US20060275962A1 - Three-dimensional integrated circuit structure and method of making same - Google Patents
Three-dimensional integrated circuit structure and method of making same Download PDFInfo
- Publication number
- US20060275962A1 US20060275962A1 US11/378,059 US37805906A US2006275962A1 US 20060275962 A1 US20060275962 A1 US 20060275962A1 US 37805906 A US37805906 A US 37805906A US 2006275962 A1 US2006275962 A1 US 2006275962A1
- Authority
- US
- United States
- Prior art keywords
- layer
- substrate
- fld
- devices
- soi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000000758 substrate Substances 0.000 claims abstract description 139
- 239000004065 semiconductor Substances 0.000 claims abstract description 116
- 239000010410 layer Substances 0.000 claims description 341
- 238000000034 method Methods 0.000 claims description 90
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 8
- 239000011229 interlayer Substances 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 239000003990 capacitor Substances 0.000 abstract description 35
- 238000007667 floating Methods 0.000 abstract description 34
- 150000004770 chalcogenides Chemical class 0.000 abstract description 5
- 230000008859 change Effects 0.000 abstract description 4
- 230000005294 ferromagnetic effect Effects 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 46
- 230000015654 memory Effects 0.000 description 27
- 230000015572 biosynthetic process Effects 0.000 description 25
- 238000005516 engineering process Methods 0.000 description 18
- 239000010408 film Substances 0.000 description 18
- 125000006850 spacer group Chemical group 0.000 description 18
- 108091006146 Channels Proteins 0.000 description 15
- 238000002955 isolation Methods 0.000 description 14
- 239000012535 impurity Substances 0.000 description 12
- 238000005530 etching Methods 0.000 description 11
- 230000010354 integration Effects 0.000 description 9
- 238000005468 ion implantation Methods 0.000 description 9
- 238000013459 approach Methods 0.000 description 8
- 230000005291 magnetic effect Effects 0.000 description 8
- 239000003989 dielectric material Substances 0.000 description 7
- 230000003071 parasitic effect Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- 239000003870 refractory metal Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- SJHPCNCNNSSLPL-CSKARUKUSA-N (4e)-4-(ethoxymethylidene)-2-phenyl-1,3-oxazol-5-one Chemical compound O1C(=O)C(=C/OCC)\N=C1C1=CC=CC=C1 SJHPCNCNNSSLPL-CSKARUKUSA-N 0.000 description 1
- 229910000763 AgInSbTe Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910005537 GaSeTe Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910005872 GeSb Inorganic materials 0.000 description 1
- 229910005898 GeSn Inorganic materials 0.000 description 1
- 229910005900 GeTe Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910020684 PbZr Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910017629 Sb2Te3 Inorganic materials 0.000 description 1
- 229910018321 SbTe Inorganic materials 0.000 description 1
- 229910018219 SeTe Inorganic materials 0.000 description 1
- -1 Silicon Oxide Nitride Chemical class 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910004284 Te81Ge15Sb2S2 Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 229910009567 YMnO3 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 230000005527 interface trap Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- FESBVLZDDCQLFY-UHFFFAOYSA-N sete Chemical compound [Te]=[Se] FESBVLZDDCQLFY-UHFFFAOYSA-N 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8221—Three dimensional integrated circuits stacked in different levels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0688—Integrated circuits having a three-dimensional layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78642—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/788—Field effect transistors with field effect produced by an insulated gate with floating gate
- H01L29/7881—Programmable transistors with only two possible levels of programmation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/792—Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/792—Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
- H01L29/7926—Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/55—Capacitors with a dielectric comprising a perovskite structure material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/8613—Mesa PN junction diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/12—Static random access memory [SRAM] devices comprising a MOSFET load element
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B20/00—Read-only memory [ROM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B20/00—Read-only memory [ROM] devices
- H10B20/20—Programmable ROM [PROM] devices comprising field-effect components
- H10B20/25—One-time programmable ROM [OTPROM] devices, e.g. using electrically-fusible links
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B41/23—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B41/27—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B53/00—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B53/00—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
- H10B53/30—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
- H10B63/34—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
Definitions
- the present invention relates generally to three dimensional integrated circuit (IC) structures and manufacturing methods therefore, and more particularly relates to combining a semiconductor substrate with a thin add-on semiconductor layer in which various active and/or passive devices have been fabricated.
- IC integrated circuit
- a prior art 3-D IC might be termed a ‘Hybrid IC’.
- a conventional Hybrid IC implementation method typically includes; providing a first IC which consists of a base semiconductor substrate 201 and a dielectric layer 202 ; providing a second IC that also consists of a base semiconductor substrate 203 and a dielectric layer 204 ; stacking and bonding these ICs, or individual chips; and implementing a deep via 255 such as shown in U.S. Pat. No. 6,600,173 which penetrates the semiconductor substrate, or providing micro bumps as shown in U.S. Pat. No. 6,355,501.
- devices in the stacked semiconductor substrate 203 are usually connected by interconnection lines in dielectric layer 204 , which is disposed above substrate 203 .
- interconnection lines in dielectric layer 202 which is disposed below stacked substrate 203 are used to connect devices in the base substrate 201 . It can be seen that the devices in stacked substrate 203 do not have bottom electrodes, but rather have contacts from the top side.
- the ‘hybrid IC technology’ used in 3-D IC is considered to be another type of Multi-Chip Package (MCP).
- MCP Multi-Chip Package
- the main purpose of the ‘hybrid IC technology’ is to reduce interconnection lines used in package interconnections to facilitate high speed device operation.
- prior art 3-D IC implementations are typically characterized as follows: each of the IC layers are implemented by separate processing; each IC is bonded and stacked to become a 3-D IC; each IC layer has a semiconductor substrate (e.g., 201 , 203 ) respectively holding devices (e.g., 211 , 212 ). Also in general the devices share an electrically common substrate 241 , 242 or well 243 . It is noted that although conventional implementations using SOI do not have an electrically common substrate, such implementations do have a physically common semiconductor substrate. Additionally, conventional implementations stacked ICs have dielectric layers, interconnection lines, and vias only above the devices in each stacked ICs.
- a single crystalline semiconductor layer is formed by melting polycrystalline or amorphous semiconductor layer disposed on a dielectric layer using, for example, a laser. Devices are then formed using the single crystalline semiconductor layer, which was formed from the polycrystalline or amorphous layer.
- a single crystalline epitaxial layer is grown on a dielectric layer where the dielectric layer has partially exposed holes therethrough to an underlying single crystalline layer.
- a plurality of vertically oriented semiconductor devices may be added to a separately fabricated substrate that includes electrical devices and or interconnect.
- the plurality of vertically oriented semiconductor devices are physically separated from each other, and therefore are not disposed within the same semiconductor body, or semiconductor substrate.
- the plurality of vertically oriented semiconductor devices is added to the separately fabricated substrate as a thin layer including several doped semiconductor regions which, subsequent to attachment to the substrate, are etched to produce individual doped stack structures.
- the plurality of vertically oriented semiconductor devices may be fabricated prior to attachment to the separately fabricated substrate.
- the doped stack structures may form the basis of a wide variety of semiconductor devices, including, but not limited to, diodes, capacitors, n-type MOSFETs, p-type MOSFETs, bipolar transistors, and floating gate transistors.
- ferroelectric memory devices in another aspect of the present invention, ferroelectric memory devices, ferromagnetic memory devices, chalcogenide phase change devices, and similar structures may be formed in a stackable add-on layer for use in conjunction with the separately fabricated substrate.
- the stackable add-on layers include at least one layer of electrical interconnect lines.
- FIG. 1 is a cross-sectional view of a stacked integrated circuit, referred to as a three-dimensional integrated circuit, in accordance with the prior art.
- FIG. 2 is a cross-sectional view of an embodiment the present invention that includes a base semiconductor substrate.
- FIG. 3 is a cross-sectional view of an embodiment of the present invention without a base semiconductor substrate.
- FIGS. 4 a - 4 d illustrate a process flow which forms a 3-D IC structure using SOI layer in accordance with the present invention.
- FIG. 5 a is a cross-sectional view of an embodiment of the present invention wherein the bottom of SOI layer does not have directly connected electrodes.
- FIG. 5 b is a cross-sectional view of an embodiment of the present invention that includes multiple stacked SOI layers.
- FIGS. 6 a - 6 b are cross-sectional views of an embodiment of the present invention which has horizontally oriented, rather than vertically oriented, devices incorporated in the SOI layer.
- FIGS. 7 a - 7 c illustrate a process flow of in accordance with the present invention that produces vertically oriented devices incorporated in the SOI layer with those devices having directly connected bottom electrodes.
- FIG. 8 a is a cross-sectional view of an embodiment of the present invention having a vertical device with a planar middle electrode.
- FIG. 8 b is a cross-sectional view of an embodiment of the present invention having a vertical device with a spacer middle electrode.
- FIG. 8 c is a cross-sectional view of an embodiment of the present invention having a vertical device with a spacer middle electrode extended to an adjacent dummy vertical device.
- FIG. 8 d is a cross-sectional view of an embodiment of the present invention having a vertical device with a middle electrode extended to the top of the vertical device.
- FIG. 8 e is a top view of the structure shown in FIG. 8 d.
- FIG. 9 a is a cross-sectional view of an embodiment of the present invention having a vertical device with a planar etch stop layer for a top contact electrode.
- FIG. 9 b is a cross-sectional view of an embodiment of the present invention having a vertical device with a spacer etch stop layer for a top contact electrode.
- FIG. 10 a is a cross-sectional view of an embodiment of the present invention having a vertically oriented p-n junction diode.
- FIG. 10 b is a cross-sectional view of an embodiment of the present invention having a vertically oriented Schottky diode.
- FIG. 10 c is a cross-sectional view of an embodiment of the present invention having a vertically oriented Schottky diode with Schottky contact disposed at the middle electrode.
- FIG. 11 a is a cross-sectional view of an embodiment of the present invention having a vertically oriented capacitor formed by a depletion region.
- FIG. 11 b is a cross-sectional view of an embodiment of the present invention having a vertically oriented capacitor formed by a dielectric layer between electrodes.
- FIG. 12 is a cross-sectional view of an embodiment of the present invention having a vertically oriented bipolar transistor.
- FIG. 13 a is a top view of an embodiment of the present invention having a vertical device forming a MOSFET with 8 gates for multi-bit, or variable gate width, operation.
- FIG. 13 b is a top view of an embodiment of the present invention having a vertical device forming a MOSFET with 4 different size gates for multi-bit, or variable gate width, operation.
- FIG. 14 is a cross-sectional view of an embodiment of the present invention having a vertically oriented inverter.
- FIGS. 15 a - 15 b illustrate top and bottom layouts of an SRAM cell in accordance with the present invention.
- FIG. 16 a is a cross-sectional view of an embodiment of the present invention having a vertically oriented Thyristor as part of an SRAM cell.
- FIG. 16 b is a cross-sectional view of an embodiment of the present invention having a both a Thyristor and a MOSFET vertically disposed and serially connected in the SOI layer.
- FIG. 17 a is a cross-sectional view of an embodiment of the present invention having a vertical DRAM cell with vertical connection of a depletion capacitor and a MOSFET in the SOI layer.
- FIG. 17 b is a cross-sectional view of an embodiment of the present invention having a vertical DRAM cell with vertical connection of a dielectric capacitor and a MOSFET in the SOI layer.
- FIG. 18 a is a cross-sectional view of an embodiment of the present invention having a vertical Non-Volatile Memory (NVM) cell that includes a floating gate and a control gate in the SOI layer.
- NVM Non-Volatile Memory
- FIG. 18 b is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell that includes a floating gate that partially covers the channel region, and a control gate that covers the floating gate and the rest of the channel region in the SOI layer.
- FIG. 18 c is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell with a floating gate, a control gate, and a erase gate in a SOI layer.
- FIG. 18 d is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell with an Oxide-Nitride-Oxide (ONO) gate in the SOI layer.
- ONT Oxide-Nitride-Oxide
- FIG. 18 e is a cross-sectional view of an embodiment of the present invention which has a vertical NVM cell with a floating gate, a control gate, and a bulk contact, all disposed in the SOI layer.
- FIG. 18 f is top view of the structure of FIG. 18 a with eight gates in the SOI layer.
- FIGS. 19 a - 19 b illustrate layouts of SOI layers that have multiple blocks containing different types of devices.
- FIG. 20 a is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell that includes a MOSFET serially connected to a capacitor, which uses ferroelectric material, both disposed in the SOI.
- FIG. 20 b illustrates an exemplary memory circuit formed with devices illustrated in FIG. 20 a.
- FIG. 20 c illustrates another exemplary memory circuit formed with devices illustrated in FIG. 20 a.
- FIG. 21 a is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell that includes the structure illustrated in FIG. 20 a.
- FIG. 21 b illustrates an exemplary memory circuit formed from structures shown in FIG. 21 a.
- FIG. 22 a is a cross-sectional view of an embodiment of the present invention that includes a vertical NVM cell with a MOSFET in the SOI layer and uses a ferroelectric material between the gate and gate dielectric layers.
- FIG. 22 b is a cross-sectional view of an embodiment of the present invention that includes a vertical NVM cell with a MOSFET in the SOI layer and uses a ferroelectric material between the floating gate and the control gate.
- FIG. 23 a is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET in the SOI layer serially connected to a ferromagnetic material at the bottom of the MOSFET.
- FIG. 23 b is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET in the SOI layer serially connected to a ferromagnetic material at the top of the MOSFET.
- FIG. 24 is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET disposed in the SOI layer that is serially connected to a resistor formed from a chalcogenide material.
- FIG. 25 is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET disposed in the SOI layer that is serially connected a structure that depending on the material used may function either as a fuse or an antifuse.
- FIG. 26 is a cross-sectional view of an embodiment of the present invention that includes a vertical volatile memory cell having a MOSFET in the SOI layer without body contact.
- FIG. 27 a is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET connected in series with a floating gate transistor such as the one shown in FIG. 18 a.
- FIG. 27 b is a schematic diagram of an equivalent circuit for the structure shown in FIG. 27 a.
- FIG. 28 is a cross-sectional view of an embodiment of the present invention that includes a high voltage MOSFET disposed in the SOI layer.
- FIG. 29 is a cross-sectional view of an embodiment of the present invention that includes a high voltage MOSFET disposed in the SOI layer, the high voltage MOSFET having a low doped channel region.
- FIG. 2 A 3-D IC in accordance with the present invention is shown in FIG. 2 .
- Embodiments of the present invention provide a device integration technology.
- SoC Application Specific Integrated Circuit
- SoCs System on a Chip, with “SoCs” being the plural of SoC.
- a SoC may be an ASIC but is not required to be.
- An ASIC may be a SoC but is not required to be.
- back bias refers to a voltage applied to the substrate, or body, of a field effect transistor (FET).
- FET field effect transistor
- microelectronic device may be considered to be the broadest term, encompassing the others.
- signals are typically coupled between them and other circuit elements via physical, electrically conductive connections.
- the point of connection is sometimes referred to as an input, output, terminal, line, pin, pad, port, interface, or similar variants and combinations.
- Device refers to one or more circuit elements that have characteristics that are voltage variant. “Device” includes, but is not limited to, FETs (n-channel and p-channel), diodes, and varactors.
- FET refers to metal-oxide-semiconductor field effect transistors (MOSFETs). These transistors are also known as insulated gate field effect transistors (IGFETs). FETs are generally described as three terminal devices having a gate, a source and a drain. Although FETs may be further described as four terminal devices when the body of the FET is considered.
- MOSFETs metal-oxide-semiconductor field effect transistors
- IGFETs insulated gate field effect transistors
- Source and drain terminals refer to the terminals of a FET, between which conduction occurs under the influence of an electric field, subsequent to the inversion of the semiconductor surface under the influence of an electric field resulting from a voltage applied to the gate terminal.
- SOI generally refers to Silicon-on-Insulator.
- SOI layers can be formed in a variety of ways.
- SOI layer is used herein to refer to a relatively thin, single crystal portion of a semiconductor wafer that can be cleaved and bonded to another previously fabricated wafer, or similar type of substrate, such that a three dimensional stack is formed from the SOI layer and the previously fabricated wafer or similar type of substrate.
- the SOI layer may be thought of as an attachment layer, or stackable add-on structure, that itself contains at least devices and/or interconnections, and which is suitable for bonding to a semiconductor substrate already containing devices and/or interconnections.
- the single-crystal layer may have been doped so as to have one or more doped regions vertically adjacent each other.
- doped regions may include intrinsic regions as well as p-type and n-type regions.
- Individual semiconductor structures may be formed by etching through portions of the doped stack to electrically isolate those structures. The spaces between such individual structures may be filled dielectric material so as to re-form a layer without gaps or voids therein, and thereby provide for mechanical stability, and support for additional stacked layers.
- 3-D IC refers to a three-dimensional integrated circuit that includes a semiconductor substrate having devices and/or interconnect structures fabricated thereon, and least one SOI layer, also having devices and/or interconnect, where the semiconductor substrate and the SOI layer are stacked and bonded to each other.
- thin film including semiconductor layer 104 in FIG. 3 is thin film single crystalline semiconductor layer including diffusion layer such as p-type, n-type, or i(intrinsic)-type, and physically distinguishable layers, such as dielectric layer or metal layer.
- diffusion layer such as p-type, n-type, or i(intrinsic)-type
- physically distinguishable layers such as dielectric layer or metal layer.
- non-multiple-device formed’ semiconductor layer 124 of FIG. 4 b is that SOI thin layer 124 does not have isolation structures, metal patterns, interconnection used for multiple devices, nor separated impurity regions used for individual devices.
- devices 111 , 112 , 113 in accordance with the present invention are separated by isolation 135 and have floating structures in the filled dielectric materials 133 .
- devices 111 , 112 , 113 are referred to as floating devices (FLD). Therefore, embodiments of the present invention are different from a conventional bonded IC layer that has a shared well 142 or substrate 143 , where an electrically common region is located. Additionally, embodiments of the present invention do not have the physically supporting layer which can be found in a conventional SOI IC substrate where all devices in one IC layer are supported by a substrate under a bottom oxide.
- a second IC layer that includes FLD 112 , 113 is called FLD IC layer 102
- a first IC layer that includes FLD 113 is called FLD IC layer 101
- Inter-layer dielectric (ILD) layers disposed above and below FLD IC layer 101 has interconnection lines 132 and vias, or contacts, 131 .
- Interconnection lines 132 and vias 131 connect FLDs directly or indirectly within an FLD IC layer, or connect devices from a FLD IC layer to another FLD IC layer or to a base substrate 103 .
- the substrate bonded to lower dielectric layer 151 is called base substrate 103
- the first FLD IC layer above base substrate 103 is called first FLD layer 101
- the next FLD IC layer is called second FLD IC layer 102 .
- FIG. 2 shows multiple FLD IC layers 101 , 102 and one base semiconductor substrate 103 .
- Dashed line 134 denotes a border, or interface, of two ILD layers.
- First ILD layer 151 has interconnection lines and vias, and base semiconductor substrate 103 shares these interconnections and vias with first FLD IC layer 101 . Some vias may directly connect to second FLD IC layer 102 from first ILD layer 151 . Also interconnection lines and vias in second ILD layer 152 are shared by first and second FLD IC layers 101 , 102 . This sharing scheme of interconnection lines and vias is an advantage of embodiments of the present invention.
- electrodes to floating devices 111 , 112 , 113 is by direct connection to the top and bottom of each floating device 111 , 112 , 113 .
- floating devices may be constructed that have vertically separated single or more intermediate electrodes 123 . These electrodes could be connected to interconnection lines within the ILD layers disposed on the top and/or bottom of the FLD layer.
- FIG. 2 if a logic IC is implemented in base semiconductor substrate 103 , memory devices are implemented in first FLD IC layer 101 , and image sensors are in second FLD IC layer 102 , then one semiconductor substrate could integrate different types of individually optimized devices without using a difficult and expensive SoC structure or semiconductor processing.
- FIG. 3 shows a 3-D IC structure having FLD IC layer without an attached base substrate.
- ILD layer 153 is placed on the top of base substrate, and then SOI layer 124 is formed on the ILD layer 153 , and then devices are implemented using SOI layer 124 , and then another ILD layer 154 including interconnection lines 132 and vias 131 is placed on top of the single crystalline semiconductor devices 104 , and then the base substrate is detached from ILD layer 153 .
- the base substrate (not shown) could be a flat substrate with even surface, such as plastic, ceramic, glass, metal, or semiconductor materials.
- the base substrate should be able to withstand processing temperatures in the range of 250° C. ⁇ 650° C., which range is considered to be a “non-high temperature semiconductor processing temperature”.
- embodiments of the present invention may have pads which are connected to a package (not shown) disposed at the bottom of first ILD layer 153 and/or at the top of second ILD layer 154 .
- Bottom pads 146 could be connected to a package using, for example, solder.
- Top pads 145 could be connected to a package using, for example, wires.
- Such pad structures in accordance with the present invention reduce die area and the density of a package.
- Various embodiments of the present invention do not require a physically supporting substrate for floating devices. Also, without a base substrate, various embodiments could exist along with interconnection lines, vias, and FLDs only.
- Various embodiments of the present invention provide floating devices that are separated by dielectric isolation regions. These electrically separated structures do not have the parasitic devices which are typically found in prior art approaches.
- Various embodiments of the present invention provide floating devices that may be connected directly or indirectly.
- the SOI layer does require the same type of wafer alignment structures as are used in photolithographic processes, rather, the wafer alignment structure may be implemented as a wafer alignment mark, or as a bump-type alignment structure.
- the SOI layer could be transferred along with a simple notch alignment because the transferred SOI layer does not have structures for multiple devices, such as isolation structure or interconnection lines, which are horizontally divided.
- the transferred SOI layer has only vertically divided several layers.
- Various embodiments of the present invention provide for interconnection of floating device both above and below the FLD.
- FLD logic can be formed using vertically connected individual devices without interconnection lines because embodiments of the present invention include a form of SOI device, and a well is not needed.
- a FLD can have directly contacted metal electrodes at top, bottom, and intermediate regions.
- the area of metal electrodes can be the same as the top and bottom size of single crystalline semiconductor of FLD, which is formed by isolation etching. Therefore, voltage drop of the device could be reduced.
- FIGS. 4 a - d explain a process flow for making a 3-D IC such as the one shown in FIG. 3 .
- a mask alignment mark (not shown) on substrate 180
- single or multiple ILD layers 133 are formed in dielectric layer 153
- interconnection lines 132 and vias 131 which are conducting materials are formed.
- borderline of each ILD layer 133 which comprise dielectric layer 153
- Base substrate 180 should withstand semiconductor processing temperatures in the range of 250° C. ⁇ 650° C.
- the conductors are formed of low electrical resistance material which conducts voltage/current and could be metals such as aluminum and copper, refractory metal, silicide, or low resistance polycrystalline/amorphous semiconductor materials with heavy doping.
- metal layer which is to be used as bottom electrode 121 of FLD is deposited and, if necessary, another metal layer which is an intermediate bonding layer 120 could be implemented.
- the metal used for intermediate bonding layer 120 typically has a lower meting point than the metal layer on dielectric layer 153 .
- Metal 120 is required to have desirable reflow properties at low temperature for surface planarization in order to prevent voids due to surface microroughness at SOI substrate 190 bonding process.
- interconnection lines 132 in dielectric layer 153 are aluminum, the metal of intermediate bonding layer 120 needs to have melting point in the range of 250° C. ⁇ 650° C., which is below the melting point of aluminum, 660° C.
- the list and melting points of metals which could be intermediate bonding layer aluminum alloy 204° C. ⁇ 674° C., zinc 420° C., zinc alloy 377° C.-484° C., lead 328° C., thallium 304° C., tellurium 445° C., solder 268° C.-579° C., and tin alloy 223° C.-422° C.).
- FIG. 4 b shows an SOI substrate 190 .
- doped layers are formed in single crystal semiconductor layer 124 , where the doped layers may be formed by any suitable method including, but not limited to, ion implantation, or impurity mixing during epitaxial layer growth for single crystalline semiconductor layer 124 formation.
- Metal layer 121 is formed on single crystalline semiconductor layer 124
- intermediate bonding layer 120 is formed on metal layer 121 .
- SOI substrate 190 is a single crystal semiconductor substrate, and a material for FLD single crystal semiconductor layer 124 .
- SOI substrate 190 could be single source semiconductors, such as silicon and germanium, or compound semiconductors, such as SiGe, GaAs, GaP, and InP.
- SOI substrate 190 could be combination of single source semiconductors and compound semiconductors. Before bonding, it is better for the SOI substrate to have an intermediate bonding layer which has high reflow rate with a low temperature melting point in order to remove surface roughness.
- SOI substrate 190 may have a detach layer 191 , which may be a porous or strained layer at a certain desired depth using, for example, SmartCut (U.S. Pat. No. 5,882,987), ELTRAN (U.S. Pat. No. 5,371,037), or SiGen technologies.
- Detach layer 191 is a defective region in the semiconductor lattice and, after bonding with dielectric layer 153 , SOI substrate 190 will be removed except for single crystal layer 124 which forms the FLD.
- FIG. 4 c is a cross sectional view of the bonding of dielectric layer 153 of FIG. 4 a and SOI substrate of FIG. 4 b.
- SOI substrate 190 shown in FIG. 4 b is upside-down and bonded on dielectric layer 153 in FIG. 4 a.
- pressure is applied with heat treatment in order to increase bonding strength and remove voids between bonding interfaces.
- eutectic bonding with gold, or thermocompression bonding with a soft metal thin film could be used as the intermediate layer bonding process.
- Metal layer 121 including intermediate bonding layer 120 used in bonding process may be used as the bottom electrode of the FLD.
- SOI substrate 190 has been detached after leaving SOI layer 124 , where FLD is implemented, on dielectric layer 153 , and then isolation structures 135 are implemented over all or part of the FLD layer.
- SOI substrate 190 is detached using detach layer 191 and a wafer jet may be used for SOI substrate detachment. Without detach layer 191 , using a Bond and Etch-Back method (U.S. Pat. No. 5,013,681), leaving SOI layer 124 , where the floating devices are implemented. This SOI layer 124 may also be referred to as a stackable add-on layer.
- SOI substrate 190 can be removed by etching or polishing.
- SOI substrate 190 is bonded with the handling substrate, SOI substrate 190 is detached from the handling substrate and leaving SOI layer 124 , and then the SOI layer could be transferred to dielectric layer from the handling substrate.
- the handling substrate could be the same kind of substrate used for the base substrate.
- the handling substrate may use vacuum to hold the single crystalline semiconductor layer temporarily from the SOI substrate, and then transferring the SOI layer to dielectric layer could be easily done by releasing vacuum.
- the vacuum surface better has thick dielectric layer which protects SOI layer.
- the role of the handling substrate is to transfer an SOI layer from the SOI substrate to the dielectric layer without damage. Also, as explained in U.S. Pat. No. 6,355,501, the SOI substrate and the handling substrate could be bonded using polyamide. Once the SOI substrate has been detached, Chemical-Mechanical Polishing (CMP) could be used to reduce surface roughness of the transferred SOI layer.
- CMP Chemical-Mechanical Polishing
- bottom electrode 121 of FLD is automatically implemented during the trench isolation process. A method of forming bottom electrode 121 is explained below in conjunction with FIGS. 7 a - 7 c.
- a mask alignment mark is exposed on base substrate 180 by removing SOI layer over the mask alignment mark, and then, using the exposed mask alignment mark, the FLD pattern on mask and via 131 pattern on dielectric layer can be aligned.
- Vertical FLD where current flows in a vertical direction, may have intermediate electrode. Interconnection lines and contacts which connect with top electrode and interconnection lines which may be formed by conventional semiconductor process methods.
- multiple FLDs can be stacked and, therefore, IC density can be increased.
- Various embodiments of the invention therefore, do not need wafer or chip alignment marks, or micro bumps for wafer alignment when bonding SOI substrate having single crystalline semiconductor layer and dielectric layer having interconnection lines and vias.
- Various embodiments of the invention can be implemented by mask alignment mark used in conventional photo process.
- the isolation structure is to be filled by dielectric material and intermediate electrode materials. Formation method of the dielectric and intermediate electrode in the isolation structure is explained in FIGS. 8 a - 8 d. After the process of FIGS. 4 a - 4 d, according to conventional semiconductor process, ILD, interconnection lines, and vias are implemented and the base substrate is detached, then it becomes the structure shown in FIG. 3 .
- n+ layer on the top of SOI substrate 190 is directly connected to metal layer 121 .
- another dielectric 189 could be formed in between the top of SOI substrate 190 and metal layer 121 , and then transferred to dielectric layer 153 .
- bottom electrode 121 could be used for a gate electrode having gate dielectric 189 .
- another bottom electrode 121 c could be used to connect the bottom electrode of the FLD.
- An FLD IC layer could have one or more SOI layers.
- the FLD IC layer shown in FIGS. 3 and 5 have a single SOI layer.
- FIG. 5 b shows multiple SOI layers 124 , 128 consisting one FLD IC layer 105 .
- FLD IC layer 105 shows the structure before formation of FLD.
- one FLD IC layer 101 and the other FLD IC layer 102 are separated and distinguishable.
- Multiple SOI layers are implemented by adding another SOI layer 128 on already transferred SOI layer 124 sequentially.
- multiple SOI layers 124 , 128 could have different types of devices which are electrically separated at each SOI layer.
- one SOI layer could have p-type MOSFET, and the other SOI layer may become memory devices.
- FLD could be conventional semiconductor devices. MOSFETs, bipolar transistors, diodes, capacitors, and resistors, images sensors (e.g., Charge-Coupled Devices (CCD) or Active Pixel Sensor (APS)), or MicroElectroMechanical System (MEMS).
- FLD could be a form of circular pillar (see FIG. 13 a ), rectangular pillar (see FIG. 13 b ), or multi-angle pillar, or cylindrical pillar. If the width of FLD is getting narrow, aspect ratio of the pillar structure increases and could topple or be detached from the bonded dielectric layer. To prevent these phenomenon, FLD could be a trapezoidal format with narrow top width and wide bottom width.
- FLDs can be divided into High Temperature (HT) and Low Temperature (LT) devices depending on the temperature used in the manufacturing processing. Similarly, depending on the direction of device operation, FLDs can be divided into Vertical (V) and Horizontal (H) devices, where ‘V’ and ‘H’ mean the ‘Vertical’ and ‘Horizontal’ directions of major device current flow.
- HT High Temperature
- LT Low Temperature
- V Vertical
- H Horizontal
- FLD process temperature could be divided into high temperature which is above 800° C. and low temperature which is below 650° C.
- HT-FLD can be treated at high temperature for thermal activation of implanted ions and could be vertical or horizontal devices.
- the interconnection lines 132 and vias 131 in dielectric layer 153 shown in FIG. 4 should be copper or refractory metals, such as tantalum, molybdenum, or tungsten.
- the base substrate used in HT-FLD should withstand at more than 800° C.
- LT-FLD or FLD do not need ion implantation, heat treatment, and photo process for ion implantation because the impurity layer required for device operation has been formed in SOI substrate before the transfer to dielectric layer. If high temperature is required during the FLD process, characteristics of the devices existing on other layer could be altered. Device process control along early prediction of the alteration is very difficult. Therefore, embodiments of the invention could be implemented on top of base semiconductor substrate having devices without process change.
- An advantage of the present invention is that a low cost process is obtained because ion implantation and photo process are not required. Also, because various embodiments of the invention do not require a high temperature process, refractory metal, aluminum, and aluminum which has low melting point and is widely used in semiconductor could be used. Also LT-FLD could use metal gate and high-k dielectric materials more easily than conventional manufacturing processes.
- VFLD Very FLD
- HFLD Horizontal FLD
- MESFET MOSFET
- diode diode
- FIG. 6 a shows MESFET-type HFLD with metal gate forming Schottky diode.
- bottom electrode 121 could be used as a gate electrode.
- 6 b is a FLD 113 in FIG. 2 . If gate 172 has dielectric layer underneath it, the FLD becomes a MOSFET. If gate 172 in FIG. 6 b has an ohmic contact and the n-type region is switched to p-type region, then it becomes a horizontal bipolar transistor. From the horizontal bipolar transistor, if the n+ region is anode and p-type region is cathode, then it becomes a horizontal diode. Also without gate, the FLD could be a resistor using only the n-type region.
- VFLD (or LT-VFLD) could be a form of MESFET, MOSFET, diode, capacitor, resistor, bipolar, thyristor, or, instead of single device, could be a form of vertical connections of different types of FLD devices to implement circuitry. Combining optimized horizontal devices in the base semiconductor substrate and optimized VFLD, SoC could be optimized in performance and in price.
- Electrode means electrical part which is directly connected to devices or a gate with gate dialectic material.
- Contact means connection part between electrode and interconnection line, which is usually a form of vertical shape.
- the vertical devices in U.S. Pat. No. 5,414,288, U.S. Pat. No. 6,027,975, U.S. Pat. No. 6,337,247, and U.S. Pat. No. 6,449,186 should have horizontally extended doping region which is used for source/drain and providing space for contact formation.
- the extended source/drain region increases resistance and parasitic capacitors.
- the electrodes are formed at top 122 and bottom 121 of FLD 111 .
- intermediate electrode 123 could be connected to interconnection lines at the top or bottom of the FLD. Further, the intermediate electrode could be used for local interconnection. This very flexible interconnection scheme for a 3-D IC is not possible in conventional approaches to forming 3-D ICs.
- the bottom of FLD is connected to metal layer 121 which is also directly connected to vias 131 in the ILD layer 151 . Therefore, bottom of FLD already has pre-formed electrode and contact.
- the alignment scheme used in this technology is to be done by conventional photo alignment mark (not shown). However, the photo process has misalignment margin and bottom electrode 121 and via 131 should be aligned within the alignment margin.
- the width of interconnection lines are needed to be wider than the size of via 131 . Photo process with photo mask and etch process are needed for formation of interconnection lines 132 and vias 131 .
- bottom electrode 121 used for alignment between bottom portion 124 z of FLD and via 131 uses a self-aligning technology and therefore does not require a photo mask type of process.
- Part of the metal layer used in the SOI substrate bonding process is to be extension of bottom part of FLD and other part of the metal layer becomes a bottom electrode 121 .
- FIG. 7 a using etching mask 173 , the portion of layers 122 and 124 indicated by the dashed lines is etched away.
- FIG. 7 b shows spacer type etching mask which enables bottom electrode 121 to be wider than via 131 .
- the width of bottom electrode 121 can be, for example, more than twice the FLD height if the etching mask is deposited taller than FLD and etched by, for example, a dry etching process.
- the width of bottom electrode 121 can be controlled by the thickness of a hard mask, the FLD height, the FLD width, and the etching amount of spacer 182 . If the width of the FLD is bigger than a photo process margin, then wider bottom electrode 121 is not required.
- an intermediate electrode in accordance with the present invention can be implemented as follows. First, there is a planar intermediate electrode, or planar electrode, method. After electrode material deposition and a CMP operation for planarization, dry etching is performed to provide a planar electrode 123 shown in FIG. 8 a. Patterning of planar electrode 123 can be done before or after the dry etching process. The deposited electrode material is usually thicker than the height of VFLD. Also, at this point in the process, an etch stop layer 122 may be needed on top of the FLD to prevent damage on SOI layer 124 . Etch stop 122 is typically a combination of multiple oxide, nitride, or metal layers. In FIG.
- a dielectric material 133 a is deposited, planarized, and dry etched in a manner similar to the formation of planar electrode 123 .
- Dielectric material 133 a reduces parasitic capacitance between bottom electrode 121 and planar electrode 123 .
- Second is the method using spacer 123 as shown in FIG. 8 b. If the width of spacer intermediate electrode or spacer electrode is wide, it is easy to obtain electrical contact with the spacer electrode. However, it is difficult to achieve high density. If the width is narrow, it is difficult to obtain electrical contact with the spacer electrode.
- the spacer method doest not require photo or CMP processes.
- Third method is spacer method using a dummy FLD (i.e., an FLD which does not work as a device).
- a dummy FLD 124 a is located close to FLD and increases the width of the spacer used for intermediate electrode 123 . Because contact 123 a connected to intermediate electrode 123 could be located on the top of dummy FLD 124 a, the margin for contact formation increases. As shown in FIG. 8 c, the spacing between the FLD and dummy FLD 124 a should be smaller than two times the spacer film thickness.
- the fourth method is, as shown in FIG. 8 d, thin spacer method which extends intermediate electrode 123 to the top of FLD. After deposition of the intermediate electrode material, covering the area of contact formation on intermediate and etching the rest of the area, we get the structure of FIG. 8 d. This method is good for thin spacer thickness. To reduce parasitic capacitance between top and intermediate electrodes, a thick dielectric layer may be used on the top electrode.
- Intermediate electrode may surround the entire or part of intermediate region of the VFLD. Also, multiple intermediate electrodes could be formed at one FLD.
- top electrode could be implemented as shown in FIG. 7 a. If the size of contact 122 a is smaller than the size of top electrode 122 , then conventional semiconductor photo/etch technologies can be used as shown in FIG. 8 d. However, if the FLD width is less than the misalignment margin of the photo process for formation of contact 122 a, or the size of contact 122 a is greater than the area of FLD, then photo/etch processing for contact 122 a may cause a short circuit to the intermediate electrode. Therefore, this disclosure describes several structures in accordance with the present invention that increase process error margin for photo/etch during the formation of contact 122 a.
- Second one is to use etch stop layer 184 with planar technology as shown in FIG. 9 a.
- Third one is to use etch stop layer 184 with spacer technology as shown in FIG. 9 b, where the etch stop layer 184 has slow etching rate compared to the dielectric layer 133 c during the contact 122 a formation.
- dielectric layer 133 c is oxide film
- etch stop layer 184 could be nitride.
- VFLD which is implemented at low temperature and has vertical operation, as follows: MOSFET VMFLD, MESFET VMEFLD, diode VDFLD, resistor VRFLD, capacitor VCFLD, bipolar VBFLD, and Thyristor VTFLD.
- VDFLD could be implemented as vertical p-n or p-i-n junction diodes as shown in FIG. 10 a.
- FIG. 10 b shows vertical Schottky diode, which has Schottky junction between top electrode 122 and SOI 124 .
- metal intermediate electrode 123 could be used for 3-D Schottky diode.
- the VDFLD shown in FIG. 10 c has twice the current driving capability compared to the one in FIG. 10 b, because current follows from anode at intermediate electrode 123 to cathodes at top and bottom electrodes.
- VCFLDs There are two types of VCFLDs. One is MOS capacitor type or depletion capacitor, which uses a depletion region formed in the single crystalline semiconductor; and the other one, or dielectric capacitor, stores charge at dielectric interface without a depletion region. If the doping concentration of the semiconductor is low, then, depletion exists in semiconductor region. If doping concentration is high, then, it becomes dielectric capacitor, VCFLD without depletion.
- VCFLDs are shown in FIGS. 11 a and 11 b. In FIG. 11 a, there are gate dielectric which surrounds n-type single crystalline semiconductor and an electrode which connects the n-type semiconductor.
- the surrounding gate 123 b increases total capacitance of VCFLD.
- the metal gate forming the Schottky diode could be used as a capacitor with reverse bias.
- the capacitance of VCFLD increases due to the increased semiconductor and gate interface area.
- gates 123 b, 123 c and a gate dielectric layer are stacked repeatedly on a VCFLD, and the stacked capacitor and the VCFLD are connected in parallel, and then, capacitance could be increased.
- This type of capacitor has the same structure of stacking capacitor used in DRAM.
- the contact 121 a in FIG. 11 b connects gate of the stacked capacitor and bottom electrode 121 .
- Bipolar type VBFLD is shown in FIG. 12 .
- the impurity regions which consist of collector 124 c, 124 d, base 124 b, and emitter 124 a, have been implemented at SOI substrate and then transferred.
- Electrodes, which consist emitter 124 a and collector 124 d, are formed at bottom 121 and top 122 , and base 124 b electrode 123 is formed in middle of the FLD.
- emitter 124 a could be located at top or bottom of VBFLD, emitter is at the bottom of VBFLD in the illustrative embodiment. In this case, the emitter is implemented at top of the SOI substrate before the single crystalline semiconductor 124 a - 124 d has been transferred.
- emitter 124 a and base 124 b regions are formed.
- SiGe heterojunction base is possible and polycrystalline semiconductor can be used as part of emitter region.
- emitter 124 a is located at the bottom of VBFLD, emitter could be away from thickness variation during planar process after the SOI layer transfer process. If handling substrate is used for SOI layer transfer, then emitter is located at top of the FLD.
- the VBFLD does not need a buried layer and heavily doped collector region which connects the collector contact and the buried layer.
- Various embodiments of the present invention provide lower collector series resistance compared to conventional approaches.
- base series resistance can be low without a heavily doped extrinsic base region because the surrounding base electrode 123 formed in the middle of VBFLD has a wide contact surface at the base region.
- the VBFLD does not have parasitic capacitors which prevent high speed operation.
- base-collector-substrate parasitic bipolar transistor does not exist in embodiments of the present invention.
- VBFLD only needs one isolation structure 135 .
- the base intermediate electrode 123 is extended from base region to collector region, then the low doped collector region 124 c forms a Schottky diode with the base electrode which enables high speed operation of the VBFLD.
- MOSFET-type VMFLD are shown in FIGS. 8 a - 8 d and FIGS. 9 a - 9 b.
- the vertical MOSFET could have high integration density at small space and the channel length is not limited by photo and etching process limit.
- the VMFLD could have high driving current because channel width could be increased easily with surrounding gate compared to prior arts which have the same channel length.
- Pillar type SGT Surrounding Gate Transistor shown in U.S. Pat. No. 6,337,247 and U.S. Pat. No. 6,449,186, is difficult to co-exist with optimized horizontal devices and may cause shadow effect during ion implantation due to pillar type transistor. Also, SGT does not have high integration density because it has problems with forming electrodes at source/drain and gate regions. Therefore, these approaches are not suitable for SoC formation.
- the VMFLD has a directly connected bottom electrode which decreases voltage drop, and current reduction by parasitic resistance. Also VMFLD could be easily full or partial depletion mode with control of FLD width, where the depletion mode could be also controlled by operation voltage and gate dielectric constant. Because the detached surface from the SOI substrate becomes heavily doped source/drain region, even though there are small surface defects, unlike prior arts of horizontal device, there is little effect to gate oxide quality, device operation, and yield.
- the VMFLD may have gradient impurity distribution in the channel region and electric field could be formed in the channel region due to the graded impurity, where the induced electric field accelerates current flow and graded impurity may reduce Short Channel Effect (SEC).
- the graded impurity can be formed easily by ion implantation or epitaxial process. Increased impurity concentration in the channel region from source to drain side makes asymmetric operation.
- LDD Lightly Doped Drain
- MOSFET-type VFLD has a gate dielectric layer which is implemented at below 650° C. as shown in U.S. Pat. No. 5,330,935 and U.S. Pat. No. 5,443,863.
- the dielectric layer could be thermal oxide, deposited oxide, oxynitride, or combination of oxide and nitride, such as ONO and NO (Nitride Oxide). Any suitable dielectric material could be used except high temperature processing films requiring more than 650° C.
- high dielectric constant (high-k) materials in the gate dielectric layer, such as, but not limited to, Al 2 O 3 , ZrO 2 , HfO 2 , Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , TiO 2 , and BST.
- high-k materials such as, but not limited to, Al 2 O 3 , ZrO 2 , HfO 2 , Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , TiO 2 , and BST.
- high temperature heat activation operation is required after the source/drain ion implantation.
- the properties of high-k materials can be altered.
- the VMFLD process does not need a high temperature process, and so high-k materials could be used at stable condition.
- ALD Atomic Layer Deposition
- threshold voltage could be controlled by changing gate dielectric thickness and/or width of FLD. If different gate dielectric thickness is used or different dielectric constant materials are used at VMFLD, then multiple operational voltage and threshold voltage could be implemented at the same SOI layer and it is useful for SoC. Also, because the VMFLD is produced at low temperature, and a surrounding gate is used, it is easy to use a metal gate compared to prior art manufacturing approaches.
- VMFLD shown in FIG. 13 a could be a multi-Level (ML) VMFLD which has multiple status values with multiple gates sharing one source/drain.
- Current driving capability of VMFLD is proportional to the gate area. Therefore, simply multiple gates with same gate size could be used for gradual increase of current. Or, multiple gates with same gate size of a VMFLD could be used for ML-VMFLD.
- FIG. 13 b shows a ML-VMFLD which has two “W” size gates and two “3 W” size gates, where “W” is a constant number and “3 W” means triple the value of “W”.
- ML-VMFLD could have 9 different current values from “0” to “8”. If the same size gates are used for ML-VMFLD, eight gates are required for nine different values as shown in FIG. 13 a. ML-FLD could be used for memory or digital logic device applications. Intermediate electrodes for multi-level could be used for bipolar transistor as base electrodes.
- a 3-D IC including FLDs may have not only single device form, such as MOSFET or bipolar transistor, but also multiple devices formed in a single FLD.
- FIG. 14 shows a single inverter type VFLD.
- the p-MOSFET and n-MOSFET which make up the inverter do not require different wells, and therefore this inverter has a high integration density.
- Contact 123 f which connects gates of p-MOSFET and n-MOSFET together, becomes input of the inverter. Drains of p-MOSFET and n-MOSFET are connected to together and connected to electrode 123 g and contact 123 h.
- p+-p-p+ type p-MOSFET is a depletion mode MOSFET.
- the p-MOSFET could be a p+-n-p+ type and in this case n-region needs reference voltage.
- the contact which penetrates the dielectric layer used for FLD isolation structure, could be connected to interconnection lines above or below FLD layer.
- a FLD inverter could be implemented using two SOI layers as shown in FIG. 5 b; one SOI layer has n-MOSFET and the other SOI layer has p-MOSFET,
- memory devices could be implemented using multiple FLDs.
- FIG. 15 b 6 transistor SRAM cell be implemented as shown in FIG. 15 b.
- the two invertors are VFLD and two transistors, which have word line and bit line, are on the base semiconductor substrate.
- FIGS. 15 a and 15 b show interconnection lines of top and bottom contacts, respectively.
- Two FLD invertors are latched with connecting inputs to outputs of each invertors.
- Counter parts of one VFLD inverter contacts 122 a, 123 h, 123 f, 131 are shown with underlined 122 a, 123 h, 123 f, 131 . Therefore, SRAM cell could have high integration density.
- the base semiconductor substrate does not need n-well for p-MOSFET in SRAM cell, integration density in the base semiconductor substrate is high. It is noted that if four pass transistors are used, a dual-port SRAM can be implemented.
- a first way is by using four n-MOSFET on a base semiconductor substrate and two p-MOSFET type FLDs.
- a second way is by disposing two p-MOSFET on the base semiconductor substrate and four n-MOSFET type FLDs.
- a third way is by disposing two p-MOSFET type FLDs on a SOI layer and four n-MOSFET type FLDs on another SOI layer.
- a fourth way is by using four transistor SRAM cell using either four n-MOSFET type FLDs or four n-MOSFET on the base semiconductor substrate, and resistors could be either formed on FLD layer or polycrystalline semiconductor resistors.
- FIG. 16 a shows a VTFLD SRAM cell having a gate 123 j in accordance the present invention. Intermediate electrode gate 123 j is used for word line 2 and the top electrode is connected to reference voltage. The VTFLD is connected to horizontal access transistor 161 c on base semiconductor substrate, therefore, each device can be optimized, and high density is provided for SoC applications. The gate of the access transistor is used for word line 1 (WL 1 ).
- FIG. 16 b shows another structure of SRAM cell shown in FIG.
- a Dynamic Random Access Memory (DRAM) cell in accordance with the present invention has one transistor and one capacitor, where the transistor could be on the base semiconductor substrate or could be a VMFLD on an FLD IC layer, and the floating source of the transistor is connected to a VCFLD on another FLD IC layer.
- DRAM Dynamic Random Access Memory
- FIG. 17 a shows a DRAM structure having a MOSFET and a depletion capacitor in serial connection.
- the top electrode is connected to bit line and intermediate electrode is connected to word line.
- depletion region which is formed in between the floating n+ source 124 e and p-region connected to bottom electrode, has wider width than the transistor, where the wider semiconductor region could be implemented using spacer technology without additional photo process as shown in FIGS.
- FIG. 17 b shows that a MOSFET having floating source and a dielectric capacitor are connected in parallel, where the floating source p-region is connected to reference voltage (not shown).
- bottom electrode 121 is connected to bit line and intermediate electrode is connected to word line.
- FIGS. 18 a - 18 f A nonvolatile FLD memory structure in accordance with present invention is shown in FIGS. 18 a - 18 f.
- FIG. 18 a has two gates, where one floating gate surrounds a p-type channel region with gate dielectric layer 183 b and control gate 123 connecting to bias surrounds floating gate 123 k with another gate dielectric layer 183 c.
- FIG. 18 b shows a split gate nonvolatile memory, where floating gate 123 k surrounds part of p-type channel region, and the rest of channel region and the floating gate 123 k are surrounded by control gate 123 .
- FIG. 18 c has three gates: a floating gate 123 k, a control gate 123 , and an erase gate 323 which is designed to erase data.
- FIG. 18 a has two gates, where one floating gate surrounds a p-type channel region with gate dielectric layer 183 b and control gate 123 connecting to bias surrounds floating gate 123 k with
- FIG. 18 d shows a nonvolatile memory VFLD without a floating gate which has an ONO gate dielectric layer 183 , where information can be stored at different locations 30 depending on current flow.
- FIG. 18 e shows a flash memory FLD structure with bulk contact 122 c on p-type bulk region 124 .
- VMFLD could have a bulk contact without gate dielectric layer on one side and gate contact with gate dielectric layer on the other side.
- nonvolatile memory could be a ML-VMFLD which stores multi bit information in a FLD.
- an FLD having one source/drain has eight separated gates, and then one FLD has eight multi-bit memory cell.
- FIG. 18 f has a bulk contact 122 c and rest contacts are connected to source/drain at SOI layer which is forming FLD.
- dashed line “756” shows the borderline of an exposed FLD bulk region from the top FLD.
- Rest contacts 122 a on SOI region 124 are connected to source/drain.
- FLD memory devices may have redundancy on the same or different FLD IC layers.
- FIGS. 19 a - 19 b are top views of an FLD IC, and each chip 441 is distinguished by a scribeline.
- one FLD IC layer has four blocks 413 a - 413 d, where a first block has a programmable FPGA, a second block has a flash memory, a third block has bipolar devices, and a fourth block may have an SRAM.
- Each block may require different impurity junctions for different device types, where the impurity junctions should be formed before SOI layer transfer processing in case of LT-FLD.
- the block FLD formation needs wafer alignment marks at SOI substrate and base substrate. In this case, it is better to have Overlay Error Compensation Area (OECA) 412 considering wafer misalignment, where the OECA may have a few microns to hundreds micron distance.
- OECA Overlay Error Compensation Area
- FIG. 20 a shows a nonvolatile memory cell 700 with a capacitor using a ferroelectric film 710 , and a VFLD connected in series to the capacitor.
- the nonvolatile memory using ferroelectric film 700 is called an FRAM (Ferroelectric Random Access Memory).
- FRAM Feroelectric Random Access Memory
- Conventional ferroelectrics are (PbZr)TiO 3 (referred to as PZT), SrBi 2 Ta 2 O 9 (referred to as SBT), and YMnO 3 . If an electric field is applied to such a ferroelectric, then the ferroelectric has a polarization characteristic.
- FRAM cell 700 has serially connected a ferroelectric capacitor and a VMFLD.
- Gate 123 of VMFLD is Word Line (WL) and the drain is Bit Line (BL), and the source is connected to the ferroelectric capacitor and the other electrode 122 a is connected to Drive Line (DL or Plate Line).
- FIG. 20 b shows an equivalent circuit of FRAM memory cell 700 , where logic devices for sense amp 770 are generally implemented on base substrate and FRAM cell 700 including VMFLD is implemented in SOI layer.
- FIG. 20 c shows one memory bit using two FRAM cells shown in FIG. 20 a, where logic devices for sense amp 770 are generally implemented on base substrate 103 and FRAM cell 700 including VMFLD is implemented in SOI layer.
- FIG. 21 a shows a nonvolatile memory cell 730 with a capacitor using ferroelectric film 710 and a VFLD connected in parallel to the capacitor.
- the parallel connection FRAM operates at higher speed and has lower power consumption compared to a serially connected FRAM cell.
- One intermediate electrode 123 is the WL.
- the other intermediate electrode 123 a has an applied reference voltage and keeps constant current status for parallel connecting the ferroelectric capacitor and VFLD.
- FIG. 21 b is an equivalent circuit of FRAM cell 730 .
- FRAM cells 730 are chained to form a byte.
- a capacitor using ferroelectric film 710 is located at the top of the VFLD in FIGS. 20 a and 21 a.
- the capacitor using ferroelectric film 710 could be located at the bottom of the VFLD.
- the VFLD could be a MOSFET, bipolar, or other type of transistor.
- FIGS. 22 a and 22 b show nonvolatile VMFLDs 750 which have ferroelectric film 710 as part of VMFLD structure.
- a FRAM has ferroelectric film 710 located in between a gate dielectric layer 183 and gate electrode 123 . This is called a Metal Ferroelectric Insulator Silicon (MFIS).
- MFIS Metal Ferroelectric Insulator Silicon
- Gate dielectric layer 183 is a typical MOSFET gate dielectric layer and can be formed of silicon dioxide or oxynitride. If there is no gate dielectric layer 183 in FIG. 22 a and ferroelectric film 710 is used as a gate dielectric layer, then it becomes a MFS (Metal Ferroelectric Silicon) type FRAM.
- MFS Metal Ferroelectric Silicon
- ferroelectric film 710 is used in between floating gate 123 k and control gate 123 of a VMFLD and it forms MFMIS Metal Ferroelectric Metal Insulator Silicon) type FRAM 760 FLD.
- Ferroelectric film 710 used in the illustrative embodiments of FIGS. 20-22 should be implemented at below 660° C. for low temperature FLD.
- FIG. 23 a shows a nonvolatile MRAM Magnetoresistive Random Access Memory, 800 cell structure using VMFLD and serially connected MJT Magnetic Tunnel Junction Stack, 810 .
- MJT 810 is located formed below ILD 133 and FLD 124 .
- FIG. 23 b also shows an MRAM cell 850 using MJT 810 .
- MJT 810 is located formed above FLD 124 .
- MJT 810 has property of variable electric resistance depending on applied magnetic field, where the electric resistance changes depending on polarization of MJT 810 .
- MJT 810 consists of multiple thin film layers. In general, one magnetic file is free layer which is polarized by applied magnetic field. The other magnetic film is pinned layer and, in general, used along with exchange layer which is anti-ferromagnetic layer. The pinned layer is polarized by applied magnetic field. Therefore, the film stack is called a Magnetic Tunnel Junction Stack (MJT).
- the MJT is not limited to a structure which has two magnetic films and a dielectric film. The MJT could have combinations of different thin layers.
- the MJT could be classified to two types by the stacked layers; one is Giant Magnetroresistance (GMR) using non-magnetic material, and the other one is Tunneling Magnetroresistance (TMR) using dielectric layer, such as oxide layer.
- Giant Magnetroresistance GMR
- TMR Tunneling Magnetroresistance
- the VFLD shown in FIGS. 23 a and 23 b could be MOSFET, bipolar, or MESFET.
- FIG. 24 shows an Ovonic Unified Memory (OUM) 900 cell structure using a Reversible Structural Phase-Change Film (RSPCF) 910 and a serially connected VFLD.
- RSPCF 910 is implemented after formation of FLD 124 and placed above FLD 124 .
- RSPCF 910 could be implemented before formation of FLD 124 and placed below FLD 124 (not shown).
- RSPCF 910 could have amorphous or polycrystalline phases depending on the amount of current and time, in other words, the temperature applied to RSPCF, where polycrystalline has lower electric resistance.
- RSPCF 910 could be Chalcogenides and alloy in VI element of Periodic Table. Therefore, RSPCF 910 could be alloy of Ge—Sb—Te, GaSb, InSb, InSe, Sb 2 Te 3 , GeTe, Ge 2 Sb 2 Te 5 , InSbTe, GaSeTe, SbSb 2 Te 4 , InSbGe, AgInSbTe, (GeSn)SbTe, GeSb(SeTe), or Te 81 Ge 15 Sb 2 S 2 . Electrode 910 a connected to RSPCF 910 could be TiAlN or TiW, which is stable at 650° C.
- the VFLD shown in FIG. 24 could be MOSFET, bipolar, or MESFET.
- FIG. 25 shows a Programmable Read-Only Memory (PROM) 300 cell structure using fuse or antifuse) layer 310 and a serially connected VFLD.
- the fuse (or antifuse) layer 310 is formed above FLD 124 after the FLD formation. Or, the fuse (or antifuse) layer 310 is formed below FLD 124 before the FLD formation.
- Antifuse layer 310 has high electric resistance. However, it could get low electric resistance if programming high voltage/current is applied to the antifuse layer.
- the PROM is not reprogrammable in general.
- the PROM can be used for in an Application-Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), or a Programmable Logic Array (PLA).
- ASIC Application-Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- PPA Programmable Logic Array
- the antifuse layer may be formed from an ONO layer, a metallic oxide layer, a chalcogenide layer, or an undoped amorphous silicon layer, but is not limited to these materials.
- the fuse layer may be formed from nichrome or polycrystalline silicon, but is not limited to these materials.
- Electrodes 301 a, 301 b for fuse or antifuse may be formed from TiW, which is stable at high temperature.
- the VFLD may be a MOSFET, a bipolar transistor, a MESFET, or a diode.
- FIG. 26 shows a DRAM 400 cell having only a VMFLD 124 .
- VMFLD 124 using SOI layer has floating body p-region, as shown in FIG. 26 , without applied bias, and charges could be accumulated in the floating body for a short time (i.e. refresh time). The charge becomes readable and writable data.
- FIG. 27 a shows an Electrically Erasable Programmable Read-Only Memory (EEPROM) 500 cell which has a VMFLD and a serially connected nonvolatile VMFLD memory.
- the nonvolatile memory has dual gates which are a floating gate and a control gate. However, it could be a Silicon Oxide Nitride Oxide Silicon (SONOS) type nonvolatile memory.
- SONOS Silicon Oxide Nitride Oxide Silicon
- the MOSFET consisting select line is located above the nonvolatile memory. However, the location of these devices could be reversed.
- FIG. 27 b shows an equivalent circuit of the one EEPROM cell.
- FIG. 28 is power VMFLD 600 which is operating at high voltage.
- the power VMFLD could have from few micrometer to few hundred micrometer range SOI layer thickness and gate dielectric layer thickness may have from tenth of nanometer to few thousands nanometer range.
- Operation voltage could be from 7 volts to 1000 volts range.
- the FLD may have a trapezoidal shape which help extension of depletion region and reduction of electric field, and therefore increasing operation voltage.
- Power VMFLD 600 has many advantages over horizontal MOSFET.
- Conventional horizontal MOSFET needs to have long channel length in order to increase operation voltage. However, it causes high cost due to low integration density.
- channel length of power VMFLD 600 dose not change integration density because channel length is determined by vertical height of the SOI layer.
- the power VMFLD has surrounding gate, it has low on resistance and its current driving capability is more than twice of conventional horizontal MOSFET. Therefore, the power VMFLD of FIG. 28 may replace other conventional power devices, such as Lateral Double-Diffused MOS (LDMOS) and Trench MOS.
- LDMOS Lateral Double-Diffused MOS
- Trench MOS Trench MOS
- the power VMFLD in FIG. 28 has a double-diffused drain, then it becomes the device shown in FIG. 29 .
- the double-diffused region prevents the expansion of a depletion region to the heavily doped drain region and helps device operate at high voltage.
- the gate dielectric layer has a combination of “low temperature thermal oxide, high-k dielectric, and CVD dielectric, then device reliability increases, and the interface trap in between semiconductor 124 and gate dielectric layer 183 decreases. Also, current driving capability increases and on-resistance decreases.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
- Semiconductor Integrated Circuits (AREA)
- Non-Volatile Memory (AREA)
- Junction Field-Effect Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
- The present invention relates generally to three dimensional integrated circuit (IC) structures and manufacturing methods therefore, and more particularly relates to combining a semiconductor substrate with a thin add-on semiconductor layer in which various active and/or passive devices have been fabricated.
- As shown in
FIG. 1 , a prior art 3-D IC might be termed a ‘Hybrid IC’. A conventional Hybrid IC implementation method typically includes; providing a first IC which consists of abase semiconductor substrate 201 and adielectric layer 202; providing a second IC that also consists of abase semiconductor substrate 203 and adielectric layer 204; stacking and bonding these ICs, or individual chips; and implementing adeep via 255 such as shown in U.S. Pat. No. 6,600,173 which penetrates the semiconductor substrate, or providing micro bumps as shown in U.S. Pat. No. 6,355,501. - Still referring to
FIG. 1 , it is noted that devices in thestacked semiconductor substrate 203 are usually connected by interconnection lines indielectric layer 204, which is disposed abovesubstrate 203. Similarly, interconnection lines indielectric layer 202, which is disposed below stackedsubstrate 203 are used to connect devices in thebase substrate 201. It can be seen that the devices instacked substrate 203 do not have bottom electrodes, but rather have contacts from the top side. - Conventional implementations require wafer or chip alignment marks to be bonded. The wafer alignment marks are different from the alignment marks used in photo processing. Therefore, the ‘hybrid IC technology’ used in 3-D IC is considered to be another type of Multi-Chip Package (MCP). The main purpose of the ‘hybrid IC technology’ is to reduce interconnection lines used in package interconnections to facilitate high speed device operation.
- Still referring to
FIG. 1 , prior art 3-D IC implementations are typically characterized as follows: each of the IC layers are implemented by separate processing; each IC is bonded and stacked to become a 3-D IC; each IC layer has a semiconductor substrate (e.g., 201, 203) respectively holding devices (e.g., 211, 212). Also in general the devices share an electricallycommon substrate - In another conventional approach, a single crystalline semiconductor layer is formed by melting polycrystalline or amorphous semiconductor layer disposed on a dielectric layer using, for example, a laser. Devices are then formed using the single crystalline semiconductor layer, which was formed from the polycrystalline or amorphous layer. In still another conventional approach, a single crystalline epitaxial layer is grown on a dielectric layer where the dielectric layer has partially exposed holes therethrough to an underlying single crystalline layer.
- However, both the laser recrystallization and the epitaxial processes described above are have drawbacks, such as requiring high temperature operations, which are incompatible with the low temperature processing required for many semiconductor devices; and further, single crystalline semiconductor layers formed in this way may have many defects, and therefore these methods are not widely used.
- Briefly, a plurality of vertically oriented semiconductor devices may be added to a separately fabricated substrate that includes electrical devices and or interconnect. The plurality of vertically oriented semiconductor devices are physically separated from each other, and therefore are not disposed within the same semiconductor body, or semiconductor substrate.
- In one aspect of the present invention, the plurality of vertically oriented semiconductor devices is added to the separately fabricated substrate as a thin layer including several doped semiconductor regions which, subsequent to attachment to the substrate, are etched to produce individual doped stack structures. In other embodiments of the present invention, the plurality of vertically oriented semiconductor devices may be fabricated prior to attachment to the separately fabricated substrate.
- In another aspect of the present invention, the doped stack structures may form the basis of a wide variety of semiconductor devices, including, but not limited to, diodes, capacitors, n-type MOSFETs, p-type MOSFETs, bipolar transistors, and floating gate transistors.
- In another aspect of the present invention, ferroelectric memory devices, ferromagnetic memory devices, chalcogenide phase change devices, and similar structures may be formed in a stackable add-on layer for use in conjunction with the separately fabricated substrate.
- In still further aspects of the present invention, the stackable add-on layers include at least one layer of electrical interconnect lines.
-
FIG. 1 is a cross-sectional view of a stacked integrated circuit, referred to as a three-dimensional integrated circuit, in accordance with the prior art. -
FIG. 2 is a cross-sectional view of an embodiment the present invention that includes a base semiconductor substrate. -
FIG. 3 is a cross-sectional view of an embodiment of the present invention without a base semiconductor substrate. -
FIGS. 4 a-4 d illustrate a process flow which forms a 3-D IC structure using SOI layer in accordance with the present invention. -
FIG. 5 a is a cross-sectional view of an embodiment of the present invention wherein the bottom of SOI layer does not have directly connected electrodes. -
FIG. 5 b is a cross-sectional view of an embodiment of the present invention that includes multiple stacked SOI layers. -
FIGS. 6 a-6 b are cross-sectional views of an embodiment of the present invention which has horizontally oriented, rather than vertically oriented, devices incorporated in the SOI layer. -
FIGS. 7 a-7 c illustrate a process flow of in accordance with the present invention that produces vertically oriented devices incorporated in the SOI layer with those devices having directly connected bottom electrodes. -
FIG. 8 a is a cross-sectional view of an embodiment of the present invention having a vertical device with a planar middle electrode. -
FIG. 8 b is a cross-sectional view of an embodiment of the present invention having a vertical device with a spacer middle electrode. -
FIG. 8 c is a cross-sectional view of an embodiment of the present invention having a vertical device with a spacer middle electrode extended to an adjacent dummy vertical device. -
FIG. 8 d is a cross-sectional view of an embodiment of the present invention having a vertical device with a middle electrode extended to the top of the vertical device. -
FIG. 8 e is a top view of the structure shown inFIG. 8 d. -
FIG. 9 a is a cross-sectional view of an embodiment of the present invention having a vertical device with a planar etch stop layer for a top contact electrode. -
FIG. 9 b is a cross-sectional view of an embodiment of the present invention having a vertical device with a spacer etch stop layer for a top contact electrode. -
FIG. 10 a is a cross-sectional view of an embodiment of the present invention having a vertically oriented p-n junction diode. -
FIG. 10 b is a cross-sectional view of an embodiment of the present invention having a vertically oriented Schottky diode. -
FIG. 10 c is a cross-sectional view of an embodiment of the present invention having a vertically oriented Schottky diode with Schottky contact disposed at the middle electrode. -
FIG. 11 a is a cross-sectional view of an embodiment of the present invention having a vertically oriented capacitor formed by a depletion region. -
FIG. 11 b is a cross-sectional view of an embodiment of the present invention having a vertically oriented capacitor formed by a dielectric layer between electrodes. -
FIG. 12 is a cross-sectional view of an embodiment of the present invention having a vertically oriented bipolar transistor. -
FIG. 13 a is a top view of an embodiment of the present invention having a vertical device forming a MOSFET with 8 gates for multi-bit, or variable gate width, operation. -
FIG. 13 b is a top view of an embodiment of the present invention having a vertical device forming a MOSFET with 4 different size gates for multi-bit, or variable gate width, operation. -
FIG. 14 is a cross-sectional view of an embodiment of the present invention having a vertically oriented inverter. -
FIGS. 15 a-15 b illustrate top and bottom layouts of an SRAM cell in accordance with the present invention. -
FIG. 16 a is a cross-sectional view of an embodiment of the present invention having a vertically oriented Thyristor as part of an SRAM cell. -
FIG. 16 b is a cross-sectional view of an embodiment of the present invention having a both a Thyristor and a MOSFET vertically disposed and serially connected in the SOI layer. -
FIG. 17 a is a cross-sectional view of an embodiment of the present invention having a vertical DRAM cell with vertical connection of a depletion capacitor and a MOSFET in the SOI layer. -
FIG. 17 b is a cross-sectional view of an embodiment of the present invention having a vertical DRAM cell with vertical connection of a dielectric capacitor and a MOSFET in the SOI layer. -
FIG. 18 a is a cross-sectional view of an embodiment of the present invention having a vertical Non-Volatile Memory (NVM) cell that includes a floating gate and a control gate in the SOI layer. -
FIG. 18 b is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell that includes a floating gate that partially covers the channel region, and a control gate that covers the floating gate and the rest of the channel region in the SOI layer. -
FIG. 18 c is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell with a floating gate, a control gate, and a erase gate in a SOI layer. -
FIG. 18 d is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell with an Oxide-Nitride-Oxide (ONO) gate in the SOI layer. -
FIG. 18 e is a cross-sectional view of an embodiment of the present invention which has a vertical NVM cell with a floating gate, a control gate, and a bulk contact, all disposed in the SOI layer. -
FIG. 18 f is top view of the structure ofFIG. 18 a with eight gates in the SOI layer. -
FIGS. 19 a-19 b illustrate layouts of SOI layers that have multiple blocks containing different types of devices. -
FIG. 20 a is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell that includes a MOSFET serially connected to a capacitor, which uses ferroelectric material, both disposed in the SOI. -
FIG. 20 b illustrates an exemplary memory circuit formed with devices illustrated inFIG. 20 a. -
FIG. 20 c illustrates another exemplary memory circuit formed with devices illustrated inFIG. 20 a. -
FIG. 21 a is a cross-sectional view of an embodiment of the present invention having a vertical NVM cell that includes the structure illustrated inFIG. 20 a. -
FIG. 21 b illustrates an exemplary memory circuit formed from structures shown inFIG. 21 a. -
FIG. 22 a is a cross-sectional view of an embodiment of the present invention that includes a vertical NVM cell with a MOSFET in the SOI layer and uses a ferroelectric material between the gate and gate dielectric layers. -
FIG. 22 b is a cross-sectional view of an embodiment of the present invention that includes a vertical NVM cell with a MOSFET in the SOI layer and uses a ferroelectric material between the floating gate and the control gate. -
FIG. 23 a is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET in the SOI layer serially connected to a ferromagnetic material at the bottom of the MOSFET. -
FIG. 23 b is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET in the SOI layer serially connected to a ferromagnetic material at the top of the MOSFET. -
FIG. 24 is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET disposed in the SOI layer that is serially connected to a resistor formed from a chalcogenide material. -
FIG. 25 is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET disposed in the SOI layer that is serially connected a structure that depending on the material used may function either as a fuse or an antifuse. -
FIG. 26 is a cross-sectional view of an embodiment of the present invention that includes a vertical volatile memory cell having a MOSFET in the SOI layer without body contact. -
FIG. 27 a is a cross-sectional view of an embodiment of the present invention that includes a vertically oriented NVM cell having a MOSFET connected in series with a floating gate transistor such as the one shown inFIG. 18 a. -
FIG. 27 b is a schematic diagram of an equivalent circuit for the structure shown inFIG. 27 a. -
FIG. 28 is a cross-sectional view of an embodiment of the present invention that includes a high voltage MOSFET disposed in the SOI layer. -
FIG. 29 is a cross-sectional view of an embodiment of the present invention that includes a high voltage MOSFET disposed in the SOI layer, the high voltage MOSFET having a low doped channel region. - A 3-D IC in accordance with the present invention is shown in
FIG. 2 . Embodiments of the present invention provide a device integration technology. - Reference herein to “one embodiment”, “an embodiment”, or similar formulations, means that a particular feature, structure, operation, or characteristic described in connection with the embodiment, is included in at least one embodiment of the present invention. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, structures, operations, or characteristics may be combined in any suitable manner in one or more embodiments.
- Terminology
- “ASIC” refers to Application Specific Integrated Circuit. “SoC” refers to a System on a Chip, with “SoCs” being the plural of SoC. A SoC may be an ASIC but is not required to be. An ASIC may be a SoC but is not required to be.
- The expression “back bias”, as used herein, refers to a voltage applied to the substrate, or body, of a field effect transistor (FET). Back bias is alternatively referred to as substrate bias, or reverse bias.
- The terms chip, semiconductor device, integrated circuit, LSI device, monolithic integrated circuit, ASIC, SoC, microelectronic device, and similar expressions are sometimes used interchangeably in this field. Microelectronic device may be considered to be the broadest term, encompassing the others. With respect to these microelectronic devices, signals are typically coupled between them and other circuit elements via physical, electrically conductive connections. The point of connection is sometimes referred to as an input, output, terminal, line, pin, pad, port, interface, or similar variants and combinations.
- The term “device”, as used herein, refers to one or more circuit elements that have characteristics that are voltage variant. “Device” includes, but is not limited to, FETs (n-channel and p-channel), diodes, and varactors.
- FET as used herein, refers to metal-oxide-semiconductor field effect transistors (MOSFETs). These transistors are also known as insulated gate field effect transistors (IGFETs). FETs are generally described as three terminal devices having a gate, a source and a drain. Although FETs may be further described as four terminal devices when the body of the FET is considered.
- Source and drain terminals refer to the terminals of a FET, between which conduction occurs under the influence of an electric field, subsequent to the inversion of the semiconductor surface under the influence of an electric field resulting from a voltage applied to the gate terminal.
- The acronym “SOI” generally refers to Silicon-on-Insulator. As will be appreciated by those skilled in this field, SOI layers can be formed in a variety of ways. Unless otherwise noted, “SOI layer” is used herein to refer to a relatively thin, single crystal portion of a semiconductor wafer that can be cleaved and bonded to another previously fabricated wafer, or similar type of substrate, such that a three dimensional stack is formed from the SOI layer and the previously fabricated wafer or similar type of substrate. In this context, the SOI layer may be thought of as an attachment layer, or stackable add-on structure, that itself contains at least devices and/or interconnections, and which is suitable for bonding to a semiconductor substrate already containing devices and/or interconnections. As a stackable add-on layer, the single-crystal layer may have been doped so as to have one or more doped regions vertically adjacent each other. For purposes of this disclosure, doped regions may include intrinsic regions as well as p-type and n-type regions. Individual semiconductor structures may be formed by etching through portions of the doped stack to electrically isolate those structures. The spaces between such individual structures may be filled dielectric material so as to re-form a layer without gaps or voids therein, and thereby provide for mechanical stability, and support for additional stacked layers.
- The expression “3-D IC”, as used herein, refers to a three-dimensional integrated circuit that includes a semiconductor substrate having devices and/or interconnect structures fabricated thereon, and least one SOI layer, also having devices and/or interconnect, where the semiconductor substrate and the SOI layer are stacked and bonded to each other.
- The disclosures of U.S. Pat. No. 6,600,173, U.S. Pat. No. 5,563,084, and U.S. Pat. No. 6,355,501, show the formation of 3-D ICs as a packing technology that includes stacking individually working ICs. However, embodiments of the present invention do not use individually working ICs, but rather, as shown in
FIG. 2 , provide device integration technology using bonded SOI technology and a thin singlecrystalline semiconductor layer 124 without device formation before layer transfer. Because singlecrystalline semiconductor layer 124 is formed by SOI technology, it is referred to herein simply as an SOI. - The meaning of thin film including
semiconductor layer 104 inFIG. 3 is thin film single crystalline semiconductor layer including diffusion layer such as p-type, n-type, or i(intrinsic)-type, and physically distinguishable layers, such as dielectric layer or metal layer. Also the meaning of ‘non-multiple-device formed’semiconductor layer 124 ofFIG. 4 b is that SOIthin layer 124 does not have isolation structures, metal patterns, interconnection used for multiple devices, nor separated impurity regions used for individual devices. - As shown in
FIG. 2 ,devices isolation 135 and have floating structures in the filleddielectric materials 133. As used herein,devices substrate 143, where an electrically common region is located. Additionally, embodiments of the present invention do not have the physically supporting layer which can be found in a conventional SOI IC substrate where all devices in one IC layer are supported by a substrate under a bottom oxide. In an illustrative embodiment of the present invention, a second IC layer that includesFLD FLD IC layer 102, and a first IC layer that includesFLD 113 is calledFLD IC layer 101. Inter-layer dielectric (ILD) layers disposed above and belowFLD IC layer 101 hasinterconnection lines 132 and vias, or contacts, 131.Interconnection lines 132 and vias 131 connect FLDs directly or indirectly within an FLD IC layer, or connect devices from a FLD IC layer to another FLD IC layer or to abase substrate 103. - As shown in
FIG. 2 , the substrate bonded to lowerdielectric layer 151 is calledbase substrate 103, the first FLD IC layer abovebase substrate 103 is calledfirst FLD layer 101, and the next FLD IC layer is called secondFLD IC layer 102. -
FIG. 2 shows multiple FLD IC layers 101,102 and onebase semiconductor substrate 103. Dashedline 134 denotes a border, or interface, of two ILD layers.First ILD layer 151 has interconnection lines and vias, andbase semiconductor substrate 103 shares these interconnections and vias with firstFLD IC layer 101. Some vias may directly connect to secondFLD IC layer 102 fromfirst ILD layer 151. Also interconnection lines and vias insecond ILD layer 152 are shared by first and second FLD IC layers 101, 102. This sharing scheme of interconnection lines and vias is an advantage of embodiments of the present invention. - Still referring to
FIG. 2 , the formation of electrodes to floatingdevices device intermediate electrodes 123. These electrodes could be connected to interconnection lines within the ILD layers disposed on the top and/or bottom of the FLD layer. - In
FIG. 2 , if a logic IC is implemented inbase semiconductor substrate 103, memory devices are implemented in firstFLD IC layer 101, and image sensors are in secondFLD IC layer 102, then one semiconductor substrate could integrate different types of individually optimized devices without using a difficult and expensive SoC structure or semiconductor processing. -
FIG. 3 shows a 3-D IC structure having FLD IC layer without an attached base substrate. In one method of obtaining the structure ofFIG. 3 , first,ILD layer 153 is placed on the top of base substrate, and thenSOI layer 124 is formed on theILD layer 153, and then devices are implemented usingSOI layer 124, and then anotherILD layer 154 includinginterconnection lines 132 and vias 131 is placed on top of the singlecrystalline semiconductor devices 104, and then the base substrate is detached fromILD layer 153. The base substrate (not shown) could be a flat substrate with even surface, such as plastic, ceramic, glass, metal, or semiconductor materials. The base substrate should be able to withstand processing temperatures in the range of 250° C.˜650° C., which range is considered to be a “non-high temperature semiconductor processing temperature”. - Still referring to the
FIG. 3 , embodiments of the present invention may have pads which are connected to a package (not shown) disposed at the bottom offirst ILD layer 153 and/or at the top ofsecond ILD layer 154.Bottom pads 146 could be connected to a package using, for example, solder.Top pads 145 could be connected to a package using, for example, wires. Such pad structures in accordance with the present invention reduce die area and the density of a package. - Various embodiments of the present invention do not require a physically supporting substrate for floating devices. Also, without a base substrate, various embodiments could exist along with interconnection lines, vias, and FLDs only.
- Various embodiments of the present invention provide floating devices that are separated by dielectric isolation regions. These electrically separated structures do not have the parasitic devices which are typically found in prior art approaches.
- Various embodiments of the present invention provide floating devices that may be connected directly or indirectly.
- In various embodiments of the present invention, combining the SOI layer with a semiconductor substrate does require the same type of wafer alignment structures as are used in photolithographic processes, rather, the wafer alignment structure may be implemented as a wafer alignment mark, or as a bump-type alignment structure. Alternatively, without a wafer alignment structure, the SOI layer could be transferred along with a simple notch alignment because the transferred SOI layer does not have structures for multiple devices, such as isolation structure or interconnection lines, which are horizontally divided. The transferred SOI layer has only vertically divided several layers.
- Various embodiments of the present invention provide for interconnection of floating device both above and below the FLD.
- Conventional technology typically uses horizontally oriented MOSFETs. In the case of conventional vertical MOSFETs, implementation of contacts and interconnection is difficult, and processes are incompatible between vertical and horizontal MOSFETs. However, embodiments of the present invention can easily implement vertical devices, including MOSFETs, and compared to conventional approaches, it is easy to implement interconnections and contacts with low contact resistance.
- In order to implement logic devices in a conventional manner, individual devices need to be connected. However, in some embodiments of the present invention, FLD logic can be formed using vertically connected individual devices without interconnection lines because embodiments of the present invention include a form of SOI device, and a well is not needed.
- In various embodiments of the present invention, a FLD can have directly contacted metal electrodes at top, bottom, and intermediate regions. The area of metal electrodes can be the same as the top and bottom size of single crystalline semiconductor of FLD, which is formed by isolation etching. Therefore, voltage drop of the device could be reduced.
-
FIGS. 4 a-d explain a process flow for making a 3-D IC such as the one shown inFIG. 3 . InFIG. 4 a, after formation of a mask alignment mark (not shown) onsubstrate 180, single ormultiple ILD layers 133 are formed indielectric layer 153, andinterconnection lines 132 and vias 131 which are conducting materials are formed. At here, borderline of eachILD layer 133, which comprisedielectric layer 153, are shown as dashedlines 134.Base substrate 180 should withstand semiconductor processing temperatures in the range of 250° C.˜650° C. The conductors are formed of low electrical resistance material which conducts voltage/current and could be metals such as aluminum and copper, refractory metal, silicide, or low resistance polycrystalline/amorphous semiconductor materials with heavy doping. Oncevias 131 connected to FLD directly or indirectly are formed indielectric layer 153, metal layer which is to be used asbottom electrode 121 of FLD is deposited and, if necessary, another metal layer which is anintermediate bonding layer 120 could be implemented. The metal used forintermediate bonding layer 120 typically has a lower meting point than the metal layer ondielectric layer 153.Metal 120 is required to have desirable reflow properties at low temperature for surface planarization in order to prevent voids due to surface microroughness atSOI substrate 190 bonding process. If interconnection lines 132 indielectric layer 153 are aluminum, the metal ofintermediate bonding layer 120 needs to have melting point in the range of 250° C.˜650° C., which is below the melting point of aluminum, 660° C. Here is the list and melting points of metals which could be intermediate bonding layer;aluminum alloy 204° C.˜674° C., zinc 420° C., zinc alloy 377° C.-484° C., lead 328° C., thallium 304° C., tellurium 445° C., solder 268° C.-579° C., and tin alloy 223° C.-422° C.). -
FIG. 4 b shows anSOI substrate 190. To implement FLD, doped layers are formed in singlecrystal semiconductor layer 124, where the doped layers may be formed by any suitable method including, but not limited to, ion implantation, or impurity mixing during epitaxial layer growth for singlecrystalline semiconductor layer 124 formation.Metal layer 121 is formed on singlecrystalline semiconductor layer 124, andintermediate bonding layer 120 is formed onmetal layer 121.SOI substrate 190 is a single crystal semiconductor substrate, and a material for FLD singlecrystal semiconductor layer 124.SOI substrate 190 could be single source semiconductors, such as silicon and germanium, or compound semiconductors, such as SiGe, GaAs, GaP, and InP. AlsoSOI substrate 190 could be combination of single source semiconductors and compound semiconductors. Before bonding, it is better for the SOI substrate to have an intermediate bonding layer which has high reflow rate with a low temperature melting point in order to remove surface roughness. -
SOI substrate 190 may have a detachlayer 191, which may be a porous or strained layer at a certain desired depth using, for example, SmartCut (U.S. Pat. No. 5,882,987), ELTRAN (U.S. Pat. No. 5,371,037), or SiGen technologies. Detachlayer 191 is a defective region in the semiconductor lattice and, after bonding withdielectric layer 153,SOI substrate 190 will be removed except forsingle crystal layer 124 which forms the FLD. -
FIG. 4 c is a cross sectional view of the bonding ofdielectric layer 153 ofFIG. 4 a and SOI substrate ofFIG. 4 b.SOI substrate 190 shown inFIG. 4 b is upside-down and bonded ondielectric layer 153 inFIG. 4 a. During the bonding process, pressure is applied with heat treatment in order to increase bonding strength and remove voids between bonding interfaces. Alternatively, eutectic bonding with gold, or thermocompression bonding with a soft metal thin film could be used as the intermediate layer bonding process.Metal layer 121 includingintermediate bonding layer 120 used in bonding process may be used as the bottom electrode of the FLD. - Referring to
FIG. 4 d,SOI substrate 190 has been detached after leavingSOI layer 124, where FLD is implemented, ondielectric layer 153, and thenisolation structures 135 are implemented over all or part of the FLD layer.SOI substrate 190 is detached using detachlayer 191 and a wafer jet may be used for SOI substrate detachment. Without detachlayer 191, using a Bond and Etch-Back method (U.S. Pat. No. 5,013,681), leavingSOI layer 124, where the floating devices are implemented. ThisSOI layer 124 may also be referred to as a stackable add-on layer.SOI substrate 190 can be removed by etching or polishing. Also, using a handling substrate,SOI substrate 190 is bonded with the handling substrate,SOI substrate 190 is detached from the handling substrate and leavingSOI layer 124, and then the SOI layer could be transferred to dielectric layer from the handling substrate. The handling substrate could be the same kind of substrate used for the base substrate. Also, the handling substrate may use vacuum to hold the single crystalline semiconductor layer temporarily from the SOI substrate, and then transferring the SOI layer to dielectric layer could be easily done by releasing vacuum. The vacuum surface better has thick dielectric layer which protects SOI layer. The role of the handling substrate is to transfer an SOI layer from the SOI substrate to the dielectric layer without damage. Also, as explained in U.S. Pat. No. 6,355,501, the SOI substrate and the handling substrate could be bonded using polyamide. Once the SOI substrate has been detached, Chemical-Mechanical Polishing (CMP) could be used to reduce surface roughness of the transferred SOI layer. - Once single crystalline semiconductor layer (i.e., SOI layer) has been transferred, isolation is implemented to make individual floating devices. For isolation formation, trench technology is used. Also at this time, SOI layer on top of scribeline is to be removed because this will facilitate subsequent die saw operations.
Bottom electrode 121 of FLD is automatically implemented during the trench isolation process. A method of formingbottom electrode 121 is explained below in conjunction withFIGS. 7 a-7 c. Once the SOI layer has been transferred, a mask alignment mark is exposed onbase substrate 180 by removing SOI layer over the mask alignment mark, and then, using the exposed mask alignment mark, the FLD pattern on mask and via 131 pattern on dielectric layer can be aligned. Vertical FLD, where current flows in a vertical direction, may have intermediate electrode. Interconnection lines and contacts which connect with top electrode and interconnection lines which may be formed by conventional semiconductor process methods. - Using the method set forth above, multiple FLDs can be stacked and, therefore, IC density can be increased. Various embodiments of the invention, therefore, do not need wafer or chip alignment marks, or micro bumps for wafer alignment when bonding SOI substrate having single crystalline semiconductor layer and dielectric layer having interconnection lines and vias. Various embodiments of the invention can be implemented by mask alignment mark used in conventional photo process. The isolation structure is to be filled by dielectric material and intermediate electrode materials. Formation method of the dielectric and intermediate electrode in the isolation structure is explained in
FIGS. 8 a-8 d. After the process ofFIGS. 4 a-4 d, according to conventional semiconductor process, ILD, interconnection lines, and vias are implemented and the base substrate is detached, then it becomes the structure shown inFIG. 3 . - In
FIG. 4 , n+ layer on the top ofSOI substrate 190 is directly connected tometal layer 121. However, as can be seen inFIG. 5 a, another dielectric 189 could be formed in between the top ofSOI substrate 190 andmetal layer 121, and then transferred todielectric layer 153. In this case,bottom electrode 121 could be used for a gate electrode havinggate dielectric 189. Or, anotherbottom electrode 121 c could be used to connect the bottom electrode of the FLD. - An FLD IC layer could have one or more SOI layers. The FLD IC layer shown in
FIGS. 3 and 5 have a single SOI layer.FIG. 5 b shows multiple SOI layers 124, 128 consisting oneFLD IC layer 105.FLD IC layer 105 shows the structure before formation of FLD. As shown inFIG. 5 b, there are no vias in betweenSOI layer 124 andSOI layer 128. If vias exist between multiple SOI layers, as shown inFIG. 2 , oneFLD IC layer 101 and the otherFLD IC layer 102 are separated and distinguishable. Multiple SOI layers are implemented by adding anotherSOI layer 128 on already transferredSOI layer 124 sequentially. Multiple SOI layers 124, 128 shown inFIG. 5 b havedielectric layer 138 which electrically separates the multiple SOI layers 124, 128. Therefore, multiple SOI layers 124, 128 could have different types of devices which are electrically separated at each SOI layer. For example, one SOI layer could have p-type MOSFET, and the other SOI layer may become memory devices. - FLD could be conventional semiconductor devices. MOSFETs, bipolar transistors, diodes, capacitors, and resistors, images sensors (e.g., Charge-Coupled Devices (CCD) or Active Pixel Sensor (APS)), or MicroElectroMechanical System (MEMS). FLD could be a form of circular pillar (see
FIG. 13 a), rectangular pillar (seeFIG. 13 b), or multi-angle pillar, or cylindrical pillar. If the width of FLD is getting narrow, aspect ratio of the pillar structure increases and could topple or be detached from the bonded dielectric layer. To prevent these phenomenon, FLD could be a trapezoidal format with narrow top width and wide bottom width. - FLDs can be divided into High Temperature (HT) and Low Temperature (LT) devices depending on the temperature used in the manufacturing processing. Similarly, depending on the direction of device operation, FLDs can be divided into Vertical (V) and Horizontal (H) devices, where ‘V’ and ‘H’ mean the ‘Vertical’ and ‘Horizontal’ directions of major device current flow.
- FLD process temperature could be divided into high temperature which is above 800° C. and low temperature which is below 650° C. In this disclosure, we call the devices produced with a high temperature process HT-FLD, and call the devices produced with a low temperature process LT-FLD, or simply FLD, because a benefit in accordance with the present invention is the implementation of a 3-D IC at low process temperatures. HT-FLD can be treated at high temperature for thermal activation of implanted ions and could be vertical or horizontal devices. To implement HT-FLD, the
interconnection lines 132 and vias 131 indielectric layer 153 shown inFIG. 4 should be copper or refractory metals, such as tantalum, molybdenum, or tungsten. Also the base substrate used in HT-FLD should withstand at more than 800° C. - LT-FLD or FLD do not need ion implantation, heat treatment, and photo process for ion implantation because the impurity layer required for device operation has been formed in SOI substrate before the transfer to dielectric layer. If high temperature is required during the FLD process, characteristics of the devices existing on other layer could be altered. Device process control along early prediction of the alteration is very difficult. Therefore, embodiments of the invention could be implemented on top of base semiconductor substrate having devices without process change. An advantage of the present invention is that a low cost process is obtained because ion implantation and photo process are not required. Also, because various embodiments of the invention do not require a high temperature process, refractory metal, aluminum, and aluminum which has low melting point and is widely used in semiconductor could be used. Also LT-FLD could use metal gate and high-k dielectric materials more easily than conventional manufacturing processes.
- A typical form of LT-FLD is VFLD (Vertical FLD) because vertical impurity junctions are formed in SOI substrate already and it is easy to implement a bottom electrode. However, at low temperature, HFLD (Horizontal FLD) can be implemented without ion implantation. HFLD could be a form of MESFET, MOSFET, diode, or horizontal bipolar transistor. As shown in
FIG. 6 a, once part of SOI layer has been etched using PR (Photoresist) orhard mask 171, thenFIG. 6 is formed.FIG. 6 b shows MESFET-type HFLD with metal gate forming Schottky diode. Orbottom electrode 121 could be used as a gate electrode.FIG. 6 b is aFLD 113 inFIG. 2 . Ifgate 172 has dielectric layer underneath it, the FLD becomes a MOSFET. Ifgate 172 inFIG. 6 b has an ohmic contact and the n-type region is switched to p-type region, then it becomes a horizontal bipolar transistor. From the horizontal bipolar transistor, if the n+ region is anode and p-type region is cathode, then it becomes a horizontal diode. Also without gate, the FLD could be a resistor using only the n-type region. - VFLD (or LT-VFLD) could be a form of MESFET, MOSFET, diode, capacitor, resistor, bipolar, thyristor, or, instead of single device, could be a form of vertical connections of different types of FLD devices to implement circuitry. Combining optimized horizontal devices in the base semiconductor substrate and optimized VFLD, SoC could be optimized in performance and in price.
- Unlike
vertical device 212 at prior art shown inFIG. 1 , it is easy to implement electrodes, contacts, and formation and connection of interconnection lines in VFLD. In this disclosure, ‘electrode’ means electrical part which is directly connected to devices or a gate with gate dialectic material. ‘Contact’ means connection part between electrode and interconnection line, which is usually a form of vertical shape. The vertical devices in U.S. Pat. No. 5,414,288, U.S. Pat. No. 6,027,975, U.S. Pat. No. 6,337,247, and U.S. Pat. No. 6,449,186 should have horizontally extended doping region which is used for source/drain and providing space for contact formation. Therefore, in prior arts, the extended source/drain region increases resistance and parasitic capacitors. As shown inFIG. 2 , the electrodes are formed at top 122 andbottom 121 ofFLD 111. In case of VFLD,intermediate electrode 123 could be connected to interconnection lines at the top or bottom of the FLD. Further, the intermediate electrode could be used for local interconnection. This very flexible interconnection scheme for a 3-D IC is not possible in conventional approaches to forming 3-D ICs. - The bottom of FLD is connected to
metal layer 121 which is also directly connected tovias 131 in theILD layer 151. Therefore, bottom of FLD already has pre-formed electrode and contact. To connectbottom electrode 121 ofFLD 111 and via 131 in thedielectric layer 151, they need to be aligned. The alignment scheme used in this technology is to be done by conventional photo alignment mark (not shown). However, the photo process has misalignment margin andbottom electrode 121 and via 131 should be aligned within the alignment margin. In general, in order to connect interconnection lines at different level of ILD layers through via 131, as shown inFIG. 2 , the width of interconnection lines are needed to be wider than the size of via 131. Photo process with photo mask and etch process are needed for formation ofinterconnection lines 132 andvias 131. - Referring to
FIGS. 7 a and 7 b, the formation ofbottom electrode 121 used for alignment betweenbottom portion 124z of FLD and via 131 uses a self-aligning technology and therefore does not require a photo mask type of process. Part of the metal layer used in the SOI substrate bonding process is to be extension of bottom part of FLD and other part of the metal layer becomes abottom electrode 121. As shown in FIG. 7 a, usingetching mask 173, the portion oflayers FIG. 7 b shows spacer type etching mask which enablesbottom electrode 121 to be wider than via 131. The width ofbottom electrode 121 can be, for example, more than twice the FLD height if the etching mask is deposited taller than FLD and etched by, for example, a dry etching process. The width ofbottom electrode 121 can be controlled by the thickness of a hard mask, the FLD height, the FLD width, and the etching amount ofspacer 182. If the width of the FLD is bigger than a photo process margin, thenwider bottom electrode 121 is not required. - Referring to
FIGS. 8 a-8 d, an intermediate electrode in accordance with the present invention can be implemented as follows. First, there is a planar intermediate electrode, or planar electrode, method. After electrode material deposition and a CMP operation for planarization, dry etching is performed to provide aplanar electrode 123 shown inFIG. 8 a. Patterning ofplanar electrode 123 can be done before or after the dry etching process. The deposited electrode material is usually thicker than the height of VFLD. Also, at this point in the process, anetch stop layer 122 may be needed on top of the FLD to prevent damage onSOI layer 124.Etch stop 122 is typically a combination of multiple oxide, nitride, or metal layers. InFIG. 8 a, adielectric material 133 a is deposited, planarized, and dry etched in a manner similar to the formation ofplanar electrode 123.Dielectric material 133 a reduces parasitic capacitance betweenbottom electrode 121 andplanar electrode 123. - Second is the
method using spacer 123 as shown inFIG. 8 b. If the width of spacer intermediate electrode or spacer electrode is wide, it is easy to obtain electrical contact with the spacer electrode. However, it is difficult to achieve high density. If the width is narrow, it is difficult to obtain electrical contact with the spacer electrode. The spacer method doest not require photo or CMP processes. - Third method is spacer method using a dummy FLD (i.e., an FLD which does not work as a device). As shown in
FIG. 8 c, adummy FLD 124 a is located close to FLD and increases the width of the spacer used forintermediate electrode 123. Becausecontact 123 a connected tointermediate electrode 123 could be located on the top ofdummy FLD 124 a, the margin for contact formation increases. As shown inFIG. 8 c, the spacing between the FLD anddummy FLD 124 a should be smaller than two times the spacer film thickness. - The fourth method is, as shown in
FIG. 8 d, thin spacer method which extendsintermediate electrode 123 to the top of FLD. After deposition of the intermediate electrode material, covering the area of contact formation on intermediate and etching the rest of the area, we get the structure ofFIG. 8 d. This method is good for thin spacer thickness. To reduce parasitic capacitance between top and intermediate electrodes, a thick dielectric layer may be used on the top electrode. - Intermediate electrode may surround the entire or part of intermediate region of the VFLD. Also, multiple intermediate electrodes could be formed at one FLD.
- After the SOI layer has been transferred from SOI substrate,
electrode material 122 has been deposited on the SOI layer and FLD has been patterned, then top electrode could be implemented as shown inFIG. 7 a. If the size ofcontact 122 a is smaller than the size oftop electrode 122, then conventional semiconductor photo/etch technologies can be used as shown inFIG. 8 d. However, if the FLD width is less than the misalignment margin of the photo process for formation ofcontact 122 a, or the size ofcontact 122 a is greater than the area of FLD, then photo/etch processing forcontact 122 a may cause a short circuit to the intermediate electrode. Therefore, this disclosure describes several structures in accordance with the present invention that increase process error margin for photo/etch during the formation ofcontact 122 a. First thing is to increase thickness of top electrode formation material in order to etching process margin. Second one is to useetch stop layer 184 with planar technology as shown inFIG. 9 a. Third one is to useetch stop layer 184 with spacer technology as shown inFIG. 9 b, where theetch stop layer 184 has slow etching rate compared to thedielectric layer 133 c during thecontact 122 a formation. For example, ifdielectric layer 133 c is oxide film, then etchstop layer 184 could be nitride. - In this disclosure, we annotate VFLD, which is implemented at low temperature and has vertical operation, as follows: MOSFET VMFLD, MESFET VMEFLD, diode VDFLD, resistor VRFLD, capacitor VCFLD, bipolar VBFLD, and Thyristor VTFLD.
- VDFLD could be implemented as vertical p-n or p-i-n junction diodes as shown in
FIG. 10 a. Also,FIG. 10 b shows vertical Schottky diode, which has Schottky junction betweentop electrode 122 andSOI 124. Or, as shown inFIG. 10 c, metalintermediate electrode 123 could be used for 3-D Schottky diode. The VDFLD shown inFIG. 10 c has twice the current driving capability compared to the one inFIG. 10 b, because current follows from anode atintermediate electrode 123 to cathodes at top and bottom electrodes. - There are two types of VCFLDs. One is MOS capacitor type or depletion capacitor, which uses a depletion region formed in the single crystalline semiconductor; and the other one, or dielectric capacitor, stores charge at dielectric interface without a depletion region. If the doping concentration of the semiconductor is low, then, depletion exists in semiconductor region. If doping concentration is high, then, it becomes dielectric capacitor, VCFLD without depletion. VCFLDs are shown in
FIGS. 11 a and 11 b. In FIG. 11 a, there are gate dielectric which surrounds n-type single crystalline semiconductor and an electrode which connects the n-type semiconductor. Because, in general, the total capacitance is proportional to the electrode area, the surroundinggate 123 b increases total capacitance of VCFLD. Without the gate dielectric layer, the metal gate forming the Schottky diode could be used as a capacitor with reverse bias. - If the semiconductor has a pillar structure, the capacitance of VCFLD increases due to the increased semiconductor and gate interface area. Also, as shown in
FIG. 11 b,gates contact 121 a inFIG. 11 b connects gate of the stacked capacitor andbottom electrode 121. - Bipolar type VBFLD is shown in
FIG. 12 . The impurity regions, which consist ofcollector base 124 b, andemitter 124 a, have been implemented at SOI substrate and then transferred. Electrodes, which consistemitter 124 a andcollector 124 d, are formed atbottom 121 and top 122, andbase 124b electrode 123 is formed in middle of the FLD. Even thoughemitter 124 a could be located at top or bottom of VBFLD, emitter is at the bottom of VBFLD in the illustrative embodiment. In this case, the emitter is implemented at top of the SOI substrate before the singlecrystalline semiconductor 124 a-124 d has been transferred. Therefore, accurate junction control is enabled whenemitter 124 a andbase 124 b regions are formed. Also, SiGe heterojunction base is possible and polycrystalline semiconductor can be used as part of emitter region. In addition, because theemitter 124 a is located at the bottom of VBFLD, emitter could be away from thickness variation during planar process after the SOI layer transfer process. If handling substrate is used for SOI layer transfer, then emitter is located at top of the FLD. - In accordance with the present invention, to obtain low collector series resistance, the VBFLD does not need a buried layer and heavily doped collector region which connects the collector contact and the buried layer. Various embodiments of the present invention provide lower collector series resistance compared to conventional approaches. Also, base series resistance can be low without a heavily doped extrinsic base region because the surrounding
base electrode 123 formed in the middle of VBFLD has a wide contact surface at the base region. Further, the VBFLD does not have parasitic capacitors which prevent high speed operation. In addition, because the VBFLD does not have a substrate, base-collector-substrate parasitic bipolar transistor does not exist in embodiments of the present invention. Whereas conventional implementations need deep and shallow trench isolations, VBFLD only needs oneisolation structure 135. InFIG. 11 , if the baseintermediate electrode 123 is extended from base region to collector region, then the lowdoped collector region 124 c forms a Schottky diode with the base electrode which enables high speed operation of the VBFLD. - MOSFET-type VMFLD are shown in
FIGS. 8 a-8 d andFIGS. 9 a-9 b. The vertical MOSFET could have high integration density at small space and the channel length is not limited by photo and etching process limit. Also, the VMFLD could have high driving current because channel width could be increased easily with surrounding gate compared to prior arts which have the same channel length. - However, vertical MOSFET in prior arts are not used often because of many disadvantages. Vertical transistors at U.S. Pat. No. 5,414,288 and U.S. Pat. No. 6,027,975 are formed by epitaxial growth at exposed single crystalline region. Because this technology requires difficult manufacturing technologies and high temperature operation for epitaxial growth, it is not good for low temperature semiconductor processing.
- Pillar type SGT Surrounding Gate Transistor, shown in U.S. Pat. No. 6,337,247 and U.S. Pat. No. 6,449,186, is difficult to co-exist with optimized horizontal devices and may cause shadow effect during ion implantation due to pillar type transistor. Also, SGT does not have high integration density because it has problems with forming electrodes at source/drain and gate regions. Therefore, these approaches are not suitable for SoC formation.
- The VMFLD has a directly connected bottom electrode which decreases voltage drop, and current reduction by parasitic resistance. Also VMFLD could be easily full or partial depletion mode with control of FLD width, where the depletion mode could be also controlled by operation voltage and gate dielectric constant. Because the detached surface from the SOI substrate becomes heavily doped source/drain region, even though there are small surface defects, unlike prior arts of horizontal device, there is little effect to gate oxide quality, device operation, and yield.
- The VMFLD may have gradient impurity distribution in the channel region and electric field could be formed in the channel region due to the graded impurity, where the induced electric field accelerates current flow and graded impurity may reduce Short Channel Effect (SEC). The graded impurity can be formed easily by ion implantation or epitaxial process. Increased impurity concentration in the channel region from source to drain side makes asymmetric operation. In addition, LDD (Lightly Doped Drain) could be selectively formed at drain side only. It is difficult to implement the graded channel in horizontal MOSFET in the prior arts, because of difficulties in high tilt ion implantation and device layout.
- MOSFET-type VFLD, or VMFLD, has a gate dielectric layer which is implemented at below 650° C. as shown in U.S. Pat. No. 5,330,935 and U.S. Pat. No. 5,443,863. The dielectric layer could be thermal oxide, deposited oxide, oxynitride, or combination of oxide and nitride, such as ONO and NO (Nitride Oxide). Any suitable dielectric material could be used except high temperature processing films requiring more than 650° C. Another advantage of embodiments of the present invention is that it is easy to use high dielectric constant (high-k) materials in the gate dielectric layer, such as, but not limited to, Al2O3, ZrO2, HfO2, Y2O3, La2O3, Ta2O5, TiO2, and BST. In conventional manufacturing of MOSFETs, a high temperature heat activation operation is required after the source/drain ion implantation. At this time, the properties of high-k materials can be altered. However, the VMFLD process does not need a high temperature process, and so high-k materials could be used at stable condition. Also, if ALD (Atomic Layer Deposition) is used to provide the gate dielectric layer, then a substantially uniform layer can be obtained.
- In accordance with the present invention, threshold voltage could be controlled by changing gate dielectric thickness and/or width of FLD. If different gate dielectric thickness is used or different dielectric constant materials are used at VMFLD, then multiple operational voltage and threshold voltage could be implemented at the same SOI layer and it is useful for SoC. Also, because the VMFLD is produced at low temperature, and a surrounding gate is used, it is easy to use a metal gate compared to prior art manufacturing approaches.
- In the prior art, for digital application, a MOSFET is in either an “Off” or an “On” state depending on voltage or current status. VMFLD shown in
FIG. 13 a could be a multi-Level (ML) VMFLD which has multiple status values with multiple gates sharing one source/drain. Current driving capability of VMFLD is proportional to the gate area. Therefore, simply multiple gates with same gate size could be used for gradual increase of current. Or, multiple gates with same gate size of a VMFLD could be used for ML-VMFLD.FIG. 13 b shows a ML-VMFLD which has two “W” size gates and two “3 W” size gates, where “W” is a constant number and “3 W” means triple the value of “W”. Using combination of these 4 different gates, ML-VMFLD could have 9 different current values from “0” to “8”. If the same size gates are used for ML-VMFLD, eight gates are required for nine different values as shown inFIG. 13 a. ML-FLD could be used for memory or digital logic device applications. Intermediate electrodes for multi-level could be used for bipolar transistor as base electrodes. - A 3-D IC including FLDs may have not only single device form, such as MOSFET or bipolar transistor, but also multiple devices formed in a single FLD.
FIG. 14 shows a single inverter type VFLD. The p-MOSFET and n-MOSFET which make up the inverter do not require different wells, and therefore this inverter has a high integration density. Contact 123 f, which connects gates of p-MOSFET and n-MOSFET together, becomes input of the inverter. Drains of p-MOSFET and n-MOSFET are connected to together and connected to electrode 123 g and contact 123 h. InFIG. 14 , p+-p-p+ type p-MOSFET is a depletion mode MOSFET. Or the p-MOSFET could be a p+-n-p+ type and in this case n-region needs reference voltage. As shown inFIG. 14 , the contact, which penetrates the dielectric layer used for FLD isolation structure, could be connected to interconnection lines above or below FLD layer. - In addition to the FLD inverter shown in
FIG. 14 , which uses only one SOI layer, a FLD inverter could be implemented using two SOI layers as shown inFIG. 5 b; one SOI layer has n-MOSFET and the other SOI layer has p-MOSFET, - In accordance with the present invention, memory devices could be implemented using multiple FLDs.
- Using two invertors and two pass transistors on base semiconductor substrate, 6 transistor SRAM cell be implemented as shown in
FIG. 15 b. The two invertors are VFLD and two transistors, which have word line and bit line, are on the base semiconductor substrate.FIGS. 15 a and 15 b show interconnection lines of top and bottom contacts, respectively. Two FLD invertors are latched with connecting inputs to outputs of each invertors. Counter parts of oneVFLD inverter contacts - There are many ways to implement SRAM cells in accordance with the present invention. A first way is by using four n-MOSFET on a base semiconductor substrate and two p-MOSFET type FLDs. A second way is by disposing two p-MOSFET on the base semiconductor substrate and four n-MOSFET type FLDs. A third way is by disposing two p-MOSFET type FLDs on a SOI layer and four n-MOSFET type FLDs on another SOI layer. A fourth way is by using four transistor SRAM cell using either four n-MOSFET type FLDs or four n-MOSFET on the base semiconductor substrate, and resistors could be either formed on FLD layer or polycrystalline semiconductor resistors.
- A prior art SRAM cell using a Thyristor has a complicated structure which has a vertical Thyristor and a horizontal MOSFET on same semiconductor substrate. Therefore, this SRAM has process incompatibility with other devices and it is not good for SoC applications.
FIG. 16 a shows a VTFLD SRAM cell having agate 123 j in accordance the present invention.Intermediate electrode gate 123 j is used forword line 2 and the top electrode is connected to reference voltage. The VTFLD is connected tohorizontal access transistor 161 c on base semiconductor substrate, therefore, each device can be optimized, and high density is provided for SoC applications. The gate of the access transistor is used for word line 1 (WL1).FIG. 16 b shows another structure of SRAM cell shown inFIG. 16 a, which vertically connects theaccess transistor 161 c and Thyristor and eventually forms a VFLD SRAM cell. TheThyristor gate 123 j andaccess transistor gate 123 i are all intermediate electrodes. VTFLD inFIG. 16 a could be the same SRAM cells shown in U.S. Pat. No. 6,225,165B and U.S. Pat. No. 6,172,899. A Dynamic Random Access Memory (DRAM) cell in accordance with the present invention has one transistor and one capacitor, where the transistor could be on the base semiconductor substrate or could be a VMFLD on an FLD IC layer, and the floating source of the transistor is connected to a VCFLD on another FLD IC layer. VCFLDs are shown inFIGS. 11 a-11 b. Or, from the multiple SOI layers consisting one FLD IC layer, one SOI layer having a transistor and the other SOI layer having a capacitor are connected to form a DRAM structure. Another VFLD DRAM structure has serial connection of a transistor and a capacitor in a SOI layer.FIG. 17 a shows a DRAM structure having a MOSFET and a depletion capacitor in serial connection. The top electrode is connected to bit line and intermediate electrode is connected to word line. InFIG. 17 a, depletion region, which is formed in between the floatingn+ source 124 e and p-region connected to bottom electrode, has wider width than the transistor, where the wider semiconductor region could be implemented using spacer technology without additional photo process as shown inFIGS. 7 a-7 c.FIG. 17 b shows that a MOSFET having floating source and a dielectric capacitor are connected in parallel, where the floating source p-region is connected to reference voltage (not shown). InFIG. 17 b,bottom electrode 121 is connected to bit line and intermediate electrode is connected to word line. - A nonvolatile FLD memory structure in accordance with present invention is shown in
FIGS. 18 a-18 f.FIG. 18 a has two gates, where one floating gate surrounds a p-type channel region withgate dielectric layer 183 b andcontrol gate 123 connecting to bias surrounds floatinggate 123 k with anothergate dielectric layer 183 c.FIG. 18 b shows a split gate nonvolatile memory, where floatinggate 123 k surrounds part of p-type channel region, and the rest of channel region and the floatinggate 123 k are surrounded bycontrol gate 123.FIG. 18 c has three gates: a floatinggate 123 k, acontrol gate 123, and an erasegate 323 which is designed to erase data.FIG. 18 d shows a nonvolatile memory VFLD without a floating gate which has an ONOgate dielectric layer 183, where information can be stored atdifferent locations 30 depending on current flow.FIG. 18 e shows a flash memory FLD structure withbulk contact 122 c on p-type bulk region 124. VMFLD could have a bulk contact without gate dielectric layer on one side and gate contact with gate dielectric layer on the other side. - One of advantages of embodiments of the present invention is that nonvolatile memory could be a ML-VMFLD which stores multi bit information in a FLD. As shown in
FIG. 18 f, an FLD having one source/drain has eight separated gates, and then one FLD has eight multi-bit memory cell.FIG. 18 f has abulk contact 122 c and rest contacts are connected to source/drain at SOI layer which is forming FLD. InFIG. 18 e, dashed line “756” shows the borderline of an exposed FLD bulk region from the top FLD.Rest contacts 122 a onSOI region 124 are connected to source/drain. If the nonvolatile memories inFIGS. 18 a-18 c, source and drain have different doping concentration, multi bit nonvolatile memory could be achieved depending on device operation similar to ETOX. - In one embodiment of the present invention, FLD memory devices may have redundancy on the same or different FLD IC layers.
- One embodiment of the present invention may have block regions in a FLD IC layer as shown in
FIGS. 19 a-19 b, where each block has different type of FLDs.FIGS. 19 a and 19 b are top views of an FLD IC, and each chip 441 is distinguished by a scribeline. For example, one FLD IC layer has four blocks 413 a-413 d, where a first block has a programmable FPGA, a second block has a flash memory, a third block has bipolar devices, and a fourth block may have an SRAM. Each block may require different impurity junctions for different device types, where the impurity junctions should be formed before SOI layer transfer processing in case of LT-FLD. The block FLD formation needs wafer alignment marks at SOI substrate and base substrate. In this case, it is better to have Overlay Error Compensation Area (OECA) 412 considering wafer misalignment, where the OECA may have a few microns to hundreds micron distance. -
FIG. 20 a shows anonvolatile memory cell 700 with a capacitor using aferroelectric film 710, and a VFLD connected in series to the capacitor. The nonvolatile memory usingferroelectric film 700 is called an FRAM (Ferroelectric Random Access Memory). Conventional ferroelectrics are (PbZr)TiO3 (referred to as PZT), SrBi2Ta2O9 (referred to as SBT), and YMnO3. If an electric field is applied to such a ferroelectric, then the ferroelectric has a polarization characteristic. InFIG. 20 a,FRAM cell 700 has serially connected a ferroelectric capacitor and a VMFLD.Gate 123 of VMFLD is Word Line (WL) and the drain is Bit Line (BL), and the source is connected to the ferroelectric capacitor and theother electrode 122 a is connected to Drive Line (DL or Plate Line). -
FIG. 20 b shows an equivalent circuit ofFRAM memory cell 700, where logic devices forsense amp 770 are generally implemented on base substrate andFRAM cell 700 including VMFLD is implemented in SOI layer. -
FIG. 20 c shows one memory bit using two FRAM cells shown inFIG. 20 a, where logic devices forsense amp 770 are generally implemented onbase substrate 103 andFRAM cell 700 including VMFLD is implemented in SOI layer. -
FIG. 21 a shows anonvolatile memory cell 730 with a capacitor usingferroelectric film 710 and a VFLD connected in parallel to the capacitor. The parallel connection FRAM operates at higher speed and has lower power consumption compared to a serially connected FRAM cell. Oneintermediate electrode 123 is the WL. The otherintermediate electrode 123 a has an applied reference voltage and keeps constant current status for parallel connecting the ferroelectric capacitor and VFLD. -
FIG. 21 b is an equivalent circuit ofFRAM cell 730.FRAM cells 730 are chained to form a byte. - A capacitor using
ferroelectric film 710 is located at the top of the VFLD inFIGS. 20 a and 21 a. However, the capacitor usingferroelectric film 710 could be located at the bottom of the VFLD. Also the VFLD could be a MOSFET, bipolar, or other type of transistor. -
FIGS. 22 a and 22 b shownonvolatile VMFLDs 750 which haveferroelectric film 710 as part of VMFLD structure. InFIG. 22 a, a FRAM hasferroelectric film 710 located in between agate dielectric layer 183 andgate electrode 123. This is called a Metal Ferroelectric Insulator Silicon (MFIS).Gate dielectric layer 183 is a typical MOSFET gate dielectric layer and can be formed of silicon dioxide or oxynitride. If there is nogate dielectric layer 183 inFIG. 22 a andferroelectric film 710 is used as a gate dielectric layer, then it becomes a MFS (Metal Ferroelectric Silicon) type FRAM. - In
FIG. 22 b,ferroelectric film 710 is used in between floatinggate 123 k andcontrol gate 123 of a VMFLD and it forms MFMIS Metal Ferroelectric Metal Insulator Silicon)type FRAM 760 FLD. -
Ferroelectric film 710 used in the illustrative embodiments ofFIGS. 20-22 should be implemented at below 660° C. for low temperature FLD. -
FIG. 23 a shows a nonvolatile MRAM Magnetoresistive Random Access Memory, 800 cell structure using VMFLD and serially connected MJT Magnetic Tunnel Junction Stack, 810. InFIG. 23 a,MJT 810 is located formed belowILD 133 andFLD 124. -
FIG. 23 b also shows anMRAM cell 850 usingMJT 810.MJT 810 is located formed aboveFLD 124. -
MJT 810 has property of variable electric resistance depending on applied magnetic field, where the electric resistance changes depending on polarization ofMJT 810.MJT 810 consists of multiple thin film layers. In general, one magnetic file is free layer which is polarized by applied magnetic field. The other magnetic film is pinned layer and, in general, used along with exchange layer which is anti-ferromagnetic layer. The pinned layer is polarized by applied magnetic field. Therefore, the film stack is called a Magnetic Tunnel Junction Stack (MJT). The MJT is not limited to a structure which has two magnetic films and a dielectric film. The MJT could have combinations of different thin layers. The MJT could be classified to two types by the stacked layers; one is Giant Magnetroresistance (GMR) using non-magnetic material, and the other one is Tunneling Magnetroresistance (TMR) using dielectric layer, such as oxide layer. The VFLD shown inFIGS. 23 a and 23 b could be MOSFET, bipolar, or MESFET. -
FIG. 24 shows an Ovonic Unified Memory (OUM) 900 cell structure using a Reversible Structural Phase-Change Film (RSPCF) 910 and a serially connected VFLD. InFIG. 24 ,RSPCF 910 is implemented after formation ofFLD 124 and placed aboveFLD 124. OrRSPCF 910 could be implemented before formation ofFLD 124 and placed below FLD 124 (not shown).RSPCF 910 could have amorphous or polycrystalline phases depending on the amount of current and time, in other words, the temperature applied to RSPCF, where polycrystalline has lower electric resistance. -
RSPCF 910 could be Chalcogenides and alloy in VI element of Periodic Table. Therefore,RSPCF 910 could be alloy of Ge—Sb—Te, GaSb, InSb, InSe, Sb2Te3, GeTe, Ge2Sb2Te5, InSbTe, GaSeTe, SbSb2Te4, InSbGe, AgInSbTe, (GeSn)SbTe, GeSb(SeTe), or Te81Ge15Sb2S2. Electrode 910 a connected toRSPCF 910 could be TiAlN or TiW, which is stable at 650° C. The VFLD shown inFIG. 24 could be MOSFET, bipolar, or MESFET. -
FIG. 25 shows a Programmable Read-Only Memory (PROM) 300 cell structure using fuse or antifuse) layer 310 and a serially connected VFLD. InFIG. 25 , the fuse (or antifuse) layer 310 is formed aboveFLD 124 after the FLD formation. Or, the fuse (or antifuse) layer 310 is formed belowFLD 124 before the FLD formation. Antifuse layer 310 has high electric resistance. However, it could get low electric resistance if programming high voltage/current is applied to the antifuse layer. The PROM is not reprogrammable in general. - The PROM can be used for in an Application-Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), or a Programmable Logic Array (PLA).
- The antifuse layer may be formed from an ONO layer, a metallic oxide layer, a chalcogenide layer, or an undoped amorphous silicon layer, but is not limited to these materials. The fuse layer may be formed from nichrome or polycrystalline silicon, but is not limited to these materials.
Electrodes - In
FIG. 25 , the VFLD may be a MOSFET, a bipolar transistor, a MESFET, or a diode. -
FIG. 26 shows aDRAM 400 cell having only aVMFLD 124.VMFLD 124 using SOI layer has floating body p-region, as shown inFIG. 26 , without applied bias, and charges could be accumulated in the floating body for a short time (i.e. refresh time). The charge becomes readable and writable data. -
FIG. 27 a shows an Electrically Erasable Programmable Read-Only Memory (EEPROM) 500 cell which has a VMFLD and a serially connected nonvolatile VMFLD memory. The nonvolatile memory has dual gates which are a floating gate and a control gate. However, it could be a Silicon Oxide Nitride Oxide Silicon (SONOS) type nonvolatile memory. InFIG. 27 a, the MOSFET consisting select line is located above the nonvolatile memory. However, the location of these devices could be reversed. -
FIG. 27 b shows an equivalent circuit of the one EEPROM cell. -
FIG. 28 ispower VMFLD 600 which is operating at high voltage. Compared to conventional low power VMFLD, the power VMFLD could have from few micrometer to few hundred micrometer range SOI layer thickness and gate dielectric layer thickness may have from tenth of nanometer to few thousands nanometer range. Operation voltage could be from 7 volts to 1000 volts range. Also the FLD may have a trapezoidal shape which help extension of depletion region and reduction of electric field, and therefore increasing operation voltage. -
Power VMFLD 600 has many advantages over horizontal MOSFET. Conventional horizontal MOSFET needs to have long channel length in order to increase operation voltage. However, it causes high cost due to low integration density. However, channel length ofpower VMFLD 600 dose not change integration density because channel length is determined by vertical height of the SOI layer. Also, because the power VMFLD has surrounding gate, it has low on resistance and its current driving capability is more than twice of conventional horizontal MOSFET. Therefore, the power VMFLD ofFIG. 28 may replace other conventional power devices, such as Lateral Double-Diffused MOS (LDMOS) and Trench MOS. Also, combining low voltage devices in the base substrate and power VMFLD into one chip, we could achieve SmartPower or SmartMOS chips that handle analog and digital signals in a chip. - If the power VMFLD in
FIG. 28 has a double-diffused drain, then it becomes the device shown inFIG. 29 . The double-diffused region prevents the expansion of a depletion region to the heavily doped drain region and helps device operate at high voltage. - In
FIGS. 28 and 29 , if the gate dielectric layer has a combination of “low temperature thermal oxide, high-k dielectric, and CVD dielectric, then device reliability increases, and the interface trap in betweensemiconductor 124 andgate dielectric layer 183 decreases. Also, current driving capability increases and on-resistance decreases. - Conclusion
- It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the subjoined Claims.
Claims (28)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/378,059 US20060275962A1 (en) | 2003-06-24 | 2006-03-17 | Three-dimensional integrated circuit structure and method of making same |
US11/606,523 US7888764B2 (en) | 2003-06-24 | 2006-11-30 | Three-dimensional integrated circuit structure |
US12/040,642 US7800199B2 (en) | 2003-06-24 | 2008-02-29 | Semiconductor circuit |
US12/397,309 US7863748B2 (en) | 2003-06-24 | 2009-03-03 | Semiconductor circuit and method of fabricating the same |
US12/470,344 US8058142B2 (en) | 1996-11-04 | 2009-05-21 | Bonded semiconductor structure and method of making the same |
US12/475,294 US7799675B2 (en) | 2003-06-24 | 2009-05-29 | Bonded semiconductor structure and method of fabricating the same |
US12/581,722 US8471263B2 (en) | 2003-06-24 | 2009-10-19 | Information storage system which includes a bonded semiconductor structure |
US12/618,542 US7867822B2 (en) | 2003-06-24 | 2009-11-13 | Semiconductor memory device |
US12/637,559 US20100133695A1 (en) | 2003-01-12 | 2009-12-14 | Electronic circuit with embedded memory |
US12/731,087 US20100190334A1 (en) | 2003-06-24 | 2010-03-24 | Three-dimensional semiconductor structure and method of manufacturing the same |
US12/874,866 US8071438B2 (en) | 2003-06-24 | 2010-09-02 | Semiconductor circuit |
US12/881,628 US20110001172A1 (en) | 2005-03-29 | 2010-09-14 | Three-dimensional integrated circuit structure |
US12/881,961 US8367524B2 (en) | 2005-03-29 | 2010-09-14 | Three-dimensional integrated circuit structure |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20030040920 | 2003-06-24 | ||
KR10-2003-0040920 | 2003-06-24 | ||
KR1020030047515A KR100904771B1 (en) | 2003-06-24 | 2003-07-12 | 3-Dimensional Integrated Circuit Structure and Method of Making the Same |
KR10-2003-0047515 | 2003-07-12 | ||
US10/873,969 US7052941B2 (en) | 2003-06-24 | 2004-06-21 | Method for making a three-dimensional integrated circuit structure |
WOPCT/US04/20122 | 2004-06-23 | ||
PCT/US2004/020122 WO2005010934A2 (en) | 2003-06-24 | 2004-06-23 | Three-dimensional integrated circuit structure and method of making same |
US11/378,059 US20060275962A1 (en) | 2003-06-24 | 2006-03-17 | Three-dimensional integrated circuit structure and method of making same |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/873,969 Division US7052941B2 (en) | 1996-11-04 | 2004-06-21 | Method for making a three-dimensional integrated circuit structure |
US11/180,286 Continuation-In-Part US8779597B2 (en) | 1996-11-04 | 2005-07-12 | Semiconductor device with base support structure |
US11/606,523 Continuation-In-Part US7888764B2 (en) | 1996-11-04 | 2006-11-30 | Three-dimensional integrated circuit structure |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/180,286 Continuation-In-Part US8779597B2 (en) | 1996-11-04 | 2005-07-12 | Semiconductor device with base support structure |
US11/606,523 Continuation-In-Part US7888764B2 (en) | 1996-11-04 | 2006-11-30 | Three-dimensional integrated circuit structure |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060275962A1 true US20060275962A1 (en) | 2006-12-07 |
Family
ID=33543620
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/873,969 Expired - Fee Related US7052941B2 (en) | 1996-11-04 | 2004-06-21 | Method for making a three-dimensional integrated circuit structure |
US11/378,059 Abandoned US20060275962A1 (en) | 1996-11-04 | 2006-03-17 | Three-dimensional integrated circuit structure and method of making same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/873,969 Expired - Fee Related US7052941B2 (en) | 1996-11-04 | 2004-06-21 | Method for making a three-dimensional integrated circuit structure |
Country Status (4)
Country | Link |
---|---|
US (2) | US7052941B2 (en) |
EP (1) | EP1636831B1 (en) |
JP (1) | JP5202842B2 (en) |
WO (1) | WO2005010934A2 (en) |
Cited By (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050280154A1 (en) * | 2004-06-21 | 2005-12-22 | Sang-Yun Lee | Semiconductor memory device |
US20060237725A1 (en) * | 2005-04-20 | 2006-10-26 | Samsung Electronics Co., Ltd. | Semiconductor devices having thin film transistors and methods of fabricating the same |
US20060278895A1 (en) * | 2005-06-14 | 2006-12-14 | International Business Machines Corporation | Reprogrammable fuse structure and method |
US20080078998A1 (en) * | 2006-09-28 | 2008-04-03 | Sanyo Electric Co., Ltd. | Semiconductor device |
US20080185595A1 (en) * | 2007-02-06 | 2008-08-07 | Samsung Electro-Mechanics Co., Ltd. | Light emitting device for alternating current source |
US20090020800A1 (en) * | 2007-07-18 | 2009-01-22 | Georg Tempel | Semiconductor Device and Method of Making Same |
DE102007052219A1 (en) * | 2007-08-20 | 2009-02-26 | Northern Lights Semiconductor Corp., Saint Paul | Integrated circuit chip with magnetic devices |
US20090057746A1 (en) * | 2007-09-05 | 2009-03-05 | Renesas Technology Corp. | Semiconductor device |
US20090109582A1 (en) * | 2007-10-30 | 2009-04-30 | Jack Michael D | Method of protecting circuits using integrated array fuse elements and process for fabrication |
US20090176354A1 (en) * | 2008-01-07 | 2009-07-09 | International Business Machines Corporation | Method for fabrication of single crystal diodes for resistive memories |
US20090267233A1 (en) * | 1996-11-04 | 2009-10-29 | Sang-Yun Lee | Bonded semiconductor structure and method of making the same |
US20100079639A1 (en) * | 2008-09-30 | 2010-04-01 | Joon Hwang | Image Sensor and Method for Manufacturing the Same |
US20100155803A1 (en) * | 2008-12-18 | 2010-06-24 | Micron Technology, Inc. | Method and structure for integrating capacitor-less memory cell with logic |
CN101834152A (en) * | 2010-04-20 | 2010-09-15 | 中国科学院上海微系统与信息技术研究所 | Method for manufacturing three-dimensionally stacked resistance conversion memory |
US20110068400A1 (en) * | 2009-09-18 | 2011-03-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and Apparatus for SRAM Bit Cell with Low Standby Current, Low Supply Voltage and High Speed |
US20110068413A1 (en) * | 2009-09-18 | 2011-03-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Embedded SRAM Memory for Low Power Applications |
US7936583B2 (en) | 2008-10-30 | 2011-05-03 | Seagate Technology Llc | Variable resistive memory punchthrough access method |
US7935619B2 (en) | 2008-11-07 | 2011-05-03 | Seagate Technology Llc | Polarity dependent switch for resistive sense memory |
US7936580B2 (en) | 2008-10-20 | 2011-05-03 | Seagate Technology Llc | MRAM diode array and access method |
US7968876B2 (en) | 2009-05-22 | 2011-06-28 | Macronix International Co., Ltd. | Phase change memory cell having vertical channel access transistor |
US7974119B2 (en) | 2008-07-10 | 2011-07-05 | Seagate Technology Llc | Transmission gate-based spin-transfer torque memory unit |
US8071438B2 (en) | 2003-06-24 | 2011-12-06 | Besang Inc. | Semiconductor circuit |
US20120012896A1 (en) * | 2005-05-16 | 2012-01-19 | Ramnath Venkatraman | Integrated Circuit Cell Architecture Configurable for Memory or Logic Elements |
WO2012015550A2 (en) | 2010-07-30 | 2012-02-02 | Monolithic 3D, Inc. | Semiconductor device and structure |
US8115258B2 (en) | 2009-04-07 | 2012-02-14 | Samsung Electronics Co., Ltd. | Memory devices having diodes and resistors electrically connected in series |
US8114757B1 (en) * | 2010-10-11 | 2012-02-14 | Monolithic 3D Inc. | Semiconductor device and structure |
US20120088355A1 (en) * | 2010-10-11 | 2012-04-12 | Monolithic 3D Inc. | Semiconductor device and structure |
US8158964B2 (en) | 2009-07-13 | 2012-04-17 | Seagate Technology Llc | Schottky diode switch and memory units containing the same |
US8159856B2 (en) | 2009-07-07 | 2012-04-17 | Seagate Technology Llc | Bipolar select device for resistive sense memory |
US8163581B1 (en) | 2010-10-13 | 2012-04-24 | Monolith IC 3D | Semiconductor and optoelectronic devices |
US8178864B2 (en) | 2008-11-18 | 2012-05-15 | Seagate Technology Llc | Asymmetric barrier diode |
US8183126B2 (en) | 2009-07-13 | 2012-05-22 | Seagate Technology Llc | Patterning embedded control lines for vertically stacked semiconductor elements |
US8203869B2 (en) | 2008-12-02 | 2012-06-19 | Seagate Technology Llc | Bit line charge accumulation sensing for resistive changing memory |
US20120196409A1 (en) * | 2009-04-14 | 2012-08-02 | Zvi Or-Bach | 3d semiconductor device |
US8237228B2 (en) | 2009-10-12 | 2012-08-07 | Monolithic 3D Inc. | System comprising a semiconductor device and structure |
US8258810B2 (en) | 2010-09-30 | 2012-09-04 | Monolithic 3D Inc. | 3D semiconductor device |
US8273610B2 (en) | 2010-11-18 | 2012-09-25 | Monolithic 3D Inc. | Method of constructing a semiconductor device and structure |
US8283215B2 (en) | 2010-10-13 | 2012-10-09 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US8294159B2 (en) | 2009-10-12 | 2012-10-23 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8298875B1 (en) | 2011-03-06 | 2012-10-30 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8350316B2 (en) | 2009-05-22 | 2013-01-08 | Macronix International Co., Ltd. | Phase change memory cells having vertical channel access transistor and memory plane |
US8362800B2 (en) | 2010-10-13 | 2013-01-29 | Monolithic 3D Inc. | 3D semiconductor device including field repairable logics |
US8362482B2 (en) | 2009-04-14 | 2013-01-29 | Monolithic 3D Inc. | Semiconductor device and structure |
US8367524B2 (en) | 2005-03-29 | 2013-02-05 | Sang-Yun Lee | Three-dimensional integrated circuit structure |
US8373230B1 (en) | 2010-10-13 | 2013-02-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8373439B2 (en) | 2009-04-14 | 2013-02-12 | Monolithic 3D Inc. | 3D semiconductor device |
US8378494B2 (en) | 2009-04-14 | 2013-02-19 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8378715B2 (en) | 2009-04-14 | 2013-02-19 | Monolithic 3D Inc. | Method to construct systems |
US8379458B1 (en) | 2010-10-13 | 2013-02-19 | Monolithic 3D Inc. | Semiconductor device and structure |
US8384426B2 (en) | 2009-04-14 | 2013-02-26 | Monolithic 3D Inc. | Semiconductor device and structure |
US8405420B2 (en) | 2009-04-14 | 2013-03-26 | Monolithic 3D Inc. | System comprising a semiconductor device and structure |
US8450804B2 (en) | 2011-03-06 | 2013-05-28 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US8461035B1 (en) * | 2010-09-30 | 2013-06-11 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8476145B2 (en) | 2010-10-13 | 2013-07-02 | Monolithic 3D Inc. | Method of fabricating a semiconductor device and structure |
US8492886B2 (en) | 2010-02-16 | 2013-07-23 | Monolithic 3D Inc | 3D integrated circuit with logic |
US8536023B2 (en) | 2010-11-22 | 2013-09-17 | Monolithic 3D Inc. | Method of manufacturing a semiconductor device and structure |
US8541819B1 (en) | 2010-12-09 | 2013-09-24 | Monolithic 3D Inc. | Semiconductor device and structure |
US8557632B1 (en) | 2012-04-09 | 2013-10-15 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8574929B1 (en) | 2012-11-16 | 2013-11-05 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US8581349B1 (en) | 2011-05-02 | 2013-11-12 | Monolithic 3D Inc. | 3D memory semiconductor device and structure |
TWI418027B (en) * | 2008-11-28 | 2013-12-01 | Powerchip Technology Corp | Phase-change memory devices and methods for fabricating the same |
US8617952B2 (en) | 2010-09-28 | 2013-12-31 | Seagate Technology Llc | Vertical transistor with hardening implatation |
US8642416B2 (en) | 2010-07-30 | 2014-02-04 | Monolithic 3D Inc. | Method of forming three dimensional integrated circuit devices using layer transfer technique |
US8648426B2 (en) | 2010-12-17 | 2014-02-11 | Seagate Technology Llc | Tunneling transistors |
US8669778B1 (en) | 2009-04-14 | 2014-03-11 | Monolithic 3D Inc. | Method for design and manufacturing of a 3D semiconductor device |
US8674470B1 (en) | 2012-12-22 | 2014-03-18 | Monolithic 3D Inc. | Semiconductor device and structure |
US8687399B2 (en) | 2011-10-02 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US8686428B1 (en) | 2012-11-16 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US8709880B2 (en) | 2010-07-30 | 2014-04-29 | Monolithic 3D Inc | Method for fabrication of a semiconductor device and structure |
US8742476B1 (en) | 2012-11-27 | 2014-06-03 | Monolithic 3D Inc. | Semiconductor device and structure |
US8754533B2 (en) | 2009-04-14 | 2014-06-17 | Monolithic 3D Inc. | Monolithic three-dimensional semiconductor device and structure |
US8803206B1 (en) | 2012-12-29 | 2014-08-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US8837204B2 (en) | 2009-02-15 | 2014-09-16 | NDEP Technologies Ltd. | Four-transistor and five-transistor BJT-CMOS asymmetric SRAM cells |
US8901613B2 (en) | 2011-03-06 | 2014-12-02 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US8902663B1 (en) | 2013-03-11 | 2014-12-02 | Monolithic 3D Inc. | Method of maintaining a memory state |
US8937868B2 (en) | 2011-07-18 | 2015-01-20 | Samsung Electronics Co., Ltd. | Method for and apparatus for feeding back channel information in wireless communication system |
US8975670B2 (en) | 2011-03-06 | 2015-03-10 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US8994404B1 (en) | 2013-03-12 | 2015-03-31 | Monolithic 3D Inc. | Semiconductor device and structure |
US9000557B2 (en) | 2012-03-17 | 2015-04-07 | Zvi Or-Bach | Semiconductor device and structure |
US9012292B2 (en) | 2010-07-02 | 2015-04-21 | Sang-Yun Lee | Semiconductor memory device and method of fabricating the same |
US9030867B2 (en) | 2008-10-20 | 2015-05-12 | Seagate Technology Llc | Bipolar CMOS select device for resistive sense memory |
US9029173B2 (en) | 2011-10-18 | 2015-05-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US9099526B2 (en) | 2010-02-16 | 2015-08-04 | Monolithic 3D Inc. | Integrated circuit device and structure |
US9099424B1 (en) | 2012-08-10 | 2015-08-04 | Monolithic 3D Inc. | Semiconductor system, device and structure with heat removal |
US9117749B1 (en) | 2013-03-15 | 2015-08-25 | Monolithic 3D Inc. | Semiconductor device and structure |
US9153588B2 (en) | 2012-02-02 | 2015-10-06 | Renesas Electronics Corporation | Semiconductor device and a method for manufacturing a semiconductor device |
US9197804B1 (en) | 2011-10-14 | 2015-11-24 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US9219005B2 (en) | 2011-06-28 | 2015-12-22 | Monolithic 3D Inc. | Semiconductor system and device |
US20160104676A1 (en) * | 2014-10-08 | 2016-04-14 | Nxp B.V. | Metallisation for semiconductor device |
US20160118404A1 (en) * | 2014-10-09 | 2016-04-28 | Haibing Peng | Three-dimensional non-volatile ferroelectric random access memory |
US9368403B2 (en) | 2012-02-02 | 2016-06-14 | Renesas Electronics Corporation | Method for manufacturing a semiconductor device |
US9509313B2 (en) | 2009-04-14 | 2016-11-29 | Monolithic 3D Inc. | 3D semiconductor device |
US9577642B2 (en) | 2009-04-14 | 2017-02-21 | Monolithic 3D Inc. | Method to form a 3D semiconductor device |
CN106463406A (en) * | 2014-06-16 | 2017-02-22 | 英特尔公司 | Embedded memory in interconnect stack on silicon die |
US9589979B2 (en) * | 2014-11-19 | 2017-03-07 | Macronix International Co., Ltd. | Vertical and 3D memory devices and methods of manufacturing the same |
US9711407B2 (en) | 2009-04-14 | 2017-07-18 | Monolithic 3D Inc. | Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer |
US9871034B1 (en) | 2012-12-29 | 2018-01-16 | Monolithic 3D Inc. | Semiconductor device and structure |
US9953925B2 (en) | 2011-06-28 | 2018-04-24 | Monolithic 3D Inc. | Semiconductor system and device |
US10043781B2 (en) | 2009-10-12 | 2018-08-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10115663B2 (en) | 2012-12-29 | 2018-10-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10127344B2 (en) | 2013-04-15 | 2018-11-13 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US10157909B2 (en) | 2009-10-12 | 2018-12-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
CN109155311A (en) * | 2016-08-31 | 2019-01-04 | 美光科技公司 | memory cell and memory array |
US10217667B2 (en) | 2011-06-28 | 2019-02-26 | Monolithic 3D Inc. | 3D semiconductor device, fabrication method and system |
US10224279B2 (en) | 2013-03-15 | 2019-03-05 | Monolithic 3D Inc. | Semiconductor device and structure |
US10290682B2 (en) | 2010-10-11 | 2019-05-14 | Monolithic 3D Inc. | 3D IC semiconductor device and structure with stacked memory |
US10297586B2 (en) | 2015-03-09 | 2019-05-21 | Monolithic 3D Inc. | Methods for processing a 3D semiconductor device |
US10325651B2 (en) | 2013-03-11 | 2019-06-18 | Monolithic 3D Inc. | 3D semiconductor device with stacked memory |
WO2019133484A1 (en) * | 2017-12-28 | 2019-07-04 | Spin Memory, Inc. | Methods of forming perpendicular magnetic tunnel junction memory cells having vertical channels |
US10354995B2 (en) | 2009-10-12 | 2019-07-16 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US10366970B2 (en) | 2009-10-12 | 2019-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10381328B2 (en) | 2015-04-19 | 2019-08-13 | Monolithic 3D Inc. | Semiconductor device and structure |
US10388568B2 (en) | 2011-06-28 | 2019-08-20 | Monolithic 3D Inc. | 3D semiconductor device and system |
US10388863B2 (en) | 2009-10-12 | 2019-08-20 | Monolithic 3D Inc. | 3D memory device and structure |
US10418369B2 (en) | 2015-10-24 | 2019-09-17 | Monolithic 3D Inc. | Multi-level semiconductor memory device and structure |
US10460778B2 (en) | 2017-12-29 | 2019-10-29 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction memory cells having shared source contacts |
US10497713B2 (en) | 2010-11-18 | 2019-12-03 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US10515981B2 (en) | 2015-09-21 | 2019-12-24 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with memory |
US10522225B1 (en) | 2015-10-02 | 2019-12-31 | Monolithic 3D Inc. | Semiconductor device with non-volatile memory |
US10600888B2 (en) | 2012-04-09 | 2020-03-24 | Monolithic 3D Inc. | 3D semiconductor device |
US10600657B2 (en) | 2012-12-29 | 2020-03-24 | Monolithic 3D Inc | 3D semiconductor device and structure |
US10651054B2 (en) | 2012-12-29 | 2020-05-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10658425B2 (en) | 2017-12-28 | 2020-05-19 | Spin Memory, Inc. | Methods of forming perpendicular magnetic tunnel junction memory cells having vertical channels |
US10679977B2 (en) | 2010-10-13 | 2020-06-09 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US10825779B2 (en) | 2015-04-19 | 2020-11-03 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10833108B2 (en) | 2010-10-13 | 2020-11-10 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US10840239B2 (en) | 2014-08-26 | 2020-11-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10840254B2 (en) | 2018-05-22 | 2020-11-17 | Macronix International Co., Ltd. | Pitch scalable 3D NAND |
US10847540B2 (en) | 2015-10-24 | 2020-11-24 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US10892169B2 (en) | 2012-12-29 | 2021-01-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10892016B1 (en) | 2019-04-08 | 2021-01-12 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US10896931B1 (en) | 2010-10-11 | 2021-01-19 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10896979B2 (en) * | 2017-09-28 | 2021-01-19 | International Business Machines Corporation | Compact vertical injection punch through floating gate analog memory and a manufacture thereof |
US10903089B1 (en) | 2012-12-29 | 2021-01-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10910364B2 (en) | 2009-10-12 | 2021-02-02 | Monolitaic 3D Inc. | 3D semiconductor device |
US10943934B2 (en) | 2010-10-13 | 2021-03-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US10971447B2 (en) * | 2019-06-24 | 2021-04-06 | International Business Machines Corporation | BEOL electrical fuse |
US10978501B1 (en) | 2010-10-13 | 2021-04-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US10998374B1 (en) | 2010-10-13 | 2021-05-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11004694B1 (en) | 2012-12-29 | 2021-05-11 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11004719B1 (en) | 2010-11-18 | 2021-05-11 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11011507B1 (en) | 2015-04-19 | 2021-05-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11018116B2 (en) | 2012-12-22 | 2021-05-25 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11018156B2 (en) | 2019-04-08 | 2021-05-25 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11018191B1 (en) | 2010-10-11 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11018042B1 (en) | 2010-11-18 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11018133B2 (en) | 2009-10-12 | 2021-05-25 | Monolithic 3D Inc. | 3D integrated circuit |
US11024673B1 (en) | 2010-10-11 | 2021-06-01 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11031275B2 (en) | 2010-11-18 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11031394B1 (en) | 2014-01-28 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11030371B2 (en) | 2013-04-15 | 2021-06-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11043523B1 (en) | 2010-10-13 | 2021-06-22 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11056468B1 (en) | 2015-04-19 | 2021-07-06 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11063071B1 (en) | 2010-10-13 | 2021-07-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US11063024B1 (en) | 2012-12-22 | 2021-07-13 | Monlithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11087995B1 (en) | 2012-12-29 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11088130B2 (en) | 2014-01-28 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11088050B2 (en) | 2012-04-09 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers |
US11094576B1 (en) | 2010-11-18 | 2021-08-17 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11107808B1 (en) | 2014-01-28 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11107721B2 (en) | 2010-11-18 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with NAND logic |
US11114427B2 (en) | 2015-11-07 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor processor and memory device and structure |
US11114464B2 (en) | 2015-10-24 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11121021B2 (en) | 2010-11-18 | 2021-09-14 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11133344B2 (en) | 2010-10-13 | 2021-09-28 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11158652B1 (en) | 2019-04-08 | 2021-10-26 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11158674B2 (en) | 2010-10-11 | 2021-10-26 | Monolithic 3D Inc. | Method to produce a 3D semiconductor device and structure |
US11163112B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US11164811B2 (en) | 2012-04-09 | 2021-11-02 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers and oxide-to-oxide bonding |
US11164898B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11164770B1 (en) | 2010-11-18 | 2021-11-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US11177140B2 (en) | 2012-12-29 | 2021-11-16 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11211279B2 (en) | 2010-11-18 | 2021-12-28 | Monolithic 3D Inc. | Method for processing a 3D integrated circuit and structure |
US11217565B2 (en) | 2012-12-22 | 2022-01-04 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11222970B2 (en) | 2017-12-28 | 2022-01-11 | Integrated Silicon Solution, (Cayman) Inc. | Perpendicular magnetic tunnel junction memory cells having vertical channels |
US11227897B2 (en) | 2010-10-11 | 2022-01-18 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US11251149B2 (en) | 2016-10-10 | 2022-02-15 | Monolithic 3D Inc. | 3D memory device and structure |
US11257867B1 (en) | 2010-10-11 | 2022-02-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with oxide bonds |
US11270055B1 (en) | 2013-04-15 | 2022-03-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11296115B1 (en) | 2015-10-24 | 2022-04-05 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11296106B2 (en) | 2019-04-08 | 2022-04-05 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11309292B2 (en) | 2012-12-22 | 2022-04-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11315980B1 (en) | 2010-10-11 | 2022-04-26 | Monolithic 3D Inc. | 3D semiconductor device and structure with transistors |
US11329059B1 (en) | 2016-10-10 | 2022-05-10 | Monolithic 3D Inc. | 3D memory devices and structures with thinned single crystal substrates |
US11327227B2 (en) | 2010-10-13 | 2022-05-10 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US11341309B1 (en) | 2013-04-15 | 2022-05-24 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11355380B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | Methods for producing 3D semiconductor memory device and structure utilizing alignment marks |
US11355381B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11374118B2 (en) | 2009-10-12 | 2022-06-28 | Monolithic 3D Inc. | Method to form a 3D integrated circuit |
US11398569B2 (en) | 2013-03-12 | 2022-07-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11404466B2 (en) | 2010-10-13 | 2022-08-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11410912B2 (en) | 2012-04-09 | 2022-08-09 | Monolithic 3D Inc. | 3D semiconductor device with vias and isolation layers |
US11430667B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11430668B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11437368B2 (en) | 2010-10-13 | 2022-09-06 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11443971B2 (en) | 2010-11-18 | 2022-09-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11469271B2 (en) | 2010-10-11 | 2022-10-11 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US11476181B1 (en) | 2012-04-09 | 2022-10-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11482440B2 (en) | 2010-12-16 | 2022-10-25 | Monolithic 3D Inc. | 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits |
US11482439B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors |
US11482438B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11487928B2 (en) | 2013-04-15 | 2022-11-01 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11495484B2 (en) | 2010-11-18 | 2022-11-08 | Monolithic 3D Inc. | 3D semiconductor devices and structures with at least two single-crystal layers |
US11508605B2 (en) | 2010-11-18 | 2022-11-22 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11521888B2 (en) | 2010-11-18 | 2022-12-06 | Monolithic 3D Inc. | 3D semiconductor device and structure with high-k metal gate transistors |
US11569117B2 (en) | 2010-11-18 | 2023-01-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11574109B1 (en) | 2013-04-15 | 2023-02-07 | Monolithic 3D Inc | Automation methods for 3D integrated circuits and devices |
US11594473B2 (en) | 2012-04-09 | 2023-02-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11600667B1 (en) | 2010-10-11 | 2023-03-07 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US11605663B2 (en) | 2010-10-13 | 2023-03-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11610802B2 (en) | 2010-11-18 | 2023-03-21 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes |
US11616004B1 (en) | 2012-04-09 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11615977B2 (en) | 2010-11-18 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11694944B1 (en) | 2012-04-09 | 2023-07-04 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11694922B2 (en) | 2010-10-13 | 2023-07-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11711928B2 (en) | 2016-10-10 | 2023-07-25 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11720736B2 (en) | 2013-04-15 | 2023-08-08 | Monolithic 3D Inc. | Automation methods for 3D integrated circuits and devices |
US11735501B1 (en) | 2012-04-09 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11735462B2 (en) | 2010-11-18 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11763864B2 (en) | 2019-04-08 | 2023-09-19 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures with bit-line pillars |
US11784082B2 (en) | 2010-11-18 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11784169B2 (en) | 2012-12-22 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11804396B2 (en) | 2010-11-18 | 2023-10-31 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11812620B2 (en) | 2016-10-10 | 2023-11-07 | Monolithic 3D Inc. | 3D DRAM memory devices and structures with control circuits |
US11855100B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11855114B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11854857B1 (en) | 2010-11-18 | 2023-12-26 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11862503B2 (en) | 2010-11-18 | 2024-01-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11869965B2 (en) | 2013-03-11 | 2024-01-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US11869591B2 (en) | 2016-10-10 | 2024-01-09 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11869915B2 (en) | 2010-10-13 | 2024-01-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11881443B2 (en) | 2012-04-09 | 2024-01-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11901210B2 (en) | 2010-11-18 | 2024-02-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11916045B2 (en) | 2012-12-22 | 2024-02-27 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11923230B1 (en) | 2010-11-18 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11923374B2 (en) | 2013-03-12 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11929372B2 (en) | 2010-10-13 | 2024-03-12 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11930648B1 (en) | 2016-10-10 | 2024-03-12 | Monolithic 3D Inc. | 3D memory devices and structures with metal layers |
US11935949B1 (en) | 2013-03-11 | 2024-03-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US11937422B2 (en) | 2015-11-07 | 2024-03-19 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11956952B2 (en) | 2015-08-23 | 2024-04-09 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11961827B1 (en) | 2012-12-22 | 2024-04-16 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11968821B2 (en) | 2017-01-12 | 2024-04-23 | Micron Technology, Inc. | Methods used in fabricating integrated circuitry and methods of forming 2T-1C memory cell arrays |
US11967583B2 (en) | 2012-12-22 | 2024-04-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11978731B2 (en) | 2015-09-21 | 2024-05-07 | Monolithic 3D Inc. | Method to produce a multi-level semiconductor memory device and structure |
US11984438B2 (en) | 2010-10-13 | 2024-05-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11984445B2 (en) | 2009-10-12 | 2024-05-14 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US11991884B1 (en) | 2015-10-24 | 2024-05-21 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US12016181B2 (en) | 2015-10-24 | 2024-06-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US12027518B1 (en) | 2009-10-12 | 2024-07-02 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US12033884B2 (en) | 2010-11-18 | 2024-07-09 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US12035531B2 (en) | 2015-10-24 | 2024-07-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US12051674B2 (en) * | 2012-12-22 | 2024-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US12068187B2 (en) | 2010-11-18 | 2024-08-20 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding and DRAM memory cells |
US12080743B2 (en) | 2010-10-13 | 2024-09-03 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US12094892B2 (en) | 2010-10-13 | 2024-09-17 | Monolithic 3D Inc. | 3D micro display device and structure |
US12094829B2 (en) | 2014-01-28 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12094965B2 (en) | 2013-03-11 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US12100658B2 (en) | 2015-09-21 | 2024-09-24 | Monolithic 3D Inc. | Method to produce a 3D multilayer semiconductor device and structure |
US12100646B2 (en) | 2013-03-12 | 2024-09-24 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US12100611B2 (en) | 2010-11-18 | 2024-09-24 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US12120880B1 (en) | 2015-10-24 | 2024-10-15 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US12125737B1 (en) | 2010-11-18 | 2024-10-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US12136562B2 (en) | 2010-11-18 | 2024-11-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US12144190B2 (en) | 2024-05-29 | 2024-11-12 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding and memory cells preliminary class |
Families Citing this family (233)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8779597B2 (en) * | 2004-06-21 | 2014-07-15 | Sang-Yun Lee | Semiconductor device with base support structure |
US7470598B2 (en) * | 2004-06-21 | 2008-12-30 | Sang-Yun Lee | Semiconductor layer structure and method of making the same |
US20050280155A1 (en) * | 2004-06-21 | 2005-12-22 | Sang-Yun Lee | Semiconductor bonding and layer transfer method |
CN101179079B (en) | 2000-08-14 | 2010-11-03 | 矩阵半导体公司 | Rail stack array of charge storage devices and method of making same |
US20060249753A1 (en) * | 2005-05-09 | 2006-11-09 | Matrix Semiconductor, Inc. | High-density nonvolatile memory array fabricated at low temperature comprising semiconductor diodes |
US7632738B2 (en) * | 2003-06-24 | 2009-12-15 | Sang-Yun Lee | Wafer bonding method |
US20100190334A1 (en) * | 2003-06-24 | 2010-07-29 | Sang-Yun Lee | Three-dimensional semiconductor structure and method of manufacturing the same |
US8471263B2 (en) | 2003-06-24 | 2013-06-25 | Sang-Yun Lee | Information storage system which includes a bonded semiconductor structure |
US7473596B2 (en) | 2003-12-19 | 2009-01-06 | Micron Technology, Inc. | Methods of forming memory cells |
US7190616B2 (en) * | 2004-07-19 | 2007-03-13 | Micron Technology, Inc. | In-service reconfigurable DRAM and flash memory device |
US7060592B2 (en) * | 2004-09-15 | 2006-06-13 | United Microelectronics Corp. | Image sensor and fabricating method thereof |
US20060102963A1 (en) * | 2004-11-15 | 2006-05-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | Passive device and method for forming the same |
EP1844501A1 (en) * | 2005-01-25 | 2007-10-17 | Nxp B.V. | Fabrication of a phase-change resistor using a backend process |
US20060177173A1 (en) * | 2005-02-04 | 2006-08-10 | Sioptical, Inc. | Vertical stacking of multiple integrated circuits including SOI-based optical components |
US20060186450A1 (en) * | 2005-02-24 | 2006-08-24 | Texas Instruments Inc. | Integrated high voltage capacitor and a method of manufacture therefor |
US7470991B2 (en) * | 2005-02-24 | 2008-12-30 | Texas Instruments Incorporated | Integrated high voltage capacitor having capacitance uniformity structures and a method of manufacture therefor |
US8455978B2 (en) | 2010-05-27 | 2013-06-04 | Sang-Yun Lee | Semiconductor circuit structure and method of making the same |
US20110001172A1 (en) * | 2005-03-29 | 2011-01-06 | Sang-Yun Lee | Three-dimensional integrated circuit structure |
DE602005023125D1 (en) * | 2005-04-27 | 2010-10-07 | St Microelectronics Srl | Vertical MOSFET transistor operated as a selection transistor for non-volatile memory device |
US7638855B2 (en) | 2005-05-06 | 2009-12-29 | Macronix International Co., Ltd. | Anti-fuse one-time-programmable nonvolatile memory |
US20060273298A1 (en) * | 2005-06-02 | 2006-12-07 | Matrix Semiconductor, Inc. | Rewriteable memory cell comprising a transistor and resistance-switching material in series |
US20060273370A1 (en) * | 2005-06-07 | 2006-12-07 | Micron Technology, Inc. | NROM flash memory with vertical transistors and surrounding gates |
KR101419548B1 (en) * | 2005-06-14 | 2014-07-25 | 쿠퍼 에셋 엘티디. 엘.엘.씨. | Post and penetration interconnection |
US8456015B2 (en) | 2005-06-14 | 2013-06-04 | Cufer Asset Ltd. L.L.C. | Triaxial through-chip connection |
US7989958B2 (en) | 2005-06-14 | 2011-08-02 | Cufer Assett Ltd. L.L.C. | Patterned contact |
US7687400B2 (en) | 2005-06-14 | 2010-03-30 | John Trezza | Side stacking apparatus and method |
US7560813B2 (en) | 2005-06-14 | 2009-07-14 | John Trezza | Chip-based thermo-stack |
US7781886B2 (en) | 2005-06-14 | 2010-08-24 | John Trezza | Electronic chip contact structure |
US7851348B2 (en) | 2005-06-14 | 2010-12-14 | Abhay Misra | Routingless chip architecture |
US7786592B2 (en) | 2005-06-14 | 2010-08-31 | John Trezza | Chip capacitive coupling |
US7767493B2 (en) | 2005-06-14 | 2010-08-03 | John Trezza | Post & penetration interconnection |
US7838997B2 (en) | 2005-06-14 | 2010-11-23 | John Trezza | Remote chip attachment |
US7453755B2 (en) * | 2005-07-01 | 2008-11-18 | Sandisk 3D Llc | Memory cell with high-K antifuse for reverse bias programming |
US7426128B2 (en) * | 2005-07-11 | 2008-09-16 | Sandisk 3D Llc | Switchable resistive memory with opposite polarity write pulses |
US7482615B2 (en) * | 2005-07-21 | 2009-01-27 | International Business Machines Corporation | High performance MOSFET comprising stressed phase change material |
US7776715B2 (en) * | 2005-07-26 | 2010-08-17 | Micron Technology, Inc. | Reverse construction memory cell |
US7579615B2 (en) * | 2005-08-09 | 2009-08-25 | Micron Technology, Inc. | Access transistor for memory device |
US20070034922A1 (en) * | 2005-08-11 | 2007-02-15 | Micron Technology, Inc. | Integrated surround gate multifunctional memory device |
JP2007087548A (en) * | 2005-09-26 | 2007-04-05 | Nec Lcd Technologies Ltd | Memory circuit |
US8513066B2 (en) * | 2005-10-25 | 2013-08-20 | Freescale Semiconductor, Inc. | Method of making an inverted-T channel transistor |
US7494849B2 (en) * | 2005-11-03 | 2009-02-24 | Cswitch Inc. | Methods for fabricating multi-terminal phase change devices |
CN1992173B (en) * | 2005-11-30 | 2010-04-21 | 硅起源股份有限公司 | Method and structure for implanting bonded substrates for electrical conductivity |
US7345899B2 (en) * | 2006-04-07 | 2008-03-18 | Infineon Technologies Ag | Memory having storage locations within a common volume of phase change material |
US7687397B2 (en) | 2006-06-06 | 2010-03-30 | John Trezza | Front-end processed wafer having through-chip connections |
US7781797B2 (en) * | 2006-06-29 | 2010-08-24 | International Business Machines Corporation | One-transistor static random access memory with integrated vertical PNPN device |
KR100791071B1 (en) * | 2006-07-04 | 2008-01-02 | 삼성전자주식회사 | One time programmable device, electronic system including the same and operating method of the same |
DE102006037510B3 (en) * | 2006-08-10 | 2008-04-10 | Infineon Technologies Austria Ag | A method for producing a trench structure, the use of this method for producing a semiconductor device and semiconductor device having a trench structure |
US7582549B2 (en) | 2006-08-25 | 2009-09-01 | Micron Technology, Inc. | Atomic layer deposited barium strontium titanium oxide films |
JP5341327B2 (en) * | 2006-09-28 | 2013-11-13 | セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー | Semiconductor device |
JP5269799B2 (en) * | 2006-10-17 | 2013-08-21 | キューファー アセット リミテッド. エル.エル.シー. | Wafer via formation |
US20080113505A1 (en) * | 2006-11-13 | 2008-05-15 | Sparks Terry G | Method of forming a through-substrate via |
US7593248B2 (en) * | 2006-11-16 | 2009-09-22 | Aptina Imaging Corporation | Method, apparatus and system providing a one-time programmable memory device |
US7875840B2 (en) * | 2006-11-16 | 2011-01-25 | Aptina Imaging Corporation | Imager device with anti-fuse pixels and recessed color filter array |
US8283718B2 (en) * | 2006-12-16 | 2012-10-09 | Spansion Llc | Integrated circuit system with metal and semi-conducting gate |
US7705613B2 (en) * | 2007-01-03 | 2010-04-27 | Abhay Misra | Sensitivity capacitive sensor |
US7803693B2 (en) * | 2007-02-15 | 2010-09-28 | John Trezza | Bowed wafer hybridization compensation |
US7705632B2 (en) * | 2007-02-15 | 2010-04-27 | Wyman Theodore J Ted | Variable off-chip drive |
US7598163B2 (en) * | 2007-02-15 | 2009-10-06 | John Callahan | Post-seed deposition process |
US7670874B2 (en) * | 2007-02-16 | 2010-03-02 | John Trezza | Plated pillar package formation |
JP5114968B2 (en) * | 2007-02-20 | 2013-01-09 | 富士通セミコンダクター株式会社 | Semiconductor device and manufacturing method thereof |
KR100819560B1 (en) * | 2007-03-26 | 2008-04-08 | 삼성전자주식회사 | Phase change memory device and method of fabricating the same |
US7850060B2 (en) * | 2007-04-05 | 2010-12-14 | John Trezza | Heat cycle-able connection |
US7748116B2 (en) * | 2007-04-05 | 2010-07-06 | John Trezza | Mobile binding in an electronic connection |
US7704788B2 (en) * | 2007-04-06 | 2010-04-27 | Samsung Electronics Co., Ltd. | Methods of fabricating multi-bit phase-change memory devices and devices formed thereby |
US20080261392A1 (en) * | 2007-04-23 | 2008-10-23 | John Trezza | Conductive via formation |
US7960210B2 (en) | 2007-04-23 | 2011-06-14 | Cufer Asset Ltd. L.L.C. | Ultra-thin chip packaging |
US7842999B2 (en) * | 2007-05-17 | 2010-11-30 | Elpida Memory, Inc. | Semiconductor memory device and method of manufacturing the same |
US7910986B2 (en) * | 2007-05-31 | 2011-03-22 | Elpida Memory, Inc. | Semiconductor memory device and data processing system |
US7932167B2 (en) * | 2007-06-29 | 2011-04-26 | International Business Machines Corporation | Phase change memory cell with vertical transistor |
JP5298470B2 (en) * | 2007-07-11 | 2013-09-25 | 三菱電機株式会社 | Semiconductor device and method for manufacturing semiconductor device |
US20090026524A1 (en) * | 2007-07-27 | 2009-01-29 | Franz Kreupl | Stacked Circuits |
US20090086521A1 (en) * | 2007-09-28 | 2009-04-02 | Herner S Brad | Multiple antifuse memory cells and methods to form, program, and sense the same |
US8415783B1 (en) | 2007-10-04 | 2013-04-09 | Xilinx, Inc. | Apparatus and methodology for testing stacked die |
US7518398B1 (en) * | 2007-10-04 | 2009-04-14 | Xilinx, Inc. | Integrated circuit with through-die via interface for die stacking |
US8133745B2 (en) * | 2007-10-17 | 2012-03-13 | Magic Technologies, Inc. | Method of magnetic tunneling layer processes for spin-transfer torque MRAM |
US8035126B2 (en) * | 2007-10-29 | 2011-10-11 | International Business Machines Corporation | One-transistor static random access memory with integrated vertical PNPN device |
US8183628B2 (en) | 2007-10-29 | 2012-05-22 | Unisantis Electronics Singapore Pte Ltd. | Semiconductor structure and method of fabricating the semiconductor structure |
KR100855403B1 (en) * | 2007-11-27 | 2008-08-29 | 주식회사 동부하이텍 | Image sensor and method for manufacturing the same |
US8217380B2 (en) * | 2008-01-09 | 2012-07-10 | International Business Machines Corporation | Polysilicon emitter BJT access device for PCRAM |
US8598650B2 (en) * | 2008-01-29 | 2013-12-03 | Unisantis Electronics Singapore Pte Ltd. | Semiconductor device and production method therefor |
US8378425B2 (en) * | 2008-01-29 | 2013-02-19 | Unisantis Electronics Singapore Pte Ltd. | Semiconductor storage device |
JP5317343B2 (en) * | 2009-04-28 | 2013-10-16 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Semiconductor device and manufacturing method thereof |
WO2009095998A1 (en) * | 2008-01-29 | 2009-08-06 | Unisantis Electronics (Japan) Ltd. | Semiconductor storage device |
US7906818B2 (en) * | 2008-03-13 | 2011-03-15 | Micron Technology, Inc. | Memory array with a pair of memory-cell strings to a single conductive pillar |
US7973555B1 (en) | 2008-05-28 | 2011-07-05 | Xilinx, Inc. | Configuration interface to stacked FPGA |
JP4751432B2 (en) * | 2008-09-26 | 2011-08-17 | シャープ株式会社 | Semiconductor memory device |
KR101502585B1 (en) * | 2008-10-09 | 2015-03-24 | 삼성전자주식회사 | Vertical type semiconductor device and forming method of the same |
US8395206B2 (en) | 2008-10-09 | 2013-03-12 | Samsung Electronics Co., Ltd. | Semiconductor device and method of fabricating the same |
US7964916B2 (en) | 2009-04-14 | 2011-06-21 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
JP4487221B1 (en) * | 2009-04-17 | 2010-06-23 | 日本ユニサンティスエレクトロニクス株式会社 | Semiconductor device |
US8208285B2 (en) * | 2009-07-13 | 2012-06-26 | Seagate Technology Llc | Vertical non-volatile switch with punchthrough access and method of fabrication therefor |
US8063654B2 (en) * | 2009-07-17 | 2011-11-22 | Xilinx, Inc. | Apparatus and method for testing of stacked die structure |
JP4987926B2 (en) * | 2009-09-16 | 2012-08-01 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Semiconductor device |
JP5356970B2 (en) * | 2009-10-01 | 2013-12-04 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Semiconductor device |
US9892972B2 (en) * | 2009-10-12 | 2018-02-13 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US8841777B2 (en) * | 2010-01-12 | 2014-09-23 | International Business Machines Corporation | Bonded structure employing metal semiconductor alloy bonding |
KR20200124772A (en) * | 2010-02-05 | 2020-11-03 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device and method for manufacturing semiconductor device |
KR101810261B1 (en) * | 2010-02-10 | 2017-12-18 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Field effect transistor |
US9646869B2 (en) * | 2010-03-02 | 2017-05-09 | Micron Technology, Inc. | Semiconductor devices including a diode structure over a conductive strap and methods of forming such semiconductor devices |
US8507966B2 (en) * | 2010-03-02 | 2013-08-13 | Micron Technology, Inc. | Semiconductor cells, arrays, devices and systems having a buried conductive line and methods for forming the same |
US8513722B2 (en) | 2010-03-02 | 2013-08-20 | Micron Technology, Inc. | Floating body cell structures, devices including same, and methods for forming same |
US8288795B2 (en) | 2010-03-02 | 2012-10-16 | Micron Technology, Inc. | Thyristor based memory cells, devices and systems including the same and methods for forming the same |
US9608119B2 (en) | 2010-03-02 | 2017-03-28 | Micron Technology, Inc. | Semiconductor-metal-on-insulator structures, methods of forming such structures, and semiconductor devices including such structures |
WO2011111662A1 (en) | 2010-03-08 | 2011-09-15 | 日本ユニサンティスエレクトロニクス株式会社 | Solid-state image pickup device |
US8487357B2 (en) | 2010-03-12 | 2013-07-16 | Unisantis Electronics Singapore Pte Ltd. | Solid state imaging device having high sensitivity and high pixel density |
US8723335B2 (en) | 2010-05-20 | 2014-05-13 | Sang-Yun Lee | Semiconductor circuit structure and method of forming the same using a capping layer |
KR101669244B1 (en) | 2010-06-08 | 2016-10-25 | 삼성전자주식회사 | Sram devices and methods for fabricating the same |
JP5066590B2 (en) | 2010-06-09 | 2012-11-07 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Semiconductor device and manufacturing method thereof |
JP5087655B2 (en) | 2010-06-15 | 2012-12-05 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Semiconductor device and manufacturing method thereof |
US8455919B2 (en) * | 2010-07-19 | 2013-06-04 | Micron Technology, Inc. | High density thyristor random access memory device and method |
JP5075959B2 (en) * | 2010-09-14 | 2012-11-21 | 株式会社東芝 | Resistance change memory |
US11217472B2 (en) * | 2010-12-16 | 2022-01-04 | Monolithic 3D Inc. | 3D semiconductor device and structure with multiple isolation layers |
US9613844B2 (en) * | 2010-11-18 | 2017-04-04 | Monolithic 3D Inc. | 3D semiconductor device having two layers of transistors |
US10825864B2 (en) * | 2010-10-11 | 2020-11-03 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11133351B2 (en) * | 2010-10-11 | 2021-09-28 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11335731B1 (en) * | 2010-10-11 | 2022-05-17 | Monolithic 3D Inc. | 3D semiconductor device and structure with transistors |
US8361856B2 (en) | 2010-11-01 | 2013-01-29 | Micron Technology, Inc. | Memory cells, arrays of memory cells, and methods of forming memory cells |
US8329567B2 (en) | 2010-11-03 | 2012-12-11 | Micron Technology, Inc. | Methods of forming doped regions in semiconductor substrates |
US11342214B1 (en) * | 2010-11-18 | 2022-05-24 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
CN102487087B (en) * | 2010-12-01 | 2014-08-13 | 张家港丽恒光微电子科技有限公司 | Thin-film transistor applied to three-dimensional on-chip integration system and manufacturing method of thin film transistor |
JP6000560B2 (en) * | 2011-02-02 | 2016-09-28 | 株式会社半導体エネルギー研究所 | Semiconductor memory device |
US8598621B2 (en) | 2011-02-11 | 2013-12-03 | Micron Technology, Inc. | Memory cells, memory arrays, methods of forming memory cells, and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor |
US8975680B2 (en) | 2011-02-17 | 2015-03-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor memory device and method manufacturing semiconductor memory device |
US8450175B2 (en) | 2011-02-22 | 2013-05-28 | Micron Technology, Inc. | Methods of forming a vertical transistor and at least a conductive line electrically coupled therewith |
US8952418B2 (en) | 2011-03-01 | 2015-02-10 | Micron Technology, Inc. | Gated bipolar junction transistors |
US8519431B2 (en) | 2011-03-08 | 2013-08-27 | Micron Technology, Inc. | Thyristors |
US9673102B2 (en) * | 2011-04-01 | 2017-06-06 | Micron Technology, Inc. | Methods of forming vertical field-effect transistor with self-aligned contacts for memory devices with planar periphery/array and intermediate structures formed thereby |
US8313960B1 (en) * | 2011-05-03 | 2012-11-20 | Avalanche Technology, Inc. | Magnetic tunnel junction (MTJ) formation using multiple etching processes |
US8148174B1 (en) * | 2011-05-03 | 2012-04-03 | Avalanche Technology, Inc. | Magnetic tunnel junction (MTJ) formation with two-step process |
US9673823B2 (en) * | 2011-05-18 | 2017-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of driving semiconductor device |
JP5383744B2 (en) * | 2011-05-24 | 2014-01-08 | 株式会社日立製作所 | Magnetic memory |
EP3534399A1 (en) | 2011-05-24 | 2019-09-04 | Sony Corporation | Semiconductor device |
US8569831B2 (en) | 2011-05-27 | 2013-10-29 | Micron Technology, Inc. | Integrated circuit arrays and semiconductor constructions |
US8772848B2 (en) | 2011-07-26 | 2014-07-08 | Micron Technology, Inc. | Circuit structures, memory circuitry, and methods |
US8609492B2 (en) * | 2011-07-27 | 2013-12-17 | Micron Technology, Inc. | Vertical memory cell |
US8866121B2 (en) | 2011-07-29 | 2014-10-21 | Sandisk 3D Llc | Current-limiting layer and a current-reducing layer in a memory device |
US8659001B2 (en) | 2011-09-01 | 2014-02-25 | Sandisk 3D Llc | Defect gradient to boost nonvolatile memory performance |
US8564034B2 (en) | 2011-09-08 | 2013-10-22 | Unisantis Electronics Singapore Pte. Ltd. | Solid-state imaging device |
JP2013065638A (en) | 2011-09-15 | 2013-04-11 | Elpida Memory Inc | Semiconductor device |
US8669601B2 (en) | 2011-09-15 | 2014-03-11 | Unisantis Electronics Singapore Pte. Ltd. | Method for producing semiconductor device and semiconductor device having pillar-shaped semiconductor |
CN102306655B (en) * | 2011-09-29 | 2013-03-06 | 清华大学 | Three-dimensional storage device array structure and manufacturing method thereof |
US8637413B2 (en) | 2011-12-02 | 2014-01-28 | Sandisk 3D Llc | Nonvolatile resistive memory element with a passivated switching layer |
US8772175B2 (en) | 2011-12-19 | 2014-07-08 | Unisantis Electronics Singapore Pte. Ltd. | Method for manufacturing semiconductor device and semiconductor device |
US8916478B2 (en) | 2011-12-19 | 2014-12-23 | Unisantis Electronics Singapore Pte. Ltd. | Method for manufacturing semiconductor device and semiconductor device |
US8698119B2 (en) | 2012-01-19 | 2014-04-15 | Sandisk 3D Llc | Nonvolatile memory device using a tunnel oxide as a current limiter element |
US8686386B2 (en) | 2012-02-17 | 2014-04-01 | Sandisk 3D Llc | Nonvolatile memory device using a varistor as a current limiter element |
US8748938B2 (en) | 2012-02-20 | 2014-06-10 | Unisantis Electronics Singapore Pte. Ltd. | Solid-state imaging device |
US8754421B2 (en) * | 2012-02-24 | 2014-06-17 | Raytheon Company | Method for processing semiconductors using a combination of electron beam and optical lithography |
US9312257B2 (en) * | 2012-02-29 | 2016-04-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP6100559B2 (en) * | 2012-03-05 | 2017-03-22 | 株式会社半導体エネルギー研究所 | Semiconductor memory device |
US9036391B2 (en) | 2012-03-06 | 2015-05-19 | Micron Technology, Inc. | Arrays of vertically-oriented transistors, memory arrays including vertically-oriented transistors, and memory cells |
CN102751436A (en) * | 2012-06-12 | 2012-10-24 | 清华大学 | Vertical selection pipe, storage unit, three-dimensional memory array and operation method thereof |
US9129896B2 (en) | 2012-08-21 | 2015-09-08 | Micron Technology, Inc. | Arrays comprising vertically-oriented transistors, integrated circuitry comprising a conductive line buried in silicon-comprising semiconductor material, methods of forming a plurality of conductive lines buried in silicon-comprising semiconductor material, and methods of forming an array comprising vertically-oriented transistors |
US9006060B2 (en) | 2012-08-21 | 2015-04-14 | Micron Technology, Inc. | N-type field effect transistors, arrays comprising N-type vertically-oriented transistors, methods of forming an N-type field effect transistor, and methods of forming an array comprising vertically-oriented N-type transistors |
US9478550B2 (en) | 2012-08-27 | 2016-10-25 | Micron Technology, Inc. | Arrays of vertically-oriented transistors, and memory arrays including vertically-oriented transistors |
JP6128787B2 (en) | 2012-09-28 | 2017-05-17 | キヤノン株式会社 | Semiconductor device |
US8951893B2 (en) | 2013-01-03 | 2015-02-10 | International Business Machines Corporation | Fabricating polysilicon MOS devices and passive ESD devices |
US8928142B2 (en) * | 2013-02-22 | 2015-01-06 | Fairchild Semiconductor Corporation | Apparatus related to capacitance reduction of a signal port |
US9112047B2 (en) | 2013-02-28 | 2015-08-18 | Freescale Semiconductor, Inc. | Split gate non-volatile memory (NVM) cell and method therefor |
US20140241031A1 (en) | 2013-02-28 | 2014-08-28 | Sandisk 3D Llc | Dielectric-based memory cells having multi-level one-time programmable and bi-level rewriteable operating modes and methods of forming the same |
US8865530B2 (en) * | 2013-03-08 | 2014-10-21 | International Business Machines Corporation | Extremely thin semiconductor on insulator (ETSOI) logic and memory hybrid chip |
CN103137646A (en) * | 2013-03-15 | 2013-06-05 | 中国科学院微电子研究所 | Gating device unit for bipolar resistive random access memory cross array integration mode |
US9111853B2 (en) | 2013-03-15 | 2015-08-18 | Micron Technology, Inc. | Methods of forming doped elements of semiconductor device structures |
US9006816B2 (en) | 2013-03-28 | 2015-04-14 | Stmicroelectronics, Inc. | Memory device having multiple dielectric gate stacks and related methods |
US8860123B1 (en) | 2013-03-28 | 2014-10-14 | Stmicroelectronics, Inc. | Memory device having multiple dielectric gate stacks with first and second dielectric layers and related methods |
EP2884542A3 (en) * | 2013-12-10 | 2015-09-02 | IMEC vzw | Integrated circuit device with power gating switch in back end of line |
US9129956B2 (en) * | 2013-12-11 | 2015-09-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Device having multiple-layer pins in memory MUX1 layout |
US9379246B2 (en) * | 2014-03-05 | 2016-06-28 | Sandisk Technologies Inc. | Vertical thin film transistor selection devices and methods of fabrication |
US10006899B2 (en) | 2014-03-25 | 2018-06-26 | Genia Technologies, Inc. | Nanopore-based sequencing chips using stacked wafer technology |
JP6635670B2 (en) * | 2014-04-11 | 2020-01-29 | 株式会社半導体エネルギー研究所 | Semiconductor device |
US9412736B2 (en) * | 2014-06-05 | 2016-08-09 | Globalfoundries Inc. | Embedding semiconductor devices in silicon-on-insulator wafers connected using through silicon vias |
US9985026B2 (en) * | 2014-08-15 | 2018-05-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Transistor, integrated circuit and method of fabricating the same |
WO2016031014A1 (en) | 2014-08-28 | 2016-03-03 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Semiconductor device, and method for manufacturing semiconductor device |
WO2016035213A1 (en) | 2014-09-05 | 2016-03-10 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Semiconductor device |
US10950722B2 (en) * | 2014-12-31 | 2021-03-16 | Stmicroelectronics, Inc. | Vertical gate all-around transistor |
US9431268B2 (en) | 2015-01-05 | 2016-08-30 | Lam Research Corporation | Isotropic atomic layer etch for silicon and germanium oxides |
US9425041B2 (en) | 2015-01-06 | 2016-08-23 | Lam Research Corporation | Isotropic atomic layer etch for silicon oxides using no activation |
WO2016163045A1 (en) | 2015-04-06 | 2016-10-13 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Columnar semiconductor device having sgt, and method for manufacturing same |
JP6104477B2 (en) * | 2015-04-06 | 2017-03-29 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. | Columnar semiconductor memory device and manufacturing method thereof |
JP6175196B2 (en) | 2015-07-08 | 2017-08-02 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. | Columnar semiconductor memory device and manufacturing method thereof |
US9460770B1 (en) | 2015-09-01 | 2016-10-04 | Micron Technology, Inc. | Methods of operating ferroelectric memory cells, and related ferroelectric memory cells |
JP6089081B1 (en) * | 2015-09-16 | 2017-03-01 | 株式会社東芝 | Magnetic memory |
US10229916B2 (en) | 2015-10-09 | 2019-03-12 | Unisantis Electronics Singapore Pte. Ltd. | Method for producing pillar-shaped semiconductor device |
US10410932B2 (en) | 2015-10-09 | 2019-09-10 | Unisantis Electronics Singapore Pte. Ltd. | Method for producing pillar-shaped semiconductor device |
US9754660B2 (en) | 2015-11-19 | 2017-09-05 | Samsung Electronics Co., Ltd. | Semiconductor device |
JP6286612B2 (en) * | 2015-12-18 | 2018-02-28 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. | Semiconductor device having SGT and manufacturing method thereof |
US10128253B2 (en) * | 2016-01-29 | 2018-11-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Two-port SRAM structure |
US10043796B2 (en) | 2016-02-01 | 2018-08-07 | Qualcomm Incorporated | Vertically stacked nanowire field effect transistors |
FR3049761B1 (en) * | 2016-03-31 | 2018-10-05 | Soitec | METHOD FOR MANUFACTURING A STRUCTURE FOR FORMING A THREE DIMENSIONAL MONOLITHIC INTEGRATED CIRCUIT |
JP6097434B2 (en) * | 2016-04-28 | 2017-03-15 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US10438838B2 (en) * | 2016-09-01 | 2019-10-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor structure and related method |
KR101928629B1 (en) | 2016-12-01 | 2018-12-12 | 한양대학교 산학협력단 | Two-terminal vertical 1-t dram and manufacturing method thereof |
US10361128B2 (en) * | 2017-01-11 | 2019-07-23 | International Business Machines Corporation | 3D vertical FET with top and bottom gate contacts |
US9875784B1 (en) * | 2017-04-13 | 2018-01-23 | Qualcomm Incorporated | Three-dimensional (3D) ferroelectric dipole metal-oxide semiconductor ferroelectric field-effect transistor (MOSFeFET) system, and related methods and systems |
WO2018227086A1 (en) * | 2017-06-08 | 2018-12-13 | Silicet, LLC | Structure, method, and circuit for electrostatic discharge protection utilizing a rectifying contact |
WO2019018124A1 (en) * | 2017-07-17 | 2019-01-24 | Micron Technology, Inc. | Memory circuitry |
JP2019057554A (en) * | 2017-09-20 | 2019-04-11 | 東芝メモリ株式会社 | Storage device |
US10833078B2 (en) * | 2017-12-04 | 2020-11-10 | Tokyo Electron Limited | Semiconductor apparatus having stacked gates and method of manufacture thereof |
US10283411B1 (en) * | 2018-01-02 | 2019-05-07 | International Business Machines Corporation | Stacked vertical transistor device for three-dimensional monolithic integration |
US10790271B2 (en) * | 2018-04-17 | 2020-09-29 | International Business Machines Corporation | Perpendicular stacked field-effect transistor device |
WO2019226341A1 (en) | 2018-05-25 | 2019-11-28 | Lam Research Corporation | Thermal atomic layer etch with rapid temperature cycling |
WO2020014065A1 (en) | 2018-07-09 | 2020-01-16 | Lam Research Corporation | Electron excitation atomic layer etch |
JP2020047642A (en) | 2018-09-14 | 2020-03-26 | キオクシア株式会社 | Semiconductor storage device |
US10607938B1 (en) * | 2018-10-26 | 2020-03-31 | International Business Machines Corporation | Power distribution networks for monolithic three-dimensional semiconductor integrated circuit devices |
CN111293137A (en) * | 2018-12-07 | 2020-06-16 | 中国科学院上海微系统与信息技术研究所 | Three-dimensional MRAM storage structure based on two-dimensional CMOS and manufacturing method thereof |
CN113272957A (en) * | 2018-12-26 | 2021-08-17 | 美光科技公司 | Vertical 2-transistor memory cell |
CN111435658B (en) * | 2019-01-14 | 2023-05-23 | 联华电子股份有限公司 | Method for forming memory stacking structure |
US11107827B2 (en) | 2019-02-28 | 2021-08-31 | International Business Machines Corporation | Integration of split gate metal-oxide-nitride-oxide-semiconductor memory with vertical FET |
CN111755445A (en) * | 2019-03-29 | 2020-10-09 | 长鑫存储技术有限公司 | Method for manufacturing semiconductor structure |
US11228174B1 (en) | 2019-05-30 | 2022-01-18 | Silicet, LLC | Source and drain enabled conduction triggers and immunity tolerance for integrated circuits |
KR102713747B1 (en) | 2019-07-26 | 2024-10-08 | 에스케이하이닉스 주식회사 | Vertical memory device and method for fabricating vertical memory device |
US11398516B2 (en) * | 2019-08-29 | 2022-07-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Conductive contact for ion through-substrate via |
US11735525B2 (en) | 2019-10-21 | 2023-08-22 | Tokyo Electron Limited | Power delivery network for CFET with buried power rails |
US11411025B2 (en) | 2019-10-23 | 2022-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D ferroelectric memory |
DE102020119199A1 (en) | 2019-10-23 | 2021-04-29 | Taiwan Semiconductor Manufacturing Co. Ltd. | 3D FERROELECTRIC MEMORY |
KR102721699B1 (en) * | 2019-11-01 | 2024-10-25 | 에스케이하이닉스 주식회사 | Semiconductor memory device and manufacturing method thereof |
US10892362B1 (en) | 2019-11-06 | 2021-01-12 | Silicet, LLC | Devices for LDMOS and other MOS transistors with hybrid contact |
US11302865B2 (en) | 2019-12-26 | 2022-04-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Phase-change memory with two-portioned phase-change layer |
FR3105748B1 (en) * | 2019-12-26 | 2022-09-02 | Aledia | Device for laser treatment and laser treatment method |
US11476248B2 (en) * | 2019-12-26 | 2022-10-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three dimensional integrated circuit and fabrication thereof |
KR102226206B1 (en) * | 2020-02-06 | 2021-03-11 | 포항공과대학교 산학협력단 | Memory device including double PN junctions and driving method thereof |
US11508817B2 (en) * | 2020-05-28 | 2022-11-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Passivation layer for epitaxial semiconductor process |
DE102020125995A1 (en) * | 2020-05-28 | 2021-12-02 | Taiwan Semiconductor Manufacturing Co. Ltd. | PASSIVATION LAYER FOR EPITACTIC SEMICONDUCTOR PROCESS |
US11430797B2 (en) | 2020-06-30 | 2022-08-30 | Qualcomm Incorporated | Package embedded programmable resistor for voltage droop mitigation |
US11527623B2 (en) * | 2020-07-28 | 2022-12-13 | Micron Technology, Inc. | Integrated assemblies and methods of forming integrated assemblies |
US11522053B2 (en) | 2020-12-04 | 2022-12-06 | Amplexia, Llc | LDMOS with self-aligned body and hybrid source |
KR20210030306A (en) | 2021-02-25 | 2021-03-17 | 삼성전자주식회사 | Semiconductor memory device |
CN113053900B (en) * | 2021-03-22 | 2023-01-20 | 长鑫存储技术有限公司 | Semiconductor structure and manufacturing method thereof |
CN113078625B (en) * | 2021-03-24 | 2023-02-17 | 重庆邮电大学 | Surge protection array based on chalcogenide compound and preparation method |
CN113206099B (en) * | 2021-05-06 | 2024-05-28 | 长江先进存储产业创新中心有限责任公司 | Semiconductor device and method for manufacturing the same |
CN113345487B (en) * | 2021-06-04 | 2024-06-07 | 长江先进存储产业创新中心有限责任公司 | Memory, memory system and manufacturing method of memory |
US20230240062A1 (en) * | 2022-01-27 | 2023-07-27 | Macronix International Co., Ltd. | Memory structure |
CN115548150B (en) * | 2022-10-13 | 2024-09-06 | 隆基绿能科技股份有限公司 | Solar cell module |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4740826A (en) * | 1985-09-25 | 1988-04-26 | Texas Instruments Incorporated | Vertical inverter |
US5311050A (en) * | 1990-11-30 | 1994-05-10 | Kabushiki Kaisha Toshiba | Semiconductor vertical MOSFET inverter circuit |
US5317170A (en) * | 1990-11-29 | 1994-05-31 | Xerox Corporation | High density, independently addressable, surface emitting semiconductor laser/light emitting diode arrays without a substrate |
US5882987A (en) * | 1997-08-26 | 1999-03-16 | International Business Machines Corporation | Smart-cut process for the production of thin semiconductor material films |
US5998808A (en) * | 1997-06-27 | 1999-12-07 | Sony Corporation | Three-dimensional integrated circuit device and its manufacturing method |
US6057212A (en) * | 1998-05-04 | 2000-05-02 | International Business Machines Corporation | Method for making bonded metal back-plane substrates |
US6103597A (en) * | 1996-04-11 | 2000-08-15 | Commissariat A L'energie Atomique | Method of obtaining a thin film of semiconductor material |
US6187110B1 (en) * | 1997-05-12 | 2001-02-13 | Silicon Genesis Corporation | Device for patterned films |
US6191007B1 (en) * | 1997-04-28 | 2001-02-20 | Denso Corporation | Method for manufacturing a semiconductor substrate |
US6225651B1 (en) * | 1997-06-25 | 2001-05-01 | Commissariat A L'energie Atomique | Structure with a micro-electronic component made of a semi-conductor material difficult to etch and with metallized holes |
US6225192B1 (en) * | 1996-05-15 | 2001-05-01 | Commissariat A L'energie Atomique | Method of producing a thin layer of semiconductor material |
US6242324B1 (en) * | 1999-08-10 | 2001-06-05 | The United States Of America As Represented By The Secretary Of The Navy | Method for fabricating singe crystal materials over CMOS devices |
US6316293B1 (en) * | 1997-12-18 | 2001-11-13 | Advanced Micro Devices, Inc. | Method of forming a nand-type flash memory device having a non-stacked gate transistor structure |
US6391658B1 (en) * | 1999-10-26 | 2002-05-21 | International Business Machines Corporation | Formation of arrays of microelectronic elements |
US6423614B1 (en) * | 1998-06-30 | 2002-07-23 | Intel Corporation | Method of delaminating a thin film using non-thermal techniques |
US6429484B1 (en) * | 2000-08-07 | 2002-08-06 | Advanced Micro Devices, Inc. | Multiple active layer structure and a method of making such a structure |
US6503778B1 (en) * | 1999-09-28 | 2003-01-07 | Sony Corporation | Thin film device and method of manufacturing the same |
US6600173B2 (en) * | 2000-08-30 | 2003-07-29 | Cornell Research Foundation, Inc. | Low temperature semiconductor layering and three-dimensional electronic circuits using the layering |
US6638834B2 (en) * | 2000-06-12 | 2003-10-28 | Micron Technology, Inc. | Methods of forming semiconductor constructions |
US6661085B2 (en) * | 2002-02-06 | 2003-12-09 | Intel Corporation | Barrier structure against corrosion and contamination in three-dimensional (3-D) wafer-to-wafer vertical stack |
US20040113207A1 (en) * | 2002-12-11 | 2004-06-17 | International Business Machines Corporation | Vertical MOSFET SRAM cell |
US6943067B2 (en) * | 2002-01-08 | 2005-09-13 | Advanced Micro Devices, Inc. | Three-dimensional integrated semiconductor devices |
US7470598B2 (en) * | 2004-06-21 | 2008-12-30 | Sang-Yun Lee | Semiconductor layer structure and method of making the same |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4296428A (en) * | 1979-06-28 | 1981-10-20 | Rockwell International Corporation | Merged field effect transistor circuit and fabrication process |
US4400715A (en) * | 1980-11-19 | 1983-08-23 | International Business Machines Corporation | Thin film semiconductor device and method for manufacture |
JPH04192368A (en) * | 1990-11-23 | 1992-07-10 | Sony Corp | Longitudinal channel fet |
US5943574A (en) * | 1998-02-23 | 1999-08-24 | Motorola, Inc. | Method of fabricating 3D multilayer semiconductor circuits |
US6194290B1 (en) * | 1998-03-09 | 2001-02-27 | Intersil Corporation | Methods for making semiconductor devices by low temperature direct bonding |
EP1234332B1 (en) * | 1999-11-15 | 2007-01-17 | Infineon Technologies AG | Dram cell structure with tunnel barrier |
JP2001250913A (en) * | 1999-12-28 | 2001-09-14 | Mitsumasa Koyanagi | Three-dimensional semiconductor integrated circuit device and its manufacturing method |
US6525415B2 (en) | 1999-12-28 | 2003-02-25 | Fuji Xerox Co., Ltd. | Three-dimensional semiconductor integrated circuit apparatus and manufacturing method therefor |
US6871396B2 (en) * | 2000-02-09 | 2005-03-29 | Matsushita Electric Industrial Co., Ltd. | Transfer material for wiring substrate |
JP3735855B2 (en) * | 2000-02-17 | 2006-01-18 | 日本電気株式会社 | Semiconductor integrated circuit device and driving method thereof |
US6355501B1 (en) | 2000-09-21 | 2002-03-12 | International Business Machines Corporation | Three-dimensional chip stacking assembly |
JP3940596B2 (en) | 2001-05-24 | 2007-07-04 | 松下電器産業株式会社 | Illumination light source |
US6821826B1 (en) * | 2003-09-30 | 2004-11-23 | International Business Machines Corporation | Three dimensional CMOS integrated circuits having device layers built on different crystal oriented wafers |
-
2004
- 2004-06-21 US US10/873,969 patent/US7052941B2/en not_active Expired - Fee Related
- 2004-06-23 EP EP04776960.9A patent/EP1636831B1/en not_active Expired - Lifetime
- 2004-06-23 JP JP2006517574A patent/JP5202842B2/en not_active Expired - Fee Related
- 2004-06-23 WO PCT/US2004/020122 patent/WO2005010934A2/en active Application Filing
-
2006
- 2006-03-17 US US11/378,059 patent/US20060275962A1/en not_active Abandoned
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4740826A (en) * | 1985-09-25 | 1988-04-26 | Texas Instruments Incorporated | Vertical inverter |
US5317170A (en) * | 1990-11-29 | 1994-05-31 | Xerox Corporation | High density, independently addressable, surface emitting semiconductor laser/light emitting diode arrays without a substrate |
US5311050A (en) * | 1990-11-30 | 1994-05-10 | Kabushiki Kaisha Toshiba | Semiconductor vertical MOSFET inverter circuit |
US6103597A (en) * | 1996-04-11 | 2000-08-15 | Commissariat A L'energie Atomique | Method of obtaining a thin film of semiconductor material |
US6225192B1 (en) * | 1996-05-15 | 2001-05-01 | Commissariat A L'energie Atomique | Method of producing a thin layer of semiconductor material |
US6191007B1 (en) * | 1997-04-28 | 2001-02-20 | Denso Corporation | Method for manufacturing a semiconductor substrate |
US6187110B1 (en) * | 1997-05-12 | 2001-02-13 | Silicon Genesis Corporation | Device for patterned films |
US6225651B1 (en) * | 1997-06-25 | 2001-05-01 | Commissariat A L'energie Atomique | Structure with a micro-electronic component made of a semi-conductor material difficult to etch and with metallized holes |
US5998808A (en) * | 1997-06-27 | 1999-12-07 | Sony Corporation | Three-dimensional integrated circuit device and its manufacturing method |
US5882987A (en) * | 1997-08-26 | 1999-03-16 | International Business Machines Corporation | Smart-cut process for the production of thin semiconductor material films |
US6316293B1 (en) * | 1997-12-18 | 2001-11-13 | Advanced Micro Devices, Inc. | Method of forming a nand-type flash memory device having a non-stacked gate transistor structure |
US6057212A (en) * | 1998-05-04 | 2000-05-02 | International Business Machines Corporation | Method for making bonded metal back-plane substrates |
US6423614B1 (en) * | 1998-06-30 | 2002-07-23 | Intel Corporation | Method of delaminating a thin film using non-thermal techniques |
US6242324B1 (en) * | 1999-08-10 | 2001-06-05 | The United States Of America As Represented By The Secretary Of The Navy | Method for fabricating singe crystal materials over CMOS devices |
US6503778B1 (en) * | 1999-09-28 | 2003-01-07 | Sony Corporation | Thin film device and method of manufacturing the same |
US6391658B1 (en) * | 1999-10-26 | 2002-05-21 | International Business Machines Corporation | Formation of arrays of microelectronic elements |
US6638834B2 (en) * | 2000-06-12 | 2003-10-28 | Micron Technology, Inc. | Methods of forming semiconductor constructions |
US6429484B1 (en) * | 2000-08-07 | 2002-08-06 | Advanced Micro Devices, Inc. | Multiple active layer structure and a method of making such a structure |
US6600173B2 (en) * | 2000-08-30 | 2003-07-29 | Cornell Research Foundation, Inc. | Low temperature semiconductor layering and three-dimensional electronic circuits using the layering |
US6943067B2 (en) * | 2002-01-08 | 2005-09-13 | Advanced Micro Devices, Inc. | Three-dimensional integrated semiconductor devices |
US6661085B2 (en) * | 2002-02-06 | 2003-12-09 | Intel Corporation | Barrier structure against corrosion and contamination in three-dimensional (3-D) wafer-to-wafer vertical stack |
US20040113207A1 (en) * | 2002-12-11 | 2004-06-17 | International Business Machines Corporation | Vertical MOSFET SRAM cell |
US7470598B2 (en) * | 2004-06-21 | 2008-12-30 | Sang-Yun Lee | Semiconductor layer structure and method of making the same |
Cited By (342)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090267233A1 (en) * | 1996-11-04 | 2009-10-29 | Sang-Yun Lee | Bonded semiconductor structure and method of making the same |
US8058142B2 (en) | 1996-11-04 | 2011-11-15 | Besang Inc. | Bonded semiconductor structure and method of making the same |
US8071438B2 (en) | 2003-06-24 | 2011-12-06 | Besang Inc. | Semiconductor circuit |
US20050280154A1 (en) * | 2004-06-21 | 2005-12-22 | Sang-Yun Lee | Semiconductor memory device |
US8018058B2 (en) | 2004-06-21 | 2011-09-13 | Besang Inc. | Semiconductor memory device |
US8367524B2 (en) | 2005-03-29 | 2013-02-05 | Sang-Yun Lee | Three-dimensional integrated circuit structure |
US20060237725A1 (en) * | 2005-04-20 | 2006-10-26 | Samsung Electronics Co., Ltd. | Semiconductor devices having thin film transistors and methods of fabricating the same |
US7719033B2 (en) * | 2005-04-20 | 2010-05-18 | Samsung Electronics Co., Ltd. | Semiconductor devices having thin film transistors and methods of fabricating the same |
US8178909B2 (en) * | 2005-05-16 | 2012-05-15 | Lsi Corporation | Integrated circuit cell architecture configurable for memory or logic elements |
US20120012896A1 (en) * | 2005-05-16 | 2012-01-19 | Ramnath Venkatraman | Integrated Circuit Cell Architecture Configurable for Memory or Logic Elements |
US20060278895A1 (en) * | 2005-06-14 | 2006-12-14 | International Business Machines Corporation | Reprogrammable fuse structure and method |
US7388273B2 (en) * | 2005-06-14 | 2008-06-17 | International Business Machines Corporation | Reprogrammable fuse structure and method |
US7960808B2 (en) | 2005-06-14 | 2011-06-14 | International Business Machines Corporation | Reprogrammable fuse structure and method |
US8278155B2 (en) | 2005-06-14 | 2012-10-02 | International Business Machines Corporation | Reprogrammable fuse structure and method |
US20080078998A1 (en) * | 2006-09-28 | 2008-04-03 | Sanyo Electric Co., Ltd. | Semiconductor device |
US8866194B2 (en) | 2006-09-28 | 2014-10-21 | Semiconductor Components Industries, Llc | Semiconductor device |
US20080185595A1 (en) * | 2007-02-06 | 2008-08-07 | Samsung Electro-Mechanics Co., Ltd. | Light emitting device for alternating current source |
US8247861B2 (en) * | 2007-07-18 | 2012-08-21 | Infineon Technologies Ag | Semiconductor device and method of making same |
US20090020800A1 (en) * | 2007-07-18 | 2009-01-22 | Georg Tempel | Semiconductor Device and Method of Making Same |
US8940603B2 (en) | 2007-07-18 | 2015-01-27 | Infineon Technologies Ag | Method of making semiconductor device |
US7847586B2 (en) * | 2007-08-20 | 2010-12-07 | Northern Lights Semiconductor Corp. | Integrate circuit chip with magnetic devices |
DE102007052219A1 (en) * | 2007-08-20 | 2009-02-26 | Northern Lights Semiconductor Corp., Saint Paul | Integrated circuit chip with magnetic devices |
US20090051386A1 (en) * | 2007-08-20 | 2009-02-26 | Northern Lights Semiconductor Corp. | Integrate Circuit Chip with Magnetic Devices |
US20090057746A1 (en) * | 2007-09-05 | 2009-03-05 | Renesas Technology Corp. | Semiconductor device |
WO2009059015A3 (en) * | 2007-10-30 | 2009-09-24 | Raytheon Company | Method of protecting circuits using integrated array fuse elements and process for fabrication |
US20090109582A1 (en) * | 2007-10-30 | 2009-04-30 | Jack Michael D | Method of protecting circuits using integrated array fuse elements and process for fabrication |
WO2009059015A2 (en) * | 2007-10-30 | 2009-05-07 | Raytheon Company | Method of protecting circuits using integrated array fuse elements and process for fabrication |
US7902051B2 (en) * | 2008-01-07 | 2011-03-08 | International Business Machines Corporation | Method for fabrication of single crystal diodes for resistive memories |
US20090176354A1 (en) * | 2008-01-07 | 2009-07-09 | International Business Machines Corporation | Method for fabrication of single crystal diodes for resistive memories |
US8416615B2 (en) | 2008-07-10 | 2013-04-09 | Seagate Technology Llc | Transmission gate-based spin-transfer torque memory unit |
US7974119B2 (en) | 2008-07-10 | 2011-07-05 | Seagate Technology Llc | Transmission gate-based spin-transfer torque memory unit |
US8199563B2 (en) | 2008-07-10 | 2012-06-12 | Seagate Technology Llc | Transmission gate-based spin-transfer torque memory unit |
US20100079639A1 (en) * | 2008-09-30 | 2010-04-01 | Joon Hwang | Image Sensor and Method for Manufacturing the Same |
US8339492B2 (en) * | 2008-09-30 | 2012-12-25 | Dongbu Hitek Co., Ltd. | Image sensor inhibiting electrical shorts in a contract plug penetrating an image sensing device and method for manufacturing the same |
US8289746B2 (en) | 2008-10-20 | 2012-10-16 | Seagate Technology Llc | MRAM diode array and access method |
US8514605B2 (en) | 2008-10-20 | 2013-08-20 | Seagate Technology Llc | MRAM diode array and access method |
US9030867B2 (en) | 2008-10-20 | 2015-05-12 | Seagate Technology Llc | Bipolar CMOS select device for resistive sense memory |
US7936580B2 (en) | 2008-10-20 | 2011-05-03 | Seagate Technology Llc | MRAM diode array and access method |
US7961497B2 (en) | 2008-10-30 | 2011-06-14 | Seagate Technology Llc | Variable resistive memory punchthrough access method |
US8508981B2 (en) | 2008-10-30 | 2013-08-13 | Seagate Technology Llc | Apparatus for variable resistive memory punchthrough access method |
US8098510B2 (en) | 2008-10-30 | 2012-01-17 | Seagate Technology Llc | Variable resistive memory punchthrough access method |
US8199558B2 (en) | 2008-10-30 | 2012-06-12 | Seagate Technology Llc | Apparatus for variable resistive memory punchthrough access method |
US7936583B2 (en) | 2008-10-30 | 2011-05-03 | Seagate Technology Llc | Variable resistive memory punchthrough access method |
US8072014B2 (en) | 2008-11-07 | 2011-12-06 | Seagate Technology Llc | Polarity dependent switch for resistive sense memory |
US7935619B2 (en) | 2008-11-07 | 2011-05-03 | Seagate Technology Llc | Polarity dependent switch for resistive sense memory |
US8508980B2 (en) | 2008-11-07 | 2013-08-13 | Seagate Technology Llc | Polarity dependent switch for resistive sense memory |
US8178864B2 (en) | 2008-11-18 | 2012-05-15 | Seagate Technology Llc | Asymmetric barrier diode |
TWI418027B (en) * | 2008-11-28 | 2013-12-01 | Powerchip Technology Corp | Phase-change memory devices and methods for fabricating the same |
US8638597B2 (en) | 2008-12-02 | 2014-01-28 | Seagate Technology Llc | Bit line charge accumulation sensing for resistive changing memory |
US8203869B2 (en) | 2008-12-02 | 2012-06-19 | Seagate Technology Llc | Bit line charge accumulation sensing for resistive changing memory |
US20100155803A1 (en) * | 2008-12-18 | 2010-06-24 | Micron Technology, Inc. | Method and structure for integrating capacitor-less memory cell with logic |
US8278167B2 (en) * | 2008-12-18 | 2012-10-02 | Micron Technology, Inc. | Method and structure for integrating capacitor-less memory cell with logic |
US8704286B2 (en) | 2008-12-18 | 2014-04-22 | Micron Technology, Inc. | Method and structure for integrating capacitor-less memory cell with logic |
US9129848B2 (en) | 2008-12-18 | 2015-09-08 | Micron Technology, Inc. | Method and structure for integrating capacitor-less memory cell with logic |
WO2010092555A3 (en) * | 2009-02-15 | 2016-05-26 | Gil Asa | Four-transistor and five-transistor bjt-cmos asymmetric sram cells |
US8837204B2 (en) | 2009-02-15 | 2014-09-16 | NDEP Technologies Ltd. | Four-transistor and five-transistor BJT-CMOS asymmetric SRAM cells |
US8115258B2 (en) | 2009-04-07 | 2012-02-14 | Samsung Electronics Co., Ltd. | Memory devices having diodes and resistors electrically connected in series |
US9412645B1 (en) | 2009-04-14 | 2016-08-09 | Monolithic 3D Inc. | Semiconductor devices and structures |
US8669778B1 (en) | 2009-04-14 | 2014-03-11 | Monolithic 3D Inc. | Method for design and manufacturing of a 3D semiconductor device |
US9509313B2 (en) | 2009-04-14 | 2016-11-29 | Monolithic 3D Inc. | 3D semiconductor device |
US9711407B2 (en) | 2009-04-14 | 2017-07-18 | Monolithic 3D Inc. | Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer |
US20120196409A1 (en) * | 2009-04-14 | 2012-08-02 | Zvi Or-Bach | 3d semiconductor device |
US8987079B2 (en) | 2009-04-14 | 2015-03-24 | Monolithic 3D Inc. | Method for developing a custom device |
US8427200B2 (en) * | 2009-04-14 | 2013-04-23 | Monolithic 3D Inc. | 3D semiconductor device |
US9577642B2 (en) | 2009-04-14 | 2017-02-21 | Monolithic 3D Inc. | Method to form a 3D semiconductor device |
US8754533B2 (en) | 2009-04-14 | 2014-06-17 | Monolithic 3D Inc. | Monolithic three-dimensional semiconductor device and structure |
US8405420B2 (en) | 2009-04-14 | 2013-03-26 | Monolithic 3D Inc. | System comprising a semiconductor device and structure |
US8384426B2 (en) | 2009-04-14 | 2013-02-26 | Monolithic 3D Inc. | Semiconductor device and structure |
US8362482B2 (en) | 2009-04-14 | 2013-01-29 | Monolithic 3D Inc. | Semiconductor device and structure |
US8378494B2 (en) | 2009-04-14 | 2013-02-19 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8378715B2 (en) | 2009-04-14 | 2013-02-19 | Monolithic 3D Inc. | Method to construct systems |
US8373439B2 (en) | 2009-04-14 | 2013-02-12 | Monolithic 3D Inc. | 3D semiconductor device |
US8350316B2 (en) | 2009-05-22 | 2013-01-08 | Macronix International Co., Ltd. | Phase change memory cells having vertical channel access transistor and memory plane |
US8313979B2 (en) | 2009-05-22 | 2012-11-20 | Macronix International Co., Ltd. | Phase change memory cell having vertical channel access transistor |
US7968876B2 (en) | 2009-05-22 | 2011-06-28 | Macronix International Co., Ltd. | Phase change memory cell having vertical channel access transistor |
US8624236B2 (en) | 2009-05-22 | 2014-01-07 | Macronix International Co., Ltd. | Phase change memory cell having vertical channel access transistor |
US8159856B2 (en) | 2009-07-07 | 2012-04-17 | Seagate Technology Llc | Bipolar select device for resistive sense memory |
US8514608B2 (en) | 2009-07-07 | 2013-08-20 | Seagate Technology Llc | Bipolar select device for resistive sense memory |
US8896070B2 (en) | 2009-07-13 | 2014-11-25 | Seagate Technology Llc | Patterning embedded control lines for vertically stacked semiconductor elements |
US8158964B2 (en) | 2009-07-13 | 2012-04-17 | Seagate Technology Llc | Schottky diode switch and memory units containing the same |
US8183126B2 (en) | 2009-07-13 | 2012-05-22 | Seagate Technology Llc | Patterning embedded control lines for vertically stacked semiconductor elements |
US8198181B1 (en) | 2009-07-13 | 2012-06-12 | Seagate Technology Llc | Schottky diode switch and memory units containing the same |
US8288749B2 (en) | 2009-07-13 | 2012-10-16 | Seagate Technology Llc | Schottky diode switch and memory units containing the same |
US8399935B2 (en) | 2009-09-18 | 2013-03-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Embedded SRAM memory for low power applications |
US20110068400A1 (en) * | 2009-09-18 | 2011-03-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and Apparatus for SRAM Bit Cell with Low Standby Current, Low Supply Voltage and High Speed |
US20110068413A1 (en) * | 2009-09-18 | 2011-03-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Embedded SRAM Memory for Low Power Applications |
US8294212B2 (en) * | 2009-09-18 | 2012-10-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and apparatus for SRAM bit cell with low standby current, low supply voltage and high speed |
US10043781B2 (en) | 2009-10-12 | 2018-08-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11374118B2 (en) | 2009-10-12 | 2022-06-28 | Monolithic 3D Inc. | Method to form a 3D integrated circuit |
US11018133B2 (en) | 2009-10-12 | 2021-05-25 | Monolithic 3D Inc. | 3D integrated circuit |
US8237228B2 (en) | 2009-10-12 | 2012-08-07 | Monolithic 3D Inc. | System comprising a semiconductor device and structure |
US10910364B2 (en) | 2009-10-12 | 2021-02-02 | Monolitaic 3D Inc. | 3D semiconductor device |
US10354995B2 (en) | 2009-10-12 | 2019-07-16 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11984445B2 (en) | 2009-10-12 | 2024-05-14 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US12027518B1 (en) | 2009-10-12 | 2024-07-02 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US8907442B2 (en) | 2009-10-12 | 2014-12-09 | Monolthic 3D Inc. | System comprising a semiconductor device and structure |
US9406670B1 (en) | 2009-10-12 | 2016-08-02 | Monolithic 3D Inc. | System comprising a semiconductor device and structure |
US8395191B2 (en) | 2009-10-12 | 2013-03-12 | Monolithic 3D Inc. | Semiconductor device and structure |
US10157909B2 (en) | 2009-10-12 | 2018-12-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US8294159B2 (en) | 2009-10-12 | 2012-10-23 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US10388863B2 (en) | 2009-10-12 | 2019-08-20 | Monolithic 3D Inc. | 3D memory device and structure |
US8664042B2 (en) | 2009-10-12 | 2014-03-04 | Monolithic 3D Inc. | Method for fabrication of configurable systems |
US10366970B2 (en) | 2009-10-12 | 2019-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US8846463B1 (en) | 2010-02-16 | 2014-09-30 | Monolithic 3D Inc. | Method to construct a 3D semiconductor device |
US9564432B2 (en) | 2010-02-16 | 2017-02-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US9099526B2 (en) | 2010-02-16 | 2015-08-04 | Monolithic 3D Inc. | Integrated circuit device and structure |
US8492886B2 (en) | 2010-02-16 | 2013-07-23 | Monolithic 3D Inc | 3D integrated circuit with logic |
CN101834152A (en) * | 2010-04-20 | 2010-09-15 | 中国科学院上海微系统与信息技术研究所 | Method for manufacturing three-dimensionally stacked resistance conversion memory |
US9012292B2 (en) | 2010-07-02 | 2015-04-21 | Sang-Yun Lee | Semiconductor memory device and method of fabricating the same |
US8642416B2 (en) | 2010-07-30 | 2014-02-04 | Monolithic 3D Inc. | Method of forming three dimensional integrated circuit devices using layer transfer technique |
US8709880B2 (en) | 2010-07-30 | 2014-04-29 | Monolithic 3D Inc | Method for fabrication of a semiconductor device and structure |
WO2012015550A2 (en) | 2010-07-30 | 2012-02-02 | Monolithic 3D, Inc. | Semiconductor device and structure |
US8912052B2 (en) | 2010-07-30 | 2014-12-16 | Monolithic 3D Inc. | Semiconductor device and structure |
US8617952B2 (en) | 2010-09-28 | 2013-12-31 | Seagate Technology Llc | Vertical transistor with hardening implatation |
US8258810B2 (en) | 2010-09-30 | 2012-09-04 | Monolithic 3D Inc. | 3D semiconductor device |
US8461035B1 (en) * | 2010-09-30 | 2013-06-11 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8703597B1 (en) * | 2010-09-30 | 2014-04-22 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US9419031B1 (en) | 2010-10-07 | 2016-08-16 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US11024673B1 (en) | 2010-10-11 | 2021-06-01 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US8114757B1 (en) * | 2010-10-11 | 2012-02-14 | Monolithic 3D Inc. | Semiconductor device and structure |
US11227897B2 (en) | 2010-10-11 | 2022-01-18 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US11600667B1 (en) | 2010-10-11 | 2023-03-07 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US9818800B2 (en) | 2010-10-11 | 2017-11-14 | Monolithic 3D Inc. | Self aligned semiconductor device and structure |
US20120088355A1 (en) * | 2010-10-11 | 2012-04-12 | Monolithic 3D Inc. | Semiconductor device and structure |
US11257867B1 (en) | 2010-10-11 | 2022-02-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with oxide bonds |
US11469271B2 (en) | 2010-10-11 | 2022-10-11 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US8956959B2 (en) * | 2010-10-11 | 2015-02-17 | Monolithic 3D Inc. | Method of manufacturing a semiconductor device with two monocrystalline layers |
US8203148B2 (en) | 2010-10-11 | 2012-06-19 | Monolithic 3D Inc. | Semiconductor device and structure |
US11158674B2 (en) | 2010-10-11 | 2021-10-26 | Monolithic 3D Inc. | Method to produce a 3D semiconductor device and structure |
US10290682B2 (en) | 2010-10-11 | 2019-05-14 | Monolithic 3D Inc. | 3D IC semiconductor device and structure with stacked memory |
US8440542B2 (en) | 2010-10-11 | 2013-05-14 | Monolithic 3D Inc. | Semiconductor device and structure |
US10896931B1 (en) | 2010-10-11 | 2021-01-19 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11315980B1 (en) | 2010-10-11 | 2022-04-26 | Monolithic 3D Inc. | 3D semiconductor device and structure with transistors |
US11018191B1 (en) | 2010-10-11 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10978501B1 (en) | 2010-10-13 | 2021-04-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US11163112B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US10943934B2 (en) | 2010-10-13 | 2021-03-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US10833108B2 (en) | 2010-10-13 | 2020-11-10 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US11929372B2 (en) | 2010-10-13 | 2024-03-12 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11869915B2 (en) | 2010-10-13 | 2024-01-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US10679977B2 (en) | 2010-10-13 | 2020-06-09 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US10998374B1 (en) | 2010-10-13 | 2021-05-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US8163581B1 (en) | 2010-10-13 | 2012-04-24 | Monolith IC 3D | Semiconductor and optoelectronic devices |
US11984438B2 (en) | 2010-10-13 | 2024-05-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11437368B2 (en) | 2010-10-13 | 2022-09-06 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US8476145B2 (en) | 2010-10-13 | 2013-07-02 | Monolithic 3D Inc. | Method of fabricating a semiconductor device and structure |
US11855114B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11404466B2 (en) | 2010-10-13 | 2022-08-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11043523B1 (en) | 2010-10-13 | 2021-06-22 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11374042B1 (en) | 2010-10-13 | 2022-06-28 | Monolithic 3D Inc. | 3D micro display semiconductor device and structure |
US11855100B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11063071B1 (en) | 2010-10-13 | 2021-07-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US8283215B2 (en) | 2010-10-13 | 2012-10-09 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US11327227B2 (en) | 2010-10-13 | 2022-05-10 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US11605663B2 (en) | 2010-10-13 | 2023-03-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US12080743B2 (en) | 2010-10-13 | 2024-09-03 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US12094892B2 (en) | 2010-10-13 | 2024-09-17 | Monolithic 3D Inc. | 3D micro display device and structure |
US8362800B2 (en) | 2010-10-13 | 2013-01-29 | Monolithic 3D Inc. | 3D semiconductor device including field repairable logics |
US8373230B1 (en) | 2010-10-13 | 2013-02-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8753913B2 (en) | 2010-10-13 | 2014-06-17 | Monolithic 3D Inc. | Method for fabricating novel semiconductor and optoelectronic devices |
US11694922B2 (en) | 2010-10-13 | 2023-07-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11133344B2 (en) | 2010-10-13 | 2021-09-28 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US8379458B1 (en) | 2010-10-13 | 2013-02-19 | Monolithic 3D Inc. | Semiconductor device and structure |
US8823122B2 (en) | 2010-10-13 | 2014-09-02 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US11164898B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11355381B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11854857B1 (en) | 2010-11-18 | 2023-12-26 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11211279B2 (en) | 2010-11-18 | 2021-12-28 | Monolithic 3D Inc. | Method for processing a 3D integrated circuit and structure |
US11121021B2 (en) | 2010-11-18 | 2021-09-14 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12100611B2 (en) | 2010-11-18 | 2024-09-24 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11735462B2 (en) | 2010-11-18 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11615977B2 (en) | 2010-11-18 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11784082B2 (en) | 2010-11-18 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11107721B2 (en) | 2010-11-18 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with NAND logic |
US11094576B1 (en) | 2010-11-18 | 2021-08-17 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11610802B2 (en) | 2010-11-18 | 2023-03-21 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes |
US11804396B2 (en) | 2010-11-18 | 2023-10-31 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US12068187B2 (en) | 2010-11-18 | 2024-08-20 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding and DRAM memory cells |
US11355380B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | Methods for producing 3D semiconductor memory device and structure utilizing alignment marks |
US11901210B2 (en) | 2010-11-18 | 2024-02-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US8273610B2 (en) | 2010-11-18 | 2012-09-25 | Monolithic 3D Inc. | Method of constructing a semiconductor device and structure |
US12125737B1 (en) | 2010-11-18 | 2024-10-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US11164770B1 (en) | 2010-11-18 | 2021-11-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US11031275B2 (en) | 2010-11-18 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US12033884B2 (en) | 2010-11-18 | 2024-07-09 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US12136562B2 (en) | 2010-11-18 | 2024-11-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11018042B1 (en) | 2010-11-18 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US10497713B2 (en) | 2010-11-18 | 2019-12-03 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11443971B2 (en) | 2010-11-18 | 2022-09-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11923230B1 (en) | 2010-11-18 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11862503B2 (en) | 2010-11-18 | 2024-01-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11004719B1 (en) | 2010-11-18 | 2021-05-11 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11482439B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors |
US11569117B2 (en) | 2010-11-18 | 2023-01-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11482438B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US9136153B2 (en) | 2010-11-18 | 2015-09-15 | Monolithic 3D Inc. | 3D semiconductor device and structure with back-bias |
US11495484B2 (en) | 2010-11-18 | 2022-11-08 | Monolithic 3D Inc. | 3D semiconductor devices and structures with at least two single-crystal layers |
US11508605B2 (en) | 2010-11-18 | 2022-11-22 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11521888B2 (en) | 2010-11-18 | 2022-12-06 | Monolithic 3D Inc. | 3D semiconductor device and structure with high-k metal gate transistors |
US8536023B2 (en) | 2010-11-22 | 2013-09-17 | Monolithic 3D Inc. | Method of manufacturing a semiconductor device and structure |
US8541819B1 (en) | 2010-12-09 | 2013-09-24 | Monolithic 3D Inc. | Semiconductor device and structure |
US11482440B2 (en) | 2010-12-16 | 2022-10-25 | Monolithic 3D Inc. | 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits |
US8648426B2 (en) | 2010-12-17 | 2014-02-11 | Seagate Technology Llc | Tunneling transistors |
US8975670B2 (en) | 2011-03-06 | 2015-03-10 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US8298875B1 (en) | 2011-03-06 | 2012-10-30 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8901613B2 (en) | 2011-03-06 | 2014-12-02 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US8450804B2 (en) | 2011-03-06 | 2013-05-28 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US8581349B1 (en) | 2011-05-02 | 2013-11-12 | Monolithic 3D Inc. | 3D memory semiconductor device and structure |
US9219005B2 (en) | 2011-06-28 | 2015-12-22 | Monolithic 3D Inc. | Semiconductor system and device |
US9953925B2 (en) | 2011-06-28 | 2018-04-24 | Monolithic 3D Inc. | Semiconductor system and device |
US10217667B2 (en) | 2011-06-28 | 2019-02-26 | Monolithic 3D Inc. | 3D semiconductor device, fabrication method and system |
US10388568B2 (en) | 2011-06-28 | 2019-08-20 | Monolithic 3D Inc. | 3D semiconductor device and system |
US8937868B2 (en) | 2011-07-18 | 2015-01-20 | Samsung Electronics Co., Ltd. | Method for and apparatus for feeding back channel information in wireless communication system |
US9030858B2 (en) | 2011-10-02 | 2015-05-12 | Monolithic 3D Inc. | Semiconductor device and structure |
US8687399B2 (en) | 2011-10-02 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US9197804B1 (en) | 2011-10-14 | 2015-11-24 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US9029173B2 (en) | 2011-10-18 | 2015-05-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US9153588B2 (en) | 2012-02-02 | 2015-10-06 | Renesas Electronics Corporation | Semiconductor device and a method for manufacturing a semiconductor device |
US9368403B2 (en) | 2012-02-02 | 2016-06-14 | Renesas Electronics Corporation | Method for manufacturing a semiconductor device |
US9000557B2 (en) | 2012-03-17 | 2015-04-07 | Zvi Or-Bach | Semiconductor device and structure |
US11735501B1 (en) | 2012-04-09 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11476181B1 (en) | 2012-04-09 | 2022-10-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11694944B1 (en) | 2012-04-09 | 2023-07-04 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US9305867B1 (en) | 2012-04-09 | 2016-04-05 | Monolithic 3D Inc. | Semiconductor devices and structures |
US8836073B1 (en) | 2012-04-09 | 2014-09-16 | Monolithic 3D Inc. | Semiconductor device and structure |
US11616004B1 (en) | 2012-04-09 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11164811B2 (en) | 2012-04-09 | 2021-11-02 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers and oxide-to-oxide bonding |
US11881443B2 (en) | 2012-04-09 | 2024-01-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11594473B2 (en) | 2012-04-09 | 2023-02-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11410912B2 (en) | 2012-04-09 | 2022-08-09 | Monolithic 3D Inc. | 3D semiconductor device with vias and isolation layers |
US8557632B1 (en) | 2012-04-09 | 2013-10-15 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US11088050B2 (en) | 2012-04-09 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers |
US10600888B2 (en) | 2012-04-09 | 2020-03-24 | Monolithic 3D Inc. | 3D semiconductor device |
US9099424B1 (en) | 2012-08-10 | 2015-08-04 | Monolithic 3D Inc. | Semiconductor system, device and structure with heat removal |
US8686428B1 (en) | 2012-11-16 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US8574929B1 (en) | 2012-11-16 | 2013-11-05 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US8742476B1 (en) | 2012-11-27 | 2014-06-03 | Monolithic 3D Inc. | Semiconductor device and structure |
US11063024B1 (en) | 2012-12-22 | 2021-07-13 | Monlithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US9252134B2 (en) | 2012-12-22 | 2016-02-02 | Monolithic 3D Inc. | Semiconductor device and structure |
US11018116B2 (en) | 2012-12-22 | 2021-05-25 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11784169B2 (en) | 2012-12-22 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11916045B2 (en) | 2012-12-22 | 2024-02-27 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11309292B2 (en) | 2012-12-22 | 2022-04-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11967583B2 (en) | 2012-12-22 | 2024-04-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US8674470B1 (en) | 2012-12-22 | 2014-03-18 | Monolithic 3D Inc. | Semiconductor device and structure |
US12051674B2 (en) * | 2012-12-22 | 2024-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US8921970B1 (en) | 2012-12-22 | 2014-12-30 | Monolithic 3D Inc | Semiconductor device and structure |
US11961827B1 (en) | 2012-12-22 | 2024-04-16 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11217565B2 (en) | 2012-12-22 | 2022-01-04 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11177140B2 (en) | 2012-12-29 | 2021-11-16 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10115663B2 (en) | 2012-12-29 | 2018-10-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11004694B1 (en) | 2012-12-29 | 2021-05-11 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10651054B2 (en) | 2012-12-29 | 2020-05-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10600657B2 (en) | 2012-12-29 | 2020-03-24 | Monolithic 3D Inc | 3D semiconductor device and structure |
US9871034B1 (en) | 2012-12-29 | 2018-01-16 | Monolithic 3D Inc. | Semiconductor device and structure |
US11087995B1 (en) | 2012-12-29 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US9911627B1 (en) | 2012-12-29 | 2018-03-06 | Monolithic 3D Inc. | Method of processing a semiconductor device |
US10903089B1 (en) | 2012-12-29 | 2021-01-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US9460991B1 (en) | 2012-12-29 | 2016-10-04 | Monolithic 3D Inc. | Semiconductor device and structure |
US9460978B1 (en) | 2012-12-29 | 2016-10-04 | Monolithic 3D Inc. | Semiconductor device and structure |
US10892169B2 (en) | 2012-12-29 | 2021-01-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11430668B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11430667B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US9385058B1 (en) | 2012-12-29 | 2016-07-05 | Monolithic 3D Inc. | Semiconductor device and structure |
US8803206B1 (en) | 2012-12-29 | 2014-08-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12094965B2 (en) | 2013-03-11 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US11869965B2 (en) | 2013-03-11 | 2024-01-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US9496271B2 (en) | 2013-03-11 | 2016-11-15 | Monolithic 3D Inc. | 3DIC system with a two stable state memory and back-bias region |
US11004967B1 (en) | 2013-03-11 | 2021-05-11 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US10355121B2 (en) | 2013-03-11 | 2019-07-16 | Monolithic 3D Inc. | 3D semiconductor device with stacked memory |
US10964807B2 (en) | 2013-03-11 | 2021-03-30 | Monolithic 3D Inc. | 3D semiconductor device with memory |
US11515413B2 (en) | 2013-03-11 | 2022-11-29 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11935949B1 (en) | 2013-03-11 | 2024-03-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US11121246B2 (en) | 2013-03-11 | 2021-09-14 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US8902663B1 (en) | 2013-03-11 | 2014-12-02 | Monolithic 3D Inc. | Method of maintaining a memory state |
US10325651B2 (en) | 2013-03-11 | 2019-06-18 | Monolithic 3D Inc. | 3D semiconductor device with stacked memory |
US11923374B2 (en) | 2013-03-12 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11398569B2 (en) | 2013-03-12 | 2022-07-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12100646B2 (en) | 2013-03-12 | 2024-09-24 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US8994404B1 (en) | 2013-03-12 | 2015-03-31 | Monolithic 3D Inc. | Semiconductor device and structure |
US9117749B1 (en) | 2013-03-15 | 2015-08-25 | Monolithic 3D Inc. | Semiconductor device and structure |
US10224279B2 (en) | 2013-03-15 | 2019-03-05 | Monolithic 3D Inc. | Semiconductor device and structure |
US10127344B2 (en) | 2013-04-15 | 2018-11-13 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11270055B1 (en) | 2013-04-15 | 2022-03-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11487928B2 (en) | 2013-04-15 | 2022-11-01 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11341309B1 (en) | 2013-04-15 | 2022-05-24 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11720736B2 (en) | 2013-04-15 | 2023-08-08 | Monolithic 3D Inc. | Automation methods for 3D integrated circuits and devices |
US11030371B2 (en) | 2013-04-15 | 2021-06-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11574109B1 (en) | 2013-04-15 | 2023-02-07 | Monolithic 3D Inc | Automation methods for 3D integrated circuits and devices |
US11088130B2 (en) | 2014-01-28 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11107808B1 (en) | 2014-01-28 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11031394B1 (en) | 2014-01-28 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12094829B2 (en) | 2014-01-28 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
CN106463406A (en) * | 2014-06-16 | 2017-02-22 | 英特尔公司 | Embedded memory in interconnect stack on silicon die |
US20170077389A1 (en) * | 2014-06-16 | 2017-03-16 | Intel Corporation | Embedded memory in interconnect stack on silicon die |
US10840239B2 (en) | 2014-08-26 | 2020-11-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10748847B2 (en) * | 2014-10-08 | 2020-08-18 | Nexperia B.V. | Metallisation for semiconductor device |
US20160104676A1 (en) * | 2014-10-08 | 2016-04-14 | Nxp B.V. | Metallisation for semiconductor device |
US20160118404A1 (en) * | 2014-10-09 | 2016-04-28 | Haibing Peng | Three-dimensional non-volatile ferroelectric random access memory |
US9589979B2 (en) * | 2014-11-19 | 2017-03-07 | Macronix International Co., Ltd. | Vertical and 3D memory devices and methods of manufacturing the same |
US10297586B2 (en) | 2015-03-09 | 2019-05-21 | Monolithic 3D Inc. | Methods for processing a 3D semiconductor device |
US11056468B1 (en) | 2015-04-19 | 2021-07-06 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10381328B2 (en) | 2015-04-19 | 2019-08-13 | Monolithic 3D Inc. | Semiconductor device and structure |
US11011507B1 (en) | 2015-04-19 | 2021-05-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10825779B2 (en) | 2015-04-19 | 2020-11-03 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11956952B2 (en) | 2015-08-23 | 2024-04-09 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US10515981B2 (en) | 2015-09-21 | 2019-12-24 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with memory |
US11978731B2 (en) | 2015-09-21 | 2024-05-07 | Monolithic 3D Inc. | Method to produce a multi-level semiconductor memory device and structure |
US12100658B2 (en) | 2015-09-21 | 2024-09-24 | Monolithic 3D Inc. | Method to produce a 3D multilayer semiconductor device and structure |
US10522225B1 (en) | 2015-10-02 | 2019-12-31 | Monolithic 3D Inc. | Semiconductor device with non-volatile memory |
US12016181B2 (en) | 2015-10-24 | 2024-06-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US11991884B1 (en) | 2015-10-24 | 2024-05-21 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US10847540B2 (en) | 2015-10-24 | 2020-11-24 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US12120880B1 (en) | 2015-10-24 | 2024-10-15 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US11296115B1 (en) | 2015-10-24 | 2022-04-05 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11114464B2 (en) | 2015-10-24 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12035531B2 (en) | 2015-10-24 | 2024-07-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US10418369B2 (en) | 2015-10-24 | 2019-09-17 | Monolithic 3D Inc. | Multi-level semiconductor memory device and structure |
US11937422B2 (en) | 2015-11-07 | 2024-03-19 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11114427B2 (en) | 2015-11-07 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor processor and memory device and structure |
CN109155311A (en) * | 2016-08-31 | 2019-01-04 | 美光科技公司 | memory cell and memory array |
US11711928B2 (en) | 2016-10-10 | 2023-07-25 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11812620B2 (en) | 2016-10-10 | 2023-11-07 | Monolithic 3D Inc. | 3D DRAM memory devices and structures with control circuits |
US11329059B1 (en) | 2016-10-10 | 2022-05-10 | Monolithic 3D Inc. | 3D memory devices and structures with thinned single crystal substrates |
US11869591B2 (en) | 2016-10-10 | 2024-01-09 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11930648B1 (en) | 2016-10-10 | 2024-03-12 | Monolithic 3D Inc. | 3D memory devices and structures with metal layers |
US11251149B2 (en) | 2016-10-10 | 2022-02-15 | Monolithic 3D Inc. | 3D memory device and structure |
US11968821B2 (en) | 2017-01-12 | 2024-04-23 | Micron Technology, Inc. | Methods used in fabricating integrated circuitry and methods of forming 2T-1C memory cell arrays |
US10896979B2 (en) * | 2017-09-28 | 2021-01-19 | International Business Machines Corporation | Compact vertical injection punch through floating gate analog memory and a manufacture thereof |
US11222970B2 (en) | 2017-12-28 | 2022-01-11 | Integrated Silicon Solution, (Cayman) Inc. | Perpendicular magnetic tunnel junction memory cells having vertical channels |
WO2019133484A1 (en) * | 2017-12-28 | 2019-07-04 | Spin Memory, Inc. | Methods of forming perpendicular magnetic tunnel junction memory cells having vertical channels |
US10468293B2 (en) | 2017-12-28 | 2019-11-05 | Spin Memory, Inc. | Methods of forming perpendicular magnetic tunnel junction memory cells having vertical channels |
US10658425B2 (en) | 2017-12-28 | 2020-05-19 | Spin Memory, Inc. | Methods of forming perpendicular magnetic tunnel junction memory cells having vertical channels |
US10460778B2 (en) | 2017-12-29 | 2019-10-29 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction memory cells having shared source contacts |
US10840254B2 (en) | 2018-05-22 | 2020-11-17 | Macronix International Co., Ltd. | Pitch scalable 3D NAND |
US11158652B1 (en) | 2019-04-08 | 2021-10-26 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11763864B2 (en) | 2019-04-08 | 2023-09-19 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures with bit-line pillars |
US10892016B1 (en) | 2019-04-08 | 2021-01-12 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11296106B2 (en) | 2019-04-08 | 2022-04-05 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11018156B2 (en) | 2019-04-08 | 2021-05-25 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US10971447B2 (en) * | 2019-06-24 | 2021-04-06 | International Business Machines Corporation | BEOL electrical fuse |
US12144190B2 (en) | 2024-05-29 | 2024-11-12 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding and memory cells preliminary class |
Also Published As
Publication number | Publication date |
---|---|
EP1636831A4 (en) | 2008-12-31 |
EP1636831B1 (en) | 2015-04-01 |
WO2005010934A3 (en) | 2005-05-06 |
EP1636831A2 (en) | 2006-03-22 |
US20040262635A1 (en) | 2004-12-30 |
JP5202842B2 (en) | 2013-06-05 |
JP2007525004A (en) | 2007-08-30 |
US7052941B2 (en) | 2006-05-30 |
WO2005010934A2 (en) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7052941B2 (en) | Method for making a three-dimensional integrated circuit structure | |
JP5294517B2 (en) | Add-on layer forming method | |
JP7331119B2 (en) | Integration of three-dimensional NAND memory devices with multiple functional chips | |
JP7242908B2 (en) | Three-dimensional memory device with backside isolation structure | |
US10896931B1 (en) | 3D semiconductor device and structure | |
US11569215B2 (en) | Three-dimensional memory device with vertical field effect transistors and method of making thereof | |
US7378702B2 (en) | Vertical memory device structures | |
JP2022534538A (en) | 3D memory device with deep isolation structure | |
US11424221B2 (en) | Pad structures for semiconductor devices | |
US11018191B1 (en) | 3D semiconductor device and structure | |
TW201813060A (en) | Nonvolatile memory structure and forming method thereof | |
US11963352B2 (en) | Three-dimensional memory device with vertical field effect transistors and method of making thereof | |
US11133351B2 (en) | 3D semiconductor device and structure | |
US10290682B2 (en) | 3D IC semiconductor device and structure with stacked memory | |
US11462586B1 (en) | Method to produce 3D semiconductor devices and structures with memory | |
US11257867B1 (en) | 3D semiconductor device and structure with oxide bonds | |
US11024673B1 (en) | 3D semiconductor device and structure | |
US11158674B2 (en) | Method to produce a 3D semiconductor device and structure | |
US11469271B2 (en) | Method to produce 3D semiconductor devices and structures with memory | |
US10825864B2 (en) | 3D semiconductor device and structure | |
US11227897B2 (en) | Method for producing a 3D semiconductor memory device and structure | |
US20240215267A1 (en) | Method for producing 3d semiconductor devices and structures with transistors and memory cells | |
US20230299042A1 (en) | Memory Device and Method of Forming The Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BESANG, INC., OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, SANG-YUN;REEL/FRAME:025695/0105 Effective date: 20101215 |
|
AS | Assignment |
Owner name: DAEHONG TECHNEW CORPORATION, KOREA, REPUBLIC OF Free format text: SECURITY AGREEMENT;ASSIGNOR:BESANG INC.;REEL/FRAME:030373/0668 Effective date: 20130507 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: BESANG INC., OREGON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DAEHONG TECHNEW CORPORATION;REEL/FRAME:045658/0353 Effective date: 20180427 |