US20060058681A1 - Ultrasound transducer assembly - Google Patents
Ultrasound transducer assembly Download PDFInfo
- Publication number
- US20060058681A1 US20060058681A1 US11/221,165 US22116505A US2006058681A1 US 20060058681 A1 US20060058681 A1 US 20060058681A1 US 22116505 A US22116505 A US 22116505A US 2006058681 A1 US2006058681 A1 US 2006058681A1
- Authority
- US
- United States
- Prior art keywords
- transducer
- catheter
- transducer assembly
- ultrasound
- electronics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 84
- 239000000523 sample Substances 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims description 4
- 230000037431 insertion Effects 0.000 claims description 4
- 238000002592 echocardiography Methods 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 210000005166 vasculature Anatomy 0.000 claims 3
- 239000004020 conductor Substances 0.000 abstract description 26
- 238000000034 method Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 description 37
- 239000010410 layer Substances 0.000 description 27
- 239000002131 composite material Substances 0.000 description 12
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 12
- 239000003292 glue Substances 0.000 description 11
- 239000008393 encapsulating agent Substances 0.000 description 9
- 238000002399 angioplasty Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000002059 diagnostic imaging Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 238000012285 ultrasound imaging Methods 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 210000001367 artery Anatomy 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 238000000429 assembly Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- KKJUPNGICOCCDW-UHFFFAOYSA-N 7-N,N-Dimethylamino-1,2,3,4,5-pentathiocyclooctane Chemical compound CN(C)C1CSSSSSC1 KKJUPNGICOCCDW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 201000001883 cholelithiasis Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000001130 gallstones Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4488—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4494—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0622—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
- B06B1/0633—Cylindrical array
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0644—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
- B06B1/0662—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
- B06B1/067—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0644—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
- B06B1/0662—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
- B06B1/0674—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a low impedance backing, e.g. air
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
- G01S15/892—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being curvilinear
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8979—Combined Doppler and pulse-echo imaging systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/899—Combination of imaging systems with ancillary equipment
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/004—Mounting transducers, e.g. provided with mechanical moving or orienting device
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/004—Mounting transducers, e.g. provided with mechanical moving or orienting device
- G10K11/006—Transducer mounting in underwater equipment, e.g. sonobuoys
- G10K11/008—Arrays of transducers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/445—Details of catheter construction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B2201/00—Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
- B06B2201/70—Specific application
- B06B2201/76—Medical, dental
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8979—Combined Doppler and pulse-echo imaging systems
- G01S15/8981—Discriminating between fixed and moving objects or between objects moving at different speeds, e.g. wall clutter filter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
Definitions
- the present invention relates generally to the field of ultrasonic imaging, and more particularly to ultrasonic imaging to determine various characteristics of relatively small cavities and surrounding fluids and structures.
- Diagnosis and treatment of fully or partially blocked arteries of the heart is essential in the medical profession's endeavor to prevent heart attacks.
- Balloon angioplasty involves carefully threading a catheter into the affected portion of the artery. After the balloon portion is determined to be properly positioned in the artery, the physician inflates the expandable portion of the catheter in order to broaden the blocked or narrowed passage in the blood vessel caused by the deposition of plaque upon the artery wall.
- an imaging device to produce treatment and diagnostic quality images of small enclosed areas such as human blood vessels on a diagnostic video display device. It is known to use a very small ultrasonic imaging device mounted at the end of a catheter to produce a real-time image of the internal walls of a coronary artery. This device is referred to herein as an ultrasound catheter.
- the same material is used for the electronics carrier upon which a set of electronic components are mounted and for the backing material for the transducer assembly.
- a drawback to the known ultrasound catheters is the difficulty in finding a carrier/backing material which provides the physical and acoustic qualities desired for advantageous use as the carrier for the electronics and the backing material for a transducer assembly comprising a highly sensitive transducer material.
- the known ultrasonic catheter structure though providing the advantage of design and construction simplicity, exhibits certain drawbacks attributable to the particular and mutually incompatible requirements for the backing material and the electronics carrier. It is desirable that the electronics carrier for the electronics body be rigid and capable of withstanding the elevated temperatures produced by the electronics. However, the known electronics carrier materials which satisfy the requirements for the electronics body are not suitable backing materials for the presently preferred transducer assemblies comprising highly sensitive lead zirconate titanate (PZT) composites.
- PZT lead zirconate titanate
- the transducer electrodes are coupled to the transducer layer through a capacitive glue layer.
- PZT composites having a relatively high degree of sensitivity to acoustic signals are being considered for replacement of the previously used, less sensitive, ferroelectric polymer transducer materials. While the PZT composites exhibit superior sensitivity in comparison to the ferroelectric copolymers, they also have a higher dielectric constant. The reduced impedance (or increased capacitance) associated with the new PZT composites significantly negates the improved signal sensitivity provided by the PZT composites when coupled to the transducer electrodes through the capacitive glue layer.
- a catheter probe assembly of the present invention comprising a multi-sectioned body for insertion into a cavity.
- the multi-sectioned body is characterized by separate and distinct carrier/backing materials for an electronics body and a transducer assembly.
- the present invention comprises a probe assembly for an ultrasound catheter generally of the type described in Proudian deceased et al. U.S. Pat. No. 4,917,097 and Eberle et al. U.S. Pat. No. 5,167,233 for producing substantially real-time images of small cavities and their surrounding tissue.
- the transducer assembly comprising an array of transducers is mounted upon a first section of the multi-sectioned body.
- the transducer array transmits ultrasonic acoustic waves to the cavity and generates electrical signals in response to reflected ultrasonic acoustic waves received by the transducers.
- the backing material for the transducer assembly is specifically selected for its characteristic low acoustic impedance and high absorption.
- the low acoustic impedance backing material absorbs signals coupled into the backing material and reduces the presence of ringing in the transducer assembly.
- a set of transducer electrodes are directly bonded to the transducer material thereby eliminating a capacitive glue layer previously associated with the transducer circuits.
- Integrated circuits are mounted upon a second section of the multi-sectioned body.
- the second section acoustically isolated from the first section, comprises a carrier material having a low thermal expansion coefficient.
- the integrated circuits receive a set of first electrical signals from the transducer array by means of electrical conductors interconnecting the transducer assembly electrodes and the pads of the integrated circuits.
- the electrical conductors are also used to transmit excitation signals from the integrated circuits to the transducer assembly.
- the integrated circuits convert the received first electrical signals into a second set of electrical signals. Then the integrated circuits transmit the second set of signals to a signal processor located outside the environment of the cavity by means of a cable.
- the unique, multi-sectioned, structure of the probe assembly enables the designer of the probe assembly to separately select a material exhibiting the preferred structural and acoustic characteristic for the carrier of the integrated circuit components and the backing material for the transducer elements.
- these two portions of the ultrasound catheter probe assembly are separately manufactured and linked during the final stages of fabrication of the ultrasonic catheter.
- FIG. 1 is a side cross-sectional view of the tip of a catheter illustrating the electronics body, the transducer assembly, and the balloon section of a balloon angioplasty ultrasound imaging catheter embodying the present invention
- FIG. 2 is a perspective view of the tip of a partially constructed diagnostic imaging catheter prior to joining the signal paths between the separated electronics body and transducer assembly;
- FIG. 3 is a detailed side cross-sectional view of the tip of the imaging device portion of the catheter showing the composition of the imaging device;
- FIG. 4 is a cross-sectional view of the transducer assembly taken along line 4 - 4 in FIG. 1 ;
- FIGS. 5 a and 5 b illustratively depict an alternative embodiment of the ultrasound catheter wherein the conducting electrodes in the transducer assembly extend beyond the backing material and the transducer material;
- FIG. 6 is a side cross-sectional view of the tip of a catheter illustrating the electronics body, transducer assembly, and nose assembly of an ultrasound diagnostic imaging catheter embodying the present invention
- FIGS. 7 a and 7 b show cross-sectional and side-sectional views of an alternative embodiment of the present invention wherein the transducer array is configured to provide a “side-looking” view;
- FIGS. 8 a, 8 b and 8 c show side, forward, and top cross-sectional views of an alternative embodiment of the present invention wherein the transducer array is configured to provide a “forward-looking” view.
- the invention will be described in connection with a catheter used for angioplasty, it will be understood that it is not intended to be limited to such use. On the contrary, the invention is intended to cover all applications which may require imaging in a small cavity.
- An example of such an alternative would be the use of the present invention on a catheter without the balloon. In such a case, the catheter acts as a diagnostic or monitoring device.
- Another specific alternative use of the present invention is for measuring blood flow rates using Doppler sound imaging in conjunction with the present invention.
- the present invention may also be used to produce internal images of a number of ducts within a body such as the monitoring of gall stones in the bile ducts and for examination and treatment in the area of urology and gynecology.
- Another example of an application of the present invention is the use of the ultrasound catheter for providing an image of a vessel or duct during application of laser treatment or during the removal of plaque from the walls of a vessel during an antherectomy procedure.
- the present invention concerns the structure of the carrier/backing material for the electronics body and transducer assembly and changes to the physical layers of the transducer assembly
- the invention is intended to be incorporated in general into an ultrasound catheter imaging system of the type described in Proudian, deceased et al. U.S. Pat. No. 4,917,097 the teachings of which are incorporated herein by reference.
- the present ultrasound catheter may be used to obtain images using a number of different imaging techniques including, for example, the imaging technique described in O'Donnell et al. U.S. application Ser. No. 08/234,848, filed Apr. 28, 1994 (issue fee paid), the teachings of which are expressly incorporated herein by reference.
- FIG. 1 A cross-sectional view of a catheter embodying the present invention is illustratively depicted in FIG. 1 .
- the catheter shown in FIG. 1 carrying a balloon 1 is of is the type which is generally used for angioplasty; however, the invention can be used in conjunction with a number of catheter designs such as those illustratively depicted in FIGS. 6, 7 and 8 to provide diagnostic images and deliver treatment to small cavities of the body.
- Conventional guide wire lumens 2 and 3 are telescopically fitted over a mating radiopaque guide wire lumen 4 forming a central bore 6 for a catheter guide wire during a normal catheterization procedure.
- An encapsulant 8 composed of an epoxy material secures an imaging device 10 comprising the electronics body 12 and the transducer assembly 14 to the end of a catheter shaft 16 .
- the imaging device 10 in accordance with the present invention contains a multi-sectioned body comprising separate and distinct materials for a carrier 20 and a transducer backing material 24 .
- the encapsulant 8 protects and insulates a set of integrated circuits (IC's) 18 mounted upon the carrier 20 .
- the imaging device 10 is positioned within a proximal sleeve 19 of the balloon 1 .
- the transducer assembly 14 generally comprises a set of transducer elements 22 .
- the transducer elements 22 are supported in a cylindrical shape about the backing material 24 .
- other transducer element configurations will be known to those skilled in the area of transducer devices in view of the present description and in view of the state of the art.
- the balloon 1 is positioned adjacent the imaging device 10 and is isolated from ambient conditions by sealing the two ends of the balloon 1 to the catheter shaft 16 and the lumen 3 in a conventional manner.
- a tube 26 is embedded within the encapsulant 8 for communicating a fluid between the balloon 1 and an inflation source.
- a radiopaque marker band 27 is within the expandable portion of the balloon 1 and attached to the lumen 3 to assist in locating the position of the catheter on a fluoroscope.
- a cable 28 comprising an inner and outer set of wires carries electronic data and control signals between the IC's 18 and a control station computer.
- Each inner wire in the cable 28 is formed from a solid conductor protected by an insulating coating.
- the outer wires are spiraled a number of times around the cable 28 in order to shield the signals carried by the inner wires of the cable 28 .
- the cable is coated with an insulating material.
- FIG. 2 a perspective view is provided of the tip of a partially constructed diagnostic imaging catheter 10 prior to joining the signal paths between the separated electronics body 12 and transducer assembly 14 in order to show the distinct first and second portions of the imaging device 10 comprising the transducer assembly 14 and the electronics body 12 .
- the proximal sleeve 19 and the epoxy encapsulant 8 covering the imaging device 10 have been removed to expose the integrated circuit chips 18 and associated electronic constructions.
- a nose cone 25 provides a blunted lead surface for the ultrasound imaging catheter in order to prevent damage to a vessel as the catheter is guided through the vessel.
- the radiopaque guide wire lumen 4 aids in the positioning of the catheter.
- the radiopaque guide wire lumen 4 also holds both the electronics body 12 and the transducer assembly 14 .
- the outer diameter of the radiopaque guide wire lumen 4 is approximately 0.5 millimeters.
- the radiopaque guide wire lumen 4 provides the additional function of acting as a guide for precisely positioning the electronics body 12 and transducer assembly 14 in order to mate a set of 64 conductor lines 30 from the IC's 18 mounted upon the electronics body 12 to a set of 64 transducer contacts 32 of the transducer assembly 14 in a manner shown in FIG. 3 .
- the gap between the radiopaque guide wire lumen 4 and both the carrier 20 and the backing material 24 must be very small and should not be greater than approximately 25 ⁇ m. This minimized gap ensures proper radial alignment of the conductor lines 30 and transducer contacts 32 .
- the four IC's 18 are of an inverted chip design known to those skilled in the area of the semiconductor chip fabrication art and are bonded to a set of conductive pads 34 formed on the carrier 20 .
- the conductive pads 34 interconnect the IC's 18 to their neighboring chips and provide a connection between the IC's 18 and the cable 28 that communicatively couples the IC's 18 to a signal processor located outside the patient.
- the pads also connect the IC's 18 to the conductor lines 30 .
- the conductor lines 30 link the IC's 18 to a set of 64 electrodes that define the transducer elements in the transducer assembly 14 .
- Each of the IC's 18 has 16 channels associated with 16 transducer elements defined by 16 transducer electrodes in the transducer assembly 14 .
- Each of the four IC's 18 is responsible for sequentially transmitting and receiving electrical signals in the ultrasonic frequency range on one or more of its 16 channels linked by conductor lines 30 to an associated transducer element in the transducer assembly 14 .
- the four IC's 18 provide a multiplexing function that distributes excitation pulses from a signal processor to one or more of the transducer elements.
- one or more of the 16 channels on each of the IC's 18 is free to be excited by an excitation signal or to receive reflections or echoes by means of activation control signals stored on the IC's 18 .
- the electrical signals generated from the reflections impinging on the active transducer elements are amplified and sent via the transmission cable line 28 to the external signal processor.
- FIG. 3 a detailed side cross-sectional view of the imaging portion of the catheter of FIG. 1 is illustrated to show the structure and materials of the imaging device 10 .
- the electronics body 12 and the transducer assembly 14 are shown in their mated state as they would exist in the final construction of the imaging catheter.
- the layers of the transducer assembly are shown in detail in FIG. 3 it will be helpful to refer to FIG. 4 , a cross section view of the transducer assembly taken along line 4 - 4 of FIG. 2 , during the description of the ringed layers of the transducer assembly 14 .
- the carrier 20 is bonded to the radiopaque guide wire lumen 4 by means of a glue layer 36 comprising any commercially available medical grade cyanoacrylate epoxy.
- a glue layer 36 comprising any commercially available medical grade cyanoacrylate epoxy.
- One may substitute any material or structure that satisfactorily immobilizes the electronics body 12 for the glue layer 36 .
- the space between the radiopaque guide wire lumen 4 and the carrier 20 filled by the glue layer 36 must be very small in order for the radiopaque guide wire lumen 4 to assist in the matching of the electrical contacts between the electronics body 12 and the transducer assembly 14 .
- the carrier 20 in the preferred embodiment of the invention is formed from a rigid, strong material having a low thermal expansion coefficient.
- the carrier 20 must be capable of withstanding temperatures in excess of 200 degrees Celsius to which the electronics body 12 is subjected during the process of bonding the set of IC's 18 to the carrier 20 .
- self-heating of the IC's 18 may cause expansion of the carrier 20 if the thermal expansion of the carrier 20 is too great, shear forces exerted by the carrier 20 upon the conductive pads 34 create a substantial risk of failure of the electrical connection between the contacts of the IC's 18 and the conductor lines 30 .
- Aluminum oxide (Al 2 O 3 ) possesses the aforementioned desired characteristics for the carrier 20 ; however, other suitable substitutes for this material are well known to those skilled in the art of hybrid circuits.
- Aluminum oxide is also characterized by a very high acoustic impedance (approximately 40 MRayls) and relatively low loss. As will be explained below, these acoustical properties make Aluminum oxide a poor candidate for use as the transducer backing material for applications involving highly sensitive transducer elements.
- An encapsulant 8 is, applied to the outer surface of the electronics body 12 in order to provide a more cylindrical shape to the catheter assembly and to insulate the electronic circuitry.
- the encapsulant 8 generally comprises any commercially available medical grade UV-curable acrylic.
- the outside of the electronics body may be covered by a protective layer.
- the protective layer is made of, for example, parylene. Other suitable materials for the protective layer will be known to those skilled in the art of ultrasound catheters or other medical instruments which are inserted within the body.
- the protective layer consists of the proximal sleeve 19 in the balloon angioplasty catheter shown in FIG. 1 or a sheath 38 in the case of a diagnostic imaging catheter such as the one illustrated in FIG. 6 .
- the backing material 24 for the transducer assembly 14 is preferably formed from a material characterized by a relatively low acoustic impedance ( ⁇ 10 MRayls) and high loss coefficient (on the order of 20 to 40 dB/mm). This is necessitated by the use of highly sensitive transducer materials such as the PZT composites used for a transducer material 40 whose superior signal sensitivity is otherwise negated by the ringing effect caused by a backing material having a high acoustic impedance and low loss. For this reason, Aluminum oxide is not a preferred material for the backing material 24 for the transducer assembly 14 .
- a separate and different material is used to form the backing material 24 for the ultrasound catheter of the present invention.
- a preferred material for the backing material 24 is an epoxy resin filled with either rubber particles or glass microspheres.
- An example of such a resin is “light-weld” 183-M by Dymax Corp., Torrington, Conn.
- Other suitable materials having low acoustic impedance and high loss will be known to those of ordinary skill in the art of ultrasound imaging.
- air is an ideal backing material, transducer assemblies using an air backing are difficult to achieve in practice.
- the ultrasound catheter of the present invention is characterized by an imaging device 10 having separate and distinct carrier/backing materials that exhibit greatly contrasting characteristics.
- the two distinct materials provide desirable structural and acoustical characteristics for satisfying the dissimilar requirements for the electronics body 12 and the transducer assembly 14 .
- the outer layers of the transducer assembly 14 are separately manufactured as a planar sheet. They comprise a first set of 64 conducting electrodes 42 , the transducer material 40 , a continuous layer conducting electrode 44 , and a matching layer 46 . After the layers are fabricated, the planar sheet of transducer elements 22 is wrapped around the backing material 24 and bonded by means of a glue layer 48 . Depending on the mechanical and acoustic properties of the transducer assembly 14 , physical isolation of the transducer elements 22 from one another may be desirable.
- the outer diameter of the backing material 24 must be manufactured within very close tolerances so that the ends of the planar sheet of transducer elements, when joined to form a cylinder around the backing material 24 , meet with minimal gap or overlap.
- the planar transducer assembly 14 may be formed into a cylinder of exact outer diameter concentrically around the radiopaque lumen 4 and the gap between the lumen 4 and the transducer assembly 14 is filled with the backing material 24 . This ensures that the spacing between the transducer array elements at the opposite ends of the cylindrically wrapped planar sheet have the same spacing as the other transducer array elements.
- the error in the circumference of the transducer sheet, when wrapped around the lumen 4 should be less than (plus or minus) 8 ⁇ m.
- the inner diameter of the backing material 24 must closely match the outer diameter of the radiopaque guide wire lumen 4 in order to facilitate the mating of electrical contacts between the electronics body 12 and the transducer assembly 14 .
- the concentric rings comprising the afore-described layers of the transducer assembly 14 are illustratively depicted in FIG. 4 showing a cross-sectional view of the transducer assembly taken on line 4 - 4 of FIG. 1 .
- An advantage of the planar sheet transducer element fabrication method is the absence of capacitive glue layers previously present between the transducer material 40 and each of the conducting electrodes 42 and 44 . If the capacitive glue layer remained in the presently described ultrasound catheter, an increased capacitance attributable to the higher dielectric constant of the PZT composite transducer material 40 would negate the improved signal sensitivity of the preferred transducer material.
- the capability of fabricating the transducer material 40 as individual elements is an important factor when choosing a particular fabrication method in view of the desirability of low cross-talk (less than ⁇ 30 dB), which may necessitate such a separation of elements.
- Some of the possible manufacturers of the planar sheets comprising the transducer elements are: Precision Acoustic Devices, Fremont, Calif.; Acoustic Imaging, Phoenix, Ariz.; Echo Ultrasound, Lewistown, Pa.; Vermon S. A., Tours, France; and Imasonic, Besancon, France.
- the transducer material may be polarized by means of a high voltage on the order of 5,000 Volts applied between the first set of conducting electrodes 42 and the continuous conducting electrode 44 . Therefore, it is desirable to perform the polarization procedure on a separated assembly to isolate the transducer assembly 14 from the electronics body 12 since application of such a high voltage to the IC's 18 would destroy the electronic circuitry of the IC's 18 .
- the layer of glue 48 bonds the backing material 24 to the first set of conducting electrodes 42 spaced evenly about the circumference of the backing material 24 .
- the first set of conducting electrodes 42 defines the individual transducer elements in the transducer array.
- the first set of conducting electrodes 42 is attached to the set of 64 transducer contacts 32 .
- Connection material 50 electrically couples each one of the transducer contacts 32 , corresponding to a single transducer element, to a corresponding one of the conductor lines 30 , thereby providing an electronic signal path between the transducer elements 22 and the IC's 18 .
- the connection material comprises any of several known suitable conductors such as silver or gold loaded epoxy droplets, solder or gold bumps, or solder tape.
- FIGS. 5A and 5B illustratively depict an alternative embodiment of the ultrasound catheter wherein copper conducting electrodes 42 of the transducer assembly 14 extend beyond the backing material 24 and the transducer material 40 .
- the portion of the conducting electrodes 42 extending beyond the backing material 24 and overlapping the conductor lines 30 when the transducer assembly 14 is joined to the electronics body 12 facilitates the use of a well known gap welder to fuse the individual conductor lines 30 to the corresponding conducting electrodes 42 .
- FIG. 5A shows a cross-sectional view of a partially constructed ultrasound catheter to show the above described connection scheme.
- the use of a gap welder eliminates the need to deposit individual drops of solder material 50 as shown in FIG. 3 .
- the elimination of solder droplets potentially simplifies the design of the electronics carrier 20 that may otherwise require scalloping of the carrier at the end proximate the transducer assembly 14 in order to facilitate proper deposition of the droplets to fuse the conductor lines 30 and the transducer contacts 32 .
- Other advantages of this connection scheme include better bonding of the conductors, simpler assembly techniques, and enhanced mechanical stability.
- connection scheme portrayed in FIGS. 5A and 5B is the potential to automate the process of bonding the conducting electrodes 42 to the conductor lines 30 .
- the conductor lines 30 are matched to the conducting electrodes 42 .
- a tip 70 of a gap welder is placed above one of the matched lines.
- the tip 70 presses a conducting electrode 42 a to a corresponding conductor line 30 a.
- a low voltage, high electrical current passes between the electrodes of the tip 70 .
- the electrical current fuses the conducting electrode 42 a to the conductor line 30 a.
- the catheter assembly is rotated so that a next matched set of lines ( 42 b and 30 b ) is below the tip 70 and the welding process is repeated. The welding continues until all the lines have been fused.
- the efficiency rating of the transducer material is high (greater than 50%); the bandwidth should be high (greater than 50% of center frequency); there should be good matching among the transducer elements; there should be low insertion loss (less than ⁇ 40 dB); and the center frequency should be around 20 MHz. Therefore, in the preferred embodiment of the present invention, the transducer material 24 is any one of many known suitable PZT composites.
- the radial thickness of the transducer layer 40 is preferably one-half wavelength thickness or an odd multiple of half wavelengths of the intended center operating frequency of the ultrasound catheter. As explained in Biomedical Ultrasonics, at page 53, this enables the transducer to resonate at the center operating frequency of the ultrasound catheter. In the present embodiment, the radial thickness of the transducer material 24 is approximately 0.1 millimeters.
- the backing material 24 In order to take advantage of the superior signal sensitivity of transducers formed from PZT composites, the backing material 24 must have a low acoustic impedance. Therefore, the aluminum oxide carrier 20 having a high acoustic impedance should not be used as the backing material 24 . Instead the previous monolithic carrier for both the electronics body 12 and the transducer assembly 14 is replaced by the separated carrier/backing sections 20 and 24 .
- the continuous conducting electrode 44 covering the outer surface of the transducer material 40 is the ground plane for the transducer elements 22 . It is preferably a layer of gold metal deposited upon the surface of the matching layer 46 by means of sputtering. However, other suitable conductors and methods to deposit the conductor will be known to those skilled in the art of transducers fabrication. Though not essential to the proper operation of the ultrasound catheter, it is preferred to connect in a known manner the continuous conducting electrode 44 to a ground line provided by the cable 28 . The ground line runs along the electronics carrier 20 and is connected to the continuous conducting electrode after the electronics body 12 and the transducer assembly 14 have been joined. One possible way to connect the ground wire is shown in FIG. 2 of the Proudian, deceased et al. U.S. Pat. No. 4,917,097.
- the transducer elements 22 are enclosed by a matching layer 46 .
- a matching layer 46 As explained in Biomedical Ultrasonics, by P. N. T. Wells, Academic Press 1977, at page 54, the efficiency of transmission into the load may be increased by an impedance matching layer of quarter wavelength thickness.
- the matching layer 46 comprises a loaded epoxy and is approximately 0.06 mm. thick.
- Alternative appropriate matching layer materials and their thicknesses will be apparent to those of ordinary skill in the art of ultrasonic imaging.
- the electronics body 12 and the transducer assembly 14 are bonded together by a layer of glue 52 and the electrical connections between the electronics body 12 and the transducer assembly 14 are electrically coupled in a manner previously described.
- the cable 28 containing the leads from the signal processor for the ultrasound catheter (previously described in the Proudian et al. '097 patent) are bonded to the conductive pads 34 on the carrier 20 in a known manner.
- FIG. 6 shows an alternative embodiment of the present invention, wherein the imaging device 10 is included in a diagnostic imaging catheter that does not contain a balloon 1 . Portions of the diagnostic imaging catheter have been removed to reveal the cable 28 and the lumen 2 . Since there is no balloon 1 in the imaging catheter shown in FIG. 6 , there is of course no tube 26 for filling and draining a fluid from the balloon. Instead, the catheter is fitted with a nose cone 25 .
- the nose cone 25 provides a blunted lead surface for the ultrasound imaging catheter in order to prevent damage to the walls of a cavity as the catheter is inserted.
- a sheath 38 covers the epoxy resin 8 thereby guarding against contamination of a patient's blood and possibly electrical shock.
- the sheath 38 is preferably constructed of parylene, though other suitable substitutes will be known to those skilled in the art of medical instruments that are inserted within a body.
- the structure of the imaging catheter shown in FIG. 6 is otherwise unchanged from the structure of the balloon angioplasty ultrasound imaging catheter illustrated in FIG. 1 .
- transducer array configured as a cylinder about a cylindrical core
- FIGS. 7 and 8 Examples of such configurations are shown in FIGS. 7 and 8 .
- Other configurations of transducer arrays for an ultrasound catheter will be known to those skilled in the art in view of the present description of this invention.
- FIGS. 7A and 7B illustrate side and cross-sectional views of a side-looking linear array imaging catheter.
- the transducer elements 22 are arranged in a plane and perpendicular to the direction of insertion of the imaging catheter. This arrangement provides an image along the length of a cavity.
- the IC's 18 are connected to the cable 28 in the same manner as the previously described embodiments of the invention. Furthermore, in accordance with the present invention, the IC's 18 are mounted upon an electronics carrier 20 of the type previously described in connection with the preferred embodiment of the invention shown in FIG. 1 .
- the IC's are electrically coupled to the transducer elements 22 by conductor lines 30 .
- the backing material for the transducer elements 22 forms the encapsulant 8 in this case.
- FIGS. 8A, 8B and 8 C illustrate side, forward, and top cross-sectional views of a forward-looking “endfire” imaging catheter shown in FIG. 1 .
- the encapsulant 8 which is also the backing material for the transducers 22 , has been partially removed to reveal the placement and orientation of the electronics portion.
- the transducer elements 22 are arranged as a planar array mounted upon the leading face of the catheter.
- the guide wire lumen 4 is mounted adjacent the ultrasonic imaging device. The diameter of the guide wire lumen 4 is approximately 0.3 mm or about one-third the diameter of the imaging catheter.
- This arrangement provides a forward looking view of a cavity.
- the dimensions of the field of view are determined by the size of the array, the number of elements, the element dimensions and frequency.
- the IC's 18 are connected to the cable 28 in the same manner as the previously described embodiments of the invention.
- the IC's 18 are mounted upon a carrier 20 of the type previously described in connection with the preferred embodiment of the invention shown in FIG. 1 .
- the IC's are electrically coupled to the transducer elements 22 by conductor lines 30 .
- the encapsulant 8 may form the backing material for the transducer elements 22 .
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Gynecology & Obstetrics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Multimedia (AREA)
- Hematology (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
An ultrasound catheter is disclosed for providing substantially real-time images of small cavities. The ultrasound catheter is characterized by separate and distinct materials for backing the transducers and for carrying the electronics components. The separate materials comprise an electronics carrier meeting the requirements for holding the integrated circuitry of the ultrasound device and a backing material displaying superior characteristics relating to reducing ringing and minimizing the effect of other sources of signal degradation in the transducer assembly. Also, in accordance with the present invention, a technique is described for connecting the conductor lines of the separate transducer assembly and electronics body.
Description
- The applicants hereby incorporate by reference the description of an “Apparatus and Method for Imaging Small Cavities” described in Proudian et al. U.S. Pat. No. 4,917,097, the description of a “Dilating and Imaging Apparatus” described in Eberle et al. U.S. Pat. No. 5,167,233, and the description of an “Apparatus And Method For Detecting Blood Flow In Intravascular Ultrasonic Imaging” in O'Donnell et al. U.S. application Ser. No. 08/234,848, filed Apr. 28, 1994 (issue fee paid, and patent number not yet assigned).
- The present invention relates generally to the field of ultrasonic imaging, and more particularly to ultrasonic imaging to determine various characteristics of relatively small cavities and surrounding fluids and structures.
- Diagnosis and treatment of fully or partially blocked arteries of the heart is essential in the medical profession's endeavor to prevent heart attacks.
- Physicians have successfully prevented heart attacks arising from artery blockage caused by the build-up of plaque upon the walls of the coronary arteries through the use of percutaneous transluminal coronary angioplasty (PTCA, commonly referred to as “balloon angioplasty”). Balloon angioplasty involves carefully threading a catheter into the affected portion of the artery. After the balloon portion is determined to be properly positioned in the artery, the physician inflates the expandable portion of the catheter in order to broaden the blocked or narrowed passage in the blood vessel caused by the deposition of plaque upon the artery wall.
- The desirability of using an imaging device to produce treatment and diagnostic quality images of small enclosed areas such as human blood vessels on a diagnostic video display device is unquestioned. It is known to use a very small ultrasonic imaging device mounted at the end of a catheter to produce a real-time image of the internal walls of a coronary artery. This device is referred to herein as an ultrasound catheter.
- In the known ultrasound catheters, the same material is used for the electronics carrier upon which a set of electronic components are mounted and for the backing material for the transducer assembly. A drawback to the known ultrasound catheters is the difficulty in finding a carrier/backing material which provides the physical and acoustic qualities desired for advantageous use as the carrier for the electronics and the backing material for a transducer assembly comprising a highly sensitive transducer material.
- The known ultrasonic catheter structure, though providing the advantage of design and construction simplicity, exhibits certain drawbacks attributable to the particular and mutually incompatible requirements for the backing material and the electronics carrier. It is desirable that the electronics carrier for the electronics body be rigid and capable of withstanding the elevated temperatures produced by the electronics. However, the known electronics carrier materials which satisfy the requirements for the electronics body are not suitable backing materials for the presently preferred transducer assemblies comprising highly sensitive lead zirconate titanate (PZT) composites.
- When the new, more sensitive PZT composites are used with the known electronic carrier material as the backing material for the transducer, unwanted ringing occurs in the transducer assembly when an acoustic signal is received or transmitted by the catheter. The signal produced by the ringing reduces the quality of the signal transmitted by the transducer assembly and limits the foreseeable advantages of utilizing the more sensitive transducer materials in ultrasonic catheters. The decreased signal quality attributed to the ringing limits the-image quality provided by an ultrasound catheter. The limited image quality restricts the usefulness of the ultrasound catheter for clinical and diagnostic imaging.
- In known ultrasound catheters the transducer electrodes are coupled to the transducer layer through a capacitive glue layer. As was previously mentioned, PZT composites having a relatively high degree of sensitivity to acoustic signals are being considered for replacement of the previously used, less sensitive, ferroelectric polymer transducer materials. While the PZT composites exhibit superior sensitivity in comparison to the ferroelectric copolymers, they also have a higher dielectric constant. The reduced impedance (or increased capacitance) associated with the new PZT composites significantly negates the improved signal sensitivity provided by the PZT composites when coupled to the transducer electrodes through the capacitive glue layer.
- It is an object of -the present invention to provide a superior virtually real-time ultrasonic image of relatively small cavities and their surrounding tissues than previously obtainable in the prior art.
- It is a further object to provide enhanced sensitivity to reflected signals from the walls of a cavity in order to provide improved image resolution.
- It is a further object of the invention to meet the other objectives and maintain or reduce ringing and other sources of noise in a signal transmitted or received by the transducer assembly and to thereby provide a clearer image of a cavity.
- It is yet another object of the present invention to provide a means for more easily fabricating the very small transducer elements of the transducer assembly of an ultrasound catheter.
- It is yet another object of the present invention to provide a means for forming the very small transducer elements for the ultrasound catheter to very close tolerances.
- It is another object of the present invention to provide desirable carrier/backing materials for the electronics body and transducer assembly of an ultrasound catheter.
- It is yet another object of the present invention to provide a means for joining the conductor lines of the electronics body to the conducting electrodes of the transducer assembly in order to provide a signal path between the separately fabricated sections containing the integrated circuits and the transducer assembly of an ultrasound catheter.
- The above objects are met by a catheter probe assembly of the present invention comprising a multi-sectioned body for insertion into a cavity. The multi-sectioned body is characterized by separate and distinct carrier/backing materials for an electronics body and a transducer assembly. The present invention comprises a probe assembly for an ultrasound catheter generally of the type described in Proudian deceased et al. U.S. Pat. No. 4,917,097 and Eberle et al. U.S. Pat. No. 5,167,233 for producing substantially real-time images of small cavities and their surrounding tissue.
- The transducer assembly, comprising an array of transducers is mounted upon a first section of the multi-sectioned body. The transducer array transmits ultrasonic acoustic waves to the cavity and generates electrical signals in response to reflected ultrasonic acoustic waves received by the transducers.
- The backing material for the transducer assembly is specifically selected for its characteristic low acoustic impedance and high absorption. The low acoustic impedance backing material absorbs signals coupled into the backing material and reduces the presence of ringing in the transducer assembly. In addition, a set of transducer electrodes are directly bonded to the transducer material thereby eliminating a capacitive glue layer previously associated with the transducer circuits.
- Integrated circuits are mounted upon a second section of the multi-sectioned body. The second section, acoustically isolated from the first section, comprises a carrier material having a low thermal expansion coefficient. The integrated circuits receive a set of first electrical signals from the transducer array by means of electrical conductors interconnecting the transducer assembly electrodes and the pads of the integrated circuits. The electrical conductors are also used to transmit excitation signals from the integrated circuits to the transducer assembly. The integrated circuits convert the received first electrical signals into a second set of electrical signals. Then the integrated circuits transmit the second set of signals to a signal processor located outside the environment of the cavity by means of a cable.
- The unique, multi-sectioned, structure of the probe assembly enables the designer of the probe assembly to separately select a material exhibiting the preferred structural and acoustic characteristic for the carrier of the integrated circuit components and the backing material for the transducer elements.
- In order to prevent damage to the components of both the transducer assembly and the electronics body, these two portions of the ultrasound catheter probe assembly are separately manufactured and linked during the final stages of fabrication of the ultrasonic catheter.
- The appended claims set forth the features of the present invention with particularity. The invention, together with its objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings of which:
-
FIG. 1 is a side cross-sectional view of the tip of a catheter illustrating the electronics body, the transducer assembly, and the balloon section of a balloon angioplasty ultrasound imaging catheter embodying the present invention; -
FIG. 2 is a perspective view of the tip of a partially constructed diagnostic imaging catheter prior to joining the signal paths between the separated electronics body and transducer assembly; -
FIG. 3 is a detailed side cross-sectional view of the tip of the imaging device portion of the catheter showing the composition of the imaging device; -
FIG. 4 is a cross-sectional view of the transducer assembly taken along line 4-4 inFIG. 1 ; -
FIGS. 5 a and 5 b illustratively depict an alternative embodiment of the ultrasound catheter wherein the conducting electrodes in the transducer assembly extend beyond the backing material and the transducer material; -
FIG. 6 is a side cross-sectional view of the tip of a catheter illustrating the electronics body, transducer assembly, and nose assembly of an ultrasound diagnostic imaging catheter embodying the present invention; -
FIGS. 7 a and 7 b show cross-sectional and side-sectional views of an alternative embodiment of the present invention wherein the transducer array is configured to provide a “side-looking” view; and -
FIGS. 8 a, 8 b and 8 c show side, forward, and top cross-sectional views of an alternative embodiment of the present invention wherein the transducer array is configured to provide a “forward-looking” view. - While the invention will be described in connection with a catheter used for angioplasty, it will be understood that it is not intended to be limited to such use. On the contrary, the invention is intended to cover all applications which may require imaging in a small cavity. An example of such an alternative would be the use of the present invention on a catheter without the balloon. In such a case, the catheter acts as a diagnostic or monitoring device. Another specific alternative use of the present invention is for measuring blood flow rates using Doppler sound imaging in conjunction with the present invention. The present invention may also be used to produce internal images of a number of ducts within a body such as the monitoring of gall stones in the bile ducts and for examination and treatment in the area of urology and gynecology. Another example of an application of the present invention is the use of the ultrasound catheter for providing an image of a vessel or duct during application of laser treatment or during the removal of plaque from the walls of a vessel during an antherectomy procedure.
- Furthermore, this invention may be applied to other types of transducer array configurations which will be known to those of ordinary skill in the art in view of the description of the invention and the accompanying descriptions of various embodiments of this invention contained herein.
- Though the present invention concerns the structure of the carrier/backing material for the electronics body and transducer assembly and changes to the physical layers of the transducer assembly, the invention is intended to be incorporated in general into an ultrasound catheter imaging system of the type described in Proudian, deceased et al. U.S. Pat. No. 4,917,097 the teachings of which are incorporated herein by reference. Furthermore, the present ultrasound catheter may be used to obtain images using a number of different imaging techniques including, for example, the imaging technique described in O'Donnell et al. U.S. application Ser. No. 08/234,848, filed Apr. 28, 1994 (issue fee paid), the teachings of which are expressly incorporated herein by reference.
- A cross-sectional view of a catheter embodying the present invention is illustratively depicted in
FIG. 1 . The catheter shown inFIG. 1 carrying aballoon 1 is of is the type which is generally used for angioplasty; however, the invention can be used in conjunction with a number of catheter designs such as those illustratively depicted inFIGS. 6, 7 and 8 to provide diagnostic images and deliver treatment to small cavities of the body. Conventionalguide wire lumens guide wire lumen 4 forming acentral bore 6 for a catheter guide wire during a normal catheterization procedure. Anencapsulant 8 composed of an epoxy material secures animaging device 10 comprising theelectronics body 12 and thetransducer assembly 14 to the end of acatheter shaft 16. Theimaging device 10 in accordance with the present invention contains a multi-sectioned body comprising separate and distinct materials for acarrier 20 and atransducer backing material 24. Theencapsulant 8 protects and insulates a set of integrated circuits (IC's) 18 mounted upon thecarrier 20. In the preferred embodiment of a balloon angioplasty device embodying the present invention, theimaging device 10 is positioned within aproximal sleeve 19 of theballoon 1. - The
transducer assembly 14, described hereinafter in greater detail in conjunction withFIG. 3 , generally comprises a set oftransducer elements 22. Thetransducer elements 22 are supported in a cylindrical shape about thebacking material 24. However, other transducer element configurations will be known to those skilled in the area of transducer devices in view of the present description and in view of the state of the art. - Continuing with the description of
FIG. 1 , theballoon 1 is positioned adjacent theimaging device 10 and is isolated from ambient conditions by sealing the two ends of theballoon 1 to thecatheter shaft 16 and thelumen 3 in a conventional manner. Atube 26 is embedded within theencapsulant 8 for communicating a fluid between theballoon 1 and an inflation source. Within the expandable portion of theballoon 1 and attached to thelumen 3 is aradiopaque marker band 27 to assist in locating the position of the catheter on a fluoroscope. - A
cable 28 comprising an inner and outer set of wires carries electronic data and control signals between the IC's 18 and a control station computer. Each inner wire in thecable 28 is formed from a solid conductor protected by an insulating coating. The outer wires are spiraled a number of times around thecable 28 in order to shield the signals carried by the inner wires of thecable 28. Preferably, the cable is coated with an insulating material. - Turning now to
FIG. 2 , a perspective view is provided of the tip of a partially constructeddiagnostic imaging catheter 10 prior to joining the signal paths between the separatedelectronics body 12 andtransducer assembly 14 in order to show the distinct first and second portions of theimaging device 10 comprising thetransducer assembly 14 and theelectronics body 12. To aid the description of theimaging device 10, theproximal sleeve 19 and theepoxy encapsulant 8 covering theimaging device 10 have been removed to expose theintegrated circuit chips 18 and associated electronic constructions. Anose cone 25 provides a blunted lead surface for the ultrasound imaging catheter in order to prevent damage to a vessel as the catheter is guided through the vessel. - The radiopaque
guide wire lumen 4, visible within a patient by means of a fluoroscope, aids in the positioning of the catheter. The radiopaqueguide wire lumen 4 also holds both theelectronics body 12 and thetransducer assembly 14. The outer diameter of the radiopaqueguide wire lumen 4 is approximately 0.5 millimeters. The radiopaqueguide wire lumen 4 provides the additional function of acting as a guide for precisely positioning theelectronics body 12 andtransducer assembly 14 in order to mate a set of 64conductor lines 30 from the IC's 18 mounted upon theelectronics body 12 to a set of 64transducer contacts 32 of thetransducer assembly 14 in a manner shown inFIG. 3 . In order for the radiopaqueguide wire lumen 4 to assist in mating the above described components of theimaging device 10, the gap between the radiopaqueguide wire lumen 4 and both thecarrier 20 and thebacking material 24 must be very small and should not be greater than approximately 25 μm. This minimized gap ensures proper radial alignment of the conductor lines 30 andtransducer contacts 32. - In order to physically place the IC's 18 onto the
carrier 20, the four IC's 18 are of an inverted chip design known to those skilled in the area of the semiconductor chip fabrication art and are bonded to a set ofconductive pads 34 formed on thecarrier 20. Theconductive pads 34 interconnect the IC's 18 to their neighboring chips and provide a connection between the IC's 18 and thecable 28 that communicatively couples the IC's 18 to a signal processor located outside the patient. The pads also connect the IC's 18 to the conductor lines 30. The conductor lines 30 link the IC's 18 to a set of 64 electrodes that define the transducer elements in thetransducer assembly 14. - Each of the IC's 18 has 16 channels associated with 16 transducer elements defined by 16 transducer electrodes in the
transducer assembly 14. Each of the four IC's 18 is responsible for sequentially transmitting and receiving electrical signals in the ultrasonic frequency range on one or more of its 16 channels linked byconductor lines 30 to an associated transducer element in thetransducer assembly 14. The four IC's 18 provide a multiplexing function that distributes excitation pulses from a signal processor to one or more of the transducer elements. At any given time one or more of the 16 channels on each of the IC's 18 is free to be excited by an excitation signal or to receive reflections or echoes by means of activation control signals stored on the IC's 18. The electrical signals generated from the reflections impinging on the active transducer elements are amplified and sent via thetransmission cable line 28 to the external signal processor. - Turning to
FIG. 3 a detailed side cross-sectional view of the imaging portion of the catheter ofFIG. 1 is illustrated to show the structure and materials of theimaging device 10. In this drawing theelectronics body 12 and thetransducer assembly 14 are shown in their mated state as they would exist in the final construction of the imaging catheter. Though the layers of the transducer assembly are shown in detail inFIG. 3 it will be helpful to refer toFIG. 4 , a cross section view of the transducer assembly taken along line 4-4 ofFIG. 2 , during the description of the ringed layers of thetransducer assembly 14. - The
carrier 20 is bonded to the radiopaqueguide wire lumen 4 by means of aglue layer 36 comprising any commercially available medical grade cyanoacrylate epoxy. One may substitute any material or structure that satisfactorily immobilizes theelectronics body 12 for theglue layer 36. As previously mentioned the space between the radiopaqueguide wire lumen 4 and thecarrier 20 filled by theglue layer 36 must be very small in order for the radiopaqueguide wire lumen 4 to assist in the matching of the electrical contacts between theelectronics body 12 and thetransducer assembly 14. - The
carrier 20 in the preferred embodiment of the invention is formed from a rigid, strong material having a low thermal expansion coefficient. Thecarrier 20 must be capable of withstanding temperatures in excess of 200 degrees Celsius to which theelectronics body 12 is subjected during the process of bonding the set of IC's 18 to thecarrier 20. Furthermore, during operation of the ultrasound catheter, self-heating of the IC's 18 may cause expansion of thecarrier 20 if the thermal expansion of thecarrier 20 is too great, shear forces exerted by thecarrier 20 upon theconductive pads 34 create a substantial risk of failure of the electrical connection between the contacts of the IC's 18 and the conductor lines 30. Aluminum oxide (Al2O3) possesses the aforementioned desired characteristics for thecarrier 20; however, other suitable substitutes for this material are well known to those skilled in the art of hybrid circuits. Aluminum oxide is also characterized by a very high acoustic impedance (approximately 40 MRayls) and relatively low loss. As will be explained below, these acoustical properties make Aluminum oxide a poor candidate for use as the transducer backing material for applications involving highly sensitive transducer elements. - An
encapsulant 8 is, applied to the outer surface of theelectronics body 12 in order to provide a more cylindrical shape to the catheter assembly and to insulate the electronic circuitry. Theencapsulant 8 generally comprises any commercially available medical grade UV-curable acrylic. In order to guard against contamination of the blood and possibly electrical shock, the outside of the electronics body may be covered by a protective layer. The protective layer is made of, for example, parylene. Other suitable materials for the protective layer will be known to those skilled in the art of ultrasound catheters or other medical instruments which are inserted within the body. The protective layer consists of theproximal sleeve 19 in the balloon angioplasty catheter shown inFIG. 1 or asheath 38 in the case of a diagnostic imaging catheter such as the one illustrated inFIG. 6 . - Turning to the
transducer assembly 14 and its related structures, thebacking material 24 for thetransducer assembly 14 is preferably formed from a material characterized by a relatively low acoustic impedance (<10 MRayls) and high loss coefficient (on the order of 20 to 40 dB/mm). This is necessitated by the use of highly sensitive transducer materials such as the PZT composites used for atransducer material 40 whose superior signal sensitivity is otherwise negated by the ringing effect caused by a backing material having a high acoustic impedance and low loss. For this reason, Aluminum oxide is not a preferred material for thebacking material 24 for thetransducer assembly 14. Instead, a separate and different material is used to form thebacking material 24 for the ultrasound catheter of the present invention. A preferred material for thebacking material 24 is an epoxy resin filled with either rubber particles or glass microspheres. An example of such a resin is “light-weld” 183-M by Dymax Corp., Torrington, Conn. Other suitable materials having low acoustic impedance and high loss will be known to those of ordinary skill in the art of ultrasound imaging. Although air is an ideal backing material, transducer assemblies using an air backing are difficult to achieve in practice. - Thus, the ultrasound catheter of the present invention is characterized by an
imaging device 10 having separate and distinct carrier/backing materials that exhibit greatly contrasting characteristics. The two distinct materials provide desirable structural and acoustical characteristics for satisfying the dissimilar requirements for theelectronics body 12 and thetransducer assembly 14. - In the preferred method of making the
transducer assembly 14, the outer layers of thetransducer assembly 14 are separately manufactured as a planar sheet. They comprise a first set of 64 conductingelectrodes 42, thetransducer material 40, a continuouslayer conducting electrode 44, and amatching layer 46. After the layers are fabricated, the planar sheet oftransducer elements 22 is wrapped around thebacking material 24 and bonded by means of aglue layer 48. Depending on the mechanical and acoustic properties of thetransducer assembly 14, physical isolation of thetransducer elements 22 from one another may be desirable. Since a uniform distribution of each of thetransducer elements 22 is desired, the outer diameter of thebacking material 24 must be manufactured within very close tolerances so that the ends of the planar sheet of transducer elements, when joined to form a cylinder around thebacking material 24, meet with minimal gap or overlap. Alternatively, theplanar transducer assembly 14 may be formed into a cylinder of exact outer diameter concentrically around theradiopaque lumen 4 and the gap between thelumen 4 and thetransducer assembly 14 is filled with thebacking material 24. This ensures that the spacing between the transducer array elements at the opposite ends of the cylindrically wrapped planar sheet have the same spacing as the other transducer array elements. It is believed that the error in the circumference of the transducer sheet, when wrapped around thelumen 4, should be less than (plus or minus) 8 μm. Furthermore, the inner diameter of thebacking material 24 must closely match the outer diameter of the radiopaqueguide wire lumen 4 in order to facilitate the mating of electrical contacts between theelectronics body 12 and thetransducer assembly 14. The concentric rings comprising the afore-described layers of thetransducer assembly 14 are illustratively depicted inFIG. 4 showing a cross-sectional view of the transducer assembly taken on line 4-4 ofFIG. 1 . - An advantage of the planar sheet transducer element fabrication method is the absence of capacitive glue layers previously present between the
transducer material 40 and each of the conductingelectrodes composite transducer material 40 would negate the improved signal sensitivity of the preferred transducer material. There are several other advantages to the sheet approach to fabricating the transducer array. Fabrication on a flat surface is easier than on a curved, cylindrical surface. This is especially important in transducer assemblies wherein thetransducer material 40 must be separated (or diced) in order to form the transducer material on thecontinuous conducting electrode 44 as individual elements instead of a continuous sheet. The capability of fabricating thetransducer material 40 as individual elements is an important factor when choosing a particular fabrication method in view of the desirability of low cross-talk (less than −30 dB), which may necessitate such a separation of elements. Some of the possible manufacturers of the planar sheets comprising the transducer elements are: Precision Acoustic Devices, Fremont, Calif.; Acoustic Imaging, Phoenix, Ariz.; Echo Ultrasound, Lewistown, Pa.; Vermon S. A., Tours, France; and Imasonic, Besancon, France. - After the
transducer assembly 14 has been formed, it may be desirable for the transducer material to be polarized by means of a high voltage on the order of 5,000 Volts applied between the first set of conductingelectrodes 42 and thecontinuous conducting electrode 44. Therefore, it is desirable to perform the polarization procedure on a separated assembly to isolate thetransducer assembly 14 from theelectronics body 12 since application of such a high voltage to the IC's 18 would destroy the electronic circuitry of the IC's 18. - The layer of
glue 48 bonds thebacking material 24 to the first set of conductingelectrodes 42 spaced evenly about the circumference of thebacking material 24. The first set of conductingelectrodes 42 defines the individual transducer elements in the transducer array. The first set of conductingelectrodes 42 is attached to the set of 64transducer contacts 32.Connection material 50 electrically couples each one of thetransducer contacts 32, corresponding to a single transducer element, to a corresponding one of the conductor lines 30, thereby providing an electronic signal path between thetransducer elements 22 and the IC's 18. The connection material comprises any of several known suitable conductors such as silver or gold loaded epoxy droplets, solder or gold bumps, or solder tape. - There are other connection schemes for joining the conducting
electrodes 42 to the conductor lines 30.FIGS. 5A and 5B illustratively depict an alternative embodiment of the ultrasound catheter whereincopper conducting electrodes 42 of thetransducer assembly 14 extend beyond thebacking material 24 and thetransducer material 40. The portion of the conductingelectrodes 42 extending beyond thebacking material 24 and overlapping the conductor lines 30 when thetransducer assembly 14 is joined to theelectronics body 12 facilitates the use of a well known gap welder to fuse theindividual conductor lines 30 to the corresponding conductingelectrodes 42. -
FIG. 5A shows a cross-sectional view of a partially constructed ultrasound catheter to show the above described connection scheme. The use of a gap welder eliminates the need to deposit individual drops ofsolder material 50 as shown inFIG. 3 . The elimination of solder droplets potentially simplifies the design of theelectronics carrier 20 that may otherwise require scalloping of the carrier at the end proximate thetransducer assembly 14 in order to facilitate proper deposition of the droplets to fuse the conductor lines 30 and thetransducer contacts 32. Other advantages of this connection scheme include better bonding of the conductors, simpler assembly techniques, and enhanced mechanical stability. - Another advantage of the connection scheme portrayed in
FIGS. 5A and 5B is the potential to automate the process of bonding the conductingelectrodes 42 to the conductor lines 30. As shown in the cross-sectional view of a partially assembled ultrasound catheter assembly inFIG. 5B , the conductor lines 30 are matched to the conductingelectrodes 42. Next, atip 70 of a gap welder is placed above one of the matched lines. Thetip 70 presses a conductingelectrode 42 a to a correspondingconductor line 30 a. A low voltage, high electrical current passes between the electrodes of thetip 70. The electrical current fuses the conductingelectrode 42 a to theconductor line 30 a. Next, the catheter assembly is rotated so that a next matched set of lines (42 b and 30 b) is below thetip 70 and the welding process is repeated. The welding continues until all the lines have been fused. - Returning now to ultrasound imaging device in
FIG. 3 , there exists a range of suitable transducer materials which can be used to transduce electrical energy into acoustic energy and vice versa in the Megahertz frequency range. In the preferred embodiment of the present invention, the efficiency rating of the transducer material, expressed in terms of the coupling coefficient kt, is high (greater than 50%); the bandwidth should be high (greater than 50% of center frequency); there should be good matching among the transducer elements; there should be low insertion loss (less than −40 dB); and the center frequency should be around 20 MHz. Therefore, in the preferred embodiment of the present invention, thetransducer material 24 is any one of many known suitable PZT composites. A summary of the properties of the PZT composites is provided in Acoustic Waves: Devices, Imaging, and Analog Signal Processing, by Professor Gordon S. Kino, Prentice-Hall, Inc., 1987 at pages 554 and 555. Generally, these composites may be damaged by temperatures exceeding 75° Celsius and could not be present when the bonding of the IC's 18 to thecarrier 20 occurs. - The radial thickness of the
transducer layer 40 is preferably one-half wavelength thickness or an odd multiple of half wavelengths of the intended center operating frequency of the ultrasound catheter. As explained in Biomedical Ultrasonics, at page 53, this enables the transducer to resonate at the center operating frequency of the ultrasound catheter. In the present embodiment, the radial thickness of thetransducer material 24 is approximately 0.1 millimeters. - In order to take advantage of the superior signal sensitivity of transducers formed from PZT composites, the
backing material 24 must have a low acoustic impedance. Therefore, thealuminum oxide carrier 20 having a high acoustic impedance should not be used as thebacking material 24. Instead the previous monolithic carrier for both theelectronics body 12 and thetransducer assembly 14 is replaced by the separated carrier/backing sections - The
continuous conducting electrode 44 covering the outer surface of thetransducer material 40 is the ground plane for thetransducer elements 22. It is preferably a layer of gold metal deposited upon the surface of thematching layer 46 by means of sputtering. However, other suitable conductors and methods to deposit the conductor will be known to those skilled in the art of transducers fabrication. Though not essential to the proper operation of the ultrasound catheter, it is preferred to connect in a known manner thecontinuous conducting electrode 44 to a ground line provided by thecable 28. The ground line runs along theelectronics carrier 20 and is connected to the continuous conducting electrode after theelectronics body 12 and thetransducer assembly 14 have been joined. One possible way to connect the ground wire is shown inFIG. 2 of the Proudian, deceased et al. U.S. Pat. No. 4,917,097. - The
transducer elements 22 are enclosed by amatching layer 46. As explained in Biomedical Ultrasonics, by P. N. T. Wells, Academic Press 1977, at page 54, the efficiency of transmission into the load may be increased by an impedance matching layer of quarter wavelength thickness. In the presently preferred embodiment thematching layer 46 comprises a loaded epoxy and is approximately 0.06 mm. thick. Alternative appropriate matching layer materials and their thicknesses will be apparent to those of ordinary skill in the art of ultrasonic imaging. - After independent construction, the
electronics body 12 and thetransducer assembly 14 are bonded together by a layer ofglue 52 and the electrical connections between theelectronics body 12 and thetransducer assembly 14 are electrically coupled in a manner previously described. Thecable 28 containing the leads from the signal processor for the ultrasound catheter (previously described in the Proudian et al. '097 patent) are bonded to theconductive pads 34 on thecarrier 20 in a known manner. -
FIG. 6 shows an alternative embodiment of the present invention, wherein theimaging device 10 is included in a diagnostic imaging catheter that does not contain aballoon 1. Portions of the diagnostic imaging catheter have been removed to reveal thecable 28 and thelumen 2. Since there is noballoon 1 in the imaging catheter shown inFIG. 6 , there is of course notube 26 for filling and draining a fluid from the balloon. Instead, the catheter is fitted with anose cone 25. Thenose cone 25 provides a blunted lead surface for the ultrasound imaging catheter in order to prevent damage to the walls of a cavity as the catheter is inserted. Asheath 38 covers theepoxy resin 8 thereby guarding against contamination of a patient's blood and possibly electrical shock. Thesheath 38 is preferably constructed of parylene, though other suitable substitutes will be known to those skilled in the art of medical instruments that are inserted within a body. The structure of the imaging catheter shown inFIG. 6 is otherwise unchanged from the structure of the balloon angioplasty ultrasound imaging catheter illustrated inFIG. 1 . - Though the preferred embodiment of the present invention contains a transducer array configured as a cylinder about a cylindrical core, there are numerous other configurations of ultrasound catheters that embody the present invention. Examples of such configurations are shown in
FIGS. 7 and 8 . Other configurations of transducer arrays for an ultrasound catheter will be known to those skilled in the art in view of the present description of this invention. -
FIGS. 7A and 7B illustrate side and cross-sectional views of a side-looking linear array imaging catheter. - In this arrangement the
transducer elements 22 are arranged in a plane and perpendicular to the direction of insertion of the imaging catheter. This arrangement provides an image along the length of a cavity. In this alternative embodiment of the present invention, the IC's 18 are connected to thecable 28 in the same manner as the previously described embodiments of the invention. Furthermore, in accordance with the present invention, the IC's 18 are mounted upon anelectronics carrier 20 of the type previously described in connection with the preferred embodiment of the invention shown inFIG. 1 . The IC's are electrically coupled to thetransducer elements 22 byconductor lines 30. The backing material for thetransducer elements 22 forms theencapsulant 8 in this case. -
FIGS. 8A, 8B and 8C illustrate side, forward, and top cross-sectional views of a forward-looking “endfire” imaging catheter shown inFIG. 1 . InFIGS. 8A, 8B and 8C theencapsulant 8, which is also the backing material for thetransducers 22, has been partially removed to reveal the placement and orientation of the electronics portion. In this arrangement thetransducer elements 22 are arranged as a planar array mounted upon the leading face of the catheter. Theguide wire lumen 4 is mounted adjacent the ultrasonic imaging device. The diameter of theguide wire lumen 4 is approximately 0.3 mm or about one-third the diameter of the imaging catheter. - This arrangement provides a forward looking view of a cavity. The dimensions of the field of view are determined by the size of the array, the number of elements, the element dimensions and frequency. In this alternative embodiment of the present invention, the IC's 18 are connected to the
cable 28 in the same manner as the previously described embodiments of the invention. Furthermore, in accordance with the present invention, the IC's 18 are mounted upon acarrier 20 of the type previously described in connection with the preferred embodiment of the invention shown inFIG. 1 . The IC's are electrically coupled to thetransducer elements 22 byconductor lines 30. Theencapsulant 8 may form the backing material for thetransducer elements 22. - It will be appreciated by those skilled in the art that modifications to the foregoing preferred embodiment may be made in various aspects. The present invention is set forth with particularity in the appended claims. It is deemed that the spirit and scope of that invention encompasses such modifications and alterations to the preferred embodiment as would be apparent to one of ordinary skill in the art and familiar with the teaching of the present application.
Claims (2)
1. An ultrasound catheter probe for insertion into a vasculature and emitting ultrasonic acoustic waves and providing transduced electrical signals arising from ultrasonic echoes of the ultrasonic acoustic waves, said ultrasound catheter probe comprising:
a multi-sectioned body having distinct sections for independently supporting a transducer array and integrated electronic circuitry, the multi-sectioned body comprising:
a first section, comprising a first material, serving as a transducer backing and having a relatively high acoustic energy absorption in comparison to a second section, comprising a second material, for supporting integrated electronic circuitry;
a transducer assembly, supported by the first section of the multi-sectioned body, including the transducer array for transmitting the ultrasonic acoustic waves into the vasculature and generating electrical signals in accordance with the ultrasonic echoes of the ultrasonic acoustic waves; and
integrated electronic circuitry, supported by the second section of the multi-sectioned body, for receiving the electrical signals generated by the transducer assembly and, in response to the electrical signals, transmitting information to an environment external of the vasculature.
2-19. (canceled)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/221,165 US20060058681A1 (en) | 1993-02-01 | 2005-09-07 | Ultrasound transducer assembly |
US11/431,129 US20070016071A1 (en) | 1993-02-01 | 2006-05-09 | Ultrasound transducer assembly |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/012,251 US5368037A (en) | 1993-02-01 | 1993-02-01 | Ultrasound catheter |
US08/234,848 US5453575A (en) | 1993-02-01 | 1994-04-28 | Apparatus and method for detecting blood flow in intravascular ultrasonic imaging |
US08/516,538 US5603327A (en) | 1993-02-01 | 1995-08-18 | Ultrasound catheter probe |
US08/712,166 US5779644A (en) | 1993-02-01 | 1996-09-11 | Ultrasound catheter probe |
US08/935,930 US5938615A (en) | 1993-02-01 | 1997-09-23 | Ultrasound catheter probe |
US09/324,692 US6123673A (en) | 1993-02-01 | 1999-06-02 | Method of making an ultrasound transducer assembly |
US09/658,323 US6283920B1 (en) | 1993-02-01 | 2000-09-08 | Ultrasound transducer assembly |
US09/906,302 US6962567B2 (en) | 1993-02-01 | 2001-07-16 | Ultrasound transducer assembly |
US11/221,165 US20060058681A1 (en) | 1993-02-01 | 2005-09-07 | Ultrasound transducer assembly |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/906,302 Continuation US6962567B2 (en) | 1993-02-01 | 2001-07-16 | Ultrasound transducer assembly |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/431,129 Continuation US20070016071A1 (en) | 1993-02-01 | 2006-05-09 | Ultrasound transducer assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060058681A1 true US20060058681A1 (en) | 2006-03-16 |
Family
ID=22883065
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/234,848 Expired - Lifetime US5453575A (en) | 1993-02-01 | 1994-04-28 | Apparatus and method for detecting blood flow in intravascular ultrasonic imaging |
US08/516,538 Expired - Lifetime US5603327A (en) | 1993-02-01 | 1995-08-18 | Ultrasound catheter probe |
US08/712,166 Expired - Lifetime US5779644A (en) | 1993-02-01 | 1996-09-11 | Ultrasound catheter probe |
US08/935,930 Expired - Lifetime US5938615A (en) | 1993-02-01 | 1997-09-23 | Ultrasound catheter probe |
US09/324,692 Expired - Lifetime US6123673A (en) | 1993-02-01 | 1999-06-02 | Method of making an ultrasound transducer assembly |
US09/658,323 Expired - Lifetime US6283920B1 (en) | 1993-02-01 | 2000-09-08 | Ultrasound transducer assembly |
US09/906,302 Expired - Fee Related US6962567B2 (en) | 1993-02-01 | 2001-07-16 | Ultrasound transducer assembly |
US11/221,165 Abandoned US20060058681A1 (en) | 1993-02-01 | 2005-09-07 | Ultrasound transducer assembly |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/234,848 Expired - Lifetime US5453575A (en) | 1993-02-01 | 1994-04-28 | Apparatus and method for detecting blood flow in intravascular ultrasonic imaging |
US08/516,538 Expired - Lifetime US5603327A (en) | 1993-02-01 | 1995-08-18 | Ultrasound catheter probe |
US08/712,166 Expired - Lifetime US5779644A (en) | 1993-02-01 | 1996-09-11 | Ultrasound catheter probe |
US08/935,930 Expired - Lifetime US5938615A (en) | 1993-02-01 | 1997-09-23 | Ultrasound catheter probe |
US09/324,692 Expired - Lifetime US6123673A (en) | 1993-02-01 | 1999-06-02 | Method of making an ultrasound transducer assembly |
US09/658,323 Expired - Lifetime US6283920B1 (en) | 1993-02-01 | 2000-09-08 | Ultrasound transducer assembly |
US09/906,302 Expired - Fee Related US6962567B2 (en) | 1993-02-01 | 2001-07-16 | Ultrasound transducer assembly |
Country Status (6)
Country | Link |
---|---|
US (8) | US5453575A (en) |
EP (1) | EP0707453B1 (en) |
JP (1) | JP3188470B2 (en) |
CA (1) | CA2163213C (en) |
DE (1) | DE69533183T2 (en) |
WO (1) | WO1995029633A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040054287A1 (en) * | 2002-08-29 | 2004-03-18 | Stephens Douglas Neil | Ultrasonic imaging devices and methods of fabrication |
US20100156244A1 (en) * | 2008-09-18 | 2010-06-24 | Marc Lukacs | Methods for manufacturing ultrasound transducers and other components |
US7830069B2 (en) | 2004-04-20 | 2010-11-09 | Sunnybrook Health Sciences Centre | Arrayed ultrasonic transducer |
US7901358B2 (en) | 2005-11-02 | 2011-03-08 | Visualsonics Inc. | High frequency array ultrasound system |
US20110060215A1 (en) * | 2009-03-30 | 2011-03-10 | Tupin Jr Joe Paul | Apparatus and method for continuous noninvasive measurement of respiratory function and events |
US20120059268A1 (en) * | 2010-08-02 | 2012-03-08 | Tupin Jr Joe P | Ultra wideband (uwb) baby monitors for detection of infant cardiopulmonary distress |
US20120068075A1 (en) * | 2009-01-08 | 2012-03-22 | Beddar A Sam | Real-time in vivo radiation dosimetry using scintillation detectors |
US9078582B2 (en) | 2009-04-22 | 2015-07-14 | Lifewave Biomedical, Inc. | Fetal monitoring device and methods |
US9173047B2 (en) | 2008-09-18 | 2015-10-27 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US9184369B2 (en) | 2008-09-18 | 2015-11-10 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US11039785B2 (en) | 2012-05-31 | 2021-06-22 | Lifewave Biomedical, Inc. | Medical radar system for guiding cardiac resuscitation |
US11617517B2 (en) | 2007-05-24 | 2023-04-04 | Lifewave Biomedical, Inc. | System and method for non-invasive instantaneous and continuous measurement of cardiac chamber volume |
Families Citing this family (346)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2301892B (en) * | 1992-07-14 | 1997-02-26 | Intravascular Res Ltd | Methods and apparatus for the examination and treatment of internal organs |
US5453575A (en) * | 1993-02-01 | 1995-09-26 | Endosonics Corporation | Apparatus and method for detecting blood flow in intravascular ultrasonic imaging |
GB2293240B (en) * | 1994-09-15 | 1998-05-20 | Intravascular Res Ltd | Ultrasonic visualisation method and apparatus |
GB2296565B (en) * | 1994-12-23 | 1999-06-16 | Intravascular Res Ltd | Ultrasound imaging |
US6176842B1 (en) | 1995-03-08 | 2001-01-23 | Ekos Corporation | Ultrasound assembly for use with light activated drugs |
US6210356B1 (en) | 1998-08-05 | 2001-04-03 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6254542B1 (en) | 1995-07-17 | 2001-07-03 | Intravascular Research Limited | Ultrasonic visualization method and apparatus |
WO1997007740A1 (en) | 1995-08-24 | 1997-03-06 | Interventional Innovations Corporation | X-ray catheter |
US6377846B1 (en) | 1997-02-21 | 2002-04-23 | Medtronic Ave, Inc. | Device for delivering localized x-ray radiation and method of manufacture |
US5706819A (en) * | 1995-10-10 | 1998-01-13 | Advanced Technology Laboratories, Inc. | Ultrasonic diagnostic imaging with harmonic contrast agents |
JPH09103431A (en) | 1995-10-13 | 1997-04-22 | Olympus Optical Co Ltd | Ultrasonic diagnostic device |
US7226417B1 (en) | 1995-12-26 | 2007-06-05 | Volcano Corporation | High resolution intravascular ultrasound transducer assembly having a flexible substrate |
US5724974A (en) * | 1996-03-22 | 1998-03-10 | Acuson Corporation | Two-dimensional ultrasound display system |
US5916170A (en) * | 1996-09-24 | 1999-06-29 | The Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for curvature detection in vessels from phase shifts of a plurality of input electrical signals |
US5824879A (en) * | 1996-10-04 | 1998-10-20 | Rosemount Inc. | Method of calibrating an ultrasonic flow meter |
US5752518A (en) * | 1996-10-28 | 1998-05-19 | Ep Technologies, Inc. | Systems and methods for visualizing interior regions of the body |
DE69735927T2 (en) * | 1996-11-26 | 2007-05-24 | ATL Ultrasound, Inc., Bothell | Diagnostic imaging by means of ultrasound of different transmission and reception frequencies |
US5857974A (en) | 1997-01-08 | 1999-01-12 | Endosonics Corporation | High resolution intravascular ultrasound transducer assembly having a flexible substrate |
US6464645B1 (en) | 1997-01-31 | 2002-10-15 | Acuson Corporation | Ultrasonic transducer assembly controller |
US5954654A (en) * | 1997-01-31 | 1999-09-21 | Acuson Corporation | Steering mechanism and steering line for a catheter-mounted ultrasonic transducer |
US5938616A (en) | 1997-01-31 | 1999-08-17 | Acuson Corporation | Steering mechanism and steering line for a catheter-mounted ultrasonic transducer |
EP1017987B1 (en) | 1997-01-31 | 2005-06-15 | The Horticulture And Food Research Institute Of New Zealand Limited | Optical apparatus and method |
EP0860181B1 (en) * | 1997-02-21 | 2004-04-28 | Medtronic Ave, Inc. | X-ray device having a dilatation structure for delivering localized radiation to an interior of a body |
US6309339B1 (en) | 1997-03-28 | 2001-10-30 | Endosonics Corporation | Intravascular radiation delivery device |
US5800358A (en) * | 1997-03-31 | 1998-09-01 | Hewlett Packard Company | Undersampled omnidirectional ultrasonic flow detector |
US5921931A (en) | 1997-04-08 | 1999-07-13 | Endosonics Corporation | Method and apparatus for creating a color blood flow image based upon ultrasonic echo signals received by an intravascular ultrasound imaging probe |
US6723063B1 (en) | 1998-06-29 | 2004-04-20 | Ekos Corporation | Sheath for use with an ultrasound element |
US6676626B1 (en) * | 1998-05-01 | 2004-01-13 | Ekos Corporation | Ultrasound assembly with increased efficacy |
US6582392B1 (en) * | 1998-05-01 | 2003-06-24 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6001069A (en) * | 1997-05-01 | 1999-12-14 | Ekos Corporation | Ultrasound catheter for providing a therapeutic effect to a vessel of a body |
US6095976A (en) * | 1997-06-19 | 2000-08-01 | Medinol Ltd. | Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen |
JP3857788B2 (en) * | 1997-09-01 | 2006-12-13 | テルモ株式会社 | Cardiovascular information measurement system |
US6049159A (en) * | 1997-10-06 | 2000-04-11 | Albatros Technologies, Inc. | Wideband acoustic transducer |
US6050943A (en) | 1997-10-14 | 2000-04-18 | Guided Therapy Systems, Inc. | Imaging, therapy, and temperature monitoring ultrasonic system |
US5924993A (en) * | 1997-10-15 | 1999-07-20 | Advanced Coronary Intervention, Inc. | Intravascular ultrasound mixed signal multiplexer/pre-amplifier asic |
US6126607A (en) * | 1997-11-03 | 2000-10-03 | Barzell-Whitmore Maroon Bells, Inc. | Ultrasound interface control system |
US5876344A (en) * | 1997-12-09 | 1999-03-02 | Endosonics Corporation | Modular imaging/treatment catheter assembly and method |
US6149867A (en) | 1997-12-31 | 2000-11-21 | Xy, Inc. | Sheath fluids and collection systems for sex-specific cytometer sorting of sperm |
US6108402A (en) * | 1998-01-16 | 2000-08-22 | Medtronic Ave, Inc. | Diamond vacuum housing for miniature x-ray device |
ATE308923T1 (en) | 1998-03-05 | 2005-11-15 | Gil M Vardi | OPTICAL-ACUSTIC IMAGING DEVICE |
US6069938A (en) * | 1998-03-06 | 2000-05-30 | Chornenky; Victor Ivan | Method and x-ray device using pulse high voltage source |
US6074348A (en) * | 1998-03-31 | 2000-06-13 | General Electric Company | Method and apparatus for enhanced flow imaging in B-mode ultrasound |
US6295680B1 (en) * | 1998-07-05 | 2001-10-02 | The Regents Of The University Of Michigan | Method for detecting early atherosclerosis and vascular damage using radioactive tracers and intravascular radiation detection devices |
ES2296398T3 (en) | 1998-07-30 | 2008-04-16 | Xy, Inc. | NON-SURGICAL ARTIFICIAL EQUINE INSEMINATION SYSTEM. |
US6036650A (en) * | 1998-09-15 | 2000-03-14 | Endosonics Corporation | Ultrasonic imaging system and method with ringdown reduction |
US6312402B1 (en) | 1998-09-24 | 2001-11-06 | Ekos Corporation | Ultrasound catheter for improving blood flow to the heart |
US6126599A (en) * | 1998-10-01 | 2000-10-03 | Atl Ultrasound, Inc. | Ultrasonic diagnostic imaging system with real time spatial compounding processor |
US6102862A (en) | 1998-10-02 | 2000-08-15 | Scimed Life Systems, Inc. | Adaptive cancellation of ring-down artifact in IVUS imaging |
DE19922056A1 (en) | 1999-05-14 | 2000-11-23 | Heinz Lehr | Medical instrument for internal examinations using ultrasonic or electromagnetic transducers, has drive connected to transducer at remote end of instrument so that it can be rotated |
US6645152B1 (en) | 1999-06-02 | 2003-11-11 | Matthew T. Jung | Apparatus for the intravascular ultrasound-guided placement of a vena cava filter |
US6440077B1 (en) | 1999-06-02 | 2002-08-27 | Matthew T. Jung | Apparatus and method for the intravascular ultrasound-guided placement of a vena cava filter |
JP4223629B2 (en) | 1999-06-16 | 2009-02-12 | 日本特殊陶業株式会社 | Transceiver for ultrasonic probe, method for manufacturing the same, and ultrasonic probe using the transducer |
US6685645B1 (en) | 2001-10-20 | 2004-02-03 | Zonare Medical Systems, Inc. | Broad-beam imaging |
US6371915B1 (en) | 1999-11-02 | 2002-04-16 | Scimed Life Systems, Inc. | One-twelfth wavelength impedence matching transformer |
US7208265B1 (en) | 1999-11-24 | 2007-04-24 | Xy, Inc. | Method of cryopreserving selected sperm cells |
US6457365B1 (en) * | 2000-02-09 | 2002-10-01 | Endosonics Corporation | Method and apparatus for ultrasonic imaging |
CA2332158C (en) * | 2000-03-07 | 2004-09-14 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic probe |
WO2001068173A2 (en) | 2000-03-15 | 2001-09-20 | Boston Scientific Limited | Ablation and imaging catheter |
ITSV20000018A1 (en) * | 2000-05-05 | 2001-11-05 | Esaote Spa | METHOD AND APPARATUS FOR DETECTION OF ECHOGRAPHIC IMAGES, IN PARTICULAR OF MOVING BODIES OF FLOW OR SIMILAR FABRICS |
US6609430B1 (en) * | 2000-05-09 | 2003-08-26 | Shrinivas G. Joshi | Low profile transducer for flow meters |
EP1298991B8 (en) | 2000-05-09 | 2016-01-13 | Xy, Llc | Method for isolating x-chromosome and y-chromosome bearing populations of spermatozoa |
AU7046601A (en) * | 2000-05-30 | 2001-12-17 | Patrik Rogalla | Method for the combined representation of morphology and dynamics in split-imageand volume-image methods |
GB2365127A (en) * | 2000-07-20 | 2002-02-13 | Jomed Imaging Ltd | Catheter |
AU2001286424A1 (en) * | 2000-08-16 | 2002-02-25 | Cook Vascular Incorporated | Doppler probe with shapeable portion |
US6416477B1 (en) | 2000-08-22 | 2002-07-09 | Koninklijke Philips Electronics N.V. | Ultrasonic diagnostic systems with spatial compounded panoramic imaging |
JP4798826B2 (en) * | 2000-08-25 | 2011-10-19 | 古野電気株式会社 | Beam angle control method and control apparatus for cylindrical transducer |
US7713687B2 (en) | 2000-11-29 | 2010-05-11 | Xy, Inc. | System to separate frozen-thawed spermatozoa into x-chromosome bearing and y-chromosome bearing populations |
BRPI0115791B1 (en) | 2000-11-29 | 2020-05-05 | Colorado State Univ | system for in vitro fertilization with separate spermatozoa in populations with x chromosome and y chromosome |
US6641540B2 (en) | 2000-12-01 | 2003-11-04 | The Cleveland Clinic Foundation | Miniature ultrasound transducer |
GB0030449D0 (en) * | 2000-12-13 | 2001-01-24 | Deltex Guernsey Ltd | Improvements in or relating to doppler haemodynamic monitors |
US7914453B2 (en) | 2000-12-28 | 2011-03-29 | Ardent Sound, Inc. | Visual imaging system for ultrasonic probe |
US20030060731A1 (en) * | 2001-01-26 | 2003-03-27 | Fleischhacker Mark G. | Non-metallic guide wire |
US6589182B1 (en) | 2001-02-12 | 2003-07-08 | Acuson Corporation | Medical diagnostic ultrasound catheter with first and second tip portions |
US6936009B2 (en) * | 2001-02-27 | 2005-08-30 | General Electric Company | Matching layer having gradient in impedance for ultrasound transducers |
ATE382444T1 (en) | 2001-03-28 | 2008-01-15 | Cybersonics Inc | PROBE FOR ULTRASONIC TRANSDUCERS |
US7387612B2 (en) * | 2001-03-28 | 2008-06-17 | Cybersonics, Inc. | Floating probe for ultrasonic transducers |
US6866631B2 (en) * | 2001-05-31 | 2005-03-15 | Zonare Medical Systems, Inc. | System for phase inversion ultrasonic imaging |
US6728571B1 (en) * | 2001-07-16 | 2004-04-27 | Scimed Life Systems, Inc. | Electronically scanned optical coherence tomography with frequency modulated signals |
US6795732B2 (en) * | 2001-10-30 | 2004-09-21 | Medtronic, Inc. | Implantable medical device employing sonomicrometer output signals for detection and measurement of cardiac mechanical function |
US20040019318A1 (en) * | 2001-11-07 | 2004-01-29 | Wilson Richard R. | Ultrasound assembly for use with a catheter |
EP1453425B1 (en) | 2001-12-03 | 2006-03-08 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
JP4167178B2 (en) * | 2001-12-14 | 2008-10-15 | イコス コーポレイション | Determination of resumption of blood flow |
US20030125959A1 (en) * | 2001-12-31 | 2003-07-03 | Palmquist Robert D. | Translation device with planar microphone array |
US20030195415A1 (en) * | 2002-02-14 | 2003-10-16 | Iddan Gavriel J. | Device, system and method for accoustic in-vivo measuring |
US8226629B1 (en) | 2002-04-01 | 2012-07-24 | Ekos Corporation | Ultrasonic catheter power control |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US8486618B2 (en) | 2002-08-01 | 2013-07-16 | Xy, Llc | Heterogeneous inseminate system |
DK2283724T3 (en) | 2002-08-01 | 2016-04-04 | Xy Llc | Heterospermic insemination to assess sperm function |
CN100570360C (en) | 2002-08-15 | 2009-12-16 | Xy公司 | A kind of flow cytometer and flow cytometry method |
US6712767B2 (en) | 2002-08-29 | 2004-03-30 | Volcano Therapeutics, Inc. | Ultrasonic imaging devices and methods of fabrication |
US7169548B2 (en) | 2002-09-13 | 2007-01-30 | Xy, Inc. | Sperm cell processing and preservation systems |
US20040068190A1 (en) * | 2002-10-04 | 2004-04-08 | Cespedes Eduardo Ignacio | Imaging catheter with indicia and methods of use |
US7245789B2 (en) * | 2002-10-07 | 2007-07-17 | Vascular Imaging Corporation | Systems and methods for minimally-invasive optical-acoustic imaging |
US6921371B2 (en) * | 2002-10-14 | 2005-07-26 | Ekos Corporation | Ultrasound radiating members for catheter |
JP2004230033A (en) * | 2003-01-31 | 2004-08-19 | Toshiba Corp | Ultrasonic search unit repolarizing apparatus, ultrasonic probe, and ultrasonograph |
US7314448B2 (en) * | 2003-03-28 | 2008-01-01 | Scimed Life Systems, Inc. | Imaging transducer assembly |
MXPA05010492A (en) | 2003-03-28 | 2006-05-25 | Monsanto Technology Llc | Apparatus, methods and processes for sorting particles and for providing sex-sorted animal sperm. |
JP4624921B2 (en) * | 2003-04-01 | 2011-02-02 | オリンパス株式会社 | Ultrasonic transducer |
AU2004242121B2 (en) | 2003-05-15 | 2010-06-24 | Xy, Llc. | Efficient haploid cell sorting for flow cytometer systems |
US8282561B2 (en) * | 2003-05-23 | 2012-10-09 | Arizona Board Of Regents | Piezo micro-markers for ultrasound medical diagnostics |
US8335555B2 (en) | 2003-05-30 | 2012-12-18 | Lawrence Livermore National Security, Llc | Radial reflection diffraction tomography |
US20040254471A1 (en) * | 2003-06-13 | 2004-12-16 | Andreas Hadjicostis | Miniature ultrasonic phased array for intracardiac and intracavity applications |
US6958540B2 (en) * | 2003-06-23 | 2005-10-25 | International Business Machines Corporation | Dual damascene interconnect structures having different materials for line and via conductors |
US7670335B2 (en) * | 2003-07-21 | 2010-03-02 | Biosense Webster, Inc. | Ablation device with spiral array ultrasound transducer |
US8147486B2 (en) * | 2003-09-22 | 2012-04-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical device with flexible printed circuit |
US7234225B2 (en) * | 2003-09-22 | 2007-06-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method for manufacturing medical device having embedded traces and formed electrodes |
US7229437B2 (en) | 2003-09-22 | 2007-06-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical device having integral traces and formed electrodes |
US20050251127A1 (en) * | 2003-10-15 | 2005-11-10 | Jared Brosch | Miniature ultrasonic transducer with focusing lens for intracardiac and intracavity applications |
WO2005037104A1 (en) * | 2003-10-17 | 2005-04-28 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic doppler blood flow measuring device |
US7951081B2 (en) * | 2003-10-20 | 2011-05-31 | Boston Scientific Scimed, Inc. | Transducer/sensor assembly |
US8206304B1 (en) * | 2003-12-16 | 2012-06-26 | Vascular Technology Incorporated | Doppler transceiver and probe for use in minimally invasive procedures |
US7431698B2 (en) * | 2004-01-13 | 2008-10-07 | Ge Medical Systems Global Technology Company, Llc | Apparatus and method for controlling an ultrasound probe |
US20080051660A1 (en) * | 2004-01-16 | 2008-02-28 | The University Of Houston System | Methods and apparatuses for medical imaging |
JP2007525263A (en) | 2004-01-29 | 2007-09-06 | イコス コーポレイション | Method and apparatus for detecting blood vessel state by catheter |
WO2005095590A2 (en) | 2004-03-29 | 2005-10-13 | Monsanto Technology Llc | Sperm suspensions for sorting into x or y chromosome-bearing enriched populations |
US20070222339A1 (en) * | 2004-04-20 | 2007-09-27 | Mark Lukacs | Arrayed ultrasonic transducer |
MX2007000888A (en) | 2004-07-22 | 2007-04-02 | Monsanto Technology Llc | Process for enriching a population of sperm cells. |
JP4621452B2 (en) * | 2004-08-20 | 2011-01-26 | 富士フイルム株式会社 | Ultrasound endoscope and ultrasound endoscope apparatus |
US7672706B2 (en) * | 2004-08-23 | 2010-03-02 | Boston Scientific Scimed, Inc. | Systems and methods for measuring pulse wave velocity with an intravascular device |
US9011336B2 (en) | 2004-09-16 | 2015-04-21 | Guided Therapy Systems, Llc | Method and system for combined energy therapy profile |
US7824348B2 (en) | 2004-09-16 | 2010-11-02 | Guided Therapy Systems, L.L.C. | System and method for variable depth ultrasound treatment |
US7393325B2 (en) | 2004-09-16 | 2008-07-01 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound treatment with a multi-directional transducer |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US8444562B2 (en) | 2004-10-06 | 2013-05-21 | Guided Therapy Systems, Llc | System and method for treating muscle, tendon, ligament and cartilage tissue |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US8133180B2 (en) | 2004-10-06 | 2012-03-13 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US7758524B2 (en) | 2004-10-06 | 2010-07-20 | Guided Therapy Systems, L.L.C. | Method and system for ultra-high frequency ultrasound treatment |
US20060111744A1 (en) | 2004-10-13 | 2006-05-25 | Guided Therapy Systems, L.L.C. | Method and system for treatment of sweat glands |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US8690779B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Noninvasive aesthetic treatment for tightening tissue |
EP2279698A3 (en) | 2004-10-06 | 2014-02-19 | Guided Therapy Systems, L.L.C. | Method and system for non-invasive cosmetic enhancement of stretch marks |
ES2630221T3 (en) | 2004-10-06 | 2017-08-18 | Guided Therapy Systems, L.L.C. | Procedure and system for the treatment of tissues by ultrasound |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US20060184070A1 (en) * | 2004-11-12 | 2006-08-17 | Hansmann Douglas R | External ultrasonic therapy |
US20060173387A1 (en) * | 2004-12-10 | 2006-08-03 | Douglas Hansmann | Externally enhanced ultrasonic therapy |
EP2712553A3 (en) | 2005-01-11 | 2014-09-17 | Volcano Corporation | Vascular image co-registration |
EP1863377A4 (en) * | 2005-04-01 | 2010-11-24 | Visualsonics Inc | System and method for 3-d visualization of vascular structures using ultrasound |
WO2006116480A2 (en) | 2005-04-25 | 2006-11-02 | Guided Therapy Systems, L.L.C. | Method and system for enhancing computer peripheral saftey |
US20070016056A1 (en) * | 2005-07-15 | 2007-01-18 | Scott Kerwin | Methods and systems for providing control components in an ultrasound system |
US8446071B2 (en) * | 2005-07-20 | 2013-05-21 | Ust, Inc. | Thermally enhanced ultrasound transducer system |
CN100445488C (en) * | 2005-08-01 | 2008-12-24 | 邱则有 | Hollow member for cast-in-situ concrete moulding |
US8784336B2 (en) | 2005-08-24 | 2014-07-22 | C. R. Bard, Inc. | Stylet apparatuses and methods of manufacture |
CA2624608C (en) * | 2005-11-10 | 2016-06-07 | Bracco Research Sa | Detection of immobilized contrast agent in medical imaging applications based on flow dynamics analysis |
US7599588B2 (en) * | 2005-11-22 | 2009-10-06 | Vascular Imaging Corporation | Optical imaging probe connector |
US8764664B2 (en) | 2005-11-28 | 2014-07-01 | Vizyontech Imaging, Inc. | Methods and apparatus for conformable medical data acquisition pad and configurable imaging system |
US20070167824A1 (en) * | 2005-11-30 | 2007-07-19 | Warren Lee | Method of manufacture of catheter tips, including mechanically scanning ultrasound probe catheter tip, and apparatus made by the method |
US20070167826A1 (en) * | 2005-11-30 | 2007-07-19 | Warren Lee | Apparatuses for thermal management of actuated probes, such as catheter distal ends |
US20070167821A1 (en) * | 2005-11-30 | 2007-07-19 | Warren Lee | Rotatable transducer array for volumetric ultrasound |
US20070167825A1 (en) * | 2005-11-30 | 2007-07-19 | Warren Lee | Apparatus for catheter tips, including mechanically scanning ultrasound probe catheter tip |
US7867169B2 (en) * | 2005-12-02 | 2011-01-11 | Abbott Cardiovascular Systems Inc. | Echogenic needle catheter configured to produce an improved ultrasound image |
KR100875413B1 (en) * | 2005-12-06 | 2008-12-23 | 주식회사 메디슨 | Image Processing System and Method for Adjusting Gain of Color Flow Image |
US7385089B2 (en) * | 2005-12-23 | 2008-06-10 | 3M Innovative Properties Company | Fluorochemical ketone compounds and processes for their use |
US7750536B2 (en) | 2006-03-02 | 2010-07-06 | Visualsonics Inc. | High frequency ultrasonic transducer and matching layer comprising cyanoacrylate |
US20070265560A1 (en) | 2006-04-24 | 2007-11-15 | Ekos Corporation | Ultrasound Therapy System |
US7794402B2 (en) * | 2006-05-15 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Echogenic needle catheter configured to produce an improved ultrasound image |
US10018712B2 (en) * | 2006-05-26 | 2018-07-10 | Queen's University At Kingston | Method for improved ultrasonic detection |
US9867530B2 (en) | 2006-08-14 | 2018-01-16 | Volcano Corporation | Telescopic side port catheter device with imaging system and method for accessing side branch occlusions |
US9566454B2 (en) | 2006-09-18 | 2017-02-14 | Guided Therapy Systems, Llc | Method and sysem for non-ablative acne treatment and prevention |
WO2008038817A1 (en) * | 2006-09-25 | 2008-04-03 | National University Corporation Tokyo University Of Agriculture And Technology | Ultrasonic operation device and microtube inside system |
US20080091228A1 (en) * | 2006-10-06 | 2008-04-17 | Vascular Technology Inc. | Doppler enabled soft tissue dissector |
US7794407B2 (en) | 2006-10-23 | 2010-09-14 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US8388546B2 (en) | 2006-10-23 | 2013-03-05 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US8192363B2 (en) | 2006-10-27 | 2012-06-05 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US8077939B2 (en) * | 2006-11-22 | 2011-12-13 | General Electric Company | Methods and systems for enhanced plaque visualization |
US10182833B2 (en) | 2007-01-08 | 2019-01-22 | Ekos Corporation | Power parameters for ultrasonic catheter |
ES2538110T3 (en) | 2007-01-08 | 2015-06-17 | Ekos Corporation | Power parameters for ultrasonic catheter |
US20080221448A1 (en) * | 2007-03-07 | 2008-09-11 | Khuri-Yakub Butrus T | Image-guided delivery of therapeutic tools duing minimally invasive surgeries and interventions |
US8103125B2 (en) * | 2007-03-13 | 2012-01-24 | International Business Machines Corporation | Generating an amalgamated image including a static image and a dynamic image |
US20150174388A1 (en) | 2007-05-07 | 2015-06-25 | Guided Therapy Systems, Llc | Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue |
EP2152351B1 (en) | 2007-05-07 | 2016-09-21 | Guided Therapy Systems, L.L.C. | Methods and systems for modulating medicants using acoustic energy |
PL2170181T3 (en) * | 2007-06-22 | 2014-08-29 | Ekos Corp | Method and apparatus for treatment of intracranial hemorrhages |
US9596993B2 (en) | 2007-07-12 | 2017-03-21 | Volcano Corporation | Automatic calibration systems and methods of use |
US10219780B2 (en) | 2007-07-12 | 2019-03-05 | Volcano Corporation | OCT-IVUS catheter for concurrent luminal imaging |
US9622706B2 (en) | 2007-07-12 | 2017-04-18 | Volcano Corporation | Catheter for in vivo imaging |
US8702609B2 (en) * | 2007-07-27 | 2014-04-22 | Meridian Cardiovascular Systems, Inc. | Image-guided intravascular therapy catheters |
US9456766B2 (en) | 2007-11-26 | 2016-10-04 | C. R. Bard, Inc. | Apparatus for use with needle insertion guidance system |
US9521961B2 (en) | 2007-11-26 | 2016-12-20 | C. R. Bard, Inc. | Systems and methods for guiding a medical instrument |
US10449330B2 (en) | 2007-11-26 | 2019-10-22 | C. R. Bard, Inc. | Magnetic element-equipped needle assemblies |
US10524691B2 (en) | 2007-11-26 | 2020-01-07 | C. R. Bard, Inc. | Needle assembly including an aligned magnetic element |
EP2219526B1 (en) | 2007-11-26 | 2014-03-05 | C.R.Bard, Inc. | Integrated system for intravascular placement of a catheter |
US10751509B2 (en) | 2007-11-26 | 2020-08-25 | C. R. Bard, Inc. | Iconic representations for guidance of an indwelling medical device |
US8781555B2 (en) | 2007-11-26 | 2014-07-15 | C. R. Bard, Inc. | System for placement of a catheter including a signal-generating stylet |
US9649048B2 (en) | 2007-11-26 | 2017-05-16 | C. R. Bard, Inc. | Systems and methods for breaching a sterile field for intravascular placement of a catheter |
US8849382B2 (en) | 2007-11-26 | 2014-09-30 | C. R. Bard, Inc. | Apparatus and display methods relating to intravascular placement of a catheter |
US20100312117A1 (en) * | 2007-11-28 | 2010-12-09 | Koninklijke Philips Electronics N.V. | Ultrasonic visualization of percutaneous needles, intravascular catheters and other invasive devices |
WO2009079415A1 (en) * | 2007-12-14 | 2009-06-25 | Ekos Corporation | Ultrasound pulse shaping |
US20090183350A1 (en) * | 2008-01-17 | 2009-07-23 | Wetsco, Inc. | Method for Ultrasound Probe Repair |
US8478382B2 (en) | 2008-02-11 | 2013-07-02 | C. R. Bard, Inc. | Systems and methods for positioning a catheter |
US10368838B2 (en) | 2008-03-31 | 2019-08-06 | Intuitive Surgical Operations, Inc. | Surgical tools for laser marking and laser cutting |
US7969866B2 (en) * | 2008-03-31 | 2011-06-28 | Telefonaktiebolaget L M Ericsson (Publ) | Hierarchical virtual private LAN service hub connectivity failure recovery |
KR102087909B1 (en) | 2008-06-06 | 2020-03-12 | 얼테라, 인크 | A system for cosmetic treatment |
US8197413B2 (en) * | 2008-06-06 | 2012-06-12 | Boston Scientific Scimed, Inc. | Transducers, devices and systems containing the transducers, and methods of manufacture |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
EP2285297A2 (en) * | 2008-06-12 | 2011-02-23 | Koninklijke Philips Electronics N.V. | Biopsy device with acoustic element |
CN101606848A (en) * | 2008-06-20 | 2009-12-23 | Ge医疗系统环球技术有限公司 | Data entry device and supersonic imaging device |
WO2010022370A1 (en) | 2008-08-22 | 2010-02-25 | C.R. Bard, Inc. | Catheter assembly including ecg sensor and magnetic assemblies |
WO2010039950A1 (en) * | 2008-10-02 | 2010-04-08 | Eberle Michael J | Optical ultrasound receiver |
US20100114184A1 (en) * | 2008-10-07 | 2010-05-06 | Brainsgate Ltd. | Flexible tools for preparing bony canals |
US8437833B2 (en) | 2008-10-07 | 2013-05-07 | Bard Access Systems, Inc. | Percutaneous magnetic gastrostomy |
US20100171395A1 (en) * | 2008-10-24 | 2010-07-08 | University Of Southern California | Curved ultrasonic array transducers |
WO2010051401A1 (en) | 2008-10-31 | 2010-05-06 | Vascular Imaging Corporation | Optical imaging probe connector |
WO2010075547A2 (en) | 2008-12-24 | 2010-07-01 | Guided Therapy Systems, Llc | Methods and systems for fat reduction and/or cellulite treatment |
US20100168572A1 (en) * | 2008-12-30 | 2010-07-01 | Sliwa John W | Apparatus and Methods for Acoustic Monitoring of Ablation Procedures |
US9366938B1 (en) * | 2009-02-17 | 2016-06-14 | Vescent Photonics, Inc. | Electro-optic beam deflector device |
US20100305442A1 (en) * | 2009-05-29 | 2010-12-02 | Boston Scientific Scimed, Inc. | Systems and methods for implementing a data management system for catheter-based imaging systems |
US9339206B2 (en) | 2009-06-12 | 2016-05-17 | Bard Access Systems, Inc. | Adaptor for endovascular electrocardiography |
US9532724B2 (en) | 2009-06-12 | 2017-01-03 | Bard Access Systems, Inc. | Apparatus and method for catheter navigation using endovascular energy mapping |
US9445734B2 (en) | 2009-06-12 | 2016-09-20 | Bard Access Systems, Inc. | Devices and methods for endovascular electrography |
WO2011003031A1 (en) | 2009-07-03 | 2011-01-06 | Ekos Corporation | Power parameters for ultrasonic catheter |
CN102665541B (en) | 2009-09-29 | 2016-01-13 | C·R·巴德股份有限公司 | The probe used together with the equipment that the Ink vessel transfusing for conduit is placed |
US11103213B2 (en) | 2009-10-08 | 2021-08-31 | C. R. Bard, Inc. | Spacers for use with an ultrasound probe |
WO2011046903A2 (en) * | 2009-10-12 | 2011-04-21 | Moore Thomas C | Intravascular ultrasound system for co-registered imaging |
US8715186B2 (en) | 2009-11-24 | 2014-05-06 | Guided Therapy Systems, Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
WO2011097312A1 (en) | 2010-02-02 | 2011-08-11 | C.R. Bard, Inc. | Apparatus and method for catheter navigation and tip location |
FR2958434B1 (en) * | 2010-04-02 | 2012-05-11 | Gen Electric | METHOD FOR PROCESSING RADIOLOGICAL IMAGES |
CA2800813C (en) | 2010-05-28 | 2019-10-29 | C.R. Bard, Inc. | Apparatus for use with needle insertion guidance system |
US9504446B2 (en) | 2010-08-02 | 2016-11-29 | Guided Therapy Systems, Llc | Systems and methods for coupling an ultrasound source to tissue |
US10183182B2 (en) | 2010-08-02 | 2019-01-22 | Guided Therapy Systems, Llc | Methods and systems for treating plantar fascia |
EP2603145A2 (en) | 2010-08-09 | 2013-06-19 | C.R. Bard, Inc. | Support and cover structures for an ultrasound probe head |
KR101856267B1 (en) | 2010-08-20 | 2018-05-09 | 씨. 알. 바드, 인크. | Reconfirmation of ecg-assisted catheter tip placement |
JP6291253B2 (en) | 2010-08-27 | 2018-03-14 | イーコス・コーポレイシヨン | Ultrasound catheter |
CN103189009B (en) | 2010-10-29 | 2016-09-07 | C·R·巴德股份有限公司 | The bio-impedance auxiliary of Medical Devices is placed |
US8857438B2 (en) | 2010-11-08 | 2014-10-14 | Ulthera, Inc. | Devices and methods for acoustic shielding |
WO2012064413A1 (en) * | 2010-11-12 | 2012-05-18 | Boston Scientific Scimed, Inc. | Systems and methods for making and using rotational transducers for concurrently imaging blood flow and tissue |
US11141063B2 (en) | 2010-12-23 | 2021-10-12 | Philips Image Guided Therapy Corporation | Integrated system architectures and methods of use |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
US11458290B2 (en) | 2011-05-11 | 2022-10-04 | Ekos Corporation | Ultrasound system |
CN103959043B (en) * | 2011-05-31 | 2016-11-02 | 光学实验室成像公司 | Multi-mode imaging system, equipment and method |
KR20140051284A (en) | 2011-07-06 | 2014-04-30 | 씨. 알. 바드, 인크. | Needle length determination and calibration for insertion guidance system |
EP2729215A4 (en) | 2011-07-10 | 2015-04-15 | Guided Therapy Systems Llc | Methods and systems for ultrasound treatment |
KR20140047709A (en) | 2011-07-11 | 2014-04-22 | 가이디드 테라피 시스템스, 엘.엘.씨. | Systems and methods for coupling an ultrasound source to tissue |
USD724745S1 (en) | 2011-08-09 | 2015-03-17 | C. R. Bard, Inc. | Cap for an ultrasound probe |
USD699359S1 (en) | 2011-08-09 | 2014-02-11 | C. R. Bard, Inc. | Ultrasound probe head |
US9295447B2 (en) | 2011-08-17 | 2016-03-29 | Volcano Corporation | Systems and methods for identifying vascular borders |
WO2013033592A1 (en) | 2011-08-31 | 2013-03-07 | Volcano Corporation | Optical-electrical rotary joint and methods of use |
US9211107B2 (en) | 2011-11-07 | 2015-12-15 | C. R. Bard, Inc. | Ruggedized ultrasound hydrogel insert |
EP2787894B1 (en) | 2011-12-08 | 2020-11-11 | Volcano Corporation | Imaging device for visualizing an occluded vessel |
US9263663B2 (en) | 2012-04-13 | 2016-02-16 | Ardent Sound, Inc. | Method of making thick film transducer arrays |
EP2846700A4 (en) * | 2012-05-11 | 2016-01-20 | Volcano Corp | Device and system for imaging and blood flow velocity measurement |
CA2911446C (en) | 2012-05-25 | 2020-10-13 | Vascular Imaging Corporation | Optical fiber pressure sensor |
CN104837413B (en) | 2012-06-15 | 2018-09-11 | C·R·巴德股份有限公司 | Detect the device and method of removable cap on ultrasonic detector |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
EP2903531B1 (en) | 2012-10-04 | 2022-05-11 | Phyzhon Health Inc. | Polarization scrambling for intra-body fiber optic sensor |
US9307926B2 (en) | 2012-10-05 | 2016-04-12 | Volcano Corporation | Automatic stent detection |
US10568586B2 (en) | 2012-10-05 | 2020-02-25 | Volcano Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US10070827B2 (en) | 2012-10-05 | 2018-09-11 | Volcano Corporation | Automatic image playback |
US9367965B2 (en) | 2012-10-05 | 2016-06-14 | Volcano Corporation | Systems and methods for generating images of tissue |
US9292918B2 (en) | 2012-10-05 | 2016-03-22 | Volcano Corporation | Methods and systems for transforming luminal images |
US9324141B2 (en) | 2012-10-05 | 2016-04-26 | Volcano Corporation | Removal of A-scan streaking artifact |
JP2015532536A (en) | 2012-10-05 | 2015-11-09 | デイビッド ウェルフォード, | System and method for amplifying light |
US9858668B2 (en) | 2012-10-05 | 2018-01-02 | Volcano Corporation | Guidewire artifact removal in images |
US11272845B2 (en) | 2012-10-05 | 2022-03-15 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
US9286673B2 (en) | 2012-10-05 | 2016-03-15 | Volcano Corporation | Systems for correcting distortions in a medical image and methods of use thereof |
US9840734B2 (en) | 2012-10-22 | 2017-12-12 | Raindance Technologies, Inc. | Methods for analyzing DNA |
CA2894403A1 (en) | 2012-12-13 | 2014-06-19 | Volcano Corporation | Devices, systems, and methods for targeted cannulation |
CA2895502A1 (en) | 2012-12-20 | 2014-06-26 | Jeremy Stigall | Smooth transition catheters |
US10939826B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Aspirating and removing biological material |
WO2014113188A2 (en) | 2012-12-20 | 2014-07-24 | Jeremy Stigall | Locating intravascular images |
WO2014107287A1 (en) | 2012-12-20 | 2014-07-10 | Kemp Nathaniel J | Optical coherence tomography system that is reconfigurable between different imaging modes |
US10942022B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
US11406498B2 (en) | 2012-12-20 | 2022-08-09 | Philips Image Guided Therapy Corporation | Implant delivery system and implants |
WO2014099763A1 (en) | 2012-12-21 | 2014-06-26 | Jason Spencer | System and method for graphical processing of medical data |
CA2896004A1 (en) | 2012-12-21 | 2014-06-26 | Nathaniel J. Kemp | Power-efficient optical buffering using optical switch |
US9615878B2 (en) | 2012-12-21 | 2017-04-11 | Volcano Corporation | Device, system, and method for imaging and tissue characterization of ablated tissue |
WO2014099896A1 (en) | 2012-12-21 | 2014-06-26 | David Welford | Systems and methods for narrowing a wavelength emission of light |
US9612105B2 (en) | 2012-12-21 | 2017-04-04 | Volcano Corporation | Polarization sensitive optical coherence tomography system |
WO2014100606A1 (en) | 2012-12-21 | 2014-06-26 | Meyer, Douglas | Rotational ultrasound imaging catheter with extended catheter body telescope |
EP2934280B1 (en) | 2012-12-21 | 2022-10-19 | Mai, Jerome | Ultrasound imaging with variable line density |
US10058284B2 (en) | 2012-12-21 | 2018-08-28 | Volcano Corporation | Simultaneous imaging, monitoring, and therapy |
US10413317B2 (en) | 2012-12-21 | 2019-09-17 | Volcano Corporation | System and method for catheter steering and operation |
US9486143B2 (en) | 2012-12-21 | 2016-11-08 | Volcano Corporation | Intravascular forward imaging device |
CA2895940A1 (en) | 2012-12-21 | 2014-06-26 | Andrew Hancock | System and method for multipath processing of image signals |
WO2014100579A1 (en) | 2012-12-21 | 2014-06-26 | David Anderson | Functional gain measurement technique and representation |
US10226597B2 (en) | 2013-03-07 | 2019-03-12 | Volcano Corporation | Guidewire with centering mechanism |
CN113705586A (en) | 2013-03-07 | 2021-11-26 | 飞利浦影像引导治疗公司 | Multi-modal segmentation in intravascular images |
CN204017181U (en) | 2013-03-08 | 2014-12-17 | 奥赛拉公司 | Aesthstic imaging and processing system, multifocal processing system and perform the system of aesthetic procedure |
US11154313B2 (en) | 2013-03-12 | 2021-10-26 | The Volcano Corporation | Vibrating guidewire torquer and methods of use |
EP3895604A1 (en) | 2013-03-12 | 2021-10-20 | Collins, Donna | Systems and methods for diagnosing coronary microvascular disease |
US9301687B2 (en) | 2013-03-13 | 2016-04-05 | Volcano Corporation | System and method for OCT depth calibration |
WO2014159819A1 (en) | 2013-03-13 | 2014-10-02 | Jinhyoung Park | System and methods for producing an image from a rotational intravascular ultrasound device |
US11026591B2 (en) | 2013-03-13 | 2021-06-08 | Philips Image Guided Therapy Corporation | Intravascular pressure sensor calibration |
US10219887B2 (en) | 2013-03-14 | 2019-03-05 | Volcano Corporation | Filters with echogenic characteristics |
WO2014159702A2 (en) | 2013-03-14 | 2014-10-02 | Vascular Imaging Corporation | Optical fiber ribbon imaging guidewire and methods |
SG11201506154RA (en) | 2013-03-14 | 2015-09-29 | Ekos Corp | Method and apparatus for drug delivery to a target site |
US9592027B2 (en) | 2013-03-14 | 2017-03-14 | Volcano Corporation | System and method of adventitial tissue characterization |
EP2967606B1 (en) | 2013-03-14 | 2018-05-16 | Volcano Corporation | Filters with echogenic characteristics |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
WO2014146022A2 (en) | 2013-03-15 | 2014-09-18 | Guided Therapy Systems Llc | Ultrasound treatment device and methods of use |
US10327645B2 (en) | 2013-10-04 | 2019-06-25 | Vascular Imaging Corporation | Imaging techniques using an imaging guidewire |
EP2878335B1 (en) | 2013-11-10 | 2018-01-03 | Brainsgate Ltd. | Implant and delivery system for neural stimulator |
CN105744901B (en) | 2013-11-18 | 2020-08-04 | 皇家飞利浦有限公司 | Method and apparatus for thrombus evacuation |
WO2015074032A1 (en) | 2013-11-18 | 2015-05-21 | Jeremy Stigall | Guided thrombus dispersal catheter |
US10537255B2 (en) | 2013-11-21 | 2020-01-21 | Phyzhon Health Inc. | Optical fiber pressure sensor |
JP6689200B2 (en) | 2014-01-10 | 2020-04-28 | ボルケーノ コーポレイション | Detection of endoleaks associated with aneurysm repair |
WO2015106197A2 (en) | 2014-01-10 | 2015-07-16 | Volcano Corporation | Detecting endoleaks associated with aneurysm repair |
US20150297259A1 (en) | 2014-01-14 | 2015-10-22 | Volcano Corporation | Catheter assembly for vascular access site creation |
US10874409B2 (en) | 2014-01-14 | 2020-12-29 | Philips Image Guided Therapy Corporation | Methods and systems for clearing thrombus from a vascular access site |
WO2015108941A1 (en) | 2014-01-14 | 2015-07-23 | Volcano Corporation | Devices and methods for forming vascular access |
US11260160B2 (en) | 2014-01-14 | 2022-03-01 | Philips Image Guided Therapy Corporation | Systems and methods for improving an AV access site |
US20150297097A1 (en) | 2014-01-14 | 2015-10-22 | Volcano Corporation | Vascular access evaluation and treatment |
CN106163386B (en) | 2014-01-14 | 2019-08-06 | 火山公司 | System and method for assessing haemodialysis arteriovenous fistula maturation |
US20150297807A1 (en) | 2014-01-30 | 2015-10-22 | Volcano Corporation | Devices and methods for treating fistulas |
EP3073910B1 (en) | 2014-02-06 | 2020-07-15 | C.R. Bard, Inc. | Systems for guidance and placement of an intravascular device |
CA2942379C (en) | 2014-03-12 | 2021-08-24 | Fujifilm Sonosite, Inc. | High frequency ultrasound transducer having an ultrasonic lens with integral central matching layer |
EP3142564A4 (en) | 2014-04-11 | 2017-07-19 | Koninklijke Philips N.V. | Imaging and treatment device |
US20170028227A1 (en) | 2014-04-18 | 2017-02-02 | Ulthera, Inc. | Band transducer ultrasound therapy |
US9592032B2 (en) * | 2014-04-18 | 2017-03-14 | Butterfly Network, Inc. | Ultrasonic imaging compression methods and apparatus |
US10542954B2 (en) | 2014-07-14 | 2020-01-28 | Volcano Corporation | Devices, systems, and methods for improved accuracy model of vessel anatomy |
CN116172611A (en) | 2014-07-15 | 2023-05-30 | 皇家飞利浦有限公司 | Intrahepatic bypass apparatus and method |
CN107072636A (en) | 2014-08-21 | 2017-08-18 | 皇家飞利浦有限公司 | Apparatus and method for break-through occlusion |
US10092742B2 (en) | 2014-09-22 | 2018-10-09 | Ekos Corporation | Catheter system |
US10258240B1 (en) | 2014-11-24 | 2019-04-16 | Vascular Imaging Corporation | Optical fiber pressure sensor |
US10973584B2 (en) | 2015-01-19 | 2021-04-13 | Bard Access Systems, Inc. | Device and method for vascular access |
US20160240435A1 (en) * | 2015-02-17 | 2016-08-18 | Intel Corporation | Microelectronic interconnect adaptor |
EP3258863B1 (en) | 2015-02-20 | 2020-09-16 | Koninklijke Philips N.V. | Atherectomy apparatus with imaging |
WO2016170446A1 (en) | 2015-04-20 | 2016-10-27 | Koninklijke Philips N.V. | Dual lumen diagnostic catheter |
EP3093043B1 (en) | 2015-05-13 | 2018-11-14 | Brainsgate Ltd. | Implant and delivery system for neural stimulator |
WO2016201136A1 (en) | 2015-06-10 | 2016-12-15 | Ekos Corporation | Ultrasound catheter |
WO2016210325A1 (en) | 2015-06-26 | 2016-12-29 | C.R. Bard, Inc. | Connector interface for ecg-based catheter positioning system |
US11369337B2 (en) | 2015-12-11 | 2022-06-28 | Acist Medical Systems, Inc. | Detection of disturbed blood flow |
RU2720661C2 (en) | 2016-01-18 | 2020-05-12 | Ультера, Инк. | Compact ultrasonic device comprising an annular ultrasonic matrix electrically connected in periphery with a flexible printed circuit board, and a method of assembling such a device |
US11000207B2 (en) | 2016-01-29 | 2021-05-11 | C. R. Bard, Inc. | Multiple coil system for tracking a medical device |
WO2017136746A1 (en) | 2016-02-03 | 2017-08-10 | Cormetrics Llc | Modular sensing guidewire |
US11224407B2 (en) * | 2016-03-30 | 2022-01-18 | Koninklijke Philips N.V. | Conductive support member for intravascular imaging device and associated devices, systems, and methods |
CN109152538A (en) | 2016-05-20 | 2019-01-04 | 皇家飞利浦有限公司 | Device and method for the triage dominated for renal denervation based on intravascular pressure and the measurement of cross section lumen |
IL293809B2 (en) | 2016-08-16 | 2023-09-01 | Ulthera Inc | Systems and methods for cosmetic ultrasound treatment of skin |
US10492760B2 (en) | 2017-06-26 | 2019-12-03 | Andreas Hadjicostis | Image guided intravascular therapy catheter utilizing a thin chip multiplexor |
US10188368B2 (en) | 2017-06-26 | 2019-01-29 | Andreas Hadjicostis | Image guided intravascular therapy catheter utilizing a thin chip multiplexor |
US11109909B1 (en) | 2017-06-26 | 2021-09-07 | Andreas Hadjicostis | Image guided intravascular therapy catheter utilizing a thin ablation electrode |
US20190209132A1 (en) * | 2018-01-11 | 2019-07-11 | Beijing East Whale Image Technology Co., Ltd. | Transesophageal ultrasonic probe |
TW202327520A (en) | 2018-01-26 | 2023-07-16 | 美商奧賽拉公司 | Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions |
WO2019164836A1 (en) | 2018-02-20 | 2019-08-29 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
CN111867480B (en) | 2018-03-15 | 2024-11-05 | 皇家飞利浦有限公司 | Variable intraluminal ultrasound transmit pulse generation and control apparatus, systems, and methods |
EP3814917B1 (en) | 2018-06-27 | 2024-04-03 | Koninklijke Philips N.V. | Dynamic resource reconfiguration for patient interface module (pim) in intraluminal medical ultrasound imaging |
JP7577544B2 (en) | 2018-06-28 | 2024-11-05 | コーニンクレッカ フィリップス エヌ ヴェ | Internal ultrasound-assisted localized delivery of therapeutic agents |
CN112351743A (en) | 2018-06-28 | 2021-02-09 | 皇家飞利浦有限公司 | External targeted delivery of active therapeutic agents |
WO2020070021A1 (en) | 2018-10-04 | 2020-04-09 | Koninklijke Philips N.V. | Fluid flow detection for ultrasound imaging devices, systems, and methods |
US11125867B2 (en) | 2018-10-10 | 2021-09-21 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Adaptive weighting for adaptive ultrasound imaging |
WO2020081373A1 (en) | 2018-10-16 | 2020-04-23 | Bard Access Systems, Inc. | Safety-equipped connection systems and methods thereof for establishing electrical connections |
US11024034B2 (en) | 2019-07-02 | 2021-06-01 | Acist Medical Systems, Inc. | Image segmentation confidence determination |
US20220370037A1 (en) | 2019-10-10 | 2022-11-24 | Koninklijke Philips N.V. | Vascular tissue characterization devices, systems, and methods |
EP4255294A2 (en) | 2020-12-07 | 2023-10-11 | Frond Medical Inc. | Methods and systems for body lumen medical device location |
Citations (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3605723A (en) * | 1969-09-03 | 1971-09-20 | Hoffmann La Roche | Blood pressure monitor |
US3837115A (en) * | 1972-02-22 | 1974-09-24 | Columbia Broadcasting Syst Inc | Noisemaking amusement device |
US3938502A (en) * | 1972-02-22 | 1976-02-17 | Nicolaas Bom | Apparatus with a catheter for examining hollow organs or bodies with the ultrasonic waves |
US4191193A (en) * | 1976-02-29 | 1980-03-04 | Mitsubishi Petrochemical Co. Ltd. | Catheter head-type transducer |
US4211949A (en) * | 1978-11-08 | 1980-07-08 | General Electric Company | Wear plate for piezoelectric ultrasonic transducer arrays |
US4237900A (en) * | 1979-02-14 | 1980-12-09 | Pacesetter Systems, Inc. | Implantable calibration means and calibration method for an implantable body transducer |
US4274423A (en) * | 1977-12-15 | 1981-06-23 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Catheter tip pressure transducer |
US4325257A (en) * | 1980-02-20 | 1982-04-20 | Kino Gordon S | Real-time digital, synthetic-focus, acoustic imaging system |
US4456013A (en) * | 1981-09-08 | 1984-06-26 | Brown University Research Foundation | Catheter |
US4505156A (en) * | 1983-06-21 | 1985-03-19 | Sound Products Company L.P. | Method and apparatus for switching multi-element transducer arrays |
US4523122A (en) * | 1983-03-17 | 1985-06-11 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric ultrasonic transducers having acoustic impedance-matching layers |
US4576177A (en) * | 1983-02-18 | 1986-03-18 | Webster Wilton W Jr | Catheter for removing arteriosclerotic plaque |
US4582067A (en) * | 1983-02-14 | 1986-04-15 | Washington Research Foundation | Method for endoscopic blood flow detection by the use of ultrasonic energy |
US4589419A (en) * | 1984-11-01 | 1986-05-20 | University Of Iowa Research Foundation | Catheter for treating arterial occlusion |
US4637401A (en) * | 1984-11-01 | 1987-01-20 | Johnston G Gilbert | Volumetric flow rate determination in conduits not directly accessible |
US4641657A (en) * | 1985-02-08 | 1987-02-10 | University Patents, Inc. | Probe swivel mechanism |
US4645961A (en) * | 1983-04-05 | 1987-02-24 | The Charles Stark Draper Laboratory, Inc. | Dynamoelectric machine having a large magnetic gap and flexible printed circuit phase winding |
US4665331A (en) * | 1985-02-01 | 1987-05-12 | Kangyo Denkikiki Kabushiki Kaisha | Brushless DC micromotor |
US4665925A (en) * | 1985-09-13 | 1987-05-19 | Pfizer Hospital Products Group, Inc. | Doppler catheter |
US4671293A (en) * | 1985-10-15 | 1987-06-09 | North American Philips Corporation | Biplane phased array for ultrasonic medical imaging |
US4728834A (en) * | 1985-05-28 | 1988-03-01 | Autotech Corporation | Compact digital resolver/encoder assembly with flexible circuit board |
US4771788A (en) * | 1986-07-18 | 1988-09-20 | Pfizer Hospital Products Group, Inc. | Doppler tip wire guide |
US4771782A (en) * | 1986-11-14 | 1988-09-20 | Millar Instruments, Inc. | Method and assembly for introducing multiple catheters into a biological vessel |
US4794931A (en) * | 1986-02-28 | 1989-01-03 | Cardiovascular Imaging Systems, Inc. | Catheter apparatus, system and method for intravascular two-dimensional ultrasonography |
US4817616A (en) * | 1987-10-30 | 1989-04-04 | Wayne State University | Auto switch biplane prostate probe |
US4821731A (en) * | 1986-04-25 | 1989-04-18 | Intra-Sonix, Inc. | Acoustic image system and method |
US4825115A (en) * | 1987-06-12 | 1989-04-25 | Fujitsu Limited | Ultrasonic transducer and method for fabricating thereof |
US4841977A (en) * | 1987-05-26 | 1989-06-27 | Inter Therapy, Inc. | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
US4869263A (en) * | 1988-02-04 | 1989-09-26 | Cardiometrics, Inc. | Device and method for measuring volumetric blood flow in a vessel |
US4917097A (en) * | 1987-10-27 | 1990-04-17 | Endosonics Corporation | Apparatus and method for imaging small cavities |
US4951677A (en) * | 1988-03-21 | 1990-08-28 | Prutech Research And Development Partnership Ii | Acoustic imaging catheter and the like |
US4962329A (en) * | 1987-08-03 | 1990-10-09 | Minebea Co., Ltd. | Spirally layered and aligned printed-circuit armature coil |
US4975607A (en) * | 1988-07-11 | 1990-12-04 | Kabushiki Kaisha Sankyo Seiki Seisakusho | Frequency generator with superimposed generation coil |
US5046503A (en) * | 1989-04-26 | 1991-09-10 | Advanced Cardiovascular Systems, Inc. | Angioplasty autoperfusion catheter flow measurement method and apparatus |
US5081993A (en) * | 1987-11-11 | 1992-01-21 | Circulation Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US5109861A (en) * | 1989-04-28 | 1992-05-05 | Thomas Jefferson University | Intravascular, ultrasonic imaging catheters and methods for making same |
US5117831A (en) * | 1990-03-28 | 1992-06-02 | Cardiovascular Imaging Systems, Inc. | Vascular catheter having tandem imaging and dilatation components |
US5167233A (en) * | 1991-01-07 | 1992-12-01 | Endosonics Corporation | Dilating and imaging apparatus |
US5174296A (en) * | 1990-03-29 | 1992-12-29 | Fujitsu Limited | Ultrasonic probe having a piezoelectrical element |
US5176141A (en) * | 1989-10-16 | 1993-01-05 | Du-Med B.V. | Disposable intra-luminal ultrasonic instrument |
US5183048A (en) * | 1991-06-24 | 1993-02-02 | Endosonics Corporation | Method and apparatus for removing artifacts from an ultrasonically generated image of a small cavity |
US5186177A (en) * | 1991-12-05 | 1993-02-16 | General Electric Company | Method and apparatus for applying synthetic aperture focusing techniques to a catheter based system for high frequency ultrasound imaging of small vessels |
US5199437A (en) * | 1991-09-09 | 1993-04-06 | Sensor Electronics, Inc. | Ultrasonic imager |
US5226847A (en) * | 1989-12-15 | 1993-07-13 | General Electric Company | Apparatus and method for acquiring imaging signals with reduced number of interconnect wires |
US5240003A (en) * | 1989-10-16 | 1993-08-31 | Du-Med B.V. | Ultrasonic instrument with a micro motor having stator coils on a flexible circuit board |
US5243988A (en) * | 1991-03-13 | 1993-09-14 | Scimed Life Systems, Inc. | Intravascular imaging apparatus and methods for use and manufacture |
US5257629A (en) * | 1989-05-26 | 1993-11-02 | Intravascular Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US5273045A (en) * | 1991-05-23 | 1993-12-28 | Fujitsu Limited | Ultrasonic equipment and its catheter-type ultrasonic probe |
US5320104A (en) * | 1991-04-17 | 1994-06-14 | Hewlett-Packard Company | Transesophageal ultrasound probe |
US5329496A (en) * | 1992-10-16 | 1994-07-12 | Duke University | Two-dimensional array ultrasonic transducers |
US5327894A (en) * | 1993-03-01 | 1994-07-12 | General Electric Company | Wall filter using circular convolution for a color flow imaging system |
US5351691A (en) * | 1990-08-02 | 1994-10-04 | B.V. Optische Inductrie "De Oude Delft" | Endoscopic probe |
US5353798A (en) * | 1991-03-13 | 1994-10-11 | Scimed Life Systems, Incorporated | Intravascular imaging apparatus and methods for use and manufacture |
US5368037A (en) * | 1993-02-01 | 1994-11-29 | Endosonics Corporation | Ultrasound catheter |
US5402791A (en) * | 1993-08-06 | 1995-04-04 | Kabushiki Kaisha Toshiba | Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe |
US5467779A (en) * | 1994-07-18 | 1995-11-21 | General Electric Company | Multiplanar probe for ultrasonic imaging |
US5479930A (en) * | 1993-11-19 | 1996-01-02 | Advanced Technology Laboratories, Inc. | Ultrasonic transesophageal probe with articulation control for the imaging and diagnosis of multiple scan planes |
US5488957A (en) * | 1994-11-21 | 1996-02-06 | General Electric Company | System and method for promoting adhesion between lens and matching layer of ultrasonic transducer |
US5603327A (en) * | 1993-02-01 | 1997-02-18 | Endosonics Corporation | Ultrasound catheter probe |
US5793541A (en) * | 1984-05-15 | 1998-08-11 | Societe D'etudes Et De Realisations Electroniques | Controlled and stabilized platform |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1225193A (en) | 1916-10-26 | 1917-05-08 | James W Vittetoe | Cotton-picker. |
DE2308443A1 (en) * | 1972-02-22 | 1973-08-30 | Univ Erasmus | EXAMINATION DEVICE WITH CATHETER FOR EXAMINING A HOLLOW ORGAN WITH THE AID OF ULTRASOUND WAVES AND METHOD OF MAKING THE CATHETER |
JPS54149615A (en) * | 1978-05-17 | 1979-11-24 | Oki Electric Ind Co Ltd | Production of ultrasonic oscillator of curved arrangement type |
DE3021449A1 (en) * | 1980-06-06 | 1981-12-24 | Siemens AG, 1000 Berlin und 8000 München | ULTRASONIC TRANSDUCER ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF |
JPS57121400A (en) * | 1981-01-20 | 1982-07-28 | Matsushita Electric Ind Co Ltd | Ultrasonic probe |
DE3485521D1 (en) * | 1983-12-08 | 1992-04-02 | Toshiba Kawasaki Kk | CURVED LINEAR ULTRASONIC CONVERTER ARRANGEMENT. |
JPS61161446A (en) * | 1985-01-10 | 1986-07-22 | Terumo Corp | Ultrasonic wave probe and its production |
DE3616498A1 (en) | 1986-05-16 | 1987-11-19 | Siemens Ag | METHOD AND DEVICE FOR DIGITAL DELAY OF ULTRASONIC SIGNALS IN RECEIVED CASE |
FR2607631B1 (en) * | 1986-11-28 | 1989-02-17 | Thomson Cgr | PROBE FOR ULTRASONIC APPARATUS HAVING A CONCEIVED ARRANGEMENT OF PIEZOELECTRIC ELEMENTS |
FR2607591B1 (en) * | 1986-11-28 | 1989-12-08 | Thomson Cgr | CURVED BAR PROBE FOR ECHOGRAPH |
GB2208138B (en) * | 1987-06-19 | 1991-08-07 | Circulation Res Ltd | Tubular probe |
JP2502685B2 (en) * | 1988-06-15 | 1996-05-29 | 松下電器産業株式会社 | Ultrasonic probe manufacturing method |
GB2224801A (en) * | 1988-11-10 | 1990-05-16 | Circulation Res Ltd | Catheters |
JP2738953B2 (en) | 1989-04-06 | 1998-04-08 | オリンパス光学工業株式会社 | Ultrasound endoscope |
JP2738952B2 (en) | 1989-04-06 | 1998-04-08 | オリンパス光学工業株式会社 | Ultrasound endoscope |
JP2790253B2 (en) | 1989-04-13 | 1998-08-27 | オリンパス光学工業株式会社 | Electronic scanning ultrasonic probe |
US5240004A (en) * | 1989-04-28 | 1993-08-31 | Thomas Jefferson University | Intravascular, ultrasonic imaging catheters and methods for making same |
JP2789234B2 (en) * | 1989-10-02 | 1998-08-20 | 株式会社日立メディコ | Ultrasound diagnostic equipment |
JPH03153198A (en) | 1989-11-10 | 1991-07-01 | Fujitsu Ltd | Ultrasonic probe |
GB2238245B (en) * | 1989-11-24 | 1994-04-20 | Martin Terry Rothman | Catheters |
US5161537A (en) * | 1990-03-26 | 1992-11-10 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic diagnostic system |
US5044053A (en) * | 1990-05-21 | 1991-09-03 | Acoustic Imaging Technologies Corporation | Method of manufacturing a curved array ultrasonic transducer assembly |
US5156157A (en) * | 1991-03-08 | 1992-10-20 | Telectronics Pacing Systems, Inc. | Catheter-mounted doppler ultrasound transducer and signal processor |
US5203337A (en) * | 1991-05-08 | 1993-04-20 | Brigham And Women's Hospital, Inc. | Coronary artery imaging system |
GB2258364A (en) * | 1991-07-30 | 1993-02-03 | Intravascular Res Ltd | Ultrasonic tranducer |
US5271403A (en) * | 1991-09-05 | 1993-12-21 | Paulos John J | Ultrasound imaging system |
GB2263974B (en) * | 1992-01-30 | 1995-11-08 | Intravascular Res Ltd | Ultrasound imaging and catheters for use therein |
GB2263641A (en) * | 1992-01-30 | 1993-08-04 | Intravascular Res Ltd | Determining catheter location |
GB2264236B (en) * | 1992-02-11 | 1996-09-18 | Martin Terry Rothman | Catheters |
GB2301892B (en) * | 1992-07-14 | 1997-02-26 | Intravascular Res Ltd | Methods and apparatus for the examination and treatment of internal organs |
GB2274736A (en) * | 1993-01-28 | 1994-08-03 | Intravascular Res Ltd | A micro-coaxial cable |
US5405337A (en) * | 1993-02-24 | 1995-04-11 | The Board Of Trustees Of The Leland Stanford Junior University | Spatially distributed SMA actuator film providing unrestricted movement in three dimensional space |
US5359760A (en) * | 1993-04-16 | 1994-11-01 | The Curators Of The University Of Missouri On Behalf Of The University Of Missouri-Rolla | Method of manufacture of multiple-element piezoelectric transducer |
US5398691A (en) * | 1993-09-03 | 1995-03-21 | University Of Washington | Method and apparatus for three-dimensional translumenal ultrasonic imaging |
US5792058A (en) * | 1993-09-07 | 1998-08-11 | Acuson Corporation | Broadband phased array transducer with wide bandwidth, high sensitivity and reduced cross-talk and method for manufacture thereof |
US5363850A (en) * | 1994-01-26 | 1994-11-15 | Cardiovascular Imaging Systems, Inc. | Method for recognition and reduction of blood speckle in blood vessel imaging system |
US5493541A (en) * | 1994-12-30 | 1996-02-20 | General Electric Company | Ultrasonic transducer array having laser-drilled vias for electrical connection of electrodes |
US5876345A (en) * | 1997-02-27 | 1999-03-02 | Acuson Corporation | Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction |
-
1994
- 1994-04-28 US US08/234,848 patent/US5453575A/en not_active Expired - Lifetime
-
1995
- 1995-04-19 DE DE69533183T patent/DE69533183T2/en not_active Expired - Lifetime
- 1995-04-19 WO PCT/US1995/004776 patent/WO1995029633A1/en active IP Right Grant
- 1995-04-19 EP EP95917583A patent/EP0707453B1/en not_active Expired - Lifetime
- 1995-04-19 JP JP52828095A patent/JP3188470B2/en not_active Expired - Lifetime
- 1995-04-19 CA CA002163213A patent/CA2163213C/en not_active Expired - Fee Related
- 1995-08-18 US US08/516,538 patent/US5603327A/en not_active Expired - Lifetime
-
1996
- 1996-09-11 US US08/712,166 patent/US5779644A/en not_active Expired - Lifetime
-
1997
- 1997-09-23 US US08/935,930 patent/US5938615A/en not_active Expired - Lifetime
-
1999
- 1999-06-02 US US09/324,692 patent/US6123673A/en not_active Expired - Lifetime
-
2000
- 2000-09-08 US US09/658,323 patent/US6283920B1/en not_active Expired - Lifetime
-
2001
- 2001-07-16 US US09/906,302 patent/US6962567B2/en not_active Expired - Fee Related
-
2005
- 2005-09-07 US US11/221,165 patent/US20060058681A1/en not_active Abandoned
Patent Citations (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3605723A (en) * | 1969-09-03 | 1971-09-20 | Hoffmann La Roche | Blood pressure monitor |
US3837115A (en) * | 1972-02-22 | 1974-09-24 | Columbia Broadcasting Syst Inc | Noisemaking amusement device |
US3938502A (en) * | 1972-02-22 | 1976-02-17 | Nicolaas Bom | Apparatus with a catheter for examining hollow organs or bodies with the ultrasonic waves |
US4191193A (en) * | 1976-02-29 | 1980-03-04 | Mitsubishi Petrochemical Co. Ltd. | Catheter head-type transducer |
US4274423A (en) * | 1977-12-15 | 1981-06-23 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Catheter tip pressure transducer |
US4211949A (en) * | 1978-11-08 | 1980-07-08 | General Electric Company | Wear plate for piezoelectric ultrasonic transducer arrays |
US4237900A (en) * | 1979-02-14 | 1980-12-09 | Pacesetter Systems, Inc. | Implantable calibration means and calibration method for an implantable body transducer |
US4325257A (en) * | 1980-02-20 | 1982-04-20 | Kino Gordon S | Real-time digital, synthetic-focus, acoustic imaging system |
US4456013A (en) * | 1981-09-08 | 1984-06-26 | Brown University Research Foundation | Catheter |
US4582067A (en) * | 1983-02-14 | 1986-04-15 | Washington Research Foundation | Method for endoscopic blood flow detection by the use of ultrasonic energy |
US4576177A (en) * | 1983-02-18 | 1986-03-18 | Webster Wilton W Jr | Catheter for removing arteriosclerotic plaque |
US4523122A (en) * | 1983-03-17 | 1985-06-11 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric ultrasonic transducers having acoustic impedance-matching layers |
US4645961A (en) * | 1983-04-05 | 1987-02-24 | The Charles Stark Draper Laboratory, Inc. | Dynamoelectric machine having a large magnetic gap and flexible printed circuit phase winding |
US4505156A (en) * | 1983-06-21 | 1985-03-19 | Sound Products Company L.P. | Method and apparatus for switching multi-element transducer arrays |
US5793541A (en) * | 1984-05-15 | 1998-08-11 | Societe D'etudes Et De Realisations Electroniques | Controlled and stabilized platform |
US4589419A (en) * | 1984-11-01 | 1986-05-20 | University Of Iowa Research Foundation | Catheter for treating arterial occlusion |
US4637401A (en) * | 1984-11-01 | 1987-01-20 | Johnston G Gilbert | Volumetric flow rate determination in conduits not directly accessible |
US4665331A (en) * | 1985-02-01 | 1987-05-12 | Kangyo Denkikiki Kabushiki Kaisha | Brushless DC micromotor |
US4641657A (en) * | 1985-02-08 | 1987-02-10 | University Patents, Inc. | Probe swivel mechanism |
US4728834A (en) * | 1985-05-28 | 1988-03-01 | Autotech Corporation | Compact digital resolver/encoder assembly with flexible circuit board |
US4665925A (en) * | 1985-09-13 | 1987-05-19 | Pfizer Hospital Products Group, Inc. | Doppler catheter |
US4671293A (en) * | 1985-10-15 | 1987-06-09 | North American Philips Corporation | Biplane phased array for ultrasonic medical imaging |
US4794931A (en) * | 1986-02-28 | 1989-01-03 | Cardiovascular Imaging Systems, Inc. | Catheter apparatus, system and method for intravascular two-dimensional ultrasonography |
US4821731A (en) * | 1986-04-25 | 1989-04-18 | Intra-Sonix, Inc. | Acoustic image system and method |
US4771788A (en) * | 1986-07-18 | 1988-09-20 | Pfizer Hospital Products Group, Inc. | Doppler tip wire guide |
US4771782A (en) * | 1986-11-14 | 1988-09-20 | Millar Instruments, Inc. | Method and assembly for introducing multiple catheters into a biological vessel |
US4841977A (en) * | 1987-05-26 | 1989-06-27 | Inter Therapy, Inc. | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
US4825115A (en) * | 1987-06-12 | 1989-04-25 | Fujitsu Limited | Ultrasonic transducer and method for fabricating thereof |
US4962329A (en) * | 1987-08-03 | 1990-10-09 | Minebea Co., Ltd. | Spirally layered and aligned printed-circuit armature coil |
US4917097A (en) * | 1987-10-27 | 1990-04-17 | Endosonics Corporation | Apparatus and method for imaging small cavities |
US4817616A (en) * | 1987-10-30 | 1989-04-04 | Wayne State University | Auto switch biplane prostate probe |
US5081993A (en) * | 1987-11-11 | 1992-01-21 | Circulation Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US4869263A (en) * | 1988-02-04 | 1989-09-26 | Cardiometrics, Inc. | Device and method for measuring volumetric blood flow in a vessel |
US4951677A (en) * | 1988-03-21 | 1990-08-28 | Prutech Research And Development Partnership Ii | Acoustic imaging catheter and the like |
US4975607A (en) * | 1988-07-11 | 1990-12-04 | Kabushiki Kaisha Sankyo Seiki Seisakusho | Frequency generator with superimposed generation coil |
US5046503A (en) * | 1989-04-26 | 1991-09-10 | Advanced Cardiovascular Systems, Inc. | Angioplasty autoperfusion catheter flow measurement method and apparatus |
US5109861A (en) * | 1989-04-28 | 1992-05-05 | Thomas Jefferson University | Intravascular, ultrasonic imaging catheters and methods for making same |
US5257629A (en) * | 1989-05-26 | 1993-11-02 | Intravascular Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US5240003A (en) * | 1989-10-16 | 1993-08-31 | Du-Med B.V. | Ultrasonic instrument with a micro motor having stator coils on a flexible circuit board |
US5176141A (en) * | 1989-10-16 | 1993-01-05 | Du-Med B.V. | Disposable intra-luminal ultrasonic instrument |
US5226847A (en) * | 1989-12-15 | 1993-07-13 | General Electric Company | Apparatus and method for acquiring imaging signals with reduced number of interconnect wires |
US5117831A (en) * | 1990-03-28 | 1992-06-02 | Cardiovascular Imaging Systems, Inc. | Vascular catheter having tandem imaging and dilatation components |
US5174296A (en) * | 1990-03-29 | 1992-12-29 | Fujitsu Limited | Ultrasonic probe having a piezoelectrical element |
US5351691A (en) * | 1990-08-02 | 1994-10-04 | B.V. Optische Inductrie "De Oude Delft" | Endoscopic probe |
US5167233A (en) * | 1991-01-07 | 1992-12-01 | Endosonics Corporation | Dilating and imaging apparatus |
US5353798A (en) * | 1991-03-13 | 1994-10-11 | Scimed Life Systems, Incorporated | Intravascular imaging apparatus and methods for use and manufacture |
US5243988A (en) * | 1991-03-13 | 1993-09-14 | Scimed Life Systems, Inc. | Intravascular imaging apparatus and methods for use and manufacture |
US5320104A (en) * | 1991-04-17 | 1994-06-14 | Hewlett-Packard Company | Transesophageal ultrasound probe |
US5273045A (en) * | 1991-05-23 | 1993-12-28 | Fujitsu Limited | Ultrasonic equipment and its catheter-type ultrasonic probe |
US5183048A (en) * | 1991-06-24 | 1993-02-02 | Endosonics Corporation | Method and apparatus for removing artifacts from an ultrasonically generated image of a small cavity |
US5199437A (en) * | 1991-09-09 | 1993-04-06 | Sensor Electronics, Inc. | Ultrasonic imager |
US5186177A (en) * | 1991-12-05 | 1993-02-16 | General Electric Company | Method and apparatus for applying synthetic aperture focusing techniques to a catheter based system for high frequency ultrasound imaging of small vessels |
US5329496A (en) * | 1992-10-16 | 1994-07-12 | Duke University | Two-dimensional array ultrasonic transducers |
US5368037A (en) * | 1993-02-01 | 1994-11-29 | Endosonics Corporation | Ultrasound catheter |
US5603327A (en) * | 1993-02-01 | 1997-02-18 | Endosonics Corporation | Ultrasound catheter probe |
US5779644A (en) * | 1993-02-01 | 1998-07-14 | Endosonics Coporation | Ultrasound catheter probe |
US5938615A (en) * | 1993-02-01 | 1999-08-17 | Endosonics Corporation | Ultrasound catheter probe |
US6123673A (en) * | 1993-02-01 | 2000-09-26 | Endosonics Corporation | Method of making an ultrasound transducer assembly |
US6283920B1 (en) * | 1993-02-01 | 2001-09-04 | Endosonics Corporation | Ultrasound transducer assembly |
US6962567B2 (en) * | 1993-02-01 | 2005-11-08 | Volcano Therapeutics, Inc. | Ultrasound transducer assembly |
US5327894A (en) * | 1993-03-01 | 1994-07-12 | General Electric Company | Wall filter using circular convolution for a color flow imaging system |
US5402791A (en) * | 1993-08-06 | 1995-04-04 | Kabushiki Kaisha Toshiba | Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe |
US5479930A (en) * | 1993-11-19 | 1996-01-02 | Advanced Technology Laboratories, Inc. | Ultrasonic transesophageal probe with articulation control for the imaging and diagnosis of multiple scan planes |
US5467779A (en) * | 1994-07-18 | 1995-11-21 | General Electric Company | Multiplanar probe for ultrasonic imaging |
US5488957A (en) * | 1994-11-21 | 1996-02-06 | General Electric Company | System and method for promoting adhesion between lens and matching layer of ultrasonic transducer |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040054287A1 (en) * | 2002-08-29 | 2004-03-18 | Stephens Douglas Neil | Ultrasonic imaging devices and methods of fabrication |
US7830069B2 (en) | 2004-04-20 | 2010-11-09 | Sunnybrook Health Sciences Centre | Arrayed ultrasonic transducer |
US7901358B2 (en) | 2005-11-02 | 2011-03-08 | Visualsonics Inc. | High frequency array ultrasound system |
USRE46185E1 (en) | 2005-11-02 | 2016-10-25 | Fujifilm Sonosite, Inc. | High frequency array ultrasound system |
US11617517B2 (en) | 2007-05-24 | 2023-04-04 | Lifewave Biomedical, Inc. | System and method for non-invasive instantaneous and continuous measurement of cardiac chamber volume |
US9173047B2 (en) | 2008-09-18 | 2015-10-27 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US9184369B2 (en) | 2008-09-18 | 2015-11-10 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US8316518B2 (en) | 2008-09-18 | 2012-11-27 | Visualsonics Inc. | Methods for manufacturing ultrasound transducers and other components |
US12029131B2 (en) | 2008-09-18 | 2024-07-02 | Fujifilm Sonosite, Inc. | Methods for patterning electrodes of ultrasound transducers and other components |
US9935254B2 (en) | 2008-09-18 | 2018-04-03 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US9555443B2 (en) | 2008-09-18 | 2017-01-31 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US11845108B2 (en) | 2008-09-18 | 2023-12-19 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US20100156244A1 (en) * | 2008-09-18 | 2010-06-24 | Marc Lukacs | Methods for manufacturing ultrasound transducers and other components |
US11094875B2 (en) | 2008-09-18 | 2021-08-17 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US10596597B2 (en) | 2008-09-18 | 2020-03-24 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US9907980B2 (en) * | 2009-01-08 | 2018-03-06 | Board Of Regents, The University Of Texas System | Real-time in vivo radiation dosimetry using scintillation detector |
US20120068075A1 (en) * | 2009-01-08 | 2012-03-22 | Beddar A Sam | Real-time in vivo radiation dosimetry using scintillation detectors |
US20140221724A1 (en) * | 2009-01-08 | 2014-08-07 | The Board Of Regents Of The University Of Texas System | Real-time in vivo radiation dosimetry using scintillation detector |
US8735828B2 (en) * | 2009-01-08 | 2014-05-27 | The Board Of Regents Of The University Of Texas System | Real-time in vivo radiation dosimetry using scintillation detectors |
US20110060215A1 (en) * | 2009-03-30 | 2011-03-10 | Tupin Jr Joe Paul | Apparatus and method for continuous noninvasive measurement of respiratory function and events |
US9002427B2 (en) | 2009-03-30 | 2015-04-07 | Lifewave Biomedical, Inc. | Apparatus and method for continuous noninvasive measurement of respiratory function and events |
US9078582B2 (en) | 2009-04-22 | 2015-07-14 | Lifewave Biomedical, Inc. | Fetal monitoring device and methods |
US20170325706A1 (en) * | 2010-08-02 | 2017-11-16 | Joe P. Tupin, JR. | Ultra wideband (uwb) baby monitors for detection of infant cardiopulmonary distress |
US10398342B2 (en) * | 2010-08-02 | 2019-09-03 | Lifewave Biomedical, Inc. | Impedance matching transformer for coupling ultra wideband (UWB) radar transceiver to a human body |
US20120059268A1 (en) * | 2010-08-02 | 2012-03-08 | Tupin Jr Joe P | Ultra wideband (uwb) baby monitors for detection of infant cardiopulmonary distress |
US20150250402A1 (en) * | 2010-08-02 | 2015-09-10 | Joe P. Tupin, JR. | Ultra wideband (uwb) baby monitors for detection of infant cardiopulmonary distress |
CN103220967A (en) * | 2010-08-02 | 2013-07-24 | 莱夫韦弗公司 | Ultra wideband (UWB) baby monitors for detection of infant cardiopulmonary distress |
US11039785B2 (en) | 2012-05-31 | 2021-06-22 | Lifewave Biomedical, Inc. | Medical radar system for guiding cardiac resuscitation |
Also Published As
Publication number | Publication date |
---|---|
US5603327A (en) | 1997-02-18 |
US6962567B2 (en) | 2005-11-08 |
US5779644A (en) | 1998-07-14 |
US6283920B1 (en) | 2001-09-04 |
JPH08511982A (en) | 1996-12-17 |
EP0707453B1 (en) | 2004-06-23 |
WO1995029633A1 (en) | 1995-11-09 |
CA2163213A1 (en) | 1995-11-09 |
JP3188470B2 (en) | 2001-07-16 |
US6123673A (en) | 2000-09-26 |
EP0707453A4 (en) | 1998-05-13 |
US5938615A (en) | 1999-08-17 |
US5453575A (en) | 1995-09-26 |
US20010041842A1 (en) | 2001-11-15 |
EP0707453A1 (en) | 1996-04-24 |
CA2163213C (en) | 1999-05-25 |
DE69533183D1 (en) | 2004-07-29 |
DE69533183T2 (en) | 2005-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6283920B1 (en) | Ultrasound transducer assembly | |
US5368037A (en) | Ultrasound catheter | |
US20070016071A1 (en) | Ultrasound transducer assembly | |
US7846101B2 (en) | High resolution intravascular ultrasound transducer assembly having a flexible substrate | |
US5857974A (en) | High resolution intravascular ultrasound transducer assembly having a flexible substrate | |
US4841977A (en) | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly | |
US5109861A (en) | Intravascular, ultrasonic imaging catheters and methods for making same | |
US5240004A (en) | Intravascular, ultrasonic imaging catheters and methods for making same | |
US12144678B2 (en) | Catheter with integrated controller for imaging and pressure sensing | |
Piel Jr et al. | Phased array transesophageal endoscope for pediatrics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |