US20060117940A1 - Adjustable adaptable vertical launching system - Google Patents
Adjustable adaptable vertical launching system Download PDFInfo
- Publication number
- US20060117940A1 US20060117940A1 US11/005,378 US537804A US2006117940A1 US 20060117940 A1 US20060117940 A1 US 20060117940A1 US 537804 A US537804 A US 537804A US 2006117940 A1 US2006117940 A1 US 2006117940A1
- Authority
- US
- United States
- Prior art keywords
- missile
- canister
- exhaust
- missile canister
- receptacle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41F—APPARATUS FOR LAUNCHING PROJECTILES OR MISSILES FROM BARRELS, e.g. CANNONS; LAUNCHERS FOR ROCKETS OR TORPEDOES; HARPOON GUNS
- F41F3/00—Rocket or torpedo launchers
- F41F3/04—Rocket or torpedo launchers for rockets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41F—APPARATUS FOR LAUNCHING PROJECTILES OR MISSILES FROM BARRELS, e.g. CANNONS; LAUNCHERS FOR ROCKETS OR TORPEDOES; HARPOON GUNS
- F41F3/00—Rocket or torpedo launchers
- F41F3/04—Rocket or torpedo launchers for rockets
- F41F3/042—Rocket or torpedo launchers for rockets the launching apparatus being used also as a transport container for the rocket
Definitions
- the present invention relates to missilery in general, and, more particularly, to missile launchers.
- a missile is propelled by fuel and a chemical-propulsion engine.
- a chemical-propulsion engine propels a missile by the reaction that results from the rearward discharge of gases that are liberated when the fuel is burned.
- a “missile” is defined as a projectile whose trajectory is not necessarily ballistic and can be altered during flight (as by a target-seeking radar device and control elements).
- FIG. 1 depicts two such multi-cell missile launchers mounted to the deck of warship 100 as is known in the prior art. In some prior art arrangements, the multi-cell missile launchers are mounted below the deck. Each launcher is capable of locating, holding, and launching a plurality of a single type of missile canister. The type(s) of launcher is chosen based on the desired capability of the weapons platform, such as warship 100 .
- FIG. 2 depicts a perspective-view of a Lockheed-Martin MK 41 multi-cell missile launcher, which is an example of a multi-cell missile launcher known in the prior art.
- Each cell of the multi-cell missile launcher is the same (i.e., only one type of missile is launched from the launcher).
- a characteristic of modern warfare is the need to derive multi-functional capability from weapons platforms used in battle.
- a warship for example, might need to launch surface-to-surface missiles during one phase of a battle, and surface-to-air missiles during a different phase of the same battle.
- multi-functionality is derived at the level of the systems platform, such as warship 100 , by providing multiple missile launching systems wherein each missile launching system has different functionality.
- multiple launchers are required, which leads to added infrastructure, space requirement, and expense for the weapons platform.
- the multi-cell missile launcher depicted in FIG. 2 comprises a 2 ⁇ 4 array of MK-41 launch cells, each of which contains a missile of the same type. Each cell is controlled by a MK-41 controller, which contains data and information that is specific to the type of guided missile contained in the launch cells.
- missile canisters have been adapted to hold missiles that are smaller than the missiles for which these missile canisters have been designed.
- the size of the missile canister limits the size of the missile that can be used, which limits the flexibility of existing missile launchers.
- the present invention provides a missile launch system that can be reconfigured to launch missiles of various types and sizes.
- the illustrative embodiment of the present invention uses variable-sized receptacles for locating and holding different types of missile canisters.
- the illustrative embodiment uses a controller that contains a data set of information for each type of missile for which the reconfigurable launcher can be configured. This mitigates some of the problems associated with launching multiple missile types in the prior art.
- the illustrative embodiment comprises: a missile canister, a missile contained in the missile canister, a reconfigurable receptacle for locating and holding any one of a plurality of missile canister types, an reconfigurable exhaust system for venting fumes from missile canisters in any allowed launcher configuration, and a controller for controlling a plurality of missile types.
- FIG. 1 depicts a representational diagram of a naval launch system according to the prior art.
- FIG. 2 depicts a perspective view of a multi-cell missile launcher according to the prior art.
- FIG. 3 depicts a representational diagram of a naval launch system in accordance with the illustrative embodiment.
- FIG. 4 depicts a block diagram of reconfigurable launcher 302 in accordance with the illustrative embodiment.
- FIG. 5 depicts a block diagram of a launch cell in accordance with the illustrative embodiment.
- FIG. 6 depicts a block diagram of a multi-missile controller in accordance with the illustrative embodiment.
- FIG. 7 depicts a cross-sectional view of a launch cell in accordance with the illustrative embodiment.
- FIG. 8 depicts a cross-sectional view of an exhaust system in accordance with the illustrative embodiment.
- FIG. 3 depicts a representational diagram of a naval launch system in accordance with the illustrative embodiment.
- reconfigurable multi-cell missile launcher 302 (hereinafter referred to as “reconfigurable launcher” 302 ) is mounted on the deck of warship 100 , it will be clear to those skilled in the art, after reading this disclosure, how to make and use alternative embodiments of the present invention in which reconfigurable launcher 302 is mounted below the deck of warship 100 , is terrestrially-based, or is mounted on another type of vehicle (e.g., a truck, a railroad car, a submarine, a space vehicle, a satellite, etc.)
- another type of vehicle e.g., a truck, a railroad car, a submarine, a space vehicle, a satellite, etc.
- FIG. 4 depicts a block diagram of reconfigurable launcher 302 in accordance with the illustrative embodiment. Although only a one-dimensional array of four launch cells is shown in FIG. 4 , it will be clear to those skilled in the art, after reading this disclosure, how to make and use alternative embodiments of the present invention in which launch system 302 comprises a single reconfigurable launch cell, a one-dimensional array of any number of reconfigurable launch cells, or a two-dimensional array of any number of reconfigurable launch cells.
- Reconfigurable launcher 302 comprises Type-A launch cell 404 1 , two Type-B launch cells 404 2 and 404 4 , Type-C launch cell 404 3 , exhaust system 406 , cable 410 , and multi-missile controller 408 .
- the missile types, A, B, and C represent three different nonspecific missile types, each having a different canister size.
- Exhaust system 406 is connected to all launch cells 404 1 through 404 4 via exhaust outlets such that exhaust system 406 vents exhaust fumes generated during the launch of a missile in one or all of launch cells 404 1 through 404 4 . Exhaust system 406 is described in detail below and with respect to FIGS. 7 and 8 .
- Multi-missile controller 408 contains multiple data sets, wherein each data set contains the data and information specific to the control and launch of each missile type for which reconfigurable launcher 302 is configured. Multi-missile controller 408 is connected to each launch cell 404 1 through 404 4 via cable 410 , so as to provide bi-directional communications between multi-missile controller 408 and each launch cell. Multi-missile controller 408 is described in detail below and with respect to FIG. 6 .
- FIG. 5 depicts a block diagram of launch cell 404 i , wherein i is a positive integer in the set ⁇ 1, . . . , 4 ⁇ , in accordance with the illustrative embodiment.
- Launch cell 404 i comprises receptacle 512 i , missile canister 514 i , missile 516 i , and exhaust outlet 518 i .
- Receptacle 512 i locates and secures missile canister 514 i , which includes missile 516 i .
- Exhaust outlet 518 i provides a path through which the exhaust fumes generated by missile 516 i during launch can escape from launch cell 404 i .
- the size of receptacle 512 i determines the type of missile canister 514 i . Different types of missiles are contained in missile canisters of different sizes. Therefore, in order to enable reconfigurable launcher 302 to accommodate different missile types, the size of receptacle 512 i is reconfigurable, as well as the position of exhaust outlet 518 i . The reconfigurability of receptacle 512 i and exhaust outlet 518 i is described in detail below and with respect to FIG. 7 .
- FIG. 6 depicts a block diagram of multi-missile controller 408 in accordance with the illustrative embodiment.
- Multi-missile controller 408 comprises processor 620 and memory 622 .
- Memory 622 comprises N data sets 624 i , wherein i is a positive integer in the set ⁇ 1, . . . , N ⁇ .
- Each data set 624 i includes data and information specific to the control and launch of one of the N missile types for which reconfigurable launcher 302 can be configured.
- FIG. 7 depicts a cross-sectional view of launch cell 404 i in accordance with the illustrative embodiment.
- Launch cell 404 i comprises missile canister 514 i , exhaust outlet 518 i , platform 720 , movable supports 722 i and 722 i+1 , missile 516 i , missile canister connector 724 i , and missile canister-to-missile umbilical 726 i .
- Platform 720 and movable supports 722 i and 722 i+1 locate and support missile canister 514 .
- the position of movable supports 722 i and 722 i+1 can be changed such that the spacing between them accepts a missile canister different than missile canister 514 i , and therefore a missile different than missile 516 i .
- Movement of movable supports 722 i and 722 i+1 can be accomplished using hydraulics, electric motors, or manual means. It will be clear to those skilled in the art how to position movable supports 722 i and 722 i+1 .
- the total size of reconfigurable launcher 302 is fixed and each of movable supports 722 may be shared between two adjacent launch cells 404 i and 404 i ⁇ 1 . Therefore, as the size of launch cell 404 i is changed, the size of adjacent launch cell 404 i ⁇ 1 or 404 i+1 is changed as well. For example, as movable support 722 i is moved toward the left to enable location of a larger missile canister in receptacle 512 i , the opening between movable support 722 i and 722 i ⁇ 1 (not shown) is made smaller. Thus, the type of missile canister that can be located by receptacle 512 i ⁇ 1 is changed. In some configurations, reconfigurable launcher 302 will have less than four launch cells, while in other configurations reconfigurable launcher 302 will have more than four launch cells.
- Missile canister 514 i includes a fly-through cover on one end, and a missile canister back plate on the other end.
- the missile canister back plate either opens or bursts upon ignition of missile 516 i to provide access to exhaust outlet 518 i for exhaust fumes from missile 516 i .
- Exhaust outlet 518 i vents exhaust fumes into exhaust plenum 728 , where they combine with the exhaust fumes from other launch cells. It will be clear to those skilled in the art how to make and use a missile canister back plate that provides access to exhaust outlet 518 i upon ignition of missile 516 i .
- the position of exhaust outlet 518 i is reconfigurable to accommodate any of the missile types for which reconfigurable launcher 302 is configured.
- Missile 514 i communicates with multi-missile controller 408 via cable 410 .
- Cable 410 is connected to missile 514 i through cable connector 726 i , missile canister connector 724 i , and missile canister-to-missile umbilical 726 i .
- cable connector 726 is a universal connector that can mate to any of the missile canister connectors associated with each missile canister type for which reconfigurable launcher 302 is suitable.
- cable 410 includes a plurality of cable connectors, one for each type of missile canister type for which reconfigurable launcher 302 is suitable.
- FIG. 8 depicts a cross-sectional view of exhaust system 406 in accordance with the illustrative embodiment.
- Exhaust system 406 comprises exhaust plenum 728 , exhaust outlets 518 i , wherein i is a positive integer in the set ⁇ 1, . . . , 5 ⁇ , and exhaust uptake 830 .
- Each launch cell 404 1 through 404 4 includes an exhaust outlet 518 1 through 518 4 , such that the exhaust fumes generated during a missile launch in that cell are directed into exhaust plenum 728 .
- An additional exhaust outlet 518 5 provides access to exhaust uptake 830 for the exhaust fumes in exhaust plenum 728 .
- Exhaust uptake 830 provides egress for the exhaust fumes into the atmosphere that surrounds reconfigurable launcher 302 .
- exhaust system 406 includes a plurality of exhaust uptakes 830 .
- exhaust uptake 830 is located in the interior of reconfigurable launcher 830 , i.e. between two launch cells such as launch cells 404 2 and 404 3 .
- platform 720 comprises through-holes that allow exhaust fumes to vent directly through platform 720 and into and out of exhaust plenum 728 , obviating discrete exhaust outlets 518 1 through 518 5 .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
Description
- The present invention relates to missilery in general, and, more particularly, to missile launchers.
- A missile is propelled by fuel and a chemical-propulsion engine. A chemical-propulsion engine propels a missile by the reaction that results from the rearward discharge of gases that are liberated when the fuel is burned. For the purposes of this specification, a “missile” is defined as a projectile whose trajectory is not necessarily ballistic and can be altered during flight (as by a target-seeking radar device and control elements).
- Multi-cell missile launchers have been developed for several types of missiles.
FIG. 1 depicts two such multi-cell missile launchers mounted to the deck ofwarship 100 as is known in the prior art. In some prior art arrangements, the multi-cell missile launchers are mounted below the deck. Each launcher is capable of locating, holding, and launching a plurality of a single type of missile canister. The type(s) of launcher is chosen based on the desired capability of the weapons platform, such aswarship 100. -
FIG. 2 depicts a perspective-view of a Lockheed-Martin MK 41 multi-cell missile launcher, which is an example of a multi-cell missile launcher known in the prior art. Each cell of the multi-cell missile launcher is the same (i.e., only one type of missile is launched from the launcher). A characteristic of modern warfare is the need to derive multi-functional capability from weapons platforms used in battle. A warship, for example, might need to launch surface-to-surface missiles during one phase of a battle, and surface-to-air missiles during a different phase of the same battle. Currently, multi-functionality is derived at the level of the systems platform, such aswarship 100, by providing multiple missile launching systems wherein each missile launching system has different functionality. In order to attain multi-functional capability for the weapons platform, multiple launchers are required, which leads to added infrastructure, space requirement, and expense for the weapons platform. - The multi-cell missile launcher depicted in
FIG. 2 comprises a 2×4 array of MK-41 launch cells, each of which contains a missile of the same type. Each cell is controlled by a MK-41 controller, which contains data and information that is specific to the type of guided missile contained in the launch cells. - In the prior art, missile canisters have been adapted to hold missiles that are smaller than the missiles for which these missile canisters have been designed. However, this leads to wasted space and reduced firepower for the launch system. In addition, the size of the missile canister limits the size of the missile that can be used, which limits the flexibility of existing missile launchers.
- Therefore, the need exists for a missile launcher that avoids or mitigates some or all of these problems.
- The present invention provides a missile launch system that can be reconfigured to launch missiles of various types and sizes. In particular, the illustrative embodiment of the present invention uses variable-sized receptacles for locating and holding different types of missile canisters. In addition, the illustrative embodiment uses a controller that contains a data set of information for each type of missile for which the reconfigurable launcher can be configured. This mitigates some of the problems associated with launching multiple missile types in the prior art.
- The illustrative embodiment comprises: a missile canister, a missile contained in the missile canister, a reconfigurable receptacle for locating and holding any one of a plurality of missile canister types, an reconfigurable exhaust system for venting fumes from missile canisters in any allowed launcher configuration, and a controller for controlling a plurality of missile types.
-
FIG. 1 depicts a representational diagram of a naval launch system according to the prior art. -
FIG. 2 depicts a perspective view of a multi-cell missile launcher according to the prior art. -
FIG. 3 depicts a representational diagram of a naval launch system in accordance with the illustrative embodiment. -
FIG. 4 depicts a block diagram ofreconfigurable launcher 302 in accordance with the illustrative embodiment. -
FIG. 5 depicts a block diagram of a launch cell in accordance with the illustrative embodiment. -
FIG. 6 depicts a block diagram of a multi-missile controller in accordance with the illustrative embodiment. -
FIG. 7 depicts a cross-sectional view of a launch cell in accordance with the illustrative embodiment. -
FIG. 8 depicts a cross-sectional view of an exhaust system in accordance with the illustrative embodiment. -
FIG. 3 depicts a representational diagram of a naval launch system in accordance with the illustrative embodiment. Although reconfigurable multi-cell missile launcher 302 (hereinafter referred to as “reconfigurable launcher” 302) is mounted on the deck ofwarship 100, it will be clear to those skilled in the art, after reading this disclosure, how to make and use alternative embodiments of the present invention in whichreconfigurable launcher 302 is mounted below the deck ofwarship 100, is terrestrially-based, or is mounted on another type of vehicle (e.g., a truck, a railroad car, a submarine, a space vehicle, a satellite, etc.) -
FIG. 4 depicts a block diagram ofreconfigurable launcher 302 in accordance with the illustrative embodiment. Although only a one-dimensional array of four launch cells is shown inFIG. 4 , it will be clear to those skilled in the art, after reading this disclosure, how to make and use alternative embodiments of the present invention in whichlaunch system 302 comprises a single reconfigurable launch cell, a one-dimensional array of any number of reconfigurable launch cells, or a two-dimensional array of any number of reconfigurable launch cells. -
Reconfigurable launcher 302 comprises Type-A launch cell 404 1, two Type-B launch cells launch cell 404 3, exhaust system 406,cable 410, andmulti-missile controller 408. The missile types, A, B, and C represent three different nonspecific missile types, each having a different canister size. - Exhaust system 406 is connected to all
launch cells 404 1 through 404 4 via exhaust outlets such that exhaust system 406 vents exhaust fumes generated during the launch of a missile in one or all oflaunch cells 404 1 through 404 4. Exhaust system 406 is described in detail below and with respect toFIGS. 7 and 8 . -
Multi-missile controller 408 contains multiple data sets, wherein each data set contains the data and information specific to the control and launch of each missile type for whichreconfigurable launcher 302 is configured.Multi-missile controller 408 is connected to eachlaunch cell 404 1 through 404 4 viacable 410, so as to provide bi-directional communications betweenmulti-missile controller 408 and each launch cell.Multi-missile controller 408 is described in detail below and with respect toFIG. 6 . -
FIG. 5 depicts a block diagram oflaunch cell 404 i, wherein i is a positive integer in the set {1, . . . , 4}, in accordance with the illustrative embodiment.Launch cell 404 i comprisesreceptacle 512 i,missile canister 514 i,missile 516 i, andexhaust outlet 518 i. -
Receptacle 512 i locates and securesmissile canister 514 i, which includesmissile 516 i.Exhaust outlet 518 i provides a path through which the exhaust fumes generated bymissile 516 i during launch can escape fromlaunch cell 404 i. The size ofreceptacle 512 i determines the type ofmissile canister 514 i. Different types of missiles are contained in missile canisters of different sizes. Therefore, in order to enablereconfigurable launcher 302 to accommodate different missile types, the size ofreceptacle 512 i is reconfigurable, as well as the position ofexhaust outlet 518 i. The reconfigurability ofreceptacle 512 i andexhaust outlet 518 i is described in detail below and with respect toFIG. 7 . -
FIG. 6 depicts a block diagram ofmulti-missile controller 408 in accordance with the illustrative embodiment.Multi-missile controller 408 comprisesprocessor 620 andmemory 622.Memory 622 comprises N data sets 624 i, wherein i is a positive integer in the set {1, . . . , N}. Each data set 624 i includes data and information specific to the control and launch of one of the N missile types for whichreconfigurable launcher 302 can be configured. -
FIG. 7 depicts a cross-sectional view oflaunch cell 404 i in accordance with the illustrative embodiment.Launch cell 404 i comprisesmissile canister 514 i,exhaust outlet 518 i,platform 720,movable supports missile 516 i,missile canister connector 724 i, and missile canister-to-missile umbilical 726 i. -
Platform 720 andmovable supports missile canister 514. The position ofmovable supports missile canister 514 i, and therefore a missile different thanmissile 516 i. Movement ofmovable supports movable supports - The total size of
reconfigurable launcher 302 is fixed and each ofmovable supports 722 may be shared between twoadjacent launch cells launch cell 404 i is changed, the size ofadjacent launch cell movable support 722 i is moved toward the left to enable location of a larger missile canister inreceptacle 512 i, the opening betweenmovable support 722 i and 722 i−1 (not shown) is made smaller. Thus, the type of missile canister that can be located byreceptacle 512 i−1 is changed. In some configurations,reconfigurable launcher 302 will have less than four launch cells, while in other configurations reconfigurablelauncher 302 will have more than four launch cells. -
Missile canister 514 i includes a fly-through cover on one end, and a missile canister back plate on the other end. The missile canister back plate either opens or bursts upon ignition ofmissile 516 i to provide access toexhaust outlet 518 i for exhaust fumes frommissile 516 i.Exhaust outlet 518 i vents exhaust fumes into exhaust plenum 728, where they combine with the exhaust fumes from other launch cells. It will be clear to those skilled in the art how to make and use a missile canister back plate that provides access toexhaust outlet 518 i upon ignition ofmissile 516 i. The position ofexhaust outlet 518 i is reconfigurable to accommodate any of the missile types for whichreconfigurable launcher 302 is configured. -
Missile 514 i communicates withmulti-missile controller 408 viacable 410.Cable 410 is connected tomissile 514 i throughcable connector 726 i,missile canister connector 724 i, and missile canister-to-missile umbilical 726 i. In the illustrative embodiment,cable connector 726 is a universal connector that can mate to any of the missile canister connectors associated with each missile canister type for whichreconfigurable launcher 302 is suitable. In some embodiments,cable 410 includes a plurality of cable connectors, one for each type of missile canister type for whichreconfigurable launcher 302 is suitable. -
FIG. 8 depicts a cross-sectional view of exhaust system 406 in accordance with the illustrative embodiment. Exhaust system 406 comprises exhaust plenum 728,exhaust outlets 518 i, wherein i is a positive integer in the set {1, . . . , 5}, andexhaust uptake 830. Eachlaunch cell 404 1 through 404 4 includes anexhaust outlet 518 1 through 518 4, such that the exhaust fumes generated during a missile launch in that cell are directed into exhaust plenum 728. Anadditional exhaust outlet 518 5 provides access toexhaust uptake 830 for the exhaust fumes in exhaust plenum 728.Exhaust uptake 830 provides egress for the exhaust fumes into the atmosphere that surroundsreconfigurable launcher 302. - In some embodiments of the present invention, exhaust system 406 includes a plurality of
exhaust uptakes 830. In some embodiments of the present invention,exhaust uptake 830 is located in the interior ofreconfigurable launcher 830, i.e. between two launch cells such aslaunch cells platform 720 comprises through-holes that allow exhaust fumes to vent directly throughplatform 720 and into and out of exhaust plenum 728, obviatingdiscrete exhaust outlets 518 1 through 518 5. - It is to be understood that the above-described embodiments are merely illustrative of the present invention and that many variations of the above-described embodiments can be devised by those skilled in the art without departing from the scope of the invention. For example, in this Specification, numerous specific details are provided in order to provide a thorough description and understanding of the illustrative embodiments of the present invention. Those skilled in the art will recognize, however, that the invention can be practiced without one or more of those details, or with other methods, materials, components, etc.
- Furthermore, in some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the illustrative embodiments. It is understood that the various embodiments shown in the Figures are illustrative, and are not necessarily drawn to scale. Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that a particular feature, structure, material, or characteristic described in connection with the embodiment(s) is included in at least one embodiment of the present invention, but not necessarily all embodiments. Consequently, the appearances of the phrase “in one embodiment,” “in an embodiment,” or “in some embodiments” in various places throughout the Specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, materials, or characteristics can be combined in any suitable manner in one or more embodiments. It is therefore intended that such variations be included within the scope of the following claims and their equivalents.
Claims (26)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/005,378 US20060117940A1 (en) | 2004-12-06 | 2004-12-06 | Adjustable adaptable vertical launching system |
PCT/US2005/038204 WO2006098774A1 (en) | 2004-12-06 | 2005-10-24 | Adjustable adaptable vertical launching system |
TW094139837A TWI266858B (en) | 2004-12-06 | 2005-11-11 | Adjustable adaptable vertical launching system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/005,378 US20060117940A1 (en) | 2004-12-06 | 2004-12-06 | Adjustable adaptable vertical launching system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060117940A1 true US20060117940A1 (en) | 2006-06-08 |
Family
ID=36572745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/005,378 Abandoned US20060117940A1 (en) | 2004-12-06 | 2004-12-06 | Adjustable adaptable vertical launching system |
Country Status (3)
Country | Link |
---|---|
US (1) | US20060117940A1 (en) |
TW (1) | TWI266858B (en) |
WO (1) | WO2006098774A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8584569B1 (en) * | 2011-12-06 | 2013-11-19 | The United States Of America As Represented By The Secretary Of The Navy | Plume exhaust management for VLS |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3148586A (en) * | 1963-06-03 | 1964-09-15 | Thomas C Boyle | Adjustable missile snubber |
US3302522A (en) * | 1964-10-12 | 1967-02-07 | Laureys Pierre | Weapons for firing self-propelled missiles |
US3391816A (en) * | 1966-11-04 | 1968-07-09 | Rexall Drug Chemical | Lunch box with slidable divider |
US3750530A (en) * | 1969-12-08 | 1973-08-07 | Hughes Aircraft Co | Modular airborne launcher |
US3769876A (en) * | 1972-08-02 | 1973-11-06 | Us Navy | Missile launching canister |
US4697764A (en) * | 1986-02-18 | 1987-10-06 | The Boeing Company | Aircraft autonomous reconfigurable internal weapons bay for loading, carrying and launching different weapons therefrom |
US5136922A (en) * | 1991-05-13 | 1992-08-11 | General Dynamics Corporation, Air Defense Systems Division | Self-actuating rocket chamber closures for multi-missile launch cells |
US5148734A (en) * | 1991-04-18 | 1992-09-22 | The United States Of America As Represented By The Secretary Of The Air Force | Universal aircraft rocket/missile launcher (UARML) and triple launcher adapter (TLA) |
US5353677A (en) * | 1993-08-31 | 1994-10-11 | Westinghouse Electric Corporation | Shock isolation system |
US5452640A (en) * | 1993-05-06 | 1995-09-26 | Fmc Corporation | Multipurpose launcher and controls |
US5742609A (en) * | 1993-06-29 | 1998-04-21 | Kondrak; Mark R. | Smart canister systems |
US5847307A (en) * | 1997-06-24 | 1998-12-08 | Northrop Grumman Corporation | Missile launcher apparatus |
US5942713A (en) * | 1998-02-06 | 1999-08-24 | Lockheed Martin Corp. | High missile packing density launching system |
US6125734A (en) * | 1998-10-14 | 2000-10-03 | The United States Of America As Represented By The Secretary Of The Navy | Multi-warfare area launcher |
US6152011A (en) * | 1998-01-27 | 2000-11-28 | Lockheed Martin Corp. | System for controlling and independently firing multiple missiles of different types |
US20050204910A1 (en) * | 2002-05-21 | 2005-09-22 | Nir Padan | System and method for enhancing the payload capacity, carriage efficiency, and adaptive flexibility of external stores mounted on an aerial vehicle |
US20060027082A1 (en) * | 2003-10-07 | 2006-02-09 | Michael Brunn | Multiple projectile launcher |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0933611A2 (en) * | 1998-02-02 | 1999-08-04 | Lockheed Martin Corporation | Multiple missile launcher structure with interchangeable containerized missiles and chimneys |
-
2004
- 2004-12-06 US US11/005,378 patent/US20060117940A1/en not_active Abandoned
-
2005
- 2005-10-24 WO PCT/US2005/038204 patent/WO2006098774A1/en active Application Filing
- 2005-11-11 TW TW094139837A patent/TWI266858B/en not_active IP Right Cessation
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3148586A (en) * | 1963-06-03 | 1964-09-15 | Thomas C Boyle | Adjustable missile snubber |
US3302522A (en) * | 1964-10-12 | 1967-02-07 | Laureys Pierre | Weapons for firing self-propelled missiles |
US3391816A (en) * | 1966-11-04 | 1968-07-09 | Rexall Drug Chemical | Lunch box with slidable divider |
US3750530A (en) * | 1969-12-08 | 1973-08-07 | Hughes Aircraft Co | Modular airborne launcher |
US3769876A (en) * | 1972-08-02 | 1973-11-06 | Us Navy | Missile launching canister |
US4697764A (en) * | 1986-02-18 | 1987-10-06 | The Boeing Company | Aircraft autonomous reconfigurable internal weapons bay for loading, carrying and launching different weapons therefrom |
US5148734A (en) * | 1991-04-18 | 1992-09-22 | The United States Of America As Represented By The Secretary Of The Air Force | Universal aircraft rocket/missile launcher (UARML) and triple launcher adapter (TLA) |
US5136922A (en) * | 1991-05-13 | 1992-08-11 | General Dynamics Corporation, Air Defense Systems Division | Self-actuating rocket chamber closures for multi-missile launch cells |
US5452640A (en) * | 1993-05-06 | 1995-09-26 | Fmc Corporation | Multipurpose launcher and controls |
US5742609A (en) * | 1993-06-29 | 1998-04-21 | Kondrak; Mark R. | Smart canister systems |
US5353677A (en) * | 1993-08-31 | 1994-10-11 | Westinghouse Electric Corporation | Shock isolation system |
US5847307A (en) * | 1997-06-24 | 1998-12-08 | Northrop Grumman Corporation | Missile launcher apparatus |
US6152011A (en) * | 1998-01-27 | 2000-11-28 | Lockheed Martin Corp. | System for controlling and independently firing multiple missiles of different types |
US5942713A (en) * | 1998-02-06 | 1999-08-24 | Lockheed Martin Corp. | High missile packing density launching system |
US6125734A (en) * | 1998-10-14 | 2000-10-03 | The United States Of America As Represented By The Secretary Of The Navy | Multi-warfare area launcher |
US20050204910A1 (en) * | 2002-05-21 | 2005-09-22 | Nir Padan | System and method for enhancing the payload capacity, carriage efficiency, and adaptive flexibility of external stores mounted on an aerial vehicle |
US20060027082A1 (en) * | 2003-10-07 | 2006-02-09 | Michael Brunn | Multiple projectile launcher |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8584569B1 (en) * | 2011-12-06 | 2013-11-19 | The United States Of America As Represented By The Secretary Of The Navy | Plume exhaust management for VLS |
Also Published As
Publication number | Publication date |
---|---|
WO2006098774A1 (en) | 2006-09-21 |
TWI266858B (en) | 2006-11-21 |
TW200628755A (en) | 2006-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8397613B2 (en) | Adaptable launching system | |
US5452640A (en) | Multipurpose launcher and controls | |
EP2422161B1 (en) | Countermeasure arrangement | |
US8468924B2 (en) | Stowable elevating trainable launcher (SETL) | |
US20120152090A1 (en) | Self-Contained Munition Gas Management System | |
US7868276B2 (en) | Airborne vehicle emulation system and method | |
US5153367A (en) | Cocoon launcher and storage system | |
US6755111B2 (en) | Missile launcher cell with exhaust gas uptake ducts, and array of such missile launcher cells | |
US20150107446A1 (en) | Trainable launcher | |
US20060117940A1 (en) | Adjustable adaptable vertical launching system | |
EP0935118B1 (en) | High missile packing density launching system | |
KR101824009B1 (en) | Missile cable cutting system | |
US6868769B1 (en) | Containerized rocket assisted payload (RAP) launch system | |
US20100263648A1 (en) | Stacked Munitions Launcher and Method Therefor | |
EP3161405B1 (en) | Stowable effector launch system | |
US20060207417A1 (en) | Inclinable munitions launcher | |
US6382123B1 (en) | Multicaliber torpedo tube | |
US7389717B1 (en) | Missile launch system with high-volume assault capability | |
RU2606150C1 (en) | Method of exploitation of underwater vehicles | |
US20210214081A1 (en) | Accommodation and Deployment Device for Payloads on a Flying Machine | |
US11919641B2 (en) | Payload launching arrangement and a method for launching a payload | |
KR101553901B1 (en) | Missile launching system | |
GB2539691A (en) | Launching devices from a submerged launch platform | |
CN117516264A (en) | Embedded unmanned aerial vehicle missile launching device and airborne weapon system | |
RU2258191C1 (en) | Rocket launcher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LOCKHEED MARTIN CORPORATION, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAH, TUSHAR K.;TRAUGER, KRISTIAN M.;MAHESHWARI, MAHENDRA;REEL/FRAME:016061/0009 Effective date: 20041202 |
|
AS | Assignment |
Owner name: LOCKHEED MARTIN CORPORATION, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAH, TUSHAR K.;TRAUGER, KRISTIAN M.;MAHESHWARI, MAHENDRA;REEL/FRAME:016942/0118;SIGNING DATES FROM 20051214 TO 20051216 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |