US20070204765A1 - Self-Adaptive Cement Systems - Google Patents
Self-Adaptive Cement Systems Download PDFInfo
- Publication number
- US20070204765A1 US20070204765A1 US10/557,106 US55710604A US2007204765A1 US 20070204765 A1 US20070204765 A1 US 20070204765A1 US 55710604 A US55710604 A US 55710604A US 2007204765 A1 US2007204765 A1 US 2007204765A1
- Authority
- US
- United States
- Prior art keywords
- cement
- super
- water
- cement system
- gps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2652—Nitrogen containing polymers, e.g. polyacrylamides, polyacrylonitriles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/06—Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
- C04B40/0675—Mortars activated by rain, percolating or sucked-up water; Self-healing mortars or concrete
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
- C09K8/467—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0049—Water-swellable polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0051—Water-absorbing polymers, hydrophilic polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0062—Cross-linked polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00146—Sprayable or pumpable mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00146—Sprayable or pumpable mixtures
- C04B2111/00155—Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
Definitions
- the present invention relates to adaptive cement systems.
- the invention relates to cement systems which are “self-healing”, i.e. system which can adapt to compensate for changes or faults in the physical structure of the cement, or which adapt their structure after the setting phase of the cement in the cementing of oil, gas, water or geothermal wells, or the like.
- the present invention aims at providing well cementing systems that include at least one additive that reacts and/or swells when the set cement is in contact with an aqueous fluid, such as formation waters. This behavior has the effect of making the cement self-healing in the event of physical failure or damage.
- the additive is a material which reacts/expands in contact with water—for instance from the underground formation which enters a fault in the cement matrix.
- examples of such materials include super-absorbent polymers.
- Super-absorbent polymers are crosslinked networks of flexible polymer chains.
- the most efficient water absorbers are polymer networks that carry dissociated, ionic functional groups. When super-absorbent polymers absorb liquids, an elastic gel forms. The gel is a soft, deformable solid composed of water and the expanded polymer chains.
- the polymer particles can be of almost any shape and size: spherical, fiber-like, ovoid, mesh systems, ribbons, etc., which allows their easy incorporation in cement slurries of comprising solid materials in discrete particle size bands. In practice, polymer particles ranging from about 10 to about 1500 ⁇ can be used.
- the absorbent materials are preferably dry blended with the cement and any other solid components before transport to the well-site, mixing with water and placement in the well.
- the sizes and quantities will be selected to allow even dispersion through the cement matrix.
- the super-absorbent polymers such as polyacrylamide and modified crosslinked polymethacrylate swell when incorporated in a cement slurry, they seem to release at least part of the absorbed water during the cement hydration and hence, have a reserve of absorbability that allow them to swell again if they are later exposed to water due to a crack of the matrix for instance. Since they are highly reactive with water, the concentration of super-absorbent added to the blend must remain relatively small, compositions with more than 3.2% of super-absorbent (by weight, of cement) may typically have a viscosity too high for pumping the slurry in favorable conditions. In fact the maximum SAP concentration depends on the slurry density and also on the nature of the Super Absorbent Polymer.
- the super-absorbent polymers are encapsulated so that they are—for instance in the form of a resin or other material that releases the polymer in response to exposure to a downhole parameter (for instance such as temperature, a specific mineral system, pressure, shear etc).
- a downhole parameter for instance such as temperature, a specific mineral system, pressure, shear etc.
- the rupture of the encapsulating means is actually induced by the failure of the cement matrix, in a way similar to the mechanism described by Dry for instance in U.S. Pat. No. 5,575,841, U.S. Pat. No. 5,660,624, U.S. Pat. No. 5,989,334, U.S. Pat. No. 6,261,360 and U.S. Pat. No. 6,527,849.
- a screening has been carried out for identifying super-absorbent polymers suitable for self-healing cementing applications.
- the main issues were to check the ability to dry blend the polymers with cement and to optimize the rheology and thickening time.
- Tests have been carrying out by incorporating powders of various types of polymers as solid additives in cement slurries. Properties of the slurry as well as properties of the set cement have been studied.
- S1 a polyacrylamide available form Lamberti, Italy.
- Three grades were tested, namely S1G-Lamseal® G, with particles ranging form 500 ⁇ to 1500 ⁇ (density 1.25 g/cm 3 ), S1GS-Lamseal® GS, with particles of about 200 ⁇ (density 1.48 g/cm 3 ), and S1GM, Lamseal® GM, with particles of about 700 ⁇ (density 1.47 g/cm 3 ).
- S2 a modified polyacrylate available from Itochu, Japan, under the name Aqualic® CS-6HM, selected for its salt resistance, in particular its capacity to keep super absorbent capacity in high valent metal ions solutions.
- the average particle size is 100 ⁇ and the density 1.46 g/cm 3 .
- bwoc or BWOC stands for by weight of cement and bwow or BWOW for by weight of water.
- the first step was to define the best addition process. As shown in table 1 below, dry blending induces lower effects on rheology and free water and leads to an easy mixing TABLE 1 Design Reference A1 A2 A3 S1G (% bwoc) 0.1 0.1 0.1 Note prehydrated prehydrated (static) dry blended under agitation at 2000 RPM during 15 minutes. Mixing rheology Ty (lbf/100 ft 2 ) 2.3 2.8 1.4 3.2 PV (cP) 25.5 18.9 27.2 32.4 BHCT rheology at 60° C.
- Polymer S2 can also be added in higher quantity, at least up to 0.45% BWOC as shown in the following table 4.2: TABLE 4.2 Design Reference 1 2 3 4 antifoam (gps) 0.03 0.03 0.03 0.03 0.03 Dispersing agent (gps) 0.04 0.04 0.04 0.04 0.04 S2 (% bwoc) 0 0.9 (exces) 0.2 0.45 0.45 S2 (% bwow) 0 2 0.44 1 1 Remarque dry blended dry blended dry blended prehydrated Mixing rheology Ty (lbf/100 ft 2 ) 2.3 Too 8.3 19.7 24.9 PV (cP) 25.5 viscous 52.2 142.8 228.7 Comment Difficult mixing BHCT rheology at 60° C.
- the designed slurries have a density of 15.8 lbm/gal, and the concentration of super-absorbent S2 is 0.4% bwoc (corresponding to 0.9% bwow).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Detergent Compositions (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
A self-healing cement system includes cement, water and at least one additive that swells in contact with water from reservoir or from formation in the case of a structural failure in the set cement to provide a physical barrier in the zone of failure. Examples of such material include particles of super-absorbent polymer. These additives have the effect of making the cement self-healing in the event of physical failure or damage such as micro-annuli. The self healing property is produced by the contact of the water itself, the potential repair mechanism is thus activated if and when needed in case of start of loss of zonal isolation. Several super-absorbent polymers have been identified such as polyacrylamide, modified crosslinked poly(meth)acrylate and non-solute acrylic polymers.
Description
- The present invention relates to adaptive cement systems. In particular, the invention relates to cement systems which are “self-healing”, i.e. system which can adapt to compensate for changes or faults in the physical structure of the cement, or which adapt their structure after the setting phase of the cement in the cementing of oil, gas, water or geothermal wells, or the like.
- During the construction of underground wells, it is common, during and after drilling, to place a liner or casing, secured by cement pumped into the annulus around the outside of the liner. The cement serves to support the liner and to provide isolation of the various fluid-producing zones through which the well passes. This later function is important since it prevents fluids from different layers contaminating each other. For example, the cement prevents formation fluids from entering the water table and polluting drinking water, or prevents water from passing into the well instead of oil or gas. In order to fulfill this function, it is necessary that the cement be present as an impermeable continuous sheath. However, for various reasons, over time this sheath can deteriorate and become permeable. The deterioration can be due to physical stresses caused by tectonic movements of temperature effects, chemical degradation of the cement, or various other reasons.
- There have been a number of proposals to deal with the problems of deterioration of the cement sheath over time. One approach is to design the cement sheath to take into account physical stresses that might be encountered during its lifetime. Such an approach is described in U.S. Pat. No. 6,296,057. Another approach is to include in the cement composition materials that improve the physical properties of the set cement. U.S. Pat. No. 6,458,198 describes the addition of amorphous metal fibers to the cement slurry to improve its strength and resistance to impact damage. EP 1129047 and WO 00/37387 describe the addition of flexible materials (rubber or polymers) to the cement to confer a degree of flexibility on the cement sheath. WO 01/70646 and PCT/EP03/01578 describe cement compositions that are formulated so as to be less sensitive to the effects of temperature on the cement when setting.
- A number of proposals have been made for designs of self-healing concretes for use in the construction industry. These are described in U.S. Pat. No. 5,575,841, U.S. Pat. No. 5,660,624, U.S. Pat. No. 5,989,334, U.S. Pat. No. 6,261,360 and U.S. Pat. No. 6,527,849, and in “Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability”, Dry, C. M., Cement and Concrete Research 30 (2000) 1969-1977. None of these are immediately applicable to well cementing operations because of the need for the cement to be pumpable during placement and because of the pressure and temperature range.
- It is an objective of the present invention to provide well cementing systems that can be placed by pumping in the normal manner, and which contain materials that allow the cement sheath to adapt its structure in response to environmental conditions.
- More precisely, the present invention aims at providing well cementing systems that include at least one additive that reacts and/or swells when the set cement is in contact with an aqueous fluid, such as formation waters. This behavior has the effect of making the cement self-healing in the event of physical failure or damage.
- The additive is a material which reacts/expands in contact with water—for instance from the underground formation which enters a fault in the cement matrix. Examples of such materials include super-absorbent polymers. Super-absorbent polymers are crosslinked networks of flexible polymer chains. The most efficient water absorbers are polymer networks that carry dissociated, ionic functional groups. When super-absorbent polymers absorb liquids, an elastic gel forms. The gel is a soft, deformable solid composed of water and the expanded polymer chains.
- The polymer particles can be of almost any shape and size: spherical, fiber-like, ovoid, mesh systems, ribbons, etc., which allows their easy incorporation in cement slurries of comprising solid materials in discrete particle size bands. In practice, polymer particles ranging from about 10 to about 1500 μ can be used.
- The absorbent materials are preferably dry blended with the cement and any other solid components before transport to the well-site, mixing with water and placement in the well. The sizes and quantities will be selected to allow even dispersion through the cement matrix.
- It has been found that though the super-absorbent polymers such as polyacrylamide and modified crosslinked polymethacrylate swell when incorporated in a cement slurry, they seem to release at least part of the absorbed water during the cement hydration and hence, have a reserve of absorbability that allow them to swell again if they are later exposed to water due to a crack of the matrix for instance. Since they are highly reactive with water, the concentration of super-absorbent added to the blend must remain relatively small, compositions with more than 3.2% of super-absorbent (by weight, of cement) may typically have a viscosity too high for pumping the slurry in favorable conditions. In fact the maximum SAP concentration depends on the slurry density and also on the nature of the Super Absorbent Polymer.
- It has been found that the addition of salts such as sodium chloride or calcium chloride for instance favors the rheology of the systems thereby enabling increasing the concentration of super-absorbent polymers. Cement slurries of lower density have also a greater acceptability of higher concentrations of super-absorbent polymers, even without salt.
- In another aspect of the present invention, at least part of the super-absorbent polymers are encapsulated so that they are—for instance in the form of a resin or other material that releases the polymer in response to exposure to a downhole parameter (for instance such as temperature, a specific mineral system, pressure, shear etc). In yet another aspect, the rupture of the encapsulating means is actually induced by the failure of the cement matrix, in a way similar to the mechanism described by Dry for instance in U.S. Pat. No. 5,575,841, U.S. Pat. No. 5,660,624, U.S. Pat. No. 5,989,334, U.S. Pat. No. 6,261,360 and U.S. Pat. No. 6,527,849.
- A screening has been carried out for identifying super-absorbent polymers suitable for self-healing cementing applications. The main issues were to check the ability to dry blend the polymers with cement and to optimize the rheology and thickening time.
- Tests have been carrying out by incorporating powders of various types of polymers as solid additives in cement slurries. Properties of the slurry as well as properties of the set cement have been studied.
- The slurries were optimized with the mere objective of obtaining stability. Focus was to get acceptable plastic viscosity (PV) and yield stress (TY) at mixing time and after 20 minutes of conditioning. Free water and sedimentation tests were also carried out. Mixing and test procedure was according to API Spec 10.
- The same equipment and bob was used for all rheology measurements, whatever the tested design. Many tests were performed at one slurry density (15.8 lbm/gal) and one temperature (BHCT equal to 60° C.). Some examples were studied at 12 lbm/gal and at 14 lbm/gal. For lowest density, the temperature is equal 25° C. and 85° C. The design is based on tap water and black Dyckerhoff North cement. Unless otherwise mentioned, all designs include an antifoam agent based on polypropylene glycol at 0.03 gallon per US gallons per sack of 94 lbs of cement (in other words, 1 gps=88.78 cc/kg), polynapthalene sulfonate as dispersing agent at 0.04 gps and the superabsorbent polymer at concentration ranging form 0.1% BWOC (by weight of cement) to 0.9% BWOC for 15.8 lbm/gal. Decreasing the density allows to increase the concentration in Super Absorbent Polymer. For instance for a given SAP the maximum concentration at 15.8 lbm/gal is 1% bwoc without salt in the mixing water and can reach 3% bwoc at 12 lbm/gal.
- Three types of superabsorbent polymers were tested:. S1, a polyacrylamide available form Lamberti, Italy. Three grades were tested, namely S1G-Lamseal® G, with particles ranging form 500 μ to 1500 μ (density 1.25 g/cm3), S1GS-Lamseal® GS, with particles of about 200 μ (density 1.48 g/cm3), and S1GM, Lamseal® GM, with particles of about 700μ(density 1.47 g/cm3). S2, a modified polyacrylate available from Itochu, Japan, under the name Aqualic® CS-6HM, selected for its salt resistance, in particular its capacity to keep super absorbent capacity in high valent metal ions solutions. The average particle size is 100 μ and the density 1.46 g/cm3. S3, a non soluble acrylic polymers , Norsocryl C200 from Atofina with particles of about 250 μ in average (density 1.6 g/cm3).
- In the examples, bwoc or BWOC stands for by weight of cement and bwow or BWOW for by weight of water.
- The first step was to define the best addition process. As shown in table 1 below, dry blending induces lower effects on rheology and free water and leads to an easy mixing
TABLE 1 Design Reference A1 A2 A3 S1G (% bwoc) 0.1 0.1 0.1 Note prehydrated prehydrated (static) dry blended under agitation at 2000 RPM during 15 minutes. Mixing rheology Ty (lbf/100 ft2) 2.3 2.8 1.4 3.2 PV (cP) 25.5 18.9 27.2 32.4 BHCT rheology at 60° C. Ty (lbf/100 ft2) 24.6 21.2 27.3 52.8 PV (cP) 20.9 18.4 26.6 33.3 10′/1′gel 25/16 14/9 19/11 15/13 Free Water mL 1 7 trace 2.5 Sedimentation 1.14 1 0.4 0.7 ppg - For the S1 particles, the finer the particles, the higher the rheology and free water.
TABLE 2 Design Reference S1 G S1 GM S1GS S1 (% bwoc) 0.1 0.1 0.1 Mixing rheology Ty (lbf/100 ft2) 2.3 1.4 2.7 6.7 PV (cP) 25.5 27.2 29 41 BHCT rheology at 60° C. Ty (lbf/100 ft2) 24.6 27.3 24.4 38.7 PV (cP) 20.9 26.6 35.6 40.9 10′/1′gel 25/16 19/11 15/12 12/9 Free Water mL 1 trace 2 4 Sedimentation ppg 1.14 0.4 1 0.9 - This test shows that cement slurry with super-absorbent polymers S1 are compatible with conventional fluid loss control additive (flac). This shows that the composition of the present invention can still be optimized by the addition of conventional additives such as dispersing agent, fluid loss control agent, set retarder, set accelerator and anti-foaming agent.
TABLE 3 Design X3.1 X3.2 S1G (% bwoc) 0.1 0.1 Flac 0.4 Mixing rheology Ty (lbf/100 ft2) 1.4 7.9 PV (cP) 27.2 104.7 BHCT rheology at 60° C. Ty (lbf/100 ft2) 27.3 13.7 PV (cP) 26.6 125 10′/1′gel 19/11 13/7 Free Water mL trace trace - Results with the polymethacrylate based superabsorbent polymer S2 show less sensitivity to the addition mode.
TABLE 4.1 Design Reference X4.1 X4.2 X4.3 X4.4 S2 (% bwoc) 0.05 0.1 0.1 0.15 — dry blended dry blended prehydrated dry blended Mixing rheology Ty (lbf/100 ft2) 2.3 4.8 5.6 6.4 5.3 PV (cP) 25.5 31.9 35.9 37.9 64.8 BHCT rheology at 60° C. Ty (lbf/100 ft2) 24.6 20.2 23.3 20.7 19.9 PV (cP) 20.9 24.3 22.4 30.3 57 10′/1′gel 25/16 17/9 15/9 12/7 12/10 Free Water mL 1 2.8 4.5 5.5 Sedimentation ppg 1.14 0.6 0.6 0.9 1 - Polymer S2 can also be added in higher quantity, at least up to 0.45% BWOC as shown in the following table 4.2:
TABLE 4.2 Design Reference 1 2 3 4 antifoam (gps) 0.03 0.03 0.03 0.03 0.03 Dispersing agent (gps) 0.04 0.04 0.04 0.04 0.04 S2 (% bwoc) 0 0.9 (exces) 0.2 0.45 0.45 S2 (% bwow) 0 2 0.44 1 1 Remarque dry blended dry blended dry blended prehydrated Mixing rheology Ty (lbf/100 ft2) 2.3 Too 8.3 19.7 24.9 PV (cP) 25.5 viscous 52.2 142.8 228.7 Comment Difficult mixing BHCT rheology at 60° C. Ty (lbf/100 ft2) 24.6 Too viscous 14.3 25.8 11.6 PV (cP) 20.9 40.3 172.5 178.4 10′/1′gel 25/16 14/9 25/7 18/9 Free water mL 1 0 7 6 4.5 Sedim ppg 1.14 0.1 1.2 0.2 0.2 - This example shows that the setting properties and the rheological properties can be optimized, a key requirement for well cementing applications. In all cases, the super-absorbent polymer was dry blended with the cement.
TABLE 5.1 Design 8 9 10 S2 (% bwoc) 0.1 0.1 0.1 Antifoam (gps) 0.03 0.03 0.03 Lignosulfonate (gps) 0.05 — 0.025 Fluid loss control agent (gps) 0.4 0.4 0.4 Polynaphtalene (gps) 0.045 0.045 0.045 Mixing Ty (lbf/100 ft2) 10.4 11 10.6 rheology PV (cP) 121.9 134 125.8 BHCT Ty (lbf/100 ft2) 15.5 16.7 16 rheology PV (cP) 132 132.4 129 at 60° C. 10′/1′gel 24/10 9/5 12/7 Free water mL 0 0 0 Sedimentation ppg 0.2 0.2 0.4 Thickening test 100 Bc 13 h 30 min 3 h 03 min 8 h 49 min (hh:min) -
TABLE 5.2 Design 29 30 31 32 Antifoam (gps) 0.03 0.03 0.03 0.03 Lignosulfonate (gps) 0.025 0.025 0.025 0.025 Fluid loss control agent (gps) 0.4 0.4 — 0.2 Polynaphtalene (gps) 0.045 0.6 0.045 0.045 Mixing rheology Ty (lbf/100 ft2) 46.8 41.9 23 32 PV(cP) 303 293 92 154 BHCT rheology at 60° C. Ty (lbf/100 ft2) 32 35 6.6 19 PV(cP) 226 248 66 145 10′/1′gel 12/7 11/6 11/7 9/4 Free water mL Trace Trace 10 2.5 - In the table 5.2, the designed slurries have a density of 15.8 lbm/gal, and the concentration of super-absorbent S2 is 0.3% bwoc (corresponding to 0.7% bwow).
TABLE 5.3 Design 33 34 35 Antifoam (gps) 0.03 0.03 0.03 Lignosulfonate (gps) 0.025 0.025 — NaCl (by weight of water) 37 Fluid loss control agent (gps) 0.2 0.15 — Polynaphtalene (gps) 0.045 0.045 0.9 Mixing rheology Ty (lbf/100 ft2) 46.8 45 4.4 PV (cP) 223 208 61 BHCT rheology at 60° C. Ty (lbf/100 ft2) 27 50 14 PV (cP) 217 240 51 10′/1′gel 10/5 10/7 20/9 Free water mL 1.5 1 — API Fluid loss (ml) 170 - In the table 5.3, the designed slurries have a density of 15.8 lbm/gal, and the concentration of super-absorbent S2 is 0.4% bwoc (corresponding to 0.9% bwow).
- This example shows that the addition of a salt allows an increase of the concentration of superabsorbent polymer while keeping acceptable rheology properties. In table 6.1, tests have been carried out with sodium chloride as added salt. In table 6.2, the added salt is calcium chloride. In both tables, the cements have a density of 15.8 ppg.
TABLE 6.1 Design 1 36 37 38 S2 (% bwoc) 0.9 0.9 0.9 0.9 Antifoam (gps) 0.03 0.03 0.05 0.05 NaCl (by weight of water) 0 37 18.5 37 Polynaphtalene (gps) 0.04 0.9 0.9 1.5 Mixing rheology Ty (lbf/100 ft2) Too viscous 13.4 27.1 61.8 PV (cP) 119 207 352 BHCT rheology at 60° C. Ty (lbf/100 ft2) 30.7 31.5 59 PV (cP) 107 1059 433 10′/1′gel 28/19 — 433 Free water mL Trace -
TABLE 6.2 Design 70 81 Antifoam (gps) 0.05 0.05 Flac (gps) 0.5 — Lignosulfonate (gps) 0.05 — Polynaphtalene (gps) — 0.9 Sulfonated melamine-formaldehyde (gps) 0.12 — Sodium chloride (% BWOW) — 37 Calcium chloride (% BWOC) 2 — S2 (% BWOC) 0.45 0.9 Mixing rheology Ty (lbf/100ft2) 29 30 PV (cP) 244 173 BHCT tests at 60° C. Rheology Ty (lbf/100 ft2) 34 22 PV(cP) 211 110 10′gel/1′stiring 17/9 23/10 Free water (mL) 0 0 Fluid loss (mL API) 78 18 Thickening time 5 h 17 min — - This example shows that if the slurry density is lower, higher concentration of super-absorbent polymers can be used, even without the addition of a salt.
Design X7.1 X7.2 X7.3 Density (lbm/gal) 14 12 12 BHCT (deg C.) 60 25 85 Antifoam (gps) 0.03 0.02 0.02 Flac (gps) 0.4 — — Lignosulfonate (gps) 0.025 — — Polynaphtalene (gps) 0.045 0.03 0.03 S2 (% bwoc) 0.9 3 3 S2 (% bwow) 1.4 2.4 2.4 Mixing rheology Ty (lbf/100 ft2) 21.18 19.2 19.63 PV (cP) 156.9 90.3 86.39 Rheology at BHCT Ty (lbf/100 ft2) 49.31 27.5 4.92 PV (cP) 180.5 169.7 82.78 10′gel/1′stiring 32/22 28/12 11/6 Fluid loss (mL API) — 149 240 - Cement samples comprising super-absorbent polymers were taken form the sedimentation column and additional water was added at the surface of broken pieces to simulate contact with formation water after a crack. Tests were performed at room temperature and at 60° C. In all cases, swelling was observed showing that the super-absorbent polymer particles remain effectively available to absorb additional water (even though the cement matrix always comprises residual water).
- This test was performed with super-absorbent S3. Good rheology is obtained.
TABLE 9 Design 5 13 19 Density (lbm/gal) 15.8 15.8 15.8 BHCT (deg C.) 60 60 60 Antifoam (gps) 0.05 0.03 0.05 Flac (gps) 0.5 0.4 — Lignosulfonate (gps) 0.05 0.025 — Polynaphtalene (gps) — 0.05 0.9 Sulfonated melamine formaldehyde (gps) 0.12 — — Sodium chloride (% BWOW) — — 37 Calcium chloride (% BWOC) 2 — — S3 (% bwoc) 3 0.9 2 S3 (% bwow) 7.7 2.2 4.5 Mixing rheology Ty(lbf/100 ft2) 26 19 4 PV (cP) 262 195 54 BHCT Rheology Ty (lbf/100 ft2) 13 19 4 PV (cP) 154 145 30 10′gel/1′stiring 7/5 14/4 15/6 Free water (mL) 0 0 — Fluid loss (mL API) 48 — —
Claims (14)
1. A composition for well cementing comprising:
i. a pumpable slurry of cement,
ii. water and
iii. a material having residual water-absorption properties after the setting of the cement, so that said material is susceptible to swell in contact with underground water in case of failure of the cement matrix.
2. The composition of claim 1 , wherein said material is a super-absorbent polymer.
3. The cement system of claim 1 , wherein the super-absorbent polymer is selected from the list consisting of polymethacrylate and polyacrylamide or a non-soluble acrylic polymers.
4. The cement system of claim 2 , wherein the super-absorbent polymer is added to the slurry dry-blended with the cement.
5. The cement system of claim 2 , wherein the super-absorbent polymer is added at a concentration between 0.05% and 3.2% by weight of cement.
6. The cement system of claim 2 further comprising a salt.
7. The cement system of claim 6 , wherein said salt is sodium chloride or calcium chloride.
8. The cement slurry of claim 2 , wherein the super-absorbent polymer is added under the form of particles ranging from 10 μm to 1500 μm.
9. The cement system of claim 1 , whereby the material is provided in a capsule that releases the material in response to exposure of the cement to at least one downhole parameter.
10. The cement system of claim 1 , whereby the material is provided in a capsule that releases the material when the cement matrix cracks.
11. The cement system of claim 1 further comprising at least one additive selected from the list consisting of dispersing agent, fluid loss control agent, set retarder, set accelerator and anti-foaming agent.
12. The cement system of claim 2 whereby the material is provided in a capsule that releases the material in response to exposure of the cement to at least one downhole parameter.
13. The cement system of claim 2 whereby the material is provided in a capsule that releases the material when the cement matrix cracks.
14. The cement system of claim 2 further comprising at least one additive selected from the list consisting of dispersing agent, fluid loss control agent, set retarder, set accelerator and anti-foaming agent.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/557,106 US20070204765A1 (en) | 2003-05-14 | 2004-05-12 | Self-Adaptive Cement Systems |
US12/892,543 US8469095B2 (en) | 2003-05-14 | 2010-09-28 | Self adaptive cement systems |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47034103P | 2003-05-14 | 2003-05-14 | |
PCT/EP2004/005479 WO2004101952A1 (en) | 2003-05-14 | 2004-05-12 | Self adaptive cement systems |
US10/557,106 US20070204765A1 (en) | 2003-05-14 | 2004-05-12 | Self-Adaptive Cement Systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/005479 A-371-Of-International WO2004101952A1 (en) | 2003-05-14 | 2004-05-12 | Self adaptive cement systems |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/892,543 Continuation-In-Part US8469095B2 (en) | 2003-05-14 | 2010-09-28 | Self adaptive cement systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070204765A1 true US20070204765A1 (en) | 2007-09-06 |
Family
ID=33452388
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/557,106 Abandoned US20070204765A1 (en) | 2003-05-14 | 2004-05-12 | Self-Adaptive Cement Systems |
US12/907,958 Expired - Lifetime US8551244B2 (en) | 2003-05-14 | 2010-10-19 | Self adaptive cement systems |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/907,958 Expired - Lifetime US8551244B2 (en) | 2003-05-14 | 2010-10-19 | Self adaptive cement systems |
Country Status (7)
Country | Link |
---|---|
US (2) | US20070204765A1 (en) |
EP (4) | EP1623089B1 (en) |
AT (1) | ATE401490T1 (en) |
CA (3) | CA2524966C (en) |
DE (1) | DE602004015098D1 (en) |
NO (3) | NO20055348L (en) |
WO (3) | WO2004101952A1 (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7530396B1 (en) | 2008-01-24 | 2009-05-12 | Halliburton Energy Services, Inc. | Self repairing cement compositions and methods of using same |
US20090120640A1 (en) * | 2007-11-09 | 2009-05-14 | David Kulakofsky | Methods of Integrating Analysis, Auto-Sealing, and Swellable-Packer Elements for a Reliable Annular Seal |
US7617870B1 (en) | 2008-05-14 | 2009-11-17 | Halliburton Energy Services, Inc. | Extended cement compositions comprising oil-swellable particles and associated methods |
US7740070B2 (en) | 2008-06-16 | 2010-06-22 | Halliburton Energy Services, Inc. | Wellbore servicing compositions comprising a density segregation inhibiting composite and methods of making and using same |
US20100163252A1 (en) * | 2007-04-06 | 2010-07-01 | Loic Regnault De La Mothe | Method and composition for zonal isolation of a well |
US7762329B1 (en) | 2009-01-27 | 2010-07-27 | Halliburton Energy Services, Inc. | Methods for servicing well bores with hardenable resin compositions |
US20100193191A1 (en) * | 2009-02-03 | 2010-08-05 | Roddy Craig W | Methods and Compositions Comprising a Dual Oil/Water-Swellable Particle |
US20100285224A1 (en) * | 2009-05-11 | 2010-11-11 | Dale Fisher | Agent and method for curing pervious concrete |
US7878245B2 (en) | 2007-10-10 | 2011-02-01 | Halliburton Energy Services Inc. | Cement compositions comprising a high-density particulate elastomer and associated methods |
US20110060074A1 (en) * | 2008-05-20 | 2011-03-10 | Feng Xing | Self-Repairing Concrete Used Urea-Formaldehyde Resin Polymer Micro-Capsules and Method for Fabricating Same |
US7927419B2 (en) | 2005-09-09 | 2011-04-19 | Halliburton Energy Services Inc. | Settable compositions comprising cement kiln dust and swellable particles |
US20110094746A1 (en) * | 2009-10-27 | 2011-04-28 | Allison David B | Swellable Spacer Fluids and Associated Methods |
US20110237465A1 (en) * | 2008-08-18 | 2011-09-29 | Jesse Lee | Release of Chemical Systems for Oilfield Applications by Stress Activation |
US8030253B2 (en) | 2005-09-09 | 2011-10-04 | Halliburton Energy Services, Inc. | Foamed cement compositions comprising oil-swellable particles |
WO2011131306A1 (en) | 2010-04-20 | 2011-10-27 | Services Petroliers Schlumberger | Composition for well cementing comprising a compounded elastomer swelling additive |
WO2012022399A1 (en) | 2010-08-17 | 2012-02-23 | Services Petroliers Schlumberger | Self-repairing cements |
EP2518034A1 (en) | 2011-02-11 | 2012-10-31 | Services Pétroliers Schlumberger | Self-adaptive cements |
US20130105161A1 (en) * | 2011-10-27 | 2013-05-02 | Halliburton Energy Services, Inc. | Delayed, Swellable Particles for Prevention of Fluid Migration Through Damaged Cement Sheaths |
US8476203B2 (en) | 2007-05-10 | 2013-07-02 | Halliburton Energy Services, Inc. | Cement compositions comprising sub-micron alumina and associated methods |
US8586512B2 (en) | 2007-05-10 | 2013-11-19 | Halliburton Energy Services, Inc. | Cement compositions and methods utilizing nano-clay |
US8685903B2 (en) | 2007-05-10 | 2014-04-01 | Halliburton Energy Services, Inc. | Lost circulation compositions and associated methods |
US8800656B2 (en) | 2011-02-11 | 2014-08-12 | Schlumberger Technology Corporation | Self-adaptive cements |
RU2542013C2 (en) * | 2013-06-25 | 2015-02-20 | Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг") | Cement slurry for cementing oil and gas wells |
US9199879B2 (en) | 2007-05-10 | 2015-12-01 | Halliburton Energy Serives, Inc. | Well treatment compositions and methods utilizing nano-particles |
US9206344B2 (en) | 2007-05-10 | 2015-12-08 | Halliburton Energy Services, Inc. | Sealant compositions and methods utilizing nano-particles |
US9512351B2 (en) | 2007-05-10 | 2016-12-06 | Halliburton Energy Services, Inc. | Well treatment fluids and methods utilizing nano-particles |
US10125302B2 (en) | 2014-09-29 | 2018-11-13 | Halliburton Energy Services, Inc. | Self-healing cement comprising polymer capable of swelling in gaseous environment |
CN111039586A (en) * | 2018-10-12 | 2020-04-21 | 中国石油化工股份有限公司 | Self-repairing material for oil and gas well cementation and preparation method thereof |
EP3708555A1 (en) * | 2019-03-15 | 2020-09-16 | Sika Technology Ag | Shrinkage reducer for mineral binder composition and its use |
WO2020252221A1 (en) | 2019-06-13 | 2020-12-17 | Omnova Solutions | Hydrocarbon swelling particles for wellbore cementing |
US20220127194A1 (en) * | 2020-10-28 | 2022-04-28 | The Procter & Gamble Company | Cementitious compositions comprising recycled superabsorbent polymer |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6983799B2 (en) | 2003-02-27 | 2006-01-10 | Halliburton Energy Services, Inc. | Method of using a swelling agent to prevent a cement slurry from being lost to a subterranean formation |
US7866394B2 (en) | 2003-02-27 | 2011-01-11 | Halliburton Energy Services Inc. | Compositions and methods of cementing in subterranean formations using a swelling agent to inhibit the influx of water into a cement slurry |
GB2428263B (en) | 2004-03-12 | 2008-07-30 | Schlumberger Holdings | Sealing system and method for use in a well |
US7607483B2 (en) | 2004-04-19 | 2009-10-27 | Halliburton Energy Services, Inc. | Sealant compositions comprising colloidally stabilized latex and methods of using the same |
US7690429B2 (en) | 2004-10-21 | 2010-04-06 | Halliburton Energy Services, Inc. | Methods of using a swelling agent in a wellbore |
US20070111901A1 (en) | 2005-11-11 | 2007-05-17 | Reddy B R | Method of servicing a wellbore with a sealant composition comprising solid latex |
US7488705B2 (en) | 2004-12-08 | 2009-02-10 | Halliburton Energy Services, Inc. | Oilwell sealant compositions comprising alkali swellable latex |
NO322718B1 (en) | 2004-12-16 | 2006-12-04 | Easy Well Solutions As | Method and apparatus for sealing an incompletely filled compartment with stop pulp |
CA2530969C (en) | 2004-12-21 | 2010-05-18 | Schlumberger Canada Limited | Water shut off method and apparatus |
US7891424B2 (en) | 2005-03-25 | 2011-02-22 | Halliburton Energy Services Inc. | Methods of delivering material downhole |
US7870903B2 (en) | 2005-07-13 | 2011-01-18 | Halliburton Energy Services Inc. | Inverse emulsion polymers as lost circulation material |
US7373991B2 (en) | 2005-07-18 | 2008-05-20 | Schlumberger Technology Corporation | Swellable elastomer-based apparatus, oilfield elements comprising same, and methods of using same in oilfield applications |
US7407007B2 (en) | 2005-08-26 | 2008-08-05 | Schlumberger Technology Corporation | System and method for isolating flow in a shunt tube |
US8333240B2 (en) | 2005-09-09 | 2012-12-18 | Halliburton Energy Services, Inc. | Reduced carbon footprint settable compositions for use in subterranean formations |
US8609595B2 (en) | 2005-09-09 | 2013-12-17 | Halliburton Energy Services, Inc. | Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use |
US9051505B2 (en) | 2005-09-09 | 2015-06-09 | Halliburton Energy Services, Inc. | Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly |
US8505630B2 (en) | 2005-09-09 | 2013-08-13 | Halliburton Energy Services, Inc. | Consolidating spacer fluids and methods of use |
US9809737B2 (en) | 2005-09-09 | 2017-11-07 | Halliburton Energy Services, Inc. | Compositions containing kiln dust and/or biowaste ash and methods of use |
US8281859B2 (en) | 2005-09-09 | 2012-10-09 | Halliburton Energy Services Inc. | Methods and compositions comprising cement kiln dust having an altered particle size |
US8950486B2 (en) | 2005-09-09 | 2015-02-10 | Halliburton Energy Services, Inc. | Acid-soluble cement compositions comprising cement kiln dust and methods of use |
US8672028B2 (en) | 2010-12-21 | 2014-03-18 | Halliburton Energy Services, Inc. | Settable compositions comprising interground perlite and hydraulic cement |
US7743828B2 (en) | 2005-09-09 | 2010-06-29 | Halliburton Energy Services, Inc. | Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content |
US9023150B2 (en) | 2005-09-09 | 2015-05-05 | Halliburton Energy Services, Inc. | Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use |
US7789150B2 (en) | 2005-09-09 | 2010-09-07 | Halliburton Energy Services Inc. | Latex compositions comprising pozzolan and/or cement kiln dust and methods of use |
US9676989B2 (en) | 2005-09-09 | 2017-06-13 | Halliburton Energy Services, Inc. | Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use |
US9150773B2 (en) | 2005-09-09 | 2015-10-06 | Halliburton Energy Services, Inc. | Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations |
US8522873B2 (en) | 2005-09-09 | 2013-09-03 | Halliburton Energy Services, Inc. | Spacer fluids containing cement kiln dust and methods of use |
US9006155B2 (en) | 2005-09-09 | 2015-04-14 | Halliburton Energy Services, Inc. | Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly |
US7717180B2 (en) | 2006-06-29 | 2010-05-18 | Halliburton Energy Services, Inc. | Swellable elastomers and associated methods |
WO2008034461A1 (en) * | 2006-09-20 | 2008-03-27 | Services Petroliers Schlumberger | Cementing composition comprising within un-reacted cement |
US9120963B2 (en) | 2006-11-08 | 2015-09-01 | Schlumberger Technology Corporation | Delayed water-swelling materials and methods of use |
CA2673866C (en) | 2006-12-27 | 2015-04-28 | Schlumberger Canada Limited | Low permeability cement systems for steam injection application |
EP2025732A1 (en) * | 2007-07-27 | 2009-02-18 | Services Pétroliers Schlumberger | Self-repairing isolation systems |
US8276666B2 (en) | 2007-08-08 | 2012-10-02 | Halliburton Energy Services Inc. | Sealant compositions and methods of use |
DE102008030712A1 (en) * | 2008-06-27 | 2009-12-31 | Construction Research & Technology Gmbh | Time-delayed superabsorbent polymers |
US8807216B2 (en) | 2009-06-15 | 2014-08-19 | Halliburton Energy Services, Inc. | Cement compositions comprising particulate foamed elastomers and associated methods |
US8236100B2 (en) * | 2009-11-06 | 2012-08-07 | Schlumberger Technology Corporation | Method of characterizing the self-healing properties of a set cement based material in contact with hydrocarbons |
EP2381065B1 (en) | 2010-04-20 | 2016-11-16 | Services Pétroliers Schlumberger | System and method for improving zonal isolation in a well |
EP2404884A1 (en) | 2010-05-19 | 2012-01-11 | Services Pétroliers Schlumberger | Compositions and methods for well treatment |
EP2822912B1 (en) * | 2012-03-09 | 2018-08-15 | Parexgroup Sa | Use of at least one superabsorbent polymer (psa) (b), in a dry composition based on a mineral binder and used for preparing a hardenable moist formulation for the building industry |
EP2822911B1 (en) * | 2012-03-09 | 2019-11-20 | Parexgroup Sa | Dry composition based on a mineral binder, used for preparing a moist formulation for the building industry |
US9556703B2 (en) | 2012-09-28 | 2017-01-31 | Schlumberger Technology Corporation | Swellable elastomer and its use in acidizing or matrix stimulation |
US9611716B2 (en) | 2012-09-28 | 2017-04-04 | Schlumberger Technology Corporation | Compositions and methods for reducing fluid loss |
EP2806007B1 (en) | 2013-05-24 | 2017-04-05 | Services Pétroliers Schlumberger | Methods for maintaining zonal isolation in a subterranean well |
CN103498655B (en) * | 2013-09-05 | 2016-05-18 | 延长油田股份有限公司 | Micro mist sand fracturing process |
CA2832791A1 (en) | 2013-11-07 | 2015-05-07 | Trican Well Service Ltd. | Bio-healing well cement systems |
US11299958B2 (en) * | 2015-08-05 | 2022-04-12 | Schlumberger Technology Corporation | Compositions and methods for well completions |
WO2017023159A1 (en) * | 2015-08-05 | 2017-02-09 | Schlumberger Canada Limited | Compositions and methods for well completions |
CN107384342B (en) * | 2017-07-14 | 2020-08-11 | 中国石油天然气集团公司 | Well cementation cement slurry and evaluation method thereof |
CA3105197A1 (en) | 2018-07-02 | 2020-01-09 | Schlumberger Canada Limited | Cement compositions and methods |
CN111662048A (en) * | 2019-03-06 | 2020-09-15 | 中石化石油工程技术服务有限公司 | Low-density plugging cement slurry system for cementing fractured oil reservoir |
WO2020264288A1 (en) | 2019-06-28 | 2020-12-30 | Schlumberger Technology Corporation | Cement compositions and methods |
CN110386787B (en) * | 2019-08-01 | 2021-10-08 | 中建西部建设湖南有限公司 | Cement-based self-repairing agent and preparation method thereof |
US11414587B2 (en) | 2020-05-22 | 2022-08-16 | Halliburton Energy Services, Inc. | Cycloalkene and transition metal compound catalyst resin for well sealing |
RU2743555C1 (en) * | 2020-07-14 | 2021-02-19 | Общество с ограниченной ответственностью "ИНТОВ" | Grouting mortar for cement stone blocking fluid (two embodiments) and polymer modifier for backfilling fluid of grouting mortar (three embodiments) |
KR102243253B1 (en) * | 2020-09-24 | 2021-04-21 | 허영호 | composition of water repellent and waterproof |
CA3203768A1 (en) | 2020-12-01 | 2022-06-09 | Schlumberger Canada Limited | Cement compositions and methods |
US11454068B1 (en) | 2021-03-23 | 2022-09-27 | Saudi Arabian Oil Company | Pressure-dampening casing to reduce stress load on cement sheath |
CN113899889B (en) * | 2021-12-10 | 2022-04-15 | 成都理工大学 | Device and method for monitoring cement paste gel strength of visual retaining wall |
CN113899888B (en) * | 2021-12-10 | 2022-04-15 | 成都理工大学 | Device and method for evaluating cement paste condensation quality of slide-resistant pile |
CN114647938B (en) * | 2021-12-10 | 2023-06-06 | 成都理工大学 | Cement paste construction real-time monitoring method and coagulation strength simulation measuring device thereof |
FR3135262A1 (en) * | 2022-05-03 | 2023-11-10 | Snf Sa | Cementitious composition comprising a polymeric micro-gel as an anti-gas migration agent |
US12077709B2 (en) | 2022-12-02 | 2024-09-03 | Schlumberger Technology Corporation | Cement slurry compositions comprising pozzolanic cement additives and methods for improving development of compressive strengths in the cement slurry compositions |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5393343A (en) * | 1993-09-29 | 1995-02-28 | W. R. Grace & Co.-Conn. | Cement and cement composition having improved rheological properties |
US5443636A (en) * | 1994-07-29 | 1995-08-22 | Fritz Industries, Inc. | Composition for and method of pumping concrete |
US5665158A (en) * | 1995-07-24 | 1997-09-09 | W. R. Grace & Co.-Conn. | Cement admixture product |
US20040168802A1 (en) * | 2003-02-27 | 2004-09-02 | Creel Prentice G. | Compositions and methods of cementing in subterranean formations using a swelling agent to inhibit the influx of water into a cement slurry |
US20040221990A1 (en) * | 2003-05-05 | 2004-11-11 | Heathman James F. | Methods and compositions for compensating for cement hydration volume reduction |
US6843841B2 (en) * | 2000-10-26 | 2005-01-18 | Halliburton Energy Services, Inc. | Preventing flow through subterranean zones |
US20050222302A1 (en) * | 2004-04-06 | 2005-10-06 | Jean-Roch Pageau | Cement composition |
US20070137528A1 (en) * | 2003-05-14 | 2007-06-21 | Sylvaine Le Roy-Delage | Self adaptive cement systems |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3558335A (en) * | 1966-04-04 | 1971-01-26 | Mobil Oil Corp | Well cementing compositions |
US3487038A (en) * | 1966-06-13 | 1969-12-30 | Standard Oil Co | Elastomeric sealant compositions |
US3487938A (en) | 1968-08-08 | 1970-01-06 | Sondell Research & Dev Co | Chromatographic column head space reducer |
US4182677A (en) * | 1975-04-03 | 1980-01-08 | Institut Francais Du Petrole | Modified rubber, its use as hydrocarbon absorber |
US4664816A (en) * | 1985-05-28 | 1987-05-12 | Texaco Inc. | Encapsulated water absorbent polymers as lost circulation additives for aqueous drilling fluids |
US4633950A (en) * | 1985-05-28 | 1987-01-06 | Texaco Inc. | Method for controlling lost circulation of drilling fluids with hydrocarbon absorbent polymers |
ZA91876B (en) * | 1989-11-09 | 1991-12-24 | Thomas Snashall Hector | Cementitious mixes |
WO1991017968A1 (en) | 1990-05-18 | 1991-11-28 | Specrete-Ip Incorporated | A silica fume hydrating and plasticizing admixture for concrete |
US6527849B2 (en) | 1990-06-19 | 2003-03-04 | Carolyn M. Dry | Self-repairing, reinforced matrix materials |
US5575841A (en) | 1990-06-19 | 1996-11-19 | Carolyn M. Dry | Cementitious materials |
US5561173A (en) | 1990-06-19 | 1996-10-01 | Carolyn M. Dry | Self-repairing, reinforced matrix materials |
US5009269A (en) * | 1990-07-31 | 1991-04-23 | Conoco Inc. | Well cement fluid loss additive and method |
TW210994B (en) * | 1991-09-03 | 1993-08-11 | Hoechst Ag | |
US5391226A (en) * | 1992-04-23 | 1995-02-21 | Tiremix Corporation | Rubber-crumb-reinforced cement concrete |
GB2271350B (en) * | 1992-09-04 | 1996-04-03 | American Cyanamid Co | Cement and polymer composition for increasing the shear strength of process wastes used for tip building and underground consolidation |
US5456751A (en) * | 1993-09-03 | 1995-10-10 | Trustees Of The University Of Pennsylvania | Particulate rubber included concrete compositions |
NO178357C (en) * | 1993-10-12 | 1996-03-06 | Statoil As | Apparatus for use in testing a shear force-sealing fluid |
JP3273883B2 (en) * | 1995-12-12 | 2002-04-15 | 太平洋セメント株式会社 | Hydraulic cement composition and method for producing the same |
US5779787A (en) * | 1997-08-15 | 1998-07-14 | Halliburton Energy Services, Inc. | Well cement compositions containing rubber particles and methods of cementing subterranean zones |
FR2768768B1 (en) | 1997-09-23 | 1999-12-03 | Schlumberger Cie Dowell | METHOD FOR MAINTAINING THE INTEGRITY OF A LINER FORMING A WATERPROOF JOINT, IN PARTICULAR A CEMENTITIOUS WELL LINER |
RU2141029C1 (en) * | 1997-12-25 | 1999-11-10 | ОАО Научно-производственное объединение "Буровая техника" | Method of isolation of lost circulation zones in well |
KR100751826B1 (en) * | 1998-03-20 | 2007-08-23 | 가부시키가이샤 히타치세이사쿠쇼 | Semiconductor device and method of manufacturing the same |
FR2778402B1 (en) | 1998-05-11 | 2000-07-21 | Schlumberger Cie Dowell | CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE |
FR2784095B1 (en) | 1998-10-06 | 2001-09-21 | Dowell Schlumberger Services | CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE |
FR2787441B1 (en) * | 1998-12-21 | 2001-01-12 | Dowell Schlumberger Services | CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE |
US6581701B2 (en) * | 1999-05-14 | 2003-06-24 | Broadleaf Industries Inc. | Methods for reducing lost circulation in wellbores |
FR2799458B1 (en) * | 1999-10-07 | 2001-12-21 | Dowell Schlumberger Services | CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE |
JP2001146457A (en) * | 1999-11-17 | 2001-05-29 | Denki Kagaku Kogyo Kk | Cement admixture, cement composition and application of concrete using the same |
FR2806717B1 (en) | 2000-03-23 | 2002-05-24 | Dowell Schlumberger Services | CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE |
WO2001074967A1 (en) * | 2000-04-04 | 2001-10-11 | Heying Theodore L | Methods for reducing lost circulation in wellbores |
FR2815029B1 (en) * | 2000-10-09 | 2003-08-01 | Inst Francais Du Petrole | ALMOND CEMENT DAIRY |
CN1142351C (en) | 2001-03-23 | 2004-03-17 | 邱则有 | Expensive self-binding prestressed reinforcement and its making method |
US20030141062A1 (en) * | 2002-01-30 | 2003-07-31 | Cowan Jack C. | Method for decreasing lost circulation during well operations using water absorbent polymers |
ATE340779T1 (en) | 2002-02-16 | 2006-10-15 | Schlumberger Technology Bv | CEMENT COMPOSITIONS FOR HIGH TEMPERATURE APPLICATIONS |
US20050120960A1 (en) * | 2002-03-12 | 2005-06-09 | Tokyo Electron Limited | Substrate holder for plasma processing |
CN1242145C (en) | 2002-03-14 | 2006-02-15 | 侯彩虹 | Composite waterproof coil |
US6962201B2 (en) * | 2003-02-25 | 2005-11-08 | Halliburton Energy Services, Inc. | Cement compositions with improved mechanical properties and methods of cementing in subterranean formations |
US7147055B2 (en) * | 2003-04-24 | 2006-12-12 | Halliburton Energy Services, Inc. | Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations |
US6904971B2 (en) * | 2003-04-24 | 2005-06-14 | Halliburton Energy Services, Inc. | Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations |
US6902001B2 (en) * | 2003-06-10 | 2005-06-07 | Schlumberger Technology Corporation | Cementing compositions and application of such compositions for cementing oil wells or the like |
US7607482B2 (en) * | 2005-09-09 | 2009-10-27 | Halliburton Energy Services, Inc. | Settable compositions comprising cement kiln dust and swellable particles |
-
2004
- 2004-05-12 CA CA2524966A patent/CA2524966C/en not_active Expired - Fee Related
- 2004-05-12 CA CA2524514A patent/CA2524514C/en not_active Expired - Fee Related
- 2004-05-12 WO PCT/EP2004/005479 patent/WO2004101952A1/en active IP Right Grant
- 2004-05-12 EP EP04732324A patent/EP1623089B1/en not_active Expired - Lifetime
- 2004-05-12 WO PCT/EP2004/005124 patent/WO2004101463A2/en active Application Filing
- 2004-05-12 EP EP04739190A patent/EP1625280A2/en not_active Withdrawn
- 2004-05-12 US US10/557,106 patent/US20070204765A1/en not_active Abandoned
- 2004-05-12 DE DE602004015098T patent/DE602004015098D1/en not_active Expired - Lifetime
- 2004-05-12 AT AT04732324T patent/ATE401490T1/en not_active IP Right Cessation
- 2004-05-14 CA CA2524977A patent/CA2524977C/en not_active Expired - Lifetime
- 2004-05-14 EP EP04732993.3A patent/EP1625279B1/en not_active Expired - Lifetime
- 2004-05-14 WO PCT/EP2004/005478 patent/WO2004101951A1/en active Application Filing
- 2004-05-14 EP EP20090075541 patent/EP2199539A1/en not_active Ceased
-
2005
- 2005-11-11 NO NO20055348A patent/NO20055348L/en not_active Application Discontinuation
- 2005-11-11 NO NO20055349A patent/NO20055349L/en not_active Application Discontinuation
- 2005-11-15 NO NO20055405A patent/NO20055405L/en not_active Application Discontinuation
-
2010
- 2010-10-19 US US12/907,958 patent/US8551244B2/en not_active Expired - Lifetime
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5393343A (en) * | 1993-09-29 | 1995-02-28 | W. R. Grace & Co.-Conn. | Cement and cement composition having improved rheological properties |
US5997633A (en) * | 1994-07-29 | 1999-12-07 | Fritz Industries, Inc | Composition for and method of pumping concrete |
US5443636A (en) * | 1994-07-29 | 1995-08-22 | Fritz Industries, Inc. | Composition for and method of pumping concrete |
US5587012A (en) * | 1994-07-29 | 1996-12-24 | Fritz Industries, Inc. | Composition for and method of pumping concrete |
US5683503A (en) * | 1994-07-29 | 1997-11-04 | Fritz Industries, Inc. | Composition for and method of pumping concrete |
US5443636B1 (en) * | 1994-07-29 | 1999-07-13 | Fritz Ind Inc | Composition for and method of pumping concrete |
US5587012B1 (en) * | 1994-07-29 | 1999-08-10 | Fritz Ind Inc | Composition for and method of pumping concrete |
US5683503B1 (en) * | 1994-07-29 | 1999-08-10 | Fritz Ind Inc | Composition for and method of pumping concrete |
US5665158A (en) * | 1995-07-24 | 1997-09-09 | W. R. Grace & Co.-Conn. | Cement admixture product |
US6843841B2 (en) * | 2000-10-26 | 2005-01-18 | Halliburton Energy Services, Inc. | Preventing flow through subterranean zones |
US20040168802A1 (en) * | 2003-02-27 | 2004-09-02 | Creel Prentice G. | Compositions and methods of cementing in subterranean formations using a swelling agent to inhibit the influx of water into a cement slurry |
US20040221990A1 (en) * | 2003-05-05 | 2004-11-11 | Heathman James F. | Methods and compositions for compensating for cement hydration volume reduction |
US20070137528A1 (en) * | 2003-05-14 | 2007-06-21 | Sylvaine Le Roy-Delage | Self adaptive cement systems |
US20050222302A1 (en) * | 2004-04-06 | 2005-10-06 | Jean-Roch Pageau | Cement composition |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8030253B2 (en) | 2005-09-09 | 2011-10-04 | Halliburton Energy Services, Inc. | Foamed cement compositions comprising oil-swellable particles |
US7927419B2 (en) | 2005-09-09 | 2011-04-19 | Halliburton Energy Services Inc. | Settable compositions comprising cement kiln dust and swellable particles |
US8689894B2 (en) | 2007-04-06 | 2014-04-08 | Schlumberger Technology Corporation | Method and composition for zonal isolation of a well |
US20100163252A1 (en) * | 2007-04-06 | 2010-07-01 | Loic Regnault De La Mothe | Method and composition for zonal isolation of a well |
US9512351B2 (en) | 2007-05-10 | 2016-12-06 | Halliburton Energy Services, Inc. | Well treatment fluids and methods utilizing nano-particles |
US9206344B2 (en) | 2007-05-10 | 2015-12-08 | Halliburton Energy Services, Inc. | Sealant compositions and methods utilizing nano-particles |
US9199879B2 (en) | 2007-05-10 | 2015-12-01 | Halliburton Energy Serives, Inc. | Well treatment compositions and methods utilizing nano-particles |
US8940670B2 (en) | 2007-05-10 | 2015-01-27 | Halliburton Energy Services, Inc. | Cement compositions comprising sub-micron alumina and associated methods |
US8741818B2 (en) | 2007-05-10 | 2014-06-03 | Halliburton Energy Services, Inc. | Lost circulation compositions and associated methods |
US9512352B2 (en) | 2007-05-10 | 2016-12-06 | Halliburton Energy Services, Inc. | Well treatment fluids and methods utilizing nano-particles |
US8685903B2 (en) | 2007-05-10 | 2014-04-01 | Halliburton Energy Services, Inc. | Lost circulation compositions and associated methods |
US8603952B2 (en) | 2007-05-10 | 2013-12-10 | Halliburton Energy Services, Inc. | Cement compositions and methods utilizing nano-clay |
US8586512B2 (en) | 2007-05-10 | 2013-11-19 | Halliburton Energy Services, Inc. | Cement compositions and methods utilizing nano-clay |
US9765252B2 (en) | 2007-05-10 | 2017-09-19 | Halliburton Energy Services, Inc. | Sealant compositions and methods utilizing nano-particles |
US8476203B2 (en) | 2007-05-10 | 2013-07-02 | Halliburton Energy Services, Inc. | Cement compositions comprising sub-micron alumina and associated methods |
US7878245B2 (en) | 2007-10-10 | 2011-02-01 | Halliburton Energy Services Inc. | Cement compositions comprising a high-density particulate elastomer and associated methods |
US8240377B2 (en) | 2007-11-09 | 2012-08-14 | Halliburton Energy Services Inc. | Methods of integrating analysis, auto-sealing, and swellable-packer elements for a reliable annular seal |
US20090120640A1 (en) * | 2007-11-09 | 2009-05-14 | David Kulakofsky | Methods of Integrating Analysis, Auto-Sealing, and Swellable-Packer Elements for a Reliable Annular Seal |
US7530396B1 (en) | 2008-01-24 | 2009-05-12 | Halliburton Energy Services, Inc. | Self repairing cement compositions and methods of using same |
US20090283269A1 (en) * | 2008-05-14 | 2009-11-19 | Roddy Craig W | Extended cement compositions comprising oil-swellable particles and associated methods |
US7617870B1 (en) | 2008-05-14 | 2009-11-17 | Halliburton Energy Services, Inc. | Extended cement compositions comprising oil-swellable particles and associated methods |
WO2009138747A1 (en) * | 2008-05-14 | 2009-11-19 | Halliburton Energy Services, Inc. | Extended cement compositions comprising oil-swellable particles and associated methods |
US8552092B2 (en) * | 2008-05-20 | 2013-10-08 | Shenzhen University | Self-repairing concrete used urea-formaldehyde resin polymer micro-capsules and method for fabricating same |
US20110060074A1 (en) * | 2008-05-20 | 2011-03-10 | Feng Xing | Self-Repairing Concrete Used Urea-Formaldehyde Resin Polymer Micro-Capsules and Method for Fabricating Same |
US7740070B2 (en) | 2008-06-16 | 2010-06-22 | Halliburton Energy Services, Inc. | Wellbore servicing compositions comprising a density segregation inhibiting composite and methods of making and using same |
US20110237465A1 (en) * | 2008-08-18 | 2011-09-29 | Jesse Lee | Release of Chemical Systems for Oilfield Applications by Stress Activation |
US7762329B1 (en) | 2009-01-27 | 2010-07-27 | Halliburton Energy Services, Inc. | Methods for servicing well bores with hardenable resin compositions |
US20100186956A1 (en) * | 2009-01-27 | 2010-07-29 | Rickey Lynn Morgan | Methods for Servicing Well Bores with Hardenable Resin Compositions |
US7934554B2 (en) | 2009-02-03 | 2011-05-03 | Halliburton Energy Services, Inc. | Methods and compositions comprising a dual oil/water-swellable particle |
US20100193191A1 (en) * | 2009-02-03 | 2010-08-05 | Roddy Craig W | Methods and Compositions Comprising a Dual Oil/Water-Swellable Particle |
US20100285224A1 (en) * | 2009-05-11 | 2010-11-11 | Dale Fisher | Agent and method for curing pervious concrete |
US20110094746A1 (en) * | 2009-10-27 | 2011-04-28 | Allison David B | Swellable Spacer Fluids and Associated Methods |
US9708523B2 (en) | 2009-10-27 | 2017-07-18 | Halliburton Energy Services, Inc. | Swellable spacer fluids and associated methods |
EP2404975A1 (en) | 2010-04-20 | 2012-01-11 | Services Pétroliers Schlumberger | Composition for well cementing comprising a compounded elastomer swelling additive |
WO2011131306A1 (en) | 2010-04-20 | 2011-10-27 | Services Petroliers Schlumberger | Composition for well cementing comprising a compounded elastomer swelling additive |
US9382159B2 (en) | 2010-04-20 | 2016-07-05 | Schlumberger Technology Corporation | Composition for well cementing comprising a compounded elastomer swelling additive |
WO2012022399A1 (en) | 2010-08-17 | 2012-02-23 | Services Petroliers Schlumberger | Self-repairing cements |
US10457848B2 (en) | 2010-08-17 | 2019-10-29 | Schlumberger Technology Corporation | Self-repairing cements |
US9683161B2 (en) | 2010-08-17 | 2017-06-20 | Schlumberger Technology Corporation | Self-repairing cements |
EP2450417A1 (en) | 2010-08-17 | 2012-05-09 | Services Pétroliers Schlumberger | Self-repairing cements |
US8800656B2 (en) | 2011-02-11 | 2014-08-12 | Schlumberger Technology Corporation | Self-adaptive cements |
US8844628B2 (en) | 2011-02-11 | 2014-09-30 | Schlumberger Technology Corporation | Self-adaptive cements |
EP2518034A1 (en) | 2011-02-11 | 2012-10-31 | Services Pétroliers Schlumberger | Self-adaptive cements |
US20130105161A1 (en) * | 2011-10-27 | 2013-05-02 | Halliburton Energy Services, Inc. | Delayed, Swellable Particles for Prevention of Fluid Migration Through Damaged Cement Sheaths |
RU2542013C2 (en) * | 2013-06-25 | 2015-02-20 | Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг") | Cement slurry for cementing oil and gas wells |
US10125302B2 (en) | 2014-09-29 | 2018-11-13 | Halliburton Energy Services, Inc. | Self-healing cement comprising polymer capable of swelling in gaseous environment |
CN111039586A (en) * | 2018-10-12 | 2020-04-21 | 中国石油化工股份有限公司 | Self-repairing material for oil and gas well cementation and preparation method thereof |
EP3708555A1 (en) * | 2019-03-15 | 2020-09-16 | Sika Technology Ag | Shrinkage reducer for mineral binder composition and its use |
WO2020187740A1 (en) * | 2019-03-15 | 2020-09-24 | Sika Technology Ag | Shrinkage reducer for mineral binder composition and its use |
WO2020252221A1 (en) | 2019-06-13 | 2020-12-17 | Omnova Solutions | Hydrocarbon swelling particles for wellbore cementing |
US20220127194A1 (en) * | 2020-10-28 | 2022-04-28 | The Procter & Gamble Company | Cementitious compositions comprising recycled superabsorbent polymer |
Also Published As
Publication number | Publication date |
---|---|
NO20055349D0 (en) | 2005-11-11 |
CA2524977C (en) | 2012-03-20 |
ATE401490T1 (en) | 2008-08-15 |
US8551244B2 (en) | 2013-10-08 |
NO20055348L (en) | 2005-12-13 |
US20110120715A1 (en) | 2011-05-26 |
CA2524514C (en) | 2012-03-20 |
EP1623089A1 (en) | 2006-02-08 |
CA2524514A1 (en) | 2004-11-25 |
CA2524966C (en) | 2012-09-11 |
CA2524977A1 (en) | 2004-11-25 |
EP1625279A1 (en) | 2006-02-15 |
NO20055405L (en) | 2005-12-13 |
WO2004101463A3 (en) | 2005-01-06 |
EP2199539A1 (en) | 2010-06-23 |
EP1623089B1 (en) | 2008-07-16 |
WO2004101951A1 (en) | 2004-11-25 |
NO20055405D0 (en) | 2005-11-15 |
EP1625280A2 (en) | 2006-02-15 |
EP1625279B1 (en) | 2016-06-22 |
DE602004015098D1 (en) | 2008-08-28 |
WO2004101463B1 (en) | 2005-02-17 |
NO20055348D0 (en) | 2005-11-11 |
CA2524966A1 (en) | 2004-11-25 |
WO2004101463A2 (en) | 2004-11-25 |
NO20055349L (en) | 2005-12-13 |
WO2004101952A1 (en) | 2004-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2524514C (en) | Self adaptive cement systems | |
US8469095B2 (en) | Self adaptive cement systems | |
CA2663721C (en) | Cementing composition comprising within un-reacted cement | |
US7776797B2 (en) | Lost circulation compositions | |
US8132623B2 (en) | Methods of using lost circulation compositions | |
US9683161B2 (en) | Self-repairing cements | |
CA2590169C (en) | Oilwell sealant compositions comprising alkali swellable latex | |
US7866394B2 (en) | Compositions and methods of cementing in subterranean formations using a swelling agent to inhibit the influx of water into a cement slurry | |
US20070137528A1 (en) | Self adaptive cement systems | |
EP2518034B1 (en) | Use of asphaltite-mineral particles in self-adaptive cement for cementing well bores in subterranean formations | |
US9022147B2 (en) | Drilling fluid that when mixed with a cement composition enhances physical properties of the cement composition | |
CA2802281C (en) | A fluid loss additive containing a biodegradable grafted copolymer for a cement composition | |
CA2639917C (en) | Lost circulation compositions and methods of using them | |
EP1603847B1 (en) | Flexible cementing compositions and methods for high-temperature wells | |
US7726400B2 (en) | Compositions and methods for treating lost circulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LE ROY-DELAGE, SYLVAINE;MARTIN-BEUREL, MURIEL;DISMUKE, KEITH;AND OTHERS;REEL/FRAME:018608/0708;SIGNING DATES FROM 20051123 TO 20051219 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |