US20070123719A1 - Synthesis of cannabinoids - Google Patents

Synthesis of cannabinoids Download PDF

Info

Publication number
US20070123719A1
US20070123719A1 US11/642,377 US64237706A US2007123719A1 US 20070123719 A1 US20070123719 A1 US 20070123719A1 US 64237706 A US64237706 A US 64237706A US 2007123719 A1 US2007123719 A1 US 2007123719A1
Authority
US
United States
Prior art keywords
process according
compound
alkyl
acyl
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/642,377
Inventor
Lee Silverberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Priority to US11/642,377 priority Critical patent/US20070123719A1/en
Publication of US20070123719A1 publication Critical patent/US20070123719A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans

Definitions

  • the present invention relates to a novel process that can be used to produce ( ⁇ )- ⁇ 9 -tetrahydrocannibinol and related cannibinoid compounds.
  • the invention further relates to novel compounds used in the process.
  • ( ⁇ )- ⁇ 9 -Tetrahydrocannibinol ( ⁇ 9 -THC) is the active ingredient in marijuana. It is used therapeutically as an inhalant or an oral drug for stimulation of appetite among AIDS and cancer chemotherapy patients.
  • Related cannibinoid compounds that show pharmacological activity are also known.
  • there have been attempts to produce water soluble analogues of ⁇ 9 -THC (‘The Total Synthesis of Cannibinoids’ in The Total Synthesis of Natural Products, Vol 4, John ApSimon, Wiley, 1981, pp 239-243).
  • ⁇ 9 -THC is a very high boiling, viscous liquid. It is very prone to acid-catalysed isomerization to the thermodynamically more stable ⁇ 8 isomer, it is easily oxidized by oxygen to inactive cannibinol, and it is sensitive to light and heat. All of these factors make purification difficult, especially on an industrial scale, and chromatography has generally been used.
  • Razdan has published a one-pot method for coupling of (+)-p-menth-2-ene-1,8-diol (1) with olivetol (2) to produce ⁇ 9 -THC (Razdan et al, Tet. Lett. 1983 24 3129). This also suffers from several problems: it uses nearly 14 equivalents of ZnCl 2 as the acid, and uses six equivalents of olivetol (2). Even under these conditions, the yield is still only 28% from (+)-p-menth-2-ene-1,8-diol (1).
  • the present invention provides a process for the production of a compound of general formula A: wherein R c , R d and R e are independently H, alkyl, or substituted alkyl; and R 1 to R 4 are independently H, OH, OR′ (R′ is alkyl, aryl, substituted alkyl or aryl, silyl, acyl, or phosphonate), alkyl, substituted alkyl, aryl, acyl, halide, amine, nitrate, sulphonate or phosphonate; comprising reacting compound B with compound C: wherein R a is H, alkyl, aryl, acyl or silyl; R b is alkyl, aryl or acyl; R c , R d , R e and R 1 to R 4 are as hereinbefore defined; and comprising, when necessary, a ring closure reaction.
  • the reaction of compound B with compound C is carried out in the presence of an acid catalyst.
  • a substituted alkyl group may contain substituents such as halide, hydroxyl, amine and thiol.
  • Alkyl groups may be saturated or unsaturated, acyclic or cyclic.
  • Compound B is similar to the (+)-p-menth-2-ene-1,8-diol used in the Stoss method. However, compound B is not a diol, and contains one or more ether or ester groups.
  • R b is alkyl, aryl or acyl, and preferably R a is independently alkyl, aryl or acyl.
  • R b is acyl
  • OR b is an ester group.
  • Suitable ester groups include acetate, propionate, butyrate, trimethylacetate, phenylacetate, phenoxyacetate, diphenylacetate, benzoate, p-nitrobenzoate, phthalate and succinate.
  • both R a and R b are acyl groups so that compound B is a diester.
  • the two ester groups are suitably chosen independently from acetate, propionate, butyrate, trimethylacetate, phenylacetate, phenoxyacetate, diphenylacetate, benzoate, p-nitrobenzoate, phthalate and succinate.
  • R c is suitably Me or H, preferably Me.
  • R d and R e are suitably Me or CH 2 OH, preferably Me.
  • Compound C is a phenolic compound and is preferably a resorcinol derivative such as olivetol (3).
  • R 1 is preferably OR′′ wherein R′′ is H, alkyl, substituted alkyl, acyl or silyl. Most preferably R 1 is OH.
  • R 2 and R 4 are H.
  • R 3 is suitably an alkyl group or substituted alkyl group. In a preferred embodiment, R 3 is C 5 H 11 . R 3 may contain groups that promote water solubility, e.g. ketone, ester, hydroxyl or amine groups. In one embodiment of the invention, R 3 contains a thioketal (this can be further converted to an aldehyde).
  • compound C is olivetol (3), wherein R 1 is OH, R 2 is H, R 3 is C 5 H 11 and R 4 is H.
  • one equivalent of compound B is reacted with approximately one equivalent of compound C.
  • the present invention therefore provides a novel synthesis of ⁇ 9 -THC.
  • the present invention provides both a one-step and a two-step process for the production of compound A.
  • the reaction of compound B and compound C produces compound A directly.
  • suitably about one equivalent of acid catalyst is used, e.g. between 0.8 to 1.5 equivalents.
  • the reaction is carried out below 0° C., most preferably from ⁇ 20° C. to 0° C.
  • the reaction of compound B and compound C produces a ring-opened product, compound D:
  • suitably less than one equivalent of acid is used, preferably from 0.1 to 0.5 equivalents.
  • the reaction is carried out below 0° C., more preferably below ⁇ 10° C.
  • a ring closure step is then carried out.
  • Suitable reagents for the ring closure step include acids such as BF 3 .(OEt) 2 or TsOH.
  • the present invention provides one-step and two-step syntheses that can be used to produce ⁇ 9 -THC.
  • the syntheses show improved selectivity and yield compared to prior art methods.
  • the amount of isomers generated is small and purification is simple.
  • the phenolic reactant (compound C) is not used in excess.
  • the process is suitable for scale-up to an industrial process.
  • the yield of the synthesis of ⁇ 9 -THC is greater than 50%, more preferably the yield is greater than 75%.
  • the process also provides high purity ⁇ 9 -THC.
  • ⁇ 9 -THC is obtained in greater than 70% purity, more preferably greater than 90% purity. Methods known in the art can be used to further purify the products of the reaction.
  • the process of the present invention is suitably carried out in a polar aprotic solvent, preferably methylene chloride.
  • Suitable acid catalysts include most Lewis acids.
  • Non-metallic catalysts such as BF 3 .OEt 2 and toluenesulfonic acid are preferred.
  • Non-metallic catalysts offer advantages over the zinc catalysts used in the Stoss and Razdan methods because there is no possibility of a metal residue in the product.
  • BF 3 .OEt 2 is preferred because it is easily removed from the reaction mixture, and is less prone to causing isomerisation of ⁇ 9 -THC to ⁇ 8 -THC than p-TsOH.
  • about one equivalent of catalyst or less is used, e.g. 0.1 to 1.5 equivalents. This offers a clear improvement over Razdan's method where 14 equivalents of acid are used.
  • OR a and OR b are chosen independently from acetate, propionate, butyrate, trimethylacetate, phenylacetate, phenoxyacetate, diphenylacetate, benzoate, p-nitrobenzoate, phthalate and succinate (provided that only one of OR a and OR b is acetate) represent a further aspect of this invention.
  • the groups are chosen so that compound B is a solid.
  • both OR a and OR b are diphenylacetate.
  • R c , R d and R e are Me.
  • Compound B can be produced by a variety of methods.
  • R a is not H or silyl and wherein R a and R b are different can be produced by base-catalysed reaction of mono-ethers or mono-esters (7) with ethers or chlorides.
  • the following examples are illustrative but not limiting of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a process for the production of compound A comprising reacting compound B with compound C. A further ring closure reaction may be necessary. The invention further relates to certain novel compounds of formula B.
Figure US20070123719A1-20070531-C00001

Description

  • This application is a Division of U.S. application Ser. No. 10/479,021, filed Aug. 5, 2004, which is the U.S. National Phase application of PCT International Application No. PCT/GB02/02159, which claims priority of GB 0112752.1.
  • The present invention relates to a novel process that can be used to produce (−)-Δ9-tetrahydrocannibinol and related cannibinoid compounds. The invention further relates to novel compounds used in the process.
  • (−)-Δ9-Tetrahydrocannibinol (Δ9-THC) is the active ingredient in marijuana. It is used therapeutically as an inhalant or an oral drug for stimulation of appetite among AIDS and cancer chemotherapy patients. Related cannibinoid compounds that show pharmacological activity are also known. In particular, there have been attempts to produce water soluble analogues of Δ9-THC (‘The Total Synthesis of Cannibinoids’ in The Total Synthesis of Natural Products, Vol 4, John ApSimon, Wiley, 1981, pp 239-243).
    Figure US20070123719A1-20070531-C00002
  • The chemical synthesis and isolation of Δ9-THC are both challenging. Δ9-THC is a very high boiling, viscous liquid. It is very prone to acid-catalysed isomerization to the thermodynamically more stable Δ8 isomer, it is easily oxidized by oxygen to inactive cannibinol, and it is sensitive to light and heat. All of these factors make purification difficult, especially on an industrial scale, and chromatography has generally been used.
    Figure US20070123719A1-20070531-C00003
  • Previous syntheses of Δ9-THC have tended to be either lengthy or low-yielding. Most involve coupling of a chiral terpene to a resorcinol derivative. The primary difficulty has been lack of selectivity in the coupling. Acid catalysed couplings have generally led to mixtures of products (Crombie et al, J Chem Soc. Perkin Trans. I 1988 1243). Attempts to avoid the selectivity problem by using base-catalysed coupling reactions have involved lengthier syntheses overall (Rickards et al, J. Org. Chem. 1984 49 572). Syntheses not using chiral terpenes have yielded racemic product (Childers et al, J. Org. Chem. 1984 49 5276).
  • In seemingly the best known method (U.S. Pat. No. 5,227,537), Stoss claims that acid-catalysed coupling of (+)-p-menth-2-ene-1,8-diol (1) with olivetol (2) can be stopped at the intermediate Friedel-Crafts product (3), and then the intermediate (3) can be isolated and converted in good yield to Δ9-THC using ZnBr2 (24 hours, refluxing CH2Cl2). The present inventors have encountered several problems with this scheme. The initial p-toluenesulfonic acid catalysed Friedel-Crafts reaction was difficult to stop cleanly at the intermediate (3) under Stoss' conditions and gave mixtures of the intermediate (3) and Δ9-THC, the ring-closed product. Any Δ9-THC formed is likely to isomerize to Δ8-THC under the disclosed conditions. The use of a heavy metal such as ZnBr2 in the last step of an industrial process is highly undesirable as it may lead to traces of metal in the product, and this is especially undesirable for pharmaceuticals. Stoss' method therefore appears to offer no real advantage in yield or purity of Δ9-THC over a one-pot coupling that goes directly to Δ9-THC. Razdan has published a one-pot method for coupling of (+)-p-menth-2-ene-1,8-diol (1) with olivetol (2) to produce Δ9-THC (Razdan et al, Tet. Lett. 1983 24 3129). This also suffers from several problems: it uses nearly 14 equivalents of ZnCl2 as the acid, and uses six equivalents of olivetol (2). Even under these conditions, the yield is still only 28% from (+)-p-menth-2-ene-1,8-diol (1).
    Figure US20070123719A1-20070531-C00004
  • Thus there is a need for a short, practical, high-yielding synthesis of Δ9-THC that can be practised on an industrial scale. This is the problem that the present inventors have set out to address.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The entire disclosure of U.S. patent application Ser. No. 10/479,021, filed Aug. 5, 2004, is expressly incorporated by reference herein.
  • Accordingly the present invention provides a process for the production of a compound of general formula A:
    Figure US20070123719A1-20070531-C00005

    wherein Rc, Rd and Re are independently H, alkyl, or substituted alkyl; and R1 to R4 are independently H, OH, OR′ (R′ is alkyl, aryl, substituted alkyl or aryl, silyl, acyl, or phosphonate), alkyl, substituted alkyl, aryl, acyl, halide, amine, nitrate, sulphonate or phosphonate;
    comprising reacting compound B with compound C:
    Figure US20070123719A1-20070531-C00006

    wherein Ra is H, alkyl, aryl, acyl or silyl; Rb is alkyl, aryl or acyl; Rc, Rd, Re and R1 to R4 are as hereinbefore defined;
    and comprising, when necessary, a ring closure reaction.
    Preferably the reaction of compound B with compound C is carried out in the presence of an acid catalyst.
  • A substituted alkyl group may contain substituents such as halide, hydroxyl, amine and thiol. Alkyl groups may be saturated or unsaturated, acyclic or cyclic.
  • Compound B is similar to the (+)-p-menth-2-ene-1,8-diol used in the Stoss method. However, compound B is not a diol, and contains one or more ether or ester groups. Rb is alkyl, aryl or acyl, and preferably Ra is independently alkyl, aryl or acyl.
  • In a preferred embodiment, Rb is acyl, and ORb is an ester group. Suitable ester groups include acetate, propionate, butyrate, trimethylacetate, phenylacetate, phenoxyacetate, diphenylacetate, benzoate, p-nitrobenzoate, phthalate and succinate.
  • In an especially preferred embodiment both Ra and Rb are acyl groups so that compound B is a diester. The two ester groups are suitably chosen independently from acetate, propionate, butyrate, trimethylacetate, phenylacetate, phenoxyacetate, diphenylacetate, benzoate, p-nitrobenzoate, phthalate and succinate. An especially preferred compound has ORa=ORb=diphenylacetate:
    Figure US20070123719A1-20070531-C00007

    Rc, Rd and Re can be varied independently of Ra and Rb and will affect the structure of the product, compound A. Rc is suitably Me or H, preferably Me. Rd and Re are suitably Me or CH2OH, preferably Me.
  • Compound C is a phenolic compound and is preferably a resorcinol derivative such as olivetol (3).
  • R1 is preferably OR″ wherein R″ is H, alkyl, substituted alkyl, acyl or silyl. Most preferably R1 is OH.
  • Preferably, R2 and R4 are H.
  • R3 is suitably an alkyl group or substituted alkyl group. In a preferred embodiment, R3 is C5H11. R3 may contain groups that promote water solubility, e.g. ketone, ester, hydroxyl or amine groups. In one embodiment of the invention, R3 contains a thioketal (this can be further converted to an aldehyde).
  • Most preferably, compound C is olivetol (3), wherein R1 is OH, R2 is H, R3 is C5H11 and R4 is H.
  • Suitably, one equivalent of compound B is reacted with approximately one equivalent of compound C.
  • In a preferred embodiment of the invention compound B is an ether or ester of (+)-p-menth-2-ene-1,8-diol (Rc=Me, Rd=Me, Re=Me), compound C is olivetol (R1=OH, R2=H, R3=C5H11, R4=H) and the product, compound A, is Δ9-THC.
    Figure US20070123719A1-20070531-C00008

    The present invention therefore provides a novel synthesis of Δ9-THC.
  • The present invention provides both a one-step and a two-step process for the production of compound A. In the one-step process the reaction of compound B and compound C produces compound A directly. In the one-step process, suitably about one equivalent of acid catalyst is used, e.g. between 0.8 to 1.5 equivalents. Preferably the reaction is carried out below 0° C., most preferably from −20° C. to 0° C.
  • In the two-step process the reaction of compound B and compound C produces a ring-opened product, compound D:
    Figure US20070123719A1-20070531-C00009

    For the two-step process, suitably less than one equivalent of acid is used, preferably from 0.1 to 0.5 equivalents. Preferably the reaction is carried out below 0° C., more preferably below −10° C. A ring closure step is then carried out. Suitable reagents for the ring closure step include acids such as BF3.(OEt)2 or TsOH. One possible advantage of the two-step process is that if compound D is a crystalline solid, purification of the intermediate is straightforward and this may lead to higher purity in the final product, compound A.
  • The present invention provides one-step and two-step syntheses that can be used to produce Δ9-THC. The syntheses show improved selectivity and yield compared to prior art methods. The amount of isomers generated is small and purification is simple. The phenolic reactant (compound C) is not used in excess. The process is suitable for scale-up to an industrial process.
  • Preferably the yield of the synthesis of Δ9-THC is greater than 50%, more preferably the yield is greater than 75%. The process also provides high purity Δ9-THC. Preferably Δ9-THC is obtained in greater than 70% purity, more preferably greater than 90% purity. Methods known in the art can be used to further purify the products of the reaction.
  • The process of the present invention is suitably carried out in a polar aprotic solvent, preferably methylene chloride.
  • Suitable acid catalysts include most Lewis acids. Non-metallic catalysts such as BF3.OEt2 and toluenesulfonic acid are preferred. Non-metallic catalysts offer advantages over the zinc catalysts used in the Stoss and Razdan methods because there is no possibility of a metal residue in the product. BF3.OEt2 is preferred because it is easily removed from the reaction mixture, and is less prone to causing isomerisation of Δ9-THC to Δ8-THC than p-TsOH. Suitably about one equivalent of catalyst or less is used, e.g. 0.1 to 1.5 equivalents. This offers a clear improvement over Razdan's method where 14 equivalents of acid are used.
  • Procedures for isolating the product, compound A, from the reaction mixture are well known to those in the art. Chromatography can be used to purify the product.
  • Certain compounds of structure B are novel and are particularly advantageous when used in the present invention. Compounds wherein both ORa and ORb are chosen independently from acetate, propionate, butyrate, trimethylacetate, phenylacetate, phenoxyacetate, diphenylacetate, benzoate, p-nitrobenzoate, phthalate and succinate (provided that only one of ORa and ORb is acetate) represent a further aspect of this invention. Preferably the groups are chosen so that compound B is a solid. Preferably both ORa and ORb are diphenylacetate. Preferably, Rc, Rd and Re are Me.
  • Compound B can be produced by a variety of methods. Compounds wherein Ra=H or silyl can be prepared by the ring-opening of epoxides (5) with an alcohol, a carboxylic acid or silylated derivatives of alcohols and carboxylic acids. Reactions of this type are described in a co-pending patent application by the present inventors.
    Figure US20070123719A1-20070531-C00010
  • Compounds wherein Ra and Rb are both the same can be produced by base catalysed reaction of the corresponding diol (6) with anhydrides or chlorides.
    Figure US20070123719A1-20070531-C00011
  • Compounds wherein Ra is not H or silyl and wherein Ra and Rb are different can be produced by base-catalysed reaction of mono-ethers or mono-esters (7) with ethers or chlorides.
    Figure US20070123719A1-20070531-C00012

    The following examples are illustrative but not limiting of the invention.
  • GENERAL EXPERIMENTAL DETAILS
  • Anhydrous solvents were purchased from Aldrich Chemical Company (Milwaukee, Wis., USA). Samples of Δ9-THC and Δ8-THC were obtained from RBI/Sigma (Natick, Mass., USA). (+)-p-Menth-2-ene-1,8-diol was prepared as described in a co-pending patent application by the present inventors. TLC plates (silica gel GF, 250 micron, 10×20 cm) were purchased from Analtech (Newark, Del., USA). TLCs were visualized under short wave UV, and then by spraying with ceric ammonium nitrate/sulfuric acid and heating. Column chromatography was carried out using TLC grade silica gel purchased from Aldrich Chemical Company. NMR spectra were obtained on a Bruker 300 MHz instrument. HPLC area percentages reported here are not corrected. HPLCs were run on Shimadzu LC-10AD.
  • EXAMPLE 1a One-step Reaction of Bis(diphenylacetate) Compound (4) with Olivetol (3) to Produce Δ9-THC Preparation of Bis(diphenylacetate) Compound (4)
  • Figure US20070123719A1-20070531-C00013
  • A 25 ml three-necked roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. Pyridine (12 ml) was added and the pale yellow solution was stirred. Diphenylacetyl chloride (5.69 g, 4.2 eq.) was added. The solution turned brown. N,N-dimethylaminopyridine (0.1435 g, 0.2 eq.) was added. The mixture was stirred for 1 hour. (+)-p-Menth-2-ene-1,8-diol (1.00 g) was added. The mixture became a lighter colour and solids precipitated. The slurry was allowed to stir overnight at room temperature. The reaction was quenched with water. The mixture was extracted three times with ethyl acetate. The organics were combined and washed with 2M HCl, saturated NaHCO3, and saturated NaCl (aq.), dried over Na2SO4, filtered and concentrated in vacuo to orange oil. The oil was dissolved in hot methanol and cooled to crystallize. The white solid was collected and washed twice with cold methanol. After drying under vacuum, the yield was 3.282 g (76.8% yield). 1H NMR (CDCl3): δ (ppm) 7.4-7.2 (m, 20H), 5.89-5.84 (dd, 1H), 5.51-5.47 (dd, 1H), 4.90 (s, 2H), 2.7-2.6 (m, 1H), 2.0-1.9 (m, 2H), 1.7-1.6 (m, 1H), 1.43 (s, 3H), 1.42 (s, 3H), 1.40 (s, 3H), 1.35-1.2 (m, 1H). 13C NMR: δ (ppm) 171.47, 171.44, 139.06, 138.84, 132.38, 128.64, 128.56, 128.51, 128.46, 128.28, 127.11, 127.07, 127.02, 85.12, 80.91, 58.32, 57.86, 44.22, 33.81, 25.41, 23.32, 22.81, 21.41. M.p. 111° C. Elemental Analysis: 81.66% C, 6.59% H. Rf (20% EtOAc/hexane): 0.54. [α]D 25=+61.5° (c=1.00, CHCl3). IR (KBr, cm−1): 3061, 3028, 1720.5 (carbonyl stretch).
  • One-step Reaction
  • A 25 ml roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. The bis(diphenylacetate) (4) (279 mg, 0.499 mmol) and olivetol (90 mg) were added. Anhydrous CH2Cl2 (8 ml) was added and stirred. The solution was cooled to −5° C. internal temperature. BF3.(OEt)2 (64 μl, 1.0 eq.) was added. The solution gradually darkened to orange. After 30 minutes, the reaction was quenched with 10% Na2CO3 (10 ml). The layers were separated and the organic layer was washed with 2×5 ml 10% Na2CO3. The aqueous washes were combined and extracted twice with CH2Cl2. The organics were combined and washed with water and saturated NaCl solution, then dried over Na2SO4, filtered, and concentrated in vacuo to light yellow oil. The oil was chromatographed on 5 g TLC mesh silica to yield 135.2 mg (86.1%) of Δ9-THC. NMR did show a small amount of solvent present. HPLC showed 96.6 area percent Δ9-THC. 1H NMR agreed with published reports and commercial samples. 13C NMR (CDCl3): δ (ppm) 154.81, 154.16, 142.82, 134.41, 123.74, 110.11, 107.54, 77.18, 45.83, 35.47, 33.58, 31.52, 31.17, 30.63, 27.58, 25.03, 23.34, 22.53, 19.28, 13.99. HPLC R.T.: 28.34 min. Rf (10% MTBE/hexane): 0.30. [α]D 25=−174.2° (c=1.16, EtOH).
  • EXAMPLE 1b Reaction of Bis(diphenylacetate) (4) Compound with Olivetol to Produce Ring-open Intermediate
  • Bis(diphenylacetate) (4) was prepared as for example 1a.
  • A 25 ml 2-neck roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. Bis(diphenylacetate) (4) (279 mg, 0.499 mmol) and olivetol (90 mg) were added. Anhydrous CH2Cl2 (8 ml) was added. The solution was stirred to dissolve the solids and then cooled to −20° C. internal temperature. BF3.(OEt)2 (16 μl, 0.25 eq.) was added. The solution was stirred for 12 minutes and then quenched with 10% Na2CO3 (aq.) (6 ml). The mixture was extracted twice with CH2Cl2. The combined organics were washed with water and saturated NaCl, dried over Na2SO4, filtered, and concentrated in vacuo to oil. Chromatography on 10 g TLC mesh silica gel (2% MTBE/hexane-15%) yielded Δ9-THC (fractions 16-22, 31.4 mg, 20.0% yield), but the predominant product was the diphenylacetate triol (the ring open product corresponding to compound D) (fr. 24-37, 160 mg, 60.7% yield). 1H NMR (CDCl3): δ (ppm) 7.26-71.8 (m, 10H), 6.26 (br s, 1H), 6.04 (br s, 1H), 5.35 (s, 1H), 4.51 (s, 1H), 3.92 (br d, 1H), 2.43-2.36 (m, 3H), 2.1-1.9 (m, 2H), 1.79 (m, 1H), 1.71 (s, 3H), 1.6-1.4 (m, 2H), 1.44 (s, 3H), 1.42 (s, 3H), 1.3-1.2 (m, 4H), 0.85 (t, 3H). 13C NMR (CDCl3) δ ppm 171.56, 142.87, 139.24, 139.08, 128.64, 128.36, 128.31, 126.92, 126.89, 124.93, 115.43, 87.27, 57.53, 45.94, 35.43, 33.46, 31.51, 30.60, 29.96, 24.04, 23.34, 23.20, 23.17, 22.48, 13.97. Rf (20% EtOAc/hexane): 0.48. [α]D 25=−45.9° (c=1.298, CHCl3). Elemental Analysis: 78.69% C, 8.93% H.
  • EXAMPLE 2a One-step Reaction of Monoacetate Compound (8) with Olivetol to Produce Δ9THC
  • Figure US20070123719A1-20070531-C00014
  • A 25 ml roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. The monoacetate (8) (109 mg) and olivetol (92.5 mg) were added. Anhydrous CH2Cl2 (8 ml) was added and stirred. The solution was cooled to −5° C. internal temperature. BF3.(OEt)2 (65 μl, 1.0 eq.) was added. The solution gradually darkened to orange. After 24 minutes, the reaction was quenched with 10% Na2CO3. The layers were separated and the aqueous layer was extracted twice with CH2Cl2. The organics were combined and washed with water and saturated NaCl solution, then dried over Na2SO4, filtered, and concentrated in vacuo to oil. HPLC showed 64.0 area percent Δ9-THC. The oil was chromatographed on 20 g TLC mesh silica to yield 58.7 mg (36.3%) of Δ9-THC. 1H NMR agreed with published reports and commercial samples.
  • EXAMPLE 2b Reaction of Monoacetate Compound (8) with Olivetol to Produce Ring-open Intermediate
  • A 25 ml 2-neck roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. The monoacetate (8) (109 mg, 0.514 mmol) and olivetol (92.5 mg) were added. Anhydrous CH2Cl2 (8 ml) was added. The solution was stirred to dissolve the solids and then cooled to −20° C. internal temperature. BF3.(OEt)2 (16 μl, 0.25 eq.) was added. The solution was stirred for 45 minutes and then quenched with 10% Na2CO3 (aq.) (4 ml). The mixture was extracted twice with CH2Cl2. The combined organics were washed with water, dried over Na2SO4, filtered, and concentrated in vacuo to a colourless oil. Chromatography on silica gel yielded 90.5 mg (47.0% yield) of acetyl triol (the ring open product corresponding to compound D). 1H NMR (CDCl3): δ (ppm) 6.22 (br m, 2H,), 5.76 (br s, 2H), 5.36 (s, 1H), 4.00 (br d, 1H), 2.67 (dt, 1H), 2.40 (t, 2H), 2.26-2.16 (br m, 2H,), 2.07-1.90 (m, 2H), 1.73 (s, 3H), 1.51 (s, 3H), 1.49 (s, 3H), 1.42 (s, 3H), 1.32-1.24 (m, 4H), 0.85 (t, 3H). 13C NMR (CDCl3): δ (ppm) 170.83, 142.69, 138.03, 124.99, 115.42, 85.90, 44.29, 35.38, 33.47, 31.49, 30.66, 30.09, 25.16, 24.65, 23.17, 22.57, 22.43, 21.84, 13.95. Rf (20% EtOAc/hexane): 0.37.
  • EXAMPLE 3a One-step Reaction of Monomethoxy Compound (9) with Olivetol to Produce Δ9-THC
  • A 25 ml roundbottom flask with a stir bar was oven-dried, fitted with septa, and
    Figure US20070123719A1-20070531-C00015

    cooled under N2. The monomethoxy compound (9) (91.9 mg) and olivetol (90 mg) were added. Anhydrous CH2Cl2 (8 ml) was added and stirred. The solution was cooled to −5° C. internal temperature. BF3.(OEt)2 (16 μl, 0.25 eq.) was added. After 1 hour another 16 μl was added. Two hours later, another 32 μl was added. The solution gradually darkened to orange. TLC showed a mixture of Δ9-THC and the ring open product, and two other major spots. The reaction was quenched with 10% Na2CO3. The layers were separated and the organic was washed with water and sat. NaCl, then dried over Na2SO4, filtered, and concentrated in vacuo to oil.
  • EXAMPLE 3b Reaction of Monomethoxy Compound with Olivetol to Produce Ring-open Intermediate
  • A 5 ml roundbottom flask with a stir bar was oven-dried, fitted with a septum, and cooled under N2. The monomethoxy compound (9) (33.5 mg) in 1.5 ml of anhydrous methylene chloride was added. Olivetol (32.7 mg) and magnesium sulfate (134 mg) were added. p-Toluenesulfonic acid monohydrate (34.6 mg) was added. The slurry was stirred at room temperature for 30 minutes. Solid NaHCO3 (100 mg) was added and stirred. The solids were removed by filtration. The solution was washed once with 5% NaHCO3 (aq.). The aqueous wash was extracted once with CH2Cl2. The organics were combined, washed with water, and dried over Na2SO4. The solution was concentrated in vacuo and chromatographed on silica gel. Colourless oil of the methoxy triol (the ring open product corresponding to compound D) (35.3 mg, 56.0% yield) was obtained. 1H NMR (CDCl3): δ (ppm) 7.90 (br s, 1H), 6.68 (br s, 1H), 6.33-6.21 (br d, 2H) 5.75 (s, 1H), 3.74 (s, 1H), 3.20 (s, 3H), 2.44 (t, 2H), 2.07 (br s, 2H), 2.00-1.77 (m, 3H), 1.80 (s, 3H), 1.54 (m, 2H), 1.31 (m, 3H), 1.14 (s, 3H, 1.13 (s, 3H), 0.87 (t, 3H). 13C NMR (CDCl3): δ (ppm) 186.50, 169.63, 166.85,143,41, 140.11, 123.58, 79.32, 48.63, 48.05, 35.51, 32.62, 31.52, 30.63, 27.76, 23.74, 23.01, 22.53, 21.95, 20.39, 13.99. Elemental Analysis: 73.3% C, 8.80% H. Rf (10% EtOAc/hexane): 0.25. [α]D 25=−22.7° (c=0.088, CHCl3).
  • EXAMPLE 4 One-step Reaction of Diacetate (10) with Olivetol to Produce Δ9-THC Preparation of Diacetate (10)
  • Figure US20070123719A1-20070531-C00016
  • A 100 ml three-necked roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. (+)-p-menth-2-ene-1,8-diol (10.00 g) was added. Triethylamine (68.7 ml, 8.4 eq.) was added and the slurry was stirred. N,N-dimethylaminopyridine (1.435 g, 0.2 eq.) was added. Acetic anhydride (23.3 ml) was placed in an addition funnel and added slowly over 15 minutes. The yellow solution became homogeneous. The solution was warmed to 35° C. internal temperature and stirred for 2.5 ours, then raised to 40° C. for another three hours, then allowed to stir for 13 hours at room temperature. The reaction was quenched with water while cooling in ice. The mixture was extracted three times with hexane and once with ethyl acetate. The organics were combined and washed with saturated NaCl (aq.), dried over Na2SO4, filtered and concentrated in vacuo to an orange oil. Chromatography on 50 g TLC mesh silica yielded the diacetate (10) as a colourless oil (12.3 g, 82.3%). The oil was cooled in dry ice to freeze the oil and then the solid was broken up with a spatula. It was allowed to warm to room temperature and it remained a white solid. 1H NMR (CDCl3): δ (ppm): 5.84 (dd, 1H), 5.54 (dd, 1H), 2.70 (m, 1H), 2.05-1.8 (m, 3H), 1.85 (s, 6H), 1.68 (m, 1H), 1.40 (s, 3H), 1.30 (s, 3H), 1.29 (s, 3H). 13C NMR (CDCl3): δ (ppm) 169.95, 169.89, 132.40, 127.88, 83.79, 79.73, 43.62, 33.85, 25.26, 23.10, 22.74, 22.05, 21.49. m.p. 28-31° C. Elemental Analysis: 65.26% C, 8.61% H. Rf (20% EtOAc/hexane): 0.52. [α]D 25=+73.5° (c=0.99, CHCl3).
  • One-step Reaction
  • A 25 ml roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. The diacetate (10) (126.9 mg, 0.499 mmol) and olivetol (90 mg, 0.499 mmol) were added. Anhydrous CH2Cl2 (8 ml) was added and stirred. The solution was cooled to −5° C. internal temperature. BF3.(OEt)2 (64 μl, 1.0 eq.) was added. The solution gradually darkened to red. After 15 minutes, the reaction was quenched with 10% Na2CO3. The layers were separated and the organic layer was washed with 10% Na2CO3. The combined aqueous were extracted once with CH2Cl2. The organics were combined and washed with water and saturated NaCl solution, then dried over Na2SO4, filtered, and concentrated in vacuo to a tannish oil (0.132 mg). HPLC showed 88.8 area percent Δ9-THC. Chromatography on silica gel yielded 95.9mg (61.0% yield) of Δ9-THC. HPLC showed 94.9 area percent Δ9-THC.
  • EXAMPLE 5 One-step Reaction of Dibenzoate (11) with Olivetol to Produce Δ9-THC Preparation of Dibenzoate (11)
  • Figure US20070123719A1-20070531-C00017
  • A 25 ml three-necked roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. (+)-p-Menth-2-ene-1,8-diol (1.00 g) was added. Pyridine (6 ml, 12.6 eq.) was added and the pale yellow solution was stirred. N,N-dimethylaminopyridine (0.1435 g, 0.2 eq.) was added. Benzoyl chloride (2.73 ml, 4 eq.) was added. After 10 minutes, a solid precipitated. The slurry was allowed to stir overnight at room temperature. The reaction was quenched with water. The mixture was extracted three times with CH2Cl2. The organics were combined and washed with water and saturated NaCl (aq.), dried over Na2SO4, filtered and concentrated in vacuo. The oil was chromatographed on 25 g TLC mesh silica to yield a colourless oil. The oil was cooled in dry ice and froze, but melted on warming to room temperature. 1H NMR(CDCl3) δ (ppm): 8.0 (dt, 4H), 7.51 (m, 2H), 7.40 (dt, 4H), 6.16 (dd, 1H), 5.88 (dd, 1H), 3.00 (m, 1H), 2.29 (m, 2H), 2.02 (m, 1H), 1.70 (s, 3H), 1.62 (s, 3H), 1.60 (s, 3H), 1.25 (m, 1H). 13C NMR (CDCl3) δ (ppm): 165.53, 132. 80, 132.53, 132.50, 131.77, 131.63, 129.40, 129.36, 128.39, 128.22, 128.16, 80.64, 44.55, 34.09, 25.81, 23.50, 23.10, 22.59, 21.99, 14.14, 14.05. Elemental Analysis: 76.21% C, 6.97% H. Rf (20% EtOAc/hexane): 0.57.
  • One-step Reaction
  • A 25 ml roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. The dibenzoate (11) (189 mg, 0.499 mmol) and olivetol (90 mg) were added. Anhydrous CH2Cl2 (8 ml) was added and stirred. The solution was cooled to −5° C. internal temperature. BF3.(OEt)2 (64 μl, 1.0 eq.) was added. The solution gradually darkened to red. After 15 minutes, the reaction was quenched with 10% Na2CO3. The layers were separated and the organic layer was washed with water and saturated NaCl solution, then dried over Na2SO4, filtered, and concentrated in vacuo to oil. HPLC showed 78.8 area percent Δ9-THC.
  • EXAMPLE 6 One-step Reaction of Di-p-nitrobenzoate (12) with Olivetol to Produce Δ9-THC Preparation of Di-p-nitrobenzoate (12)
  • Figure US20070123719A1-20070531-C00018
  • A 25 ml three-necked roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. (+)-p-Menth-2-ene-1,8-diol (1.00 g) was added. Pyridine (6 ml, 12.6 eq.) was added and the pale yellow solution was stirred. N,N-dimethylaminopyridine (0.1435 g, 0.2 eq.) was added. p-Nitrobenzoyl chloride (4.58 ml, 4.2 eq.) was added. After a few minutes, tan solid precipitated. More pyridine (12 ml) was added. The slurry was allowed to stir overnight at room temperature. The reaction was quenched with water. The mixture was extracted three times with ethyl acetate. The organics were combined and washed twice with saturated NaCl (aq.), dried over Na2SO4, filtered and concentrated in vacuo to light yellow solid. The solid was recystallized from isopropyl alcohol and dried under vacuum. The yield was 3.303 g (120% yield), which clearly still contained pyridine and isopropyl alcohol by NMR. It was dried more and then recrystallized from ethyl acetate/hexane to give a lightly coloured solid (1.89 g, 68.7%). 1H NMR (d6-acetone) still seemed to have too many aryl protons. 1H NMR (CD2Cl2) δ (ppm): 8.3-8.2 (m, 4H), 8.2-8.1 (m, 4H), 6.14 (dd, 1H), 5.88 (d, 1H), 3.04 (m, 1H), 2.29 (m, 2H), 2.00 (m, 1H), 1.70 (s, 3H), 1.62 (s, 3H), 1.60 (s, 3H0, 1.67-1.65 (m, 2H). 13C NMR (CD2Cl2) δ (ppm): 164.275, 164.244, 151.00, 133.00, 131.46, 131.09, 131.04, 129.29, 124.00, 123.96, 87.04, 82.75, 45.00, 34.55, 26.10. 23.83, 23.45, 22.64. m.p >200° C. (decomposition). Elemental Analysis: 59.68% C, 4.71% H, 6.07% N. Rf (20% EtOAc/hexane): 0.41. [α]D 25=+38.0° (c=0.21, CHCl3).
  • One-step Reaction
  • A 10 ml roundbottom flask with a stir bar was oven-dried, fitted with septa, and cooled under N2. The di-p-nitrobenzoate (12) (116.5 mg) and olivetol (45 mg) were added. Anhydrous CH2Cl2 (4 ml) was added and stirred. The solution was cooled to −5° C. internal temperature. BF3.(OEt)2 (32 μl, 1.0 eq.) was added. The cloudy solution gradually darkened to orange. After 2 hours, the reaction was quenched with 10% Na2CO3. The layers were separated and the organic layer was washed with water and sat. NaCl, then dried over Na2SO4, filtered, and concentrated in vacuo to yellow oil. HPLC showed 71.5 area percent Δ9-THC.

Claims (19)

1. A process for the production of a compound of general formula A:
Figure US20070123719A1-20070531-C00019
wherein Rc, Rd and Re are independently H, alkyl, or substituted alkyl; and R1 to R4 are independently H, OH, OR′ (R′ is alkyl, aryl, substituted alkyl or aryl, silyl, acyl, or phosphonate), alkyl, substituted alkyl, aryl, acyl, halide, amine, nitrate, sulphonate or phosphonate;
comprising reacting compound B with compound C:
Figure US20070123719A1-20070531-C00020
wherein Ra is H, alkyl, aryl, acyl or silyl; Rb is alkyl, aryl or acyl; Rc, Rd, Re and R1 to R4 are as hereinbefore defined.
2. The process according to claim 1, wherein Ra is alkyl, aryl or acyl.
3. The process according to claim 1, wherein Rb is an acyl group.
4. The process according to claim 3, wherein ORb is an ester group selected from the group consisting of acetate, propionate, butyrate, trimethylacetate, phenylacetate, phenoxyacetate, diphenylacetate, benzoate, p-nitrobenzoate, phthalate and succinate.
5. The process according to claim 1, wherein both of Ra and Rb are acyl groups.
6. The process according to claim 5, wherein ORa and ORb are ester groups independently selected from the group consisting of acetate, propionate, butyrate, trimethylacetate, phenylacetate, phenoxyacetate, diphenylacetate, benzoate, p-nitrobenzoate, phthalate and succinate.
7. The process according to claim 6, wherein ORa and ORb are diphenylacetate.
8. The process according to claim 1, wherein Rc, Rd and Re are methyl.
9. The process according to claim 1, wherein R1 is OR″ wherein R″ is H, alkyl, substituted alkyl, acyl or silyl.
10. The process according to claim 9, wherein R1 is OH.
11. The process according to claim 1, wherein R2 and R4 are H.
12. The process according to claim 1, wherein R3 is C5H11.
13. The process according to claim 1, wherein compound A is Δ9-THC, compound B is an ether or ester of (+)-p-menth-2-ene-1,8-diol and compound C is olivetol.
14. The process according to claim 1, wherein the reaction of compound B with compound C is carried out in the presence of an acid catalyst.
15. The process according to claim 14, wherein the acid catalyst is nonmetallic.
16. The process according to claim 14, wherein 0.1-1.5 equivalents of acid catalyst are used.
17. The process according to claim 1, further comprising performing a ring closure step.
18. The process according to claim 8, wherein R1 is OH, R2 and R4 are H, and R3 is C5H11.
19. The process according to claim 6, wherein no more than one of Ra and Rb is acetate.
US11/642,377 2001-05-25 2006-12-19 Synthesis of cannabinoids Abandoned US20070123719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/642,377 US20070123719A1 (en) 2001-05-25 2006-12-19 Synthesis of cannabinoids

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0112752.1 2001-05-25
GBGB0112752.1A GB0112752D0 (en) 2001-05-25 2001-05-25 Synthesis of cannabinoids
US10/479,021 US7186850B2 (en) 2001-05-25 2002-05-09 Synthesis of cannabinoids
PCT/GB2002/002159 WO2002096899A1 (en) 2001-05-25 2002-05-09 Synthesis of cannabinoids
US11/642,377 US20070123719A1 (en) 2001-05-25 2006-12-19 Synthesis of cannabinoids

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/479,021 Division US7186850B2 (en) 2001-05-25 2002-05-09 Synthesis of cannabinoids
PCT/GB2002/002159 Division WO2002096899A1 (en) 2001-05-25 2002-05-09 Synthesis of cannabinoids

Publications (1)

Publication Number Publication Date
US20070123719A1 true US20070123719A1 (en) 2007-05-31

Family

ID=9915280

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/479,021 Expired - Lifetime US7186850B2 (en) 2001-05-25 2002-05-09 Synthesis of cannabinoids
US11/642,377 Abandoned US20070123719A1 (en) 2001-05-25 2006-12-19 Synthesis of cannabinoids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/479,021 Expired - Lifetime US7186850B2 (en) 2001-05-25 2002-05-09 Synthesis of cannabinoids

Country Status (12)

Country Link
US (2) US7186850B2 (en)
EP (1) EP1390359B1 (en)
JP (1) JP4969767B2 (en)
CN (1) CN1266145C (en)
AT (1) ATE300528T1 (en)
AU (1) AU2002253386B2 (en)
CA (1) CA2447636C (en)
DE (1) DE60205241T2 (en)
GB (1) GB0112752D0 (en)
IL (2) IL158798A0 (en)
MX (1) MXPA03010721A (en)
WO (1) WO2002096899A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0329635D0 (en) 2003-12-23 2004-01-28 Johnson Matthey Plc Process for purifying trans-tetrahydrocannabinol
EP1732908A1 (en) * 2004-04-07 2006-12-20 Cedarburg Pharmaceuticals, Inc. Methods and intermediates for the synthesis of delta-9 tetrahydrocannabinol
US7323576B2 (en) 2004-10-01 2008-01-29 Alphora Research Inc. Synthetic route to dronabinol
TWI436991B (en) * 2004-11-22 2014-05-11 Euro Celtique Sa Methods for purifying trans-(-)-△9-tetrahydrocannabinol and trans-(+)-△9-tetrahydrocannabinol
KR20070118069A (en) 2004-12-09 2007-12-13 인시스 테라퓨틱스, 인코포레이티드 Room-temperature stable dronabinol formulations
TWI366460B (en) * 2005-06-16 2012-06-21 Euro Celtique Sa Cannabinoid active pharmaceutical ingredient for improved dosage forms
JP2009510078A (en) * 2005-09-29 2009-03-12 エーエムアール テクノロジー インコーポレイテッド Method for producing Δ-9-tetrahydrocannabinol
US8980940B2 (en) 2006-11-10 2015-03-17 Johnson Matthey Public Limited Company Stable cannabinoid compositions and methods for making and storing them
US8039509B2 (en) 2006-11-10 2011-10-18 Johnson Matthey Public Limited Company Composition comprising (−)-Δ9-trans-tetrahydrocannabinol
HUE027707T2 (en) 2007-11-30 2016-10-28 Zynerba Pharmaceuticals Inc Prodrugs of tetrahydrocannabinol, compositions comprising prodrugs of tetrahydrocannabinol and methods of using the same
WO2012071389A2 (en) 2010-11-22 2012-05-31 Johnson Matthey Public Limited Company Stable cannabinoid compositions and methods for making and storing them
CA2990071C (en) 2014-07-14 2023-01-24 Librede Inc. Production of cannabigerolic acid
US11293038B2 (en) 2014-07-14 2022-04-05 Librede Inc. Production of cannabinoids in yeast
PT3455213T (en) * 2016-05-13 2022-03-01 Symrise Ag Method for purifying cannabinoid compounds
US10239808B1 (en) 2016-12-07 2019-03-26 Canopy Holdings, LLC Cannabis extracts
US10702495B2 (en) 2017-02-20 2020-07-07 Nexien Biopharma, Inc. Method and compositions for treating dystrophies and myotonia
US10933016B2 (en) 2017-02-24 2021-03-02 Trinidad Consulting, Llc Compositions and methods for oral administration of cannabinoids and terpenoids
US10640482B2 (en) 2017-07-21 2020-05-05 University Of South Florida Synthesis of cannabinoids
US11202771B2 (en) 2018-01-31 2021-12-21 Treehouse Biotech, Inc. Hemp powder
US11040932B2 (en) 2018-10-10 2021-06-22 Treehouse Biotech, Inc. Synthesis of cannabigerol
USD893967S1 (en) * 2018-10-31 2020-08-25 Lincoln Global, Inc. Welding torch
US20220009899A1 (en) * 2018-11-14 2022-01-13 Embio Limited Process and compounds for preparation of cannabinoids
EP3750528A1 (en) 2019-06-11 2020-12-16 Nexien Biopharma, Inc. Compositions for treating dystrophies and myotonia
US20230159485A1 (en) * 2020-04-10 2023-05-25 3Bc, Llc Methods for Preparing Cannabinoids and Related Instruments
CN112094257B (en) * 2020-08-19 2023-08-22 公安部禁毒情报技术中心 Preparation method of delta-9 tetrahydrocannabinol
CN112023327A (en) * 2020-08-21 2020-12-04 滇麻生物科技(曲靖)有限公司 Method for destroying tetrahydrocannabinol
US12029718B2 (en) 2021-11-09 2024-07-09 Cct Sciences, Llc Process for production of essentially pure delta-9-tetrahydrocannabinol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227537A (en) * 1991-01-09 1993-07-13 Heinrich Mack Nachf. Method for the production of 6,12-dihydro-6-hydroxy-cannabidiol and the use thereof for the production of trans-delta-9-tetrahydrocannabinol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227537A (en) * 1991-01-09 1993-07-13 Heinrich Mack Nachf. Method for the production of 6,12-dihydro-6-hydroxy-cannabidiol and the use thereof for the production of trans-delta-9-tetrahydrocannabinol

Also Published As

Publication number Publication date
IL158798A0 (en) 2004-05-12
DE60205241D1 (en) 2005-09-01
CA2447636C (en) 2010-04-13
CN1511147A (en) 2004-07-07
CA2447636A1 (en) 2002-12-05
AU2002253386B2 (en) 2007-04-26
IL158798A (en) 2007-06-17
EP1390359A1 (en) 2004-02-25
JP4969767B2 (en) 2012-07-04
MXPA03010721A (en) 2004-07-01
GB0112752D0 (en) 2001-07-18
ATE300528T1 (en) 2005-08-15
JP2005500272A (en) 2005-01-06
DE60205241T2 (en) 2006-05-24
EP1390359B1 (en) 2005-07-27
WO2002096899A1 (en) 2002-12-05
US7186850B2 (en) 2007-03-06
CN1266145C (en) 2006-07-26
US20040249174A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
US20070123719A1 (en) Synthesis of cannabinoids
AU2002253386A1 (en) Synthesis of cannabinoids
CA2751741C (en) Process for the preparation of (-) -delta 9-tetrahydrocannabinol
US20080312465A1 (en) Intermediate compounds in the synthesis of dronabinol
CN104350035A (en) Process for preparation of treprostinil and derivatives thereof
EP0004753B1 (en) Preparation of tetrahydrobenzoxocins and cis-hexahydrodibenzopyranones
US20070197807A1 (en) Derivatives of unsaturated, cyclic organic acids
CN112608296B (en) Synthesis method of Brazilane natural product Brazilane
TW201309662A (en) A novel synthesis process of polyphenols
CN113508120B (en) Method for preparing cannabidiol
GB2042527A (en) Process for selectively producing isosorbide-5-nitrate
CN109535120B (en) Preparation method of 7-substituted-3, 4,4, 7-tetrahydrocyclobutane coumarin-5-ketone
US20220009899A1 (en) Process and compounds for preparation of cannabinoids
JPS6143353B2 (en)
JP2675569B2 (en) Method for producing 2,3-dihydrobenzofuran derivative
DIKE et al. Condensation of Citral and Citronellal
CN117945858A (en) Synthesis method of cannabidiol, intermediate and preparation method thereof
KR100570279B1 (en) Intermediates of coenzyme qn and process for the preparation thereof
KR950001277B1 (en) Process for the preparation of oxybenzene derivatives
CN114805168A (en) Pyrrolinone compound and synthetic method thereof
CN116239630A (en) Anhydroicaritin intermediate compound
JP3112995B2 (en) Method for producing biphenyl compound
Dike et al. Studies on the cannabinoid field: Synthesis of new cannabinoids from 4-hydroxycoumarin and 4-hydroxythiocoumarin by pyridine-catalysed condensation of citral and citronellal.
KR20000067867A (en) Process for the preparation of 2,6-disubstituted benzothiophene compounds
EP0152003A1 (en) Process for the preparation of alpha-hydroxyaryl-alkanoic acids

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION