MeOH:NH3.H2O, 90:10:2, Rf. 0.10) as oil (230 mg, yield, 78%). 1H NMR (MeOH-d4, 300 MHz) δ 1.40-1.53 (m, 1H), 1.62-1.85 (m, 2H), 1.96-2.20 (m, 2H), 2.80-2.94 (m, 5H), 3.28-3.40 (m, 1H), 4.52-4.60 (m, 1H), 6.66 (ddd, J=7.8, 2.3, 1.0 Hz, 1H), 6.89 (ddd, J=7.3, 1.6, 1.0 Hz, 1H), 6.92-6.96 (m, 3H), 7.13 (t, J=7.8, Hz, 1H), 7.48 (dt, J=8.8, 2.1 Hz, 2H) ppm. MS (DCl/NH3) m/z 295 (M+H)+.
- The product of Example 1B (230 mg, 0.78 mmol) in ethyl acetate (5 mL) was treated with 4M HCl in 1,4-dioxane (0.5 mL, 2 mmol). The title compound was obtained as solid (210 mg, yield, 74%): 1H NMR (MeOH-d4, 300 MHz) δ 1.82-2.21 (m, 3H), 2.30-2.42 (m, 1H), 2.55-2.62 (m, 1H), 3.35-3.50 (m, 5H), 3.82-3.96 (m, 1H), 4.95-5.02 (m, 1H), 7.11 (dt, J=8.8, 2.0 Hz, 2H), 7.34 (ddd, J=9.1, 2.3, 1.3 Hz, 1H), 7.57-7.66 (m, 4H), 7.72 (ddd, J=7.8, 1.6, 1.0 Hz, 1H) ppm. MS (DCl/NH3) m/z 295 (M+H)+. Anal. Calculated for C19H22N2O.2.0HCl.0.2H2O: C, 61.52; H, 6.63; N, 7.55. Found: C, 61.22; H, 6.44; N, 7.38.
- (3R)-Hydroxy quinuclidine (Aldrich, 0.64 g, 5 mmol) was treated with 1,4-diiodobenzene (Aldrich, 1.98 g, 6 mmol) according to the procedure of Example 1A. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.30) as a solid (0.50 g, yield, 30%). 1H NMR (MeOH-d4, 300 MHz) δ 1.40-1.56 (m, 1H), 1.64-1.80 (m, 2H), 1.90-2.05 (m, 1H), 2.09-2.17 (m, 1H), 2.71-3.00 (m, 5H), 3.34-3.40 (m, 1H), 4.44-4.52 (m, 1H), 6.72 (d, J=8.8 Hz, 2H), 7.55 (d, J=8.8, Hz, 2H), ppm. MS (DCl/NH3) m/z 330 (M+H)+.
- The product of Example 1A (165 mg, 0.5 mmol) was treated with 3-amino-phenylboronic acid (Lancaster, 137 mg, 1 mmol) according to the procedure of Example 1B. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:2, Rf. 0.25) as an oil (38 mg, yield, 26%). 1H NMR (MeOH-d4, 300 MHz) δ 1.40-1.53 (m, 1H), 1.62-1.85 (m, 2H), 1.96-2.20 (m, 2H), 2.80-2.94 (m, 5H), 3.28-3.40 (m, 1H), 4.52-4.60 (m, 1H), 6.66 (ddd, J=7.8, 2.3, 1.0 Hz, 1H), 6.89 (ddd, J=7.3, 1.6, 1.0 Hz, 1H), 6.92-6.96 (m, 3H), 7.13 (t, J=7.8, Hz, 1H), 7.48 (dt, J=8.8, 2.1 Hz, 2H) ppm. MS (DCl/NH3) m/z 295 (M+H)+.
- The product of Example 2B (38 mg, 0.13 mmol) in ethyl acetate/methanol (3 mL, 10:1) was treated with fumaric acid (17 mg, 0.14 mmol) at ambient temperature overnight. The title compound was obtained as a solid (31 mg, yield, 55%): 1H NMR (MeOH-d4, 300 MHz) δ 1.82-2.21 (m, 3H), 2.30-2.42 (m, 1H), 2.55-2.62 (m, 1H), 3.35-3.50 (m, 5H), 3.75-3.82 (m, 1H), 4.95-5.02 (m, 1H), 6.65-6.72 (m, 3H), 6.88 (ddd, J=7.8, 2.7, 1.0 Hz, 1H), 6.92 (t, J=2.0 Hz, 1H), 7.01 (dt, J=8.8, 2.1 Hz, 2H), 7.14 (t, J=7.8 Hz, 1H), 7.53 (dt, J=8.8, 2.5 Hz, 2H) ppm. MS (DCl/NH3) m/z 295 (M+H)+. Anal. Calculated for C19H22N2O.1.19C4H4O4: C, 65.98; H, 6.24; N, 6.48. Found: C, 66.00; H, 6.00; N, 6.38.
- The product of Example 1A (330 mg, 1 mmol) was treated with 3-amino-4-methyl-phenylboronic acid (Lancaster, 302 mg, 2 mmol) according to the procedure of Example 1B. The free base of the title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:2, Rf. 0.10) as oil (230 mg, yield, 75%). The free base of the title compound (230 mg, 0.75 mmol) in ethyl acetate (5 mL) was treated with 4M HCl in 1,4-dioxane (0.5 mL, 2 mmol). The title compound was obtained as solid (180 mg, yield, 74%): 1H NMR (MeOH-d4, 300 MHz) δ 1.85-2.19 (m, 3H), 2.28-2.38 (m, 1H), 2.43 (s, 3H), 2.51-2.57 (m, 1H), 3.31-3.45 (m, 5H), 3.82-3.89 (m, 1H), 4.93-4.99 (m, 1H), 7.13 (dt, J=8.8, 3.0 Hz, 2H), 7.44 (d, J=8.8 Hz, 1H), 7.56-7.66 (m, 4H) ppm. MS (DCl/NH3) m/z 309 (M+H)+. Anal. Calculated for C19H22N2O.2.0HCl.0.1H2O: C, 62.70; H, 6.89; N, 7.31. Found: C, 62.52; H, 6.59; N, 7.35.
- The product of Example 2A (165 mg, 0.5 mmol), was treated with 3-amino-4-methyl-phenylboronic acid (151 mg, 1 mmol) according to the procedure of Example 2B. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.25) as a solid (104 mg, yield, 68%). 1H NMR (MeOH-d4, 300 MHz) δ 1.45-1.58 (m, 1H), 1.64-1.89 (m, 2H), 2.00-2.13 (m, 1H), 2.15-2.23 (m, 4H), 2.76-3.02 (m, 5H), 3.30-3.40 (m, 1H), 4.51-4.59 (m, 1H), 6.6.84 (dd, J=7.8, 2.0 Hz, 1H), 6.90-6.97 (m, 3H), 7.02 (d, J=7.8 Hz, 1H), 7.47 (dt, J=8.8, 2.0 Hz, 2H) ppm. MS (DCl/NH3) m/z 309 (M+H)+.
- The product of Example 4A in ethyl acetate/ethanol (v.1:1, 4 mL) was treated with fumaric acid (40 mg, 0.34 mmol) at ambient temperature for 15 hours. The title compound was obtained as a solid (115 mg, yield, 77%). 1H NMR (MeOH-d4, 300 MHz) δ 1.79-2.16 (m, 3H), 2.18 (s, 3H), 2.24-2.39 (m, 1H), 2.46-2.54 (m, 1H), 3.20-3.42 (m, 5H), 3.71-3.81 (m, 1H), 6.68 (s, 2H), 6.83 (dd, J=7.8, 1.7 Hz, 1H), 6.94 (d, J=1.7 Hz, 1H), 6.97-7.06 (m, 3H), 7.51 (dt, J=8.5, 2.1 Hz, 2H) ppm. MS (Cl/NH3): m/z 309 (M+H)+. Anal. Calculated for C20H24N2O.C4H4O4: C, 67.91; H, 6.65; N, 6.60. Found: C, 67.62; H, 6.45; N, 6.43.
- 3-Quinuclidinol (Aldrich, 254 mg, 2 mmol) in tetrahydrofuran (anhydrous, Aldrich, 10 mL) was treated with 4′-nitro-1,1′-biphenyl-4-ol (TCl, 215 mg, 1 mmol) with DIAD (di-isopropyl azadicarboxylate, Aldrich, 404 mg, 2 mmol) and triphenylphosphine (Aldrich, 522 mg, 2 mmol) at ambient temperature for two days. The reaction mixture was concentrated. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.20) as a solid (200 mg, yield, 62%). 1H NMR (MeOH-d4, 300 MHz) δ 1.45-1.57 (m, 1H), 1.63-1.91 (m, 2H), 1.97-2.12 (m, 1H), 2.17-2.24 (m, 1H), 2.66-3.00 (m, 5H), 3.30-3.41 (m, 1H), 4.56-4.64 (m, 1H), 7.05 (dt, J=8.8, 2.6 Hz, 2H), 7.68 (dt, J=9.2, 2.6 Hz, 2H), 7.82 (dt, J=8.8, 2.7 Hz, 2H), 8.28 (dt, J=8.8, 2.8 Hz, 2H) ppm. MS (DCl/NH3) m/z 325 (M+H)+.
- The product of Example 5A (33 mg, 0.1 mmol) in ethyl acetate/ethanol (3 mL, 1:1) was treated with fumaric acid (12 mg, 0.1 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (14 mg, yield, 36%). 1H NMR (MeOH-d4, 300 MHz) δ 1.70-1.83 (m, 1H), 1.85-2.09 (m, 2H), 2.17-2.30 (m, 1H), 2.39-2.47 (m, 1H), 3.06-3.35 (m, 5H), 3.60-3.72 (m, 1H), 6.67 (s, 1H), 7.09 (dt, J=8.8, 2.5 Hz, 2H), 7.70 (dt, J=9.2, 2.3 Hz, 2H), 7.83 (dt. J=8.8, 2.4 Hz, 2H), 8.29 (dt, J=8.8, 2.3 Hz, 2H) ppm. MS (Cl/NH3): m/z 325 (M+H)+. Anal. Calculated for C19H20N2O3.0.5C4H4O4.0.35H2O: C, 64.89; H, 5.89; N, 7.21. Found: C, 64.82; H, 6.02; N, 6.95.
- The product of Example 5A (150 mg, 0.46 mmol) in methanol (5 mL) was treated with Pd/C (Aldrich, wt. 10%, 20 mg) at ambient temperature for 30 minutes. The mixture was filtered and the filtrate was concentrated under reduced pressure to provide the title compound (89 mg, yield, 65%). 1H NMR (MeOH-d4, 300 MHz) δ 1.44-1.58 (m, 1H), 1.63-1.89 (m, 2H), 1.99-2.13 (m, 1H), 2.15-2.23 (m, 1H), 2.72-3.04 (m, 5H), 3.29-3.39 (m, 1H), 4.50-4.58 (m, 1H), 6.77 (dt, J=8.8, 2.5 Hz, 2H), 6.91 (dt, J=8.8, 2.4 Hz, 2H), 7.32 (dt, J=8.5, 2.5 Hz, 2H), 7.43 (dt, J=9.2, 2.8 Hz, 2H) ppm. MS (DCl/NH3) m/z 295 (M+H)+.
- The product of Example 5C (89 mg, 0.30 mmol) in ethyl acetate/ethanol (4.0 mL, 1:1) was treated with fumaric acid (35 mg, 0.30 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (67 mg, yield, 62%). 1H NMR (MeOH-d4, 300 MHz) δ 1.70-1.83 (m, 1H), 1.85-2.09 (m, 2H), 2.18-2.32 (m, 1H), 2.38-2.45 (m, 1H), 3.12-3.38 (m, 5H), 3.60-3.71 (m, 1H), 4.74-4.81 (m, 1H), 6.68 (s, 1H), 6.77 (dt, J=8.8, 2.3 Hz, 2H), 6.97 (dt, J=8.8, 2.5 Hz, 2H), 7.32 (dt, J=8.5, 2.4 Hz, 2H), 7.47 (dt, J=8.8, 2.7 Hz, 2H) ppm. MS (DCl/NH3): m/z 295 (M+H)+. Anal. Calculated for C19H22N2O.0.5C4H4O4.0.3H2O: C, 70.49; H, 6.93; N, 7.83. Found: C, 70.29; H, 6.88; N, 7.76.
- (+/−)-1-azabicyclo[2.2.2]oct-3-yl benzoate (Sigma, 17.9 g, 77.5 mmol) in ethanol (80%, 222 mL) was treated with (L)-tartaric acid (Aldrich, 99% ee, 11.63 g, 77.5 mmol) at ambient temperature for 1 week. The mixture was filtered and the filter cake dried under reduced pressure to provide the title compound (6.5 g), in ˜80% enantiomeric excess as determined by HPLC chiralpak AD column 25 cm×4 mm ID; ethanol:hexanes, 15:85; flow rate, 1 mL/minute; uv, 220 nm; Retention time: 13.3 minutes. The title compound was recrystallized from ethanol to provide the title compound in >98% enantiomeric excess. MS (DCl/NH3) m/z 232 (M+H)+:
- The product of Example 6A (4.5 g, 11.8 mmol) in methanol (40 mL) was treated with NaOH (15%, 40 mL) at 50° C. for 10 hours. The methanol was removed under reduced pressure and the residue was extracted with chloroform (4×80 mL). The extracts were combined, dried over MgSO4, dried, filtered, and the filtrate was concentrated to give the title product as a white solid (1.35 g, yield, 90%). MS (DCl/NH3) m/z 128 (M+H)+.
- The mother liquid of Example 6A was combined and concentrated under reduced pressure. The residue was treated with NaOH (1 N, 50 mL) at room temperature for 30 minutes and extracted with chloroform (3×mL) The extracts were combined, dried (MgSO4), filtered, and the filtrate was concentrated to give crude 1-azabicyclo[2.2.2]oct-3-yl benzoate (15.25 g, 66 mmol). The crude in ethanol (80%, 190 ml) was treated with (D)-tartaric acid (Aldrich, 97% ee, 9.9 g, 66 mmol) at room temperature for 3 days according to the procedure of Example 1A to provide the title compound in 92.3% enantiomeric excess (7.0 g, yield, 28%).
- The product of Example 6C (7.0 g, 18.4 mmol) was treated with NaOH (aqueous) according to the procedure of Example 1B. The title product was obtained as white a solid (2.0 g, yield, 86%). MS (DCl/NH3) m/z 128 (M+H)+.
- The product of Example 6D (254 mg, 2 mmol) was treated with 4′-nitro-1,1′-biphenyl-4-ol (TCl, 215 mg, 1 mmol) according to the procedure of Example 5A. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.20) as a solid (384 mg, yield, 59%). 1H NMR (MeOH-d4, 300 MHz) δ 1.45-1.57 (m, 1H), 1.63-1.91 (m, 2H), 1.97-2.12 (m, 1H), 2.17-2.24 (m, 1H), 2.66-3.02 (m, 5H), 3.30-3.41 (m, 1H), 4.54-4.64 (m, 1H), 7.03 (dt, J=8.8, 2.6 Hz, 2H), 7.66 (dt, J=9.2, 2.6 Hz, 2H), 7.80 (dt, J=8.8, 2.7 Hz, 2H), 8.27 (dt, J=8.8, 2.8 Hz, 2H) ppm. MS (DCl/NH3) m/z 325 (M+H)+.
- The product of Example 6E (384 mg, 1.18 mmol) in methanol (5 mL) was treated with Pd/C (Aldrich, wt. 10%, 50 mg) under H2 according to the procedure of Example 5C to provide the title compound (170 mg, yield, 49%). 1H NMR (MeOH-d4, 300 MHz) δ 1.44-1.58 (m, 1H), 1.63-1.89 (m, 2H), 1.99-2.13 (m, 1H), 2.15-2.23 (m, 1H), 2.72-3.04 (m, 5H), 3.29-3.39 (m, 1H), 4.48-4.56 (m, 1H), 6.76 (dt, J=8.8, 2.5 Hz, 2H), 6.91 (dt, J=8.8, 2.4 Hz, 2H), 7.31 (dt, J=8.5, 2.5 Hz, 2H), 7.43 (dt, J=9.2, 2.8 Hz, 2H) ppm. MS (DCl/NH3) m/z 295 (M+H)+.
- The product of Example 6F (170 mg, 0.58 mmol) in ethyl acetate/ethanol (5.0 mL, 1:1) was treated with fumaric acid (70 mg, 0.60 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (183 mg, yield, 48%). 1H NMR (MeOH-d4, 300 MHz) δ 1.79-2.19 (m, 3H), 2.27-2.41 (m, 1H), 2.48-2.56 (m, 1H), 3.22-3.47 (m, 6H), 3.72-3.84 (m, 1H), 6.72 (s, 3.6H), 6.77 (dt, J=8.8, 2.3 Hz, 2H), 6.97 (dt, J=8.8, 2.5 Hz, 2H), 7.32 (dt, J=8.5, 2.4 Hz, 2H), 7.48 (dt, J=8.8, 2.7 Hz, 2H) ppm. MS (DCl/NH3): m/z 295 (M+H)+. Anal. Calculated for C19H22N2O.1.8C4H4O4: C, 62.52; H, 5.85; N, 5.57. Found: C, 62.53; H, 5.65; N, 5.69.
- The product of Example 6B (508 mg, 4 mmol) was treated with 4′-nitro-biphenyl-4-ol (TCl, 430 mg, 2 mmol) according to the procedure of Example 5A. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.20) as a solid (480 mg, yield, 74%). 1H NMR (MeOH-d4, 300 MHz) δ 1.45-1.57 (m, 1H), 1.63-1.91 (m, 2H), 1.97-2.12 (m, 1H), 2.17-2.24 (m, 1H), 2.66-3.00 (m, 5H), 3.31-3.43 (m, 1H), 4.56-4.64 (m, 1H), 7.04 (dt, J=8.8, 2.6 Hz, 2H), 7.67 (dt, J=9.2, 2.6 Hz, 2H), 7.82 (dt, J=8.8, 2.7 Hz, 2H), 8.28 (dt, J=8.8, 2.8 Hz, 2H) ppm. MS (DCl/NH3) m/z 325 (M+H)+.
- The product of Example 7A (480 mg, 1.48 mmol) in methanol (5 mL) was treated with Pd/C (Aldrich, wt. 10%, 50 mg) at ambient temperature for 30 minutes. The reaction mixture was filtered through a short column of diatomaceous earth and the filtrate was concentrated under reduced pressure to provide the title compound (350 mg, yield, 80%). 1H NMR (MeOH-d4, 300 MHz) δ 1.44-1.58 (m, 1H), 1.63-1.89 (m, 2H), 1.99-2.13 (m, 1H), 2.15-2.23 (m, 1H), 2.72-3.04 (m, 5H), 3.58-3.68 (m, 1H), 4.50-4.58 (m, 1H), 6.76 (dt, J=8.8, 2.5 Hz, 2H), 6.91 (dt, J=8.8, 2.4 Hz, 2H), 7.31 (dt, J=8.5, 2.5 Hz, 2H), 7.43 (dt, J=9.2, 2.8 Hz, 2H) ppm. MS (DCl/NH3) m/z 295 (M+H)+.
- The product of Example 7B (350 mg, 1.19 mmol) in ethyl acetate/ethanol (5.0 mL, 1:1) was treated with fumaric acid (140 mg, 1.20 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (376 mg, yield, 89%). 1H NMR (MeOH-d4, 300 MHz) δ 1.68-1.81 (m, 1H), 1.84-2.07 (m, 2H), 2.16-2.31 (m, 1H), 2.36-2.44 (m, 1H), 3.09-3.39 (m, 5H), 3.58-3.68 (m, 1H), 4.72-4.79 (m, 1H), 6.67 (s, 1H), 6.76 (dt, J=8.8, 2.3 Hz, 2H), 6.96 (dt, J=8.8, 2.5 Hz, 2H), 7.32 (dt, J=8.5, 2.4 Hz, 2H), 7.46 (dt, J=8.8, 2.7 Hz, 2H) ppm. MS (DCl/NH3): m/z 295 (M+H)+. Anal. Calculated for C19H22N2O.1.8C4H4O4: C19H22N2O.0.55C4H4O4; C, 71.08; H, 6.81; N, 7.82. Found: C, 71.07; H, 6.82; N, 7.60.
- 3-Hydroxy quinuclidine (Aldrich, 508 mg, 4 mmol) was coupled with 4′-iodo-1,1′-biphenyl-4-ol (Avacado, 592 mg, 2 mmol) according to the procedure of Example 5A. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.30) as solid (480 mg, yield, 59%). 1H NMR (MeOH-d4, 300 MHz) δ1.43-1.57 (m, 1H), 1.62-1.88 (m, 2H), 1.97-2.12 (m, 1H), 2.14-2.21 (m, 1H), 2.72-3.00 (m, 5H), 3.31-3.43 (m, 1H), 4.51-4.60 (m, 1H), 6.98 (d, J=8.8 Hz, 2H), 7.35 (d, J=8.5 Hz, 2H), 7.53 (d, J=8.8 Hz, 2H), 7.74 (d, J=8.5 Hz, 2H) ppm. MS (DCl/NH3) m/z 406 (M+H)+.
- The product of Example 8A (405 mg, 1 mmol) in toluene (5 mL) was treated with benzyl(methyl)amine (Aldrich, 146 mg, 1.2 mmol), Pd2(dba)3 (Strem Chemicals, 24 mg, 0.025 mmol), (tBu3P)2Pd (Strem Chemicals, 26 mg, 0.05 mmol), tBuONa (Aldrich, 105 mg 1.1 mmol) and heated at 110° C. under N2 for 15 hours. The reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate (20 mL), and washed with brine (2×5 mL). The organic phase was concentrated and the title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:2, Rf. 0.35) as a solid (200 mg, yield, 50%). 1H NMR (MeOH-d4, 300 MHz) showed a mixture of the title compound and 3-(biphenyl-4-yloxy)-1-aza-bicyclo[2.2.2]octane as solid (200 mg). MS (DCl/NH3) m/z 399 (M+H)+.
- The product of Example 8B (200 mg, 0.50 mmol) in methanol (10 mL) was treated with Pd/C (Aldrich, 10% wt., 50 mg) at 60° C. under H2 for 10 hours. The mixture was allowed to cool to room temperature and was filtered through a short column of diatomaceous earth. The filtrate was concentrated under reduced pressure to provide the title compound (20 mg, yield, 13%). 1H NMR (MeOH-d4, 300 MHz) δ 1.43-1.56 (m, 1H), 1.62-1.88 (m, 2H), 1.99-2.12 (m, 1H), 2.14-2.21 (m, 1H), 2.79 (s, 3H) 2.90-3.03 (m, 5H), 3.27-3.38 (m, 1H), 4.49-4.56 (m, 1H), 6.67 (d, J=8.8, 2.7 Hz, 2H), 6.91 (d, J=8.8, 2.9 Hz, 2H), 7.35 (d, J=8.8, 2.7 Hz, 2H), 7.43 (d, J=9.2, 2.7 Hz, 2H) ppm. MS (DCl/NH3): m/z 309 (M+H)+,
- The product of Example 8C (20 mg, 0.07 mmol) in ethyl acetate (4 mL) was treated with 4M HCl in 1,4-dioxane (0.5 mL, 2 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (17 mg, yield, 55%). 1H NMR (300 MHz, MeOH-d4) 61.84-2.21 (m, 3H), 2.25-2.40 (m, 1H), 2.51-2.59 (m, 1H), 3.09 (s, 3H), 3.18-3.48 (m, 5H), 3.79-3.89 (m, 1H), 4.91-4.98 (m, 1H), 7.09 (d, J=8.8 Hz, 2H), 7.48 (d, J=8.8 Hz, 2H), 7.63 (d, J=8.8 Hz, 2H), 7.76 (d, J=8.8 Hz, 2H) ppm. MS (DCl/NH3): m/z 309 (M+H)+.
- (R)-3-Quinuclidinol hydrochloride (Aldrich, 20 g, 12.2 mmol) was treated with NaOH aqueous solution (20%, 50 mL) at ambient temperature for 10 minutes and extracted with CHCl3/isopropyl alcohol (10:1, 3×200 mL). The extracts were combine, washed with brine (50 mL), dried over MgSO4, filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a white solid (15, 5 g, yield, 99%). 1H NMR (300 MHz, MeOH-d4) 61.36-1.50 (m, 1H), 1.52-1.60 (m, 1H), 1.76-1.85 (m, 2H), 1.90-2.05 (m, 1H), 2.50-2.95 (m, 5H), 3.10 (ddd, J=14.2, 8.4, 2.3 Hz, 1H), 3.82-3.88 (m, 1H) ppm. MS (DCl/NH3): m/z 128 (M+H)+.
- The product of Example 9A (1.27 g, 10 mmol) was treated with 4-bromophenol-(Aldrich, 2.83 g, 10 mol) according to the procedure of Example 1A. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.30) as solid (400 mg, yield, 14%). 1H NMR (300 MHz, MeOH-d4) δ 1.41-1.54 (m, 1H), 1.59-1.73 (m, 1H), 1.73-1.86 (m, 1H), 1.92-2.06 (m, 1H), 2.09-2.17 (m, 1H), 2.71-2.97 (m, 5H), 3.24-3.34 (m, 1H), 4.45-4.52 (m, 1H), 6.83 (dt, J=9.2, 2.6 Hz, 2H), 7.37 (dt, J=9.2, 2.7 Hz, 2H) ppm. MS (DCl/NH3): m/z 282 (M+H)+, 284 (M+H)+.
- The product of Example 9B (282 mg, 1 mmol) was treated with N,N-dimethyl-4-amino-phenyl boronic acid (230 mg, 1.4 mmol) according to the procedure of Example 1B. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.2) as a solid (118 mg, yield, 37%) 1H NMR (MeOH-d4, 300 MHz) δ 1.41-1.56 (m, 1H), 1.61-1.88 (m, 2H), 1.98-2.12 (m, 1H), 2.14-2.22 (m, 1H), 2.72-3.01 (m, 11H), 3.22-3.34 (m, 1H), 4.48-4.57 (m, 1H), 6.83 (dt, J=8.8, 3.0 Hz, 2H), 6.92 (dt, J=8.8, 2.1 Hz, 2H), 7.39-7.49 (m, 4H) ppm. MS (DCl/NH3) m/z 323 (M+H)+.
- The product of Example 9B (118 mg, 0.37 mmol) in ethyl acetate:ethanol (5 mL, 1:1), was treated with fumaric acid (46 mg, 0.4 mmol). The title compound was obtained as a solid (128.8 mg, yield, 79%). 1H NMR (MeOH-d4, 300 MHz) δ 1.41-2.15 (m, 3H), 2.24-2.37 (m, 1H), 2.44-2.52 (m, 1H), 2.95 (s, 6H), 3.16-3.43 (m, 6H), 3.68-3.79 (m, 1H), 6.68 (s, 2H), 6.83 (dt, J=9.2, 3.0 Hz, 2H), 6.99 (dt, J=8.8, 3.0 Hz, 2H), 7.43 (dt, J=8.8, 3.0 Hz, 2H), 7.50 (dt, J=8.5, 3.0 Hz, 2H) ppm. MS (DCl/NH3) m/z 323 (M+H)+. Anal. Calculated for C21H26N2O:1.0C4H4O4.0.1 ethyl acetate: C, 68.20; H, 6.94; N, 6.26. Found: C, 68.00; H, 7.15; N, 6.25.
- The product of Example 5C (148 mg, 0.5 mmol) was treated with methansulfonyl chloride (Aldrich, 68 mg, 0.6 mmol) and triethyl amine (303 mg, 3 mmol) in CH2Cl2 (5 ml) at 0° C. to room temperature for 3 h. The mixture was allowed to warm to room temperature and was concentrated under reduced pressure. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.3) as oil (20 mg, yield, 11%). 1H NMR (MeOH-d4, 300 MHz) δ 1.59-1.73 (m, 1H), 1.75-2.01 (m, 2H), 2.10-2.24 (m, 1H), 2.29-2.36 (m, 1H), 2.69 (s, 3H), 2.94-3.22 (m, 5H), 3.48-3.59 (m, 1H), 4.67-4.74 (m, 1H), 7.00 (d, J=8.8 Hz, 2H), 7.30 (d, J=8.5 Hz, 2H), 7.52-7.58 (m, 4H) ppm. MS (DCl/NH3) m/z 373 (M+H)+.
- The product of Example 10A (20 mg, 0.05 mmol) in ethyl acetate/ethanol (3 mL, 1:1) was treated with fumaric acid (11 mg, 0.1 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (16 mg, yield, 54%). 1H NMR (MeOH-d4, 300 MHz) δ 1.78-2.16 (m, 3H), 2.23-2.37 (m, 1H), 2.46-2.53 (m, 1H), 2.97 (s, 3H), 3.16-3.43 (m, 5H), 3.70-3.81 (m, 1H), 6.68 (s, 2H), 7.04 (d, J=8.8 Hz, 2H), 7.31 (d, J=8.5 Hz, 2H), 7.53-7.60 (m, 4H) ppm. MS (DCl/NH3) m/z 373 (M+H)+. Anal. Calculated for C20H24N2O3S.1.4C4H4O4.0.1 ethyl acetate: C, 57.43; H, 5.63; N, 5.15. Found: C, 57.10; H, 5.71; N, 5.26.
- The product of Example 8A (405 mg, 1 mmol) was treated with aniline (110 mg, 1.2 mmol) according to the procedure in Example 8B. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.25) as solid (200 mg, yield, 54%). 1H NMR (MeOH-d4, 300 MHz) δ 1.42-1.56 (m, 1H), 1.62-1.88 (m, 2H), 1.99-2.12 (m, 1H), 2.14-2.22 (m, 1H), 2.73-3.02 (m, 5H), 3.27-3.38 (m, 1H), 4.51-4.59 (m, 1H), 6.80-6.87 (m, 1H), 6.94 (d, J=8.8 Hz, 2H), 7.06-7.15 (m, 4H), 7.18-7.26 (m, 2H), 7.44 (d, J=8.5 Hz, 2H), 7.49 (d, J=8.8 Hz, 2H) ppm. MS (DCl/NH3) m/z 371 (M+H)+.
- The product of Example 11A (200 mg, 0.54 mmol) in ethyl acetate:ethanol (5 mL, 1:1) was treated with fumaric acid (70 mg, 0.6 mmol). The title compound was obtained as a solid (197.8 mg, yield, 72%). 1H NMR (MeOH-d4, 300 MHz) δ 1.81-2.20 (m, 3H), 2.27-2.42 (m, 1H), 2.50-2.58 (m, 1H), 3.17-3.48 (m, 5H), 3.75-3.87 (m, 1H), 4.85-4.93 (m, 1H), 6.71 (s, 2.5H), 6.81-6.89 (m, 1H), 7.02 (d, J=8.8 Hz, 2H), 7.07-7.17 (m, 4H), 7.18-7.27 (m, 2H), 7.45 (d, J=8.8 Hz, 2H), 7.54 (d, J=8.8 Hz, 2H) ppm. MS (DCl/NH3) m/z 371 (M+H)+. Anal. Calculated for C25H26N2O.1.2C4H4O4: C, 70.21; H, 6.09; N, 5.50. Found: C, 70.09; H, 6.17; N, 5.43.
- 3-Hydroxy quinuclidine (Aldrich, 3.2 g, 25 mmol) in DMF (anhydrous, 30 mL) was treated with NaH (Aldrich, 99%, 1.2 g, 50 mmol) at ambient temperature for 1 hour. The mixture was then treated with 2-chloro-5-bromopyridine (7.1 g, 30 mmol) and stirred at 100° C. for 6 hours. The mixture reaction was treated with Na2CO3 (2M, 10 mL) at 10° C. and extracted with ethyl acetate (2×50 mL). The extracts were combined and concentrated under reduced pressure. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:2, Rf. 0.20) as oil (5.3 g, yield, 75%). 1H NMR (MeOH-d4, 300 MHz) δ 1.46-1.58 (m, 1H), 1.60-1.88 (m, 2H), 1.96-2.10 (m, 1H), 2.24-2.30 (m, 1H), 2.72-2.98 (m, 5H), 3.42-3.46 (m, 1H), 5.00-5.08 (m, 1H), 6.75 (d, J=8.8 Hz, 1H), 7.77 (dd, J=8.9, 2.4 Hz, 1H), 8.16 (d, J=2.7, 1H) ppm. MS (DCl/NH3) m/z 283 (M+H)+, 285 (M+H)+.
- The product of Example 12A (283 mg, 1 mmol) was treated with 3-amino-phenylboronic acid (Lancaster, 274 mg, 2.0 mmol) according to the procedure of Example 1B. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.10) as solid (180 mg, yield, 61%). 1H NMR (MeOH-d4, 300 MHz) δ 1.42-1.56 (m, 1H), 1.62-1.88 (m, 2H), 1.99-2.12 (m, 1H), 2.16-2.28 (m, 1H), 2.73-3.04 (m, 5H), 3.40-3.50 (m, 1H), 5.01-5.10 (m, 1H), 6.70 (ddd, J=7.8, 2.7, 0.7 Hz, 1H), 6.84-6.94 (m, 3H), 7.16 (t, J=7.8 Hz, 1H), 7.88 (dd, J=8.5, 2.4 Hz, 1H), 8.29 (d, J=2.6 Hz, 1H) ppm. MS (DCl/NH3) m/z 296 (M+H)+.
- The product of Example 12B (50 mg, 0.17 mmol) in ethyl acetate (5 mL) was treated with 4M HCl in 1,4-dioxane (0.2 mL, 0.8 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (30 mg, yield, 44%). 1H NMR (MeOH-d4, 300 MHz) δ 1.90-2.25 (m, 3H), 2.30-2.45 (m, 1H), 2.70-2.76 (m, 1H), 3.37-3.52 (m, 5H), 3.90-3.98 (m, 1H), 5.42-5.50 (m, 1H), 6.71 (s, 2.5H), 6.81-6.89 (m, 1H), 7.03 (d, J=8.9 Hz, 1H), 7.41 (ddd, J=7.8, 2.4, 1.0 Hz, 1H), 7.60-7.68 (m, 2H), 7.75 (dt, J=7.8, 1.0 Hz, 1H), 8.05 (dd, J=8.8, 2.7 Hz, 1H), 8.45 (d, J=2.7 Hz, 1H) ppm. MS (DCl/NH3) m/z 296 (M+H)+. Anal. Calculated for C18H21N3O.3.3HCl.1.0H2O: C, 49.85; H, 6.11; N, 9.69. Found: C, 49.93: H, 5.77; N, 9.51.
- 3-Quinuclidinol (Aldrich, 610 mg, 4.8 mmol) was treated with benzyl 4-(5-hydroxypyrazin-2-yl)phenylcarbamate (Ref. EP146282, 1.28 g, 4 mmol) according to the procedure of Example 5A. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.30) as solid (0.68 g, yield, 40%). 1H NMR (MeOH-d4, 300 MHz) δ 1.47-1.62 (m, 1H), 1.65-1.92 (m, 2H), 1.97-2.14 (m, 1H), 2.22-2.28 (m, 1H), 2.74-3.05 (m, 5H), 3.33-3.46 (m, 1H), 5.10-5.18 (m, 1H), 5.20 (s, 2H), 7.30-7.46 (m, 5H), 7.56 (d, J=8.8 Hz, 2H), 7.88 (d, J=8.8 Hz, 2H), 8.24 (d, J=1.4 Hz, 1H), 8.55 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 431 (M+H)+.
- The product of Example 13A (0.68 g, 1.58 mmol) in ethanol (20 mL) was treated with Pd/C (Aldrich, 10% wt., 70 mg) under H2 at ambient temperature for 4 hours. The mixture was filtered through a short column of diatomaceous earth and the filtrate was concentrated to give the title product as a solid (400 mg, yield, 86%). 1H NMR (MeOH-d4, 300 MHz) δ 1.47-1.62 (m, 1H), 1.64-1.90 (m, 2H), 1.97-2.12 (m, 1H), 2.19-2.27 (m, 1H), 2.73-3.03 (m, 5H), 3.34-3.44 (m, 1H), 5.07-5.14 (m, 1H), 6.78 (dt, J=8.8, 2.7 Hz, 2H), 7.68 (dt, J=8.5, 2.7 Hz, 2H), 8.17 (d, J=1.4 Hz, 1H), 8.45 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 297 (M+H)+.
- The product of Example 13B (100 mg, 0.34 mmol) in ethyl acetate/ethanol (5 mL, 1:1) was treated with fumaric acid (47 mg, 0.4 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (109 mg, yield, 91%). 1H NMR (MeOH-d4, 300 MHz) δ 1.73-2.10 (m, 3H), 2.17-2.33 (m, 1H), 2.41-2.50 (m, 1H), 3.05-3.44 (m, 5H), 3.64-3.76 (m, 1H), 5.24-5.32 (m, 1H), 6.67 (s, 1H), 6.78 (dt, J=8.8, 2.7 Hz, 2H), 7.69 (dt, J=8.5, 2.7 Hz, 2H), 8.22 (d, J=1.4 Hz, 1H), 8.46 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 297 (M+H)+. Anal. Calculated for C17H20N4O.0.5C4H4O4: C, 64.39; H, 6.26; N, 15.81. Found: C, 64.09; H, 6.21; N, 15.64.
- The product of Example 6D (155 mg, 1.2 mmol) was treated with benzyl 4-(5-hydroxypyrazin-2-yl)phenylcarbamate (Ref. EP146282A, 321 mg, 1 mmol) according to the procedure of Example 5A. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.3) as a solid (180 mg, yield, 42%). 1H NMR (MeOH-d4, 300 MHz) δ 1.47-1.62 (m, 1H), 1.64-1.90 (m, 2H), 1.98-2.12 (m, 1H), 2.20-2.28 (m, 1H), 2.74-3.04 (m, 5H), 3.34-3.46 (m, 1H), 5.10-5.17 (m, 1H), 5.20 (s, 2H), 7.27-7.47 (m, 5H), 7.56 (d, J=8.8 Hz, 2H), 7.88 (d, J=8.8 Hz, 2H), 8.24 (d, J=1.4 Hz, 1H), 8.55 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 431 (M+H)+.
- The product of Example 15A (180 mg, 0.42 mmol) was treated with Pd/C (Aldrich, 10% wt., 20 mg) in EtOH (10 mL) under H2 according to the procedure of Example 13B. The title compound was obtained as oil (125 mg, yield, 99%). 1H NMR (MeOH-d4, 300 MHz) δ 1.47-1.62 (m, 1H), 1.64-1.90 (m, 2H), 1.97-2.12 (m, 1H), 2.19-2.27 (m, 1H), 2.73-3.03 (m, 5H), 3.34-3.44 (m, 1H), 5.07-5.14 (m, 1H), 6.78 (dt. J=8.8, 2.7 Hz, 2H), 7.68 (dt, J=8.5, 2.7 Hz, 2H), 8.17 (d, J=1.4 Hz, 1H), 8.45 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 297 (M+H)+.
- The product of Example 14B (125 mg, 0.42 mmol) was treated with fumaric acid (50 mg, 0.42 mmol) in ethyl acetate/EtOH (v. 1:1, 5 mL) at ambient temperature for 10 h. The title compound was obtained as solid (124.4 mg, yield, 81%). 1H NMR (MeOH-d4, 300 MHz) δ 1.73-2.10 (m, 3H), 2.17-2.33 (m, 1H), 2.41-2.50 (m, 1H), 3.05-3.44 (m, 5H), 3.64-3.76 (m, 1H), 5.24-5.32 (m, 1H), 6.67 (s, 1H), 6.78 (dt, J=8.8, 2.7 Hz, 2H), 7.69 (dt, J=8.5, 2.7 Hz, 2H), 8.22 (d, J=1.4 Hz, 1H), 8.46 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 297 (M+H)+. Anal. Calculated for C17H20N4O.0.6C4H4O4: C, 63.66; H, 6.17; N, 15.31. Found: C, 63.80; H, 6.23; N, 15.49.
- Benzyl {4-[5-(3-(S)-1-Aza-bicyclo[2.2.2]oct-3-yloxy)-pyrazin-2-yl]-phenyl}-carbamate
- The product of Example 9A (155 mg, 1.2 mmol) was treated with benzyl 4-(5-hydroxypyrazin-2-yl)phenylcarbamate (Ref. EP146282A, 321 mg, 1 mmol) according to the procedure of Example 5A. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.3) as solid (170 mg, yield, 40%). 1H NMR (MeOH-d4, 300 MHz) δ 1.47-1.62 (m, 1H), 1.64-1.90 (m, 2H), 1.98-2.12 (m, 1H), 2.20-2.28 (m, 1H), 2.74-3.04 (m, 5H), 3.34-3.46 (m, 1H), 5.10-5.17 (m, 1H), 5.20 (s, 2H), 7.27-7.47 (m, 5H), 7.56 (d, J=8.8 Hz, 2H), 7.88 (d, J=8.8 Hz, 2H), 8.24 (d, J=1.4 Hz, 1H), 8.55 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 431 (M+H)+.
- The product of Example 15A (170 mg, 0.40 mmol) in ethanol (10 mL) was treated with Pd/C (Aldrich, 10% wt., 20 mg) under H2 according to the procedure of Example 13B. The title compound was obtained as an oil (120 mg, yield, 99%). 1H NMR (MeOH-d4, 300 MHz) δ 1.45-1.60 (m, 1H), 1.63-1.90 (m, 2H), 1.97-2.12 (m, 1H), 2.19-2.26 (m, 1H), 2.73-3.03 (m, 5H), 3.34-3.44 (m, 1H), 5.07-5.14 (m, 1H), 6.78 (dt, J=8.8, 2.7 Hz, 2H), 7.68 (dt, J=8.5, 2.7 Hz, 2H), 8.17 (d, J=1.4 Hz, 1H), 8.45 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 297 (M+H)+.
- The product of Example 15B (120 mg, 0.42 mmol) in ethyl acetate/ethanol (5 mL, 1:1) was treated with fumaric acid (50 mg, 0.42 mmol) at ambient temperature for 10 hours. The title compound was obtained as solid (106 mg, yield, 73%). 1H NMR (MeOH-d4, 300 MHz) δ 1.73-2.10 (m, 3H), 2.17-2.33 (m, 1H), 2.41-2.50 (m, 1H), 3.09-3.40 (m, 5H), 3.66-3.77 (m, 1H), 5.24-5.32 (m, 1H), 6.67 (s, 1H), 6.78 (dt, J=8.8, 2.7 Hz, 2H), 7.69 (dt, J=8.5, 2.7 Hz, 2H), 8.23 (d, J=1.4 Hz, 1H), 8.47 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 297 (M+H)+. Anal. Calculated for C17H20N4O.0.58C4H4O4: C, 63.80; H, 6.19; N, 15.40. Found: C, 63.83; H, 5.97; N, 15.50.
- The product of Example 13B (160 mg, 0.54 mmol) in acetonitrile (5 mL) was treated with formaldehyde (Aldrich, 37%, 1 mL, 12 mmol) and NaBH(OAc)3 (Aldrich, 343 mg, 1.62 mmol) at ambient temperature for 6 hours. The mixture treated with aqueous Na2CO3 (saturated 5 mL) and extracted with ethyl acetate (3×10 mL). The extracts were combined and concentrated under reduced pressure. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.20) as a solid (130 mg, yield, 74%). 1H NMR (MeOH-d4, 300 MHz) δ 1.47-1.61 (m, 1H), 1.64-1.90 (m, 2H), 1.98-2.11 (m, 1H), 2.18-2.27 (m, 1H), 2.73-3.04 (m, 11H), 3.33-3.45 (m, 1H), 5.07-5.15 (m, 1H), 6.83 (d, J=8.8 Hz, 2H), 7.78 (d, J=8.8 Hz, 2H), 8.18 (d, J=1.4 Hz, 1H), 8.47 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 325 (M+H)+.
- The product of Example 16A (130 mg, 0.40 mmol) in ethyl acetate/ethanol (5 mL, 1:1) was treated with fumaric acid (47 mg, 0.4 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (101 mg, yield, 63%). 1H NMR (MeOH-d4, 300 MHz) δ 1.74-2.11 (m, 3H), 2.18-2.34 (m, 1H), 2.43-2.51 (m, 1H), 3.00 (s, 6H), 3.08-3.37 (m, 5H), 3.65-3.79 (m, 1H), 5.24-5.33 (m, 1H), 6.67 (s, 1.2H), 6.84 (d, J=8.8 Hz, 2H), 7.80 (d, J=9.2 Hz, 2H), 8.23 (d, J=1.4 Hz, 1H), 8.50 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 325 (M+H)+. Anal. Calculated for C19H24N4O.0.6C4H4O4.0.3H2O: C, 64.34; H, 6.81; N, 14.03. Found: C, 64.45; H, 7.02; N, 13.86.
- The product of Example 13B (60 mg, 0.2 mmol) in dichloromethane (2 mL) was treated with acetic anhydride (Aldrich, 0.06 mL, 0.5 mmol) and triethyl amine (Aldrich, 0.25 mL, 1.8 mmol) at 0° C. to room temperature for 4 hours. The mixture was treated with aqueous Na2CO3 (2M, 5 mL) and extracted with ethyl acetate (3×15 mL). The extracts were combined and concentrated under reduced pressure. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.35) as a solid (50 mg, yield, 74%). 1H NMR (MeOH-d4, 300 MHz) a 1.64-2.29 (m, 7H), 2.35-2.44 (m, 1H), 2.99-3.25 (m, 5H), 3.55-3.66 (m, 1H), 5.20-5.30 (m, 1H), 7.68 (d, J=8.8 Hz, 2H), 7.92 (d, J=8.8 Hz, 2H), 8.28 (d, J=1.4 Hz, 1H), 8.59 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 339 (M+H)+.
- The product of Example 17A (50 mg, 0.15 mmol) in ethyl acetate/ethanol (3 mL, 1:1) was treated with fumaric acid (23 mg, 0.2 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (40 mg, yield, 63%). 1H NMR (MeOH-d4, 300 MHz) δ 1.77-2.17 (m, 6H), 2.21-2.37 (m, 1H), 2.47-2.56 (m, 1H), 3.13-3.40 (m, 5H), 3.71-3.83 (m, 1H), 5.31-5.38 (m, 1H), 6.68 (m, 1.2H), 7.68 (d, J=8.8 Hz, 2H), 7.92 (d, J=8.8 Hz, 2H), 8.31 (d, J=1.4 Hz, 1H), 8.59 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3) m/z 339 (M+H)+, Anal. Calculated for C19H22N4O2.0.63C4H4O4.0.7H2O: C, 60.94; H, 6.16; N, 13.21. Found: C, 60.79; H, 6.18; N, 13.37
- 3-Quinuclidinol (Aldrich, 254 mg, 2 mmol) in tetrahydrofuran (Aldrich, anhydrous, 10 mL) was treated with potassium tert-butoxide (224 mg, 2 mmol) at ambient temperature for 1 hour. 2-Iodo-5-bromo-pyrimidine (Aldrich, 568 mg, 2 mmol) was then added. After stirring for 30 minutes, the mixture was treated with water (5 mL) and extracted with CHCl3:isopropyl alcohol (10:1, 3×10 mL). The extracts were combined and concentrated under reduced pressure. The title compound was purified by flash chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.15) as a solid (287 mg, yield, 50%). 1H NMR (300 MHz, MeOH-d4) δ 1.52-1.65 (m, 1H), 1.66-1.93 (m, 2H), 2.00-2.15 (m, 1H), 2.22-2.31 (m, 1H), 2.79-3.09 (m, 5H), 3.38-3.49 (m, 1H), 5.06-5.15 (m, 1H), 8.64 (s, 2H) ppm. MS (DCl/NH3) m/z 284 (M+H)+ 286 (M+H)+.
- The product of Example 18A (283 mg, 1 mmol) in tetrahydrofuran (anhydrous, 10 mL) was treated with t-butyl[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-carbamate (Frontier, 319 mg, 1 mmol), Pd2(dba)3 (Strem Chemicals, 24 mg, 0.025 mmol), (tBu3P)2Pd (Strem Chemicals, 26 mg, 0.05 mmol), K2CO3 (Aldrich, 276 mg 2 mmol) and heated at 60° C. under N2 for 15 hours. The resulting mixture was allowed to cool to room temperature, diluted with ethyl acetate (20 mL), and washed with brine (2×5 mL). The organic phase was concentrated and the title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.20) as a solid (340 mg, yield, 86%). 1H NMR (300 MHz, MeOH-d4) δ 1.48-1.63 (m, 10H), 1.65-1.91 (m, 2H), 2.02-2.16 (m, 1H), 2.22-2.30 (m, 1H), 2.75-3.05 (m, 5H), 3.36-3.48 (m, 1H), 5.13-5.21 (m, 1H), 7.54 (s, 4H), 8.78 (s, 2H) ppm. MS (DCl/NH3) m/z 397 (M+H)+.
- The product of Example 18B (340 mg, 0.86 mmol) in CH2Cl2 (6 mL) was treated with trifluoroacetic acid (Aldrich, 2 mL) at ambient temperature for 30 minutes and concentrated under reduced pressure. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.07) as solid (150 mg, yield, 58%). 1H NMR (300 MHz, MeOH-d4) 61.88-2.22 (m, 3H), 2.31-2.45 (m, 1H), 2.56-2.64 (m, 1H), 3.27-3.51 (m, 5H), 3.84-3.96 (m, 1H), 5.36-5.45 (m, 1H), 6.87 (d, J=8.5 Hz, 2H), 7.42 (d, J=8.5 Hz, 2H), 8.77 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+.
- The product of Example 18C (150 mg, 0.5 mmol) in ethyl acetate:ethanol (1:1, 5 mL) was treated with fumaric acid (58 mg, 0.5 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (178.2 mg, yield, 98%). 1H NMR (300 MHz, MeOH-d4) d 1.74-2.11 (m, 3H), 2.20-2.36 (m, 1H), 2.44-2.53 (m, 1H), 3.13-3.40 (m, 5H), 3.68-3.79 (m, 1H), 5.27-5.35 (m, 1H), 6.68 (s, 1.2H), 6.81 (d, J=8.8 Hz, 2H), 7.37 (d, J=8.8 Hz, 2H), 8.74 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+. Anal. Calculated for C17H20N4O.0.57C4H4O4: C, 63.88; H, 6.19; N, 15.54. Found: C, 63.73; H, 6.21; N, 15.51.
- The product of Example 9A (509 mg, 4 mmol) was treated with potassium tert-butoxide (448 mg, 4 mmol) and 2-iodo-5-bromo-pyrimidine (Aldrich, 1.14 g, 4 mmol) according to the procedure of Example 18A. The title compound was purified by flash chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.15) as a solid (760 mg, yield, 67%). 1H NMR (300 MHz, MeOH-d4) δ 1.52-1.65 (m, 1H), 1.66-1.93 (m, 2H), 2.03-2.15 (m, 1H), 2.22-2.31 (m, 1H), 2.79-3.09 (m, 5H), 3.41-3.52 (m, 1H), 5.06-5.15 (m, 1H), 8.64 (s, 2H) ppm. MS (DCl/NH3) m/z 284 (M+H)+ 286 (M+H)+.
- The product of Example 19A (160 mg, 0.57 mmol) was coupled with t-butyl[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-carbamate (Frontier, 319 mg, 1 mmol) according to the procedure of Example 18B. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.20) as solid (150 mg, yield, 67%). 1H NMR (300 MHz, MeOH-d4) 61.48-1.63 (m, 10H), 1.65-1.91 (m, 2H), 2.02-2.16 (m, 1H), 2.22-2.30 (m, 1H), 2.75-3.05 (m, 5H), 3.36-3.48 (m, 1H), 5.13-5.21 (m, 1H), 7.54 (s, 4H), 8.78 (s, 2H) ppm. MS (DCl/NH3) m/z 397 (M+H)+.
- The product of Example 19B (150 mg, 0.38 mmol) was treated with trifluoroacetic acid (2 mL) according to the procedure of Example 18C. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.07) as solid (30 mg, yield, 26%). 1H NMR (300 MHz, MeOH-d4) δ 1.88-2.22 (m, 3H), 2.31-2.45 (m, 1H), 2.56-2.64 (m, 1H), 3.27-3.51 (m, 5H), 3.84-3.96 (m, 1H), 5.36-5.45 (m, 1H), 6.87 (d, J=8.5 Hz, 2H), 7.42 (d, J=8.5 Hz, 2H), 8.77 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+.
- The product of Example 19C (30 mg, 0.1 mmol) in ethyl acetate/ethanol (1:1, 2 mL) was treated with fumaric acid (12 mg, 0.1 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (13.6 mg, yield, 35%). 1H NMR (300 MHz, MeOH-d4) δ 1.84-2.20 (m, 3H), 2.28-2.44 (m, 1H), 2.53-2.62 (m, 1H), 3.16-3.45 (m, 5H), 3.81-3.91 (m, 1H), 5.34-5.42 (m, 1H), 6.68 (s, 1.5H), 6.81 (d, J=8.1 Hz, 2H), 7.37 (d, J=8.5 Hz, 2H), 8.75 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+. Anal. Calculated for C17H20N4O.0.7C4H4O4.0.45H2O: C, 61.65; H, 6.19; N, 14.52. Found: C, 61.41; H, 6.02; N, 14.80.
- The product of Example 18A (160 mg, 0.57 mmol) was coupled with 3-aminophenylboronic acid (Lancaster, 157 mg, 1.14 mmol) according to the procedure of Example 1B. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.1) as solid (144 mg, yield, 86%). 1H NMR (300 MHz, MeOH-d4) δ 1.48-1.62 (m, 1H), 1.65-1.90 (m, 2H), 2.01-2.15 (m, 1H), 2.21-2.29 (m, 1H), 2.74-3.04 (m, 5H), 3.36-3.47 (m, 1H), 5.12-5.20 (m, 1H), 6.75 (ddd, J=8.2, 2.1, 1.0 Hz, 1H), 6.89 (ddd, J=7.4, 1.7, 1.0 Hz, 1H), 6.93 (t, J=1.8 Hz, 1H), 7.20 (t, J=7.8 Hz, 1H), 8.74 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+.
- The product of Example 20A (144 mg, 0.48 mmol) in ethyl acetate/ethanol (1:1, 5 mL) was treated with fumaric acid (58 mg, 0.5 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (122 mg, yield, 62%). 1H NMR (300 MHz, MeOH-d4) δ 1.78-2.13 (m, 3H), 2.22-2.38 (m, 1H), 2.48-2.55 (m, 1H), 3.12-3.39 (m, 5H), 3.71-3.83 (m, 1H), 5.31-5.39 (m, 1H), 6.67 (s, 1.8H), 6.76 (ddd, J=8.2, 2.1, 1.0 Hz, 1H), 6.90 (ddd, J=7.4, 1.7, 1.0 Hz, 1H) 6.94 (t, J=1.8 Hz, 1H), 7.21 (t, J=7.8 Hz, 1H), 8.74 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+. Anal. Calculated for C17H20N4.0.9C4H4O4.0.6H2O: C, 60.11; H, 6.07; N, 13.61. Found: C, 60.00; H, 5.88; N, 13.99.
- The product of Example 19A (280 mg, 1.0 mmol) was coupled with 3-aminophenylboronic acid (Lancaster, 276 mg, 2.0 mmol) according to the procedure of Example 1B. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.1) as a solid (230 mg, yield, 77%). 1H NMR (300 MHz, MeOH-d4) 61.48-1.62 (m, 1H), 1.65-1.90 (m, 2H), 2.01-2.15 (m, 1H), 2.21-2.29 (m, 1H), 2.74-3.04 (m, 5H), 3.36-3.47 (m, 1H), 5.12-5.20 (m, 1H), 6.75 (ddd, J=8.2, 2.1, 1.0 Hz, 1H), 6.89 (ddd, J=7.4, 1.7, 1.0 Hz, 1H), 6.93 (t, J=1.8 Hz, 1H), 7.20 (t, J=7.8 Hz, 1H), 8.74 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+.
- The product of Example 21A (230 mg, 0.77 mmol) in ethyl acetate:ethanol (1:1, 5 mL) was treated with fumaric acid (90 mg, 0.77 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (244 mg, yield, 75%). 1H NMR (300 MHz, MeOH-d4) 61.78-2.13 (m, 3H), 2.22-2.38 (m, 1H), 2.48-2.55 (m, 1H), 3.12-3.39 (m, 5H), 3.71-3.83 (m, 1H), 5.31-5.39 (m, 1H), 6.67 (s, 1.8H), 6.76 (ddd, J=8.2, 2.1, 1.0 Hz, 1H), 6.90 (ddd, J=7.4, 1.7, 1.0 Hz, 1H) 6.94 (t, J=1.8 Hz, 1H), 7.21 (t, J=7.8 Hz, 1H), 8.74 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+. Anal. Calculated for C17H20N4O.1.07C4H4O4: C, 60.77; H, 5.82; N, 13.32. Found: C, 60.61; H, 5.79; N, 13.36.
- The product of Example 6D (508 mg, 4 mmol) was treated with potassium tert-butoxide (448 mg, 4 mmol) and 2-iodo-5-bromo-pyrimidine (Aldrich, 1.14 g, 4 mmol) according to the procedure of Example 18A. The title compound was purified by flash chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.15) as a solid (780 mg, yield, 69%). 1H NMR (300 MHz, MeOH-d4) δ 1.52-1.65 (m, 1H), 1.66-1.93 (m, 2H), 2.03-2.15 (m, 1H), 2.22-2.31 (m, 1H), 2.79-3.09 (m, 5H), 3.41-3.52 (m, 1H), 5.06-5.15 (m, 1H), 8.64 (s, 2H) ppm. MS (DCl/NH3) m/z 284 (M+H)+ 286 (M+H)+.
- The product of Example 22A (284 mg, 1.0 mmol) was treated with 3-aminophenylboronic acid (Lancaster, 276 mg, 2.0 mmol) according to the procedure of Example 1B. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.1) as solid (285 mg, yield, 96%). 1H NMR (300 MHz, MeOH-d4) δ 1.48-1.62 (m, 1H), 1.61-1.91 (m, 2H), 2.01-2.16 (m; 1H), 2.22-2.30 (m, 1H), 2.74-3.05 (m, 5H), 3.36-3.47 (m, 1H), 5.12-5.20 (m, 1H), 6.75 (ddd, J=8.2, 2.1, 1.0 Hz, 1H), 6.89 (ddd, J=74, 1.7, 1.0 Hz, 1H), 6.93 (t, J=1.8 Hz, 1H), 7.20 (t, J=7.8 Hz, 1H), 8.74 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+.
- The product of Example 22B (284 mg, 0.96 mmol) in ethyl acetate:ethanol (1:1, 10 mL) was treated with fumaric acid (116 mg, 1.0 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (351 mg, yield, 87%). 1H NMR (300 MHz, MeOH-d4) 61.78-2.13 (m, 3H), 2.22-2.38 (m, 1H), 2.48-2.55 (m, 1H), 3.12-3.39 (m, 5H), 3.71-3.83 (m, 1H), 5.31-5.39 (m, 1H), 6.67 (s, 1.8H), 6.76 (ddd, J=8.2, 2.1, 1.0 Hz, 1H), 6.90 (ddd, J=7.4, 1.7, 1.0 Hz, 1H) 6.94 (t, J=1.8 Hz, 1H), 7.21 (t, J=7.8 Hz, 1H), 8.79 (s, 2H) ppm. MS (DCl/NH3) m/z 297 (M+H)+. Anal. Calculated for C17H20N4O.1.0C4H4O4.0.25H2O: C, 60.49; H, 5.92; N, 13.44. Found: C, 60.49; H, 5.94; N, 13.35.
- The product of Example 18A (160 mg, 0.57 mmol) was treated with 3-amino-4-methyl-phenylboronic acid (Lancaster, 302 mg, 2.0 mmol) according to the procedure of Example 1B. The title product was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.1) as solid (45 mg, yield, 26%). 1H NMR (300 MHz, MeOH-d4) δ 1.48-1.62 (m, 1H), 1.65-1.90 (m, 2H), 2.01-2.16 (m, 1H), 2.19 (s, 3H), 2.22-2.29 (m, 1H), 2.74-3.01 (m, 5H), 3.36-3.47 (m, 1H), 5.12-5.20 (m, 1H), 6.86 (dd, J=7.5 1.7 Hz, 1H), 6.95 (d, J=1.7 Hz, 1H), 7.10 (d, J=8.1 Hz, 1H), 8.73 (s, 2H) ppm. MS (DCl/NH3) m/z 311 (M+H)+.
- The product of Example 23A (45 mg, 0.14 mmol) in ethyl acetate/ethanol (1:1, 3 mL) was treated with fumaric acid (23 mg, 0.2 mmol) at ambient temperature for 10 hours. The title compound was obtained as a solid (50 mg, yield, 78%). 1H NMR (300 MHz, MeOH-d4) δ 1.85-2.24 (m, 6H), 2.30-2.44 (m, 1H), 2.55-2.62 (m, 1H), 3.23-3.46 (m, 5H), 3.82-3.92 (m, 1H), 5.36-5.44 (m, 1H), 6.69 (s, 2H), 6.87 (dd, J=2.0, 7.8 Hz, 1H), 6.96 (d, J=1.7 Hz, 1H), 7.12 (d, J=8.1 Hz, 1H), 8.78 (s, 2H). ppm. MS (DCl/NH3) m/z 311 (M+H)+. Anal. Calculated for C18H22N4O.1.15C4H4O4; C, 61.15; H, 6.04; N, 12.62. Found: C, 61.14; H, 6.08; N, 12.38.
- 3-Quinuclidinone hydrochloride (Aldrich, 1.61 g, 10 mmol) in acetic acid (25 mL) was treated with biphenyl-4,4′-diamine (Aldrich, 0.92 g, 5.0 mmol), Na2SO4 (anhydrous. Aldrich, 7.40 g, 50 mmol) and NaBH(OAc)3 (Aldrich, 3.16 g, 15 mmol) at ambient temperature for 15 hours. The reaction mixture was slowly poured into a flask containing 75 mL of saturated NaHCO3, stirred for 20 minutes, and extracted with ethyl acetate (3×100 mL). The extracts were combined and washed with brine (2×20 mL). The organic phase was concentrated under reduced pressure and the title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 80:20:4, Rf. 0.10) as a solid (0.98 g, yield, 67%). 1H NMR (MeOH-d4, 300 MHz) δ 1.40-1.52 (m, 1H), 1.64-1.84 (m, 2H), 1.89-2.04 (m, 2H), 2.57 (ddd, J=13.9, 5.2, 2.1 Hz, 1H) 2.75-3.00 (m, 4H), 3.27-3.35 (m, 1H), 3.50-3.60 (m, 1H), 6.61-6.69 (m, 2H), 6.80-6.86 (m, 2H), 6.92-6.97 (m, 2H), 7.06-7.13 (m, 2H) ppm. MS (DCl/NH3) m/z 294 (M+H)+.
- The product of Example 24A (150 mg, 0.51 mmol) was treated with fumaric acid (Aldrich, 70 mg, 0.6 mmol) in ethyl acetate/methanol (10:1, 20 mL) at ambient temperature for 10 hours. The title compound was obtained as a solid (210 mg, yield, 99%): 1H NMR (MeOH-d4, 300 MHz) δ 1.81-1.92 (m, 1H), 2.02-2.15 (m, 2H), 2.22-2.35 (m, 2H), 3.02 (ddd, J=12.5, 4.7, 1.7 Hz, 1H) 3.24-3.44 (m, 4H), 3.77 (ddd, J=12.9, 9.2, 2.4 Hz, 1H), 3.90-4.02 (m, 1H), 6.64-6.72 (m, 4H), 6.81-6.90 (m, 2H), 6.96-7.01 (m, 2H), 7.08-7.14 (m, 2H) ppm. MS (DCl/NH3) m/z 294 (M+H)+. Anal. Calculated for C19H23N3.1.2C4H4O4.0.3H2O: C, 65.25; H, 6.53; N, 9.59. Found: C, 65.20; H, 6.23; N, 9.28.
- The product of Example 1C (124 mg, 0.33 mmol) was treated with H2O2 (Aldrich, aq. 35%, 32 μL, 0.33 mmol) in acetonitrile (2 mL) and water (2 mL) at ambient temperature for 5 h. The mixture was quenched by Na2SO3 solution carefully till no more peroxide was noticed, and it was then concentrated under vacuum. The title product was purified by preparative HPLC (Xterra™, column, Xterra RP-18, 5 μm, 30×100 mm. Eluting Solvent, MeCN/H2O (with 0.2% v. TFA), (v. 90/10 to 10/90 over 20 min.) Flow rate, 75 mL/min., uv, 250 nm) as solid (50 mg, yield, 49%). 1H NMR (MeOH-d4, 300 MHz) δ 1.84-2.25 (m, 3H), 2.31-2.53 (m, 2H), 3.33-3.52 (m, 5H), 3.74-3.97 (m, 1H), 4.91-5.02 (m, 1H), 6.67 (dd, J=8.0, 2.2 Hz, 1H), 6.89 (d, J=7.5 Hz, 1H), 6.92-6.96 (m, 1H), 6.97-7.05 (m, 2H), 7.13 (t, J=7.8 Hz, 1H), 7143-7.67 (m, 2H) ppm. MS (DCl/NH3) m/z 311 (M+H)+.
- The product of Example 25A (50 mg, 0.16 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.5 mL) in EtOAc (5 mL) at ambient temperature for 1 hour to give the title compound as yellow solid (50.0 mg, 40%). 1H NMR (MeOH-D4, 300 MHz) δ 2.07-2.41 (m, 3H), 2.46-2.64 (m, 2H), 3.67-3.95 (m, 5H), 4.24-4.38 (m, 1H), 5.03-5.18 (m, 1H), 7.05-7.18 (m, 3H), 7.37 (s, 1H), 7.41-7.47 (m, 2H), 7.58-7.67 (m, 2H) ppm. MS (DCl/NH3) m/z 311 (M+H)+. Anal. Calculated for C19H22N4O2.2.00HCl.0.50H2O: C, 58.17; H, 6.42; N, 7.14. Found: C, 57.89; H, 6.56; N, 6.82.
- A Smith Process vessel (0.5-2 ml, Personal Chemistry) was charged with a stir bar. To the vessel was added the product of Example 1A (10 mg, 0.025 mmol) in toluene (0.8 mL) and 1,4-dioxane (0.4 mL). p-Toluidine (Aldrich, 4 mg, 0.038 mmol) and t-BuONa (Aldrich, 3.6 mg, 0.038 mmol,) were added to above solution. The Mixture was purged under N2 followed by addition of Pd2(dba)3 (Aldrich, 1 mg, 0.001 mmol,) and Pd(t-Bu3P)2 (Strem Chemicals, 1.2 mg, 0.002 mmol). The reaction vessel was sealed and heated in microwave to 150° C. for 35 min in an Emry™ Optimizer microwave. After cooling, the reaction vessel was uncapped and filtered through a plug of silica, washed with MeOH. The filtrate was collected and dried. The title compound was purified by preparative HPLC (Gilson, column, Symmetry® C-8 7 μm, 40×100 mm. Eluting Solvent, MeCN/H2O (with 0.2% v. TFA) (v. 90/10 to 10/90 over 20 min.) Flow rate, 75 mL/min., uv, 254 nm) as solid (5.0 mg, yield, 40%). 1H NMR (300 MHz, DMSO-d6) δ 1.76 (m, 1H), 1.92 (m, 2H), 2.10 (m, 1H), 2.24 (s, 3H), 2.40 (m, 1H), 3.23-3.30 (m, 5H), 3.77 (m, 1H), 4.86 (m, 1H), 6.99-7.09 (m, 8H), 7.47 (d, J=9 Hz, 2H), 7.56 (d, J=9 Hz, 2H), 8.10 (br, 1H) ppm; MS (DCl/NH3) 385 (M+H)+.
- The product of Example 1A (10 mg, 0.025 mmol) was coupled with C-cyclohexyl-methylamine (Aldrich, 4.3 mg, 0.038 mmol) according to the procedure of Example 26. The title compound was purified by preparative HPLC (Gilson, column, Symmetry® C-8 7 μm, 40×100 mm. Eluting Solvent, MeCN/H2O (with 0.2% V. TFA) (v. 90/10 to 10/90 over 20 min.) Flow rate, 75 mL/min., uv, 254 nm) as solid (8.2 mg, yield, 65%). 1H NMR (300 MHz, DMSO-d5) δ (ppm) 1.53 (m, 4H), 1.68 (m, 3H), 1.91 (m, 4H), 2.09 (m, 1H), 2.39 (m, 1H), 3.23-3.30 (m, 5H), 3.77 (m, 7H), 6.71 (d, J=9 Hz, 2H), 6.99 (d, J=9 Hz, 2H), 7.39 (d, J=9 Hz, 2H), 7.51 (d, J=9 Hz, 2H), 9.58 (br, 1H); MS (DCl/NH3) 391 (M+H)+.
- The mixture of 4-Iodo-phenylamine (Aldrich, 6.57 g, 30 mmol) and paraformaldehyde (Aldrich, 1.80 g, 60 mmol) in trifluoroacetic acid (Aldrich, 60 mL) was stirred at ambient temperature for 15 hour. It was then concentrated, dissolved in water (10 mL) and neutralized with NH3.H2O till pH=9. The mixture was extracted with EtOAc (3×50 mL). The extracts were combined and concentrated. The title compound was purified by chromatography (SiO2, hexane:EtOAc, 50:50, Rf. 0.40) as solid (2.70 g, yield, 38%). 1H NMR (300 MHz, CDCl3) δ 4.09 (d, J=17.0 Hz, 2H), 4.26 (s, 2H), 4.63 (d, J=16.6 Hz, 2H), 6.89 (d, J=8.5 Hz, 2H), 7.16-7.31 (m, 2H), 7.47 (dd, J=8.5, 2.0 Hz, 2H) ppm. MS (DCl/NH3) 475 (M+H)+.
- The product of Example 1A (330 mg, 1 mmol) was coupled with hexamethylditin (Aldrich, 654 mg, 2 mmol) under the catalysis of Pd(PPh3)4 (Aldrich, 116 mg, 0.1 mmol) in toluene (10 mL) at 110° C. under N2 for 2 hours. After the reaction was complete, it was cooled down to room temperature, diluted with EtOAc (50 mL) and washed with brine (2×5 mL). The organic solution was concentrated under reduced pressure and the title compound was purified by flash chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.35) as solid (300 mg, yield, 82%). 1H NMR (300 MHz, MeOH-D4) δ 0.25 (s, 9H), 1.79-2.16 (m, 3H), 2.23-2.36 (m, 1H), 2.45-2.52 (m, 1H), 3.17-3.43 (m, 5H), 3.73-3.83 (m, 1H), 4.84-4.92 (m, 1H), 6.96 (d, J=8.5 Hz, 2H), 7.41 (d, J=8.5 Hz, 2H) ppm. MS (DCl/NH3): m/z 364 (M+H)+, 366 (M+H)+, 368 (M+H)+.
- The product of Example 28B (300 mg, 0.8 mmol) was coupled with the product of Example 28A (450 mg, 0.95 mmol) under the catalysis of Pd2(dba)3 (Aldrich, 30 mg, 0.033 mmol) and P(o-tolyl)3 (Aldrich, 30 mg, 0.1 mmol) in dry DMF (Aldrich, 4 mL) at 80° C. for 3 hours. It was then concentrated under reduced pressure and the free base of the title compound was purified by preparative HPLC (Xterra™, column, Xterra RP-18 5 μm, 30×100 mm. Eluting Solvent, MeCN/H2O(NH4HCO3, 0.1 M, pH=10) (v. 90/10 to 10/90 over 20 min.) Flow rate, 75 mL/min., uv, 250 nm) (60 mg, yield, 14%). The free base was treated with fumaric acid (Aldrich, 17 mg, 0.15 mmol) in EtOAc/MeOH (v.10:1, 5 mL) at ambient temperature for 10 hours to give the title compound (56 mg, 74%). 1H NMR (300 MHz, MeOH-D4) 8 ppm 1.77-2.18 (m, 3H) 2.22-2.36 (m, 1H) 2.45-2.54 (m, 1H), 3.15-3.43 (m, 5H), 3.71-3.82 (m, J=14.9 Hz, 1H), 4.14-4.41 (m, 3H), 4.61-4.93 (m, 3H), 6.69 (s, 2H), 6.91-7.04 (m, 3H), 7.12-7.22 (m, J=8.8 Hz, 2H), 7.31-7.42 (m, 2H), 7.44-7.54 (m, 3H) ppm. MS (DCl/NH3) m/z 550 (M+H)+. Anal. Calculated for C28H28N3OI.1.15C4H4O4, C, 57.33; H, 4.81; N, 6.15. Found: C, 57.13; H, 4.42; N, 6.22.
- 4-(4-Bromo-phenyl)-4-oxo-butyric acid (Aldrich, 25.0 g, 97.3 mmol) was treated with NH2NH2.H2O (Aldrich, 55%, 9.1 mL, 156 mmol) in EtOH (Aldrich, 100 mL) at refluxing for 2 h. It was cooled down to ambient temperature and the white solid was filtered off to give the title compound (24.2 g, 98%). 1H NMR (CDCl3, 300 MHz) δ 2.50-2.76 (m, 2H), 2.85-3.09 (m, 2H), 7.43-7.71 (m, 4H), 8.55 (s, 1H) ppm. MS (DCl/NH3) m/z 253 (M+H)+, 255 (M+H)+, 270 (M+NH4)+, 272 (M+NH4)+.
- The product of Example 29A (24.0 g, 95 mmol) was oxidized with bromine (Aldrich, 18.81 g, 6.1 mL, 104.5 mmol) in HOAc (Aldrich, 200 mL) at 100° C. for 1 h. The brown mixture was then cooled down to ambient temperature. The white solid was filtered off and the filtrate was washed with water (2×20 mL). The solid was collected and dried under vacuum to give the title compound (25.0 g, 100%). 1H NMR (CDCl3, 300 MHz) δ 7.07 (d, J=10.2 Hz, 1H), 7.55-7.69 (m, 4H), 7.72 (d, J=9.8 Hz, 1H) ppm. MS (DCl/NH3) m/z 251 (M+H)+, 253 (M+H)+, 268 (M+NH4)+, 270 (M+NH4)+.
- The product of Example 29B (25.0 g, 100 mmol) was stirred in POCl3 (Aldrich, 200 mL) at 100° C. for 18 h. Most of POCl3 was then distilled off (around 150 mL was collected). The residue was then poured into 300 mL of ice/water and stirred vigorously for 1 h. The solid was filtered off. The filtrate was washed with water (2×50 mL) and dried under vacuum to give the title compound (26.2 g, 98%). 1H NMR (MeOH-D4, 300 MHz) δ 7.72 (d, J=8.8 Hz, 2H), 7.86 (d, J=8.8 Hz, 1H), 8.02 (d, J=8.8 Hz, 2H), 8.19 (d, J=9.2 Hz, 1H) ppm. MS (DCl/NH3) m/z 269 (M+H)+, 271 (M+H)+, 273 (M+H)+.
- The product of Example 29C (2.43 g, 9 mmol) was coupled with the product of Example 6B (1.27 g, 10 mmol) using t-BuOK (Aldrich, 1.12 g, 10 mmol) as base in THF (anhydrous, Aldrich, 50 mL) at ambient temperature for 10 h. After the reaction was complete, it was concentrated under reduced pressure. The residue was dissolved in CHCl3/tPrOH (v.10:1, 50 mL) and washed with brine (2×5 mL). The organic solution was concentrated under reduced pressure and the title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:2, Rf. 0.30) as slightly yellow solid (3.30 g, 100%). 1H NMR (MeOH-D4, 300 MHz) 1.47-1.66 (m, 1H), 1.66-1.93 (m, 2H), 1.96-2.18 (m, 1H), 2.23-2.42 (m, 1H), 2.71-3.06 (m, 5H), 3.38-3.58 (m, 1H), 5.17-5.47 (m, 1H), 7.28 (d, J=9.2 Hz, 1H), 7.59-7.78 (m, 2H), 7.82-7.99 (m, 2H), 8.06 (d, J=9.2 Hz, 1H) ppm. MS (DCl/NH3) m/z 360 (M+H)+, 362 (M+H)+.
- The product of Example 29D (360 mg, 1 mmol) was coupled with benzhydrylideneamine (Aldrich, 270 mg, 1.5 mmol) under the catalysis of Pd2(dba)3 (Aldrich, 18.3 mg, 0.02 mmol) and Xantphos (Strem Chemicals, 36 mg, 0.06 mmol) with t-BuONa (Aldrich, 150 mg, 1.5 mmol) in toluene (anhydrous, Aldrich, 10 mL) at 100° C. for 2 h. The mixture was then cooled down to ambient temperature and diluted with EtOAc (50 mL), washed with water (2×5 mL). The organic solution was concentrated and the title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.4) as a solid (360 mg, yield, 78%). 1H NMR (300 MHz, CD3OD) δ 1.45-1.63 (m, 1H), 1.64-1.94 (m, 2H), 1.94-2.13 (m, 1H), 2.23-2.41 (m, 1H), 2.71-3.06 (m, 5H), 3.39-3.55 (m, 1H), 5.10-5.37 (m, 1H), 6.82-6.93 (m, 2H), 7.12-7.23 (m, 3H), 7.25-7.35 (m, 3H), 7.39-7.57 (m, 3H), 7.67-7.74 (m, 2H), 7.74-7.83 (m, 2H), 7.96 (d, J=9.2 Hz, 1H) ppm. MS (DCl/NH3): 461 (M+H)+.
- The product of Example 29E (360 mg, 0.78 mmol) was treated with HCl (aq. 10%, 5 mL) in THF (5 mL) at ambient temperature for 4 h. It was then concentrated and the title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.1) as solid (210 mg, yield, 90%). 1H NMR (300 MHz, CD3OD) δ 1.44-1.66 (m, 1H), 1.65-1.94 (m, 2H), 1.95-2.16 (m, 1H), 2.20-2.40 (m, 1H), 2.68-3.06 (m, 5H), 3.37-3.57 (m, 1H), 5.15-5.37 (m, 1H), 6.65-6.89 (m, 2H), 7.18 (d, J=9.5 Hz, 1H), 7.55-7.81 (m, 2H), 7.93 (d, J=9.2 Hz, 1H) ppm. MS (DCl/NH3): 297 (M+H)+.
- The product of Example 29F (50.0 mg, 0.17 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.25 mL, 1 mmol) In EtOAc (5 mL) at ambient temperature for 5 hours to give the title compound (55 mg, yield, 81%). 1H NMR (300 MHz, CD3OD) δ 1.89-2.25 (m, 3H), 2.29-2.53 (m, 1H), 2.63-2.75 (m, 1H), 3.32-3.61 (m, 5H), 3.97 (dd, J=13.9, 8.5 Hz, 1H), 5.40-5.66 (m, 1H), 7.23-7.37 (m, 2H), 7.60 (d, J=9.2 Hz, 1H), 7.96-8.13 (m, 2H), 8.37 (d, J=9.2 Hz, 1H) ppm. MS (DCl/NH3): 297 (M+H)+. Anal. Calculated for C28H28N3OI.3.00HCl.1.36H2O: C, 47.46; H, 6.03; N, 13.02. Found: C, 47.86; H, 5.88; N, 12.58.
- The product of Example 29F (150 mg, 0.5 mmol) was treated with HOAc (36 μL, 36 mg, 0.6 mmol) in MeCN (5 mL) at ambient temperature for 5 min. N-bromosuccinimide (Aldrich, 100 mg, 0.55 mol) in MeCN (5 mL) was then added to the above solution at 0° C. and stirred at 0° C. for 1 h. It was then concentrated under reduced pressure. The title compound was purified by preparative HPLC (Xterra™, column, Xterra RP-18 5 μm, 30×100 mm. Eluting Solvent, MeCN/H2O(NH4HCO3, 0.1 M, pH=10) (v. 90/10 to 10/90 over 20 min.) Flow rate, 75 mL/min., uv, 250 nm) (100 mg, yield, 53%). 1H NMR (300 MHz, CD3OD) δ 1.45-1.65 (m, 1H), 1.65-1.94 (m, 2H), 1.93-2.16 (m, 1H), 2.19-2.39 (m, 1H), 2.67-3.11 (m, 5H), 3.37-3.54 (m, 1H), 5.18-5.35 (m, 1H), 6.91 (d, J=8.5 Hz, 1H), 7.19 (d, J=9.2 Hz, 1H), 7.70 (dd, J=8.5, 2.0 Hz, 1H), 7.95 (d, J=9.5 Hz, 1H), 8.03 (d, J=2.0 Hz, 1H) ppm. MS (DCl/NH3): 375 (M+H)+, 377 (M+H)+.
- The product of Example 30A (20.0 mg, 0.05 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.1 mL, 0.4 mmol) in EtOAc (2 mL) at ambient temperature for 1 hour to give the title compound as white solid (20 mg, yield, 91%). 1H NMR (300 MHz, CD3OD) δ 1.87-2.26 (m, 3H), 2.27-2.51 (m, 1H), 2.58-2.70 (m, 1H), 3.33-3.61 (m, 5H), 3.95 (dd, J=14.2, 8.5 Hz, 1H), 5.27-5.61 (m, 1H), 6.97 (d, J=8.5 Hz, 1H), 7.54 (d, J=9.5 Hz, 1H), 7.74 (dd, J=8.5, 2.0 Hz, 1H), 8.10 (d, J=2.4 Hz, 1H), 8.27 (d, J=9.5 Hz, 1H) ppm. MS (DCl/NH3): 375 (M+H)+, 377 (M+H)+. Anal. Calculated for C17H19BrN4O.2.10HCl.0.60H2O: C, 44.13; H, 4.86; N, 12.11. Found: C, 44.38; H, 4.83; N, 11.74.
- The product of Example 29F (150 mg, 0.5 mmol) was treated with HOAc (36 μL, 36 mg, 0.6 mmol) in MeCN (5 mL) at ambient temperature for 5 min. N-bromosuccinimide (Aldrich, 100 mg, 0.55 mol) in MeCN (5 mL) was then added to the above solution at 0° C. and stirred at 0° C. for 1 h. It was then concentrated under reduced pressure. The title compound was purified by preparative HPLC (Xterra™, column, Xterra RP-18 5 μm, 30×100 mm. Eluting Solvent, MeCN/H2O(NH4HCO3, 0.1 M, pH=10) (v. 90/10 to 10/90 over 20 min.) Flow rate, 75 mL/min., uv, 250 nm) (70 mg, yield, 31%). 1H NMR (300 MHz, CD3OD) δ 1.46-1.65 (m, 1H), 1.65-1.94 (m, 2H), 1.96-2.12 (m, 1H), 2.22-2.37 (m, 1H), 2.70-3.07 (m, 5H), 3.38-3.65 (m, 1H), 5.13-5.41 (m, 1H), 7.21 (d, J=9.5 Hz, 1H), 7.97 (d, J=9.2 Hz, 1H), 8.08 (s, 1H) ppm. MS (DCl/NH3): 453 (M+H)+, 455 (M+H)+, 457 (M+H)+.
- The product of Example 30A (70.0 mg, 0.15 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.1 mL, 0.4 mmol) in EtOAc (2 mL) at ambient temperature for 1 hour to give the title compound as white solid (40 mg, yield, 51%). 1H NMR (300 MHz, CD3OD) δ 1.91-2.25 (m, 5H), 2.26-2.50 (m, 1H), 2.60-2.81 (m, 1H), 3.32-3.61 (m, 5H), 3.96 (dd, J=14.2, 8.1 Hz, 1H), 5.44-5.62 (m, 1H), 7.71 (d, J=9.5 Hz, 1H), 8.12 (s, 2H), 8.41 (d, J=9.5 Hz, 1H) ppm. MS (DCl/NH3): 453 (M+H)+, 455 (M+H)+, 457 (M+H)+. Anal. Calculated for C17H18Br2N4O.2.00HCl.1.00H2O: C, 37.46; H, 4.07; N, 10.15. Found: C, 37.13; H, 3.88; N, 10.15.
- To the solution of 1-(4-Iodo-phenyl)-ethanone (Aldrich, 125 g, 508 mmol) in glacial acetic acid (600 mL) was added the bromine (Aldrich, 79.3 g, 508 mmol, in 50 mL of acetic acid) and stirred at room temperature for 10 hours. It was concentrated under reduced pressure. The residue was then diluted with ethyl acetate (100 mL) and washed with brine (3×50 mL). The organic solution was concentrated. The title compound was obtained as yellow solid by recrystallization from diethyl ether (150 g, 91%). 1H NMR (300 MHz, CDCl3) δ 4.39 (s, 2H), 7.69 (d, J=8.5 Hz, 2H), 7.87 (d, J=8.5 Hz, 2H) ppm; MS (DCl/NH3) m/z 246 (M-Br)+, 264 (M-Br+NH4)+.
- Under N2, diethyl malonate (Aldrich, 8.0 g, 50 mmol) was treated with sodium hydride (1.2 g, 50 mmol) in dry THF (120 mL) at 0° C. for 30 minute. The solution of the product of Example 32A (15.8 g, 48.6 mmol) in THF (30 mL) was then slowly added at 0° C. and the reaction mixture stirred additional 30 minutes at room temperature. It was quenched with water (10 mL) carefully and diluted with ethyl acetate (200 mL). The mixture was then washed with brine (3×20 mL). The organic solution was concentrated to give the title compound as oil (15 g, 74%). 1H NMR (300 MHz, CDCl3) δ 1.25-1.32 (m, J=7.1, 7.1 Hz, 7H), 3.57 (d, J=7.1 Hz, 2H), 4.16-4.29 (m, 4H), 7.69 (d, J=8.5 Hz, 2H), 7.84 (d, J=8.8 Hz, 2H) ppm; MS (DCl/NH3) m/z 405 (M+H)+, 422 (M+NH4)+.
- The product of Example 32B (1.0 g, 2.5 mmol) was treated with NaOH solution (1 N, 7.5 ml, 7.5 mmol) in ethanol (5 mL) at 60° C. for 1.5 hours, and then filtered through a Celite pad. The filtrate was concentrated under vacuum and the residue was diluted with water (20 mL), acidified with HCl (6 N) till pH=1. The solid started to precipitate and was collected by filtration, dried under vacuum to give the title compound as white solid (730 mg, 84%). 1H NMR (300. MHz, MeOH-D4) δ 3.58 (d, J=7.1 Hz, 2H), 3.93 (t, J=7.0 Hz, 1H), 7.75 (d, J=8.5 Hz, 2H), 7.91 (d, J=8.8 Hz, 2H) ppm; MS (DCl/NH3) m/z 366 (M+NH4)+,
- The product of Example 32C (25 g, 71.8 mmol) was treated with hydrazine hydrate (55% aq., 16 mL, −275 mmol) in ethanol (300 mL) at 78° C. for 60 hours according to the procedure of Example 29A. The title compound was obtained as white solid (20.5 g, 95.1%). 1H NMR (300 MHz, CDCl3) δ 2.62 (t, J=8.3 Hz, 2H), 2.96 (t, J=8.3 Hz, 2H), 7.45 (d, J=8.5 Hz, 2H), 7.75 (d, J=8.8 Hz, 2H), 8.51 (s, 1H) ppm; MS (DCl/NH3) m/z 301 (M+H)+ 318 (M+NH4)+.
- The product of Example 32D (20.5 g, 68.3 mmol) was treated with bromine (Aldrich, 12.0 g, 75 mmol) in glacial acetic acid (250 mL) at 100° C. for 1 h. according to the procedure of Example 29B. The title compound was obtained as solid (20.0 g, 98%). 1H NMR (300 MHz, MeOH-D4) δ 7.06 (d, J=9.8 Hz, 1H), 7.65 (d, J=8.8 Hz, 2H), 7.84 (d, J=8.8 Hz, 2H), 8.01 (d, J=9.8 Hz, 1H) ppm; MS (DCl/NH3) m/z 299 (M+H)+.
- The product of Example 32E (20.0 g, 66.7 mmol) was treated with POCl3 (Aldrich, 200 mL) at 100° for 16 hours according to the procedure of Example 29C. The title compound was obtained as solid (19.2 g, 91%). 1H NMR (300 MHz, CDCl3) δ 7.57 (d, J=8.8 Hz, 1H), 7.76-7.83 (m, 3H), 7.85-7.91 (m, 2H) ppm. MS (DCl/NH3) m/z 317 (M+H)+.
- The product of Example 6B (1.27 g, 10 mmol) was coupled with the product of Example 32F (3.16 g, 10 mmol) according to the procedure of Example 29D. The title compound was obtained as solid (3.05 g, 75%). 1H NMR (300 MHz, MeOH-D4) δ 1.49-1.63 (m, 1H) 1.68-1.92 (m, 2H) 1.98-2.13 (m, 1H), 2.27-2.35 (m, 1H), 2.79-3.01 (m, 5H), 3.41-3.52 (m, 1H), 5.27-5.35 (m, 1H), 7.27 (d, J=9.2 Hz, 1H), 7.75 (d, J=8.8 Hz, 2H), 7.88 (d, J=8.8 Hz, 2H), 8.05 (d, J=9.2 Hz, 1H) ppm. MS (DCl/NH3) m/z 408 (M+H)+.
- The product of Example 32G (407 mg, 1 mmol) was coupled with hydrazinecarboxylic acid tert-butyl ester (Aldrich, 158 mg, 1.2 mmol) under the catalysis of CuI (Strem Chemicals, 14.3 mg, 0.075 mmol) with Cs2CO3(Strem Chemicals, 455 mg, 1.4 mmol) in dry DMF (Aldrich, 4 mL) at 80° C. for 16 hours. After the reaction went to completion, it was then cooled down to ambient temperature and diluted with ethyl acetate (50 mL), washed with water (2×10 mL). The organic phase was concentrated under vacuum to give crude (R)—N-{4-[6-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-pyridazin-3-yl]-phenyl}-hydrazinecarboxylic acid tert-butyl ester, which was then treated with 2-oxo-propionic acid ethyl ester (Aldrich, 232 mg, 2.0 mmol) under the catalysis of p-toluenesulfonic acid (38 mg, 0.2 mmol) in EtOH (5 mL) at 100° C. for 2 hours. The title compound was purified by preparative HPLC (Gilson, column, Symmetry® C-8 7 μm, 40×100 mm. Eluting Solvent, MeCN/H2O (with 0.2% v. TFA) (v. 90/10 to 10/90 over 20 min.) Flow rate, 75 mL/min., uv, 250 nm) as solid (25.7 mg, 4.7%). 1H NMR (300 MHz, MeOH-D4) δ 1.36 (t, J=7.1 Hz, 3H), 1.91-2.24 (m, 6H), 2.32-2.47 (m, 1H), 2.60-2.69 (m, J=4.1 Hz, 1H), 3.32-3.55 (m, 5H), 3.91-4.04 (m, 1H), 4.30 (q, J=7.1 Hz, 2H), 5.49-5.58 (m, 1H), 7.33 (d, J=9.2 Hz, 1H), 7.46 (d, J=8.8 Hz, 2H), 7.91 (d, J=9.2 Hz, 2H), 8.11 (d, J=9.5 Hz, 1H) ppm. MS (DCl/NH3) m/z 410 (M+H)+. Anal. Calculated for C22H27N5O3.1.25CF3CO2H: C, 53.31; H, 5.16; N, 12.69. Found: C, 53.38; H, 5.03; N, 12.68.
- The product of Example 66 (635 mg, 5 mmol) was coupled with 3,6-dichloropyridazine (Aldrich, 925 mg, 6.25 mmol) according to the procedure of Example 29D. The title compound was purified by chromatography (SiO2, CH2Cl2:MeOH:NH3.H2O, 90:10:1, Rf. 0.20) as solid (750 mg, yield, 63%). 1H NMR (300 MHz, CD3OD) δ 1.54-1.68 (m, 1H), 1.71-1.95 (m, 2H), 2.00-2.14 (m, 1H), 2.28-2.36 (m, 1H), 2.83-3.08 (m, 5H), 3.44-3.56 (m, 1H), 5.23-5.30 (m, 1H), 7.24 (d, J=9.2 Hz, 1H), 7.66 (d, J=9.2 Hz, 1H) ppm. MS (DCl/NH3): 240 (M+H)+, 242 (M+H)+.
- The product of Example 33A (182 mg, 0.76 mmol) was coupled with N-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetamide (TCl, 500 mg, 1.9 mmol) under the catalysis of dichlorobis(triphenylphosphine)palladium (II) (Aldrich, 53 mg, 0.076 mmol) and 2-(dicyclohexylphosphino)biphenyl (Strem Chemicals, 6.5 mg, 0.019 mmol) in 1 mL each of ethanol, p-dioxane, and 1 M aq. sodium carbonate at 150° C. at 330 watts for 10 min in an Emry™ Creator microwave. The mixture was cooled to room temperature, filtered through Celite®, and concentrated onto silica. The product was purified by column chromatography (SiO2, 5% methanol containing 1% NH4OH—CH2Cl2) to provide a free base of the title compound as solid (203 mg, 79%), which was dissolved in methanol (0.8 mL) containing trifluoroacetic acid (75 mg, 51 μL, 0.66 mmol). Diethyl ether (1 mL) was added to precipitate the title compound. 1H NMR (300 MHz, MeOH-D4) δ 1.89-2.04 (m, 1H), 2.05-2.14 (m, 1H), 2.14-2.18 (m, 1H), 2.16 (s, 3H), 2.32-2.46 (m, 1H), 2.64 (td, J=6.5, 3.6 Hz, 1H), 3.33-3.53 (m, 6H), 3.97 (dd, J=13.9, 8.1 Hz, 1H), 5.51-5.58 (m, 1H), 7.32 (d, J=9.4 Hz, 1H), 7.69-7.78 (m, 2H), 7.91-7.98 (m, 2H), 8.11 (d, J=9.3 Hz, 1H) ppm; MS (DCl/NH3): m/z 339 (M+H)+.
- 4-Bromo-2-nitro-phenylamine (Aldrich, 10.8 g, 50 mmol) was treated with di(tert-butyl)dicarbonate (Aldrich, 11.99 g, 55 mmol) In THF (Aldrich, 100 mL) at refluxing for 6 hours. It was then concentrated and the title compound was purified by recrystallization in EtOH as white solid (12.8 g, yield, 81%). 1H NMR (300 MHz, MeOH-D4) δ 1.40 (S, 9H), 7.21 (d, J=8.5 Hz, 1H), 7.76 (dd, J=8.4, 2.3 Hz, 1H), 8.21 (d, J=2.1 Hz, 1H) ppm. MS (DCl/NH3): 334 (M+H)+, 336 (M+H)+.
- The product of Example 34A (10.05 g, 30 mmol) was coupled with bis(pinacolato)diboron (Aldrich, 9.14 g, 36 mmol) under the catalysis of PdCl2(dppf)2.CH2Cl2 (Aldrich, 490 mg, 0.6 mmol) with KOAc (Aldrich, 6.0 g, 60 mmol) in dioxane (anhydrous, Aldrich, 150 mL) at 80° C. for 10 hours according to the procedure of Example 26A. The title compound was purified by chromatography (SiO2, hexane:EtOAc, 70:30, Rf. 0.5) as solid (9.0 g, yield, 83%). 1H NMR (300 MHz, CDCl3) δ 1.37 (s, 9H), 1.38 (s, 12H), 7.99 (d, J=1.4 Hz, 1H), 8.02 (d, J=1.4 Hz, 1H), 8.45 (d, J=1.4 Hz, 1H) ppm. MS (DCl/NH3): 382 (M+NH4)+.
- The product of Example 33A (240 mg, 1 mmol) was coupled with the product of Example 34B (0.72, 2 mmol) under the catalysis of Pd2(dba)3 (24 mg, 0.025 mmol) and (tBu3P)2Pd (26 mg, 0.05 mmol) with CsF (Strem Chemicals, 228 mg, 1.5 mmol) in dioxane (8 mL) and DMF (Aldrich, 1 mL) at 80° C. under N2 for 16 hours. After the reaction went to completion, it was cooled down to room temperature and diluted with EtOAc (50 mL), washed with brine (2×10 mL). The organic solution was and concentrated under reduced pressure and the title compound was purified by chromatography (SiO2, EtOAc:MeOH (v. 2% NH3.H2O), 50:50, Rf. 0.3) as yellow solid (350 mg, 79%). 1H NMR (300 MHz, MeOH-D4) δ 1.40 (s, 9H), 1.51-1.70 (m, 1H), 1.70-1.98 (m, 2H), 2.00-2.23 (m, 1H), 2.37-2.51 (m, 1H), 2.71-3.18 (m, 5H), 3.47-3.69 (m, 1H), 5.33-5.49 (m, 1H), 7.30 (d, J=9.2 Hz, 1H), 7.54 (d, J=8.5 Hz, 1H), 7.62 (s, 1H), 8.14 (d, J=9.5 Hz, 1H), 8.37 (dd, J=8.1, 2.0 Hz, 1H), 8.80 (d, J=2.0 Hz, 1H) ppm. MS (DCl/NH3): 442 (M+H)+.
- The product of Example 34C (350 mg, 0.79 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 2 mL, 8 mmol) in EtOH (5 mL) at ambient temperature for 1 h. The mixture was concentrated and the title compound was purified by chromatography (SiO2, EtOAc:MeOH (v. 2% NH3.H2O), 50:50, Rf. 0.1) as white solid (250 mg, 93%). 1H NMR (300 MHz, MeOH-D4) δ 1.54-1.66 (m, 1H), 1.72-2.02 (m, 2H), 2.07-2.24 (m, 1H), 2.35-2.57 (m, 1H), 2.79-3.18 (m, 5H), 3.48-3.69 (m, 1H), 5.27-5.47 (m, 1H), 7.10 (d, J=8.8 Hz, 1H), 7.22 (d, J=9.5 Hz, 1H), 7.66 (s, 1H), 7.98 (d, J=9.2 Hz, 1H), 8.08 (dd, J=9.0, 2.2 Hz, 1H), 8.68 (d, J=2.4 Hz, 1H) ppm. MS (DCl/NH3): 342 (M+H)+.
- The product of Example 34D (50 mg, 0.15 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.5 mL, 2 mmol) in EtOAc (5 mL) at ambient temperature for 1 h to provide the title compound as yellow solid (50 mg, 83%). 1H NMR (300 MHz, MeOH-D4) δ 1.88-2.29 (m, 3H), 2.30-2.50 (m, 1H), 2.56-2.74 (m, 1H), 3.34-3.62 (m, 5H), 3.97 (dd, J=14.4, 8.3 Hz, 1H), 5.53 (dd, J=7.8, 3.4 Hz, 1H), 7.20 (d, J=8.8 Hz, 1H), 7.72 (d, J=9.5 Hz, 1H), 7.78 (s, 1H) 8.01 (dd, J=9.2, 2.4 Hz, 1H), 8.44 (d, J=9.5 Hz, 1H), 8.80 (d, J=2.0 Hz, 1H) ppm. MS (DCl/NH3): 342 (M+H)+. Anal. Calculated for C17H19N5O3.2.00HCl.2.00H2O.0.10EtOAc: C, 45.62; H, 5.46; N, 15.29. Found: C, 45.90; H, 5.25; N, 14.94.
- The product of Example 34D (200 mg, 0.59 mmol) was hydrogenated under the catalysis of Pd/C (Aldrich, 10 wt. %, 50 mg) in EtOH (10 mL) under hydrogen at ambient temperature for 10 h. After the reaction went to completion, the catalyst was removed through a short column of diatomaceous earth (˜2 g) and the filtrate was washed with EtOH (2×5 mL). The ethanol solution was concentrated to give the title compound (180 mg, yield, 98%). 1H NMR (500 MHz, CD3-OD) δ 1.58-1.73 (m, 1H), 1.76-2.00 (m, 2H), 2.06-2.27 (m, 1H), 2.29-2.47 (m, 1H), 2.81-3.20 (m, 5H), 3.52-3.68 (m, 1H), 5.11-5.57 (m, 1H), 6.78 (d, J=8.2 Hz, 1H), 7.12-7.26 (m, 2H), 7.32 (d, J=2.1 Hz, 1H), 7.92 (d, J=9.2 Hz, 1H) ppm. MS (DCl/NH3): 312 (M+H)+.
- The product of Example 35A (50 mg, 0.16 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 0.5 mL, 2 mmol) in EtOAc (5 mL) at ambient temperature for 1 h to provide the title compound as yellow solid (32 mg, 48%). 1H NMR (300 MHz, MeOH-D4) δ 1.87-2.27 (m, 3H), 2.31-2.44 (m, 1H), 2.64-2.74 (m, 1H), 3.34-3.56 (m, 3H), 3.55-3.70 (m, 2H), 3.85-4.06 (m, 1H), 5.32-5.67 (m, 1H), 7.17 (d, J=8.3 Hz, 1H), 7.84 (d, J=8.6 Hz, 1H), 7.94 (s, 1H), 8.00 (d, J=8.9 Hz, 1H), 8.62 (d, J=8.9 Hz, 1H) ppm. MS (DCl/NH3): 312 (M+H)+. Anal. Calculated for C17H21N5O.3.38HCl.1.70H2O.0.25EtOAc: C, 44.37; H, 6.16; N, 14.37. Found: C, 44.05; H, 5.78; N, 13.99.
- The product of Example 19A (0.57 g, 2.0 mmol) was coupled with the product of Example 34B (1.50 g, 4 mmol) under the catalysis of Pd2(dba)3 (24 mg, 0.025 mmol) and (tBu3P)2Pd (26 mg, 0.05 mmol) with CsF (Strem Chemicals, 1.80 g, 12.0 mmol) in dioxane (20 mL) and DMF (Aldrich, 2 mL) at 80° C. under N2 for 16 hours according to the procedure of Example 34C. The title compound was purified by chromatography (SiO2, EtOAc:MeOH (v. 2% NH3.H2O), 50:50, Rf. 0.3) as oil (590 mg, 67%). 1H NMR (300 MHz, MeOH-D4) δ 1.38 (s, 9H), 1.46-1.59 (m, 1H), 1.61-1.73 (m, 1H), 1.74-1.88 (m, 1H), 1.95-2.10 (m, 1H), 2.22-2.33 (m, 1H), 3.38-3.48 (m, 1H), 5.15-5.25 (m, 1H), 7.58 (d, J=8.2 Hz, 1H), 7.97 (dd, J=8.8, 2.1 Hz, 1H), 8.56 (d, J=4.9 Hz, 1H), 8.97 (s, 2H) ppm. MS (DCl/NH3): 442 (M+H)+.
- The product of Example 36A (100 mg, 0.23 mmol) was treated with HCl (Aldrich, 4 M in dioxane, 2 mL, 8 mmol) in EtOH (5 mL) at ambient temperature for 1 h. The mixture was concentrated and the title compound was purified by chromatography (SiO2, EtOAc:MeOH (v. 2% NH3.H2O), 50:50, Rf. 0.1) as white solid (50 mg, 64%). 1H NMR (500 MHz, MeOH-D4) δ 1.47-1.64 (m, 1H), 1.65-1.78 (m, 1H), 1.78-1.91 (m, 1H), 1.96-2.16 (m, 1H), 2.15-2.38 (m, 1H), 2.73-3.05 (m, 5H), 3.35-3.47 (m, 1H), 4.96-5.28 (m, 1H), 7.10 (d, J=8.8 Hz, 1H), 7.68 (dd, J=8.8, 2.1 Hz, 1H), 8.32 (d, J=2.1 Hz, 1H), 8.79 (s, 2H) ppm. MS (DCl/NH3): 342 (M+H)+.
- The product of Example 36B (50 mg, 0.15 mmol) was treated with HCl Aldrich, 4 M in dioxane, 0.25 mL, 1 mmol) in EtOAc (5 mL) at ambient temperature for 1 hour to give the title compound as yellow solid. 1H NMR (400 MHz, MeOH-D4) δ 1.89-2.25 (m, 3H), 2.31-2.50 (m, 1H), 2.55-2.72 (m, 1H), 3.33-3.53 (m, 5H), 3.81-3.98 (m, 1H), 5.28-5.56 (m, 1H), 7.12 (d, J=8.9 Hz, 1H), 7.69 (dd, J=8.9, 2.1 Hz, 1H), 8.34 (d, J=2.1 Hz, 1H), 8.86 (s, 2H) ppm. MS (DCl/NH3): 342 (M+H)+. Anal. Calculated for C17H19N5O3.3.00HCl.0.10H2O.0.06EtOAc: C, 48.91; H, 5.64; N, 16.54. Found: C, 48.70; H, 5.35; N, 16.17.
- 4-Bromo-2-nitro-phenol (Aldrich, 2.18 g, 10 mmol) was treated with K2CO3 (Aldrich, 2.76 g, 20 mmol) in DMF (Aldrich, 100 mL) at ambient temperature for 20 min. Benzyl chloride (Aldrich, 1.52 g, 12 mmol) was added. The mixture was stirred at 100° C. for 6 h. It was then poured into ice/water (200 mL) and stirred at ambient temperature for 10 hours. The white solid was filtered and dried to give the title compound (3.0 g, yield, 100%). 1H NMR (300 MHz, CDCl3) δ 5.23 (s, 2H), 7.01 (d, J=9.2 Hz, 1H), 7.31-7.49 (m, 5H), 7.58 (dd, J=9.0, 2.5 Hz, 1H), 7.98 (d, J=2.7 Hz, 1H) ppm. MS (DCl/NH3): 325 (M+H)+, 327 (M+H)+.
- The product of Example 37A (3.0 g, 10 mmol) was coupled with bis(pinacolato)diboron (Aldrich, 3.04 g, 12 mmol) according to the procedure of Example 28B. The title compound was purified by chromatography (SiO2, hexane:EtOAc, 70:30, Rf. 0.5) as a solid (3.05 g, yield, 86%). 1H NMR (300 MHz, MeOH-D4) δ 1.34 (s, 12H), 5.30 (s, 2H), 7.27-7.43 (m, 4H), 7.42-7.51 (m, 2H), 7.89 (dd, J=8.3, 1.5 Hz, 1H), 8.09 (d, J=1.7 Hz, 1H) ppm. MS (DCl/NH3): 373 (M+NH4)+.
- The product of Example 19A (1.42 g, 5 mmol) was coupled with the product of Example 37B (2.50 g, 7.0 mmol) according to the procedure of Example 20B. The title compound was purified by chromatography (SiO2, EtOAc:MeOH (v. 2% NH3.H2O), 50:50, Rf. 0.3) as solid (1.75 g, 81%). 1H NMR (300 MHz, MeOH-D4) δ 1.46-1.61 (m, 1H), 1.63-1.92 (m, 2H), 1.97-2.15 (m, 1H), 2.17-2.33 (m, 1H), 2.69-3.04 (m, 5H), 3.35-3.49 (m, 1H), 5.11-5.22 (m, 1H), 5.34 (s, 2H), 7.25-7.55 (m, 5H), 7.85 (dd, J=8.8, 2.4 Hz, 1H), 8.13 (d, J=2.0 Hz, 1H), 8.63 (s, 1H), 8.82 (s, 2H) ppm. MS (DCl/NH3): 433 (M+H)+.
- The product of Example 37C (380 mg, 0.88) was hydrogenated under the catalysis of Pd/C (Aldrich, 10 wt. %, 100 mg) according to the procedure of Example 28E. The title compound was obtained as yellow solid (220 mg, yield, 92%). 1H NMR (300 MHz, CD3OD) δ 1.47-1.93 (m, 3H), 1.95-2.35 (m, 2H) 2.70-3.05 (m, 5H), 3.33-3.48 (m, 1H), 5.04-5.30 (m, J=8.8 Hz, 1H), 6.72-6.88 (m, 2H), 6.98 (d, J=1.7 Hz, 1H), 8.70 (s, 2H) ppm. MS (DCl/NH3): 313 (M+H)+.
- The product of Example 37D (50 mg, 0.15 mmol) was treated with HCl Aldrich, 4 M in dioxane, 0.25 mL, 1 mmol) in EtOAc (5 mL) at ambient temperature for 1 hour to give the title compound as yellow solid. 1H NMR (400 MHz, MeOH-D4) δ 1.85-2.32 (m, 3H), 2.30-2.56 (m, 1H), 2.56-2.77 (m, 1H), 3.24-3.52 (m, 5H), 3.79-4.00 (m, 1H), 5.02-5.72 (m, J=4.1 Hz, 1H), 5.42 (d, J=4.1 Hz, 1H), 7.15 (d, J=8.5 Hz, 1H), 7.42-7.77 (m, 3H), 8.77 (s, 2H) ppm. MS (DCl/NH3): 313 (M+H)+. Anal. Calculated for C17H20N4O2.2.00HCl.1.80H2O.0.10EtOAc: C, 49.00; H, 6.24; N, 13.14. Found: C, 49.17; H, 5.95; N, 12.83.
- To determine the effectiveness of representative compounds of this invention as α7 nAChRs, the compounds of the invention were evaluated according to the [3H]-methyllycaconitine (MLA) binding assay and considering the [3H]-cytisine binding assay, which were performed as described below.
- [3H]-Cytisine Binding
- Binding conditions were modified from the procedures described in Pabreza L A, Dhawan, S, Kellar K J, [3H]-Cytisine Binding to Nicotinic Cholinergic Receptors in Brain, Mol. Pharm. 39; 9-12, 1991. Membrane enriched fractions from rat brain minus cerebellum (ABS Inc., Wilmington, Del.) were slowly thawed at 4° C., washed and resuspended in 30 volumes of BSS-Tris buffer (120 mM NaCl/5 mM KCl/2 mM CaCl2/2 mM MgCl2/50 mM Tris-Cl, pH 7.4, 4° C.). Samples containing 100-200 μg of protein and 0.75 nM [3H]-cytisine (30 Cl/mmol; Perkin Elmer/NEN Life Science Products, Boston, Mass.) were incubated in a final volume of 500 μL for 75 minutes at 4° C. Seven log-dilution concentrations of each compound were tested in duplicate. Non-specific binding was determined in the presence of 10 μM (−)-nicotine. Bound radioactivity was isolated by vacuum filtration onto prewetted glass fiber filter plates (Millipore, Bedford, Mass.) using a 96-well filtration apparatus (Packard Instruments, Meriden, Conn.) and were then rapidly rinsed with 2 mL of ice-cold BSS buffer (120 mM NaCl/5 mM KCl/2 mM CaCl2/2 mM MgCl2). Packard MicroScint-200 scintillation cocktail (40 μL) was added to each well and radioactivity determined using a Packard TopCount® instrument. The IC50 values were determined by nonlinear regression in Microsoft Excel® software. Ki values were calculated from the IC50s using the Cheng-Prusoff equation, where Ki=IC50/1+[Ligand]/KD].
- [3H]-Methyllycaconitine (MLA) Binding
- Binding conditions were similar to those for [3H]-cytisine binding. Membrane enriched fractions from rat brain minus cerebellum (ABS Inc., Wilmington, Del.) were slowly thawed at 4° C., washed and resuspended in 30 volumes of BSS-Tris buffer (120 mM NaCl, 5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, and 50 mM Tris-Cl, pH 7.4, 22° C.). Samples containing 100-200 μg of protein, 5 nM [3H]-MLA (25 Ci/mmol; Perkin Elmer/NEN Life Science Products, Boston, Mass.) and 0.1% bovine serum albumin (BSA, Millipore, Bedford, Mass.) were incubated in a final volume of 500 μL for 60 minutes at 22° C. Seven log-dilution concentrations of each compound were tested in duplicate. Non-specific binding was determined in the presence of 10 μM MLA. Bound radioactivity was isolated by vacuum filtration onto glass fiber filter plates prewetted with 2% BSA using a 96-well filtration apparatus (Packard Instruments, Meriden, Conn.) and were then rapidly rinsed with 2 mL of ice-cold BSS. Packard MicroScint-20® scintillation cocktail (40 μL) was added to each well and radioactivity was determined using a Packard TopCount® instrument. The IC50 values were determined by nonlinear regression in Microsoft Excel® software. Ki values were calculated from the IC50s using the Cheng-Prusoff equation, where Ki=IC50/1+[Ligand]/KD].
- Compounds of the invention had Ki values of from about 1 nanomolar to about 10 micromolar when tested by the MLA assay, many having a Ki of less than 1 micromolar. [3H]-Cytisine binding values of compounds of the invention ranged from about 50 nanomolar to at least 100 micromolar. The determination of preferred compounds typically considered the Ki value as measured by MLA assay in view of the K, value as measured by [3H]-cytisine binding, such that in the formula D=Ki 3H-cytisine/Ki MLA, D is about 50. Preferred compounds typically exhibited greater potency at 17 receptors compared to α4β2 receptors.
- Compounds of the invention are α7 nAChRs ligands that modulate function of α7 nAChRs by altering the activity of the receptor. The compounds can be inverse agonists that inhibit the basal activity of the receptor or antagonists that completely block the action of receptor-activating agonists. The compounds also can be partial agonists that partially block or partially activate the α7 nAChR receptor or agonists that activate the receptor.
- It is understood that the foregoing detailed description and accompanying examples are merely illustrative and are not to be taken as limitations upon the scope of the invention, which is defined solely by the appended claims and their equivalents. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art. Such changes and modifications, including without limitation those relating to the chemical structures, substituents, derivatives, intermediates, syntheses, formulations and/or methods of use of the invention, may be made without departing from the spirit and scope thereof.
Claims (10)
1. A compound of formula (I):
or a pharmaceutically acceptable salt, ester, amide, or prodrug thereof, wherein:
A is N or N+—O−
n is 0, 1, or 2;
Y is selected form the group consisting of O, S, and —N(R1)—,
Ar1 is a group of the formula:
Ar2 is a group of the formula:
X1, X2, X3, and X4 are each independently selected from the group consisting of N and —C(R2);
one of X5, X6, X7, X8 and X9 is —C and the others are each independently selected from the group consisting of N and —C(R5), and group (b) is attached to Ar1 through one of X5, X6, X7, X8 and X9 that is represented by C.
one of X10, X11, X12, and X13 is C and the others are each independently selected from the group consisting of N, —N(R1), O, S and —C(R5) and group (c) is attached to Ar1 through one of X10, X11, X12, and X13 that is represented by C,
R1 is hydrogen or alkyl;
R2 at each occurrence is independently selected from the group consisting of hydrogen, halogen, alkyl, —OR3, and —NHR4;
R2a is halogen or alkyl;
R3 and R4 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl;
R5 is selected from the group consisting of hydrogen, halogen, nitro, alkyl, aryl, alkylcarbonyl, arylcarbonyl, —OR6 and —NR8R9;
R6 is independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl; and
R8 and R9 are each independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, cycloalkylalkyl, alkylcarbonyl, —N═C(alkyl)(alkoxycarbonyl), alkoxycarbonyl, arylcarbonyl, aryloxycarbonyl, and alkylsulfonyl.
3. The compound of claim 1 , wherein Ar2 is selected from the group consisting of:
wherein:
R2a is halogen or alkyl;
R5 is selected from the group consisting of hydrogen, halogen, nitro, alkyl, aryl, alkylcarbonyl, arylcarbonyl, —OR6 and —NR8R9;
R6 is selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, and arylcarbonyl;
R8 and R9 are each independently selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, 4-methylphenyl, benzyloxycarbonyl, acetyl, cyclohexylmethyl, tert-butyloxycarbonyl and —N═C(methyl)(ethoxycarbonyl).
4. The compound of claim 3 , wherein R8 is hydrogen or alkyl; and R9 is selected from the group consisting of hydrogen, alkyl, benzyl, methanesulfonyl, phenyl, 4-methylphenyl, benzyloxycarbonyl, acetyl, cyclohexylmethyl, tert-butyloxycarbonyl and —N═C(methyl)(ethoxycarbonyl).
5. The compound of claim 1 , or a pharmaceutically acceptable salt, ester, amide, or prodrug thereof, selected from the group consisting of:
4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-3-amine;
4′-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]-1,1′-biphenyl-3-amine;
4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-4-methyl-1,1′-biphenyl-3-amine;
4′-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]-4-methyl-1,1′-biphenyl-3-amine;
4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-4-amine;
4′-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]-1,1′-biphenyl-4-amine;
4′-[(3S)-1-azabicyclo[2.2.2]oct-3-yloxy]-1,1′-biphenyl-4-amine;
N-[4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-4-yl]-N-methylamine;
N-{4′-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]-1,1′-biphenyl-4-yl}-N,N-dimethylamine;
N-[4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-4-yl]methanesulfonamide;
N-[4′-(1-azabicyclo[2.2.2]oct-3-yloxy)-1,1′-biphenyl-4-yl]-N-phenylamine;
3-[6-(1-azabicyclo[2.2.2]oct-3-yloxy)pyridin-3-yl]aniline;
4-[5-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrazin-2-yl]aniline;
4-{5-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrazin-2-yl}aniline;
4-{5-[(3S)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrazin-2-yl}aniline;
N-{4-[5-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrazin-2-yl]phenyl}-N,N-dimethylamine;
N-{4-[5-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrazin-2-yl]phenyl}acetamide;
4-[2-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrimidin-5-yl]aniline;
4-{2-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrimidin-5-yl}aniline;
3-[2-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrimidin-5-yl]aniline;
3-{2-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrimidin-5-yl}aniline;
3-{2-[(3S)-1-azabicyclo[2.2.2]oct-3-yloxy]pyrimidin-5-yl}aniline;
5-[2-(1-azabicyclo[2.2.2]oct-3-yloxy)pyrimidin-5-yl]-2-methylaniline;
N-1-azabicyclo[2.2.2]oct-3-yl-1,1′-biphenyl-4,4′-diamine;
4′-(1-oxy-1-aza-bicyclo[2.2.2]oct-3-yloxy)-biphenyl-3-ylamine;
[4′-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-biphenyl-4-yl]-p-tolyl-amine:
[4′-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-biphenyl-4-yl]-cyclohexylmethyl-amine;
2-[4-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-phenyl]-8-iodo-6H,12H-5,11-methano-dibenzo[b,f][1,5]diazocine;
4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-phenylamine;
4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-2-bromo-phenylamine;
4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-2,6-dibromo-phenylamine;
2-({4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-phenyl}-hydrazono)-propionic acid ethyl ester;
(R)—N-{4-[6-(1-aza-bicyclo[2.2.2]oct-3-yloxy)-pyridazin-3-yl]-phenyl}-acetamide;
4-{6-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyridazin-3-yl}-2-nitro-phenylamine;
4-{6-{(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy}-pyridazin-3-yl}-benzene-1,2-diamine;
4-{2-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyrimidin-5-yl}-2-nitro-phenylamine; and
2-amino-4-{2-[(3R)-1-aza-bicyclo[2.2.2]oct-3-yloxy]-pyrimidin-5-yl}-phenol.
6. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 in combination with a pharmaceutically acceptable carrier.
7. A method of selectively modulating the effects of α7 nicotinic acetylcholine receptors in a mammal comprising administering an effective amount of a compound of claim 1 .
8. A method of treating or preventing a condition or disorder selected from the group consisting of attention deficit disorder, attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), mild cognitive impairment, senile dementia, AIDS dementia, Pick's Disease, dementia associated with Lewy bodies, dementia associated with Down's syndrome, amyotrophic lateral sclerosis, Huntington's disease, diminished CNS function associated with traumatic brain injury, acute pain, post-surgical pain, chronic pain, inflammatory pain, neuropathic pain, infertility, need for new blood vessel growth associated with wound healing, need for new blood vessel growth associated with vascularization of skin grafts, and lack of circulation, more particularly circulation around a vascular occlusion, comprising the step of administering a compound of claim 1 .
9. The method according to claim 1 , wherein the condition or disorder is selected from the group consisting of a cognitive disorder, neurodegeneration, and schizophrenia.
10. The method according to claim 1 , further comprising administering a compound of claim 1 in combination with an atypical antipsychotic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/749,779 US20070275975A1 (en) | 2003-12-22 | 2007-05-17 | 3-quinuclidinyl amino-substituted biaryl derivatives |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53187703P | 2003-12-22 | 2003-12-22 | |
US11/015,158 US7309699B2 (en) | 2003-12-22 | 2004-12-17 | 3-Quinuclidinyl amino-substituted biaryl derivatives |
US11/749,779 US20070275975A1 (en) | 2003-12-22 | 2007-05-17 | 3-quinuclidinyl amino-substituted biaryl derivatives |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/015,158 Continuation US7309699B2 (en) | 2003-12-22 | 2004-12-17 | 3-Quinuclidinyl amino-substituted biaryl derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070275975A1 true US20070275975A1 (en) | 2007-11-29 |
Family
ID=34752367
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/015,158 Expired - Fee Related US7309699B2 (en) | 2003-12-22 | 2004-12-17 | 3-Quinuclidinyl amino-substituted biaryl derivatives |
US11/749,779 Abandoned US20070275975A1 (en) | 2003-12-22 | 2007-05-17 | 3-quinuclidinyl amino-substituted biaryl derivatives |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/015,158 Expired - Fee Related US7309699B2 (en) | 2003-12-22 | 2004-12-17 | 3-Quinuclidinyl amino-substituted biaryl derivatives |
Country Status (1)
Country | Link |
---|---|
US (2) | US7309699B2 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004083388A2 (en) * | 2003-03-14 | 2004-09-30 | Bristol-Myers Squibb Company | Polynucleotide encoding a novel human g-protein coupled receptor variant of hm74, hgprbmy74 |
US20050137203A1 (en) * | 2003-12-22 | 2005-06-23 | Jianguo Ji | 3-quinuclidinyl amino-substituted biaryl derivatives |
US20050137204A1 (en) * | 2003-12-22 | 2005-06-23 | Abbott Laboratories | Fused bicycloheterocycle substituted quinuclidine derivatives |
US20050245531A1 (en) * | 2003-12-22 | 2005-11-03 | Abbott Laboratories | Fused bicycloheterocycle substituted quinuclidine derivatives |
US20070060588A1 (en) * | 2003-12-22 | 2007-03-15 | Jianguo Ji | Fused bicycloheterocycle substituted quinuclidine derivatives |
EP2089018A2 (en) * | 2006-11-07 | 2009-08-19 | Lexicon Pharmaceuticals, Inc. | Methods of treating cognitive impairment and dementia |
US8325889B2 (en) * | 2006-12-22 | 2012-12-04 | Mobileaxept As | Efficient authentication of a user for conduct of a transaction initiated via mobile telephone |
BRPI0907570A2 (en) * | 2008-02-13 | 2019-09-24 | Targacept Inc | alpha7 nicotinic agonists and antipsychotics |
KR101098335B1 (en) * | 2008-07-18 | 2011-12-26 | 성균관대학교산학협력단 | Cinchona-based bifucntional organocatalysts and method for preparing chiral hemiesters by asymmetric ring opening reaction of meso-cyclic acid anhydrides using the same |
MX2011003435A (en) * | 2008-09-29 | 2011-05-02 | Abbott Lab | Indole and indoline derivatives and methods of use thereof. |
US9625475B2 (en) * | 2008-09-29 | 2017-04-18 | Abbvie Inc. | Indole and indoline derivatives and methods of use thereof |
TW201031664A (en) | 2009-01-26 | 2010-09-01 | Targacept Inc | Preparation and therapeutic applications of (2S,3R)-N-2-((3-pyridinyl)methyl)-1-azabicyclo[2.2.2]oct-3-yl)-3,5-difluorobenzamide |
WO2011008312A2 (en) | 2009-07-14 | 2011-01-20 | Abbott Laboratories | Indole and indoline derivatives and methods of use thereof |
EP3066072B1 (en) * | 2013-11-07 | 2021-11-03 | The University of Kansas | Biphenylamide derivative hsp90 inhibitors |
MX2021001091A (en) | 2015-12-10 | 2022-04-26 | Ptc Therapeutics Inc | Methods for treatng huntington's disease. |
CN105968054B (en) * | 2016-05-12 | 2018-09-14 | 海门慧聚药业有限公司 | Preparation of pimobendan key intermediate |
MX2019014514A (en) | 2017-06-05 | 2020-07-20 | Ptc Therapeutics Inc | Compounds for treating huntington's disease. |
EP3644996B1 (en) | 2017-06-28 | 2023-07-26 | PTC Therapeutics, Inc. | Methods for treating huntington's disease |
CA3067592A1 (en) | 2017-06-28 | 2019-01-03 | Ptc Therapeutics, Inc. | Methods for treating huntington's disease |
CN111499615B (en) | 2017-08-04 | 2024-02-02 | 斯基霍克疗法公司 | Methods and compositions for modulating splicing |
AU2019243048A1 (en) * | 2018-03-27 | 2020-10-15 | Ptc Therapeutics, Inc. | Compounds for treating Huntington's disease |
EP4434990A1 (en) | 2018-06-27 | 2024-09-25 | PTC Therapeutics, Inc. | Heterocyclic and heteroaryl compounds for treating huntington's disease |
US11685746B2 (en) | 2018-06-27 | 2023-06-27 | Ptc Therapeutics, Inc. | Heteroaryl compounds for treating Huntington's disease |
WO2020163405A1 (en) | 2019-02-05 | 2020-08-13 | Skyhawk Therapeutics, Inc. | Methods and compositions for modulating splicing |
CN113677344A (en) | 2019-02-06 | 2021-11-19 | 斯基霍克疗法公司 | Methods and compositions for modulating splicing |
CN114426466B (en) * | 2020-10-29 | 2023-11-21 | 江苏和成新材料有限公司 | Method for carrying out photo-delay reaction on alcohol hydroxyl donor and active hydrogen donor |
CN115819354B (en) * | 2022-12-13 | 2024-11-01 | 杭州澳赛诺生物科技有限公司 | Synthesis method of alkyl substituted 6-alkyl-4-aminopyridazine or salt thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4447607A (en) * | 1982-11-05 | 1984-05-08 | The Upjohn Company | Dibenzo diazacines |
US5589477A (en) * | 1990-08-31 | 1996-12-31 | Nippon Shinyaku Company, Limited | Pyrimidine derivatives and drugs |
WO1994018201A1 (en) | 1993-02-12 | 1994-08-18 | Sankyo Company, Limited | Isoxazoleoxy derivative |
GB9314973D0 (en) | 1993-07-20 | 1993-09-01 | Smithkline Beecham Plc | Medicaments |
US5998404A (en) | 1994-10-24 | 1999-12-07 | Eli Lilly And Company | Heterocyclic compounds and their use |
US5929247A (en) | 1994-10-24 | 1999-07-27 | Eli Lilly And Company | Heterocyclic compounds and their preparation and use |
US5852037A (en) | 1995-11-13 | 1998-12-22 | Eli Lilly And Company | Method for treating anxiety |
JP2000500452A (en) | 1995-11-13 | 2000-01-18 | イーライ・リリー・アンド・カンパニー | Anxiety treatment |
AU7871498A (en) | 1996-12-20 | 1998-07-17 | Novo Nordisk A/S | A method of treating hypercholesterolemia and related disorders |
WO2004016608A1 (en) | 2002-08-14 | 2004-02-26 | Neurosearch A/S | Novel quinuclidine derivatives and their use |
GB0220581D0 (en) | 2002-09-04 | 2002-10-09 | Novartis Ag | Organic Compound |
-
2004
- 2004-12-17 US US11/015,158 patent/US7309699B2/en not_active Expired - Fee Related
-
2007
- 2007-05-17 US US11/749,779 patent/US20070275975A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20050159597A1 (en) | 2005-07-21 |
US7309699B2 (en) | 2007-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070275975A1 (en) | 3-quinuclidinyl amino-substituted biaryl derivatives | |
US7674794B2 (en) | Fused bicycloheterocycle substituted quinuclidine derivatives | |
US7655657B2 (en) | Fused bicycloheterocycle substituted quinuclidine derivatives | |
US20050245531A1 (en) | Fused bicycloheterocycle substituted quinuclidine derivatives | |
US7241773B2 (en) | 3-quinuclidinyl heteroatom bridged biaryl derivatives | |
US7951791B2 (en) | Amino-substituted tricyclic derivatives and methods of use | |
EP1824848A1 (en) | Fused bicycloheterocycle substituted quinuclidine derivatives | |
US20050137203A1 (en) | 3-quinuclidinyl amino-substituted biaryl derivatives | |
US20050137204A1 (en) | Fused bicycloheterocycle substituted quinuclidine derivatives | |
US20050137398A1 (en) | 3-Quinuclidinyl heteroatom bridged biaryl derivatives | |
US20070060588A1 (en) | Fused bicycloheterocycle substituted quinuclidine derivatives | |
US20050171079A1 (en) | Amino-substituted tricyclic derivatives and methods of use | |
US7045530B2 (en) | Spirocyclic quinuclidinic ether derivatives | |
US20050137217A1 (en) | Spirocyclic quinuclidinic ether derivatives | |
NZ548231A (en) | Fused bicycloheterocycle substituted quinuclidine derivatives | |
MXPA06007189A (en) | Fused bicycloheterocycle substituted quinuclidine derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |