US20060107526A1 - Process for inserting flow passages in a work piece - Google Patents
Process for inserting flow passages in a work piece Download PDFInfo
- Publication number
- US20060107526A1 US20060107526A1 US10/994,693 US99469304A US2006107526A1 US 20060107526 A1 US20060107526 A1 US 20060107526A1 US 99469304 A US99469304 A US 99469304A US 2006107526 A1 US2006107526 A1 US 2006107526A1
- Authority
- US
- United States
- Prior art keywords
- director plate
- flow passage
- director
- planar surface
- punching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1853—Orifice plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/16—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass plates with holes of very small diameter, e.g. for spinning or burner nozzles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49298—Poppet or I.C. engine valve or valve seat making
- Y10T29/49306—Valve seat making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49405—Valve or choke making
- Y10T29/49409—Valve seat forming
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49428—Gas and water specific plumbing component making
- Y10T29/49432—Nozzle making
Definitions
- Applicant incorporates by reference co-pending application 10/737,354, entitled DIRECTOR PLATE HAVING SMOOTH EXITS, in that a description of a director plate having smooth exit holes need not be fully described in detail herein.
- This invention pertains generally to a manufacturing process and products associated therewith, and more specifically to a process for inserting flow passages in a work piece, e.g. a director plate for a fuel injector.
- An example of a high-volume precision part is a flow director plate of a fuel injector, which includes one or more flow passages to disperse and direct flow of fuel out of the injector.
- a modern internal combustion engine intended to meet these requirements typically employs a fuel injection system, comprising a plurality of fuel injectors and a fuel delivery system. Each fuel injector delivers a precise quantity of fuel at or near a combustion chamber of the engine, based upon engine operating conditions and operator demands.
- a fuel injector typically comprises an electromagnetic device including a solenoid assembly that supplies an actuating force to a fuel-metering valve.
- the solenoid assembly is operable to open and close the fuel-metering valve in response to a signal sent from an engine controller.
- a measured amount of fuel is delivered to the internal combustion engine, based upon the amount of time the fuel-metering valve is opened.
- the fuel injector may include a flow director plate that is placed adjacent to the fuel-metering valve, such that fuel flowing out of the fuel-metering valve passes therethrough.
- the flow director plate includes one or more flow passages or nozzles that disperse and direct the flow of fuel out of the injector toward an intake valve or combustion chamber.
- An exemplary director plate is formed in a shallow cup shape, stamped out of stainless steel sheet stock.
- the flow passages pass orthogonally or obliquely to a planar surface of the director plate, and are either placed radially or tangentially from a center point of the director plate.
- the flow passages through the director plate are typically formed using one of several manufacturing processes.
- a flow passage may be formed using a rotating drilling operation, by punching a hole with a punch tool, an electric discharge machine (EDM), or laser drilling.
- EDM electric discharge machine
- Each of these methods typically allows a certain amount of material that is being removed from the director plate to remain at an inlet or an outlet of each flow passage when creating the flow passage. The remaining material may be in the form of deformed rims, burrs, and break-edges.
- the aforementioned material remaining on the director plate may be removed by subsequent processing steps, e.g. coining or polishing, magnetorheological finishing, or laser polishing of the outlet and inlet of each flow passage. Failure to effectively and completely remove the material may affect fuel atomization and precise targeting of the fuel and the spray pattern, thus affecting emissions performance. Furthermore, presence of material at the inlet or outlet of each flow passage may lead to a buildup of fuel residue during ongoing operation of the engine. Such buildup may affect precision targeting of the fuel and the spray pattern, again with a potential result of affecting emissions performance. Such buildup may interfere with the injector's ability to deliver a precise quantity of fuel, leading to injector failure and replacement.
- a director plate with smooth flow passages, i.e. no material at the inlet or outlet of the flow passages, is desirable, in order to meet customer requirements and emissions regulations. Therefore, what is needed is a method to form a smooth flow passage in a flow director plate, without use of additional processing steps.
- the present invention is an improvement in the existing art by providing a method for fabricating a flow passage in a director plate, comprising placing a director plate and a sacrificial strip immediately adjacent a substantially planar surface of the director plate in a stamping tool.
- the director plate is clamped to the sacrificial strip, and a flow passage is created in the director plate by punching a tool piece substantially completely through a predetermined location on the director plate.
- the flow passage in said director plate may comprise a fluid-discharge orifice for a fuel injector.
- the present invention is a further improvement in the existing art, in that an entrance shape of the flow passage may be formed, comprising applying a second tool piece to the surface of the director plate at the flow passage, and the director plate is deformed plastically at the flow passage with the second tool piece.
- the flow passage may be punched substantially orthogonal to the planar surface of the director plate, or, alternatively, oblique to the planar surface of the director plate.
- FIG. 1 is a representative diagram of an exemplary system for fabricating a flow passage, in accordance with the present invention
- FIG. 2 is a second representative diagram of an exemplary system for fabricating a flow passage, in accordance with the present invention.
- FIG. 3 is a drawing of an exemplary device with flow passages, in accordance with the present invention.
- FIGS. 1 and 2 show setups of exemplary systems for fabricating a flow passage 40 , 40 ′ or nozzle in a flow director plate 32 , in accordance with the present invention.
- the flow director plate 32 (shown in FIG. 3 ) is intended for use in a fuel injector (not shown) employed by an internal combustion engine (not shown).
- Each exemplary system comprises a stamping operation and related punch equipment 10 , 10 ′ which are known to one skilled in the art.
- the method for fabricating a plurality of flow passages 40 , 46 ′ or nozzles in flow director plate 32 comprises concurrently feeding a director plate strip 30 and a sacrificial strip 20 into punch equipment 10 , 10 ′.
- the director plate strip 30 includes a punch entrance side 37 and a punch exit side 38 .
- the sacrificial strip 20 is placed immediately adjacent the director plate strip 30 , preferably on the punch exit side 38 .
- the punch equipment 10 , 10 ′ employs a punch guide and clamping device 16 , 16 ′ to clamp the director plate strip 30 and the sacrificial strip 20 together.
- the stamping operation comprises employing the punch equipment 10 , 10 ′ to stamp the clamped director plate strip 30 and sacrificial strip 20 with a punch tool piece 18 , 18 ′ contained in the punch guide and clamping device 16 , 16 ′, thus forming the plurality of flow passages 40 , 40 ′ in the director plate strip 30 .
- the stamping operation stamps the plurality of flow passages 40 , 40 ′ in the director plate 32 by punching tool piece 18 , 18 ′ substantially completely through the substantially planar surface 34 of the director plate strip 30 .
- the director plate 32 is subsequently formed, and is preferably a circular cup-shaped device, comprising a substantially planar surface 34 , with upturned material at the outer circumference 36 , as shown in FIG. 3 .
- the stamping equipment 10 , 10 ′ includes a stamping die 12 , 12 ′ including a die opening 14 , 14 ′, punch guide and clamp device 16 , 16 ′, and punch tool 18 , 18 ′.
- a work piece in this instance the director plate strip 30 and the sacrificial strip 20 are placed in the stamping equipment 10 , 10 ′, with the punch exit side 38 of the director plate strip 30 immediately adjacent the sacrificial strip 20 .
- the punch guide and clamp device 16 , 16 ′ clamp, i.e. firmly hold using compressive force, the director plate strip 30 and the sacrificial strip 20 against the stamping die 12 , 12 ′.
- the effect of the process of clamping the sacrificial strip 20 to the director plate strip 30 is to cause the sacrificial strip 20 to substantially completely mechanically support the portion of the director plate strip 30 wherein the punch tool 18 , 18 ′ is applied, and immediately adjacent thereto.
- the stamping equipment 10 , 10 ′ then punches or forces the punch tool 18 , 18 ′ substantially completely through the director plate strip 30 to create the plurality of flow passages 40 , 40 ′ in the director plate strip 30 .
- the die opening 14 , 14 ′ is designed to be slightly larger size than the punch tool 18 , 18 ′, to accommodate the punch tool 18 , 18 ′ material from the director plate strip 30 as it is forced through the director plate strip 30 and the sacrificial strip 20 .
- stamping equipment including control of stamping force, feeding material into the stamping equipment, control of depth of stamping, and design of punch tools are known to one skilled in the art, and are not described in detail herein.
- the director plate 32 in this embodiment is preferably a circular cup-shaped device, comprising the substantially planar surface 34 , with material at the outer circumference upturned 36 .
- the plurality of flow passages 40 , 40 ′ are placed in various locations on the planar surface 34 , according to design and application requirements of the fuel injector in the specific internal combustion engine (not shown).
- the exemplary director plate 32 is formed from stainless steel sheet stock, such as AISI 430 or 304L steel.
- the exemplary sheet stock may be within a range of thicknesses varying from 0.150 to 0.300 micrometers.
- the plurality of flow passages 40 , 40 ′ are each ranging from 0.100 to 0.500 micrometers in diameter.
- Each flow passage 40 , 40 ′ may be orthogonal to the planar surface 34 , or may be oblique to the planar surface 34 , at an angle 13 from a line orthogonal to the planar surface 34 , as shown. Determining locations and specific quantity of the flow passages based upon injector specifications is known to one skilled in the art.
- Material for the sacrificial strip 20 is selected to provide the optimal amount of mechanical support of the director plate strip 30 in the area of the strip 30 wherein the punch tool 18 , 18 ′ is applied, and immediately adjacent thereto, during the punching process.
- Material selection criteria include material hardness and yield strength relative to the material of the director plate strip 30 material, and must be determined by experimentation to determine a material that provides sufficient support while optimizing tool life of the punch tool 18 , 18 ′, among other factors.
- the director plate strip 30 material is AISI 430 or 304L steel
- a preferable material for the sacrificial strip 20 is of similar hardness.
- sacrificial strip 20 material may be of increased hardness to accomplish the task, while still optimizing tool wear.
- Clamping of the director plate 30 to the sacrificial strip 20 comprises using the punch guide and clamp device 16 , 16 ′ to clamp, i.e. firmly hold, the director plate strip 30 and the sacrificial strip 20 against the stamping die 12 , 12 ′ with the die opening 14 , 14 ′ in this embodiment.
- the intent of clamping the director plate strip 30 and the sacrificial strip 20 is to use the sacrificial strip 20 to provide mechanical compressive support to the director plate strip 30 .
- the director plate strip 30 when the director plate strip 30 is firmly clamped against the sacrificial strip 20 between the stamping die 12 , 12 ′ and the die opening 14 , 14 ′, the ability of the punch tool 18 , 18 ′ to tear or create burrs in the plurality of flow passages 40 , 40 ′ on the punch exit side 38 when the punch tool 18 , 18 ′ is forced through the director plate strip 30 is substantially eliminated.
- This permits creation of a flow passage comprising a smooth bore and smooth entrance and exit openings.
- Flow passages are created in the director plate 32 by punching tool piece 18 , 18 ′ substantially completely through predetermined locations on the substantially planar surface 34 of the director plate 32 , according to predetermined design criteria.
- the punch tool piece 18 is operable to punch the flow passage 40 , substantially orthogonal to the planar surface 34 of the director plate 32 .
- the punch tool piece 18 ′ is operable to punch the flow passage 40 ′ oblique to the planar surface 34 of the director plate 32 .
- the punch tool piece 18 , 18 ′ is preferably a tubular or cylindrical shaped device with a circular cross-section, and is preferably made of tungsten carbide material or of some other hardened material.
- Other possible tool pieces include those which are elliptical in cross-section, leading to an elliptically-shaped flow passage 40 , 40 ′.
- the tool piece may be conical, leading to a flow passage 40 , 40 ′ that is conical in shape. Determining tool shape and appropriate punch tool and die material is known to one skilled in the art.
- the punch tool piece 18 , 18 ′ punches through the director strip material 30 , creating each of the plurality of flow passages by mechanically breaking a portion of material out of the director strip 30 .
- the sacrificial strip 20 may be employed to provide support to the director strip 30 when a secondary operation is executed on the director strip 30 , such as when it is desired to make or to form an entrance shape or exit shape to the flow passage 40 , 40 ′.
- This may comprise applying a second tool piece to the substantially planar surface of the director plate 32 at the flow passage 40 , 40 ′ to plastically deform the director plate 32 at the flow passage, preferably on the punch entrance side 37 .
- the sacrificial strip 20 and the director plate strip 30 are concurrently fed into punch equipment 10 , 10 ′.
- the sacrificial strip 20 may be fed at a slower rate than the director plate strip 30 to conserve material and reduce amount of scrap material created during the operation.
- This invention applies to other embodiments of the invention wherein flow passages 40 , 40 ′ are formed through a director plate with a non-linear surface (Not shown).
- a sacrificial strip is placed immediately adjacent a portion of the non-linear surface of the director plate, and conforms to the non-linear shape.
- the director plate and the sacrificial strip are clamped, as previously described, and a plurality of flow passages are created by punching a tool piece substantially completely through the non-linear surface of the director plate at the portion of the non-linear surface of the director plate clamped to the sacrificial strip.
- the non-linear surface of the director plate is preferably formed subsequent to creation of the flow passages.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
A method for fabricating a flow passage in a director plate is presented, comprising placing a director plate and a sacrificial strip immediately adjacent a surface of the director plate in a stamping tool. The director plate is clamped to the sacrificial strip, and a flow passage is created in the director plate by punching a tool piece substantially completely through a predetermined location on the director plate. The flow passage in said director plate may comprise a fluid-discharge orifice for a fuel injector. The flow passage may be punched substantially orthogonal to the planar surface of the director plate, or, alternatively, oblique to the planar surface of the director plate.
Description
- Applicant incorporates by reference co-pending
application 10/737,354, entitled DIRECTOR PLATE HAVING SMOOTH EXITS, in that a description of a director plate having smooth exit holes need not be fully described in detail herein. - This invention pertains generally to a manufacturing process and products associated therewith, and more specifically to a process for inserting flow passages in a work piece, e.g. a director plate for a fuel injector.
- Manufacturing of parts for assembly and use in various high-volume components offers challenges to the engineer, including the ability to achieve high levels of precision while minimizing processing steps and tooling costs. An example of a high-volume precision part is a flow director plate of a fuel injector, which includes one or more flow passages to disperse and direct flow of fuel out of the injector.
- Engineers design internal combustion engines to meet a variety of requirements, including customer demands for power, fuel economy and durability, and regulations related to emissions. A modern internal combustion engine intended to meet these requirements typically employs a fuel injection system, comprising a plurality of fuel injectors and a fuel delivery system. Each fuel injector delivers a precise quantity of fuel at or near a combustion chamber of the engine, based upon engine operating conditions and operator demands.
- A fuel injector typically comprises an electromagnetic device including a solenoid assembly that supplies an actuating force to a fuel-metering valve. The solenoid assembly is operable to open and close the fuel-metering valve in response to a signal sent from an engine controller. A measured amount of fuel is delivered to the internal combustion engine, based upon the amount of time the fuel-metering valve is opened. The fuel injector may include a flow director plate that is placed adjacent to the fuel-metering valve, such that fuel flowing out of the fuel-metering valve passes therethrough. The flow director plate includes one or more flow passages or nozzles that disperse and direct the flow of fuel out of the injector toward an intake valve or combustion chamber. Flow passages assist in preparing the air/fuel mixture by targeting fuel and creating a fuel spray pattern to effectively atomize fuel. An appropriately targeted fuel and fuel spray pattern leads to a properly prepared air/fuel mixture, which assists in meeting increasingly stringent emissions regulations. An exemplary director plate is formed in a shallow cup shape, stamped out of stainless steel sheet stock. The flow passages pass orthogonally or obliquely to a planar surface of the director plate, and are either placed radially or tangentially from a center point of the director plate.
- The flow passages through the director plate are typically formed using one of several manufacturing processes. A flow passage may be formed using a rotating drilling operation, by punching a hole with a punch tool, an electric discharge machine (EDM), or laser drilling. Each of these methods typically allows a certain amount of material that is being removed from the director plate to remain at an inlet or an outlet of each flow passage when creating the flow passage. The remaining material may be in the form of deformed rims, burrs, and break-edges.
- The aforementioned material remaining on the director plate may be removed by subsequent processing steps, e.g. coining or polishing, magnetorheological finishing, or laser polishing of the outlet and inlet of each flow passage. Failure to effectively and completely remove the material may affect fuel atomization and precise targeting of the fuel and the spray pattern, thus affecting emissions performance. Furthermore, presence of material at the inlet or outlet of each flow passage may lead to a buildup of fuel residue during ongoing operation of the engine. Such buildup may affect precision targeting of the fuel and the spray pattern, again with a potential result of affecting emissions performance. Such buildup may interfere with the injector's ability to deliver a precise quantity of fuel, leading to injector failure and replacement. A director plate with smooth flow passages, i.e. no material at the inlet or outlet of the flow passages, is desirable, in order to meet customer requirements and emissions regulations. Therefore, what is needed is a method to form a smooth flow passage in a flow director plate, without use of additional processing steps.
- The present invention is an improvement in the existing art by providing a method for fabricating a flow passage in a director plate, comprising placing a director plate and a sacrificial strip immediately adjacent a substantially planar surface of the director plate in a stamping tool. The director plate is clamped to the sacrificial strip, and a flow passage is created in the director plate by punching a tool piece substantially completely through a predetermined location on the director plate. The flow passage in said director plate may comprise a fluid-discharge orifice for a fuel injector.
- The present invention is a further improvement in the existing art, in that an entrance shape of the flow passage may be formed, comprising applying a second tool piece to the surface of the director plate at the flow passage, and the director plate is deformed plastically at the flow passage with the second tool piece.
- Another aspect of the invention is that the flow passage may be punched substantially orthogonal to the planar surface of the director plate, or, alternatively, oblique to the planar surface of the director plate.
- These and other aspects of the invention will become apparent to those skilled in the art upon reading and understanding the following detailed description of the embodiments.
- The invention may take physical form in certain parts and arrangement of parts, the preferred embodiment of which will be described in detail and illustrated in the accompanying drawings which form a part hereof, and wherein:
-
FIG. 1 is a representative diagram of an exemplary system for fabricating a flow passage, in accordance with the present invention; -
FIG. 2 is a second representative diagram of an exemplary system for fabricating a flow passage, in accordance with the present invention; and, -
FIG. 3 is a drawing of an exemplary device with flow passages, in accordance with the present invention. - Referring now to the drawings, wherein the showings are for the purpose of illustrating the invention only and not for the purpose of limiting the same,
FIGS. 1 and 2 show setups of exemplary systems for fabricating aflow passage flow director plate 32, in accordance with the present invention. In this embodiment, the flow director plate 32 (shown inFIG. 3 ) is intended for use in a fuel injector (not shown) employed by an internal combustion engine (not shown). Each exemplary system comprises a stamping operation andrelated punch equipment - The method for fabricating a plurality of
flow passages 40, 46′ or nozzles inflow director plate 32 comprises concurrently feeding adirector plate strip 30 and asacrificial strip 20 intopunch equipment director plate strip 30 includes apunch entrance side 37 and apunch exit side 38. Thesacrificial strip 20 is placed immediately adjacent thedirector plate strip 30, preferably on thepunch exit side 38. Thepunch equipment clamping device director plate strip 30 and thesacrificial strip 20 together. The stamping operation comprises employing thepunch equipment director plate strip 30 andsacrificial strip 20 with apunch tool piece clamping device flow passages director plate strip 30. The stamping operation stamps the plurality offlow passages director plate 32 bypunching tool piece planar surface 34 of thedirector plate strip 30. Thedirector plate 32 is subsequently formed, and is preferably a circular cup-shaped device, comprising a substantiallyplanar surface 34, with upturned material at theouter circumference 36, as shown inFIG. 3 . - The
stamping equipment clamp device punch tool director plate strip 30 and thesacrificial strip 20 are placed in thestamping equipment punch exit side 38 of thedirector plate strip 30 immediately adjacent thesacrificial strip 20. The punch guide andclamp device director plate strip 30 and thesacrificial strip 20 against thestamping die sacrificial strip 20 to thedirector plate strip 30 is to cause thesacrificial strip 20 to substantially completely mechanically support the portion of thedirector plate strip 30 wherein thepunch tool - The
stamping equipment punch tool director plate strip 30 to create the plurality offlow passages director plate strip 30. The dieopening punch tool punch tool director plate strip 30 as it is forced through thedirector plate strip 30 and thesacrificial strip 20. It is necessary that thepunch tool director plate strip 30 and thesacrificial strip 20 to form the plurality offlow passages punch tool sacrificial strip 20. Stamping equipment, including control of stamping force, feeding material into the stamping equipment, control of depth of stamping, and design of punch tools are known to one skilled in the art, and are not described in detail herein. - Referring again to
FIG. 3 , thedirector plate 32 in this embodiment is preferably a circular cup-shaped device, comprising the substantiallyplanar surface 34, with material at the outer circumference upturned 36. The plurality offlow passages planar surface 34, according to design and application requirements of the fuel injector in the specific internal combustion engine (not shown). Theexemplary director plate 32 is formed from stainless steel sheet stock, such as AISI 430 or 304L steel. The exemplary sheet stock may be within a range of thicknesses varying from 0.150 to 0.300 micrometers. The plurality offlow passages flow passage planar surface 34, or may be oblique to theplanar surface 34, at anangle 13 from a line orthogonal to theplanar surface 34, as shown. Determining locations and specific quantity of the flow passages based upon injector specifications is known to one skilled in the art. - Material for the
sacrificial strip 20 is selected to provide the optimal amount of mechanical support of thedirector plate strip 30 in the area of thestrip 30 wherein thepunch tool director plate strip 30 material, and must be determined by experimentation to determine a material that provides sufficient support while optimizing tool life of thepunch tool director plate strip 30 material is AISI 430 or 304L steel, a preferable material for thesacrificial strip 20 is of similar hardness. Alternatively,sacrificial strip 20 material may be of increased hardness to accomplish the task, while still optimizing tool wear. - Clamping of the
director plate 30 to thesacrificial strip 20 comprises using the punch guide andclamp device director plate strip 30 and thesacrificial strip 20 against the stamping die 12, 12′ with thedie opening director plate strip 30 and thesacrificial strip 20 is to use thesacrificial strip 20 to provide mechanical compressive support to thedirector plate strip 30. Therefore, when thedirector plate strip 30 is firmly clamped against thesacrificial strip 20 between the stamping die 12, 12′ and thedie opening punch tool flow passages punch exit side 38 when thepunch tool director plate strip 30 is substantially eliminated. This permits creation of a flow passage comprising a smooth bore and smooth entrance and exit openings. - Flow passages are created in the
director plate 32 by punchingtool piece planar surface 34 of thedirector plate 32, according to predetermined design criteria. As shown inFIG. 1 , thepunch tool piece 18, is operable to punch theflow passage 40, substantially orthogonal to theplanar surface 34 of thedirector plate 32. Alternatively, as shown inFIG. 2 , thepunch tool piece 18′ is operable to punch theflow passage 40′ oblique to theplanar surface 34 of thedirector plate 32. - The
punch tool piece flow passage flow passage - In operation, the
punch tool piece director strip material 30, creating each of the plurality of flow passages by mechanically breaking a portion of material out of thedirector strip 30. - Furthermore, the
sacrificial strip 20 may be employed to provide support to thedirector strip 30 when a secondary operation is executed on thedirector strip 30, such as when it is desired to make or to form an entrance shape or exit shape to theflow passage director plate 32 at theflow passage director plate 32 at the flow passage, preferably on thepunch entrance side 37. - In operation, the
sacrificial strip 20 and thedirector plate strip 30 are concurrently fed intopunch equipment sacrificial strip 20 may be fed at a slower rate than thedirector plate strip 30 to conserve material and reduce amount of scrap material created during the operation. - This invention applies to other embodiments of the invention wherein
flow passages - Although this is described as a method for fabricating a flow passage in a director plate, it is understood that this invention may apply to an alternate embodiment wherein a smooth passage is created in a plate or other structure using a: punch device. The invention has been described with specific reference to the preferred embodiments and modifications thereto. Further modifications and alterations may occur to others upon reading and understanding the specification. It is intended to include all such modifications and alterations insofar as they come within the scope of the invention.
Claims (10)
1. A method for fabricating a flow passage in a director plate, comprising:
providing a director plate comprising a substantially planar surface;
placing a sacrificial strip immediately adjacent the substantially planar surface of the director plate;
clamping the director plate to the sacrificial strip; and,
creating a flow passage in the director plate by punching a tool piece substantially completely through a predetermined location on the substantially planar surface of the director plate.
2. The method of claim 1 , further comprising:
forming an entrance shape of the flow passage, comprising:
applying a second tool piece to the substantially planar surface of the director plate at the flow passage, and,
deforming plastically the director plate at the flow passage with the second tool piece.
3. The method of claim 1 , further comprising:
forming an exit shape of the flow passage, comprising:
applying a second tool piece to the substantially planar surface of the director plate at the flow passage, and,
plastically deforming the director plate at the flow passage with the second tool piece.
4. The method of claim 1 , wherein creating a flow passage in the director plate by punching a tool piece substantially completely through the substantially planar surface of the director plate comprises punching the flow passage substantially orthogonal to the planar surface of the director plate.
5. The method of claim 1 , wherein creating a flow passage in the director plate by punching a tool piece substantially completely through the substantially planar surface of the director plate comprises punching the flow passage oblique to the planar surface of the director plate.
6. The method of claim 5 , wherein punching the flow passage oblique to the planar surface of the director plate comprises punching the flow passage at an angle measuring approximately nineteen degrees from a line orthogonal to the planar surface.
7. The method of claim 1 , wherein the flow passage comprises a fluid-discharge orifice for a fuel injector.
8. The method of claim 1 , wherein creating a flow passage in the director plate by punching a tool piece substantially completely through a predetermined location of the director plate comprises breaking a portion of material substantially completely out of the director plate.
9. A method for fabricating a flow passage in a director plate, comprising:
providing a director plate with a non-linear surface;
placing a sacrificial strip immediately adjacent a portion of the non-linear surface of the director plate;
clamping the portion of the non-linear surface of the director plate to the sacrificial strip; and,
creating a flow passage in the director plate by punching a tool piece substantially completely through the non-linear surface of the director plate at the portion of the non-linear surface of the director plate clamped to the sacrificial strip.
10. The method of claim 9 , wherein creating a flow passage in the director plate by punching a tool piece substantially completely through the non-linear surface of the director plate at the portion of the non-linear surface of the director plate clamped to the sacrificial strip further comprises creating a substantially completely smooth bore flow passage in the director plate by punching the tool piece substantially completely through the non-linear surface of the director plate at the portion of the non-linear surface of the director plate clamped to the sacrificial strip.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/994,693 US20060107526A1 (en) | 2004-11-22 | 2004-11-22 | Process for inserting flow passages in a work piece |
EP05077572A EP1658926A1 (en) | 2004-11-22 | 2005-11-10 | Process for inserting flow passages in a work piece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/994,693 US20060107526A1 (en) | 2004-11-22 | 2004-11-22 | Process for inserting flow passages in a work piece |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060107526A1 true US20060107526A1 (en) | 2006-05-25 |
Family
ID=35583494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/994,693 Abandoned US20060107526A1 (en) | 2004-11-22 | 2004-11-22 | Process for inserting flow passages in a work piece |
Country Status (2)
Country | Link |
---|---|
US (1) | US20060107526A1 (en) |
EP (1) | EP1658926A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110138628A1 (en) * | 2002-12-27 | 2011-06-16 | Denso Corporation | Method for manufacturing injection hole member |
US20130180372A1 (en) * | 2012-01-17 | 2013-07-18 | Tenney Metal Works Co., Ltd. | Processing method of channels in control valve |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4131236A (en) * | 1975-12-24 | 1978-12-26 | The British Hydromechanics Research Association | High velocity liquid jet cutting nozzle |
US4574445A (en) * | 1983-07-23 | 1986-03-11 | U.S. Philips Corporation | Method and apparatus for manufacturing a nozzle plate for ink-jet printers |
US4687142A (en) * | 1983-11-30 | 1987-08-18 | Honda Giken Kogyo Kabushiki Kaisha | Fuel injection valve with fluid honed discharge port and associated methods of production |
US4819871A (en) * | 1985-10-22 | 1989-04-11 | Voest-Alpine-Friedmann Gesellschaft M.B.H. | Process of manufacturing a fuel injection nozzle body and apparatus for carrying out the process |
US5080287A (en) * | 1986-10-24 | 1992-01-14 | Nippondenso Co., Ltd. | Electromagnetic fuel injection valve for internal combustion engine |
US5353992A (en) * | 1993-08-30 | 1994-10-11 | Chrysler Corporation | Multi-hole injector nozzle tip with low hydraulic plume penetration and large cloud-forming properties |
US5484108A (en) * | 1994-03-31 | 1996-01-16 | Siemens Automotive L.P. | Fuel injector having novel multiple orifice disk members |
US5626295A (en) * | 1994-04-02 | 1997-05-06 | Robert Bosch Gmbh | Injection valve |
US5685491A (en) * | 1995-01-11 | 1997-11-11 | Amtx, Inc. | Electroformed multilayer spray director and a process for the preparation thereof |
US5899390A (en) * | 1995-03-29 | 1999-05-04 | Robert Bosch Gmbh | Orifice plate, in particular for injection valves |
US6015103A (en) * | 1998-06-08 | 2000-01-18 | General Motors Corporation | Filter for fuel injector |
US6131827A (en) * | 1998-03-25 | 2000-10-17 | Denso Corporation | Nozzle hole plate and its manufacturing method |
US20020020766A1 (en) * | 2000-08-16 | 2002-02-21 | Unisia Jecs Corporation | Engine fuel injection valve and manufacturing method for nozzle plate used for the same injection valve |
US6508416B1 (en) * | 2000-04-28 | 2003-01-21 | Delphi Technologies, Inc. | Coated fuel injector valve |
US20030172708A1 (en) * | 2002-03-15 | 2003-09-18 | Siemens Vod Automotive Corporation | Methods of forming angled orifices in an orifice plate |
US6736104B2 (en) * | 2001-04-26 | 2004-05-18 | Robert Bosch Gmbh | Fuel injector |
US20050127209A1 (en) * | 2003-12-16 | 2005-06-16 | Phadke Milind V. | Director plate having smooth exits |
US20080012191A1 (en) * | 2006-07-14 | 2008-01-17 | Quickmill Inc. | Clamping device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5742913A (en) * | 1980-08-26 | 1982-03-10 | Tanaka Kikinzoku Kogyo Kk | Preparation of protruded nozzle in spinneret |
-
2004
- 2004-11-22 US US10/994,693 patent/US20060107526A1/en not_active Abandoned
-
2005
- 2005-11-10 EP EP05077572A patent/EP1658926A1/en not_active Withdrawn
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4131236A (en) * | 1975-12-24 | 1978-12-26 | The British Hydromechanics Research Association | High velocity liquid jet cutting nozzle |
US4574445A (en) * | 1983-07-23 | 1986-03-11 | U.S. Philips Corporation | Method and apparatus for manufacturing a nozzle plate for ink-jet printers |
US4687142A (en) * | 1983-11-30 | 1987-08-18 | Honda Giken Kogyo Kabushiki Kaisha | Fuel injection valve with fluid honed discharge port and associated methods of production |
US4819871A (en) * | 1985-10-22 | 1989-04-11 | Voest-Alpine-Friedmann Gesellschaft M.B.H. | Process of manufacturing a fuel injection nozzle body and apparatus for carrying out the process |
US5080287A (en) * | 1986-10-24 | 1992-01-14 | Nippondenso Co., Ltd. | Electromagnetic fuel injection valve for internal combustion engine |
US5353992A (en) * | 1993-08-30 | 1994-10-11 | Chrysler Corporation | Multi-hole injector nozzle tip with low hydraulic plume penetration and large cloud-forming properties |
US5484108A (en) * | 1994-03-31 | 1996-01-16 | Siemens Automotive L.P. | Fuel injector having novel multiple orifice disk members |
US5626295A (en) * | 1994-04-02 | 1997-05-06 | Robert Bosch Gmbh | Injection valve |
US5685491A (en) * | 1995-01-11 | 1997-11-11 | Amtx, Inc. | Electroformed multilayer spray director and a process for the preparation thereof |
US5899390A (en) * | 1995-03-29 | 1999-05-04 | Robert Bosch Gmbh | Orifice plate, in particular for injection valves |
US6131827A (en) * | 1998-03-25 | 2000-10-17 | Denso Corporation | Nozzle hole plate and its manufacturing method |
US6015103A (en) * | 1998-06-08 | 2000-01-18 | General Motors Corporation | Filter for fuel injector |
US6508416B1 (en) * | 2000-04-28 | 2003-01-21 | Delphi Technologies, Inc. | Coated fuel injector valve |
US20020020766A1 (en) * | 2000-08-16 | 2002-02-21 | Unisia Jecs Corporation | Engine fuel injection valve and manufacturing method for nozzle plate used for the same injection valve |
US6736104B2 (en) * | 2001-04-26 | 2004-05-18 | Robert Bosch Gmbh | Fuel injector |
US20030172708A1 (en) * | 2002-03-15 | 2003-09-18 | Siemens Vod Automotive Corporation | Methods of forming angled orifices in an orifice plate |
US20050127209A1 (en) * | 2003-12-16 | 2005-06-16 | Phadke Milind V. | Director plate having smooth exits |
US20080012191A1 (en) * | 2006-07-14 | 2008-01-17 | Quickmill Inc. | Clamping device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110138628A1 (en) * | 2002-12-27 | 2011-06-16 | Denso Corporation | Method for manufacturing injection hole member |
US8631579B2 (en) * | 2002-12-27 | 2014-01-21 | Denso Corporation | Method for manufacturing injection hole member |
US20130180372A1 (en) * | 2012-01-17 | 2013-07-18 | Tenney Metal Works Co., Ltd. | Processing method of channels in control valve |
Also Published As
Publication number | Publication date |
---|---|
EP1658926A1 (en) | 2006-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU724749B2 (en) | Valve and procedure for the manufacture of a valve seat for a valve | |
JP4627783B2 (en) | Fuel injection valve and orifice machining method | |
US8881400B2 (en) | Method for producing throttle holes having a low cavitation transmission point | |
US6678955B2 (en) | Apparatus and method of working injection hole of fluid injection nozzle | |
US6945478B2 (en) | Fuel injector having an orifice plate with offset coining angled orifices | |
US8360338B2 (en) | Fuel injection valve and machining method for nozzle | |
JP5150416B2 (en) | Orifice processing method and press processing method | |
US20060107526A1 (en) | Process for inserting flow passages in a work piece | |
JPH11270441A (en) | Nozzle hole plate and its manufacture | |
JP2006528302A (en) | Fuel injector including an open disc and method of forming an open disc | |
US6789406B2 (en) | Methods of forming angled orifices in an orifice plate | |
JP2010038127A (en) | Nozzle machining method | |
JP2003090276A (en) | Nozzle hole machining device for fluid injection nozzle, and nozzle hole machining method for fluid injection nozzle | |
JP5097725B2 (en) | Orifice machining method | |
US20070007366A1 (en) | Method for producing and fixing a perforated disk | |
JP2001099035A (en) | Fuel injection nozzle and its manufacturing method | |
JP3855752B2 (en) | Fluid injection valve manufacturing method and fluid injection valve | |
JP5298048B2 (en) | Orifice processing method | |
EP1353062B1 (en) | Fuel injector having an orifice plate with offset coining angled orifices | |
JP4098706B2 (en) | Method for producing injection hole member | |
JP2023537313A (en) | Injector for injecting fluid and method of manufacturing such injector | |
JP4442488B2 (en) | Injection hole processing device for fluid injection valve | |
CN115585085A (en) | Oil sprayer and fuel engine with same | |
JP2001096196A (en) | Manufacture of nozzle, nozzle and fuel injection valve | |
KR20040088354A (en) | Method for producing a perforated disc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DELPHI TECHNOLOGIES, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VON BACHO, PAUL S. III;REEL/FRAME:016028/0340 Effective date: 20041019 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |