US20060258547A1 - Zeolite-containing remedial compositions - Google Patents
Zeolite-containing remedial compositions Download PDFInfo
- Publication number
- US20060258547A1 US20060258547A1 US11/488,388 US48838806A US2006258547A1 US 20060258547 A1 US20060258547 A1 US 20060258547A1 US 48838806 A US48838806 A US 48838806A US 2006258547 A1 US2006258547 A1 US 2006258547A1
- Authority
- US
- United States
- Prior art keywords
- composition
- chloride
- fluid
- zeolite
- carrier fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/84—Compositions based on water or polar solvents
- C09K8/845—Compositions based on water or polar solvents containing inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B12/00—Cements not provided for in groups C04B7/00 - C04B11/00
- C04B12/005—Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/047—Zeolites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/006—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
- C09K8/032—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/04—Aqueous well-drilling compositions
- C09K8/14—Clay-containing compositions
- C09K8/16—Clay-containing compositions characterised by the inorganic compounds other than clay
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/32—Non-aqueous well-drilling compositions, e.g. oil-based
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
- C09K8/467—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/5045—Compositions based on water or polar solvents containing inorganic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/925—Completion or workover fluid
Definitions
- the present embodiments relate generally to wellbore treating fluids introduced into a subterranean zone penetrated by a wellbore, particularly fluids introduced as remedial compositions such as pills.
- a wellbore is drilled using a drilling fluid that is continuously circulated down a drill pipe, through a drill bit, and upwardly through the wellbore to the surface.
- a drilling fluid that is continuously circulated down a drill pipe, through a drill bit, and upwardly through the wellbore to the surface.
- the drill bit is withdrawn from the wellbore, and circulation of the drilling fluid is stopped, thereby initiating a shut-down period.
- the drilling fluid is left in the wellbore to provide hydrostatic pressure (i.e., hole stability) on permeable formations penetrated by the well bore, thereby preventing the flow of formation fluids into the wellbore.
- Another function provided by the drilling fluid left in the wellbore is to prevent lost circulation, by sealing off the walls of the wellbore so that the drilling fluid is not lost into highly permeable subterranean zones penetrated by the wellbore. Sealing off the walls of the wellbore is typically accomplished during the shut down period by the deposit of a filter cake of solids from the drilling fluid, and additional dehydrated drilling fluid and gelled drilling fluid, on the walls of the wellbore.
- the next operation in completing the wellbore usually involves running a pipe string, e.g., casing, into the wellbore.
- the next operation typically involves cleaning out the wellbore, which may be accomplished by re-initiating circulation of drilling fluid.
- primary cementing operations are typically performed therein. Namely, the pipe is cemented in the wellbore by placing a cement slurry in the annulus between the pipe and the walls of the wellbore.
- Lost circulation occurs when the drilling fluid is “lost” into the subterranean zone penetrated by the wellbore.
- the drilling fluid can be lost when the drill bit encounters spaces such as fissures, fractures, or caverns in the subterranean zone, and the drilling fluid flows into such spaces. Lost circulation can also occur when the hydrostatic pressure provided by the drilling fluid in the wellbore is compromised.
- unfavorable subterranean zones which may be comparatively low pressure subterranean zones, such as vugs, fractures, and other thief zones, and similarly, comparatively high pressure subterranean zones.
- spaces such as unfavorable subterranean zones, which may be comparatively low pressure subterranean zones, such as vugs, fractures, and other thief zones, and similarly, comparatively high pressure subterranean zones.
- remedial steps for lost circulation comprise introducing a remedial composition into the wellbore to seal the above-described spaces.
- remedial compositions comprise mixtures of clay and aqueous rubber latex or hydratable polymer (e.g., U.S. Pat. Nos. 5,913,364; 6,060,434; 6,167,967; 6,258,757), which form masses with a consistency often referred to as “rubbery”, “viscous”, or “gelatinous”, to seal the space.
- Exemplary remedial compositions form such masses upon contact with drilling fluid, mud or other compositions with which the remedial composition is designed to react, thereby sealing fractures, fissures, low pressure or high pressure subterranean zones, and the like.
- Such remedial compositions are often referred to as a “pill” by those of ordinary skill in the art.
- compositions in the form of remedial compositions such as pills, that comprise zeolite, as well as methods for the use of such remedial compositions comprising zeolite.
- wellbore treating fluids comprising zeolite are introduced into a wellbore in the form of a remedial composition such as a pill.
- the wellbore treating fluid comprises a pill comprising zeolite.
- Methods according to the present embodiments provide for introducing a wellbore treating fluid comprising zeolite into a subterranean zone penetrated by a wellbore to remediate lost circulation, and to seal fissures, fractures, caverns, vugs, thief zones, low pressure or high pressure subterranean zones.
- mud encompasses any fluid used in hydrocarbon drilling operations, including but not limited to all types of water-base, oil-base and synthetic-base drilling fluids, and fluids that contain significant amounts of suspended solids, emulsified water or oil.
- a pill comprising zeolite and at least one carrier fluid. Pills according to the present embodiments can be used with any methods in which conventional remedial compositions are used. For example, a pill according to the present embodiments can be used as a remedial composition for lost circulation.
- the carrier fluid can be one or more oil-based or water-based fluids as illustrated further herein.
- the zeolite and carrier fluid (whether water-based or oil-based) are referred to herein as “base components” of the pill to provide a point of reference for additional components such as activators and surfactants.
- the zeolite is present in an amount of from about 5 to about 75 weight percent of the total weight of the base components.
- zeolite is present in an amount of from about 20 to about 60 weight percent of the total weight of the base components. According to still other embodiments, zeolite is present in an amount of from about 30 to about 50 weight percent of the total weight of the base components.
- embodiments of the pill herein comprise carrier fluid in an amount from about 25 to about 95 weight percent of the total weight of the base components. According to other embodiments, carrier fluid is present in an amount of from about 40 to about 80 weight percent of the total weight of the base components. According to still other embodiments, carrier fluid is present in an amount of from about 50 to about 70 weight percent of the total weight of the base components.
- the pill comprises zeolite and at least one oil-based carrier fluid.
- the carrier fluid is a synthetic-based fluid.
- the pill when the drilling fluid, mud or other composition with which the pill comprising zeolite is desired to react is oil-based or synthetic-based, then the pill comprises zeolite and at least one water-based carrier fluid.
- water-based pill when such water-based pill is introduced into the wellbore, it will react when it comes into contact with the oil-based or synthetic-based drilling fluid, thereby forming a mass.
- the pill when the pill comprising zeolite is oil-based or synthetic-based, or when the drilling fluid, mud or composition with which the pill is desired to react is oil-based or synthetic-based, the pill further comprises at least one surfactant.
- surfactants are known to those of ordinary skill in the art, and the selection of a type and concentration of a surfactant largely depends on the nature and composition of the pill, which can be determined by those of ordinary skill in the art.
- Suitable surfactants for use with the present embodiments include but are not limited to cetyltrimethylammonium chloride, cocoaalkyltrimethylammonium chloride, cocoalkyldimethylbenzyl ammonium chloride, stearyltrimethylammonium chloride, alkylbehenyltrimethylammonium chloride dihydrogenatedtallowalkylethylmethyleammonium ethosulfate, didecyldimethylammonium chloride, dicocyldimethylammonium chloride, distearyldimethylammonium chloride, dioleyldimethylammonium chloride, trilaurylmethylammonium chloride, cocoyl-bis-(2-hydroxyethyl)methylammonium chloride, polyoxyethylene (15) cocoalkylmethylammonium chloride, olyel-bis-(2-hydroxyethyl) methylammonium chloride, tallowalkylmethylpropylenediammonium dichloride, and trimethyl
- an activator is incorporated into the pills of the present embodiments in an amount of from about 1 to about 20 weight percent based on the total weight of the base components of the pill.
- the activator can be any of calcium hydroxide, sodium silicate, sodium fluoride, sodium silicofluoride, magnesium silicofluoride, zinc silicofluoride, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium sulfate, and mixtures thereof. Selection of type and concentration of an activator(s) largely depends on the nature and composition of the pill. Typically, the activator is selected so that it will add strength to the mass formed when the pill is contacted with a drilling fluid, mud, or other composition with which it is designed to react. According to one embodiment, the activator is calcium hydroxide (commonly referred to as lime).
- conventional pills comprise materials that form a mass upon contact with the drilling fluid, mud or other composition with which the pill is designed to react, thereby sealing spaces such as fissures, fractures, caverns, vugs, thief zones, low pressure or high pressure subterranean zones and preventing lost circulation. Pills comprising zeolite according to embodiments presented herein develop compressive strength over time, which results in an enhanced sealing of such spaces. Moreover, the sealing of such spaces according to the present embodiments strengthens the wellbore formation such that higher density muds, drilling fluids, and other wellbore treating fluids can be pumped through the wellbore without compromising the stability of the wellbore.
- Zeolites are porous alumino-silicate minerals that may be either a natural or manmade material.
- Manmade zeolites are based on the same type of structural cell as natural zeolites, and are composed of aluminosilicate hydrates having the same basic formula as given below. It is understood that as used in this application, the term “zeolite” means and encompasses all natural and manmade forms of zeolites. All zeolites are composed of a three-dimensional framework of SiO 4 and AlO 4 in a tetrahedron, which creates a very high surface area. Cations and water molecules are entrained into the framework.
- all zeolites may be represented by the crystallographic unit cell formula: M a/n [(AlO 2 ) a (SiO 2 ) b ] ⁇ xH 2 O
- M represents one or more cations such as Na, K, Mg, Ca, Sr, Li or Ba for natural zeolites and NH 4, CH 3 NH 3 , (CH 3 ) 3 NH, (CH 3 ) 4 N, Ga, Ge and P for manmade zeolites
- n represents the cation valence
- the ratio of b:a is in a range from greater than or equal to 1 and less than or equal to 5
- x represents the moles of water entrained into the zeolite framework.
- Preferred zeolites for use in the wellbore treating fluids of the present embodiments include analcime (hydrated sodium aluminum silicate), bikitaite (lithium aluminum silicate), brewsterite (hydrated strontium barium calcium aluminum silicate), chabazite (hydrated calcium aluminum silicate), clinoptilolite (hydrated sodium aluminum silicate), faujasite (hydrated sodium potassium calcium magnesium aluminum silicate), harmotome (hydrated barium aluminum silicate), heulandite (hydrated sodium calcium aluminum silicate), laumontite (hydrated calcium aluminum silicate), mesolite (hydrated sodium calcium aluminum silicate), natrolite (hydrated sodium aluminum silicate), paulingite (hydrated potassium sodium calcium barium aluminum silicate), phillipsite (hydrated potassium sodium calcium aluminum silicate), scolecite (hydrated calcium aluminum silicate), stellerite (hydrated calcium aluminum silicate), stilbite (hydrated sodium calcium aluminum silicate) and thomsonite (hydrated sodium calcium aluminum silicate).
- the zeolites for use in the well
- Carrier fluids suitable for use in the embodiments of wellbore treating fluids disclosed herein comprise an aqueous fluid, such as water and water-based gels, oil-based and synthetic-based fluids, emulsions, acids, or mixtures thereof.
- aqueous fluid such as water and water-based gels, oil-based and synthetic-based fluids, emulsions, acids, or mixtures thereof.
- oil-based fluids include but are not limited to canola oil, kerosene, diesel oil, fish oil, mineral oil, sunflower oil, corn oil, soy oil, olive oil, cottonseed oil, peanut oil and paraffin.
- Exemplary synthetic-based fluids include but are not limited to esters, olefins and ethers.
- the preferred carrier fluid depends upon the properties desired for the wellbore treating fluid, as well as the cost, availability, temperature, stability, viscosity, clarity, and the like, of the carrier fluid.
- the carrier fluid comprises water
- the water can be fresh water, unsaturated salt solution, including brines and seawater, and saturated salt solution.
- drilling operations include drilling a wellbore with a mud, introducing a wellbore treating fluid comprising zeolite and at least one carrier fluid into the wellbore, and forming a mass in the wellbore by allowing the wellbore treating fluid to come into contact with the mud.
- Other methods according to the present embodiments include methods for performing remedial operations in a wellbore by introducing a wellbore treating fluid comprising zeolite and a carrier fluid into the wellbore, allowing the wellbore treating fluid to come into contact with a mud residing in at least one space in the wellbore such as a fissure, fracture, cavern, vug, thief zone, low pressure or high pressure subterranean zone, whereby the wellbore treating fluid forms a mass and seals the space.
- Muds 1, 2, and 3 Three water-based muds, (Muds 1, 2, and 3), one oil-based mud, (Mud 4) and one synthetic-based mud (Mud 5), were obtained from Baroid Industrial Drilling Products. Muds 1 - 5 were obtained from Baroid already prepared, however the components of each mud, and the amount of each, are identified in Table 1A.
- ester in Mud 5 obtained from Baroid can generally be described as a monocarboxylic acid ester of a C 2 - C 12 monofunctional alkanol, wherein the monocarboxylic acid contains from 12 to 16 carbon atoms and is aliphatically saturated.
- Such esters are described in U.S. Pat. No. 5,252,554, issued Oct. 12, 1993 to Mueller et al. and assigned to Baroid Limited.
- BARAZAN PLUS is a suspension agent/viscosifier that includes xanthan gum
- EZ-MUD is a shale stabilizing polymer solution
- INVERMUL, EZ-MUL, and EZ-MUL NTE are emulsifiers
- GELTONE II and GELTONE V are viscosifiers
- DURATONE HT is a filtration control agent.
- the amount of each component is reported in Table 1A in “lb/bbl”, which indicates pounds of component per barrel of mud.
- Two oil-based pills comprising zeolite (Pills 1 and 2) were prepared by pouring the amount of canola oil and kerosene indicated in Table 1 B into a measuring cylinder, sealing it and then shaking it back and forth by hand to form an oil mixture. The oil mixture was then poured into a Waring blender and Arquad T-50TM surfactant was added in the amount reported in the table.
- Arquad T-50TM is a trimethyltallowammonium chloride (50% active) surfactant that is commercially available from Armak Industrial Chemicals Division.
- the zeolite, and lime where indicated, were added to the blender over a period of 30 seconds at a blender speed of 2000 rpm. Mixing was then continued until a homogenous mix was obtained, which took approximately 1 minute.
- Two water-based pills comprising zeolite (Pills 3 and 4) were prepared by adding the zeolite, and lime where indicated, to water in a Waring blender over a period of 30 seconds at 2000 rpm. Mixing was then continued until a homogenous mix was obtained, which took approximately 1 minute.
- Pills 1- 4 The amounts of zeolite, canola oil, kerosene and water (as applicable) used to prepare Pills 1- 4 are reported in the table as a weight percent (“wt. %”), while the amounts of lime and surfactant (as applicable) are reported as a weight percent of the total weight of the “base components” (“wt. % base”).
- base components The zeolite, canola oil, kerosene and water are referred to in the table as “base components” merely to provide a point of reference for the amount of lime and surfactant used to prepare Pills 1- 4.
- the lime and surfactant are referred to in the table as “additives” merely to illustrate that the amount of these components is calculated based on the total weight of the zeolite, canola oil, kerosene and water.
- the zeolite used to prepared Pills 1- 4 was chabazite, which is commercially available from C2C Zeolite Corporation of Calgary, Canada.
- Pills 1- 4 were then blended by hand with Muds 1- 5 to form ten sample compositions, as indicated in Table 1C.
- each mud Prior to blending with a pill, each mud was stirred at low speed with a Series 2000, Model 50 variable speed laboratory dispersator mixer available from Premier Mill Corp. to give a uniform suspension.
- 100 mL of the indicated mud i.e., Mud 4 or 5
- 100 mL of the indicated water based zeolite pill i.e., Pill 3 or 4
- the sample was prepared from a water-based mud, the same procedure was followed.
- remedial compositions comprising zeolite are suitable for use in any methods in which a conventional remedial composition is used to form a mass.
- the present embodiments can be used in drilling operations and remedial operations in wellbores where a mass is formed for purposes such as sealing fissures, fractures, caverns, vugs, thief zones, low pressure subterranean zones and high pressure subterranean zones.
- remedial compositions comprising zeolite, such as Pills 1- 4 can be either water-based or oil-based, and can be used with conventional water-based or oil-based muds.
- Pills 2 and 4 included hydrated lime.
- compressive strength measurements were taken for each sample that included either Pill 2 or Pill 4, namely, Samples 4- 6 and 9- 10.
- the compressive strengths of Samples 4- 6 and 9- 10 were determined by placing the sealed plastic containers used to gather the data reported in Table 1C in a water bath at 180° F. and atmospheric pressure for the time periods reported in Table 1D. The plastic containers were then removed from the water bath, allowed to cool and the cylindrical samples were demolded from each plastic container. The top end of each cylindrical sample was cut using a tile saw to give a smooth and level surface.
- the compressive strength data indicates that wellbore treating fluids comprising zeolite and an activator, such as the remedial compositions of Pills 2 and 4, form masses that develop compressive strength.
- an activator such as the remedial compositions of Pills 2 and 4
- Such remedial compositions are suitable for use in methods of performing drilling operations and performing remedial operations.
- the activator comprised lime (also known as “calcium hydroxide”).
- the activator is any of sodium silicate, sodium fluoride, sodium silicofluoride, magnesium silicofluoride, zinc silicofluoride, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium sulfate, and mixtures thereof.
- a remedial composition comprising zeolite, such as Pills 1- 4, is introduced into a wellbore and allowed to come into contact with a mud residing in a space such as a fissure, fracture, cavern, vug, thief zone, low pressure subterranean zone or high pressure subterranean zone in the wellbore.
- a mud residing in a space such as a fissure, fracture, cavern, vug, thief zone, low pressure subterranean zone or high pressure subterranean zone in the wellbore.
- a mass forms, thereby sealing the space and preventing problems such as lost circulation.
- the sealing of such spaces strengthens the wellbore formation such that higher density muds, drilling fluids, and other wellbore treating fluids can be pumped through the wellbore without compromising the stability of the wellbore.
- any wellbore treating fluids such as drilling, completion and stimulation fluids including, but not limited to, drilling muds, cement compositions, well cleanup fluids, workover fluids, spacer fluids, gravel pack fluids, acidizing fluids, fracturing fluids, conformance fluids, spotting fluids and the like can be prepared using zeolite and a carrier fluid.
- improved methods of the present invention comprise preparing a wellbore treating fluid using at least one carrier fluid and zeolite, as previously described herein, and placing the fluid in a subterranean formation.
- Other methods according to the present embodiments include performing drilling operations, completing and/or stimulating a subterranean formation, and performing primary cementing operations using a wellbore treating fluid comprising zeolite and at least one carrier fluid.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Dispersion Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Methods and compositions for wellbore treating fluids that include zeolite and at least one carrier fluid.
Description
- This application is a divisional of prior application Ser. No. 10/727,370 filed Dec. 4, 2003, the entire disclosure of which is incorporated herein by reference, which itself is a continuation-in-part of prior application Ser. No. 10/686,098 filed Oct. 15, 2003, the entire disclosure of which is incorporated herein by reference, which itself is a continuation-in-part of prior application Ser. No. 10/623,443 filed Jul. 18, 2003, the entire disclosure of which is incorporated herein by reference, and which itself is a continuation-in-part of prior application Ser. No. 10/315,415, filed Dec. 10, 2002, the entire disclosure of which is incorporated herein by reference.
- The present embodiments relate generally to wellbore treating fluids introduced into a subterranean zone penetrated by a wellbore, particularly fluids introduced as remedial compositions such as pills.
- Conventionally, a wellbore is drilled using a drilling fluid that is continuously circulated down a drill pipe, through a drill bit, and upwardly through the wellbore to the surface. Typically, after a wellbore has been drilled to total depth, the drill bit is withdrawn from the wellbore, and circulation of the drilling fluid is stopped, thereby initiating a shut-down period. The drilling fluid is left in the wellbore to provide hydrostatic pressure (i.e., hole stability) on permeable formations penetrated by the well bore, thereby preventing the flow of formation fluids into the wellbore. Another function provided by the drilling fluid left in the wellbore is to prevent lost circulation, by sealing off the walls of the wellbore so that the drilling fluid is not lost into highly permeable subterranean zones penetrated by the wellbore. Sealing off the walls of the wellbore is typically accomplished during the shut down period by the deposit of a filter cake of solids from the drilling fluid, and additional dehydrated drilling fluid and gelled drilling fluid, on the walls of the wellbore.
- The next operation in completing the wellbore usually involves running a pipe string, e.g., casing, into the wellbore. After the pipe is run in the wellbore, the next operation typically involves cleaning out the wellbore, which may be accomplished by re-initiating circulation of drilling fluid. After clean-up operations are performed in the wellbore, primary cementing operations are typically performed therein. Namely, the pipe is cemented in the wellbore by placing a cement slurry in the annulus between the pipe and the walls of the wellbore.
- During any of the above or other operations performed in the wellbore, a number of problems can occur that require remedial operations. One such problem is lost circulation. Lost circulation occurs when the drilling fluid is “lost” into the subterranean zone penetrated by the wellbore. The drilling fluid can be lost when the drill bit encounters spaces such as fissures, fractures, or caverns in the subterranean zone, and the drilling fluid flows into such spaces. Lost circulation can also occur when the hydrostatic pressure provided by the drilling fluid in the wellbore is compromised. This occurs when the drill bit encounters other types of “spaces”, such as unfavorable subterranean zones, which may be comparatively low pressure subterranean zones, such as vugs, fractures, and other thief zones, and similarly, comparatively high pressure subterranean zones. When lost circulation occurs, remedial steps are required.
- Most remedial steps for lost circulation comprise introducing a remedial composition into the wellbore to seal the above-described spaces. Examples of such remedial compositions comprise mixtures of clay and aqueous rubber latex or hydratable polymer (e.g., U.S. Pat. Nos. 5,913,364; 6,060,434; 6,167,967; 6,258,757), which form masses with a consistency often referred to as “rubbery”, “viscous”, or “gelatinous”, to seal the space. Exemplary remedial compositions form such masses upon contact with drilling fluid, mud or other compositions with which the remedial composition is designed to react, thereby sealing fractures, fissures, low pressure or high pressure subterranean zones, and the like. Such remedial compositions are often referred to as a “pill” by those of ordinary skill in the art.
- The present embodiments provide compositions in the form of remedial compositions, such as pills, that comprise zeolite, as well as methods for the use of such remedial compositions comprising zeolite.
- According to embodiments described herein, wellbore treating fluids comprising zeolite are introduced into a wellbore in the form of a remedial composition such as a pill. In one embodiment, the wellbore treating fluid comprises a pill comprising zeolite.
- Methods according to the present embodiments provide for introducing a wellbore treating fluid comprising zeolite into a subterranean zone penetrated by a wellbore to remediate lost circulation, and to seal fissures, fractures, caverns, vugs, thief zones, low pressure or high pressure subterranean zones.
- Remedial compositions that generally form a mass upon contact with a drilling fluid, mud or other composition with which the remedial composition is designed to react are referred to herein as a “pill”. As used herein, the term “mud” encompasses any fluid used in hydrocarbon drilling operations, including but not limited to all types of water-base, oil-base and synthetic-base drilling fluids, and fluids that contain significant amounts of suspended solids, emulsified water or oil.
- According to the present embodiments, a pill comprising zeolite and at least one carrier fluid is provided. Pills according to the present embodiments can be used with any methods in which conventional remedial compositions are used. For example, a pill according to the present embodiments can be used as a remedial composition for lost circulation. The carrier fluid can be one or more oil-based or water-based fluids as illustrated further herein. The zeolite and carrier fluid (whether water-based or oil-based) are referred to herein as “base components” of the pill to provide a point of reference for additional components such as activators and surfactants. According to one embodiment, the zeolite is present in an amount of from about 5 to about 75 weight percent of the total weight of the base components. According to other embodiments, zeolite is present in an amount of from about 20 to about 60 weight percent of the total weight of the base components. According to still other embodiments, zeolite is present in an amount of from about 30 to about 50 weight percent of the total weight of the base components.
- Whether the at least one carrier fluid is water-based or oil-based, embodiments of the pill herein comprise carrier fluid in an amount from about 25 to about 95 weight percent of the total weight of the base components. According to other embodiments, carrier fluid is present in an amount of from about 40 to about 80 weight percent of the total weight of the base components. According to still other embodiments, carrier fluid is present in an amount of from about 50 to about 70 weight percent of the total weight of the base components.
- When the drilling fluid, mud, or other composition with which the pill comprising zeolite is desired to react is water-based, then the pill comprises zeolite and at least one oil-based carrier fluid. Alternatively, the carrier fluid is a synthetic-based fluid. When such oil-based (or synthetic-based) pill is introduced into the wellbore, it will react when it comes into contact with the water-based fluid, thereby forming a mass.
- According to another embodiment, when the drilling fluid, mud or other composition with which the pill comprising zeolite is desired to react is oil-based or synthetic-based, then the pill comprises zeolite and at least one water-based carrier fluid. Thus, when such water-based pill is introduced into the wellbore, it will react when it comes into contact with the oil-based or synthetic-based drilling fluid, thereby forming a mass.
- According to yet another embodiment, when the pill comprising zeolite is oil-based or synthetic-based, or when the drilling fluid, mud or composition with which the pill is desired to react is oil-based or synthetic-based, the pill further comprises at least one surfactant. Surfactants are known to those of ordinary skill in the art, and the selection of a type and concentration of a surfactant largely depends on the nature and composition of the pill, which can be determined by those of ordinary skill in the art. Suitable surfactants for use with the present embodiments include but are not limited to cetyltrimethylammonium chloride, cocoaalkyltrimethylammonium chloride, cocoalkyldimethylbenzyl ammonium chloride, stearyltrimethylammonium chloride, alkylbehenyltrimethylammonium chloride dihydrogenatedtallowalkylethylmethyleammonium ethosulfate, didecyldimethylammonium chloride, dicocyldimethylammonium chloride, distearyldimethylammonium chloride, dioleyldimethylammonium chloride, trilaurylmethylammonium chloride, cocoyl-bis-(2-hydroxyethyl)methylammonium chloride, polyoxyethylene (15) cocoalkylmethylammonium chloride, olyel-bis-(2-hydroxyethyl) methylammonium chloride, tallowalkylmethylpropylenediammonium dichloride, and trimethyltallowammonium chloride. According to one embodiment illustrated herein, a remedial composition comprising zeolite and at least one carrier fluid further comprises trimethyltallowammonium chloride as a surfactant.
- According to still other embodiments, an activator is incorporated into the pills of the present embodiments in an amount of from about 1 to about 20 weight percent based on the total weight of the base components of the pill. The activator can be any of calcium hydroxide, sodium silicate, sodium fluoride, sodium silicofluoride, magnesium silicofluoride, zinc silicofluoride, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium sulfate, and mixtures thereof. Selection of type and concentration of an activator(s) largely depends on the nature and composition of the pill. Typically, the activator is selected so that it will add strength to the mass formed when the pill is contacted with a drilling fluid, mud, or other composition with which it is designed to react. According to one embodiment, the activator is calcium hydroxide (commonly referred to as lime).
- As described above, conventional pills comprise materials that form a mass upon contact with the drilling fluid, mud or other composition with which the pill is designed to react, thereby sealing spaces such as fissures, fractures, caverns, vugs, thief zones, low pressure or high pressure subterranean zones and preventing lost circulation. Pills comprising zeolite according to embodiments presented herein develop compressive strength over time, which results in an enhanced sealing of such spaces. Moreover, the sealing of such spaces according to the present embodiments strengthens the wellbore formation such that higher density muds, drilling fluids, and other wellbore treating fluids can be pumped through the wellbore without compromising the stability of the wellbore.
- Zeolites are porous alumino-silicate minerals that may be either a natural or manmade material. Manmade zeolites are based on the same type of structural cell as natural zeolites, and are composed of aluminosilicate hydrates having the same basic formula as given below. It is understood that as used in this application, the term “zeolite” means and encompasses all natural and manmade forms of zeolites. All zeolites are composed of a three-dimensional framework of SiO4 and AlO4 in a tetrahedron, which creates a very high surface area. Cations and water molecules are entrained into the framework. Thus, all zeolites may be represented by the crystallographic unit cell formula:
M a/n[(AlO2)a(SiO2)b]·xH2O
where M represents one or more cations such as Na, K, Mg, Ca, Sr, Li or Ba for natural zeolites and NH4, CH3NH3, (CH3)3NH, (CH3)4N, Ga, Ge and P for manmade zeolites; n represents the cation valence; the ratio of b:a is in a range from greater than or equal to 1 and less than or equal to 5; and x represents the moles of water entrained into the zeolite framework. - Preferred zeolites for use in the wellbore treating fluids of the present embodiments include analcime (hydrated sodium aluminum silicate), bikitaite (lithium aluminum silicate), brewsterite (hydrated strontium barium calcium aluminum silicate), chabazite (hydrated calcium aluminum silicate), clinoptilolite (hydrated sodium aluminum silicate), faujasite (hydrated sodium potassium calcium magnesium aluminum silicate), harmotome (hydrated barium aluminum silicate), heulandite (hydrated sodium calcium aluminum silicate), laumontite (hydrated calcium aluminum silicate), mesolite (hydrated sodium calcium aluminum silicate), natrolite (hydrated sodium aluminum silicate), paulingite (hydrated potassium sodium calcium barium aluminum silicate), phillipsite (hydrated potassium sodium calcium aluminum silicate), scolecite (hydrated calcium aluminum silicate), stellerite (hydrated calcium aluminum silicate), stilbite (hydrated sodium calcium aluminum silicate) and thomsonite (hydrated sodium calcium aluminum silicate). Most preferably, the zeolites for use in the wellbore treating fluids of the present embodiment include chabazite and clinoptilolite.
- Carrier fluids suitable for use in the embodiments of wellbore treating fluids disclosed herein comprise an aqueous fluid, such as water and water-based gels, oil-based and synthetic-based fluids, emulsions, acids, or mixtures thereof. Exemplary oil-based fluids include but are not limited to canola oil, kerosene, diesel oil, fish oil, mineral oil, sunflower oil, corn oil, soy oil, olive oil, cottonseed oil, peanut oil and paraffin. Exemplary synthetic-based fluids include but are not limited to esters, olefins and ethers.
- The preferred carrier fluid depends upon the properties desired for the wellbore treating fluid, as well as the cost, availability, temperature, stability, viscosity, clarity, and the like, of the carrier fluid. When the carrier fluid comprises water, the water can be fresh water, unsaturated salt solution, including brines and seawater, and saturated salt solution.
- In carrying out the methods of the present embodiments, drilling operations include drilling a wellbore with a mud, introducing a wellbore treating fluid comprising zeolite and at least one carrier fluid into the wellbore, and forming a mass in the wellbore by allowing the wellbore treating fluid to come into contact with the mud.
- Other methods according to the present embodiments include methods for performing remedial operations in a wellbore by introducing a wellbore treating fluid comprising zeolite and a carrier fluid into the wellbore, allowing the wellbore treating fluid to come into contact with a mud residing in at least one space in the wellbore such as a fissure, fracture, cavern, vug, thief zone, low pressure or high pressure subterranean zone, whereby the wellbore treating fluid forms a mass and seals the space.
- The following examples are illustrative of the foregoing methods and compositions.
- Three water-based muds, (Muds 1, 2, and 3), one oil-based mud, (Mud 4) and one synthetic-based mud (Mud 5), were obtained from Baroid Industrial Drilling Products. Muds 1 - 5 were obtained from Baroid already prepared, however the components of each mud, and the amount of each, are identified in Table 1A.
- The precise chemical identification of the ester in Mud 5 obtained from Baroid is not known. However, the ester can generally be described as a monocarboxylic acid ester of a C2- C12 monofunctional alkanol, wherein the monocarboxylic acid contains from 12 to 16 carbon atoms and is aliphatically saturated. Such esters are described in U.S. Pat. No. 5,252,554, issued Oct. 12, 1993 to Mueller et al. and assigned to Baroid Limited.
- In addition, the precise chemical description of the following components identified in Table 1A is not known, however the function of each component is provided as follows: BARAZAN PLUS is a suspension agent/viscosifier that includes xanthan gum; EZ-MUD is a shale stabilizing polymer solution; INVERMUL, EZ-MUL, and EZ-MUL NTE are emulsifiers; GELTONE II and GELTONE V are viscosifiers; and DURATONE HT is a filtration control agent. The amount of each component is reported in Table 1A in “lb/bbl”, which indicates pounds of component per barrel of mud.
- Two oil-based pills comprising zeolite (Pills 1 and 2) were prepared by pouring the amount of canola oil and kerosene indicated in Table 1B into a measuring cylinder, sealing it and then shaking it back and forth by hand to form an oil mixture. The oil mixture was then poured into a Waring blender and Arquad T-50™ surfactant was added in the amount reported in the table. Arquad T-50™ is a trimethyltallowammonium chloride (50% active) surfactant that is commercially available from Armak Industrial Chemicals Division. The zeolite, and lime where indicated, were added to the blender over a period of 30 seconds at a blender speed of 2000 rpm. Mixing was then continued until a homogenous mix was obtained, which took approximately 1 minute.
- Two water-based pills comprising zeolite (Pills 3 and 4) were prepared by adding the zeolite, and lime where indicated, to water in a Waring blender over a period of 30 seconds at 2000 rpm. Mixing was then continued until a homogenous mix was obtained, which took approximately 1 minute.
- The amounts of zeolite, canola oil, kerosene and water (as applicable) used to prepare Pills 1- 4 are reported in the table as a weight percent (“wt. %”), while the amounts of lime and surfactant (as applicable) are reported as a weight percent of the total weight of the “base components” (“wt. % base”). The zeolite, canola oil, kerosene and water are referred to in the table as “base components” merely to provide a point of reference for the amount of lime and surfactant used to prepare Pills 1- 4. Similarly, the lime and surfactant are referred to in the table as “additives” merely to illustrate that the amount of these components is calculated based on the total weight of the zeolite, canola oil, kerosene and water. The zeolite used to prepared Pills 1- 4 was chabazite, which is commercially available from C2C Zeolite Corporation of Calgary, Canada.
TABLE 1A Mud 1 Mud 2 Mud 3 Mud 4 Mud 5 Components Water Water Water Oil Synthetic (lb/bbl) Based Based Based Based Based Bentonite 15 22 15 0 0 Caustic soda 0.75 0.75 0.75 0 0 BARAZAN PLUS 0.5 0 0.5 0 0 Lime 0 1.0 0 3.0 1.0 EZ-MUD 0 0 8.93 0 0 Barite 118 117 118 0 816 Water 36.5 37.7 36.5 0 0 Diesel 0 0 0 26.8 0 Ester 0 0 0 0 20.8 2% CaCl2 Solution 0 0 0 6.7 5.2 INVERMUL 0 0 0 7 0 EZ-MUL 0 0 0 1.5 0 EZ-MUL NTE 0 0 0 0 12 GELTONE II 0 0 0 1.5 0 GELTONE V 0 0 0 0 1.0 DURATONE HT 0 0 0 0 10 -
TABLE 1B Pill 1 Pill 2 Pill 3 Pill 4 Oil Based Oil Based Water Based Water Based Base Components (wt. %) Zeolite (Chabazite) 46.0 37.6 48.0 37.6 Canola Oil 32.4 37.6 0 0 Kerosene 21.6 24.8 0 0 Water 0 0 52.0 62.4 Additives (wt. % Base) Hydrated Lime 0 10.8 0 10.8 Arquad T-50 0 0.48 0 0 - Pills 1- 4 were then blended by hand with Muds 1- 5 to form ten sample compositions, as indicated in Table 1C. Prior to blending with a pill, each mud was stirred at low speed with a Series 2000, Model 50 variable speed laboratory dispersator mixer available from Premier Mill Corp. to give a uniform suspension. When the sample was prepared from an oil-based or synthetic-based mud, 100 mL of the indicated mud (i.e., Mud 4 or 5) was placed in a cylindrical plastic container and 100 mL of the indicated water based zeolite pill (i.e., Pill 3 or 4) was added. When the sample was prepared from a water-based mud, the same procedure was followed. Namely, 100 mL of the indicated mud (i.e., Mud 1, 2, or 3) was placed in a cylindrical plastic container and 100 mL of the indicated oil based zeolite pill (i.e., Pill 1 or 2) was added. For each of the ten samples, the plastic container was sealed with a cap, and then hand shaken for from about 30 seconds to about 1 minute, by which time the sample had turned into a mass, as reported in Table 1C. The consistency of each mass was similar to the consistency of the masses formed by conventional pills, which is often referred to as “rubbery”, “viscous”, or “gelatinous”.
TABLE 1C Sample No. and Blend Composition Result Sample 1: Pill 1 + Mud 1 mass Sample 2: Pill 1 + Mud 2 mass Sample 3: Pill 1 + Mud 3 mass Sample 4: Pill 2 + Mud 1 mass Sample 5: Pill 2 + Mud 2 mass Sample 6: Pill 2 + Mud 3 mass Sample 7: Pill 3 + Mud 4 mass Sample 8: Pill 3 + Mud 5 mass Sample 9: Pill 4 + Mud 4 mass Sample 10: Pill 4 + Mud 5 mass - The results of Table 1C illustrate that remedial compositions comprising zeolite, such as Pills 1- 4, are suitable for use in any methods in which a conventional remedial composition is used to form a mass. For example, the present embodiments can be used in drilling operations and remedial operations in wellbores where a mass is formed for purposes such as sealing fissures, fractures, caverns, vugs, thief zones, low pressure subterranean zones and high pressure subterranean zones. Further still, Table 1C illustrates that remedial compositions comprising zeolite, such as Pills 1- 4, can be either water-based or oil-based, and can be used with conventional water-based or oil-based muds.
- As reported in Table 1B, Pills 2 and 4 included hydrated lime. To determine whether the hydrated lime added strength to the mass, compressive strength measurements were taken for each sample that included either Pill 2 or Pill 4, namely, Samples 4- 6 and 9- 10. The compressive strengths of Samples 4- 6 and 9- 10 were determined by placing the sealed plastic containers used to gather the data reported in Table 1C in a water bath at 180° F. and atmospheric pressure for the time periods reported in Table 1D. The plastic containers were then removed from the water bath, allowed to cool and the cylindrical samples were demolded from each plastic container. The top end of each cylindrical sample was cut using a tile saw to give a smooth and level surface. The remainder of the sample was then placed in a Tineus Olsen universal testing machine and the compressive strength determined according to operating procedures for the universal testing machine. The compressive strength measurements are reported in Table 1D.
TABLE 1D Compressive strength (psi) Measured at 180° F. and at Time (Days) Sample No. 5 days 10 days 15 days 20 days Sample 4 0 0 25 25 Sample 5 0 0 25 25 Sample 6 0 0 15 15 Sample 9 27.1 26.8 not taken not taken Sample 10 212 164 not taken not taken - The compressive strength data indicates that wellbore treating fluids comprising zeolite and an activator, such as the remedial compositions of Pills 2 and 4, form masses that develop compressive strength. Such remedial compositions are suitable for use in methods of performing drilling operations and performing remedial operations. In the embodiments illustrated by Pills 2 and 4, the activator comprised lime (also known as “calcium hydroxide”). According to other embodiments, the activator is any of sodium silicate, sodium fluoride, sodium silicofluoride, magnesium silicofluoride, zinc silicofluoride, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium sulfate, and mixtures thereof.
- In practicing methods of the present embodiments, a remedial composition comprising zeolite, such as Pills 1- 4, is introduced into a wellbore and allowed to come into contact with a mud residing in a space such as a fissure, fracture, cavern, vug, thief zone, low pressure subterranean zone or high pressure subterranean zone in the wellbore. When the remedial composition contacts the mud, a mass forms, thereby sealing the space and preventing problems such as lost circulation. Moreover, the sealing of such spaces strengthens the wellbore formation such that higher density muds, drilling fluids, and other wellbore treating fluids can be pumped through the wellbore without compromising the stability of the wellbore.
- While the embodiments described herein relate to wellbore treating fluids provided as remedial compositions such as pills, it is understood that any wellbore treating fluids such as drilling, completion and stimulation fluids including, but not limited to, drilling muds, cement compositions, well cleanup fluids, workover fluids, spacer fluids, gravel pack fluids, acidizing fluids, fracturing fluids, conformance fluids, spotting fluids and the like can be prepared using zeolite and a carrier fluid. Accordingly, improved methods of the present invention comprise preparing a wellbore treating fluid using at least one carrier fluid and zeolite, as previously described herein, and placing the fluid in a subterranean formation. Other methods according to the present embodiments include performing drilling operations, completing and/or stimulating a subterranean formation, and performing primary cementing operations using a wellbore treating fluid comprising zeolite and at least one carrier fluid.
- Other embodiments of the current invention will be apparent to those skilled in the art from a consideration of this specification or practice of the embodiments disclosed herein. However, the foregoing specification is considered merely exemplary of the present invention, with the true scope and spirit of the invention being indicated by the following claims.
Claims (31)
1. A composition comprising at least one carrier fluid, and a zeolite selected from analcime, bikitaite, brewsterite, chabazite, clinoptilolite, faujasite, harmotome, heulandite, laumontite, mesolite, natrolite, paulingite, phillipsite, scolecite, stellerite, stilbite, and thomsonite, wherein the at least one carrier fluid and the zeolite are present in relative amounts sufficient to make the composition introducible into a wellbore penetrating a subterranean zone.
2. The composition of claim 1 , wherein the composition comprises zeolite in an amount of from about 5% to about 75% by weight.
3. The composition of claim 1 , wherein the composition comprises zeolite in an amount of from about 20% to about 60% by weight.
4. The composition of claim 1 , wherein the composition comprises zeolite in an amount of from about 30% to about 50% by weight.
5. The composition of claim 1 , further comprising an activator.
6. The composition of claim 5 , wherein the activator is present in an amount of from about 1% to about 20% by weight, based on the total weight of the zeolite and the at least one carrier fluid.
7. The composition of claim 5 , wherein the activator is selected from calcium hydroxide, sodium silicate, sodium fluoride, sodium silicofluoride, magnesium silicofluoride, zinc silicofluoride, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium sulfate, and mixtures thereof.
8. The composition of claim 5 wherein the activator comprises calcium hydroxide in an amount of from about 1% to about 20% by weight based on the total weight of the zeolite and the at least one carrier fluid.
9. The composition of claim 1 , wherein the at least one carrier fluid comprises a fluid selected from an oil-based carrier fluid and a synthetic-based fluid.
10. The composition of claim 1 , wherein the at least one carrier fluid comprises one or more oils selected from diesel, canola, kerosene, diesel, fish, mineral, sunflower, corn, soy, olive, cottonseed, peanut and paraffin.
11. The composition of claim 1 , wherein the at least one carrier fluid comprises water or a water-based gel.
12. The composition of claim 1 , wherein the at least one carrier fluid is selected from fresh water, unsaturated salt solution, brine, seawater, and saturated salt solution.
13. The composition of claim 1 , further comprising a surfactant.
14. The composition of claim 13 , wherein the surfactant is selected from cetyltrimethylammonium chloride, cocoaalkyltrimethylammonium chloride, cocoalkyldimethylbenzyl ammonium chloride, stearyltrimethlyammonium chloride, alkylbehenyltrimethylammonium chloride dihydrogenatedtallowalkylethylmethyleammonium ethosulfate, didecyldimethylammonium chloride, dicocyldimethylammonium chloride, distearyldimethylammonium chloride, dioleyldimethylammonium chloride, trilaurylmethylammonium chloride, cocoyl-bis-(2-hydroxyethyl)methylammonium chloride, polyoxyethylene (15) cocoalkylmethylammonium chloride, olyel-bis-(2-hydroxyethyl) methylammonium chloride, tallowalkylmethylpropylenediammonium dichloride, and trimethyltallowammonium chloride.
15. A composition comprising:
a first fluid and a second fluid,
the first fluid being located in a subterranean zone;
the second fluid comprising at least one carrier fluid, and a zeolite selected from analcime, bikitaite, brewsterite, chabazite, clinoptilolite, faujasite, harmotome, heulandite, laumontite, mesolite, natrolite, paulingite, phillipsite, scolecite, stellerite, stilbite, and thomsonite,
wherein the composition is formed when the second fluid contacts the first fluid in the subterranean zone.
16. The composition of claim 15 , wherein the composition seals at least one space in the subterrean zone selected from fissures, fractures, caverns, vugs, thief zones, low pressure zones, and high pressure zones.
17. The composition of claim 15 , wherein the first fluid resides in at least one space in the subterranean zone, which space is sealed by the composition.
18. The composition of claim 15 , wherein the second fluid comprises zeolite in an amount of from about 5% to about 75% by weight.
19. The composition of claim 15 , wherein the second fluid comprises zeolite in an amount of from about 20% to about 60% by weight.
20. The composition of claim 15 , wherein the second fluid comprises zeolite in an amount of from about 30% to about 50% by weight.
21. The composition of claim 1 , wherein at least one of the first fluid and the second fluid comprises an activator.
22. The composition of claim 21 , wherein the second fluid comprises the activator, and the activator is present in an amount of from about 1% to about 20% by weight, based on the total weight of the zeolite and the at least one carrier fluid.
23. The composition of claim 21 , wherein the activator is selected from calcium hydroxide, sodium silicate, sodium fluoride, sodium silicofluoride, magnesium silicofluoride, zinc silicofluoride, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium sulfate, and mixtures thereof.
24. The composition of claim 15 , wherein the at least one carrier fluid comprises an oil-based carrier fluid or a synthetic-based fluid.
25. The composition of claim 24 , wherein the first fluid comprises water or a water-based gel.
26. The composition of claim 15 , wherein the at least one carrier fluid comprises one or more oils selected from diesel, canola, kerosene, diesel, fish, mineral, sunflower, corn, soy, olive, cottonseed, peanut and paraffin.
27. The composition of claim 15 , wherein the at least one carrier fluid comprises water or a water-based gel.
28. The composition of claim 27 , wherein the at least one carrier fluid is selected from fresh water, unsaturated salt solution, brine, seawater, and saturated salt solution.
29. The composition of claim 27 , wherein the first fluid comprises an oil-based fluid or a synthetic-based fluid.
30. The composition of claim 15 , wherein at least one of the first fluid and the at least one carrier further comprises a surfactant.
31. The composition of claim 30 , wherein the surfactant is selected from cetyltrimethylammonium chloride, cocoaalkyltrimethylammonium chloride, cocoalkyldimethylbenzyl ammonium chloride, stearyltrimethlyammonium chloride, alkylbehenyltrimethylammonium chloride dihydrogenatedtallowalkylethylmethyleammonium ethosulfate, didecyldimethylammonium chloride, dicocyldimethylammonium chloride, distearyldimethylammonium chloride, dioleyldimethylammonium chloride, trilaurylmethylammonium chloride, cocoyl-bis-(2-hydroxyethyl)methylammonium chloride, polyoxyethylene (15) cocoalkylmethylammonium chloride, olyel-bis-(2-hydroxyethyl) methylammonium chloride, tallowalkylmethylpropylenediammonium dichloride, and trimethyltallowammonium chloride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/488,388 US7544642B2 (en) | 2002-12-10 | 2006-07-17 | Zeolite-containing remedial compositions |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/315,415 US6989057B2 (en) | 2002-12-10 | 2002-12-10 | Zeolite-containing cement composition |
US10/623,443 US7544640B2 (en) | 2002-12-10 | 2003-07-18 | Zeolite-containing treating fluid |
US10/686,098 US6964302B2 (en) | 2002-12-10 | 2003-10-15 | Zeolite-containing cement composition |
US10/727,370 US7140439B2 (en) | 2002-12-10 | 2003-12-04 | Zeolite-containing remedial compositions |
US11/488,388 US7544642B2 (en) | 2002-12-10 | 2006-07-17 | Zeolite-containing remedial compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/727,370 Division US7140439B2 (en) | 2002-12-10 | 2003-12-04 | Zeolite-containing remedial compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060258547A1 true US20060258547A1 (en) | 2006-11-16 |
US7544642B2 US7544642B2 (en) | 2009-06-09 |
Family
ID=34652694
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/727,370 Expired - Lifetime US7140439B2 (en) | 2002-12-10 | 2003-12-04 | Zeolite-containing remedial compositions |
US11/488,388 Expired - Lifetime US7544642B2 (en) | 2002-12-10 | 2006-07-17 | Zeolite-containing remedial compositions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/727,370 Expired - Lifetime US7140439B2 (en) | 2002-12-10 | 2003-12-04 | Zeolite-containing remedial compositions |
Country Status (3)
Country | Link |
---|---|
US (2) | US7140439B2 (en) |
CA (1) | CA2549128C (en) |
WO (1) | WO2005054625A1 (en) |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7140439B2 (en) * | 2002-12-10 | 2006-11-28 | Halliburton Energy Services, Inc. | Zeolite-containing remedial compositions |
US7448450B2 (en) * | 2003-12-04 | 2008-11-11 | Halliburton Energy Services, Inc. | Drilling and cementing with fluids containing zeolite |
US7137448B2 (en) * | 2003-12-22 | 2006-11-21 | Bj Services Company | Method of cementing a well using composition containing zeolite |
US7607482B2 (en) * | 2005-09-09 | 2009-10-27 | Halliburton Energy Services, Inc. | Settable compositions comprising cement kiln dust and swellable particles |
US7445669B2 (en) * | 2005-09-09 | 2008-11-04 | Halliburton Energy Services, Inc. | Settable compositions comprising cement kiln dust and additive(s) |
US9512346B2 (en) | 2004-02-10 | 2016-12-06 | Halliburton Energy Services, Inc. | Cement compositions and methods utilizing nano-hydraulic cement |
US7182137B2 (en) | 2004-09-13 | 2007-02-27 | Halliburton Energy Services, Inc. | Cementitious compositions containing interground cement clinker and zeolite |
US9051505B2 (en) | 2005-09-09 | 2015-06-09 | Halliburton Energy Services, Inc. | Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly |
US7077203B1 (en) * | 2005-09-09 | 2006-07-18 | Halliburton Energy Services, Inc. | Methods of using settable compositions comprising cement kiln dust |
US8307899B2 (en) | 2005-09-09 | 2012-11-13 | Halliburton Energy Services, Inc. | Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite |
US9809737B2 (en) | 2005-09-09 | 2017-11-07 | Halliburton Energy Services, Inc. | Compositions containing kiln dust and/or biowaste ash and methods of use |
US7743828B2 (en) * | 2005-09-09 | 2010-06-29 | Halliburton Energy Services, Inc. | Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content |
US7353870B2 (en) * | 2005-09-09 | 2008-04-08 | Halliburton Energy Services, Inc. | Methods of using settable compositions comprising cement kiln dust and additive(s) |
US8327939B2 (en) | 2005-09-09 | 2012-12-11 | Halliburton Energy Services, Inc. | Settable compositions comprising cement kiln dust and rice husk ash and methods of use |
US8505630B2 (en) | 2005-09-09 | 2013-08-13 | Halliburton Energy Services, Inc. | Consolidating spacer fluids and methods of use |
US8672028B2 (en) | 2010-12-21 | 2014-03-18 | Halliburton Energy Services, Inc. | Settable compositions comprising interground perlite and hydraulic cement |
US8403045B2 (en) | 2005-09-09 | 2013-03-26 | Halliburton Energy Services, Inc. | Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations |
US7631692B2 (en) * | 2005-09-09 | 2009-12-15 | Halliburton Energy Services, Inc. | Settable compositions comprising a natural pozzolan and associated methods |
US8950486B2 (en) | 2005-09-09 | 2015-02-10 | Halliburton Energy Services, Inc. | Acid-soluble cement compositions comprising cement kiln dust and methods of use |
US8609595B2 (en) | 2005-09-09 | 2013-12-17 | Halliburton Energy Services, Inc. | Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use |
US7789150B2 (en) * | 2005-09-09 | 2010-09-07 | Halliburton Energy Services Inc. | Latex compositions comprising pozzolan and/or cement kiln dust and methods of use |
US7335252B2 (en) * | 2005-09-09 | 2008-02-26 | Halliburton Energy Services, Inc. | Lightweight settable compositions comprising cement kiln dust |
US8522873B2 (en) | 2005-09-09 | 2013-09-03 | Halliburton Energy Services, Inc. | Spacer fluids containing cement kiln dust and methods of use |
US7213646B2 (en) * | 2005-09-09 | 2007-05-08 | Halliburton Energy Services, Inc. | Cementing compositions comprising cement kiln dust, vitrified shale, zeolite, and/or amorphous silica utilizing a packing volume fraction, and associated methods |
US8281859B2 (en) | 2005-09-09 | 2012-10-09 | Halliburton Energy Services Inc. | Methods and compositions comprising cement kiln dust having an altered particle size |
US9150773B2 (en) | 2005-09-09 | 2015-10-06 | Halliburton Energy Services, Inc. | Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations |
US9023150B2 (en) | 2005-09-09 | 2015-05-05 | Halliburton Energy Services, Inc. | Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use |
US7478675B2 (en) * | 2005-09-09 | 2009-01-20 | Halliburton Energy Services, Inc. | Extended settable compositions comprising cement kiln dust and associated methods |
US8505629B2 (en) | 2005-09-09 | 2013-08-13 | Halliburton Energy Services, Inc. | Foamed spacer fluids containing cement kiln dust and methods of use |
US8297357B2 (en) | 2005-09-09 | 2012-10-30 | Halliburton Energy Services Inc. | Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use |
US8333240B2 (en) * | 2005-09-09 | 2012-12-18 | Halliburton Energy Services, Inc. | Reduced carbon footprint settable compositions for use in subterranean formations |
US8555967B2 (en) | 2005-09-09 | 2013-10-15 | Halliburton Energy Services, Inc. | Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition |
US9006155B2 (en) | 2005-09-09 | 2015-04-14 | Halliburton Energy Services, Inc. | Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly |
US9676989B2 (en) | 2005-09-09 | 2017-06-13 | Halliburton Energy Services, Inc. | Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use |
US7395860B2 (en) * | 2005-09-09 | 2008-07-08 | Halliburton Energy Services, Inc. | Methods of using foamed settable compositions comprising cement kiln dust |
US7607484B2 (en) * | 2005-09-09 | 2009-10-27 | Halliburton Energy Services, Inc. | Foamed cement compositions comprising oil-swellable particles and methods of use |
US7337842B2 (en) * | 2005-10-24 | 2008-03-04 | Halliburton Energy Services, Inc. | Methods of using cement compositions comprising high alumina cement and cement kiln dust |
US7284609B2 (en) * | 2005-11-10 | 2007-10-23 | Halliburton Energy Services, Inc. | Methods of using settable spotting compositions comprising cement kiln dust |
US7741247B2 (en) | 2006-02-10 | 2010-06-22 | Ling Wang | Methods and compositions for sealing fractures, voids, and pores of subterranean rock formations |
US7338923B2 (en) * | 2006-04-11 | 2008-03-04 | Halliburton Energy Services, Inc. | Settable drilling fluids comprising cement kiln dust |
US7967909B2 (en) * | 2007-02-26 | 2011-06-28 | Baker Hughes Incorporated | Method of cementing within a gas or oil well |
US8476203B2 (en) | 2007-05-10 | 2013-07-02 | Halliburton Energy Services, Inc. | Cement compositions comprising sub-micron alumina and associated methods |
US9512351B2 (en) | 2007-05-10 | 2016-12-06 | Halliburton Energy Services, Inc. | Well treatment fluids and methods utilizing nano-particles |
US9199879B2 (en) | 2007-05-10 | 2015-12-01 | Halliburton Energy Serives, Inc. | Well treatment compositions and methods utilizing nano-particles |
US9206344B2 (en) | 2007-05-10 | 2015-12-08 | Halliburton Energy Services, Inc. | Sealant compositions and methods utilizing nano-particles |
US8586512B2 (en) | 2007-05-10 | 2013-11-19 | Halliburton Energy Services, Inc. | Cement compositions and methods utilizing nano-clay |
US8685903B2 (en) | 2007-05-10 | 2014-04-01 | Halliburton Energy Services, Inc. | Lost circulation compositions and associated methods |
US7740070B2 (en) * | 2008-06-16 | 2010-06-22 | Halliburton Energy Services, Inc. | Wellbore servicing compositions comprising a density segregation inhibiting composite and methods of making and using same |
US8267925B2 (en) * | 2009-07-29 | 2012-09-18 | Alcon Lensx, Inc. | Optical system for ophthalmic surgical laser |
US8899329B2 (en) | 2013-04-30 | 2014-12-02 | Halliburton Energy Services, Inc. | Pumice-containing remedial compositions and methods of use |
CN103642473A (en) * | 2013-12-19 | 2014-03-19 | 中国石油集团渤海钻探工程有限公司 | Polymer saturated salt water drilling solution suitable for drilling gas storage warehouse |
US10525513B2 (en) | 2015-06-26 | 2020-01-07 | Wildfire Construction Llc | Construction aggregate from verified remediated spoil |
US9694400B2 (en) | 2015-06-26 | 2017-07-04 | Wildfire Construction Llc | Controlled verified remediation of excavated spoil |
CN108423962B (en) * | 2017-02-14 | 2020-12-29 | 湖南省环境保护科学研究院 | Method for improving sludge dewatering performance |
US10352116B2 (en) | 2017-11-16 | 2019-07-16 | Saudi Arabian Oil Company | ARC perm-squeeze RDF—a permeable plug forming rapidly dehydrating fluid |
US10988665B2 (en) | 2019-04-04 | 2021-04-27 | Saudi Arabian Oil Company | Permeable and decomposable plug forming rapidly dehydrating fluid (RDF) |
US11098234B2 (en) * | 2019-09-05 | 2021-08-24 | Halliburton Energy Services, Inc. | Agglomerated zeolite catalyst for spacers and efficiency fluids |
CN117005824B (en) * | 2023-08-23 | 2024-01-23 | 北京泊溪科技有限责任公司 | Drilling-free stage cementing device for well cementation and well completion and use method thereof |
Citations (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1943584A (en) * | 1929-03-28 | 1934-01-16 | Silica Products Co | Inorganic gel composition |
US2349049A (en) * | 1940-08-03 | 1944-05-16 | Lubri Gel Products Company | Salt water drilling mud |
US2581186A (en) * | 1948-11-18 | 1952-01-01 | Ncr Co | Paper having improved printing characteristics |
US3179528A (en) * | 1962-11-26 | 1965-04-20 | Pan American Petroleum Corp | Low temperature cementing composition |
US3374057A (en) * | 1965-09-27 | 1968-03-19 | Grace W R & Co | Process for ion exchanging crystalline zeolites with nitrogenous bases |
US3640905A (en) * | 1969-01-21 | 1972-02-08 | Mobil Oil Corp | Clinoptilolite blends with shapeselective catalyst |
US3647717A (en) * | 1970-08-26 | 1972-03-07 | Union Carbide Corp | Process for improving the activity of zeolitic catalyst compositions |
US3884302A (en) * | 1974-05-29 | 1975-05-20 | Mobil Oil Corp | Well cementing process |
US4141843A (en) * | 1976-09-20 | 1979-02-27 | Halliburton Company | Oil well spacer fluids |
US4149960A (en) * | 1976-12-20 | 1979-04-17 | Mobil Oil Corporation | Gas oil processing |
US4199607A (en) * | 1976-11-15 | 1980-04-22 | Union Carbide Corporation | Process for carbonation of an aqueous medium |
US4311607A (en) * | 1980-03-10 | 1982-01-19 | Colgate Palmolive Company | Method for manufacture of non-gelling, stable zeolite - inorganic salt crutcher slurries |
US4368134A (en) * | 1980-03-10 | 1983-01-11 | Colgate Palmolive Company | Method for retarding gelation of bicarbonate-carbonate-zeolite-silicate crutcher slurries |
US4372876A (en) * | 1980-05-02 | 1983-02-08 | Uop Inc. | Zeolite molecular sieve adsorbent for an aqueous system |
US4435216A (en) * | 1981-08-20 | 1984-03-06 | Degussa Aktiengesellschaft | Process for the accelerated solidification of hydraulic cement mixture |
US4444668A (en) * | 1981-12-31 | 1984-04-24 | Halliburton Company | Well completion fluid compositions |
US4515635A (en) * | 1984-03-23 | 1985-05-07 | Halliburton Company | Hydrolytically stable polymers for use in oil field cementing methods and compositions |
US4515216A (en) * | 1983-10-11 | 1985-05-07 | Halliburton Company | Method of using thixotropic cements for combating lost circulation problems |
US4650593A (en) * | 1977-09-19 | 1987-03-17 | Nl Industries, Inc. | Water-based drilling fluids having enhanced fluid loss control |
US4652391A (en) * | 1984-09-22 | 1987-03-24 | Henkel Kommanditgesellschaft Auf Aktien | High powder density free-flowing detergent |
US4717488A (en) * | 1986-04-23 | 1988-01-05 | Merck Co., Inc. | Spacer fluid |
US4721633A (en) * | 1986-08-22 | 1988-01-26 | Colgate-Palmolive Company | Process for manufacturing speckled detergent composition |
US4802921A (en) * | 1981-12-31 | 1989-02-07 | Minoru Fujii | Refractory coating composition |
US4818288A (en) * | 1983-12-07 | 1989-04-04 | Skw Trostberg Aktiengesellschaft | Dispersant for concrete mixtures of high salt content |
US4818518A (en) * | 1984-11-16 | 1989-04-04 | Uop | Effervescent dentifrice |
US4986989A (en) * | 1987-09-04 | 1991-01-22 | Sumitomo Chemical Company, Limited | Zeolite fungicide |
US5301752A (en) * | 1992-10-22 | 1994-04-12 | Shell Oil Company | Drilling and cementing with phosphate-blast furnace slag |
US5307876A (en) * | 1992-10-22 | 1994-05-03 | Shell Oil Company | Method to cement a wellbore in the presence of carbon dioxide |
US5314022A (en) * | 1992-10-22 | 1994-05-24 | Shell Oil Company | Dilution of drilling fluid in forming cement slurries |
US5314852A (en) * | 1992-11-13 | 1994-05-24 | Fred Klatte | Chemically impregnated zeolite and method for chemically impregnating and coating zeolite |
US5383967A (en) * | 1991-03-29 | 1995-01-24 | Chase; Raymond S. | Natural silica-containing cement and concrete composition |
US5494513A (en) * | 1995-07-07 | 1996-02-27 | National Research Council Of Canada | Zeolite-based lightweight concrete products |
US5501276A (en) * | 1994-09-15 | 1996-03-26 | Halliburton Company | Drilling fluid and filter cake removal methods and compositions |
US5626665A (en) * | 1994-11-04 | 1997-05-06 | Ash Grove Cement Company | Cementitious systems and novel methods of making the same |
US5711383A (en) * | 1996-04-19 | 1998-01-27 | Halliburton Company | Cementitious well drilling fluids and methods |
US5716910A (en) * | 1995-09-08 | 1998-02-10 | Halliburton Company | Foamable drilling fluid and methods of use in well drilling operations |
US5866517A (en) * | 1996-06-19 | 1999-02-02 | Atlantic Richfield Company | Method and spacer fluid composition for displacing drilling fluid from a wellbore |
US5883070A (en) * | 1997-10-08 | 1999-03-16 | Henkel Corporation | Process for preparing zeolite slurries using a nonionic sugar surfactant and electrolyte |
US5900052A (en) * | 1996-04-23 | 1999-05-04 | Mitsubishi Heavy Industries, Ltd. | Belt coating material for belt type continuous casting and belt coating method |
US5902564A (en) * | 1996-06-06 | 1999-05-11 | Intevep, S.A. | Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same |
US6060434A (en) * | 1997-03-14 | 2000-05-09 | Halliburton Energy Services, Inc. | Oil based compositions for sealing subterranean zones and methods |
US6063738A (en) * | 1999-04-19 | 2000-05-16 | Halliburton Energy Services, Inc. | Foamed well cement slurries, additives and methods |
US6167967B1 (en) * | 1997-03-14 | 2001-01-02 | Halliburton Energy Services, Inc. | Methods of sealing subterranean zones |
US6171386B1 (en) * | 1998-01-22 | 2001-01-09 | Benchmark Research& Technology Inc. | Cementing compositions, a method of making therefor, and a method for cementing wells |
US6170575B1 (en) * | 1999-01-12 | 2001-01-09 | Halliburton Energy Services, Inc. | Cementing methods using dry cementitious materials having improved flow properties |
US6176315B1 (en) * | 1998-12-04 | 2001-01-23 | Halliburton Energy Services, Inc. | Preventing flow through subterranean zones |
US6182758B1 (en) * | 1999-08-30 | 2001-02-06 | Halliburton Energy Services, Inc. | Dispersant and fluid loss control additives for well cements, well cement compositions and methods |
US6209646B1 (en) * | 1999-04-21 | 2001-04-03 | Halliburton Energy Services, Inc. | Controlling the release of chemical additives in well treating fluids |
US6210476B1 (en) * | 1999-09-07 | 2001-04-03 | Halliburton Energy Services, Inc. | Foamed cement compositions and methods |
US6213213B1 (en) * | 1999-10-08 | 2001-04-10 | Halliburton Energy Services, Inc. | Methods and viscosified compositions for treating wells |
US6230804B1 (en) * | 1997-12-19 | 2001-05-15 | Bj Services Company | Stress resistant cement compositions and methods for using same |
US6235809B1 (en) * | 1997-09-30 | 2001-05-22 | Bj Services Company | Multi-functional additive for use in well cementing |
US6234251B1 (en) * | 1999-02-22 | 2001-05-22 | Halliburton Energy Services, Inc. | Resilient well cement compositions and methods |
US6372694B1 (en) * | 1997-04-30 | 2002-04-16 | Crosfield Ltd. | Suspensions with high storage stability, comprising an aqueous silicate solution and a filler material |
US6379456B1 (en) * | 1999-01-12 | 2002-04-30 | Halliburton Energy Services, Inc. | Flow properties of dry cementitious and non-cementitious materials |
US6387873B1 (en) * | 2000-04-05 | 2002-05-14 | The Procter & Gamble Company | Detergent composition with improved calcium sequestration capacity |
US6390197B1 (en) * | 1997-11-26 | 2002-05-21 | Schlumberger Technology Corporation | Method of cementing a well in geological zones containing swelling clays or mud residues containing clays |
US6508306B1 (en) * | 2001-11-15 | 2003-01-21 | Halliburton Energy Services, Inc. | Compositions for solving lost circulation problems |
US6508305B1 (en) * | 1999-09-16 | 2003-01-21 | Bj Services Company | Compositions and methods for cementing using elastic particles |
US20030033677A1 (en) * | 2001-08-20 | 2003-02-20 | Nguyen Nghi Van | Compositions comprising at least one hydroxide compound and at least one reducing agent, and methods for relaxing hair |
US6524384B2 (en) * | 2000-07-26 | 2003-02-25 | Halliburton Energy Services, Inc. | Oil-based settable spotting fluid |
US20030066460A1 (en) * | 1997-08-15 | 2003-04-10 | Reddy Baireddy R. | Methods of cementing high temperature wells and cement compositions therefor |
US6555505B1 (en) * | 2002-03-08 | 2003-04-29 | Halliburton Energy Services, Inc. | Foamed acidizing fluids, additives and methods of acidizing subterranean zones |
US20040007162A1 (en) * | 2000-09-13 | 2004-01-15 | Minoru Morioka | Cement composition |
US20040007360A1 (en) * | 1998-10-06 | 2004-01-15 | Sylvaine Leroy-Delage | Cementing compositions and the use of such compositions for cementing wells |
US20040035331A1 (en) * | 2000-09-29 | 2004-02-26 | Edgar Volpert | Cementing compositions including a dispersant agent for cementing operation in oil wells |
US20040040712A1 (en) * | 2002-08-29 | 2004-03-04 | Ravi Krishna M. | Cement composition exhibiting improved resilience/toughness and method for using same |
US20040040475A1 (en) * | 2000-12-15 | 2004-03-04 | Robin De La Roij | Composition Which is Intended for use as an Additive for Cement |
US6702044B2 (en) * | 2002-06-13 | 2004-03-09 | Halliburton Energy Services, Inc. | Methods of consolidating formations or forming chemical casing or both while drilling |
US6711213B2 (en) * | 1997-10-22 | 2004-03-23 | Hitachi, Ltd. | Implementing reduced-state viterbi detectors |
US6713553B2 (en) * | 2000-10-25 | 2004-03-30 | Coatex S.A.S. | Method for improving the mechanical strength, particularly the strength “at the young ages” of cement matrices, and the cement matrices obtained thereby |
US6719055B2 (en) * | 2002-01-23 | 2004-04-13 | Halliburton Energy Services, Inc. | Method for drilling and completing boreholes with electro-rheological fluids |
US6722434B2 (en) * | 2002-05-31 | 2004-04-20 | Halliburton Energy Services, Inc. | Methods of generating gas in well treating fluids |
US20050000734A1 (en) * | 2002-12-10 | 2005-01-06 | Getzlaf Donald A. | Zeolite-containing drilling fluids |
US6840319B1 (en) * | 2004-01-21 | 2005-01-11 | Halliburton Energy Services, Inc. | Methods, compositions and biodegradable fluid loss control additives for cementing subterranean zones |
US6843977B2 (en) * | 2000-05-25 | 2005-01-18 | Board Of Trustees Of Michigan State University | Ultrastable porous aluminosilicate structures and compositions derived therefrom |
US20050034864A1 (en) * | 2003-06-27 | 2005-02-17 | Caveny William J. | Cement compositions with improved fluid loss characteristics and methods of cementing in surface and subterranean applications |
US20050072599A1 (en) * | 2002-12-10 | 2005-04-07 | Karen Luke | Zeolite-containing remedial compositions |
US6883609B2 (en) * | 2000-05-15 | 2005-04-26 | Schlumberger Technology Corporation | Permeable cements |
US6989057B2 (en) * | 2002-12-10 | 2006-01-24 | Halliburton Energy Services, Inc. | Zeolite-containing cement composition |
US20060025312A1 (en) * | 2004-07-28 | 2006-02-02 | Santra Ashok K | Cement-free zeolite and fly ash settable fluids and methods therefor |
US7021380B2 (en) * | 2003-06-27 | 2006-04-04 | Halliburton Energy Services, Inc. | Compositions comprising set retarder compositions and associated methods |
US20070028811A1 (en) * | 2002-12-10 | 2007-02-08 | Karen Luke | Fluid loss additives for cement slurries |
US7182137B2 (en) * | 2004-09-13 | 2007-02-27 | Halliburton Energy Services, Inc. | Cementitious compositions containing interground cement clinker and zeolite |
US7338925B2 (en) * | 2002-12-10 | 2008-03-04 | Halliburton Energy Services, Inc. | Zeolite compositions having enhanced compressive strength |
US20080066652A1 (en) * | 2006-09-14 | 2008-03-20 | Michael Fraser | Low density cements for use in cementing operations |
Family Cites Families (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2131338A (en) * | 1935-12-23 | 1938-09-27 | Philadelphia Quartz Co | Consolidation of porous materials |
US2094316A (en) | 1936-03-06 | 1937-09-28 | Kansas City Testing Lab | Method of improving oil well drilling muds |
US2662827A (en) | 1946-03-12 | 1953-12-15 | Stanolind Oil & Gas Co | Well cementing |
US2727001A (en) | 1952-12-24 | 1955-12-13 | Sun Oil Co | Drilling fluid |
US2848051A (en) | 1954-03-22 | 1958-08-19 | Atlantic Refining Co | Method for improving well cementing jobs |
US3047493A (en) | 1958-05-26 | 1962-07-31 | Gulf Research Development Co | Drilling process and water base drilling muds |
US3065170A (en) * | 1959-07-02 | 1962-11-20 | Jersey Prod Res Co | Drilling fluids for use in wells |
US3359225A (en) | 1963-08-26 | 1967-12-19 | Charles F Weisend | Cement additives containing polyvinylpyrrolidone and a condensate of sodium naphthalene sulfonate with formaldehyde |
US3293040A (en) * | 1964-05-25 | 1966-12-20 | American Tansul Company | Method for chill-proofing beer with water soluble alkyl cellulose ethers |
US3406124A (en) | 1965-11-17 | 1968-10-15 | Mobil Oil Corp | Preparation of crystalline aluminosilicate containing composite catalyst |
US3694152A (en) | 1968-10-18 | 1972-09-26 | Snam Progetti | Process for producing synthetic zeolite |
US3676330A (en) | 1969-12-15 | 1972-07-11 | Mobil Oil Corp | Zeolite-containing catalyst, synthesis and use thereof |
US3888998A (en) * | 1971-11-22 | 1975-06-10 | Procter & Gamble | Beverage carbonation |
US3781226A (en) * | 1972-04-17 | 1973-12-25 | Mobil Oil Corp | Treatment of colloidal zeolites |
NL7306868A (en) | 1973-05-17 | 1974-11-19 | ||
US3963508A (en) | 1974-11-18 | 1976-06-15 | Kaiser Aluminum & Chemical Corporation | Calcium aluminate cement |
US4031959A (en) * | 1976-01-09 | 1977-06-28 | Permeator Corporation | Method of maintaining the permeability of hydrocarbon reservoir rock |
US4054462A (en) | 1976-03-01 | 1977-10-18 | The Dow Chemical Company | Method of cementing |
US4217229A (en) | 1976-09-20 | 1980-08-12 | Halliburton Company | Oil well spacer fluids |
CA1167403A (en) | 1979-07-10 | 1984-05-15 | Unilever Limited | Microbial heteropolysaccharide |
US4363736A (en) * | 1980-06-13 | 1982-12-14 | W. R. Grace & Co. | Fluid loss control system |
US4280560A (en) * | 1980-06-30 | 1981-07-28 | Marathon Oil Company | Potassium hydroxide clay stabilization process |
US4474667A (en) * | 1981-02-27 | 1984-10-02 | W. R. Grace & Co. | Fluid loss control system |
FR2516526B1 (en) | 1981-11-16 | 1987-05-22 | Rhone Poulenc Spec Chim | WATER-SOLUBLE GUM COMPOSITIONS, THEIR PREPARATION AND THEIR USE |
FR2516527B1 (en) * | 1981-11-16 | 1986-05-23 | Rhone Poulenc Spec Chim | WATER-SOLUBLE GUM COMPOSITIONS, THEIR PREPARATION AND THEIR USE |
US4536297A (en) | 1982-01-28 | 1985-08-20 | Halliburton Company | Well drilling and completion fluid composition |
US4530402A (en) | 1983-08-30 | 1985-07-23 | Standard Oil Company | Low density spacer fluid |
US4482379A (en) | 1983-10-03 | 1984-11-13 | Hughes Tool Company | Cold set cement composition and method |
US4555269A (en) | 1984-03-23 | 1985-11-26 | Halliburton Company | Hydrolytically stable polymers for use in oil field cementing methods and compositions |
HU195457B (en) | 1984-04-02 | 1988-05-30 | Vizepitoeipari Troeszt | Process for removing suspended materials, biogene nutrients and soluted metal-compounds from waters containing organic and inorganic impurities |
US4552591A (en) | 1984-05-15 | 1985-11-12 | Petrolite Corporation | Oil field biocide composition |
US4557763A (en) | 1984-05-30 | 1985-12-10 | Halliburton Company | Dispersant and fluid loss additives for oil field cements |
US4632186A (en) | 1985-12-27 | 1986-12-30 | Hughes Tool Company | Well cementing method using an AM/AMPS fluid loss additive blend |
US4676317A (en) | 1986-05-13 | 1987-06-30 | Halliburton Company | Method of reducing fluid loss in cement compositions which may contain substantial salt concentrations |
US4703801A (en) | 1986-05-13 | 1987-11-03 | Halliburton Company | Method of reducing fluid loss in cement compositions which may contain substantial salt concentrations |
DE3631764A1 (en) | 1986-09-18 | 1988-03-24 | Henkel Kgaa | USE OF SWELLABLE, SYNTHETIC LAYERED SILICATES IN AQUEOUS DRILL RING AND HOLE TREATMENT AGENTS |
US4784693A (en) | 1987-10-30 | 1988-11-15 | Aqualon Company | Cementing composition and aqueous hydraulic cementing solution comprising water-soluble, nonionic hydrophobically modified hydroxyethyl cellulose |
US5252554A (en) | 1988-12-19 | 1993-10-12 | Henkel Kommanditgesellschaft Auf Aktien | Drilling fluids and muds containing selected ester oils |
US5807810A (en) * | 1989-08-24 | 1998-09-15 | Albright & Wilson Limited | Functional fluids and liquid cleaning compositions and suspending media |
US5964692A (en) * | 1989-08-24 | 1999-10-12 | Albright & Wilson Limited | Functional fluids and liquid cleaning compositions and suspending media |
US4943544A (en) | 1989-10-10 | 1990-07-24 | Corhart Refractories Corporation | High strength, abrasion resistant refractory castable |
US5464060A (en) | 1989-12-27 | 1995-11-07 | Shell Oil Company | Universal fluids for drilling and cementing wells |
US5121795A (en) | 1991-01-08 | 1992-06-16 | Halliburton Company | Squeeze cementing |
US5127473A (en) | 1991-01-08 | 1992-07-07 | Halliburton Services | Repair of microannuli and cement sheath |
US5238064A (en) | 1991-01-08 | 1993-08-24 | Halliburton Company | Squeeze cementing |
US5125455A (en) | 1991-01-08 | 1992-06-30 | Halliburton Services | Primary cementing |
US5123487A (en) | 1991-01-08 | 1992-06-23 | Halliburton Services | Repairing leaks in casings |
JP2957293B2 (en) * | 1991-01-28 | 1999-10-04 | 株式会社テルナイト | Composition for drilling fluid |
JPH07115897B2 (en) | 1991-08-05 | 1995-12-13 | 財団法人鉄道総合技術研究所 | Cement admixture for suppressing deterioration of concrete |
US5151131A (en) | 1991-08-26 | 1992-09-29 | Halliburton Company | Cement fluid loss control additives and methods |
US5527387A (en) | 1992-08-11 | 1996-06-18 | E. Khashoggi Industries | Computer implemented processes for microstructurally engineering cementious mixtures |
US5549859A (en) | 1992-08-11 | 1996-08-27 | E. Khashoggi Industries | Methods for the extrusion of novel, highly plastic and moldable hydraulically settable compositions |
US5340860A (en) | 1992-10-30 | 1994-08-23 | Halliburton Company | Low fluid loss cement compositions, fluid loss reducing additives and methods |
US5776850A (en) * | 1992-11-13 | 1998-07-07 | Klatte Inc. | Chemically impregnated zeolite and method for its production and use |
US5346012A (en) | 1993-02-01 | 1994-09-13 | Halliburton Company | Fine particle size cement compositions and methods |
US5340388A (en) | 1993-08-16 | 1994-08-23 | Xerox Corporation | Ink compositions treated with zeolites |
NZ274164A (en) * | 1993-09-29 | 1996-07-26 | Gist Brocades Nv | Preparation of anti-fungal compositions of polyene type compounds (such as natamycin) which are incorporated into the compositions in a modified form; use in or on foodstuffs and anti-fungal activity assay |
US5529624A (en) | 1994-04-12 | 1996-06-25 | Riegler; Norbert | Insulation material |
US5566760A (en) | 1994-09-02 | 1996-10-22 | Halliburton Company | Method of using a foamed fracturing fluid |
US5759964A (en) | 1994-09-28 | 1998-06-02 | Halliburton Energy Services, Inc. | High viscosity well treating fluids, additives and methods |
US5588489A (en) * | 1995-10-31 | 1996-12-31 | Halliburton Company | Lightweight well cement compositions and methods |
US5789352A (en) | 1996-06-19 | 1998-08-04 | Halliburton Company | Well completion spacer fluids and methods |
US5680900A (en) | 1996-07-23 | 1997-10-28 | Halliburton Energy Services Inc. | Method for enhancing fluid loss control in subterranean formation |
US6258757B1 (en) | 1997-03-14 | 2001-07-10 | Halliburton Energy Services, Inc. | Water based compositions for sealing subterranean zones and methods |
TR199902849T2 (en) | 1997-05-26 | 2000-06-21 | Sobolev Konstantin | Production of complex additives and cement-based materials. |
JPH1143365A (en) * | 1997-07-23 | 1999-02-16 | Tohoku Bankin Toso Kogyo Kk | Granular ceramic for producing reduced water and its production |
US6070664A (en) | 1998-02-12 | 2000-06-06 | Halliburton Energy Services | Well treating fluids and methods |
US5980446A (en) | 1997-08-12 | 1999-11-09 | Lockheed Martin Idaho Technologies Company | Methods and system for subsurface stabilization using jet grouting |
US6145591A (en) | 1997-12-12 | 2000-11-14 | Bj Services Company | Method and compositions for use in cementing |
US5997625A (en) | 1998-05-01 | 1999-12-07 | Engelhard Corporation | Coating pigment for ink-jet printing |
US6409819B1 (en) | 1998-06-30 | 2002-06-25 | International Mineral Technology Ag | Alkali activated supersulphated binder |
US6660080B2 (en) | 1999-01-12 | 2003-12-09 | Halliburton Energy Services, Inc. | Particulate flow enhancing additives |
US6245142B1 (en) | 1999-01-12 | 2001-06-12 | Halliburton Energy Services, Inc. | Flow properties of dry cementitious materials |
US6283213B1 (en) | 1999-08-12 | 2001-09-04 | Atlantic Richfield Company | Tandem spacer fluid system and method for positioning a cement slurry in a wellbore annulus |
CA2316059A1 (en) | 1999-08-24 | 2001-02-24 | Virgilio C. Go Boncan | Methods and compositions for use in cementing in cold environments |
US6475275B1 (en) | 1999-10-21 | 2002-11-05 | Isolatek International | Cement composition |
DE19957245A1 (en) * | 1999-11-27 | 2001-05-31 | Clariant Gmbh | New saline structural silicates with trialkyl-perfluoroalkenyl-ethyl-ammonium cation and other saline silicates are used as charge regulator in electrophotographic toner, powder lacquer, electret material or electrostatic separation |
US6138759A (en) | 1999-12-16 | 2000-10-31 | Halliburton Energy Services, Inc. | Settable spotting fluid compositions and methods |
US6457524B1 (en) | 2000-09-15 | 2002-10-01 | Halliburton Energy Services, Inc. | Well cementing compositions and methods |
FR2815629B1 (en) * | 2000-10-25 | 2003-09-05 | Coatex Sas | PROCESS FOR IMPROVING MECHANICAL RESISTANCE IN PARTICULAR "TO THE YOUNG AGES" OF CEMENT MATRICES, CEMENT MATRICES OBTAINED AND THEIR USES |
US6405801B1 (en) | 2000-12-08 | 2002-06-18 | Halliburton Energy Services, Inc. | Environmentally acceptable well cement fluid loss control additives, compositions and methods |
CA2370875A1 (en) * | 2001-02-15 | 2002-08-15 | B.J. Services Company | High temperature flexible cementing compositions and methods for using same |
US20020117090A1 (en) * | 2001-02-20 | 2002-08-29 | Richard Ku | Super high strength concrete |
US6767868B2 (en) * | 2001-02-22 | 2004-07-27 | Bj Services Company | Breaker system for fracturing fluids used in fracturing oil bearing formations |
US6627084B2 (en) * | 2001-04-24 | 2003-09-30 | Polymer Ventures, Inc. | Organoclay compositions for purifying contaminated liquids and methods for making and using them |
US6488091B1 (en) | 2001-06-11 | 2002-12-03 | Halliburton Energy Services, Inc. | Subterranean formation treating fluid concentrates, treating fluids and methods |
US6616753B2 (en) | 2001-12-11 | 2003-09-09 | Halliburton Energy Services, Inc. | Methods and compositions for sealing subterranean zones |
US6887828B2 (en) * | 2001-12-21 | 2005-05-03 | A. John Allen | Phillipsitic zeolite soil amendments |
US20030147830A1 (en) * | 2002-01-30 | 2003-08-07 | The Procter & Gamble Company | Topical skin and/or hair compositions containing protein |
US6565647B1 (en) | 2002-06-13 | 2003-05-20 | Shieldcrete Ltd. | Cementitious shotcrete composition |
US7150321B2 (en) * | 2002-12-10 | 2006-12-19 | Halliburton Energy Services, Inc. | Zeolite-containing settable spotting fluids |
US6964302B2 (en) * | 2002-12-10 | 2005-11-15 | Halliburton Energy Services, Inc. | Zeolite-containing cement composition |
US7544640B2 (en) * | 2002-12-10 | 2009-06-09 | Halliburton Energy Services, Inc. | Zeolite-containing treating fluid |
US6889767B2 (en) | 2003-02-28 | 2005-05-10 | Halliburton E{umlaut over (n)}ergy Services, Inc. | Cementing compositions and methods of cementing in a subterranean formation using an additive for preventing the segregation of lightweight beads. |
US7073585B2 (en) * | 2003-06-27 | 2006-07-11 | Halliburton Energy Services, Inc. | Cement compositions with improved fluid loss characteristics and methods of cementing in surface and subterranean applications |
US6832652B1 (en) | 2003-08-22 | 2004-12-21 | Bj Services Company | Ultra low density cementitious slurries for use in cementing of oil and gas wells |
US7137448B2 (en) * | 2003-12-22 | 2006-11-21 | Bj Services Company | Method of cementing a well using composition containing zeolite |
-
2003
- 2003-12-04 US US10/727,370 patent/US7140439B2/en not_active Expired - Lifetime
-
2004
- 2004-11-19 WO PCT/GB2004/004909 patent/WO2005054625A1/en active Application Filing
- 2004-11-19 CA CA002549128A patent/CA2549128C/en not_active Expired - Lifetime
-
2006
- 2006-07-17 US US11/488,388 patent/US7544642B2/en not_active Expired - Lifetime
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1943584A (en) * | 1929-03-28 | 1934-01-16 | Silica Products Co | Inorganic gel composition |
US2349049A (en) * | 1940-08-03 | 1944-05-16 | Lubri Gel Products Company | Salt water drilling mud |
US2581186A (en) * | 1948-11-18 | 1952-01-01 | Ncr Co | Paper having improved printing characteristics |
US3179528A (en) * | 1962-11-26 | 1965-04-20 | Pan American Petroleum Corp | Low temperature cementing composition |
US3374057A (en) * | 1965-09-27 | 1968-03-19 | Grace W R & Co | Process for ion exchanging crystalline zeolites with nitrogenous bases |
US3640905A (en) * | 1969-01-21 | 1972-02-08 | Mobil Oil Corp | Clinoptilolite blends with shapeselective catalyst |
US3647717A (en) * | 1970-08-26 | 1972-03-07 | Union Carbide Corp | Process for improving the activity of zeolitic catalyst compositions |
US3884302A (en) * | 1974-05-29 | 1975-05-20 | Mobil Oil Corp | Well cementing process |
US4141843A (en) * | 1976-09-20 | 1979-02-27 | Halliburton Company | Oil well spacer fluids |
US4199607A (en) * | 1976-11-15 | 1980-04-22 | Union Carbide Corporation | Process for carbonation of an aqueous medium |
US4149960A (en) * | 1976-12-20 | 1979-04-17 | Mobil Oil Corporation | Gas oil processing |
US4650593A (en) * | 1977-09-19 | 1987-03-17 | Nl Industries, Inc. | Water-based drilling fluids having enhanced fluid loss control |
US4311607A (en) * | 1980-03-10 | 1982-01-19 | Colgate Palmolive Company | Method for manufacture of non-gelling, stable zeolite - inorganic salt crutcher slurries |
US4368134A (en) * | 1980-03-10 | 1983-01-11 | Colgate Palmolive Company | Method for retarding gelation of bicarbonate-carbonate-zeolite-silicate crutcher slurries |
US4372876A (en) * | 1980-05-02 | 1983-02-08 | Uop Inc. | Zeolite molecular sieve adsorbent for an aqueous system |
US4435216A (en) * | 1981-08-20 | 1984-03-06 | Degussa Aktiengesellschaft | Process for the accelerated solidification of hydraulic cement mixture |
US4444668A (en) * | 1981-12-31 | 1984-04-24 | Halliburton Company | Well completion fluid compositions |
US4802921A (en) * | 1981-12-31 | 1989-02-07 | Minoru Fujii | Refractory coating composition |
US4515216A (en) * | 1983-10-11 | 1985-05-07 | Halliburton Company | Method of using thixotropic cements for combating lost circulation problems |
US4818288A (en) * | 1983-12-07 | 1989-04-04 | Skw Trostberg Aktiengesellschaft | Dispersant for concrete mixtures of high salt content |
US4515635A (en) * | 1984-03-23 | 1985-05-07 | Halliburton Company | Hydrolytically stable polymers for use in oil field cementing methods and compositions |
US4652391A (en) * | 1984-09-22 | 1987-03-24 | Henkel Kommanditgesellschaft Auf Aktien | High powder density free-flowing detergent |
US4818518A (en) * | 1984-11-16 | 1989-04-04 | Uop | Effervescent dentifrice |
US4717488A (en) * | 1986-04-23 | 1988-01-05 | Merck Co., Inc. | Spacer fluid |
US4721633A (en) * | 1986-08-22 | 1988-01-26 | Colgate-Palmolive Company | Process for manufacturing speckled detergent composition |
US4986989A (en) * | 1987-09-04 | 1991-01-22 | Sumitomo Chemical Company, Limited | Zeolite fungicide |
US5383967A (en) * | 1991-03-29 | 1995-01-24 | Chase; Raymond S. | Natural silica-containing cement and concrete composition |
US5314022A (en) * | 1992-10-22 | 1994-05-24 | Shell Oil Company | Dilution of drilling fluid in forming cement slurries |
US5307876A (en) * | 1992-10-22 | 1994-05-03 | Shell Oil Company | Method to cement a wellbore in the presence of carbon dioxide |
US5301752A (en) * | 1992-10-22 | 1994-04-12 | Shell Oil Company | Drilling and cementing with phosphate-blast furnace slag |
US5314852A (en) * | 1992-11-13 | 1994-05-24 | Fred Klatte | Chemically impregnated zeolite and method for chemically impregnating and coating zeolite |
US5501276A (en) * | 1994-09-15 | 1996-03-26 | Halliburton Company | Drilling fluid and filter cake removal methods and compositions |
US5626665A (en) * | 1994-11-04 | 1997-05-06 | Ash Grove Cement Company | Cementitious systems and novel methods of making the same |
US5494513A (en) * | 1995-07-07 | 1996-02-27 | National Research Council Of Canada | Zeolite-based lightweight concrete products |
US5716910A (en) * | 1995-09-08 | 1998-02-10 | Halliburton Company | Foamable drilling fluid and methods of use in well drilling operations |
US5711383A (en) * | 1996-04-19 | 1998-01-27 | Halliburton Company | Cementitious well drilling fluids and methods |
US5900052A (en) * | 1996-04-23 | 1999-05-04 | Mitsubishi Heavy Industries, Ltd. | Belt coating material for belt type continuous casting and belt coating method |
US5902564A (en) * | 1996-06-06 | 1999-05-11 | Intevep, S.A. | Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same |
US5866517A (en) * | 1996-06-19 | 1999-02-02 | Atlantic Richfield Company | Method and spacer fluid composition for displacing drilling fluid from a wellbore |
US6167967B1 (en) * | 1997-03-14 | 2001-01-02 | Halliburton Energy Services, Inc. | Methods of sealing subterranean zones |
US6060434A (en) * | 1997-03-14 | 2000-05-09 | Halliburton Energy Services, Inc. | Oil based compositions for sealing subterranean zones and methods |
US6372694B1 (en) * | 1997-04-30 | 2002-04-16 | Crosfield Ltd. | Suspensions with high storage stability, comprising an aqueous silicate solution and a filler material |
US20030066460A1 (en) * | 1997-08-15 | 2003-04-10 | Reddy Baireddy R. | Methods of cementing high temperature wells and cement compositions therefor |
US6235809B1 (en) * | 1997-09-30 | 2001-05-22 | Bj Services Company | Multi-functional additive for use in well cementing |
US5883070A (en) * | 1997-10-08 | 1999-03-16 | Henkel Corporation | Process for preparing zeolite slurries using a nonionic sugar surfactant and electrolyte |
US6711213B2 (en) * | 1997-10-22 | 2004-03-23 | Hitachi, Ltd. | Implementing reduced-state viterbi detectors |
US6390197B1 (en) * | 1997-11-26 | 2002-05-21 | Schlumberger Technology Corporation | Method of cementing a well in geological zones containing swelling clays or mud residues containing clays |
US6230804B1 (en) * | 1997-12-19 | 2001-05-15 | Bj Services Company | Stress resistant cement compositions and methods for using same |
US6171386B1 (en) * | 1998-01-22 | 2001-01-09 | Benchmark Research& Technology Inc. | Cementing compositions, a method of making therefor, and a method for cementing wells |
US20040007360A1 (en) * | 1998-10-06 | 2004-01-15 | Sylvaine Leroy-Delage | Cementing compositions and the use of such compositions for cementing wells |
US6176315B1 (en) * | 1998-12-04 | 2001-01-23 | Halliburton Energy Services, Inc. | Preventing flow through subterranean zones |
US6170575B1 (en) * | 1999-01-12 | 2001-01-09 | Halliburton Energy Services, Inc. | Cementing methods using dry cementitious materials having improved flow properties |
US6379456B1 (en) * | 1999-01-12 | 2002-04-30 | Halliburton Energy Services, Inc. | Flow properties of dry cementitious and non-cementitious materials |
US6234251B1 (en) * | 1999-02-22 | 2001-05-22 | Halliburton Energy Services, Inc. | Resilient well cement compositions and methods |
US6063738A (en) * | 1999-04-19 | 2000-05-16 | Halliburton Energy Services, Inc. | Foamed well cement slurries, additives and methods |
US6209646B1 (en) * | 1999-04-21 | 2001-04-03 | Halliburton Energy Services, Inc. | Controlling the release of chemical additives in well treating fluids |
US6182758B1 (en) * | 1999-08-30 | 2001-02-06 | Halliburton Energy Services, Inc. | Dispersant and fluid loss control additives for well cements, well cement compositions and methods |
US6210476B1 (en) * | 1999-09-07 | 2001-04-03 | Halliburton Energy Services, Inc. | Foamed cement compositions and methods |
US6508305B1 (en) * | 1999-09-16 | 2003-01-21 | Bj Services Company | Compositions and methods for cementing using elastic particles |
US6213213B1 (en) * | 1999-10-08 | 2001-04-10 | Halliburton Energy Services, Inc. | Methods and viscosified compositions for treating wells |
US6387873B1 (en) * | 2000-04-05 | 2002-05-14 | The Procter & Gamble Company | Detergent composition with improved calcium sequestration capacity |
US6883609B2 (en) * | 2000-05-15 | 2005-04-26 | Schlumberger Technology Corporation | Permeable cements |
US6843977B2 (en) * | 2000-05-25 | 2005-01-18 | Board Of Trustees Of Michigan State University | Ultrastable porous aluminosilicate structures and compositions derived therefrom |
US6524384B2 (en) * | 2000-07-26 | 2003-02-25 | Halliburton Energy Services, Inc. | Oil-based settable spotting fluid |
US20040007162A1 (en) * | 2000-09-13 | 2004-01-15 | Minoru Morioka | Cement composition |
US6840996B2 (en) * | 2000-09-13 | 2005-01-11 | Denki Kagaku Kogyo Kabushiki Kaisha | Cement composition |
US20040035331A1 (en) * | 2000-09-29 | 2004-02-26 | Edgar Volpert | Cementing compositions including a dispersant agent for cementing operation in oil wells |
US6713553B2 (en) * | 2000-10-25 | 2004-03-30 | Coatex S.A.S. | Method for improving the mechanical strength, particularly the strength “at the young ages” of cement matrices, and the cement matrices obtained thereby |
US7316744B2 (en) * | 2000-12-15 | 2008-01-08 | Megatech Holding B.V. | Composition which is intended for use as an additive for cement |
US20040040475A1 (en) * | 2000-12-15 | 2004-03-04 | Robin De La Roij | Composition Which is Intended for use as an Additive for Cement |
US20030033677A1 (en) * | 2001-08-20 | 2003-02-20 | Nguyen Nghi Van | Compositions comprising at least one hydroxide compound and at least one reducing agent, and methods for relaxing hair |
US6881708B2 (en) * | 2001-11-15 | 2005-04-19 | Halliburton Energy Services, Inc. | Compositions for solving lost circulation problems |
US20030092582A1 (en) * | 2001-11-15 | 2003-05-15 | Reddy B. Raghava | Compositions for solving lost circulation problems |
US6508306B1 (en) * | 2001-11-15 | 2003-01-21 | Halliburton Energy Services, Inc. | Compositions for solving lost circulation problems |
US6719055B2 (en) * | 2002-01-23 | 2004-04-13 | Halliburton Energy Services, Inc. | Method for drilling and completing boreholes with electro-rheological fluids |
US6555505B1 (en) * | 2002-03-08 | 2003-04-29 | Halliburton Energy Services, Inc. | Foamed acidizing fluids, additives and methods of acidizing subterranean zones |
US6722434B2 (en) * | 2002-05-31 | 2004-04-20 | Halliburton Energy Services, Inc. | Methods of generating gas in well treating fluids |
US6702044B2 (en) * | 2002-06-13 | 2004-03-09 | Halliburton Energy Services, Inc. | Methods of consolidating formations or forming chemical casing or both while drilling |
US6837316B2 (en) * | 2002-06-13 | 2005-01-04 | Halliburtn Energy Services, Inc. | Methods of consolidating formations |
US20040069538A1 (en) * | 2002-06-13 | 2004-04-15 | Reddy B. Raghava | Methods of consolidating formations |
US20040069537A1 (en) * | 2002-06-13 | 2004-04-15 | Reddy B. Raghava | Methods of consolidating formations and forming a chemical casing |
US20040040712A1 (en) * | 2002-08-29 | 2004-03-04 | Ravi Krishna M. | Cement composition exhibiting improved resilience/toughness and method for using same |
US20070028811A1 (en) * | 2002-12-10 | 2007-02-08 | Karen Luke | Fluid loss additives for cement slurries |
US20050000734A1 (en) * | 2002-12-10 | 2005-01-06 | Getzlaf Donald A. | Zeolite-containing drilling fluids |
US6989057B2 (en) * | 2002-12-10 | 2006-01-24 | Halliburton Energy Services, Inc. | Zeolite-containing cement composition |
US20070032388A1 (en) * | 2002-12-10 | 2007-02-08 | Getzlaf Donald A | Zeolite-containing drilling fluids |
US7338925B2 (en) * | 2002-12-10 | 2008-03-04 | Halliburton Energy Services, Inc. | Zeolite compositions having enhanced compressive strength |
US20050072599A1 (en) * | 2002-12-10 | 2005-04-07 | Karen Luke | Zeolite-containing remedial compositions |
US20050034864A1 (en) * | 2003-06-27 | 2005-02-17 | Caveny William J. | Cement compositions with improved fluid loss characteristics and methods of cementing in surface and subterranean applications |
US7021380B2 (en) * | 2003-06-27 | 2006-04-04 | Halliburton Energy Services, Inc. | Compositions comprising set retarder compositions and associated methods |
US6840319B1 (en) * | 2004-01-21 | 2005-01-11 | Halliburton Energy Services, Inc. | Methods, compositions and biodegradable fluid loss control additives for cementing subterranean zones |
US20060025312A1 (en) * | 2004-07-28 | 2006-02-02 | Santra Ashok K | Cement-free zeolite and fly ash settable fluids and methods therefor |
US20070051280A1 (en) * | 2004-09-13 | 2007-03-08 | Fyten Glen C | Cementitious compositions containing interground cement clinker and zeolite |
US20070051279A1 (en) * | 2004-09-13 | 2007-03-08 | Fyten Glen C | Cementitious compositions containing interground cement clinker and zeolite |
US20070051515A1 (en) * | 2004-09-13 | 2007-03-08 | Fyten Glen C | Cementitious compositions containing interground cement clinker and zeolite |
US7326291B2 (en) * | 2004-09-13 | 2008-02-05 | Halliburton Energy Services, Inc. | Cementitious compositions containing interground cement clinker and zeolite |
US7332026B2 (en) * | 2004-09-13 | 2008-02-19 | Halliburton Energy Services, Inc. | Cementitious compositions containing interground cement clinker and zeolite |
US7182137B2 (en) * | 2004-09-13 | 2007-02-27 | Halliburton Energy Services, Inc. | Cementitious compositions containing interground cement clinker and zeolite |
US20080066652A1 (en) * | 2006-09-14 | 2008-03-20 | Michael Fraser | Low density cements for use in cementing operations |
Also Published As
Publication number | Publication date |
---|---|
CA2549128A1 (en) | 2005-06-16 |
WO2005054625A1 (en) | 2005-06-16 |
US7140439B2 (en) | 2006-11-28 |
US20050072599A1 (en) | 2005-04-07 |
US7544642B2 (en) | 2009-06-09 |
CA2549128C (en) | 2009-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7544642B2 (en) | Zeolite-containing remedial compositions | |
US7150321B2 (en) | Zeolite-containing settable spotting fluids | |
US7338925B2 (en) | Zeolite compositions having enhanced compressive strength | |
US7147067B2 (en) | Zeolite-containing drilling fluids | |
CA2480267C (en) | Compositions for restoring lost circulation | |
US7297664B2 (en) | Cement-free zeolite and fly ash settable fluids and methods therefor | |
US3499491A (en) | Method and composition for cementing oil well casing | |
EP0461584B1 (en) | Non-hydrocarbon invert emulsion for use in well drilling operations | |
US5333698A (en) | White mineral oil-based drilling fluid | |
AU2013277767B2 (en) | Oil absorbent oilfield materials as additives in oil-based drilling fluid applications | |
US7732380B2 (en) | Drilling fluids containing biodegradable organophilic clay | |
EP1877511B1 (en) | Method of using drilling fluids containing biodegradable organophilic clay | |
US5821203A (en) | Foamed drilling fluids, their process for preparation and the corresponding drilling method | |
Deville | Drilling fluids | |
EP0617106B1 (en) | Fluid composition comprising a metal aluminate or a viscosity promoter and a magnesium compound and process using the composition | |
US10072198B2 (en) | Self sealing fluids | |
GB2032982A (en) | Drilling fluids | |
US12024669B2 (en) | C-36 dimer diamine hydrochloride salt as primary viscosifier for invert-emulsion drilling fluids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |