US20060014674A1 - Methods for preparing purified lipopeptides - Google Patents
Methods for preparing purified lipopeptides Download PDFInfo
- Publication number
- US20060014674A1 US20060014674A1 US11/108,380 US10838005A US2006014674A1 US 20060014674 A1 US20060014674 A1 US 20060014674A1 US 10838005 A US10838005 A US 10838005A US 2006014674 A1 US2006014674 A1 US 2006014674A1
- Authority
- US
- United States
- Prior art keywords
- lipopeptide
- daptomycin
- crystalline
- crystal
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010028921 Lipopeptides Proteins 0.000 title claims abstract description 497
- 238000000034 method Methods 0.000 title claims abstract description 204
- 229960005484 daptomycin Drugs 0.000 claims abstract description 413
- DOAKLVKFURWEDJ-QCMAZARJSA-N daptomycin Chemical compound C([C@H]1C(=O)O[C@H](C)[C@@H](C(NCC(=O)N[C@@H](CCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@H](CO)C(=O)N[C@H](C(=O)N1)[C@H](C)CC(O)=O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](CC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CCCCCCCCC)C(=O)C1=CC=CC=C1N DOAKLVKFURWEDJ-QCMAZARJSA-N 0.000 claims abstract description 410
- 108010013198 Daptomycin Proteins 0.000 claims abstract description 408
- 239000000203 mixture Substances 0.000 claims abstract description 43
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 37
- 230000003115 biocidal effect Effects 0.000 claims abstract description 34
- 238000002425 crystallisation Methods 0.000 claims description 78
- 230000008025 crystallization Effects 0.000 claims description 78
- 239000000243 solution Substances 0.000 claims description 75
- 239000013078 crystal Substances 0.000 claims description 74
- 150000003839 salts Chemical class 0.000 claims description 74
- 238000001556 precipitation Methods 0.000 claims description 65
- 238000002360 preparation method Methods 0.000 claims description 65
- 150000001875 compounds Chemical class 0.000 claims description 60
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 42
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 29
- 150000001768 cations Chemical class 0.000 claims description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 27
- 239000002244 precipitate Substances 0.000 claims description 27
- 230000001376 precipitating effect Effects 0.000 claims description 27
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 24
- 238000009472 formulation Methods 0.000 claims description 24
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 229920001223 polyethylene glycol Polymers 0.000 claims description 22
- 239000002202 Polyethylene glycol Substances 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 20
- 150000005846 sugar alcohols Polymers 0.000 claims description 18
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 17
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 17
- 235000013772 propylene glycol Nutrition 0.000 claims description 17
- 229960004063 propylene glycol Drugs 0.000 claims description 17
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 16
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 claims description 16
- 239000001639 calcium acetate Substances 0.000 claims description 16
- 235000011092 calcium acetate Nutrition 0.000 claims description 16
- 229960005147 calcium acetate Drugs 0.000 claims description 16
- 238000001914 filtration Methods 0.000 claims description 16
- 239000006179 pH buffering agent Substances 0.000 claims description 16
- 230000015556 catabolic process Effects 0.000 claims description 15
- 238000006731 degradation reaction Methods 0.000 claims description 15
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 15
- 208000015181 infectious disease Diseases 0.000 claims description 15
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 11
- 238000005119 centrifugation Methods 0.000 claims description 10
- 238000005406 washing Methods 0.000 claims description 9
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 8
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 8
- 239000001632 sodium acetate Substances 0.000 claims description 8
- 235000017281 sodium acetate Nutrition 0.000 claims description 8
- 239000000872 buffer Substances 0.000 claims description 7
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 6
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 6
- 235000011187 glycerol Nutrition 0.000 claims description 6
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical group OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- 239000007995 HEPES buffer Substances 0.000 claims description 5
- 206010035664 Pneumonia Diseases 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 201000010099 disease Diseases 0.000 claims description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 4
- 239000008000 CHES buffer Substances 0.000 claims description 4
- 241001465754 Metazoa Species 0.000 claims description 4
- MKWKNSIESPFAQN-UHFFFAOYSA-N N-cyclohexyl-2-aminoethanesulfonic acid Chemical compound OS(=O)(=O)CCNC1CCCCC1 MKWKNSIESPFAQN-UHFFFAOYSA-N 0.000 claims description 4
- 239000000443 aerosol Substances 0.000 claims description 4
- 239000006172 buffering agent Substances 0.000 claims description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 239000012730 sustained-release form Substances 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 3
- 238000002441 X-ray diffraction Methods 0.000 claims description 3
- 159000000007 calcium salts Chemical class 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229940096405 magnesium cation Drugs 0.000 claims description 3
- 239000004005 microsphere Substances 0.000 claims description 3
- 239000006174 pH buffer Substances 0.000 claims description 3
- 208000031729 Bacteremia Diseases 0.000 claims description 2
- 206010062255 Soft tissue infection Diseases 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 206010014665 endocarditis Diseases 0.000 claims description 2
- 206010040872 skin infection Diseases 0.000 claims description 2
- 239000003381 stabilizer Substances 0.000 claims description 2
- 230000001954 sterilising effect Effects 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 208000019206 urinary tract infection Diseases 0.000 claims description 2
- 239000011549 crystallization solution Substances 0.000 claims 8
- 239000007987 MES buffer Substances 0.000 claims 2
- 150000001860 citric acid derivatives Chemical class 0.000 claims 2
- OGGXGZAMXPVRFZ-UHFFFAOYSA-N dimethylarsinic acid Chemical class C[As](C)(O)=O OGGXGZAMXPVRFZ-UHFFFAOYSA-N 0.000 claims 2
- 229940044613 1-propanol Drugs 0.000 claims 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims 1
- 239000002537 cosmetic Substances 0.000 claims 1
- 239000003599 detergent Substances 0.000 claims 1
- 229940093476 ethylene glycol Drugs 0.000 claims 1
- 229960005150 glycerol Drugs 0.000 claims 1
- 244000000059 gram-positive pathogen Species 0.000 claims 1
- 238000012835 hanging drop method Methods 0.000 claims 1
- 229910017053 inorganic salt Inorganic materials 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 230000002685 pulmonary effect Effects 0.000 claims 1
- 239000011782 vitamin Substances 0.000 claims 1
- 229940088594 vitamin Drugs 0.000 claims 1
- 229930003231 vitamin Natural products 0.000 claims 1
- 235000013343 vitamin Nutrition 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 229940006486 zinc cation Drugs 0.000 claims 1
- 239000003242 anti bacterial agent Substances 0.000 abstract description 22
- 229940088710 antibiotic agent Drugs 0.000 abstract description 17
- 241000192125 Firmicutes Species 0.000 abstract description 11
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 11
- 230000003389 potentiating effect Effects 0.000 abstract description 4
- 235000002639 sodium chloride Nutrition 0.000 description 60
- 238000000855 fermentation Methods 0.000 description 32
- 230000004151 fermentation Effects 0.000 description 32
- -1 n-octanoyl Chemical group 0.000 description 26
- 238000000108 ultra-filtration Methods 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 238000001471 micro-filtration Methods 0.000 description 18
- 238000005571 anion exchange chromatography Methods 0.000 description 16
- 235000019441 ethanol Nutrition 0.000 description 14
- 241000958215 Streptomyces filamentosus Species 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 230000007717 exclusion Effects 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 239000003814 drug Substances 0.000 description 11
- 229940079593 drug Drugs 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 208000035143 Bacterial infection Diseases 0.000 description 9
- 239000002178 crystalline material Substances 0.000 description 8
- 238000001990 intravenous administration Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 208000022362 bacterial infectious disease Diseases 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 239000000693 micelle Substances 0.000 description 7
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 6
- 229920002594 Polyethylene Glycol 8000 Polymers 0.000 description 6
- 229940121375 antifungal agent Drugs 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 241000191967 Staphylococcus aureus Species 0.000 description 5
- 239000003429 antifungal agent Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical compound [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000000699 topical effect Effects 0.000 description 5
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 4
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical group [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 108010059993 Vancomycin Proteins 0.000 description 4
- 230000001851 biosynthetic effect Effects 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 239000006071 cream Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 108091008053 gene clusters Proteins 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 238000000399 optical microscopy Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 239000006188 syrup Substances 0.000 description 4
- 235000020357 syrup Nutrition 0.000 description 4
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 4
- 229960003165 vancomycin Drugs 0.000 description 4
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 4
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 3
- 229920002261 Corn starch Polymers 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 108010049047 Echinocandins Proteins 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 108010015899 Glycopeptides Proteins 0.000 description 3
- 102000002068 Glycopeptides Human genes 0.000 description 3
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 3
- 229930182555 Penicillin Natural products 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 241000295644 Staphylococcaceae Species 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 229940126575 aminoglycoside Drugs 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 235000011148 calcium chloride Nutrition 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 229940014259 gelatin Drugs 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 229960003085 meticillin Drugs 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 229960004793 sucrose Drugs 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- LJVAJPDWBABPEJ-PNUFFHFMSA-N telithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)[C@@H](C)C(=O)O[C@@H]([C@]2(OC(=O)N(CCCCN3C=C(N=C3)C=3C=NC=CC=3)[C@@H]2[C@@H](C)C(=O)[C@H](C)C[C@@]1(C)OC)C)CC)[C@@H]1O[C@H](C)C[C@H](N(C)C)[C@H]1O LJVAJPDWBABPEJ-PNUFFHFMSA-N 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 239000004246 zinc acetate Substances 0.000 description 3
- 235000013904 zinc acetate Nutrition 0.000 description 3
- GGWOUCUSNYVHOC-QJKBBIFYSA-N (4S)-2-[(1S)-1-hydroxy-1-[(2R,4R)-2-[(4R)-2-(2-hydroxy-6-pentylphenyl)-4,5-dihydro-1,3-thiazol-4-yl]-3-methyl-1,3-thiazolidin-4-yl]-2-methylpropan-2-yl]-4-methyl-5H-1,3-thiazole-4-carboxylic acid Chemical compound O=C(O)[C@]1(C)N=C(C([C@H](O)[C@H]2N(C)[C@@H]([C@@H]3N=C(c4c(O)cccc4CCCCC)SC3)SC2)(C)C)SC1 GGWOUCUSNYVHOC-QJKBBIFYSA-N 0.000 description 2
- QYEWAEAWMXRMHB-YFTUCIGFSA-N (4r)-5-[[(3s,6r,9s,12r,15s,18r,21r,22r)-3-[(2s)-butan-2-yl]-6,12-bis(hydroxymethyl)-22-methyl-9,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-18-propan-2-yl-1-oxa-4,7,10,13,16,19-hexazacyclodocos-21-yl]amino]-4-[[(2s)-2-[[(3r)-3-hydroxydecanoyl]amino] Chemical compound CCCCCCC[C@@H](O)CC(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]1[C@@H](C)OC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](C(C)C)NC1=O QYEWAEAWMXRMHB-YFTUCIGFSA-N 0.000 description 2
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 0 C*C(NC(Cc1c[n]c2c1cccc2)C(NC(CC(N)=O)C1OC1NC(CC(O)=O)C(NC(C(C)OC(C(CC(c(cccc1)c1N)=O)NC(C(C(C)CC(O)=O)NC([C@](CO)NC(CNC(C(CC(O)=O)NC1OC1C(C)NC(C(CC(O)=O)NC(C(CCCN)NC(CN1)=O)=O)=O)=O)=O)=O)=O)=O)C1=O)=O)=O)=O Chemical compound C*C(NC(Cc1c[n]c2c1cccc2)C(NC(CC(N)=O)C1OC1NC(CC(O)=O)C(NC(C(C)OC(C(CC(c(cccc1)c1N)=O)NC(C(C(C)CC(O)=O)NC([C@](CO)NC(CNC(C(CC(O)=O)NC1OC1C(C)NC(C(CC(O)=O)NC(C(CCCN)NC(CN1)=O)=O)=O)=O)=O)=O)=O)=O)C1=O)=O)=O)=O 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 208000003322 Coinfection Diseases 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000606768 Haemophilus influenzae Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 2
- 206010057190 Respiratory tract infections Diseases 0.000 description 2
- 241000193998 Streptococcus pneumoniae Species 0.000 description 2
- 108010053950 Teicoplanin Proteins 0.000 description 2
- UPADRKHAIMTUCC-OWALTSPQSA-N [(2r,3r,4r,6s)-6-[(2r,2'r,3's,3ar,4r,4'r,6s,7s,7ar)-6-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4s,5s,6s)-6-[(3ar,3'as,4r,6's,7r,7'r,7as,7'as)-7-(2,4-dihydroxy-6-methylbenzoyl)oxy-7'-hydroxyspiro[3a,6,7,7a-tetrahydro-[1,3]dioxolo[4,5-c]pyran-4,2'-4,6,7,7a-tetrahydro-3a Chemical compound O([C@@H]1CO[C@]2([C@@H]3OCO[C@H]31)O[C@H]1CO[C@H]([C@@H]([C@@H]1O2)O)O[C@@H]1O[C@@H]([C@H]([C@H](O)[C@@H]1OC)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@H]([C@@]3(C)O[C@]4(O[C@H](C)[C@@H](O[C@@H]5O[C@H](C)[C@@H](OC(=O)C=6C(=C(Cl)C(O)=C(Cl)C=6C)OC)[C@H](O[C@@H]6O[C@@H](C)[C@H](OC)[C@](C)(C6)[N+]([O-])=O)C5)[C@H](O)C4)O[C@@H]3[C@@H](C)O2)O)[C@@H](OC)[C@@H](C)O1)O)COC)C(=O)C1=C(C)C=C(O)C=C1O UPADRKHAIMTUCC-OWALTSPQSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 125000003162 alpha-aspartyl group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 229960004821 amikacin Drugs 0.000 description 2
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 2
- 229960004909 aminosalicylic acid Drugs 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 229960003644 aztreonam Drugs 0.000 description 2
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- PPKJUHVNTMYXOD-PZGPJMECSA-N c49ws9n75l Chemical compound O=C([C@@H]1N(C2=O)CC[C@H]1S(=O)(=O)CCN(CC)CC)O[C@H](C(C)C)[C@H](C)\C=C\C(=O)NC\C=C\C(\C)=C\[C@@H](O)CC(=O)CC1=NC2=CO1.N([C@@H]1C(=O)N[C@@H](C(N2CCC[C@H]2C(=O)N(C)[C@@H](CC=2C=CC(=CC=2)N(C)C)C(=O)N2C[C@@H](CS[C@H]3C4CCN(CC4)C3)C(=O)C[C@H]2C(=O)N[C@H](C(=O)O[C@@H]1C)C=1C=CC=CC=1)=O)CC)C(=O)C1=NC=CC=C1O PPKJUHVNTMYXOD-PZGPJMECSA-N 0.000 description 2
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 2
- 229960004755 ceftriaxone Drugs 0.000 description 2
- DDTDNCYHLGRFBM-YZEKDTGTSA-N chembl2367892 Chemical compound CC(=O)N[C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1O[C@@H]([C@H]1C(N[C@@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(O)C=C(C=4)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@H](CC=4C=C(Cl)C(O5)=CC=4)C(=O)N3)C(=O)N1)C(O)=O)=O)C(C=C1Cl)=CC=C1OC1=C(O[C@H]3[C@H]([C@@H](O)[C@H](O)[C@H](CO)O3)NC(C)=O)C5=CC2=C1 DDTDNCYHLGRFBM-YZEKDTGTSA-N 0.000 description 2
- MYPYJXKWCTUITO-KIIOPKALSA-N chembl3301825 Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)C(O)[C@H](C)O1 MYPYJXKWCTUITO-KIIOPKALSA-N 0.000 description 2
- 238000005352 clarification Methods 0.000 description 2
- 239000012050 conventional carrier Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 229960000308 fosfomycin Drugs 0.000 description 2
- YMDXZJFXQJVXBF-STHAYSLISA-N fosfomycin Chemical compound C[C@@H]1O[C@@H]1P(O)(O)=O YMDXZJFXQJVXBF-STHAYSLISA-N 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 229960002518 gentamicin Drugs 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940047650 haemophilus influenzae Drugs 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 229960002182 imipenem Drugs 0.000 description 2
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000008040 ionic compounds Chemical class 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229960001375 lactose Drugs 0.000 description 2
- 229960003907 linezolid Drugs 0.000 description 2
- TYZROVQLWOKYKF-ZDUSSCGKSA-N linezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C(C=C1F)=CC=C1N1CCOCC1 TYZROVQLWOKYKF-ZDUSSCGKSA-N 0.000 description 2
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 235000011147 magnesium chloride Nutrition 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 2
- 229960000282 metronidazole Drugs 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229960000808 netilmicin Drugs 0.000 description 2
- ZBGPYVZLYBDXKO-HILBYHGXSA-N netilmycin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@]([C@H](NC)[C@@H](O)CO1)(C)O)NCC)[C@H]1OC(CN)=CC[C@H]1N ZBGPYVZLYBDXKO-HILBYHGXSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- VHFGEBVPHAGQPI-LXKZPTCJSA-N oritavancin Chemical compound O([C@@H]1C2=CC=C(C(=C2)Cl)OC=2C=C3C=C(C=2O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O[C@@H]2O[C@@H](C)[C@H](O)[C@@](C)(NCC=4C=CC(=CC=4)C=4C=CC(Cl)=CC=4)C2)OC2=CC=C(C=C2Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]2C(=O)N[C@@H]1C(N[C@@H](C1=CC(O)=CC(O)=C1C=1C(O)=CC=C2C=1)C(O)=O)=O)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@@H](O)[C@H](C)O1 VHFGEBVPHAGQPI-LXKZPTCJSA-N 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 108010071077 quinupristin-dalfopristin Proteins 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229940083542 sodium Drugs 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 229940020707 synercid Drugs 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 229960001608 teicoplanin Drugs 0.000 description 2
- 229960003250 telithromycin Drugs 0.000 description 2
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 2
- FPZLLRFZJZRHSY-HJYUBDRYSA-N tigecycline Chemical compound C([C@H]1C2)C3=C(N(C)C)C=C(NC(=O)CNC(C)(C)C)C(O)=C3C(=O)C1=C(O)[C@@]1(O)[C@@H]2[C@H](N(C)C)C(O)=C(C(N)=O)C1=O FPZLLRFZJZRHSY-HJYUBDRYSA-N 0.000 description 2
- 229960004089 tigecycline Drugs 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 229960000314 zinc acetate Drugs 0.000 description 2
- JWYOAMOZLZXDER-UHNVWZDZSA-N (1r,2s)-2-azaniumylcyclopentane-1-carboxylate Chemical compound N[C@H]1CCC[C@H]1C(O)=O JWYOAMOZLZXDER-UHNVWZDZSA-N 0.000 description 1
- ICFDDEJRXZSWTA-KJFVXYAMSA-N (1s,5s,8as,8br)-1-[(1r)-1-hydroxyethyl]-5-methoxy-2-oxo-5,6,7,8,8a,8b-hexahydro-1h-azeto[1,2-b]isoindole-4-carboxylic acid Chemical compound OC(=O)C1=C2[C@@H](OC)CCC[C@@H]2[C@H]2N1C(=O)[C@@H]2[C@@H](C)O ICFDDEJRXZSWTA-KJFVXYAMSA-N 0.000 description 1
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- XBNDESPXQUOOBQ-LSMLZNGOSA-N (2r,3s)-4-[[(2s)-1-[[2-[[(2s)-1-[[2-[[(2r,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-[(3s,9ar)-1,4-dioxo-3,6,7,8,9,9a-hexahydro-2h-pyrido[1,2-a]pyrazin-3-yl]ethyl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]amino]-3-amino-1-oxobutan-2-yl]amino]-2-oxoethyl]am Chemical compound CCC(C)CCCCC\C=C\CC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)C(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@H]([C@H](C)N)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)[C@H]1C(=O)N2CCCC[C@@H]2C(=O)N1 XBNDESPXQUOOBQ-LSMLZNGOSA-N 0.000 description 1
- HMHQWJDFNVJCHA-BTZKOOKSSA-N (2s)-2-[[(5r,8s)-8-[[(2s,3r)-1-[(2s)-2-amino-3-hydroxypropanoyl]-3-hydroxypyrrolidine-2-carbonyl]amino]-14,16-dihydroxy-13-methyl-7,11-dioxo-10-oxa-3-thia-6-azabicyclo[10.4.0]hexadeca-1(16),12,14-triene-5-carbonyl]amino]propanoic acid Chemical compound N([C@H]1COC(=O)C2=C(C)C(O)=CC(O)=C2CSC[C@H](NC1=O)C(=O)N[C@@H](C)C(O)=O)C(=O)[C@@H]1[C@H](O)CCN1C(=O)[C@@H](N)CO HMHQWJDFNVJCHA-BTZKOOKSSA-N 0.000 description 1
- VCOPTHOUUNAYKQ-WBTCAYNUSA-N (3s)-3,6-diamino-n-[[(2s,5s,8e,11s,15s)-15-amino-11-[(6r)-2-amino-1,4,5,6-tetrahydropyrimidin-6-yl]-8-[(carbamoylamino)methylidene]-2-(hydroxymethyl)-3,6,9,12,16-pentaoxo-1,4,7,10,13-pentazacyclohexadec-5-yl]methyl]hexanamide;(3s)-3,6-diamino-n-[[(2s,5s,8 Chemical compound N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](C)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1.N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1 VCOPTHOUUNAYKQ-WBTCAYNUSA-N 0.000 description 1
- AFIMUUSGRZSMCR-LPZKKVOTSA-N (4r,5s,6s)-3-[(2r,3r)-2-[[[(2s)-2-amino-3-methylbutanoyl]amino]methyl]oxolan-3-yl]sulfanyl-6-[(1r)-1-hydroxyethyl]-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid Chemical compound CC(C)[C@H](N)C(=O)NC[C@H]1OCC[C@H]1SC1=C(C(O)=O)N2C(=O)[C@H]([C@@H](C)O)[C@H]2[C@H]1C AFIMUUSGRZSMCR-LPZKKVOTSA-N 0.000 description 1
- PZLOCBSBEUDCPF-YJIVIRPOSA-N (4r,5s,6s)-6-[(1r)-1-hydroxyethyl]-3-[(3s,5s)-5-[(1r)-1-hydroxy-3-(methylamino)propyl]pyrrolidin-3-yl]sulfanyl-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid Chemical compound C1N[C@H]([C@H](O)CCNC)C[C@@H]1SC1=C(C(O)=O)N2C(=O)[C@H]([C@@H](C)O)[C@H]2[C@H]1C PZLOCBSBEUDCPF-YJIVIRPOSA-N 0.000 description 1
- FLSUCZWOEMTFAQ-PRBGKLEPSA-N (5r,6s)-6-[(1r)-1-hydroxyethyl]-7-oxo-3-[(1r,3s)-1-oxothiolan-3-yl]sulfanyl-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid Chemical compound S([C@@H]1[C@H](C(N1C=1C(O)=O)=O)[C@H](O)C)C=1S[C@H]1CC[S@@](=O)C1 FLSUCZWOEMTFAQ-PRBGKLEPSA-N 0.000 description 1
- MINDHVHHQZYEEK-UHFFFAOYSA-N (E)-(2S,3R,4R,5S)-5-[(2S,3S,4S,5S)-2,3-epoxy-5-hydroxy-4-methylhexyl]tetrahydro-3,4-dihydroxy-(beta)-methyl-2H-pyran-2-crotonic acid ester with 9-hydroxynonanoic acid Natural products CC(O)C(C)C1OC1CC1C(O)C(O)C(CC(C)=CC(=O)OCCCCCCCCC(O)=O)OC1 MINDHVHHQZYEEK-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- JLGKQTAYUIMGRK-UHFFFAOYSA-N 1-{2-[(7-chloro-1-benzothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C2=CC=CC(Cl)=C2SC=1)CN1C=NC=C1 JLGKQTAYUIMGRK-UHFFFAOYSA-N 0.000 description 1
- ZNOVVAJWYUBFMI-JIFFNSBPSA-N 2,2-dimethylpropanoyloxymethyl (4r,5s,6s)-6-[(1r)-1-hydroxyethyl]-4-methyl-7-oxo-3-[(3r)-5-oxopyrrolidin-3-yl]sulfanyl-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(=O)OCOC(=O)C(C)(C)C)=O)[C@H](O)C)S[C@H]1CNC(=O)C1 ZNOVVAJWYUBFMI-JIFFNSBPSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- FUBFWTUFPGFHOJ-UHFFFAOYSA-N 2-nitrofuran Chemical class [O-][N+](=O)C1=CC=CO1 FUBFWTUFPGFHOJ-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- NMARPFMJVCXSAV-UHFFFAOYSA-N 5-[(3,5-diethoxy-4-pyrrol-1-ylphenyl)methyl]pyrimidine-2,4-diamine Chemical compound C=1C(OCC)=C(N2C=CC=C2)C(OCC)=CC=1CC1=CN=C(N)N=C1N NMARPFMJVCXSAV-UHFFFAOYSA-N 0.000 description 1
- MPORYQCGWFQFLA-ONPDANIMSA-N 7-[(7s)-7-amino-5-azaspiro[2.4]heptan-5-yl]-8-chloro-6-fluoro-1-[(1r,2s)-2-fluorocyclopropyl]-4-oxoquinoline-3-carboxylic acid;trihydrate Chemical compound O.O.O.C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1.C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 MPORYQCGWFQFLA-ONPDANIMSA-N 0.000 description 1
- QYEWAEAWMXRMHB-UHFFFAOYSA-N 8-Angeloyl-8alpha-4,9-Muuroladiene-1,8-diol Natural products CCCCCCCC(O)CC(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC1C(C)OC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(C(C)C)NC1=O QYEWAEAWMXRMHB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000186046 Actinomyces Species 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- 241001464890 Anaerococcus prevotii Species 0.000 description 1
- 108010064760 Anidulafungin Proteins 0.000 description 1
- 206010053555 Arthritis bacterial Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- 241000186000 Bifidobacterium Species 0.000 description 1
- 241001464894 Blautia producta Species 0.000 description 1
- 206010005940 Bone and joint infections Diseases 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- AFWTZXXDGQBIKW-UHFFFAOYSA-N C14 surfactin Natural products CCCCCCCCCCCC1CC(=O)NC(CCC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)O1 AFWTZXXDGQBIKW-UHFFFAOYSA-N 0.000 description 1
- 108010065839 Capreomycin Proteins 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241000193468 Clostridium perfringens Species 0.000 description 1
- 241001262170 Collinsella aerofaciens Species 0.000 description 1
- 241001517041 Corynebacterium jeikeium Species 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 241000186427 Cutibacterium acnes Species 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 241001657508 Eggerthella lenta Species 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- AFMYMMXSQGUCBK-UHFFFAOYSA-N Endynamicin A Natural products C1#CC=CC#CC2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3C34OC32C(C)C(C(O)=O)=C(OC)C41 AFMYMMXSQGUCBK-UHFFFAOYSA-N 0.000 description 1
- 241001468179 Enterococcus avium Species 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 241000194031 Enterococcus faecium Species 0.000 description 1
- 241000186588 Erysipelatoclostridium ramosum Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- UPADRKHAIMTUCC-JBNGTWNESA-N Everninomycin Chemical compound O([C@@H]1CO[C@]2([C@@H]3OCO[C@H]31)O[C@H]1CO[C@H]([C@@H]([C@@H]1O2)O)O[C@@H]1O[C@@H](C([C@H](O)C1OC)O[C@H]1[C@@H]([C@H](O[C@H]2[C@H]([C@@]3(C)OC4(O[C@H](C)[C@@H](O[C@@H]5O[C@H](C)[C@@H](OC(=O)C=6C(=C(Cl)C(O)=C(Cl)C=6C)OC)[C@H](O[C@H]6O[C@@H](C)[C@H](OC)[C@](C)(C6)[N+]([O-])=O)C5)[C@H](O)C4)O[C@@H]3[C@@H](C)O2)O)[C@@H](OC)[C@@H](C)O1)O)COC)C(=O)C1=C(C)C=C(O)C=C1O UPADRKHAIMTUCC-JBNGTWNESA-N 0.000 description 1
- 241000192016 Finegoldia magna Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229930187800 Fusacandin Natural products 0.000 description 1
- 206010061977 Genital infection female Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 208000004575 Infectious Arthritis Diseases 0.000 description 1
- 208000036209 Intraabdominal Infections Diseases 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 240000001046 Lactobacillus acidophilus Species 0.000 description 1
- 235000013956 Lactobacillus acidophilus Nutrition 0.000 description 1
- 244000199866 Lactobacillus casei Species 0.000 description 1
- 235000013958 Lactobacillus casei Nutrition 0.000 description 1
- 241000194036 Lactococcus Species 0.000 description 1
- 241000192132 Leuconostoc Species 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- ROAIXOJGRFKICW-UHFFFAOYSA-N Methenamine hippurate Chemical compound C1N(C2)CN3CN1CN2C3.OC(=O)CNC(=O)C1=CC=CC=C1 ROAIXOJGRFKICW-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- JHVAMHSQVVQIOT-FUVWCVBOSA-N N-[(3S,9S,11R,18S,20R,21R,24S,25S,26S)-6-[(1S,2S)-1,2-dihydroxy-2-(4-hydroxyphenyl)ethyl]-11,20,21,25-tetrahydroxy-3,15-bis[(1R)-1-hydroxyethyl]-26-methyl-2,5,8,14,17,23-hexaoxo-1,4,7,13,16,22-hexazatricyclo[22.3.0.09,13]heptacosan-18-yl]-4-[4-(4-pentoxyphenyl)phenyl]benzamide Chemical group CCCCCOC1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C(=O)N[C@H]1C[C@@H](O)[C@@H](O)NC(=O)[C@@H]2[C@@H](O)[C@@H](C)CN2C(=O)[C@@H](NC(=O)C(NC(=O)[C@@H]2C[C@@H](O)CN2C(=O)C(NC1=O)[C@@H](C)O)[C@H](O)[C@@H](O)C1=CC=C(O)C=C1)[C@@H](C)O JHVAMHSQVVQIOT-FUVWCVBOSA-N 0.000 description 1
- YJQPYGGHQPGBLI-UHFFFAOYSA-N Novobiocin Natural products O1C(C)(C)C(OC)C(OC(N)=O)C(O)C1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 206010031252 Osteomyelitis Diseases 0.000 description 1
- 206010033078 Otitis media Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001464887 Parvimonas micra Species 0.000 description 1
- 241000192001 Pediococcus Species 0.000 description 1
- 241000191992 Peptostreptococcus Species 0.000 description 1
- 241000192035 Peptostreptococcus anaerobius Species 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- VRDIULHPQTYCLN-UHFFFAOYSA-N Prothionamide Chemical compound CCCC1=CC(C(N)=S)=CC=N1 VRDIULHPQTYCLN-UHFFFAOYSA-N 0.000 description 1
- 229930189077 Rifamycin Natural products 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- 241000191984 Staphylococcus haemolyticus Species 0.000 description 1
- 241000192087 Staphylococcus hominis Species 0.000 description 1
- 241001147691 Staphylococcus saprophyticus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000194049 Streptococcus equinus Species 0.000 description 1
- 244000057717 Streptococcus lactis Species 0.000 description 1
- 235000014897 Streptococcus lactis Nutrition 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241001312524 Streptococcus viridans Species 0.000 description 1
- 108010034396 Streptogramins Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000187398 Streptomyces lividans Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108010015940 Viomycin Proteins 0.000 description 1
- OZKXLOZHHUHGNV-UHFFFAOYSA-N Viomycin Natural products NCCCC(N)CC(=O)NC1CNC(=O)C(=CNC(=O)N)NC(=O)C(CO)NC(=O)C(CO)NC(=O)C(NC1=O)C2CC(O)NC(=N)N2 OZKXLOZHHUHGNV-UHFFFAOYSA-N 0.000 description 1
- PKHFEGZZONAJBZ-COWAJZTFSA-N [(2s,3s,4r,5r,6r)-5-[(2s,3r,4s,5r,6r)-6-[[(2e,4z)-deca-2,4-dienoyl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-2-[2,4-dihydroxy-6-(hydroxymethyl)phenyl]-3-hydroxy-6-(hydroxymethyl)oxan-4-yl] (2e,4e)-7-hydroxy-2,8-dimethyldeca-2,4-dienoate Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](COC(=O)\C=C\C=C/CCCCC)O[C@H]1O[C@H]1[C@H](OC(=O)C(\C)=C\C=C\CC(O)C(C)CC)[C@@H](O)[C@H](C=2C(=CC(O)=CC=2O)CO)O[C@@H]1CO PKHFEGZZONAJBZ-COWAJZTFSA-N 0.000 description 1
- 241000186561 [Clostridium] clostridioforme Species 0.000 description 1
- 241000193462 [Clostridium] innocuum Species 0.000 description 1
- 206010000269 abscess Diseases 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- FBCLKBXYZRAXNA-PDIPHZEPSA-N aculeacin A Chemical class C1([C@H](O)[C@@H](O)[C@H]2C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C[C@@H](C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N2)[C@@H](C)O)=O)NC(=O)CCCCCCCCCCCCCCC)[C@H](O)CC(N)=O)=CC=C(O)C=C1 FBCLKBXYZRAXNA-PDIPHZEPSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000012459 agar diffusion assay Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 108010079465 amphomycin Proteins 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- JHVAMHSQVVQIOT-MFAJLEFUSA-N anidulafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@@H](C)O)[C@H](O)[C@@H](O)C=2C=CC(O)=CC=2)[C@@H](C)O)=O)C=C1 JHVAMHSQVVQIOT-MFAJLEFUSA-N 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- PXXJHWLDUBFPOL-UHFFFAOYSA-N benzamidine Chemical compound NC(=N)C1=CC=CC=C1 PXXJHWLDUBFPOL-UHFFFAOYSA-N 0.000 description 1
- 125000003164 beta-aspartyl group Chemical group 0.000 description 1
- 229960003169 biapenem Drugs 0.000 description 1
- MRMBZHPJVKCOMA-YJFSRANCSA-N biapenem Chemical compound C1N2C=NC=[N+]2CC1SC([C@@H]1C)=C(C([O-])=O)N2[C@H]1[C@@H]([C@H](O)C)C2=O MRMBZHPJVKCOMA-YJFSRANCSA-N 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229960004602 capreomycin Drugs 0.000 description 1
- 229940041011 carbapenems Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- UIMOJFJSJSIGLV-JNHMLNOCSA-N carumonam Chemical compound O=C1N(S(O)(=O)=O)[C@H](COC(=O)N)[C@@H]1NC(=O)C(=N/OCC(O)=O)\C1=CSC(N)=N1 UIMOJFJSJSIGLV-JNHMLNOCSA-N 0.000 description 1
- 229960000662 carumonam Drugs 0.000 description 1
- DASYMCLQENWCJG-XUKDPADISA-N cefetamet pivoxil Chemical compound N([C@@H]1C(N2C(=C(C)CS[C@@H]21)C(=O)OCOC(=O)C(C)(C)C)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 DASYMCLQENWCJG-XUKDPADISA-N 0.000 description 1
- 229950000726 cefetamet pivoxil Drugs 0.000 description 1
- XAKKNLNAJBNLPC-MAYKBZFQSA-N cefluprenam Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)/C=C/C[N+](C)(CC)CC(N)=O)C([O-])=O)C(=O)C(=N/OCF)\C1=NSC(N)=N1 XAKKNLNAJBNLPC-MAYKBZFQSA-N 0.000 description 1
- 229950001334 cefluprenam Drugs 0.000 description 1
- ZINFAXPQMLDEEJ-GFVOIPPFSA-N cefoselis Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CN1C=CC(=N)N1CCO ZINFAXPQMLDEEJ-GFVOIPPFSA-N 0.000 description 1
- 229950001580 cefoselis Drugs 0.000 description 1
- QDUIJCOKQCCXQY-WHJQOFBOSA-N cefozopran Chemical compound N([C@@H]1C(N2C(=C(CN3C4=CC=CN=[N+]4C=C3)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=NSC(N)=N1 QDUIJCOKQCCXQY-WHJQOFBOSA-N 0.000 description 1
- 229960002642 cefozopran Drugs 0.000 description 1
- DKOQGJHPHLTOJR-WHRDSVKCSA-N cefpirome Chemical compound N([C@@H]1C(N2C(=C(C[N+]=3C=4CCCC=4C=CC=3)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 DKOQGJHPHLTOJR-WHRDSVKCSA-N 0.000 description 1
- 229960000466 cefpirome Drugs 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- HFTSMHTWUFCYMJ-FDNJTQOMSA-N chembl1652606 Chemical compound O1C(=O)OC(COC(=O)N2C[C@@H](CC2)N2C(C(=C/C=3CS[C@H]4N(C([C@H]4NC(=O)C(=N\O)\C=4N=C(N)SN=4)=O)C=3C(O)=O)/CC2)=O)=C1C HFTSMHTWUFCYMJ-FDNJTQOMSA-N 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 239000007910 chewable tablet Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 239000012501 chromatography medium Substances 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- PKHFEGZZONAJBZ-JXXNUIPTSA-N corynecandin Natural products CCCCCC=C/C=C/C(=O)OCC1OC(OC2C(CO)OC(C(O)C2OC(=O)C(=CC=CCC(O)C(C)CC)C)c3c(O)cc(O)cc3CO)C(O)C(O)C1O PKHFEGZZONAJBZ-JXXNUIPTSA-N 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 229960003077 cycloserine Drugs 0.000 description 1
- 108010083968 cyclothialidine Proteins 0.000 description 1
- HMHQWJDFNVJCHA-UHFFFAOYSA-N cyclothialidine Natural products O=C1NC(C(=O)NC(C)C(O)=O)CSCC2=C(O)C=C(O)C(C)=C2C(=O)OCC1NC(=O)C1C(O)CCN1C(=O)C(N)CO HMHQWJDFNVJCHA-UHFFFAOYSA-N 0.000 description 1
- 125000003074 decanoyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- OGGXGZAMXPVRFZ-UHFFFAOYSA-M dimethylarsinate Chemical compound C[As](C)([O-])=O OGGXGZAMXPVRFZ-UHFFFAOYSA-M 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- AFMYMMXSQGUCBK-AKMKHHNQSA-N dynemicin a Chemical compound C1#C\C=C/C#C[C@@H]2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3[C@@]34O[C@]32[C@@H](C)C(C(O)=O)=C(OC)[C@H]41 AFMYMMXSQGUCBK-AKMKHHNQSA-N 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 229950011561 epiroprim Drugs 0.000 description 1
- 229960000285 ethambutol Drugs 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 229960002001 ethionamide Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 229960004667 ethyl cellulose Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- JQBKWZPHJOEQAO-DVPVEWDBSA-N faropenem medoxil Chemical compound S([C@@H]1[C@H](C(N1C=1C(=O)OCC2=C(OC(=O)O2)C)=O)[C@H](O)C)C=1[C@H]1CCCO1 JQBKWZPHJOEQAO-DVPVEWDBSA-N 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000004665 fatty acids Chemical group 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 239000004052 folic acid antagonist Substances 0.000 description 1
- 229940083579 fusidate sodium Drugs 0.000 description 1
- NJDRXTDGYFKORP-LLVKDONJSA-N garenoxacin Chemical compound N([C@@H](C1=CC=2)C)CC1=CC=2C(C=1OC(F)F)=CC=C(C(C(C(O)=O)=C2)=O)C=1N2C1CC1 NJDRXTDGYFKORP-LLVKDONJSA-N 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- UXNFIJPHRQEWRQ-UHFFFAOYSA-N hexamethylenetetramine mandelate salt Chemical compound C1N(C2)CN3CN1CN2C3.OC(=O)C(O)C1=CC=CC=C1 UXNFIJPHRQEWRQ-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- GUCYBPFJNGVFEB-XELKFLSISA-N iseganan Chemical compound C([C@H]1C(=O)N[C@H]2CSSC[C@H](NC(=O)[C@H](CC=3C=CC=CC=3)NC(=O)[C@H](CCCNC(N)=N)NC(=O)CNC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@H](C(=O)N[C@@H](CSSC[C@@H](C(N1)=O)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@@H](N)CCCNC(N)=N)CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)C(C)C)C1=CC=C(O)C=C1 GUCYBPFJNGVFEB-XELKFLSISA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229960000829 kaolin Drugs 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 239000003835 ketolide antibiotic agent Substances 0.000 description 1
- MCNCNVGBSVXONP-PUJVZGPTSA-N khafrefungin Chemical compound CCCCCCCCCC[C@H](C)[C@@H](O)[C@@H](C)\C=C(/C)\C=C(/C)C(=O)[C@H](C)\C=C(/C)C(=O)O[C@H](CO)[C@@H](O)[C@H](O)C(O)=O MCNCNVGBSVXONP-PUJVZGPTSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940039695 lactobacillus acidophilus Drugs 0.000 description 1
- 229940017800 lactobacillus casei Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229950011020 lenapenem Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 235000001055 magnesium Nutrition 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- JSWKNDSDVHJUKY-CYGWNLPQSA-N mersacidin Chemical compound C([C@@H](C(=O)N[C@@H]1[C@H](C)SC[C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)CNC(=O)CNC(=O)CNC(=O)[C@@H]2CCCN2C(=O)[C@H](CC(C)C)NC1=O)C(=O)N[C@@H]1[C@H](C)SC[C@H]2C(=O)N[C@H](C(N/C=C/S[C@@H](C)C(NC(=O)[C@H](CC(C)C)NC1=O)C(=O)NC(=C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)[C@H](C)CC)NC(=O)[C@H]1[C@@H](SC[C@H](N)C(=O)N1)C)C1=CC=CC=C1 JSWKNDSDVHJUKY-CYGWNLPQSA-N 0.000 description 1
- 108010067215 mersacidin Proteins 0.000 description 1
- 229960003900 methenamine hippurate Drugs 0.000 description 1
- 229960002786 methenamine mandelate Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- KOOAFHGJVIVFMZ-WZPXRXMFSA-M micafungin sodium Chemical compound [Na+].C1=CC(OCCCCC)=CC=C1C1=CC(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@H](O)CC(N)=O)[C@H](O)[C@@H](O)C=2C=C(OS([O-])(=O)=O)C(O)=CC=2)[C@@H](C)O)=O)=NO1 KOOAFHGJVIVFMZ-WZPXRXMFSA-M 0.000 description 1
- 238000001690 micro-dialysis Methods 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 229960003128 mupirocin Drugs 0.000 description 1
- 229930187697 mupirocin Natural products 0.000 description 1
- DDHVILIIHBIMQU-YJGQQKNPSA-L mupirocin calcium hydrate Chemical compound O.O.[Ca+2].C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1.C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1 DDHVILIIHBIMQU-YJGQQKNPSA-L 0.000 description 1
- OZGNYLLQHRPOBR-DHZHZOJOSA-N naftifine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)C\C=C\C1=CC=CC=C1 OZGNYLLQHRPOBR-DHZHZOJOSA-N 0.000 description 1
- 229960004313 naftifine Drugs 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000004957 nitroimidazoles Chemical class 0.000 description 1
- 229960002950 novobiocin Drugs 0.000 description 1
- YJQPYGGHQPGBLI-KGSXXDOSSA-N novobiocin Chemical compound O1C(C)(C)[C@H](OC)[C@@H](OC(N)=O)[C@@H](O)[C@@H]1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-KGSXXDOSSA-N 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 229940074571 peptostreptococcus anaerobius Drugs 0.000 description 1
- 239000008024 pharmaceutical diluent Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 108010069329 plipastatin Proteins 0.000 description 1
- BBRYHXPVDSFBGT-UHFFFAOYSA-N plipastatin b 1 Chemical compound N1C(=O)C(CCC(N)=O)NC(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)O)NC(=O)C(NC(=O)C(CCCN)NC(=O)C(CCC(O)=O)NC(=O)CC(O)CCCCCCCCCCCCC)CC(C=C2)=CC=C2OC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 BBRYHXPVDSFBGT-UHFFFAOYSA-N 0.000 description 1
- 229940041153 polymyxins Drugs 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- RAGOYPUPXAKGKH-XAKZXMRKSA-N posaconazole Chemical compound O=C1N([C@H]([C@H](C)O)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@H]3C[C@@](CN4N=CN=C4)(OC3)C=3C(=CC(F)=CC=3)F)=CC=2)C=C1 RAGOYPUPXAKGKH-XAKZXMRKSA-N 0.000 description 1
- 230000001374 post-anti-biotic effect Effects 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000011137 process chromatography Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229940055019 propionibacterium acne Drugs 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 229960000918 protionamide Drugs 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- WKSAUQYGYAYLPV-UHFFFAOYSA-N pyrimethamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C=C1 WKSAUQYGYAYLPV-UHFFFAOYSA-N 0.000 description 1
- 229960000611 pyrimethamine Drugs 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- PMZDQRJGMBOQBF-UHFFFAOYSA-N quinolin-4-ol Chemical group C1=CC=C2C(O)=CC=NC2=C1 PMZDQRJGMBOQBF-UHFFFAOYSA-N 0.000 description 1
- 150000007660 quinolones Chemical class 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- SGHWBDUXKUSFOP-KYALZUAASA-N rifalazil Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)N=C2C(=O)C=3C(O)=C4C)C)OC)C4=C1C=3C(NC1=C(O)C=3)=C2OC1=CC=3N1CCN(CC(C)C)CC1 SGHWBDUXKUSFOP-KYALZUAASA-N 0.000 description 1
- 229950005007 rifalazil Drugs 0.000 description 1
- BTVYFIMKUHNOBZ-QXMMDKDBSA-N rifamycin s Chemical class O=C1C(C(O)=C2C)=C3C(=O)C=C1NC(=O)\C(C)=C/C=C\C(C)C(O)C(C)C(O)C(C)C(OC(C)=O)C(C)C(OC)\C=C/OC1(C)OC2=C3C1=O BTVYFIMKUHNOBZ-QXMMDKDBSA-N 0.000 description 1
- 229940081192 rifamycins Drugs 0.000 description 1
- 238000012776 robust process Methods 0.000 description 1
- 229950010458 sanfetrinem Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 201000001223 septic arthritis Diseases 0.000 description 1
- 229960005429 sertaconazole Drugs 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 201000009890 sinusitis Diseases 0.000 description 1
- 229960003177 sitafloxacin Drugs 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 229960001790 sodium citrate Drugs 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- YXEMRWDSRDEZLB-KOKFPPFCSA-M sodium;(1s,5s,8as,8br)-1-[(1r)-1-hydroxyethyl]-5-methoxy-2-oxo-5,6,7,8,8a,8b-hexahydro-1h-azeto[1,2-b]isoindole-4-carboxylate Chemical compound [Na+].[O-]C(=O)C1=C2[C@@H](OC)CCC[C@@H]2[C@H]2N1C(=O)[C@@H]2[C@@H](C)O YXEMRWDSRDEZLB-KOKFPPFCSA-M 0.000 description 1
- HJHVQCXHVMGZNC-JCJNLNMISA-M sodium;(2z)-2-[(3r,4s,5s,8s,9s,10s,11r,13r,14s,16s)-16-acetyloxy-3,11-dihydroxy-4,8,10,14-tetramethyl-2,3,4,5,6,7,9,11,12,13,15,16-dodecahydro-1h-cyclopenta[a]phenanthren-17-ylidene]-6-methylhept-5-enoate Chemical compound [Na+].O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C([O-])=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C HJHVQCXHVMGZNC-JCJNLNMISA-M 0.000 description 1
- 238000000371 solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229940037649 staphylococcus haemolyticus Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 229940041030 streptogramins Drugs 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 229950000153 sulopenem Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- NJGWOFRZMQRKHT-UHFFFAOYSA-N surfactin Natural products CC(C)CCCCCCCCCC1CC(=O)NC(CCC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)O1 NJGWOFRZMQRKHT-UHFFFAOYSA-N 0.000 description 1
- NJGWOFRZMQRKHT-WGVNQGGSSA-N surfactin C Chemical compound CC(C)CCCCCCCCC[C@@H]1CC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)O1 NJGWOFRZMQRKHT-WGVNQGGSSA-N 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229960002722 terbinafine Drugs 0.000 description 1
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical compound C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960003053 thiamphenicol Drugs 0.000 description 1
- OTVAEFIXJLOWRX-NXEZZACHSA-N thiamphenicol Chemical compound CS(=O)(=O)C1=CC=C([C@@H](O)[C@@H](CO)NC(=O)C(Cl)Cl)C=C1 OTVAEFIXJLOWRX-NXEZZACHSA-N 0.000 description 1
- SRVJKTDHMYAMHA-WUXMJOGZSA-N thioacetazone Chemical compound CC(=O)NC1=CC=C(\C=N\NC(N)=S)C=C1 SRVJKTDHMYAMHA-WUXMJOGZSA-N 0.000 description 1
- 229960003231 thioacetazone Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- GXFAIFRPOKBQRV-GHXCTMGLSA-N viomycin Chemical compound N1C(=O)\C(=C\NC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)C[C@@H](N)CCCN)CNC(=O)[C@@H]1[C@@H]1NC(=N)N[C@@H](O)C1 GXFAIFRPOKBQRV-GHXCTMGLSA-N 0.000 description 1
- 229950001272 viomycin Drugs 0.000 description 1
- 108010067142 viscosin Proteins 0.000 description 1
- 229960004740 voriconazole Drugs 0.000 description 1
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/64—Cyclic peptides containing only normal peptide links
- C07K7/66—Gramicidins S, C; Tyrocidins A, B, C; Related peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K11/00—Depsipeptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K11/02—Depsipeptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof cyclic, e.g. valinomycins ; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to crystalline and crystalline-like forms of lipopeptides, including daptomycin, a lipopeptide antibiotic with potent bactericidal activity against gram positive bacteria, including strains that are resistant to conventional antibiotics.
- the present invention also relates to processes for preparing crystalline or crystal-like forms of the lipopeptide and to methods of purifying lipopeptides including daptomycin.
- the present invention also relates to pharmaceutical compositions comprising the purified form of the lipopeptide and methods of using these compositions.
- gram-positive infections including those caused by antibiotic-resistant bacteria
- lipopeptide antibiotics which includes daptomycin.
- Daptomycin has potent bactericidal activity in vitro against clinically relevant gram-positive bacteria that cause serious and life-threatening diseases.
- VRE vancomycin-resistant enterococci
- MRSA methicillin-resistant Staphylococcus aureus
- GISA glycopeptide intermediary susceptible Staphylococcus aureus
- CNS coagulase-negative staphylococci
- PRSP penicillin-resistant Streptococcus pneumoniae
- Daptomycin is described by Baltz in Biotechnology of Antibiotics, 2nd Ed., ed. W. R. Strohl (New York: Marcel Dekker, Inc.), 1997, pp. 415-435.
- Daptomycin also known as LY 146032, is a cyclic lipopeptide antibiotic that can be derived from the fermentation of Streptomyces roseosporus.
- Daptomycin is a member of the factor A-21978C 0 type antibiotics of S. roseosporus and is comprised of a decanoyl side chain linked to the N-terminal tryptophan of a cyclic 13-amino acid peptide ( FIG. 1 ).
- Daptomycin has an excellent profile of activity because it is highly effective against most gram-positive bacteria; it is highly bactericidal and fast-acting; it has a low resistance rate and is effective against antibiotic-resistant organisms.
- the compound is currently being developed in a variety of formulations to treat serious infections caused by bacteria, including, but not limited to, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE).
- MRSA methicillin-resistant Staphylococcus aureus
- VRE vancomycin-resistant enterococci
- a number of U.S. patents describe A-21978C 0 antibiotics and daptomycin-related lipopeptides including daptomycin (LY 146032). These patents also describe methods of producing and isolating the A-21978C 0 antibiotics and daptomycin-related lipopeptides.
- U.S. Pats. RE32,333, RE32,455, 4,800,157, 4,874,843, and 4,885,243 describe methods of synthesizing and isolating daptomycin from fermentation cultures of Streptomyces roseosporus.
- U.S. Pats. RE32,310, RE32,311, 4,537,717, 4,482,487 and 4,524,135 describe A-21978C 0 antibiotics and methods of deacylating the A-21978C 0 antibiotic and reacylating the peptide nucleus and antibiotic derivatives made by this process.
- U.S. Pat. No. 4,439,425 discloses a crystalline lipopeptide and a method of crystallizing the lipopeptide.
- the lipopeptide disclosed in the '425 patent is structurally dissimilar from daptomycin and daptomycin-related lipopeptides.
- U.S. Pat. No. 5,336,756 also discloses a crystalline cyclic lipopeptide comprising a hexapeptide.
- the crystalline cyclic lipopeptide disclosed in the '756 patent is also structurally dissimilar from daptomycin and daptomycin-related lipopeptides.
- the '756 patent discloses that the lipopeptide, an echinocandin-type compound, can be obtained when aqueous n-propanol is employed as the crystallizing solvent. See, e.g., cols. 1-2 of the '756 patent. Neither the '425 patent nor the '756 patent disclose methods of crystallizing or precipitating daptomycin or a daptomycin-related lipopeptide, nor do they disclose methods of crystallizing or precipitating lipopeptides produced by Streptomyces.
- a crystalline or highly purified precipitated form of daptomycin or other daptomycin-related lipopeptide would be useful in formulating pharmaceutical compositions for treating bacterial infections.
- a crystalline or highly purified precipitated form of daptomycin or daptomycin-related lipopeptide would be useful in a method to make a sterile product, particularly bulk sterile product.
- the instant invention addresses these problems by providing crystalline and crystalline-like forms of lipopeptides, particularly daptomycin and daptomycin-related lipopeptides and methods for producing them.
- the invention provides methods for crystallizing lipopeptides.
- the methods provide a lipopeptide that is more pure after crystallization or precipitation than before crystallization or precipitation.
- the invention also provides robust processes for producing and purifying lipopeptides comprising, inter alia, crystallizing or precipitating lipopeptides.
- the crystallizing or precipitating steps of the processes are used to purify the lipopeptides.
- the processes are used for large-scale and/or commercial production of lipopeptides, preferably daptomycin.
- the invention further provides highly purified crystalline or crystal-like forms of daptomycin and daptomycin-related lipopeptides.
- the crystalline or crystal-like forms of the lipopeptides may be used in pharmaceutical compositions.
- the invention comprises methods of using the pharmaceutical compositions.
- FIG. 1 shows the structure of daptomycin.
- FIG. 2 shows a photomicrograph of urchin-like crystal or crystal-like particle of daptomycin produced by the method described in Example 12.
- FIG. 3 shows a photomicrograph of needle-like crystals of daptomycin.
- FIG. 4 shows a photomicrograph of rod-like crystals of daptomycin.
- FIG. 5 shows photomicrographs of daptomycin samples at 100 ⁇ magnification. Photomicrographs of amorphous daptomycin are shown using plane transmitted light (A) and using crossed polarized light (B). Photomicrographs of daptomycin crystals are shown using plane transmitted light (C and E) and using crossed polarized light (D and F). The daptomycin crystals were produced by the protocol disclosed in Example 7.
- FIG. 6 shows an x-ray powder diffraction pattern for amorphous daptomycin.
- FIG. 7 shows an x-ray powder diffraction pattern for a daptomycin crystal produced by the protocol described in Example 7.
- FIG. 8 shows an x-ray powder diffraction pattern for a second sample of a daptomycin crystal produced by the protocol described in Example 7.
- FIG. 9 shows birefringence of a crystal-like particle of daptomycin when exposed to polarized light.
- the crystal-like particle was produced by the method described in Example 12.
- FIG. 10 shows a flow chart of an exemplary method for crystallization.
- FIG. 11 shows a flow chart of an exemplary manufacturing method that does not use crystallization or precipitation.
- the manufacturing method uses bacterial fermentation to produce a fermentation culture containing daptomycin, and then purification of daptomycin using microfiltration, anion exchange chromatography, size exclusion ultrafiltration, hydrophobic interaction chromatography, anion exchange chromatography for solvent removal, ultrafiltration for pyrogen removal, reverse osmosis and filling vials with daptomycin. See, e.g., International PCT Publication WO 01/44274, published Jun. 21, 2001, herein incorporated by reference for a detailed description of this type of method.
- FIG. 12 shows a flow chart of an exemplary manufacturing method of a lipopeptide compound comprising the steps of fermentation, microfiltration, anion exchange chromatography, size exclusion ultrafiltration, crystallization or precipitation, crystal or precipitate drying, and dry filling of vials with the compound. See, e.g., Example 13.
- FIG. 13 shows a flow chart of an exemplary manufacturing method of a lipopeptide compound comprising the steps of fermentation, microfiltration, anion exchange chromatography, crystallization or precipitation, crystal or precipitate drying, and dry filling of vials with the compound. See, e.g., Example 14.
- FIG. 14 shows a flow chart of an exemplary manufacturing method of a lipopeptide compound comprising the steps of fermentation, microfiltration, size exclusion ultrafiltration, crystallization or precipitation, crystal or precipitate drying, and dry filling of vials with the compound. See, e.g., Example 15.
- FIG. 15 shows a flow chart of an exemplary manufacturing method of a lipopeptide compound comprising the steps of fermentation, microfiltration, crystallization or precipitation, crystal or precipitate drying, and dry filling of vials with the compound. See, e.g., Example 16.
- FIG. 16 depicts the structure of CB-131547, a cyclic lipopeptide analog of daptomycin
- One object of the present invention is to provide methods for crystallizing or precipitating lipopeptides.
- the methods are used to crystallize or precipitate daptomycin or a daptomycin-related lipopeptide.
- the methods increase the purity of the lipopeptide compared to the purity of the lipopeptide prior to crystallization or precipitation.
- the methods comprise the steps of providing an amorphous preparation of a lipopeptide and crystallizing or precipitating the lipopeptide under conditions in which the crystalline or precipitated, crystal-like lipopeptide is more pure than the amorphous preparation of the lipopeptide.
- the amorphous preparation is no greater than 92% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% or more pure. In another embodiment, the amorphous preparation is no greater than 80% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% or more pure. In another embodiment, the amorphous preparation is no greater than 60% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% ore more pure.
- the amorphous preparation is no greater than 40% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% or more pure. In another embodiment, the amorphous preparation is no greater than 20% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure; and ma y be at least 96%, 97% or 98% or more pure. In a further preferred embodiment, the amorphous preparation is no greater than 10% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% or more pure.
- Another object of the invention is to provide processes fbr making and purifying a lipopeptide comprising, inter alia, crystallizing or precipitating the lipopeptides.
- the crystallizing or precipitating steps are used to purify the lipopeptides.
- the crystallization or precipitation is performed by batch crystallized or precipitation.
- the process is a large-scale process for commercial production of a lipopeptide, preferably daptomycin or a daptomycin-related lipopeptide.
- the lipopeptide is produced by fermentation. The fermentation product is then purified by a variety of purification techniques including crystallization or precipitation.
- the crystallization or precipitation step may be used in combination with other purification techniques including microfiltration, size exclusion ultrafiltration and/or anion exchange chromatography.
- the crystallization or precipitation step is used to replace one or more purification techniques that is used in a purification process that does not use crystallization or precipitation.
- the crystallization or precipitation step is used to increase purification compared to the other steps without the crystallization or precipitation step.
- the method comprises a step of collecting the crystalline or crystal-like lipopeptide after crystallization or precipitation.
- Another object of the present invention is to provide highly purified, e.g. sterile, crystalline or crystal-like forms of lipopeptides.
- the lipopeptides are daptomycin or a daptomycin-related lipopeptide.
- the crystalline or crystal-like form of the lipopeptide may have any crystalline or crystal-like shape including urchin-like (cluster of needles joined together to visually resemble a sea urchin)(see FIG. 2 ), needle-like (see FIG. 3 ), rod-like (see FIG. 4 ), plate-like or flake-like.
- the crystalline or crystal-like lipopeptide has a purity of at least 80%, and may be at least 85%, 90% pure.
- the crystalline or crystal-like form of the lipopeptide has a purity of at least 95%, and may be at least 96%, 97%, 98% pure or more.
- a further object of the present invention is to provide a pharmaceutical composition comprising a crystalline or crystal-like form of a lipopeptide.
- the lipopeptide is daptomycin or a daptomycin-related lipopeptide.
- the pharmaceutical comp. is enterically coated for oral administration or is formulated in the form of micronized particles or microspheres. In other embodiments, the invention provides methods for administering the pharmaceutical compositions to subjects in need thereof.
- lipopeptide refers to a molecule that comprises a lipid-like moiety covalently linked to a peptide moiety, as well as salts, esters, amides and ethers thereof.
- lipopeptide also encompasses protected forms of lipopeptides in which one or more amino, carboxylate or hydroxyl groups are protected. See, e.g., “Protective Groups in Organic Synthesis” by Theodora W. Greene, John Wiley and Sons, New York, 1981 for examples of protecting groups.
- the lipopeptide is an antibiotic.
- the lipopeptide is LY 303366, echinocandins, pneumocandins, aculeacins, viscosin, surfactin, plipastatin B 1, amphomycin or the lipopeptide derivative disclosed in U.S. Pat. No. 5,629,288.
- these lipopeptides are known in the art. See, e.g., U.S. Pat. No. 5,202,309 and International PCT Application WO 00/08197.
- the lipopeptide is a daptomycin-related molecule.
- the lipopeptide is daptomycin.
- a “daptomycin-related molecule” includes, inter alia, daptomycin, A54145 or other lipopeptide that is structurally related to daptomycin, such as a daptomycin-related lipopeptide, including all stereoisomers that may be made at any chiral centers present in these molecules.
- a “daptomycin-related lipopeptide” includes, without limitation, a lipopeptide disclosed in U.S. Pat. Nos. 4,537,717, 4,482,487, RE32,311, RE32,310, and 5,912,226, currently in reissue as U.S. application Ser. No. 09/547,357. Daptomycin-related lipopeptides also include those disclosed in International PCT Publication WO 01/44272, published Jun. 21, 2001; International PCT Publication WO 01/44274, published Jun. 21, 2001; and International PCT Publication WO 01/44271, published Jun. 21, 2001; all of these applications are specifically incorporated herein by reference.
- the daptomycin-related lipopeptides disclosed in the above-identified applications relate to synthetic and semisynthetic lipopeptides in which the ornithine and/or kynurine residues, and/or the fatty acid side chain of daptomycin, are modified.
- Daptomycin-related lipopeptides further include an A-21978C 0 antibiotic in which the n-decanoyl fatty acid side chain of daptomycin is replaced by a n-octanoyl, n-nonanoyl, n-undecanoyl, n-dodecanoyl, n-tridecanoyl or n-tetradecanoyl fatty acid side chain.
- daptomycin refers to the n-decanoyl derivative of the factor A-21978C 0 -type antibiotic that contains an ⁇ -aspartyl group. “Daptomycin” is synonymous with LY 146032.
- anhydro-daptomycin refers to a daptomycin-related lipopeptide in which an ⁇ -aspartyl group of daptomycin is cyclized to a succinimido group. See, e.g., the '226 patent for the structure of anhydro-daptomycin.
- ⁇ -isomer or “ ⁇ -isomer of daptomycin” refers to a daptomycin-related lipopeptide that contains a ⁇ -aspartyl group instead of an o-aspartyl group. See, e.g., the '226 patent for the structure of ⁇ -isomer of daptomycin.
- isolated refers to a compound or product that is at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the compound present in a mixture. It will be understood that the term “isolated” also refers to a compound that is at least 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80% or 80-90% of the compound present in the mixture group. The percentage of compound in a mixture may be measured by any means known in the art, as described below for measuring purity of a compound. “Substantially pure” refers to a sample having at least 95% of a desired compound.
- daptomycin is “substantially pure” when at least 95% to at least 97% of a sample is daptomycin.
- a daptomycin-related lipopeptide is “substantially pure” when at least 95% to at least 97% of a sample is a daptomycin-related lipopeptide.
- Daptomycin or a daptomycin-related lipopeptide is “essentially pure” when at least 98% to at least 99% of a sample is daptomycin or a daptomycin-related lipopeptide, respectively.
- Daptomycin or a daptomycin-related lipopeptide is “substantially free” of another compound when the other compound is present in an amount that is no more than 1% of the amount of the daptomycin or the daptomycin-related lipopeptide preparation, respectively.
- Daptomycin or a daptomycin-related lipopeptide is “essentially free” of another compound when the other compound is present in an amount that is no more than 0.5% of the amount of the daptomycin or the daptomycin-related lipopeptide preparation, respectively.
- Daptomycin or a daptomycin-related lipopeptide is “free” of another compound when the other compound is present in an amount that is no more than 0. 1% of the amount of the daptomycin or the daptomycin-related lipopeptide preparation, respectively.
- daptomycin or a daptomycin-related lipopeptide is “free” of another compound when the compound cannot be detected by HPLC under conditions of maximum sensitivity in which a limit of detection is approximately 0.05% or less of the amount of the daptomycin or the daptomycin-related lipopeptide preparation, respectively.
- “Purified” daptomycin refers to substantially pure daptomycin, essentially pure daptomycin, or a salt thereof, or to daptomycin or a salt thereof which is substantially free, essentially free, or free of another compound.
- a “purified” daptomycin-related lipopeptide refers to a substantially pure daptomycin-related lipopeptide, an essentially pure daptomycin-related lipopeptide, or a salt thereof, or to a daptomycin-related lipopeptide or a salt thereof which is substantially free, essentially free, or free of another compound.
- “Crude” daptomycin refers to daptomycin or a salt thereof that is less than 90% pure.
- crude daptomycin-related lipopeptide refers to a daptomycin-related lipopeptide or a salt thereof that is less than 90% pure.
- “Semi-purified” daptomycin refers to daptomycin or a salt thereof that is at least 90% pure and less than 95% pure.
- “semi-purified” daptomycin-related lipopeptide refers to a daptomycin-related lipopeptide or a salt thereof that is at least 90% pure and less than 95% pure.
- the purity of daptomycin, daptomycin-related lipopeptide or of another lipopeptide refers to the lipopeptide prior to its formulation in a pharmaceutical composition.
- the purity of the lipopeptide is referred to by “percent purity.”
- the measure of purity is not a measure of degree of crystallinity of the crystalline preparation.
- the purity may be measured by any means including nuclear magnetic resonance (NMR), gas chromatography/mass spectroscopy (GC/MS), liquid chromatography/mass spectroscopy (LC/MS) or microbiological assays.
- NMR nuclear magnetic resonance
- GC/MS gas chromatography/mass spectroscopy
- LC/MS liquid chromatography/mass spectroscopy
- microbiological assays One preferred means for measuring the purity of daptomycin is by analytical high pressure liquid chromatography (HPLC). Two methods of analytical HPLC are described in International PCT Publication WO 01/53330, published Jul. 26, 2001, which is herein incorporated specifically by
- a “lipopeptide crystal” refers to one or more crystals of a lipopeptide or of a lipopeptide salt.
- the determination of a lipopeptide as a crystal can be determined by any means including, inter alia, optical microscopy, electron microscopy, x-ray powder diffraction, solid state nuclear magnetic resonance (NMR) or polarizing microscopy. Microscopy can be used to determine the crystal length, diameter, width, size and shape, as well as whether the crystal exists as a single particle or is polycrystalline.
- a lipopeptide or lipopeptide particle is “crystal-like” if it is determined to have crystalline characteristics when determined by one means, e.g., visually or by optical or polarizing microscopy, but does not have crystalline characteristics when determined by another means, e.g., x-ray powder diffraction.
- a lipopeptide that is “crystal-like” may be crystalline under certain conditions but may become non-crystalline when subjected to other conditions.
- a “crystalline lipopeptide” or a “crystalline form of a lipopeptide” refers to a preparation of a lipopeptide or salt thereof that comprises lipopeptide crystals.
- a crystalline lipopeptide may comprise some amount of amorphous lipopeptide.
- the crystalline lipopeptide comprises more than 50% by weight of lipopeptide crystals.
- the crystalline lipopeptide comprises more than 60%, 70%, 80%, 90% or 95% of lipopeptide crystals.
- the crystalline lipopeptide may comprise 50-60%, 60-70%, 70-80%, 80-90% or 90-95% of lipopeptide crystals.
- the crystalline lipopeptide comprises more than 95% of lipopeptide crystals, e.g., at least 96%, 97%, 98% or 99% lipopeptide crystals or 100% lipopeptide crystals.
- the crystalline lipopeptide may also comprise anywhere from 95-100% lipopeptide crystals.
- the percent by weight of lipopeptide crystals refers to the lipopeptide preparation prior to its formulation in a pharmaceutical composition.
- an “amorphous” form of a lipopeptide refers to a lipopeptide preparation that comprises few or no lipopeptide crystals or crystal-like lipopeptides (or crystal-like particles) as defined herein.
- an amorphous lipopeptide comprises less than 20% by weight of lipopeptide crystals or crystal-like lipopeptides.
- an amorphous lipopeptide comprises less than 10% by weight of lipopeptide crystals or crystal-like lipopeptides.
- an amorphous lipopeptide comprises less than 5% by weight of lipopeptide crystals or crystal-like lipopeptides.
- an amorphous lipopeptide comprises less than 1% by weight of lipopeptide crystals or crystal-like lipopeptides.
- Batch crystallization refers to a method in which the lipopeptide of interest is mixed with the crystallization reagents in solution and the lipopeptide is allowed to crystallize in solution.
- Batch precipitation refers to a method in which the lipopeptide is mixed with precipitation reagents in solution and the lipopeptide is allowed to precipitate in solution.
- the crystalline or precipitated preparation is collected from the solution. In another embodiment, the crystalline or precipitated preparation is collected by filtration or centrifugation.
- Organic precipitant refers to a polyethylene glycol (PEG) or polyethylene glycol monomethyl ether (PEG MME) or compounds that are chemically similar.
- Salts refer to ionic compounds. These ionic compounds may act as precipitants.
- Low molecular weight alcohols are organic compounds containing at least one alcohol functional group, and eight carbon atoms or less.
- low molecular weight alcohols include, without limitation, methanol, isopropanol, and tert-butanol.
- Polyhydric alcohols refer to compounds that contain more than one alcohol group, and less than eight carbon atoms. Polyhydric alcohols, for example, include, without limitation, 1,6 hexanediol, ethylene glycol, propylene glycol, glycerol, 1,2-propanediol, 2-methyl-2,4-pentanediol and 1,4 butanediol.
- Container refers to a receptacle for holding goods.
- a container may include, without limitation, an ampule, vial, tube, bottle, or cylinder.
- One object of the invention is to provide a method for purifying a lipopeptide comprising the steps of providing an amorphous preparation of a lipopeptide and crystallizing or precipitating the lipopeptide.
- the lipopeptide has a higher degree of purity after crystallization or precipitation than prior to being subjected to crystallization or precipitation.
- Lipopeptides may be crystallized by hanging drop, sitting drop or sandwich drop vapor diffusion, liquid-liquid or free interface diffusion, microdialysis or dialysis, slow solvent evaporation, sublimation, or microbatch or batch crystallization.
- a lipopeptide may be precipitated in a similar way, preferably a lipopeptide is precipitated by batch precipitation.
- the crystallized or precipitated lipopeptide is daptomycin or a daptomycin-related lipopeptide.
- the crystallized or precipitated lipopeptide is daptomycin.
- Lipopeptides may be crystallized or precipitated following the teachings of this specification.
- a lipopeptide can be crystallized or precipitated by providing a solution comprising a lipopeptide with a low molecular weight or polyhydric alcohol, a pH buffering agent and a salt comprising a monovalent or divalent cation and allowing precipitation or crystallization to occur, as discussed further infra.
- the salt has buffering capacity such that an additional pH buffering agent does not have to be present in the solution.
- the salt comprises a divalent cation.
- the solution provided does not include PEG or PEG-MME or chemically similar compounds.
- the method for precipitating or crystallizing the lipopeptide generally comprises the steps of:
- the samples may be monitored, inter alia, for crystal or precipitate formation by microscopic examination and the yield may be followed spectrophotometrically.
- the crystallized or precipitated lipopeptide is daptomycin or a daptomycin-related lipopeptide.
- the lipopeptide in another embodiment, can be crystallized by providing a solution comprising a low molecular weight or polyhydric alcohol(s), salts and an organic precipitant as discussed further infra.
- the crystallized lipopeptide is daptomycin.
- the lipopeptide is dissolved in a solution and low molecular weight alcohols, salts, buffers and/or organic precipitants are added to the solution.
- the samples are then crystallized under the appropriate temperature conditions, with or without stirring.
- the samples may be monitored, inter alia, for crystal formation by microscopic examination and the yield may be followed spectrophotometrically.
- the lipopeptide preferably daptomycin or a daptomycin-related lipopeptide
- the alcohol is a low molecular weight or polyhydric alcohol.
- low molecular weight or polyhydric alcohols include, without limitation, methanol, isopropanol, tert-butanol, 1,6 hexanediol, ethylene glycol, propylene glycol, glycerol, 1,2-propanediol, 2-methyl-2,4-pentanediol and 1,4 butanediol.
- the alcohol is isopropanol, tert-butanol, glycerol, 1,6-hexanediol, 1,2-propanediol, 1,4-butanediol, propylene glycol and/or ethylene glycol. In a more preferred embodiment, the alcohol is isopropanol.
- Salts include, inter alia, magnesium or sodium formate, ammonium sulfate, ammonium dihydrogen phosphate, calcium acetate, zinc acetate, tri-sodium citrate dihydrate, magnesium acetate, sodium acetate, magnesium chloride, cadmium chloride, ammonium acetate, sodium chloride and lithium sulfate.
- the salt comprises a monovalent cation, e.g., sodium.
- the salt comprises a divalent cation.
- the salt comprises a calcium cation, a magnesium cation or a manganese cation.
- the salt comprises a calcium divalent cation.
- the salt is calcium chloride, calcium acetate, zinc acetate, sodium citrate, tri-sodium citrate dihydrate, magnesium chloride, lithium sulfate, sodium chloride, magnesium acetate, sodium acetate or a manganese salt, such as manganese acetate or manganese chloride.
- the salt is calcium acetate.
- Examples of other salts that comprise a divalent cation, such as a calcium cation are known in the art, and include, inter alia, those listed in the 2000 Sigma catalog, herein incorporated by reference.
- Organic precipitants include, inter alia, polyethylene glycols (PEGs) that can vary in average molecular weight from between 300 and 10,000, or polyethylene glycol monomethyl ether (PEG-MME).
- PEGs polyethylene glycols
- PEG-MME polyethylene glycol monomethyl ether
- the organic precipitant is PEG 300, PEG 600, PEG 2000, PEG 4000, PEG 8000 or PEG 10,000.
- the lipopeptide is precipitated or crystallized from a solution that is buffered to pH 5.0 to 9.5.
- the solution prior to being buffered, the solution has a pH of about 1.5, 2.0 or 3.0.
- daptomycin or a daptomycin-related lipopeptide is precipitated or crystallized from a solution of approximately pH 5.5 to approximately pH 7.5.
- the buffer has a pH of approximately 5.9 to approximately pH 6.3.
- the buffered solution may be obtained by using a pH buffering agent.
- pH buffering agents include, without limitation, Tris, phosphate, citrate, HEPES, CHES, sodium acetate or 2-morpholinoethanesulfonic acid (MES), sodium borate, sodium cacodylate, imidazole and tri-sodium citrate dihydrate.
- the salt is sodium cacodylate, sodium acetate, tri-sodium citrate dihydrate, HEPES, MES, CHES, imidazole, calcium acetate and Tris-HCl.
- the pH buffer is calcium acetate pH 6.1, sodium acetate pH 6.1, sodium cacodylate pH 6.5, tri-sodium citrate dihydrate pH 5.6, HEPES pH 7.5, imidazole pH 8, MES pH 6.0, calcium acetate pH 6 and Tris-HCl pH 8.5.
- the solution may be buffered by using a salt that also has buffering capacity.
- the pH buffer is calcium acetate pH 6. 1.
- the lipopeptide is precipitated or crystallized using hanging drop vapor diffusion from a solution containing 2 to 40% low molecular weight or polyhydric alcohol, 0.001 to 0.5 M salt and 0.005 to 0.2 M pH buffering agent.
- the lipopeptide is precipitated or crystallized from a solution containing 3 to 30% low molecular weight or polyhydric alcohol, 0.01 to 0.3 M salt and 0.01 to 0.1 M pH buffering agent.
- the lipopeptide is precipitated or crystallized from a solution containing 5 to 20% low molecular weight or polyhydric alcohol, 0.02 to 0. I M salt and 0.02 to 0.07 M pH buffering agent.
- the solution provided may or may not include polyethylene glycol (PEG) or polyethylene glycol monomethyl ether (PEG-MME).
- the lipopeptide is precipitated or crystallized using batch crystallization from a solution containing 65 to 95% low molecular weight or polyhydric alcohol, 0.001, to 0.5 M salt and 0.001 to 0.2 M pH buffering agent.
- the lipopeptide is precipitated or crystallized from a solution containing 70 to 90% low molecular weight or polyhydric alcohol, 0.005 to 0.04 M salt and 0.005 to 0.04 M pH buffering agent.
- the lipopeptide is crystallized from a solution which also comprises 3-8% organic precipitant.
- the lipopeptide is precipitated or crystallized from a solution containing 80 to 85% low molecular weight or polyhydric alcohol, 0.01 to 0.03 M salt and 0.01 to 0.03 M pH buffering agent.
- the solution further comprises about 4 to 5% organic precipitant, e.g., PEG or PEG-MME.
- the solution provided does not include polyethylene glycol (PEG) or polyethylene glycol monomethyl ether (PEG-MME).
- the lipopeptide is precipitated or crystallized at a temperature from approximately 0° C. to approximately 30° C. to obtain precipitate or crystal formation, respectively.
- a lipopeptide is crystallized or precipitated at a temperature of approximately 20-30° C.
- the mixture is crystallized or precipitated at approximately 23-28° C.
- the mixture is crystallized or precipitated at approximately 27° C.
- the mixture may be crystallized or precipitated for any time period that results in crystallization or precipitation, preferably approximately one hour to approximately two weeks.
- the mixture is stored for a period of approximately three hours to approximately 24 hours, more preferably approximately 8-18 hours.
- Lipopeptide crystals or crystal-like particles may have a shape that is, without limitation, needle-like, rod-like, urchin-like, flake-like, plate-like or clusters thereof.
- lipopeptide crystals or crystal-like particles are urchin-like, rod-like or needle-like.
- the shape of the crystal or crystal-like particle may be determined, inter alia, by optical or electron microscopy.
- lipopeptide crystals or crystal-like particles may be any size that is at least approximately 0.5 ⁇ m in diameter in any one dimension.
- lipopeptide crystals or crystal-like particle are at least 5 ⁇ m, more preferably at least 10 ⁇ m.
- the lipopeptide crystals or crystal-like particles are at least 50 ⁇ m, more preferably at least 100 ⁇ m.
- the size of the crystal may be determined by any method known to one having ordinary skill in the art. See, e.g., United States Pharmacopeia (USP), pp. 1965-67.
- the properties of a crystalline or crystal-like lipopeptide may be determined by any method known to one having ordinary skill in the art.
- the properties that can be determined include the crystalline or crystal-like lipopeptide's size, shape, birefringence properties, powder x-ray diffraction properties, solid state NMR properties, melting temperature and stability to heat, light, humidity, and degradation.
- one having ordinary skill in the art may determine whether a lipopeptide is crystalline by powder x-ray diffraction. Powder x-ray diffraction is highly useful for determining whether a preparation is crystalline when the sample is a randomly-oriented collection of small crystals.
- powder diffraction is measured by an Automated Powder Diffraction instrument in order to determine whether a lipopeptide is crystalline. See, e.g., Atkins et al., Physical Chemistry, pp. 710-716 (1978), herein incorporated by reference for a discussion of the Debye-Scherrer method for powder diffraction. Any powder diffractometer instrument known in the art that is equipped with any detector for powder diffraction that known in the art could be used to measure the diffraction pattern.
- a lipopeptide is crystallized or precipitated using a buffering agent between approximately pH 5.0 and 9.5, a salt and an alcohol at a temperature of approximately 24-28° C. for a period of approximately three to 24 hours.
- the salt is a buffering agent and comprises a divalent cation and the alcohol is a low molecular weight alcohol, and the pH is between approximately pH 5.5 and 7.5.
- the salt is a calcium salt, the alcohol is isopropanol and the pH is between approximately pH 5.9 and 6.3.
- the solution includes an organic precipitant, preferably the organic precipitant is PEG 4000 or PEG 8000.
- the lipopeptide is precipitated or crystallized from a solution containing 12 to 18% glycerol, 0.3 to 0.8m salt, 0.03 to 0.08 m pH buffering agent, and 12-18% PEG 600.
- the lipopeptide is daptomycin or a daptomycin-related lipopeptide. Examples 2-3 provide methods for precipitating a highly pure crystal-like daptomycin.
- One having ordinary skill in the art, following the teachings of the instant specification, may modify the crystallization/precipitation conditions provided in the examples to crystallize or precipitate daptomycin, daptomycin-related lipopeptides, or other lipopeptides of interest.
- teachings of the instant specification describe the use of a single crystallization or precipitation step in a process for purifying a lipopeptide
- teachings of the specification may use multiple crystallization or precipitation steps in a process for purifying a lipopeptide. It may be advantageous to employ multiple rounds of crystallization or precipitation as disclosed herein in order to further increase purity of the lipopeptide.
- the crystalline material or crystal-like precipitate After crystallization or precipitation, one may collect the crystalline material or crystal-like precipitate by any method known in the art. In a preferred embodiment, the crystalline material or crystal-like precipitate is collected by centrifugation or filtration. In an even more preferred embodiment, the crystalline material or crystal-like precipitate is collected by filtration because filtration is easily incorporated into a large-scale process for producing a lipopeptide. After the crystalline material or crystal-like precipitate is collected, it may be washed to remove excess crystallizing or precipitating reagents. Any wash solvent known in the art may be chosen so long as it does not appreciably dissolve the crystalline material or crystal-like precipitate. An example of a wash solvent is provided in Example 12.
- the crystalline material or crystal-like precipitate may be dried by any method known in the art. Examples of drying methods include air-drying, lyophilization (freeze-drying) or desiccation. In a preferred method, the crystalline material or crystal-like precipitate is desiccated. See, e.g., Example 12.
- the crystalline lipopeptide's stability may be determined by its residual antibiotic activity or its degradation. The antibiotic activity may be measured in a standard agar-diffusion assay against various bacterial strains. See, e.g., Example 32 of U.S. Pat. No. 4,537,717, specifically incorporated herein by reference.
- the amount of degradation can be measured by, inter alia, HPLC analysis, such as that described in International PCT Publication WO 01/53330, published Jul. 26, 2001.
- the stability of the crystalline lipopeptide is greater than that of the amorphous form of the lipopeptide.
- the stability of the crystalline lipopeptide may be determined by exposing the crystalline lipopeptide and an amorphous form thereof to heat, light, humidity, and measuring the degree of degradation of the crystalline form to that of the amorphous form.
- Degradation of the lipopeptide may be measured by determining the biological activity of the lipopeptide or any applicable physical parameter.
- degradation may be measured by determining a particular biological activity of a lipopeptide after it has been subjected to heat, light, humidity, changes in pH or extreme pH, and comparing it to the same biological activity of the lipopeptide prior to any tests of stability.
- the amount of degradation may be determined, for example, by determining the percentage of biological activity remaining after the test of stability. The percentage of remaining biological activity may be compared to that of an amorphous form of the lipopeptide that has been subjected to the same test.
- the crystalline lipopeptide may be tested for its antibiotic activity both prior to and after a test of its stability and compared to an amorphous form that has been tested prior to and after a degradation test.
- the lipopeptide is daptomycin or a daptomycin-related lipopeptide, and the biological activity test determines the amount of antibiotic activity of the lipopeptides against gram-positive bacteria.
- Degradation of a lipopeptide may also be measured by a physical assay.
- degradation may be measured by determining the percentage of intact crystalline lipopeptide that remains after a test of its stability. The percentage of remaining intact lipopeptide may be compared to that of an amorphous form of the lipopeptide that has been subjected to the same test for stability.
- the degradation of the lipopeptide may be measured by HPLC, ultraviolet spectroscopy, infrared spectroscopy, NMR, or mass spectroscopy.
- HPLC is used to determine the percentage of intact lipopeptide that remains after a crystalline form of a lipopeptide has been subjected to a test of its stability.
- daptomycin is crystallized by the methods described above. However, it is thought that washing and/or drying the daptomycin crystals causes the daptomycin crystalline material to revert to a non-crystalline but still crystal-like form. Nevertheless, even if the methods described above only precipitate rather than crystallize the daptomycin or other lipopeptide, the methods still are advantageous because the methods purify the lipopeptide.
- the invention also provides a crystalline or crystal-like lipopeptide produced by the above-described methods.
- the crystalline or crystal-like lipopeptide comprises a lower amount of one or more impurities compared to the lipopeptide before crystallization or precipitation.
- crystalline or crystal-like lipopeptide is daptomycin that comprises a lower level of anhydro-daptomycin and/or the P-isomer of daptomycin compared to daptomycin before crystallization or precipitation.
- crystalline or crystal-like daptomycin comprises a lower level of all impurities compared to amorphous daptomycin.
- the crystalline or crystal-like lipopeptide is a daptomycin-related lipopeptide, as described above, which comprises a lower level of one or more impurities compared to an amorphous form of the daptomycin-related lipopeptide.
- the crystalline or crystal-like daptomycin-related lipopeptide comprises a lower level of all impurities compared to an amorphous form of the daptomycin-related lipopeptide.
- the crystalline or crystal-like lipopeptide produced by the method described above likely comprises monovalent or divalent cations and water.
- the crystalline or crystal-like lipopeptide is daptomycin or daptomycin-related lipopeptide that comprises a divalent cation.
- the divalent cation is a calcium cation.
- the crystalline or crystal-like daptomycin or daptomycin-related lipopeptide comprises approximately 1-10% by weight of a divalent calcium cation and approximately 0-15% by weight of water as determined by atomic absorption or thermal gravity analysis.
- the crystalline or crystal-like lipopeptide is daptomycin that comprises approximately 5% by weight of a divalent calcium cation and approximately 10% by weight of water; by HPLC analysis, the purity of the crystalline or crystal-like daptomycin is at least 95%, 96%, 97% or 98% or is any purity between 95-98%, relative to related substances and organic contaminants.
- the crystalline or crystal-like daptomycin or daptomycin-related lipopeptide comprises a monovalent cation such as sodium. Without wishing to be bound by any theory, it is thought that daptomycin or a daptomycin-related lipopeptide may form a salt with the monovalent or divalent cation when it crystallizes or precipitates.
- the crystalline form of the lipopeptide may exhibit an increased solubility in a solution or an increased rate of reconstitution in a solution than an amorphous form of the lipopeptide.
- the concentration of lipopeptide is measured by HPLC.
- the lipopeptide is daptomycin or a daptomycin-related lipopeptide.
- daptomycin or a daptomycin-related lipopeptide has a purity of no more than 92% before crystallization and has a purity of at least approximately 95%, 96%, 97% or 98% purity, or any purity between 95-98%, after crystallization or precipitation as a crystal-like lipopeptide.
- daptomycin or a daptomycin-related lipopeptide has a purity of no more than 90% before crystallization and has a purity of approximately at least 97% or 98% after crystallization.
- the daptomycin has a purity of no more than 80%, preferably no more than 70% and more preferably no more than 60% purity before crystallization or precipitation, and has at least approximately 95%, 96%, 97% or 98% purity, or any purity between 95-98%, after purification.
- the daptomycin has a purity of no more than 50%, preferably no more than 40%, more preferably no more than 30% purity before crystallization and has at least approximately 95%, 96%, 97% or 98% purity, or any purity between 95-98%, after purification by crystallization or precipitation.
- daptomycin has a purity of no more than 20%, more preferably no more than 15%, even more preferably no more than 10% purity before crystallization and has at least approximately 95%, 96%, 97% or 98% purity, or any purity between 95-98%, after purification.
- the lipopeptide is daptomycin.
- a daptomycin preparation may be obtained by any method disclosed, e.g., in any one U.S. Pats. RE32,333, RE32,455, 4,800,157, RE32,310, RE32,311, 4,537,717, 4,482,487, 4,524,135, 4,874,843, 4,885,243 or 5,912,226, which are herein incorporated specifically by reference.
- a daptomycin preparation may also be obtained by one of the methods described in International PCT Publication WO 01/53330, published Jul. 26, 2001.
- the lipopeptide preparation is crystallized or precipitated following the teachings of the specification described herein to produce a crystalline or crystal-like lipopeptide that is more pure or that contains lower levels of specific impurities, e.g., anhydro-daptomycin, than the lipopeptide preparation from which it is prepared.
- specific impurities e.g., anhydro-daptomycin
- the method comprises the steps of producing a lipopeptide by any method known in the art, such as fermentation of a naturally-occurring or recombinant organism, and then subjecting the lipopeptide preparation to any one or more purification methods such as microfiltration, anion exchange chromatography, hydrophobic interaction chromatography, and/or size exclusion chromatography (either via traditional size exclusion chromatographic media or via ultrafiltration) to produce a lipopeptide preparation that has been partially purified, and then crystallizing or precipitating the lipopeptide preparation to obtain a purified crystalline or crystal-like lipopeptide.
- any method known in the art such as fermentation of a naturally-occurring or recombinant organism
- any one or more purification methods such as microfiltration, anion exchange chromatography, hydrophobic interaction chromatography, and/or size exclusion chromatography (either via traditional size exclusion chromatographic media or via ultrafiltration) to produce a lipopeptide preparation that has been partially purified, and then crystallizing or
- the lipopeptide is daptomycin or a daptomycin-related lipopeptide.
- the steps regarding fermentation, microfiltration, anion exchange chromatography, hydrophobic interaction chromatography and ultrafiltration are disclosed in the art, e.g., in any one U.S. Pats. RE32,333, RE32,455, 4,800,157, RE32,310, RE32,311, 4,537,717, 4,482,487, 4,524,135, 4,874,843, 4,885,243 or 5,912,226, in International Publication WO 01/53330, published Jul. 26, 2001.
- the method optionally comprises the step of collecting and/or washing the crystalline or crystal-like material after the crystallization or precipitation step.
- the crystalline lipopeptide preparation may be collected by filtration.
- the crystalline or crystal-like material is dried.
- the purification method comprises fermenting Streptomyces roseosporus to obtain a fermentation culture containing daptomycin.
- the S. roseosporus may be fermented as described in U.S. Pat. No. 4,885,243.
- the fermentation conditions in which the A-21978C 0 -containing crude product is produced by Streptomyces roseosporus is altered in order to increase daptomycin production and decrease impurities and related contaminants produced by the S. roseosporus fermentation culture as described in International PCT Publication WO 01/53330, published Jul. 26, 2001.
- the WO 01/53330 publication describes fermenting S. roseosporus as described in the '243 patent with the modification that the decanoic acid feed is kept at the lowest levels possible without diminishing the overall yield of the fermentation.
- daptomycin may be obtained by fermenting a bacterial strain or other producing organism that recombinantly produces daptomycin.
- the recombinant bacterial strain or other recombinant organism comprises the daptomycin biosynthetic gene cluster.
- the daptomycin biosynthetic gene cluster or a portion thereof is introduced into the organism or bacterial strain via a bacterial artificial chromosome (BAC).
- the recombinant bacterial strain used is S. roseosporus or S. lividans comprising a BAC containing the daptomycin biosynthetic gene cluster.
- the fermentation broth is clarified by centrifugation, microfiltration or extraction, as is known in the art or as described in the WO 01/53330 publication.
- the clarification is performed by microfiltration. See, e.g., Examples 13-16 and FIGS. 11-15 .
- FIG. 11 shows an exemplary manufacturing process that does not use crystallization or precipitation.
- the concentration of daptomycin in the broth is approximately 5-10%.
- the daptomycin preparation is subjected to a crystallization/precipitation method described above directly subsequent to microfiltration.
- crystallization or precipitation is performed under sterile conditions.
- the crystalline or crystal-like daptomycin is optionally collected, washed and dried, as described in further detail below.
- the dry bulk active drug may then be used to dry fill sterile vials. See, e.g., Example 16 and FIG. 12 .
- the lipopeptide may be enriched in the preparation by anion exchange chromatography, as is known in the art or as described in the WO 01/53330 publication or herein. See, e.g., Examples 13-14 and FIGS. 12-13 .
- anion exchange chromatography the purity of daptomycin in the broth is approximately 35-40%.
- the daptomycin preparation is then subjected to a crystallization or precipitation method described above directly subsequent to anion exchange chromatography.
- crystallization or precipitation is performed under sterile conditions.
- the crystalline or crystal-like daptomycin is optionally collected, washed and dried as described below. The dry bulk active drug may then be used to dry fill sterile vials. See, e.g., Example 14 and FIG. 13 .
- the daptomycin preparation is subjected to size exclusion ultrafiltration after anion exchange chromatography.
- Size exclusion ultrafiltration is described in the WO 01/53330 publication.
- the application published Jul. 26, 2001 describes a method of depyrogenating, filtering and concentrating the daptomycin using an ultrafiltration membrane of 10,000 to 30,000 nominal molecular weight (NMW).
- the application discloses a method in which the lipopeptide passes through the ultrafiltration membrane while large molecular weight impurities, such as endotoxins, are retained by the filter. After the lipopeptide has passed through the membrane, the pH, temperature and/or salt concentration of the lipopeptide solution are altered such that the lipopeptides form micelles.
- the lipopeptide solution is then filtered on the ultrafiltration membrane under conditions in which the lipopeptide micelles are retained on the membrane while smaller impurities pass through the filter. In this manner, the lipopeptide is further purified.
- the application discloses the conditions under which lipopeptide micelles may be formed and disassociated as well as methods for filtering the lipopeptide solution to obtain a more purified lipopeptide application.
- the lipopeptide is daptomycin or a daptomycin-related lipopeptide.
- the lipopeptide may then be crystallized, as described herein. After both anion exchange chromatography and size exclusion ultrafiltration, daptomycin purity is approximately 80-90%.
- the daptomycin preparation is then subjected to a crystallization/precipitation method described above, preferably under sterile conditions.
- the crystalline or crystal-like daptomycin may be optionally collected, washed, dried and used to dry fill vials as described below. See, e.g., Example 13 and FIG. 12 .
- the crude daptomycin preparation is subjected to size exclusion ultrafiltration without anion exchange chromatography. After size exclusion ultrafiltration, daptomycin purity is approximately 35-40%.
- the lipopeptide may then be crystallized or precipitated as described herein, preferably by sterile methods. As discussed above, the crystalline or crystal-like daptomycin may be collected, washed, dried and used to dry fill sterile vials. See, e.g., Example 15 and FIG. 14 .
- the lipopeptide preparation is subjected to hydrophobic interaction chromatography (HIC), such as is described in the WO 01/53330 publication, after either the anion exchange chromatography or the size exclusion filtration.
- HIC hydrophobic interaction chromatography
- the lipopeptide may then be crystallized or precipitated as described herein.
- the crystalline or crystal-like lipopeptide may be collected by a method described herein, e.g., by filtration or centrifugation.
- the crystalline or crystal-like lipopeptide is optionally washed to remove residual crystallization or precipitation solvent.
- a method of washing crystals or crystal-like material are described below. See, e.g., Example 3.
- the washed or unwashed crystal or crystal-like material may be dried.
- the drying may be performed by any method known in the art, including, without limitation, vacuum drying, spray drying, tray drying or lyophilization. In one embodiment, the drying is performed under sterile conditions. In another embodiment, the drying is performed by vacuum drying. In a more preferred embodiment, the drying is performed using a 0.65 m 3 Klein Hastelloy-B double cone vacuum dryer or an equivalent apparatus.
- the dried crystalline or crystal-like lipopeptide is stable and is easily stored.
- vials are filled with any convenient amount of the dried crystalline or crystal-like lipopeptide.
- the vials are filled under sterile conditions and then stoppered.
- the vials are filled with 50 to 5000 mg each of the dried crystalline or crystal-like lipopeptide.
- the vials are filled with 100 to 1000 mg each.
- the vials are filled with 200 to 500 mg each.
- the dried crystalline or crystal-like lipopeptide is used for bulk packaging of the lipopeptide.
- the bulk packaging is usually greater than 5000 mg each of the dried crystalline or crystal-like lipopeptide.
- the bulk packaging is performed under sterile conditions.
- the crystallization or precipitation step is performed under sterile conditions.
- sterile crystallization or precipitation reagents and a sterile, controlled working environment are used.
- the lipopeptide is filtered on a ultrafiltration membrane, as disclosed above, before being mixed with the sterile crystallization/precipitation reagents.
- the crystalline or crystal-like lipopeptide preparation is collected by centrifugation or filtration under sterile conditions.
- the lipopeptide preparation is collected by sterile filtration.
- the crystalline or crystal-like lipopeptide is sterilized after it has been collected.
- the crystalline or crystal-like lipopeptide is not dried.
- the crystalline or crystal-like lipopeptide is preferably stored in a solution that preserves the crystalline or crystal-like nature of the lipopeptide. Vials may be filled with the lipopeptide and solution under sterile or nonsterile conditions. In one embodiment, the conditions are sterile. Alternatively, the crystalline or crystal-like lipopeptide and solution may be used to fill bulk packaging.
- FIGS. 10 and 11 provide flowcharts describing an exemplary daptomycin manufacturing protocol using crystallization.
- the incorporation of sterile crystallization into the manufacturing protocol shortens the protocol considerably and eliminates 3 to 4 steps in the process.
- Another object of the instant invention is to provide crystalline or crystal-like lipopeptides or salts thereof, as well as pharmaceutical formulations comprising a crystalline or crystal-like lipopeptide or its salts.
- the crystalline or crystal-like lipopeptide is daptomycin.
- all reference herein to crystalline or crystal-like lipopeptides specifically contemplates daptomycin, a daptomycin-related molecule, including, inter alia, daptomycin, A54145 and a daptomycin-related lipopeptide, as disclosed above.
- Daptomycin crystals or crystal-like particles, as well as other lipopeptide crystals or crystal-like particles may have a shape such as, inter alia, a needle-like shape, a plate-like shape, a lath-like shape, an equant-like shape, an urchin-like shape or a rod-like shape.
- daptomycin crystals or crystal-like particles have an urchin-like, needle-like or rod-like shape.
- the size of the crystals or crystal-like particles may range from approximately 0.5 ⁇ m to greater than 100 ⁇ m. In one embodiment, the particle size is at least 5 ⁇ m or greater. In a more preferred embodiment, the particle size is at least 10 ⁇ m or greater, more preferably at least 50 ⁇ m. In an even more preferred embodiment, the particle size is at least 100 ⁇ m.
- daptomycin crystals have an x-ray diffraction pattern as shown in FIGS. 6, 7 and 8 .
- the lipopeptide crystal exhibits a different melting point than the amorphous form of the lipopeptide.
- a crystalline form of a lipopeptide exhibits a stability that is equal to or greater than the amorphous form of the lipopeptide.
- the crystalline form is daptomycin or a daptomycin-related lipopeptide.
- the crystalline lipopeptide is sterile.
- the stability of the crystalline lipopeptide is greater than the amorphous form of the lipopeptide.
- the crystalline lipopeptide may exhibit higher stability to heat, light, degradation or humidity than the amorphous form.
- the stability of the lipopeptide may be measured by any means including, e.g., antibiotic activity, degradation of the lipopeptide or conversion of daptomycin to anhydro-daptomycin or the ⁇ -isomer of daptomycin.
- the crystalline form of the lipopeptide may be more quickly reconstituted in aqueous solution than the amorphous form of the lipopeptide.
- Crystalline or crystal-like lipopeptides such as daptomycin or a daptomycin-related lipopeptide, pharmaceutically-acceptable salts, esters, amides, ethers and protected forms thereof, can be formulated for oral, intravenous, intramuscular, subcutaneous, aerosol, topical or parenteral administration for the therapeutic, empirical or prophylactic treatment of diseases, particularly bacterial infections.
- Reference herein to “crystalline or crystal-like lipopeptides” or “crystalline or crystal-like daptomycin” includes pharmaceutically acceptable salts thereof.
- Crystalline or crystal-like lipopeptides such as daptomycin
- Crystalline or crystal-like lipopeptides and crystalline or crystal-like daptomycin may also be more readily dissolved in aqueous solution.
- Crystalline or crystal-like lipopeptides including daptomycin or daptomycin-related lipopeptides can be formulated using any pharmaceutically acceptable carrier or excipient that is compatible with daptomycin or with the lipopeptide of interest. See, e.g., Handbook of Pharmaceutical Additives: An International Guide to More than 6000 Products by Trade Name, Chemical, Function, and Manufacturer, Ashgate Publishing Co., eds., M. Ash and I. Ash, 1996; The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals, ed. S. Budavari, annual; Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa.; Martindale: The Complete Drug Reference, ed. K.
- compositions comprising a compound of this invention will contain from about 0.1 to about 90% by weight of the active compound, and more generally from about 10 to about 30%.
- compositions of the invention can be delivered using controlled (e.g., capsules) or sustained release delivery systems (e.g., bioerodable matrices).
- sustained release delivery systems e.g., bioerodable matrices.
- Exemplary delayed release delivery systems for drug delivery that are suitable for administration of the compositions of the invention are described in U.S. Pat. No. 4,452,775 (issued to Kent), U.S. Pat. No. 5,239,660 (issued to Leonard), U.S. Pat. No. 3,854,480 (issued to Zaffaroni).
- compositions may contain common carriers and excipients, such as corn starch or gelatin, lactose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride and alginic acid.
- compositions may contain croscarmellose sodium, microcrystalline cellulose, corn starch, sodium starch glycolate and alginic acid.
- Tablet binders that can be included are acacia, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (Povidone), hydroxypropyl methylcellulose, sucrose, starch and ethylcellulose.
- Lubricants that can be used include magnesium stearate or other metallic stearates, stearic acid, silicone fluid, talc, waxes, oils and colloidal silica.
- Flavoring agents such as peppermint, oil of wintergreen, cherry flavoring or the like can also be used. It may also be desirable to add a coloring agent to make the dosage form more aesthetic in appearance or to help identify the product.
- solid formulations such as tablets and capsules are particularly useful. Sustained release or enterically coated preparations may also be devised.
- crystalline or crystal-like lipopeptides may be supplied in combination with a carrier composition that enhances the oral availability of the lipopeptide.
- the crystalline or crystal-like lipopeptide is daptomycin.
- suspensions, syrups and chewable tablets are especially suitable.
- the pharmaceutical compositions are in the form of, for example, a tablet, capsule, suspension or liquid.
- the pharmaceutical composition is preferably made in the form of a dosage unit containing a therapeutically-effective amount of the active ingredient. Examples of such dosage units are tablets and capsules.
- the tablets and capsules which can contain, in addition to the active ingredient, conventional carriers such as binding agents, for example, acacia gum, gelatin, polyvinylpyrrolidone, sorbitol, or tragacanth; fillers, for example, calcium phosphate, glycine, lactose, maize-starch, sorbitol, or sucrose; lubricants, for example, magnesium stearate, polyethylene glycol, silica, or talc; disintegrants, for example, potato starch, flavoring or coloring agents, or acceptable wetting agents.
- binding agents for example, acacia gum, gelatin, polyvinylpyrrolidone, sorbitol, or tragacanth
- fillers for example, calcium phosphate, glycine, lactose, maize-starch, sorbitol, or sucrose
- lubricants for example, magnesium stearate, polyethylene glycol, silica, or talc
- disintegrants
- Oral liquid preparations generally are in the form of aqueous or oily solutions, suspensions, emulsions, syrups or elixirs may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous agents, preservatives, coloring agents and flavoring agents.
- Oral liquid preparations may comprise lipopeptide micelles or monomeric forms of the lipopeptide.
- additives for liquid preparations include acacia, almond oil, ethyl alcohol, fractionated coconut oil, gelatin, glucose syrup, glycerin, hydrogenated edible fats, lecithin, methyl cellulose, methyl or propyl para-hydroxybenzoate, propylene glycol, sorbitol, or sorbic acid.
- Intravenous (IV) use a water soluble form of a compound of this invention can be dissolved in any of the commonly used intravenous fluids and administered by infusion.
- Intravenous formulations may include carriers, excipients or stabilizers including, without limitation, calcium, human serum albumin, citrate, acetate, calcium chloride, carbonate, and other salts.
- Intravenous fluids include, without limitation, physiological saline or Ringer's solution. Daptomycin or other lipopeptides also may be placed in injectors, cannulae, catheters and lines.
- Formulations for parenteral administration can be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions or suspensions can be prepared from sterile powders or granules having one or more of the carriers mentioned for use in the formulations for oral administration.
- the crystalline or crystal-like lipopeptides can be dissolved in polyethylene glycol, propylene glycol, ethanol, corn oil, benzyl alcohol, sodium chloride, and/or various buffers.
- a sterile formulation of a crystalline or crystal-like lipopeptide compound or a suitable soluble salt form of the compound, for example the hydrochloride salt can be dissolved and administered in a pharmaceutical diluent such as Water-for-Injection (WFI), physiological saline or 5% glucose.
- WFI Water-for-Injection
- a suitable insoluble form of the crystalline or crystal-like lipopeptide also may be prepared and administered as a suspension in an aqueous base or a pharmaceutically acceptable oil base, e.g., an ester of a long chain fatty acid such as ethyl oleate.
- Injectable depot forms may be made by forming microencapsulated matrices of the crystalline or crystal-like lipopeptide in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in microemulsions that are compatible with body tissues.
- biodegradable polymers such as polylactide-polyglycolide.
- Depot injectable formulations are also prepared by entrapping the drug in microemulsions that are compatible with body tissues.
- the compounds of the present invention can also be prepared in suitable forms to be applied to the skin, or mucus membranes of the nose and throat, and can take the form of creams, ointments, liquid sprays or inhalants, lozenges, or throat paints.
- Such topical formulations further can include chemical compounds such as dimethylsulfoxide (DMSO) to facilitate surface penetration of the active ingredient.
- DMSO dimethylsulfoxide
- a sterile formulation comprising a crystalline or crystal-like lipopeptide, such as crystalline or crystal-like daptomycin, a suitable salt form thereof, may be administered in a cream, ointment, spray or other topical dressing.
- Topical preparations may also be in the form of bandages that have been impregnated with a lipopeptide composition.
- the compounds of the present invention can be presented in liquid or semi-liquid form formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints or powders.
- the compounds of the present invention can be administered in the form of suppositories admixed with conventional carriers such as cocoa butter, wax or other glyceride.
- a sterile formulation of a crystalline or crystal-like lipopeptide or a salt form of the compound may be used in inhalers, such as metered dose inhalers, and nebulizers. Aerosolized forms may be especially useful for treating respiratory infections, such as pneumonia and sinus-based infections.
- the compounds of the present invention can be in powder crystalline or crystal-like form for reconstitution in the appropriate pharmaceutically acceptable carrier at the time of delivery.
- the unit dosage form of the compound can be a solution of the compound or a salt thereof in a suitable diluent in sterile, hermetically sealed ampules.
- the concentration of the compound in the unit dosage may vary, e.g. from about 1 percent to about 50 percent, depending on the compound used and its solubility and the dose desired by the physician.
- each dosage unit preferably contains approximately from 10-5000 mg of the active material, more preferably 50 to 1000 mg, and even more preferably 100 to 500 mg.
- the dosage employed preferably ranges from I 00 mg to 3 g, per day, depending on the route and frequency of administration.
- this invention provides a method for treating an infection caused by a gram-positive bacteria in a subject.
- the method may be used to treat an infection caused by a gram-positive bacteria.
- treating is defined as administering, to a subject, a therapeutically-effective amount of a compound of the invention, both to prevent the occurrence of an infection and to control or eliminate an infection, e.g., an established infection.
- subject as described herein, is defined as a mammal, a plant or a cell culture.
- a subject is a human or other animal patient in need of lipopeptide treatment.
- An established infection may be one that is acute or chronic.
- An effective dose is generally between about 0.1 and about 75 mg/kg crystalline or crystal-like lipopeptide, such as crystalline or crystal-like daptomycin or daptomycin-related lipopeptide, or a pharmaceutically acceptable salt thereof.
- a preferred dose is from about 1 to about 25 mg/kg of crystalline or crystal-like daptomycin or daptomycin-related lipopeptide or a pharmaceutically acceptable salt thereof.
- a more preferred dose is from about 1 to 12 mg/kg crystalline or crystal-like daptomycin, a crystalline or crystal-like daptomycin-related lipopeptide or a pharmaceutically acceptable salt thereof.
- An even more preferred dose is about 3 to 8 mg/kg crystalline or crystal-like daptomycin or daptomycin-related lipopeptide or a pharmaceutically acceptable salt thereof.
- the crystalline or crystal-like lipopeptide e.g., daptomycin
- the treatment regime may require administration over extended periods of time, e.g., for several days or for from two to four weeks.
- the amount per administered dose or the total amount administered will depend on such factors as the nature and severity of the infection, the age and general health of the patient, the tolerance of the patient to the lipopeptide and the microorganism or microorganisms involved in the infection.
- a method of administration is disclosed in WO 00/18419, published Apr. 6, 2000, herein incorporated by reference.
- the methods of the present invention comprise administering a compound of the invention, or a pharmaceutical composition thereof to a patient in need thereof in an amount that is efficacious in reducing or eliminating the gram-positive bacterial infection.
- the lipopeptide may be administered orally, parenterally, by inhalation, topically, rectally, nasally, buccally, vaginally, or by an implanted reservoir, external pump or catheter.
- the lipopeptide may be prepared for opthalmic or aerosolized uses.
- Compounds of the invention, or pharmaceutical compositions thereof also may be directly injected or administered into an abscess, ventricle or joint.
- Parenteral administration includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, cisternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion.
- crystalline or crystal-like daptomycin, daptomycin-related lipopeptide or other lipopeptide is administered intravenously, subcutaneously or orally.
- the method of the instant invention may be used to treat a patient having a bacterial infection in which the infection is caused or exacerbated by any type of gram-positive bacteria.
- crystalline or crystal-like daptomycin, daptomycin-related lipopeptide or other lipopeptide, or pharmaceutical compositions thereof are administered to a patient according to the methods of this invention.
- the bacterial infection may be caused or exacerbated by bacteria including, but not limited to, methicillin-susceptible and methicillin-resistant staphylococci (including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, and coagulase-negative staphylococci), glycopeptide intermediary-susceptible Staphylococcus aureus (GISA), penicillin-susceptible and penicillin-resistant streptococci (including Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus avium, Streptococcus bovis, Streptococcus lactis, Streptococcus sangius and Streptococci Group C, Streptococci Group G and viridans streptococci
- a compound of the invention, or a pharmaceutical composition of any one of these crystalline or crystal-like lipopeptides is administered according to the methods of this invention to a patient who exhibits a bacterial infection that is resistant to other antibiotics, including vancomycin.
- a compound of the invention, or a pharmaceutical composition of any one of these crystalline or crystal-like lipopeptides is administered according to the methods of this invention to a patient who exhibits a bacterial infection that is resistant to other antibiotics, including vancomycin.
- daptomycin unlike glycopeptide antibiotics, daptomycin exhibits rapid, concentration-dependent bactericidal activity against gram-positive organisms.
- compounds of the invention, or a pharmaceutical composition of any one of these crystalline or crystal-like lipopeptides is administered according to the methods of this invention to a patient in need of rapidly acting antibiotic therapy.
- the method of the instant invention may be used for a gram-positive bacterial infection of any organ or tissue in the body. These organs or tissue include, without limitation, skeletal muscle, skin, bloodstream, kidneys, heart, lung and bone.
- the method of the invention may be used to treat, without limitation, skin and soft tissue infections, bacteremia and urinary tract infections.
- the method of the invention may be used to treat community acquired respiratory infections, including, without limitation, otitis media, sinusitis, chronic bronchitis and pneumonia, including pneumonia caused by drug-resistant Streptoococcus pneumoniae or Haemophilus influenzae.
- the method of the invention also may be used to treat mixed infections that comprise different types of gram-positive bacteria, including aerobic, caprophilic or anaerobic bacteria.
- infections include intra-abdominal infections, pneumonia, bone and joint infections and obstetrical/gynecological infections.
- the method of the invention also may be used to treat an infection including, without limitation, endocarditis, nephritis, septic arthritis and osteomyelitis.
- any of the above-described diseases may be treated using crystalline or crystal-like daptomycin, daptomycin-related lipopeptide, antibacterial lipopeptide, or pharmaceutical compositions of any one of these crystalline or crystal-like lipopeptides.
- Crystalline or crystal-like daptomycin, daptomycin-related lipopeptide or other lipopeptide may also be administered in the diet or feed of a patient or animal. If administered as part of a total dietary intake, the amount of daptomycin or other lipopeptide can be less than 1% by weight of the diet and preferably no more than 0.5% by weight.
- the diet for animals can be normal foodstuffs to which daptomycin or other lipopeptide can be added or it can be added to a premix.
- the method of the instant invention may also be practiced while concurrently administering another form of daptomycin or other lipopeptide antibiotic, e.g., one that is not crystalline or crystal-like, or with one or more antifungal agents and/or one or more antibiotics other than crystalline or crystal-like daptomycin or other crystalline or crystal-like lipopeptide antibiotics.
- Co-administration of an antifungal agent and an antibiotic other than crystalline or crystal-like daptomycin or another lipopeptide antibiotic may be useful for mixed infections such as those caused by different types of gram-positive bacteria, or those that caused by both bacteria and fungus.
- crystalline or crystal-like daptomycin or other lipopeptide antibiotic may improve the toxicity profile of one or more co-administered antibiotics. It has been shown that administration of daptomycin and an aminoglycoside may ameliorate renal toxicity caused by the aminoglycoside.
- an antibiotic and/or antifungal agent may be administered concurrently with a compound of this invention, or in a pharmaceutical composition comprising a compound of this invention.
- Antibacterial agents and classes thereof that may be co administered with a compound of the present invention include, without limitation, penicillins and related drugs, carbapenems, cephalosporins and related drugs, aminoglycosides, bacitracin, gramicidin, mupirocin, chloramphenicol, thiamphenicol, fusidate sodium, lincomycin, clindamycin, macrolides, novobiocin, polymyxins, rifamycins, spectinomycin, tetracyclines, vancomycin, teicoplanin, streptogramins, anti-folate agents including sulfonamides, trimethoprim and its combinations and pyrimethamine, synthetic antibacterials including nitrofurans, methenamine mandelate and methenamine hippurate, nitroimidazoles, quinolones, fluoroquinolones, isoniazid, ethambutol, pyrazinamide, para-aminos
- antibacterial agents that may be co administered with a compound according to this invention include, without limitation, imipenen, amikacin, netilmicin, fosfomycin, gentamicin, ceftriaxone, teicoplanin, Ziracin, LY 333328, CL 331002, HMR 3647, Linezolid, Synercid, Aztreonam, and Metronidazole.
- Antifungal agents that may be co administered with a compound according to this invention include, without limitation, Caspofonne, Voriconazole, Sertaconazole, IB — 367, FK — 463, LY — 303366, Sch — 56592, Sitafloxacin, DB — 289 polyenes, such as Amphotericin, Nystatin, Primaricin; azoles, such as Fluconazole, Itraconazole, and Ketoconazole; allylamines, such as Naftifine and Terbinafine; and anti-metabolites such as Flucytosine.
- Fostel et al. disclose antifungal compounds including Corynecandin, Mer_WF3010, Fusacandins, Artrichitin/LL 15G256(, Sordarins, Cispentacin, Azoxybacillin, Aureobasidin and Khafrefungin.
- the crystalline or crystal-like lipopeptide may be administered according to this method until the bacterial infection is eradicated or reduced.
- the crystalline or crystal-like lipopeptide is administered for a period of time from approximately 3 days to approximately 6 months.
- the crystalline or crystal-like lipopeptide is administered for 7 to 56 days.
- the crystalline or crystal-like lipopeptide is administered for 7 to 28 days.
- the crystalline or crystal-like lipopeptide is administered for 7 to 14 days.
- the crystalline or crystal-like lipopeptide may be administered for a longer or shorter time period if it is so desired.
- the lipopeptide is daptomycin or daptomycin-related lipopeptide.
- Daptomycin was prepared by conventional techniques.
- the daptomycin preparation was a pale yellow amorphous powder, with a solubility at 25° C. of greater than 1 g/mL in water and a solubility of 2.8 mg/mL in ethanol.
- the amorphous daptomycin preparation was hygroscopic and decomposed at 215° C.
- a daptomycin stock (20 mg/mL in methanol) was sequentially mixed with 15 ⁇ L of reagent stock (200 mM calcium acetate, 0.1 M cacodylate (pH 6.5), 18% [w/v] PEG 8000 and 15 ⁇ L ethylene glycol) to give a solution that was 27.5% aqueous component, 45% methanol and 27.5% ethylene glycol.
- Urchin-like crystals were formed at a yield of 50% with a purity of 98% as measured by HPLC.
- a daptomycin stock was prepared by dissolving 440 mg daptomycin in 1 mL of a buffer containing 25 mM sodium acetate (pH 5.0) and 5 mM CaCl 2 . Crystallization was done by the vapor diffusion (hanging drop) method, in which 5 ⁇ L of the daptomycin stock was added to 5 ⁇ L of 0.1 M tri-sodium citrate dihydrate (pH 5.6), and 35% [v/v] tert-butanol in water to form a drop.
- This method yielded urchin-like daptomycin crystals. See, e.g., FIG. 2 .
- daptomycin (97.1% pure as determined by HPLC) at a concentration of 20-25 mg/mL in water was sequentially mixed with 231 ⁇ L water, 77 ⁇ L of calcium acetate (pH 6.0), 960 ⁇ L propylene glycol and 231 ⁇ L of 50% [w/v] PEG 4000. The solution was allowed to sit for 4-5 hours at 4° C. Urchin-like crystals were formed at a yield of 75%. The crystalline daptomycin was washed with isopropanol. The daptomycin was 98.4% pure as determined by HPLC.
- Daptomycin 200 mg, 97.1% pure was dissolved in 2.54 mL water.
- the daptomycin solution was sequentially mixed in order with 10.0 mL methanol, 0.78 mL 1 M calcium acetate (pH 6.0), 9.50 mL propylene glycol and 2.20 mL 50% [w/v] PEG 4000 to give a final volume of 25.02 mL.
- the mixture was tumbled at room temperature for 10-14 hours in a hematology mixer (Fischer). Crystals began to appear within a few hours. Final yield was approximately 70-80% after 14 hours. The crystals were harvested by centrifugation at 1000 rpm for 15 minutes.
- Daptomycin was crystallized according to Example 7 except that PEG 8000 was used in replacement of PEG 4000.
- the quantities of reagents used are identical to those in Example 7. Crystals prepared by this method were urchin-like and had a purity of 98.84%.
- Daptomycin particles were mounted in mineral oil on a glass slide and then were examined by polarizing light microscope (PLM). The particles were determined to be crystalline if they were birefringent (have interference colors) and had extinction positions when the stage was rotated.
- the amorphous daptomycin sample consisted of lacy, flaky particles that were not birefringent. There were a few sliver-like areas in some of the flakes that had weak birefringence, but the particles were primarily amorphous.
- the daptomycin samples prepared according to Example 7 consisted of polycrystalline particles with weak birefringence and some extinction, indicating that they were primarily crystalline. See FIG. 5 .
- Sample preparation was performed according to ORS Standard Operation Procedure MIC-7 Rev. 1 using a zero background sample plate.
- the amorphous daptomycin sample did not show any peaks by x-ray powder diffraction. See FIG. 6 .
- the two daptomycin samples both showed peaks by x-ray powder diffraction.
- the diffraction angle (2 ⁇ ) of the first daptomycin sample ( FIG. 7 ) was 19.225, 23.242, 23.427 and 23.603 (degree).
- the diffraction angle (2 ⁇ ) for the second daptomycin sample ( FIG. 8 ) was 10.966, 19.205 and 23.344 (degree).
- the first crystalline daptomycin sample also showed a small peak between 10-11°. See FIG. 7 .
- Daptomycin was dissolved in water. Sodium acetate was added to achieve a final concentration of 187 mM. Calcium chloride was added to achieve a final concentration of 28 mM. The daptomycin solution was mixed and isopropanol was added to a final concentration of 78.4%. The solution was mixed and incubated. A precipitated material was formed after incubation. The precipitated material appeared to be urchin-like crystals of approximately 60 ⁇ m diameter by optical microscopy. The material was then dried. The dry material contained approximately 30-40% salt. After drying, powder x-ray diffraction was performed. The powder x-ray diffraction did not show the presence of crystals in the dried daptomycin precipitate.
- the daptomycin precipitate was poured into a pressure filter/drying funnel and filtered by gravity. The precipitate was washed twice with 25 mL each time of a washing solution (80% isopropanol and 20% solution A where solution A consists of 18 mL of water and 2 mL of glacial acetic acid) and allowed to drip by gravity overnight. The precipitate was then transferred to a desiccator and dried under vacuum. After drying, powder x-ray diffraction was performed. The powder x-ray diffraction did not show the presence of crystals in the dried daptomycin precipitate. However, purity analysis of the precipitated material by HPLC showed that the material was 98.2% pure daptomycin. Significantly, the daptomycin preparation after precipitation has significantly less anhydro-daptomycin than the daptomycin preparation before precipitation.
- a fermentation culture of S. roseosporus NRRL Strain 15998 is conducted in a controlled decanoic acid feed fermentation at levels that optimize the production of the antibiotic while minimizing the production of contaminants.
- the residual decanoic acid feed is measured by gas chromatography and the target residual level is 10 ppm decanoic acid from the start of induction (approximately at hour 30) until harvest.
- Centrifugation of the culture and subsequent analysis of the clarified broth are used to measure the production of daptomycin by HPLC.
- the harvest titer is typically between 1.0 and 3.0 grams per liter of fermentation broth.
- the fermentation culture is harvested either by microfiltration using a Pall-Sep or equivalent microfiltration system, or by full commercial-scale centrifugation and depth filter.
- the clarified broth is applied to an anion exchange resin, Mitsubishi FP-DA 13, washed with of 30 mM NaCl at pH 6.5 and eluted with of 300 mM NaCl at pH 6.0-6.5.
- the FP-DA 13 column is washed with of 30 mM NaCl at pH 6.5 and eluted with of 300 mM NaCl at pH 6.0-6.5.
- the pH is adjusted to 3.0-4.8 and the temperature is adjusted to 2-15° C. Under these conditions, daptomycin forms a micelle.
- micellar daptomycin solution is filtered-washed using a 10,000 NMW ultrafilter (AG Technology Corp. UF hollow fiber or equivalent) in any configuration.
- the daptomycin micelles are retained by the filter, but a large number of impurities are eliminated because they pass through the 10,000 NMW filter. Ultrafiltration of daptomycin micelles increases daptomycin purity to approximately 80-90%.
- the daptomycin preparation is then crystallized or precipitated under sterile conditions using one of the methods described above.
- the daptomycin is crystallized or precipitated according to the protocol described in Examples 7, 8 or 12 except that it can be scaled up for large preparation of daptomycin.
- the crystalline or crystal-like daptomycin is separated from the crystallization/precipitation solution by filtration, preferably by vacuum filtration.
- the crystalline or crystal-like daptomycin is washed with washing solution (see Example 3).
- the crystalline or crystal-like daptomycin is then vacuum dried under sterile conditions using a 0.65 m 3 Klein Hastelloy-B double cone vacuum dryer or equivalent apparatus. Vials are then filled with either 250 or 500 mg of dried crystalline daptomycin per vial.
- FIG. 9 shows a flowchart of this manufacturing method.
- Example 13 Fermentation of S. roseosporus, microfiltration of the fermentation culture and anion exchange chromatography is performed as described in Example 13.
- the daptomycin preparation is approximately 35-40% pure at this point.
- anion exchange chromatography the daptomycin is crystallized or precipitated according to the protocol described in Example 13.
- the daptomycin is then washed and dried according to the protocol set forth in Example 13.
- the dried crystalline or crystal-like daptomycin is then used to fill sterile vials as described in Example 13.
- FIG. 6 shows a flowchart of this manufacturing method.
- Example 13 Fermentation of S. roseosporus and microfiltration of the fermentation culture is performed as described in Example 13. After microfiltration, the fermentation culture is subjected to size exclusion ultrafiltration as described in Example 13. The daptomycin preparation is approximately 35-40% pure at this point. After ultrafiltration, the daptomycin is crystallized or precipitated according to the protocol described in Example 13. The daptomycin is then washed and dried according to the protocol set forth in Example 13. The dried crystalline or crystal-like daptomycin is then used to fill sterile vials as described in Example 13.
- FIG. 7 shows a flowchart of this manufacturing method.
- FIG. 8 shows a flowchart of this manufacturing method.
- CB-131547 (see Figure x), a cyclic lipopeptide analog of daptomycin, was prepared via a semi-synthesis route from daptomycin.
- the CB-131547 was a pale yellow amorphous powder, with a solubility at 25° C. of ⁇ 80 mg/mL in normal saline.
- CB-131547 (60 mg, ⁇ 90% pure) is dissolved in 2.5 mL water.
- the CB-131547 solution is sequentially mixed in order with 5.0 mL methanol, 0.2 mL 1 M calcium acetate (pH 6.0), 2.5 mL propylene glycol, and 1.0 mL 50% (w/v) PEG 4000 to give a final volume of 11.2 mL.
- the solution is allowed to sit for 4 to 24 hours at 4° C.
- CB-131547 crystals are formed at a yield of ⁇ 70% with a purity ⁇ 98.0% as determined by HPLC.
- CB-131547 (see Figure x), a cyclic lipopeptide analog of daptomycin, was prepared via a semi-synthesis route from daptomycin.
- the CB-131547 was a pale yellow amorphous powder, with a solubility at 25° C. of ⁇ 80 mg/mL in normal saline.
- CB-131547 (60 mg, ⁇ 90% pure) is dissolved in 2.5 mL water. 0.2 mL 1 M calcium acetate (pH 6.0) and 8 mL of isopropanol is added. The solution is allowed to equilibrate at room temperature (25° C.) for 5 minutes. One mL aliquots of isopropanol are slowly added until the solution becomes cloudy. The solution is stored at room temperature overnight to form crystals.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Life Sciences & Earth Sciences (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention relates to crystalline and crystal-like forms of lipopeptides, including daptomycin, a lipopeptide antibiotic with potent bactericidal activity against gram-positive bacteria, including strains that are resistant to conventional antibiotics. The present invention relates to methods of purifying lipopeptides, including daptomycin, a lipopeptide antibiotic with potent bactericidal activity against gram-positive bacteria, including strains that are resistant to conventional antibiotics. The present invention also relates to pharmaceutical compositions comprising the purified form of the lipopeptide and methods of using these compositions.
Description
- The present application claims the benefit of U.S. Provisional Application No. 60/256,268, filed Dec. 18, 2000; Ser. No. 60/274,741, filed Mar. 9, 2001; Ser. No. filed Dec. 13, 2001; and Ser. No. filed Dec. 13, 2001, the contents of which are incorporated herein by reference.
- The present invention relates to crystalline and crystalline-like forms of lipopeptides, including daptomycin, a lipopeptide antibiotic with potent bactericidal activity against gram positive bacteria, including strains that are resistant to conventional antibiotics. The present invention also relates to processes for preparing crystalline or crystal-like forms of the lipopeptide and to methods of purifying lipopeptides including daptomycin. The present invention also relates to pharmaceutical compositions comprising the purified form of the lipopeptide and methods of using these compositions.
- The rapid increase in the incidence of gram-positive infections—including those caused by antibiotic-resistant bacteria—has sparked renewed interest in the development of novel classes of antibiotics. One such class is the lipopeptide antibiotics, which includes daptomycin. Daptomycin has potent bactericidal activity in vitro against clinically relevant gram-positive bacteria that cause serious and life-threatening diseases. These bacteria include, but are not limited to, resistant pathogens, such as vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), glycopeptide intermediary susceptible Staphylococcus aureus (GISA), coagulase-negative staphylococci (CNS), and penicillin-resistant Streptococcus pneumoniae (PRSP), for which there are very few therapeutic alternatives. See, e.g., Tally et al., 1999, Exp. Opin. Invest. Drugs 8:1223-1238. Daptomycin's inhibitory effect is a rapid, concentration-dependent bactericidal effect in vitro and in vivo, and a relatively prolonged concentration-dependent post-antibiotic effect in vivo.
- Daptomycin is described by Baltz in Biotechnology of Antibiotics, 2nd Ed., ed. W. R. Strohl (New York: Marcel Dekker, Inc.), 1997, pp. 415-435. Daptomycin, also known as LY 146032, is a cyclic lipopeptide antibiotic that can be derived from the fermentation of Streptomyces roseosporus. Daptomycin is a member of the factor A-21978C0 type antibiotics of S. roseosporus and is comprised of a decanoyl side chain linked to the N-terminal tryptophan of a cyclic 13-amino acid peptide (
FIG. 1 ). Daptomycin has an excellent profile of activity because it is highly effective against most gram-positive bacteria; it is highly bactericidal and fast-acting; it has a low resistance rate and is effective against antibiotic-resistant organisms. The compound is currently being developed in a variety of formulations to treat serious infections caused by bacteria, including, but not limited to, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). - A number of U.S. patents describe A-21978C0 antibiotics and daptomycin-related lipopeptides including daptomycin (LY 146032). These patents also describe methods of producing and isolating the A-21978C0 antibiotics and daptomycin-related lipopeptides.
- U.S. Pats. RE32,333, RE32,455, 4,800,157, 4,874,843, and 4,885,243 describe methods of synthesizing and isolating daptomycin from fermentation cultures of Streptomyces roseosporus. U.S. Pats. RE32,310, RE32,311, 4,537,717, 4,482,487 and 4,524,135 describe A-21978C0 antibiotics and methods of deacylating the A-21978C0 antibiotic and reacylating the peptide nucleus and antibiotic derivatives made by this process. U.S. Pat. No. 5,912,226 (hereafter the '226 patent) describes the identification and isolation of two impurities produced during the manufacture of daptomycin, anhydro-daptomycin and the β-isomer form of daptomycin. None of these U.S. patents discloses a method for precipitating or crystallizing a lipopeptide in a manner to increase purity of the lipopeptide.
- U.S. Pat. No. 4,439,425 (hereafter the '425 patent) discloses a crystalline lipopeptide and a method of crystallizing the lipopeptide. The lipopeptide disclosed in the '425 patent is structurally dissimilar from daptomycin and daptomycin-related lipopeptides. U.S. Pat. No. 5,336,756 (hereafter the '756 patent) also discloses a crystalline cyclic lipopeptide comprising a hexapeptide. The crystalline cyclic lipopeptide disclosed in the '756 patent is also structurally dissimilar from daptomycin and daptomycin-related lipopeptides. The '756 patent discloses that the lipopeptide, an echinocandin-type compound, can be obtained when aqueous n-propanol is employed as the crystallizing solvent. See, e.g., cols. 1-2 of the '756 patent. Neither the '425 patent nor the '756 patent disclose methods of crystallizing or precipitating daptomycin or a daptomycin-related lipopeptide, nor do they disclose methods of crystallizing or precipitating lipopeptides produced by Streptomyces.
- It would be advantageous to develop a method of crystallizing or precipitating daptomycin and daptomycin-related lipopeptides to provide an improved purification method for these lipopeptides. In addition, a crystalline or highly purified precipitated form of daptomycin or other daptomycin-related lipopeptide would be useful in formulating pharmaceutical compositions for treating bacterial infections. Further, a crystalline or highly purified precipitated form of daptomycin or daptomycin-related lipopeptide would be useful in a method to make a sterile product, particularly bulk sterile product. Thus, there is a need for methods to produce crystalline or precipitated daptomycin and daptomycin-related lipopeptides and the crystalline or precipitated forms of the lipopeptides produced thereby. However, there has been no simple and robust method that has been effective in crystallizing or precipitating daptomycin or a daptomycin-related lipopeptide that results in a lipopeptide that is more pure after crystallization or precipitation than before.
- The instant invention addresses these problems by providing crystalline and crystalline-like forms of lipopeptides, particularly daptomycin and daptomycin-related lipopeptides and methods for producing them. In one embodiment, the invention provides methods for crystallizing lipopeptides. In another embodiment, the methods provide a lipopeptide that is more pure after crystallization or precipitation than before crystallization or precipitation.
- The invention also provides robust processes for producing and purifying lipopeptides comprising, inter alia, crystallizing or precipitating lipopeptides. In one embodiment, the crystallizing or precipitating steps of the processes are used to purify the lipopeptides. In another embodiment, the processes are used for large-scale and/or commercial production of lipopeptides, preferably daptomycin.
- The invention further provides highly purified crystalline or crystal-like forms of daptomycin and daptomycin-related lipopeptides. In one embodiment, the crystalline or crystal-like forms of the lipopeptides may be used in pharmaceutical compositions. In another embodiment, the invention comprises methods of using the pharmaceutical compositions.
-
FIG. 1 shows the structure of daptomycin. -
FIG. 2 shows a photomicrograph of urchin-like crystal or crystal-like particle of daptomycin produced by the method described in Example 12. -
FIG. 3 shows a photomicrograph of needle-like crystals of daptomycin. -
FIG. 4 shows a photomicrograph of rod-like crystals of daptomycin. -
FIG. 5 shows photomicrographs of daptomycin samples at 100× magnification. Photomicrographs of amorphous daptomycin are shown using plane transmitted light (A) and using crossed polarized light (B). Photomicrographs of daptomycin crystals are shown using plane transmitted light (C and E) and using crossed polarized light (D and F). The daptomycin crystals were produced by the protocol disclosed in Example 7. -
FIG. 6 shows an x-ray powder diffraction pattern for amorphous daptomycin. -
FIG. 7 shows an x-ray powder diffraction pattern for a daptomycin crystal produced by the protocol described in Example 7. -
FIG. 8 shows an x-ray powder diffraction pattern for a second sample of a daptomycin crystal produced by the protocol described in Example 7. -
FIG. 9 shows birefringence of a crystal-like particle of daptomycin when exposed to polarized light. The crystal-like particle was produced by the method described in Example 12. -
FIG. 10 shows a flow chart of an exemplary method for crystallization. -
FIG. 11 shows a flow chart of an exemplary manufacturing method that does not use crystallization or precipitation. The manufacturing method uses bacterial fermentation to produce a fermentation culture containing daptomycin, and then purification of daptomycin using microfiltration, anion exchange chromatography, size exclusion ultrafiltration, hydrophobic interaction chromatography, anion exchange chromatography for solvent removal, ultrafiltration for pyrogen removal, reverse osmosis and filling vials with daptomycin. See, e.g., International PCT Publication WO 01/44274, published Jun. 21, 2001, herein incorporated by reference for a detailed description of this type of method. -
FIG. 12 shows a flow chart of an exemplary manufacturing method of a lipopeptide compound comprising the steps of fermentation, microfiltration, anion exchange chromatography, size exclusion ultrafiltration, crystallization or precipitation, crystal or precipitate drying, and dry filling of vials with the compound. See, e.g., Example 13. -
FIG. 13 shows a flow chart of an exemplary manufacturing method of a lipopeptide compound comprising the steps of fermentation, microfiltration, anion exchange chromatography, crystallization or precipitation, crystal or precipitate drying, and dry filling of vials with the compound. See, e.g., Example 14. -
FIG. 14 shows a flow chart of an exemplary manufacturing method of a lipopeptide compound comprising the steps of fermentation, microfiltration, size exclusion ultrafiltration, crystallization or precipitation, crystal or precipitate drying, and dry filling of vials with the compound. See, e.g., Example 15. -
FIG. 15 shows a flow chart of an exemplary manufacturing method of a lipopeptide compound comprising the steps of fermentation, microfiltration, crystallization or precipitation, crystal or precipitate drying, and dry filling of vials with the compound. See, e.g., Example 16. -
FIG. 16 depicts the structure of CB-131547, a cyclic lipopeptide analog of daptomycin - Objects of the Invention
- One object of the present invention is to provide methods for crystallizing or precipitating lipopeptides. In one embodiment, the methods are used to crystallize or precipitate daptomycin or a daptomycin-related lipopeptide. In another embodiment, the methods increase the purity of the lipopeptide compared to the purity of the lipopeptide prior to crystallization or precipitation. The methods comprise the steps of providing an amorphous preparation of a lipopeptide and crystallizing or precipitating the lipopeptide under conditions in which the crystalline or precipitated, crystal-like lipopeptide is more pure than the amorphous preparation of the lipopeptide. In one embodiment, the amorphous preparation is no greater than 92% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% or more pure. In another embodiment, the amorphous preparation is no greater than 80% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% or more pure. In another embodiment, the amorphous preparation is no greater than 60% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% ore more pure. In yet another embodiment, the amorphous preparation is no greater than 40% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% or more pure. In another embodiment, the amorphous preparation is no greater than 20% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure; and ma y be at least 96%, 97% or 98% or more pure. In a further preferred embodiment, the amorphous preparation is no greater than 10% pure and the crystalline or crystal-like lipopeptide purified therefrom is at least 95% pure, and may be at least 96%, 97% or 98% or more pure.
- Another object of the invention is to provide processes fbr making and purifying a lipopeptide comprising, inter alia, crystallizing or precipitating the lipopeptides. In one embodiment, the crystallizing or precipitating steps are used to purify the lipopeptides. In a preferred embodiment, the crystallization or precipitation is performed by batch crystallized or precipitation. In another embodiment, the process is a large-scale process for commercial production of a lipopeptide, preferably daptomycin or a daptomycin-related lipopeptide. In one embodiment, the lipopeptide is produced by fermentation. The fermentation product is then purified by a variety of purification techniques including crystallization or precipitation. In one embodiment, the crystallization or precipitation step may be used in combination with other purification techniques including microfiltration, size exclusion ultrafiltration and/or anion exchange chromatography. In one embodiment, the crystallization or precipitation step is used to replace one or more purification techniques that is used in a purification process that does not use crystallization or precipitation. In another embodiment, the crystallization or precipitation step is used to increase purification compared to the other steps without the crystallization or precipitation step. In a preferred embodiment, the method comprises a step of collecting the crystalline or crystal-like lipopeptide after crystallization or precipitation.
- Another object of the present invention is to provide highly purified, e.g. sterile, crystalline or crystal-like forms of lipopeptides. In one embodiment, the lipopeptides are daptomycin or a daptomycin-related lipopeptide. The crystalline or crystal-like form of the lipopeptide may have any crystalline or crystal-like shape including urchin-like (cluster of needles joined together to visually resemble a sea urchin)(see
FIG. 2 ), needle-like (seeFIG. 3 ), rod-like (seeFIG. 4 ), plate-like or flake-like. In one embodiment, the crystalline or crystal-like lipopeptide has a purity of at least 80%, and may be at least 85%, 90% pure. In another embodiment, the crystalline or crystal-like form of the lipopeptide has a purity of at least 95%, and may be at least 96%, 97%, 98% pure or more. - A further object of the present invention is to provide a pharmaceutical composition comprising a crystalline or crystal-like form of a lipopeptide. In one embodiment, the lipopeptide is daptomycin or a daptomycin-related lipopeptide. In one embodiment, the pharmaceutical comp. is enterically coated for oral administration or is formulated in the form of micronized particles or microspheres. In other embodiments, the invention provides methods for administering the pharmaceutical compositions to subjects in need thereof.
- Definitions
- Unless otherwise defined, all technical and scientific terms used herein have the meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The practice of the present invention employs, unless otherwise indicated, conventional techniques of chemistry, biochemistry, biophysics and microbiology and basic terminology used therein.
- The term “lipopeptide” refers to a molecule that comprises a lipid-like moiety covalently linked to a peptide moiety, as well as salts, esters, amides and ethers thereof. The term “lipopeptide” also encompasses protected forms of lipopeptides in which one or more amino, carboxylate or hydroxyl groups are protected. See, e.g., “Protective Groups in Organic Synthesis” by Theodora W. Greene, John Wiley and Sons, New York, 1981 for examples of protecting groups. In one embodiment, the lipopeptide is an antibiotic. In another embodiment, the lipopeptide is LY 303366, echinocandins, pneumocandins, aculeacins, viscosin, surfactin,
plipastatin B 1, amphomycin or the lipopeptide derivative disclosed in U.S. Pat. No. 5,629,288. These lipopeptides are known in the art. See, e.g., U.S. Pat. No. 5,202,309 and International PCT Application WO 00/08197. In another embodiment, the lipopeptide is a daptomycin-related molecule. In another embodiment, the lipopeptide is daptomycin. - A “daptomycin-related molecule” includes, inter alia, daptomycin, A54145 or other lipopeptide that is structurally related to daptomycin, such as a daptomycin-related lipopeptide, including all stereoisomers that may be made at any chiral centers present in these molecules.
- A “daptomycin-related lipopeptide” includes, without limitation, a lipopeptide disclosed in U.S. Pat. Nos. 4,537,717, 4,482,487, RE32,311, RE32,310, and 5,912,226, currently in reissue as U.S. application Ser. No. 09/547,357. Daptomycin-related lipopeptides also include those disclosed in International PCT Publication WO 01/44272, published Jun. 21, 2001; International PCT Publication WO 01/44274, published Jun. 21, 2001; and International PCT Publication WO 01/44271, published Jun. 21, 2001; all of these applications are specifically incorporated herein by reference. The daptomycin-related lipopeptides disclosed in the above-identified applications relate to synthetic and semisynthetic lipopeptides in which the ornithine and/or kynurine residues, and/or the fatty acid side chain of daptomycin, are modified. Daptomycin-related lipopeptides further include an A-21978C0 antibiotic in which the n-decanoyl fatty acid side chain of daptomycin is replaced by a n-octanoyl, n-nonanoyl, n-undecanoyl, n-dodecanoyl, n-tridecanoyl or n-tetradecanoyl fatty acid side chain.
- The term “daptomycin” refers to the n-decanoyl derivative of the factor A-21978C0-type antibiotic that contains an α-aspartyl group. “Daptomycin” is synonymous with LY 146032.
- The term “anhydro-daptomycin” refers to a daptomycin-related lipopeptide in which an α-aspartyl group of daptomycin is cyclized to a succinimido group. See, e.g., the '226 patent for the structure of anhydro-daptomycin.
- The term “β-isomer” or “β-isomer of daptomycin” refers to a daptomycin-related lipopeptide that contains a β-aspartyl group instead of an o-aspartyl group. See, e.g., the '226 patent for the structure of β-isomer of daptomycin.
- The term “isolated” refers to a compound or product that is at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the compound present in a mixture. It will be understood that the term “isolated” also refers to a compound that is at least 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80% or 80-90% of the compound present in the mixture group. The percentage of compound in a mixture may be measured by any means known in the art, as described below for measuring purity of a compound. “Substantially pure” refers to a sample having at least 95% of a desired compound. Preferably, daptomycin is “substantially pure” when at least 95% to at least 97% of a sample is daptomycin. Similarly, a daptomycin-related lipopeptide, is “substantially pure” when at least 95% to at least 97% of a sample is a daptomycin-related lipopeptide.
- Daptomycin or a daptomycin-related lipopeptide is “essentially pure” when at least 98% to at least 99% of a sample is daptomycin or a daptomycin-related lipopeptide, respectively.
- Daptomycin or a daptomycin-related lipopeptide is “substantially free” of another compound when the other compound is present in an amount that is no more than 1% of the amount of the daptomycin or the daptomycin-related lipopeptide preparation, respectively.
- Daptomycin or a daptomycin-related lipopeptide is “essentially free” of another compound when the other compound is present in an amount that is no more than 0.5% of the amount of the daptomycin or the daptomycin-related lipopeptide preparation, respectively.
- Daptomycin or a daptomycin-related lipopeptide is “free” of another compound when the other compound is present in an amount that is no more than 0. 1% of the amount of the daptomycin or the daptomycin-related lipopeptide preparation, respectively. Alternatively, daptomycin or a daptomycin-related lipopeptide is “free” of another compound when the compound cannot be detected by HPLC under conditions of maximum sensitivity in which a limit of detection is approximately 0.05% or less of the amount of the daptomycin or the daptomycin-related lipopeptide preparation, respectively.
- “Purified” daptomycin refers to substantially pure daptomycin, essentially pure daptomycin, or a salt thereof, or to daptomycin or a salt thereof which is substantially free, essentially free, or free of another compound. Similarly, a “purified” daptomycin-related lipopeptide refers to a substantially pure daptomycin-related lipopeptide, an essentially pure daptomycin-related lipopeptide, or a salt thereof, or to a daptomycin-related lipopeptide or a salt thereof which is substantially free, essentially free, or free of another compound.
- “Crude” daptomycin refers to daptomycin or a salt thereof that is less than 90% pure. Similarly, “crude” daptomycin-related lipopeptide refers to a daptomycin-related lipopeptide or a salt thereof that is less than 90% pure.
- “Semi-purified” daptomycin refers to daptomycin or a salt thereof that is at least 90% pure and less than 95% pure. Similarly, “semi-purified” daptomycin-related lipopeptide refers to a daptomycin-related lipopeptide or a salt thereof that is at least 90% pure and less than 95% pure.
- The purity of daptomycin, daptomycin-related lipopeptide or of another lipopeptide refers to the lipopeptide prior to its formulation in a pharmaceutical composition. The purity of the lipopeptide is referred to by “percent purity.” The measure of purity is not a measure of degree of crystallinity of the crystalline preparation. The purity may be measured by any means including nuclear magnetic resonance (NMR), gas chromatography/mass spectroscopy (GC/MS), liquid chromatography/mass spectroscopy (LC/MS) or microbiological assays. One preferred means for measuring the purity of daptomycin is by analytical high pressure liquid chromatography (HPLC). Two methods of analytical HPLC are described in International PCT Publication WO 01/53330, published Jul. 26, 2001, which is herein incorporated specifically by reference.
- A “lipopeptide crystal” refers to one or more crystals of a lipopeptide or of a lipopeptide salt. The determination of a lipopeptide as a crystal can be determined by any means including, inter alia, optical microscopy, electron microscopy, x-ray powder diffraction, solid state nuclear magnetic resonance (NMR) or polarizing microscopy. Microscopy can be used to determine the crystal length, diameter, width, size and shape, as well as whether the crystal exists as a single particle or is polycrystalline.
- A lipopeptide or lipopeptide particle is “crystal-like” if it is determined to have crystalline characteristics when determined by one means, e.g., visually or by optical or polarizing microscopy, but does not have crystalline characteristics when determined by another means, e.g., x-ray powder diffraction. A lipopeptide that is “crystal-like” may be crystalline under certain conditions but may become non-crystalline when subjected to other conditions.
- A “crystalline lipopeptide” or a “crystalline form of a lipopeptide” refers to a preparation of a lipopeptide or salt thereof that comprises lipopeptide crystals. In one embodiment, a crystalline lipopeptide may comprise some amount of amorphous lipopeptide. In one embodiment, the crystalline lipopeptide comprises more than 50% by weight of lipopeptide crystals. In another embodiment, the crystalline lipopeptide comprises more than 60%, 70%, 80%, 90% or 95% of lipopeptide crystals. The crystalline lipopeptide may comprise 50-60%, 60-70%, 70-80%, 80-90% or 90-95% of lipopeptide crystals. In another embodiment, the crystalline lipopeptide comprises more than 95% of lipopeptide crystals, e.g., at least 96%, 97%, 98% or 99% lipopeptide crystals or 100% lipopeptide crystals. The crystalline lipopeptide may also comprise anywhere from 95-100% lipopeptide crystals. The percent by weight of lipopeptide crystals refers to the lipopeptide preparation prior to its formulation in a pharmaceutical composition.
- An “amorphous” form of a lipopeptide refers to a lipopeptide preparation that comprises few or no lipopeptide crystals or crystal-like lipopeptides (or crystal-like particles) as defined herein. In one embodiment, an amorphous lipopeptide comprises less than 20% by weight of lipopeptide crystals or crystal-like lipopeptides. In another embodiment, an amorphous lipopeptide comprises less than 10% by weight of lipopeptide crystals or crystal-like lipopeptides. In another embodiment, an amorphous lipopeptide comprises less than 5% by weight of lipopeptide crystals or crystal-like lipopeptides. In a still further preferred embodiment, an amorphous lipopeptide comprises less than 1% by weight of lipopeptide crystals or crystal-like lipopeptides.
- “Batch crystallization” refers to a method in which the lipopeptide of interest is mixed with the crystallization reagents in solution and the lipopeptide is allowed to crystallize in solution. “Batch precipitation” refers to a method in which the lipopeptide is mixed with precipitation reagents in solution and the lipopeptide is allowed to precipitate in solution. In one embodiment, the crystalline or precipitated preparation is collected from the solution. In another embodiment, the crystalline or precipitated preparation is collected by filtration or centrifugation.
- “Organic precipitant” refers to a polyethylene glycol (PEG) or polyethylene glycol monomethyl ether (PEG MME) or compounds that are chemically similar.
- “Salts” refer to ionic compounds. These ionic compounds may act as precipitants.
- “Low molecular weight alcohols” are organic compounds containing at least one alcohol functional group, and eight carbon atoms or less. For example, low molecular weight alcohols include, without limitation, methanol, isopropanol, and tert-butanol.
- “Polyhydric alcohols” refer to compounds that contain more than one alcohol group, and less than eight carbon atoms. Polyhydric alcohols, for example, include, without limitation, 1,6 hexanediol, ethylene glycol, propylene glycol, glycerol, 1,2-propanediol, 2-methyl-2,4-pentanediol and 1,4 butanediol.
- “Container” refers to a receptacle for holding goods. For example, a container may include, without limitation, an ampule, vial, tube, bottle, or cylinder.
- Methods for Producing Purified Lipopeptides
- One object of the invention is to provide a method for purifying a lipopeptide comprising the steps of providing an amorphous preparation of a lipopeptide and crystallizing or precipitating the lipopeptide. In one embodiment, the lipopeptide has a higher degree of purity after crystallization or precipitation than prior to being subjected to crystallization or precipitation. Lipopeptides may be crystallized by hanging drop, sitting drop or sandwich drop vapor diffusion, liquid-liquid or free interface diffusion, microdialysis or dialysis, slow solvent evaporation, sublimation, or microbatch or batch crystallization. In general, a lipopeptide may be precipitated in a similar way, preferably a lipopeptide is precipitated by batch precipitation. In a preferred embodiment, the crystallized or precipitated lipopeptide is daptomycin or a daptomycin-related lipopeptide. In a more preferred embodiment, the crystallized or precipitated lipopeptide is daptomycin.
- Lipopeptides may be crystallized or precipitated following the teachings of this specification. In one embodiment, a lipopeptide can be crystallized or precipitated by providing a solution comprising a lipopeptide with a low molecular weight or polyhydric alcohol, a pH buffering agent and a salt comprising a monovalent or divalent cation and allowing precipitation or crystallization to occur, as discussed further infra. In another embodiment, the salt has buffering capacity such that an additional pH buffering agent does not have to be present in the solution. In another embodiment, the salt comprises a divalent cation. In a preferred embodiment, the solution provided does not include PEG or PEG-MME or chemically similar compounds. In an embodiment, the method for precipitating or crystallizing the lipopeptide generally comprises the steps of:
- a) mixing the lipopeptide with a salt comprising a monovalent or divalent cation, an optional pH buffering agent and a low molecular weight or polyhydric alcohol; and
- b) allowing the lipopeptides to precipitate or crystallize from the solution under the appropriate temperature conditions.
- The samples may be monitored, inter alia, for crystal or precipitate formation by microscopic examination and the yield may be followed spectrophotometrically. In a preferred embodiment, the crystallized or precipitated lipopeptide is daptomycin or a daptomycin-related lipopeptide.
- In another embodiment, the lipopeptide can be crystallized by providing a solution comprising a low molecular weight or polyhydric alcohol(s), salts and an organic precipitant as discussed further infra. In a more preferred embodiment, the crystallized lipopeptide is daptomycin. In general, for batch crystallization, the lipopeptide is dissolved in a solution and low molecular weight alcohols, salts, buffers and/or organic precipitants are added to the solution. The samples are then crystallized under the appropriate temperature conditions, with or without stirring. The samples may be monitored, inter alia, for crystal formation by microscopic examination and the yield may be followed spectrophotometrically.
- As discussed above, the lipopeptide, preferably daptomycin or a daptomycin-related lipopeptide, is crystallized or precipitated in the presence of one or more alcohols. In a preferred embodiment, the alcohol is a low molecular weight or polyhydric alcohol. Examples of low molecular weight or polyhydric alcohols include, without limitation, methanol, isopropanol, tert-butanol, 1,6 hexanediol, ethylene glycol, propylene glycol, glycerol, 1,2-propanediol, 2-methyl-2,4-pentanediol and 1,4 butanediol. In a preferred embodiment, the alcohol is isopropanol, tert-butanol, glycerol, 1,6-hexanediol, 1,2-propanediol, 1,4-butanediol, propylene glycol and/or ethylene glycol. In a more preferred embodiment, the alcohol is isopropanol.
- Salts include, inter alia, magnesium or sodium formate, ammonium sulfate, ammonium dihydrogen phosphate, calcium acetate, zinc acetate, tri-sodium citrate dihydrate, magnesium acetate, sodium acetate, magnesium chloride, cadmium chloride, ammonium acetate, sodium chloride and lithium sulfate. In one embodiment, the salt comprises a monovalent cation, e.g., sodium. In a preferred embodiment, the salt comprises a divalent cation. In an even more preferred embodiment, the salt comprises a calcium cation, a magnesium cation or a manganese cation. In a further preferred embodiment, the salt comprises a calcium divalent cation. In one embodiment, the salt is calcium chloride, calcium acetate, zinc acetate, sodium citrate, tri-sodium citrate dihydrate, magnesium chloride, lithium sulfate, sodium chloride, magnesium acetate, sodium acetate or a manganese salt, such as manganese acetate or manganese chloride. In a preferred embodiment, the salt is calcium acetate. Examples of other salts that comprise a divalent cation, such as a calcium cation, are known in the art, and include, inter alia, those listed in the 2000 Sigma catalog, herein incorporated by reference. Without wishing to be bound to any theory, it is thought that the salt cation may neutralize the negative charges on the lipopeptide, e.g., the four carboxylic acids of daptomycin. Organic precipitants include, inter alia, polyethylene glycols (PEGs) that can vary in average molecular weight from between 300 and 10,000, or polyethylene glycol monomethyl ether (PEG-MME). In a preferred embodiment, the organic precipitant is
PEG 300,PEG 600, PEG 2000, PEG 4000, PEG 8000 or PEG 10,000. - The lipopeptide is precipitated or crystallized from a solution that is buffered to pH 5.0 to 9.5. In one embodiment, prior to being buffered, the solution has a pH of about 1.5, 2.0 or 3.0. In one embodiment, daptomycin or a daptomycin-related lipopeptide is precipitated or crystallized from a solution of approximately pH 5.5 to approximately pH 7.5. In another embodiment, the buffer has a pH of approximately 5.9 to approximately pH 6.3. In one embodiment, the buffered solution may be obtained by using a pH buffering agent. Examples of pH buffering agents include, without limitation, Tris, phosphate, citrate, HEPES, CHES, sodium acetate or 2-morpholinoethanesulfonic acid (MES), sodium borate, sodium cacodylate, imidazole and tri-sodium citrate dihydrate. In a preferred embodiment, the salt is sodium cacodylate, sodium acetate, tri-sodium citrate dihydrate, HEPES, MES, CHES, imidazole, calcium acetate and Tris-HCl. In a more preferred embodiment, the pH buffer is calcium acetate pH 6.1, sodium acetate pH 6.1, sodium cacodylate pH 6.5, tri-sodium citrate dihydrate pH 5.6, HEPES pH 7.5,
imidazole pH 8, MES pH 6.0,calcium acetate pH 6 and Tris-HCl pH 8.5. In another embodiment, the solution may be buffered by using a salt that also has buffering capacity. In a preferred embodiment, the pH buffer iscalcium acetate pH 6. 1. - The lipopeptide is precipitated or crystallized using hanging drop vapor diffusion from a solution containing 2 to 40% low molecular weight or polyhydric alcohol, 0.001 to 0.5 M salt and 0.005 to 0.2 M pH buffering agent. In a preferred embodiment, the lipopeptide is precipitated or crystallized from a solution containing 3 to 30% low molecular weight or polyhydric alcohol, 0.01 to 0.3 M salt and 0.01 to 0.1 M pH buffering agent. In a more preferred embodiment, the lipopeptide is precipitated or crystallized from a solution containing 5 to 20% low molecular weight or polyhydric alcohol, 0.02 to 0. I M salt and 0.02 to 0.07 M pH buffering agent. The solution provided may or may not include polyethylene glycol (PEG) or polyethylene glycol monomethyl ether (PEG-MME).
- The lipopeptide is precipitated or crystallized using batch crystallization from a solution containing 65 to 95% low molecular weight or polyhydric alcohol, 0.001, to 0.5 M salt and 0.001 to 0.2 M pH buffering agent. In a preferred embodiment, the lipopeptide is precipitated or crystallized from a solution containing 70 to 90% low molecular weight or polyhydric alcohol, 0.005 to 0.04 M salt and 0.005 to 0.04 M pH buffering agent. In some embodiments, the lipopeptide is crystallized from a solution which also comprises 3-8% organic precipitant. In a more preferred embodiment, the lipopeptide is precipitated or crystallized from a solution containing 80 to 85% low molecular weight or polyhydric alcohol, 0.01 to 0.03 M salt and 0.01 to 0.03 M pH buffering agent. In some embodiments, the solution further comprises about 4 to 5% organic precipitant, e.g., PEG or PEG-MME. In other embodiment, the solution provided does not include polyethylene glycol (PEG) or polyethylene glycol monomethyl ether (PEG-MME).
- The lipopeptide is precipitated or crystallized at a temperature from approximately 0° C. to approximately 30° C. to obtain precipitate or crystal formation, respectively. In a preferred embodiment, a lipopeptide is crystallized or precipitated at a temperature of approximately 20-30° C. In a more preferred embodiment, the mixture is crystallized or precipitated at approximately 23-28° C. In an even more preferred embodiment, the mixture is crystallized or precipitated at approximately 27° C. The mixture may be crystallized or precipitated for any time period that results in crystallization or precipitation, preferably approximately one hour to approximately two weeks. In a preferred embodiment, the mixture is stored for a period of approximately three hours to approximately 24 hours, more preferably approximately 8-18 hours.
- Lipopeptide crystals or crystal-like particles may have a shape that is, without limitation, needle-like, rod-like, urchin-like, flake-like, plate-like or clusters thereof. In one embodiment, lipopeptide crystals or crystal-like particles are urchin-like, rod-like or needle-like. The shape of the crystal or crystal-like particle may be determined, inter alia, by optical or electron microscopy. In another embodiment, lipopeptide crystals or crystal-like particles may be any size that is at least approximately 0.5 μm in diameter in any one dimension. In a more preferred embodiment, lipopeptide crystals or crystal-like particle are at least 5 μm, more preferably at least 10 μm. In an even more preferred embodiment, the lipopeptide crystals or crystal-like particles are at least 50 μm, more preferably at least 100 μm. The size of the crystal may be determined by any method known to one having ordinary skill in the art. See, e.g., United States Pharmacopeia (USP), pp. 1965-67.
- The properties of a crystalline or crystal-like lipopeptide may be determined by any method known to one having ordinary skill in the art. The properties that can be determined include the crystalline or crystal-like lipopeptide's size, shape, birefringence properties, powder x-ray diffraction properties, solid state NMR properties, melting temperature and stability to heat, light, humidity, and degradation. In a preferred embodiment, one having ordinary skill in the art may determine whether a lipopeptide is crystalline by powder x-ray diffraction. Powder x-ray diffraction is highly useful for determining whether a preparation is crystalline when the sample is a randomly-oriented collection of small crystals. Diffraction by a mass of randomly-oriented microcrystals produces a series of lines or rings (dependent of the detector) characteristic of the molecule studied and its structure. In a preferred embodiment, powder diffraction is measured by an Automated Powder Diffraction instrument in order to determine whether a lipopeptide is crystalline. See, e.g., Atkins et al., Physical Chemistry, pp. 710-716 (1978), herein incorporated by reference for a discussion of the Debye-Scherrer method for powder diffraction. Any powder diffractometer instrument known in the art that is equipped with any detector for powder diffraction that known in the art could be used to measure the diffraction pattern.
- In a preferred embodiment of the invention, a lipopeptide is crystallized or precipitated using a buffering agent between approximately pH 5.0 and 9.5, a salt and an alcohol at a temperature of approximately 24-28° C. for a period of approximately three to 24 hours. In a preferred embodiment, the salt is a buffering agent and comprises a divalent cation and the alcohol is a low molecular weight alcohol, and the pH is between approximately pH 5.5 and 7.5. In an even more preferred embodiment, the salt is a calcium salt, the alcohol is isopropanol and the pH is between approximately pH 5.9 and 6.3. In embodiments were the solution includes an organic precipitant, preferably the organic precipitant is PEG 4000 or PEG 8000. In another embodiment the lipopeptide is precipitated or crystallized from a solution containing 12 to 18% glycerol, 0.3 to 0.8m salt, 0.03 to 0.08 m pH buffering agent, and 12-18
% PEG 600. In a still further preferred embodiment, the lipopeptide is daptomycin or a daptomycin-related lipopeptide. Examples 2-3 provide methods for precipitating a highly pure crystal-like daptomycin. One having ordinary skill in the art, following the teachings of the instant specification, may modify the crystallization/precipitation conditions provided in the examples to crystallize or precipitate daptomycin, daptomycin-related lipopeptides, or other lipopeptides of interest. Further, although the teachings of the instant specification describe the use of a single crystallization or precipitation step in a process for purifying a lipopeptide, one having ordinary skill in the art following the teachings of the specification may use multiple crystallization or precipitation steps in a process for purifying a lipopeptide. It may be advantageous to employ multiple rounds of crystallization or precipitation as disclosed herein in order to further increase purity of the lipopeptide. - After crystallization or precipitation, one may collect the crystalline material or crystal-like precipitate by any method known in the art. In a preferred embodiment, the crystalline material or crystal-like precipitate is collected by centrifugation or filtration. In an even more preferred embodiment, the crystalline material or crystal-like precipitate is collected by filtration because filtration is easily incorporated into a large-scale process for producing a lipopeptide. After the crystalline material or crystal-like precipitate is collected, it may be washed to remove excess crystallizing or precipitating reagents. Any wash solvent known in the art may be chosen so long as it does not appreciably dissolve the crystalline material or crystal-like precipitate. An example of a wash solvent is provided in Example 12. After the crystalline material or crystal-like precipitate is washed, it may be dried by any method known in the art. Examples of drying methods include air-drying, lyophilization (freeze-drying) or desiccation. In a preferred method, the crystalline material or crystal-like precipitate is desiccated. See, e.g., Example 12. In another embodiment, the crystalline lipopeptide's stability may be determined by its residual antibiotic activity or its degradation. The antibiotic activity may be measured in a standard agar-diffusion assay against various bacterial strains. See, e.g., Example 32 of U.S. Pat. No. 4,537,717, specifically incorporated herein by reference. The amount of degradation can be measured by, inter alia, HPLC analysis, such as that described in International PCT Publication WO 01/53330, published Jul. 26, 2001. In a preferred embodiment, the stability of the crystalline lipopeptide is greater than that of the amorphous form of the lipopeptide. The stability of the crystalline lipopeptide may be determined by exposing the crystalline lipopeptide and an amorphous form thereof to heat, light, humidity, and measuring the degree of degradation of the crystalline form to that of the amorphous form.
- Degradation of the lipopeptide may be measured by determining the biological activity of the lipopeptide or any applicable physical parameter. In one embodiment, degradation may be measured by determining a particular biological activity of a lipopeptide after it has been subjected to heat, light, humidity, changes in pH or extreme pH, and comparing it to the same biological activity of the lipopeptide prior to any tests of stability. The amount of degradation may be determined, for example, by determining the percentage of biological activity remaining after the test of stability. The percentage of remaining biological activity may be compared to that of an amorphous form of the lipopeptide that has been subjected to the same test. In one embodiment, if the lipopeptide is an antibiotic, the crystalline lipopeptide may be tested for its antibiotic activity both prior to and after a test of its stability and compared to an amorphous form that has been tested prior to and after a degradation test. In a preferred embodiment, the lipopeptide is daptomycin or a daptomycin-related lipopeptide, and the biological activity test determines the amount of antibiotic activity of the lipopeptides against gram-positive bacteria.
- Degradation of a lipopeptide may also be measured by a physical assay. In one embodiment, degradation may be measured by determining the percentage of intact crystalline lipopeptide that remains after a test of its stability. The percentage of remaining intact lipopeptide may be compared to that of an amorphous form of the lipopeptide that has been subjected to the same test for stability. In a preferred embodiment, the degradation of the lipopeptide may be measured by HPLC, ultraviolet spectroscopy, infrared spectroscopy, NMR, or mass spectroscopy. In an even more preferred embodiment, HPLC is used to determine the percentage of intact lipopeptide that remains after a crystalline form of a lipopeptide has been subjected to a test of its stability.
- Without wishing to be bound by any theory, applicants believe that daptomycin is crystallized by the methods described above. However, it is thought that washing and/or drying the daptomycin crystals causes the daptomycin crystalline material to revert to a non-crystalline but still crystal-like form. Nevertheless, even if the methods described above only precipitate rather than crystallize the daptomycin or other lipopeptide, the methods still are advantageous because the methods purify the lipopeptide.
- The invention also provides a crystalline or crystal-like lipopeptide produced by the above-described methods. In one embodiment, the crystalline or crystal-like lipopeptide comprises a lower amount of one or more impurities compared to the lipopeptide before crystallization or precipitation. In one embodiment, crystalline or crystal-like lipopeptide is daptomycin that comprises a lower level of anhydro-daptomycin and/or the P-isomer of daptomycin compared to daptomycin before crystallization or precipitation. In another embodiment, crystalline or crystal-like daptomycin comprises a lower level of all impurities compared to amorphous daptomycin. Similarly, in another embodiment, the crystalline or crystal-like lipopeptide is a daptomycin-related lipopeptide, as described above, which comprises a lower level of one or more impurities compared to an amorphous form of the daptomycin-related lipopeptide. In yet another embodiment, the crystalline or crystal-like daptomycin-related lipopeptide comprises a lower level of all impurities compared to an amorphous form of the daptomycin-related lipopeptide.
- The crystalline or crystal-like lipopeptide produced by the method described above likely comprises monovalent or divalent cations and water. In a preferred embodiment, the crystalline or crystal-like lipopeptide is daptomycin or daptomycin-related lipopeptide that comprises a divalent cation. In a more preferred embodiment, the divalent cation is a calcium cation. In an even more preferred embodiment, the crystalline or crystal-like daptomycin or daptomycin-related lipopeptide comprises approximately 1-10% by weight of a divalent calcium cation and approximately 0-15% by weight of water as determined by atomic absorption or thermal gravity analysis. In a further preferred embodiment, the crystalline or crystal-like lipopeptide is daptomycin that comprises approximately 5% by weight of a divalent calcium cation and approximately 10% by weight of water; by HPLC analysis, the purity of the crystalline or crystal-like daptomycin is at least 95%, 96%, 97% or 98% or is any purity between 95-98%, relative to related substances and organic contaminants. Alternatively, the crystalline or crystal-like daptomycin or daptomycin-related lipopeptide comprises a monovalent cation such as sodium. Without wishing to be bound by any theory, it is thought that daptomycin or a daptomycin-related lipopeptide may form a salt with the monovalent or divalent cation when it crystallizes or precipitates.
- The crystalline form of the lipopeptide may exhibit an increased solubility in a solution or an increased rate of reconstitution in a solution than an amorphous form of the lipopeptide. One may measure whether the crystalline lipopeptide exhibits an increased solubility or increased reconstitution rate by any method known in the art. For instance, one may dissolve a defined amount of a crystalline lipopeptide in an aqueous solution and measure the concentration of the dissolved lipopeptide and compare it to the concentration of dissolved lipopeptide that has been prepared by dissolving the same amount of amorphous lipopeptide in an aqueous solution. Similarly, one may measure the reconstitution rate of a crystalline lipopeptide by adding the crystalline lipopeptide to an aqueous solution and then measuring the concentration of dissolved lipopeptide over time and comparing it to the reconstitution rate of an amorphous lipopeptide that has been measured in the same way. The concentration of lipopeptide is measured by HPLC.
- The methods described above provide for the production of crystalline or crystal-like lipopeptides that are more pure than the amorphous lipopeptide from which they are crystallized or precipitated. In one embodiment, the lipopeptide is daptomycin or a daptomycin-related lipopeptide. In another embodiment, daptomycin or a daptomycin-related lipopeptide has a purity of no more than 92% before crystallization and has a purity of at least approximately 95%, 96%, 97% or 98% purity, or any purity between 95-98%, after crystallization or precipitation as a crystal-like lipopeptide. In a still further preferred embodiment, daptomycin or a daptomycin-related lipopeptide has a purity of no more than 90% before crystallization and has a purity of approximately at least 97% or 98% after crystallization.
- In another embodiment, the daptomycin has a purity of no more than 80%, preferably no more than 70% and more preferably no more than 60% purity before crystallization or precipitation, and has at least approximately 95%, 96%, 97% or 98% purity, or any purity between 95-98%, after purification. In another embodiment, the daptomycin has a purity of no more than 50%, preferably no more than 40%, more preferably no more than 30% purity before crystallization and has at least approximately 95%, 96%, 97% or 98% purity, or any purity between 95-98%, after purification by crystallization or precipitation. Further preferred is an embodiment in which daptomycin has a purity of no more than 20%, more preferably no more than 15%, even more preferably no more than 10% purity before crystallization and has at least approximately 95%, 96%, 97% or 98% purity, or any purity between 95-98%, after purification.
- In a more preferred embodiment, the lipopeptide is daptomycin. A daptomycin preparation may be obtained by any method disclosed, e.g., in any one U.S. Pats. RE32,333, RE32,455, 4,800,157, RE32,310, RE32,311, 4,537,717, 4,482,487, 4,524,135, 4,874,843, 4,885,243 or 5,912,226, which are herein incorporated specifically by reference. A daptomycin preparation may also be obtained by one of the methods described in International PCT Publication WO 01/53330, published Jul. 26, 2001. After the lipopeptide preparation is prepared, the lipopeptide preparation is crystallized or precipitated following the teachings of the specification described herein to produce a crystalline or crystal-like lipopeptide that is more pure or that contains lower levels of specific impurities, e.g., anhydro-daptomycin, than the lipopeptide preparation from which it is prepared.
- Processes for Producing Purified Lipopeptides from Fermentation Cultures
- Another embodiment of the present invention is drawn to a process combining process chromatography steps and crystallization or precipitation to produce a purified lipopeptide. In a preferred embodiment, the method comprises the steps of producing a lipopeptide by any method known in the art, such as fermentation of a naturally-occurring or recombinant organism, and then subjecting the lipopeptide preparation to any one or more purification methods such as microfiltration, anion exchange chromatography, hydrophobic interaction chromatography, and/or size exclusion chromatography (either via traditional size exclusion chromatographic media or via ultrafiltration) to produce a lipopeptide preparation that has been partially purified, and then crystallizing or precipitating the lipopeptide preparation to obtain a purified crystalline or crystal-like lipopeptide. In a preferred embodiment, the lipopeptide is daptomycin or a daptomycin-related lipopeptide. The steps regarding fermentation, microfiltration, anion exchange chromatography, hydrophobic interaction chromatography and ultrafiltration are disclosed in the art, e.g., in any one U.S. Pats. RE32,333, RE32,455, 4,800,157, RE32,310, RE32,311, 4,537,717, 4,482,487, 4,524,135, 4,874,843, 4,885,243 or 5,912,226, in International Publication WO 01/53330, published Jul. 26, 2001.
- The method optionally comprises the step of collecting and/or washing the crystalline or crystal-like material after the crystallization or precipitation step. In a preferred embodiment, the crystalline lipopeptide preparation may be collected by filtration. In another embodiment, the crystalline or crystal-like material is dried.
- In one embodiment, the purification method comprises fermenting Streptomyces roseosporus to obtain a fermentation culture containing daptomycin. In one embodiment, the S. roseosporus may be fermented as described in U.S. Pat. No. 4,885,243. In another embodiment, the fermentation conditions in which the A-21978C0-containing crude product is produced by Streptomyces roseosporus is altered in order to increase daptomycin production and decrease impurities and related contaminants produced by the S. roseosporus fermentation culture as described in International PCT Publication WO 01/53330, published Jul. 26, 2001. The WO 01/53330 publication describes fermenting S. roseosporus as described in the '243 patent with the modification that the decanoic acid feed is kept at the lowest levels possible without diminishing the overall yield of the fermentation.
- Alternatively, daptomycin may be obtained by fermenting a bacterial strain or other producing organism that recombinantly produces daptomycin. In one embodiment, the recombinant bacterial strain or other recombinant organism comprises the daptomycin biosynthetic gene cluster. In another embodiment, the daptomycin biosynthetic gene cluster or a portion thereof is introduced into the organism or bacterial strain via a bacterial artificial chromosome (BAC). In another embodiment, the recombinant bacterial strain used is S. roseosporus or S. lividans comprising a BAC containing the daptomycin biosynthetic gene cluster.
U.S. Provisional Application 60/272,207, filed Feb. 28, 2001 describes the daptomycin biosynthetic gene cluster from S. roseosporus and uses thereof, and is hereby incorporated by reference in its entirety. - After fermentation, the fermentation broth is clarified by centrifugation, microfiltration or extraction, as is known in the art or as described in the WO 01/53330 publication. In a preferred embodiment, the clarification is performed by microfiltration. See, e.g., Examples 13-16 and
FIGS. 11-15 .FIG. 11 shows an exemplary manufacturing process that does not use crystallization or precipitation. - After the fermentation broth is clarified, the concentration of daptomycin in the broth is approximately 5-10%. In one embodiment of the invention, the daptomycin preparation is subjected to a crystallization/precipitation method described above directly subsequent to microfiltration. In one embodiment, crystallization or precipitation is performed under sterile conditions. After crystallization or precipitation is complete, the crystalline or crystal-like daptomycin is optionally collected, washed and dried, as described in further detail below. The dry bulk active drug may then be used to dry fill sterile vials. See, e.g., Example 16 and
FIG. 12 . - After clarification of the fermentation broth, the lipopeptide may be enriched in the preparation by anion exchange chromatography, as is known in the art or as described in the WO 01/53330 publication or herein. See, e.g., Examples 13-14 and
FIGS. 12-13 . After anion exchange chromatography, the purity of daptomycin in the broth is approximately 35-40%. In one embodiment of the invention, the daptomycin preparation is then subjected to a crystallization or precipitation method described above directly subsequent to anion exchange chromatography. In one embodiment, crystallization or precipitation is performed under sterile conditions. After crystallization or precipitation is complete, the crystalline or crystal-like daptomycin is optionally collected, washed and dried as described below. The dry bulk active drug may then be used to dry fill sterile vials. See, e.g., Example 14 andFIG. 13 . - In another embodiment of the invention, the daptomycin preparation is subjected to size exclusion ultrafiltration after anion exchange chromatography. Size exclusion ultrafiltration is described in the WO 01/53330 publication. The application published Jul. 26, 2001 describes a method of depyrogenating, filtering and concentrating the daptomycin using an ultrafiltration membrane of 10,000 to 30,000 nominal molecular weight (NMW). The application discloses a method in which the lipopeptide passes through the ultrafiltration membrane while large molecular weight impurities, such as endotoxins, are retained by the filter. After the lipopeptide has passed through the membrane, the pH, temperature and/or salt concentration of the lipopeptide solution are altered such that the lipopeptides form micelles. The lipopeptide solution is then filtered on the ultrafiltration membrane under conditions in which the lipopeptide micelles are retained on the membrane while smaller impurities pass through the filter. In this manner, the lipopeptide is further purified. The application discloses the conditions under which lipopeptide micelles may be formed and disassociated as well as methods for filtering the lipopeptide solution to obtain a more purified lipopeptide application. In an even more preferred embodiment, the lipopeptide is daptomycin or a daptomycin-related lipopeptide. The lipopeptide may then be crystallized, as described herein. After both anion exchange chromatography and size exclusion ultrafiltration, daptomycin purity is approximately 80-90%. As discussed above, the daptomycin preparation is then subjected to a crystallization/precipitation method described above, preferably under sterile conditions. The crystalline or crystal-like daptomycin may be optionally collected, washed, dried and used to dry fill vials as described below. See, e.g., Example 13 and
FIG. 12 . - In another embodiment of the invention, the crude daptomycin preparation is subjected to size exclusion ultrafiltration without anion exchange chromatography. After size exclusion ultrafiltration, daptomycin purity is approximately 35-40%. The lipopeptide may then be crystallized or precipitated as described herein, preferably by sterile methods. As discussed above, the crystalline or crystal-like daptomycin may be collected, washed, dried and used to dry fill sterile vials. See, e.g., Example 15 and
FIG. 14 . - In an alternative embodiment, the lipopeptide preparation is subjected to hydrophobic interaction chromatography (HIC), such as is described in the WO 01/53330 publication, after either the anion exchange chromatography or the size exclusion filtration. The lipopeptide may then be crystallized or precipitated as described herein.
- After crystallization or precipitation, the crystalline or crystal-like lipopeptide may be collected by a method described herein, e.g., by filtration or centrifugation. The crystalline or crystal-like lipopeptide is optionally washed to remove residual crystallization or precipitation solvent. A method of washing crystals or crystal-like material are described below. See, e.g., Example 3. The washed or unwashed crystal or crystal-like material may be dried. The drying may be performed by any method known in the art, including, without limitation, vacuum drying, spray drying, tray drying or lyophilization. In one embodiment, the drying is performed under sterile conditions. In another embodiment, the drying is performed by vacuum drying. In a more preferred embodiment, the drying is performed using a 0.65 m3 Klein Hastelloy-B double cone vacuum dryer or an equivalent apparatus. The dried crystalline or crystal-like lipopeptide is stable and is easily stored.
- In one embodiment, vials are filled with any convenient amount of the dried crystalline or crystal-like lipopeptide. In one embodiment, the vials are filled under sterile conditions and then stoppered. In another embodiment, the vials are filled with 50 to 5000 mg each of the dried crystalline or crystal-like lipopeptide. In another embodiment, the vials are filled with 100 to 1000 mg each. In another embodiment, the vials are filled with 200 to 500 mg each. In another embodiment, the dried crystalline or crystal-like lipopeptide is used for bulk packaging of the lipopeptide. The bulk packaging is usually greater than 5000 mg each of the dried crystalline or crystal-like lipopeptide. In one embodiment, the bulk packaging is performed under sterile conditions.
- In one embodiment, the crystallization or precipitation step is performed under sterile conditions. In this embodiment, sterile crystallization or precipitation reagents and a sterile, controlled working environment are used. In one embodiment, the lipopeptide is filtered on a ultrafiltration membrane, as disclosed above, before being mixed with the sterile crystallization/precipitation reagents. After crystallization or precipitation, the crystalline or crystal-like lipopeptide preparation is collected by centrifugation or filtration under sterile conditions. In one embodiment, the lipopeptide preparation is collected by sterile filtration. In another embodiment, the crystalline or crystal-like lipopeptide is sterilized after it has been collected. Methods of sterile crystallization, precipitation and filtration as well as methods of sterilizing a final pharmaceutical product are known in the art. See, e.g., Remington: The Science and Practice of Pharmacy, Easton, Pa.: Mack Publishing Company (1995), pp. 1474-1487, herein incorporated by reference.
- In another embodiment, the crystalline or crystal-like lipopeptide is not dried. In this embodiment, the crystalline or crystal-like lipopeptide is preferably stored in a solution that preserves the crystalline or crystal-like nature of the lipopeptide. Vials may be filled with the lipopeptide and solution under sterile or nonsterile conditions. In one embodiment, the conditions are sterile. Alternatively, the crystalline or crystal-like lipopeptide and solution may be used to fill bulk packaging.
-
FIGS. 10 and 11 provide flowcharts describing an exemplary daptomycin manufacturing protocol using crystallization. The incorporation of sterile crystallization into the manufacturing protocol shortens the protocol considerably and eliminates 3 to 4 steps in the process. - Crystalline or Crystal-like Lipopeptides Pharmaceutical Compositions and Methods of Use Thereof
- Another object of the instant invention is to provide crystalline or crystal-like lipopeptides or salts thereof, as well as pharmaceutical formulations comprising a crystalline or crystal-like lipopeptide or its salts. In one embodiment, the crystalline or crystal-like lipopeptide is daptomycin. However, all reference herein to crystalline or crystal-like lipopeptides specifically contemplates daptomycin, a daptomycin-related molecule, including, inter alia, daptomycin, A54145 and a daptomycin-related lipopeptide, as disclosed above.
- Daptomycin crystals or crystal-like particles, as well as other lipopeptide crystals or crystal-like particles may have a shape such as, inter alia, a needle-like shape, a plate-like shape, a lath-like shape, an equant-like shape, an urchin-like shape or a rod-like shape. In one embodiment, daptomycin crystals or crystal-like particles have an urchin-like, needle-like or rod-like shape. The size of the crystals or crystal-like particles may range from approximately 0.5 μm to greater than 100 μm. In one embodiment, the particle size is at least 5 μm or greater. In a more preferred embodiment, the particle size is at least 10 μm or greater, more preferably at least 50 μm. In an even more preferred embodiment, the particle size is at least 100 μm.
- Further, in one embodiment, daptomycin crystals have an x-ray diffraction pattern as shown in
FIGS. 6, 7 and 8. In another embodiment, the lipopeptide crystal exhibits a different melting point than the amorphous form of the lipopeptide. - In one embodiment of the invention, a crystalline form of a lipopeptide exhibits a stability that is equal to or greater than the amorphous form of the lipopeptide. In a preferred embodiment, the crystalline form is daptomycin or a daptomycin-related lipopeptide. In another preferred embodiment, the crystalline lipopeptide is sterile. In another preferred embodiment, the stability of the crystalline lipopeptide is greater than the amorphous form of the lipopeptide. The crystalline lipopeptide may exhibit higher stability to heat, light, degradation or humidity than the amorphous form. The stability of the lipopeptide may be measured by any means including, e.g., antibiotic activity, degradation of the lipopeptide or conversion of daptomycin to anhydro-daptomycin or the β-isomer of daptomycin. In another embodiment of the invention, the crystalline form of the lipopeptide may be more quickly reconstituted in aqueous solution than the amorphous form of the lipopeptide.
- Crystalline or crystal-like lipopeptides, such as daptomycin or a daptomycin-related lipopeptide, pharmaceutically-acceptable salts, esters, amides, ethers and protected forms thereof, can be formulated for oral, intravenous, intramuscular, subcutaneous, aerosol, topical or parenteral administration for the therapeutic, empirical or prophylactic treatment of diseases, particularly bacterial infections. Reference herein to “crystalline or crystal-like lipopeptides” or “crystalline or crystal-like daptomycin” includes pharmaceutically acceptable salts thereof. Crystalline or crystal-like lipopeptides, such as daptomycin, may be particularly advantageous for pharmaceutical compositions because they can be easily formulated as micronized particles of microspheres, which permits the facile preparation of enterically coated lipopeptides for oral delivery, pharmaceutical compositions for aerosol delivery to, e.g., the lung, and the preparation of lipopeptides formulations for sustained release. Crystalline or crystal-like lipopeptides and crystalline or crystal-like daptomycin may also be more readily dissolved in aqueous solution.
- Crystalline or crystal-like lipopeptides, including daptomycin or daptomycin-related lipopeptides can be formulated using any pharmaceutically acceptable carrier or excipient that is compatible with daptomycin or with the lipopeptide of interest. See, e.g., Handbook of Pharmaceutical Additives: An International Guide to More than 6000 Products by Trade Name, Chemical, Function, and Manufacturer, Ashgate Publishing Co., eds., M. Ash and I. Ash, 1996; The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals, ed. S. Budavari, annual; Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa.; Martindale: The Complete Drug Reference, ed. K. Parfitt, 1999; and Goodman & Gilman's The Pharmaceutical Basis of Therapeutics, Pergamon Press, New York, N.Y., ed. L. S. Goodman et al.; the contents of which are incorporated herein by reference, for a general description of the methods for administering various antimicrobial agents for human therapy. Compounds of this invention can be mixed with conventional pharmaceutical carriers and excipients and used in the form of tablets, capsules, elixirs, suspensions, syrups, wafers, creams and the like. Compounds of this invention may also be mixed with other therapeutic agents and antibiotics, such as discussed herein. The compositions comprising a compound of this invention will contain from about 0.1 to about 90% by weight of the active compound, and more generally from about 10 to about 30%.
- The compositions of the invention can be delivered using controlled ( e.g., capsules) or sustained release delivery systems (e.g., bioerodable matrices). Exemplary delayed release delivery systems for drug delivery that are suitable for administration of the compositions of the invention are described in U.S. Pat. No. 4,452,775 (issued to Kent), U.S. Pat. No. 5,239,660 (issued to Leonard), U.S. Pat. No. 3,854,480 (issued to Zaffaroni).
- The compositions may contain common carriers and excipients, such as corn starch or gelatin, lactose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride and alginic acid. The compositions may contain croscarmellose sodium, microcrystalline cellulose, corn starch, sodium starch glycolate and alginic acid.
- Tablet binders that can be included are acacia, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (Povidone), hydroxypropyl methylcellulose, sucrose, starch and ethylcellulose.
- Lubricants that can be used include magnesium stearate or other metallic stearates, stearic acid, silicone fluid, talc, waxes, oils and colloidal silica.
- Flavoring agents such as peppermint, oil of wintergreen, cherry flavoring or the like can also be used. It may also be desirable to add a coloring agent to make the dosage form more aesthetic in appearance or to help identify the product.
- For oral use, solid formulations such as tablets and capsules are particularly useful. Sustained release or enterically coated preparations may also be devised. In another embodiment, crystalline or crystal-like lipopeptides may be supplied in combination with a carrier composition that enhances the oral availability of the lipopeptide. In a preferred embodiment, the crystalline or crystal-like lipopeptide is daptomycin. For pediatric and geriatric applications, suspensions, syrups and chewable tablets are especially suitable. For oral administration, the pharmaceutical compositions are in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a therapeutically-effective amount of the active ingredient. Examples of such dosage units are tablets and capsules. For therapeutic purposes, the tablets and capsules which can contain, in addition to the active ingredient, conventional carriers such as binding agents, for example, acacia gum, gelatin, polyvinylpyrrolidone, sorbitol, or tragacanth; fillers, for example, calcium phosphate, glycine, lactose, maize-starch, sorbitol, or sucrose; lubricants, for example, magnesium stearate, polyethylene glycol, silica, or talc; disintegrants, for example, potato starch, flavoring or coloring agents, or acceptable wetting agents. Oral liquid preparations generally are in the form of aqueous or oily solutions, suspensions, emulsions, syrups or elixirs may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous agents, preservatives, coloring agents and flavoring agents. Oral liquid preparations may comprise lipopeptide micelles or monomeric forms of the lipopeptide. Examples of additives for liquid preparations include acacia, almond oil, ethyl alcohol, fractionated coconut oil, gelatin, glucose syrup, glycerin, hydrogenated edible fats, lecithin, methyl cellulose, methyl or propyl para-hydroxybenzoate, propylene glycol, sorbitol, or sorbic acid.
- For intravenous (IV) use, a water soluble form of a compound of this invention can be dissolved in any of the commonly used intravenous fluids and administered by infusion. Intravenous formulations may include carriers, excipients or stabilizers including, without limitation, calcium, human serum albumin, citrate, acetate, calcium chloride, carbonate, and other salts. Intravenous fluids include, without limitation, physiological saline or Ringer's solution. Daptomycin or other lipopeptides also may be placed in injectors, cannulae, catheters and lines.
- Formulations for parenteral administration can be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions or suspensions can be prepared from sterile powders or granules having one or more of the carriers mentioned for use in the formulations for oral administration. The crystalline or crystal-like lipopeptides can be dissolved in polyethylene glycol, propylene glycol, ethanol, corn oil, benzyl alcohol, sodium chloride, and/or various buffers. For intramuscular, parenteral or intravenous preparations, a sterile formulation of a crystalline or crystal-like lipopeptide compound or a suitable soluble salt form of the compound, for example the hydrochloride salt, can be dissolved and administered in a pharmaceutical diluent such as Water-for-Injection (WFI), physiological saline or 5% glucose. A suitable insoluble form of the crystalline or crystal-like lipopeptide also may be prepared and administered as a suspension in an aqueous base or a pharmaceutically acceptable oil base, e.g., an ester of a long chain fatty acid such as ethyl oleate.
- Injectable depot forms may be made by forming microencapsulated matrices of the crystalline or crystal-like lipopeptide in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in microemulsions that are compatible with body tissues.
- For topical use the compounds of the present invention can also be prepared in suitable forms to be applied to the skin, or mucus membranes of the nose and throat, and can take the form of creams, ointments, liquid sprays or inhalants, lozenges, or throat paints. Such topical formulations further can include chemical compounds such as dimethylsulfoxide (DMSO) to facilitate surface penetration of the active ingredient. For topical preparations, a sterile formulation comprising a crystalline or crystal-like lipopeptide, such as crystalline or crystal-like daptomycin, a suitable salt form thereof, may be administered in a cream, ointment, spray or other topical dressing. Topical preparations may also be in the form of bandages that have been impregnated with a lipopeptide composition.
- For application to the eyes or ears, the compounds of the present invention can be presented in liquid or semi-liquid form formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints or powders.
- For rectal administration the compounds of the present invention can be administered in the form of suppositories admixed with conventional carriers such as cocoa butter, wax or other glyceride.
- For aerosol preparations, a sterile formulation of a crystalline or crystal-like lipopeptide or a salt form of the compound may be used in inhalers, such as metered dose inhalers, and nebulizers. Aerosolized forms may be especially useful for treating respiratory infections, such as pneumonia and sinus-based infections.
- Alternatively, the compounds of the present invention can be in powder crystalline or crystal-like form for reconstitution in the appropriate pharmaceutically acceptable carrier at the time of delivery. In another embodiment, the unit dosage form of the compound can be a solution of the compound or a salt thereof in a suitable diluent in sterile, hermetically sealed ampules. The concentration of the compound in the unit dosage may vary, e.g. from about 1 percent to about 50 percent, depending on the compound used and its solubility and the dose desired by the physician. If the compositions contain dosage units, each dosage unit preferably contains approximately from 10-5000 mg of the active material, more preferably 50 to 1000 mg, and even more preferably 100 to 500 mg. For adult human treatment, the dosage employed preferably ranges from I 00 mg to 3 g, per day, depending on the route and frequency of administration.
- In a further aspect, this invention provides a method for treating an infection caused by a gram-positive bacteria in a subject. In a preferred embodiment, the method may be used to treat an infection caused by a gram-positive bacteria. The term “treating” is defined as administering, to a subject, a therapeutically-effective amount of a compound of the invention, both to prevent the occurrence of an infection and to control or eliminate an infection, e.g., an established infection. The term “subject”, as described herein, is defined as a mammal, a plant or a cell culture. As used herein, the phrase “therapeutically-effective amount” means an amount of daptomycin, daptomycin-related lipopeptide or other antibacterial lipopeptide according to the present invention that prevents the onset, alleviates the symptoms, or stops the progression of a bacterial infection. In a preferred embodiment, a subject is a human or other animal patient in need of lipopeptide treatment. An established infection may be one that is acute or chronic. An effective dose is generally between about 0.1 and about 75 mg/kg crystalline or crystal-like lipopeptide, such as crystalline or crystal-like daptomycin or daptomycin-related lipopeptide, or a pharmaceutically acceptable salt thereof. A preferred dose is from about 1 to about 25 mg/kg of crystalline or crystal-like daptomycin or daptomycin-related lipopeptide or a pharmaceutically acceptable salt thereof. A more preferred dose is from about 1 to 12 mg/kg crystalline or crystal-like daptomycin, a crystalline or crystal-like daptomycin-related lipopeptide or a pharmaceutically acceptable salt thereof. An even more preferred dose is about 3 to 8 mg/kg crystalline or crystal-like daptomycin or daptomycin-related lipopeptide or a pharmaceutically acceptable salt thereof. Exemplary procedures for delivering an antibacterial agent are described in U.S. Pat. No. 5,041,567, issued to Rogers and in International PCT Publication WO 95/05384, the entire contents of which documents are incorporated in their entirety herein by reference.
- The crystalline or crystal-like lipopeptide, e.g., daptomycin, can be administered as a single daily dose or in multiple doses per day. The treatment regime may require administration over extended periods of time, e.g., for several days or for from two to four weeks. The amount per administered dose or the total amount administered will depend on such factors as the nature and severity of the infection, the age and general health of the patient, the tolerance of the patient to the lipopeptide and the microorganism or microorganisms involved in the infection. A method of administration is disclosed in WO 00/18419, published Apr. 6, 2000, herein incorporated by reference. ====The methods of the present invention comprise administering a compound of the invention, or a pharmaceutical composition thereof to a patient in need thereof in an amount that is efficacious in reducing or eliminating the gram-positive bacterial infection. The lipopeptide may be administered orally, parenterally, by inhalation, topically, rectally, nasally, buccally, vaginally, or by an implanted reservoir, external pump or catheter. The lipopeptide may be prepared for opthalmic or aerosolized uses. Compounds of the invention, or pharmaceutical compositions thereof also may be directly injected or administered into an abscess, ventricle or joint. Parenteral administration includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, cisternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion. In a preferred embodiment, crystalline or crystal-like daptomycin, daptomycin-related lipopeptide or other lipopeptide is administered intravenously, subcutaneously or orally.
- The method of the instant invention may be used to treat a patient having a bacterial infection in which the infection is caused or exacerbated by any type of gram-positive bacteria. In a preferred embodiment, crystalline or crystal-like daptomycin, daptomycin-related lipopeptide or other lipopeptide, or pharmaceutical compositions thereof, are administered to a patient according to the methods of this invention. In another embodiment, the bacterial infection may be caused or exacerbated by bacteria including, but not limited to, methicillin-susceptible and methicillin-resistant staphylococci (including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, and coagulase-negative staphylococci), glycopeptide intermediary-susceptible Staphylococcus aureus (GISA), penicillin-susceptible and penicillin-resistant streptococci (including Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus avium, Streptococcus bovis, Streptococcus lactis, Streptococcus sangius and Streptococci Group C, Streptococci Group G and viridans streptococci), enterococci (including vancomycin-susceptible and vancomycin-resistant strains such as Enterococcus faecalis and Enterococcus faecium), Clostridium difficile, Clostridium clostridiiforme, Clostridium innocuum, Clostridium perfringens, Clostridium ramosum, Haemophilus influenzae, Listeria monocytogenes, Corynebacterium jeikeium, Bifidobacterium spp., Eubacterium aerofaciens, Eubacterium lentum, Lactobacillus acidophilus, Lactobacillus casei, Lactobacilllus plantarum, Lactococcus spp., Leuconostoc spp., Pediococcus, Peptostreptococcus anaerobius, Peptostreptococcus asaccarolyticus, Peptostreptococcus magnus, Peptostreptococcus micros, Peptostreptococcus prevotii, Peptostreptococcus productus, Propionibacterium acnes, and Actinomyces spp.
- The antibacterial activity of daptomycin against classically “resistant” strains is comparable to that against classically “susceptible” strains in in vitro experiments. In addition, the minimum inhibitory concentration (MIC) value for daptomycin against susceptible strains is typically 4-fold lower than that of vancomycin. Thus, in a preferred embodiment, a compound of the invention, or a pharmaceutical composition of any one of these crystalline or crystal-like lipopeptides, is administered according to the methods of this invention to a patient who exhibits a bacterial infection that is resistant to other antibiotics, including vancomycin. In addition, unlike glycopeptide antibiotics, daptomycin exhibits rapid, concentration-dependent bactericidal activity against gram-positive organisms. Thus, in a preferred embodiment, compounds of the invention, or a pharmaceutical composition of any one of these crystalline or crystal-like lipopeptides, is administered according to the methods of this invention to a patient in need of rapidly acting antibiotic therapy.
- The method of the instant invention may be used for a gram-positive bacterial infection of any organ or tissue in the body. These organs or tissue include, without limitation, skeletal muscle, skin, bloodstream, kidneys, heart, lung and bone. The method of the invention may be used to treat, without limitation, skin and soft tissue infections, bacteremia and urinary tract infections. The method of the invention may be used to treat community acquired respiratory infections, including, without limitation, otitis media, sinusitis, chronic bronchitis and pneumonia, including pneumonia caused by drug-resistant Streptoococcus pneumoniae or Haemophilus influenzae. The method of the invention also may be used to treat mixed infections that comprise different types of gram-positive bacteria, including aerobic, caprophilic or anaerobic bacteria. These types of infections include intra-abdominal infections, pneumonia, bone and joint infections and obstetrical/gynecological infections. The method of the invention also may be used to treat an infection including, without limitation, endocarditis, nephritis, septic arthritis and osteomyelitis. In a preferred embodiment, any of the above-described diseases may be treated using crystalline or crystal-like daptomycin, daptomycin-related lipopeptide, antibacterial lipopeptide, or pharmaceutical compositions of any one of these crystalline or crystal-like lipopeptides.
- Crystalline or crystal-like daptomycin, daptomycin-related lipopeptide or other lipopeptide may also be administered in the diet or feed of a patient or animal. If administered as part of a total dietary intake, the amount of daptomycin or other lipopeptide can be less than 1% by weight of the diet and preferably no more than 0.5% by weight. The diet for animals can be normal foodstuffs to which daptomycin or other lipopeptide can be added or it can be added to a premix.
- The method of the instant invention may also be practiced while concurrently administering another form of daptomycin or other lipopeptide antibiotic, e.g., one that is not crystalline or crystal-like, or with one or more antifungal agents and/or one or more antibiotics other than crystalline or crystal-like daptomycin or other crystalline or crystal-like lipopeptide antibiotics. Co-administration of an antifungal agent and an antibiotic other than crystalline or crystal-like daptomycin or another lipopeptide antibiotic may be useful for mixed infections such as those caused by different types of gram-positive bacteria, or those that caused by both bacteria and fungus. Furthermore, crystalline or crystal-like daptomycin or other lipopeptide antibiotic may improve the toxicity profile of one or more co-administered antibiotics. It has been shown that administration of daptomycin and an aminoglycoside may ameliorate renal toxicity caused by the aminoglycoside. In a preferred embodiment, an antibiotic and/or antifungal agent may be administered concurrently with a compound of this invention, or in a pharmaceutical composition comprising a compound of this invention.
- Antibacterial agents and classes thereof that may be co administered with a compound of the present invention include, without limitation, penicillins and related drugs, carbapenems, cephalosporins and related drugs, aminoglycosides, bacitracin, gramicidin, mupirocin, chloramphenicol, thiamphenicol, fusidate sodium, lincomycin, clindamycin, macrolides, novobiocin, polymyxins, rifamycins, spectinomycin, tetracyclines, vancomycin, teicoplanin, streptogramins, anti-folate agents including sulfonamides, trimethoprim and its combinations and pyrimethamine, synthetic antibacterials including nitrofurans, methenamine mandelate and methenamine hippurate, nitroimidazoles, quinolones, fluoroquinolones, isoniazid, ethambutol, pyrazinamide, para-aminosalicylic acid (PAS), cycloserine, capreomycin, ethionamide, prothionamide, thiacetazone, viomycin, everninomycin, glycopeptide, glycylcylcline, ketolides, oxazolidinone; imipenen, amikacin, netilmicin, fosfomycin, gentamicin, ceftriaxone, Ziracin, LY 333328, CL 331002, HMR 3647, Linezolid, Synercid, Aztreonam, and Metronidazole, Epiroprim, OCA—983, GV—143253, Sanfetrinem sodium, CS—834, Biapenem, A—99058.1, A—165600, A—179796, KA 159, Dynemicin A, DX8739, DU 6681; Cefluprenam, ER 35786, Cefoselis, Sanfetrinem celexetil, HGP—31, Cefpirome, HMR—3647, RU—59863, Mersacidin, KP 736, Rifalazil; Kosan, AM 1732, MEN 10700, Lenapenem, BO 2502A, NE—1530, PR 39, K130, OPC 20000, OPC 2045, Veneprim, PD 138312, PD 140248, CP 111905, Sulopenem, ritipenam acoxyl, RO—65—5788, Cyclothialidine, Sch—40832, SEP—132613, micacocidin A, SB—275833, SR—15402, SUN A0026, TOC 39, carumonam, Cefozopran, Cefetamet pivoxil, and T 3811.
- In a preferred embodiment, antibacterial agents that may be co administered with a compound according to this invention include, without limitation, imipenen, amikacin, netilmicin, fosfomycin, gentamicin, ceftriaxone, teicoplanin, Ziracin, LY 333328, CL 331002, HMR 3647, Linezolid, Synercid, Aztreonam, and Metronidazole.
- Antifungal agents that may be co administered with a compound according to this invention include, without limitation, Caspofungen, Voriconazole, Sertaconazole, IB—367, FK—463, LY—303366, Sch—56592, Sitafloxacin, DB—289 polyenes, such as Amphotericin, Nystatin, Primaricin; azoles, such as Fluconazole, Itraconazole, and Ketoconazole; allylamines, such as Naftifine and Terbinafine; and anti-metabolites such as Flucytosine. Other antifungal agents include without limitation, those disclosed in Fostel et al., Drug Discovery Today 5:25—32 (2000), herein incorporated by reference. Fostel et al. disclose antifungal compounds including Corynecandin, Mer_WF3010, Fusacandins, Artrichitin/LL 15G256(, Sordarins, Cispentacin, Azoxybacillin, Aureobasidin and Khafrefungin.
- Compounds of this invention, or a pharmaceutical composition of any one or more of these crystalline or crystal-like lipopeptides, may be administered according to this method until the bacterial infection is eradicated or reduced. In one embodiment, the crystalline or crystal-like lipopeptide is administered for a period of time from approximately 3 days to approximately 6 months. In a preferred embodiment, the crystalline or crystal-like lipopeptide is administered for 7 to 56 days. In a more preferred embodiment, the crystalline or crystal-like lipopeptide is administered for 7 to 28 days. In an even more preferred embodiment, the crystalline or crystal-like lipopeptide is administered for 7 to 14 days. The crystalline or crystal-like lipopeptide may be administered for a longer or shorter time period if it is so desired. In a preferred embodiment, the lipopeptide is daptomycin or daptomycin-related lipopeptide.
- In order that this invention may be more fully understood, the following examples are set forth. These examples are for the purpose of illustration only and are not to be construed as limiting the scope of the invention in any way.
- Daptomycin was prepared by conventional techniques. The daptomycin preparation was a pale yellow amorphous powder, with a solubility at 25° C. of greater than 1 g/mL in water and a solubility of 2.8 mg/mL in ethanol. The amorphous daptomycin preparation was hygroscopic and decomposed at 215° C.
- The remaining examples describe crystallizing or precipitating lipopeptides in the presence or absence of an organic precipitant (e.g., PEG).
- In a microbatch crystallization, 25 μL of a daptomycin stock (20 mg/mL in methanol) was sequentially mixed with 15 μL of reagent stock (200 mM calcium acetate, 0.1 M cacodylate (pH 6.5), 18% [w/v]
PEG 8000 and 15 μL ethylene glycol) to give a solution that was 27.5% aqueous component, 45% methanol and 27.5% ethylene glycol. Urchin-like crystals were formed at a yield of 50% with a purity of 98% as measured by HPLC. - A daptomycin stock was prepared by dissolving 440 mg daptomycin in 1 mL of a buffer containing 25 mM sodium acetate (pH 5.0) and 5 mM CaCl2. Crystallization was done by the vapor diffusion (hanging drop) method, in which 5 μL of the daptomycin stock was added to 5 μL of 0.1 M tri-sodium citrate dihydrate (pH 5.6), and 35% [v/v] tert-butanol in water to form a drop. The drop was suspended over a reservoir solution (0.1 M tri-sodium citrate dihydrate (pH5.6), and 35% [v/v] tert-butanol in water) in an=air-tight-environment until crystallization occurred. This method yielded urchin-like daptomycin crystals. See, e.g.,
FIG. 2 . - 5 μL of a daptomycin stock prepared as in Example 3 was added to 5 μL of a solution containing 0.1 M sodium cacodylate (pH 6.5), 0.2 M calcium acetate and 9% [w/v] PEG 8000. Crystallization was done by the vapor diffusion method as described in Example 3. This method yielded needle-like daptomycin crystals. See, e.g.,
FIG. 3 . - 5 μL of a daptomycin stock prepared as in Example 3 was added to 5 μL of a solution of 0.1 M sodium cacodylate (pH 6.5), 0.2 M zinc acetate and 9% [w/v] PEG 8000 containing 0.1 μL benzamidine to give a final concentration of 220 mg/mL daptomycin. Crystallization was done by the vapor diffusion method as described in Example 3. This method yielded rod-like daptomycin crystals. See, e.g.,
FIG. 4 . - One mL of daptomycin (97.1% pure as determined by HPLC) at a concentration of 20-25 mg/mL in water was sequentially mixed with 231 μL water, 77 μL of calcium acetate (pH 6.0), 960 μL propylene glycol and 231 μL of 50% [w/v] PEG 4000. The solution was allowed to sit for 4-5 hours at 4° C. Urchin-like crystals were formed at a yield of 75%. The crystalline daptomycin was washed with isopropanol. The daptomycin was 98.4% pure as determined by HPLC.
- Daptomycin (200 mg, 97.1% pure) was dissolved in 2.54 mL water. The daptomycin solution was sequentially mixed in order with 10.0 mL methanol, 0.78 mL 1 M calcium acetate (pH 6.0), 9.50 mL propylene glycol and 2.20
mL 50% [w/v] PEG 4000 to give a final volume of 25.02 mL. The mixture was tumbled at room temperature for 10-14 hours in a hematology mixer (Fischer). Crystals began to appear within a few hours. Final yield was approximately 70-80% after 14 hours. The crystals were harvested by centrifugation at 1000 rpm for 15 minutes. The supernatant was removed and the crystals were resuspended in 12.5 mL isopropanol. The daptomycin suspension was transferred to a column (Biorad) and the isopropanol was removed by allowing it to drip by gravity. The crystals were dried by a nitrogen stream. Any lumps were broken up during the drying procedure to obtain a uniform dry sample. Crystals prepared by this method were urchin-like and had a purity of 98.37%. - Daptomycin was crystallized according to Example 7 except that PEG 8000 was used in replacement of PEG 4000. The quantities of reagents used are identical to those in Example 7. Crystals prepared by this method were urchin-like and had a purity of 98.84%.
- Two daptomycin samples prepared according to Example 7 and one amorphous sample were analyzed for crystallinity using the USP <695> crystallinity test. Daptomycin particles were mounted in mineral oil on a glass slide and then were examined by polarizing light microscope (PLM). The particles were determined to be crystalline if they were birefringent (have interference colors) and had extinction positions when the stage was rotated.
- The amorphous daptomycin sample consisted of lacy, flaky particles that were not birefringent. There were a few sliver-like areas in some of the flakes that had weak birefringence, but the particles were primarily amorphous. In contrast, the daptomycin samples prepared according to Example 7 consisted of polycrystalline particles with weak birefringence and some extinction, indicating that they were primarily crystalline. See
FIG. 5 . - Two daptomycin samples prepared according to Example 7 and one amorphous sample were analyzed for crystallinity by x-ray powder diffraction. The samples were analyzed on a Siemens D500 Automated Powder Diffractometer (ORS 1D No. LD-301-4), which was operated according to ORS Standard Operation Procedure EQ-27 Rev. 9. The diffractometer was equipped with a graphite monochromator and a Cu (λ=1.54 Å) x-ray source operated at 50 kV, 40 mA. Two-theta (θ) calibration is performed using an NBS mica standard (SRM675). The samples were analyzed using the following instrument parameters:
Measuring Range for 2θ (degrees) 4.0-40.0 Step Width (degrees) 0.05 Measuring Time per Step (secs) 1.2 Beam Slits 1(1°), 2(1°), 3(1°), 4(0.15°), 5(0.15°). - Sample preparation was performed according to ORS Standard Operation Procedure MIC-7 Rev. 1 using a zero background sample plate.
- All samples were done using a Cu (λ=1.54 Å) x-ray source. The amorphous daptomycin sample did not show any peaks by x-ray powder diffraction. See
FIG. 6 . In contrast, the two daptomycin samples both showed peaks by x-ray powder diffraction. The diffraction angle (2θ) of the first daptomycin sample (FIG. 7 ) was 19.225, 23.242, 23.427 and 23.603 (degree). The diffraction angle (2θ) for the second daptomycin sample (FIG. 8 ) was 10.966, 19.205 and 23.344 (degree). The first crystalline daptomycin sample also showed a small peak between 10-11°. SeeFIG. 7 . - Daptomycin was dissolved in water. Sodium acetate was added to achieve a final concentration of 187 mM. Calcium chloride was added to achieve a final concentration of 28 mM. The daptomycin solution was mixed and isopropanol was added to a final concentration of 78.4%. The solution was mixed and incubated. A precipitated material was formed after incubation. The precipitated material appeared to be urchin-like crystals of approximately 60 μm diameter by optical microscopy. The material was then dried. The dry material contained approximately 30-40% salt. After drying, powder x-ray diffraction was performed. The powder x-ray diffraction did not show the presence of crystals in the dried daptomycin precipitate.
- One gram of daptomycin (approximately 91.5% purity as measured by HPLC) was added to 16.8 mL of distilled water and dissolved. 2.5 mL of 1M calcium acetate (pH 6.1) and 60 mL of isopropanol was added. The solution was placed in a 27° C. water bath and permitted to equilibrate to temperature of the water bath. 5 mL aliquots of isopropanol were slowly added until the solution became cloudy (a total of approximately 30 mL isopropanol). The solution was incubated overnight at 27° C. to form a precipitate. The precipitate appeared to contain urchin-like crystals of approximately 60 [m by optical microscopy. See
FIG. 2 . - The daptomycin precipitate was poured into a pressure filter/drying funnel and filtered by gravity. The precipitate was washed twice with 25 mL each time of a washing solution (80% isopropanol and 20% solution A where solution A consists of 18 mL of water and 2 mL of glacial acetic acid) and allowed to drip by gravity overnight. The precipitate was then transferred to a desiccator and dried under vacuum. After drying, powder x-ray diffraction was performed. The powder x-ray diffraction did not show the presence of crystals in the dried daptomycin precipitate. However, purity analysis of the precipitated material by HPLC showed that the material was 98.2% pure daptomycin. Significantly, the daptomycin preparation after precipitation has significantly less anhydro-daptomycin than the daptomycin preparation before precipitation.
- Without wishing to be bound by any theory, applicants believe that the conditions used to precipitate the daptomycin in Examples 11 and 12 actually produce a crystalline form of daptomycin but that the subsequent washing steps and/or drying steps cause the crystalline daptomycin to revert to a non-crystalline form. Nonetheless, the non-crystalline daptomycin is still crystal-like as shown in
FIG. 3 by the birefringence of a crystal sample in polarized light. - A fermentation culture of S. roseosporus NRRL Strain 15998 is conducted in a controlled decanoic acid feed fermentation at levels that optimize the production of the antibiotic while minimizing the production of contaminants. The residual decanoic acid feed is measured by gas chromatography and the target residual level is 10 ppm decanoic acid from the start of induction (approximately at hour 30) until harvest. Centrifugation of the culture and subsequent analysis of the clarified broth are used to measure the production of daptomycin by HPLC. The harvest titer is typically between 1.0 and 3.0 grams per liter of fermentation broth.
- The fermentation culture is harvested either by microfiltration using a Pall-Sep or equivalent microfiltration system, or by full commercial-scale centrifugation and depth filter. The clarified broth is applied to an anion exchange resin, Mitsubishi FP-
DA 13, washed with of 30 mM NaCl at pH 6.5 and eluted with of 300 mM NaCl at pH 6.0-6.5. Alternatively, the FP-DA 13 column is washed with of 30 mM NaCl at pH 6.5 and eluted with of 300 mM NaCl at pH 6.0-6.5. The pH is adjusted to 3.0-4.8 and the temperature is adjusted to 2-15° C. Under these conditions, daptomycin forms a micelle. The micellar daptomycin solution is filtered-washed using a 10,000 NMW ultrafilter (AG Technology Corp. UF hollow fiber or equivalent) in any configuration. The daptomycin micelles are retained by the filter, but a large number of impurities are eliminated because they pass through the 10,000 NMW filter. Ultrafiltration of daptomycin micelles increases daptomycin purity to approximately 80-90%. - The daptomycin preparation is then crystallized or precipitated under sterile conditions using one of the methods described above. In a preferred embodiment, the daptomycin is crystallized or precipitated according to the protocol described in Examples 7, 8 or 12 except that it can be scaled up for large preparation of daptomycin. The crystalline or crystal-like daptomycin is separated from the crystallization/precipitation solution by filtration, preferably by vacuum filtration. The crystalline or crystal-like daptomycin is washed with washing solution (see Example 3). The crystalline or crystal-like daptomycin is then vacuum dried under sterile conditions using a 0.65 m3 Klein Hastelloy-B double cone vacuum dryer or equivalent apparatus. Vials are then filled with either 250 or 500 mg of dried crystalline daptomycin per vial.
FIG. 9 shows a flowchart of this manufacturing method. - Fermentation of S. roseosporus, microfiltration of the fermentation culture and anion exchange chromatography is performed as described in Example 13. The daptomycin preparation is approximately 35-40% pure at this point. After anion exchange chromatography, the daptomycin is crystallized or precipitated according to the protocol described in Example 13. The daptomycin is then washed and dried according to the protocol set forth in Example 13. The dried crystalline or crystal-like daptomycin is then used to fill sterile vials as described in Example 13.
FIG. 6 shows a flowchart of this manufacturing method. - Fermentation of S. roseosporus and microfiltration of the fermentation culture is performed as described in Example 13. After microfiltration, the fermentation culture is subjected to size exclusion ultrafiltration as described in Example 13. The daptomycin preparation is approximately 35-40% pure at this point. After ultrafiltration, the daptomycin is crystallized or precipitated according to the protocol described in Example 13. The daptomycin is then washed and dried according to the protocol set forth in Example 13. The dried crystalline or crystal-like daptomycin is then used to fill sterile vials as described in Example 13.
FIG. 7 shows a flowchart of this manufacturing method. - Fermentation of S. roseosporus and microfiltration of the fermentation culture is performed as described in Example 13. The daptomycin preparation is 5-10% pure at this point. After microfiltration, the fermentation culture is crystallized or precipitated according to the protocol described in Example 13. The daptomycin is then washed and dried and used to fill sterile vials as described in Example 13.
FIG. 8 shows a flowchart of this manufacturing method. - CB-131547 (see Figure x), a cyclic lipopeptide analog of daptomycin, was prepared via a semi-synthesis route from daptomycin. The CB-131547 was a pale yellow amorphous powder, with a solubility at 25° C. of ˜80 mg/mL in normal saline.
- CB-131547 (60 mg, ˜90% pure) is dissolved in 2.5 mL water. The CB-131547 solution is sequentially mixed in order with 5.0 mL methanol, 0.2 mL 1 M calcium acetate (pH 6.0), 2.5 mL propylene glycol, and 1.0
mL 50% (w/v) PEG 4000 to give a final volume of 11.2 mL. The solution is allowed to sit for 4 to 24 hours at 4° C. CB-131547 crystals are formed at a yield of ˜70% with a purity ˜98.0% as determined by HPLC. - CB-131547 (see Figure x), a cyclic lipopeptide analog of daptomycin, was prepared via a semi-synthesis route from daptomycin. The CB-131547 was a pale yellow amorphous powder, with a solubility at 25° C. of ˜80 mg/mL in normal saline.
- CB-131547 (60 mg, ˜90% pure) is dissolved in 2.5 mL water. 0.2 mL 1 M calcium acetate (pH 6.0) and 8 mL of isopropanol is added. The solution is allowed to equilibrate at room temperature (25° C.) for 5 minutes. One mL aliquots of isopropanol are slowly added until the solution becomes cloudy. The solution is stored at room temperature overnight to form crystals.
- All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Claims (132)
1-56. (canceled)
57. A crystalline or crystal-like lipopeptide or a salt thereof wherein the lipopeptide is selected from the group consisting of a daptomycin, an A54145, an A-21978C analog, and a daptomycin-related lipopeptide.
58. The crystalline or crystal-like lipopeptide or salt thereof, according to claim 57 , wherein the salt is a divalent calcium salt.
59. The crystalline or crystal-like lipopeptide antibiotic or salt thereof, according to claim 57 , wherein the lipopeptide antibiotic is daptomycin.
60. The crystalline or crystal-like lipopeptide or salt thereof, according to claim 59 , wherein the salt is a divalent calcium salt.
61. The crystalline daptomycin according to claim 59 , wherein an x-ray diffraction pattern of the crystalline daptomycin, using a Cu (λ=1.54 Å) x-ray source, has a diffraction angle (2θ)=10.9, 19.2 and 23.3 (degree) or a diffraction angle (2θ)=19.2, 23.2, 23.4 and 23.6 (degree).
62. The crystal-like lipopeptide according to claim 57 , wherein crystal-like means the compound has crystalline characteristics by birefringence, but does not have crystalline characteristics by x-ray powder diffraction.
63. The crystalline or crystal-like daptomycin according to claim 59 , wherein the crystalline or crystal-like daptomycin comprises urchin-like or a cluster of needles, needle-like, flake-like, plate-like, or rod-like crystals.
64. The crystalline or crystal-like lipopeptide according to claim 59 , wherein the crystalline daptomycin has a purity of at least 95%.
65. The crystalline or crystal-like lipopeptide according to claim 59 , wherein the crystalline daptomycin or salt thereof has a purity of at least 97%.
66. The crystalline or crystal-like daptomycin according to claim 59 , wherein the crystalline daptomycin or salt thereof contains no single impurity greater than 1%.
67. The crystalline or crystal-like daptomycin according to claim 64 , wherein the purity is measured by HPLC.
68. The crystalline or crystal-like lipopeptide according to claim 57 , wherein a crystal of the lipopeptide is at least 5 μm.
69. The crystalline or crystal-like lipopeptide according to claim 68 , wherein the crystal is at least 50 μm.
70. The crystalline or crystal-like lipopeptide according to claim 68 , wherein the lipopeptide is daptomycin.
71. The crystalline or crystal-like lipopeptide according to claim 57 , wherein the crystalline lipopeptide exhibits a higher stability than an amorphous form of the lipopeptide.
72. The crystalline or crystal-like lipopeptide according to claim 71 , wherein the crystalline lipopeptide exhibits higher stability to heat, light, degradation or humidity than the amorphous form.
73. The crystalline or crystal-like lipopeptide according to claim 72 , wherein the stability is measured by antibiotic activity or degradation of the lipopeptide antibiotic.
74. The crystalline or crystal-like lipopeptide according to claim 71 , wherein the lipopeptide is daptomycin.
75. The crystalline or crystal-like daptomycin according to claim 74 , wherein the crystalline lipopeptide exhibits lower conversion to anhydro-daptomycin or the P-isomer of daptomycin than the amorphous form of daptomycin.
76. The crystalline or crystal-like lipopeptide according to claim 57 , which is a daptomycin-related lipopeptide.
77. A pharmaceutical composition comprising a crystalline or crystal-like lipopeptide antibiotic and a pharmaceutically acceptable carrier, wherein the lipopeptide antibiotic is selected from the group consisting of a daptomycin, an A54145, an A-21978C analog, and a daptomycin-related lipopeptide.
78. The pharmaceutical composition according to claim 77 , wherein the crystalline or crystal-like lipopeptide is daptomycin.
79. The pharmaceutical composition according to claim 78 , wherein the crystalline or crystal-like daptomycin is enterically coated for oral administration.
80. The pharmaceutical composition according to claim 78 , wherein the crystalline or crystal-like daptomycin is formulated in a dose of 3 to 75 mg/kg.
81. The pharmaceutical composition according to claim 78 , wherein the carrier enhances the oral availability of daptomycin.
82. The pharmaceutical composition according to claim 77 , which is in the form of micronized particles or microspheres.
83. A container comprising the pharmaceutical composition according to claim 77 .
84. The pharmaceutical composition according to claim 82 , which is used as an aerosol.
85. A formulation comprising a crystalline or crystal-like lipopeptide antibiotic and a pharmaceutically acceptable carrier, wherein the lipopeptide antibiotic is selected from the group consisting of daptomycin, A54145, an A-21978C analog, and a daptomycin-related lipopeptide.
86. A container comprising the formulation of claim 85 and a pharmaceutically acceptable buffer.
87. The formulation according to claim 85 , which is a pharmaceutical formulation, a food formulation, a feed formulation, a veterinary formulation, a cosmetic formulation or a personal care formulation.
88. The formulation according to claim 85 , that is a pharmaceutical formulation, wherein the formulation further comprises another antibiotic, a stabilizing agent, an agent to aid in absorption, a pH buffering agent or an inorganic salt.
89. The formulation according to claim 85 that is a feed formulation, wherein the formulation further comprises animal feed and may optionally comprise another antibiotic or vitamins.
90. A method for administering a crystalline or crystal-like lipopeptide, a pharmaceutically acceptable salt thereof or a pharmaceutical composition thereof, wherein the lipopeptide is selected from the group consisting of a daptomycin, an A54145 and a daptomycin-related lipopeptide, comprising the step of administering to a patient in need thereof a therapeutically effective amount of the crystalline or crystal-like lipopeptide, the pharmaceutically acceptable salt thereof or the pharmaceutical composition thereof.
91. The method according to claim 90 , wherein the lipopeptide has a purity of greater than 95%.
92. The method according to claim 91 , wherein the lipopeptide is daptomycin.
93. The method according to claim 92 , wherein the daptomycin is a crystalline daptomycin and an x-ray diffraction pattern of the crystalline daptomycin has a diffraction angle (2θ) 10.9, 19.2 and 23.3 (degree) using a Cu (λ=1.54 Å) x-ray source.
94. The method according to claim 92 , wherein the daptomycin is a crystal-like daptomycin and the crystal-like daptomycin has crystalline characteristics by birefringence but does not have crystalline characteristics by x-ray powder diffraction.
95. The method according to claim 90 , wherein the crystalline or crystal-like lipopeptide is administered as a micronized particle.
96. The method according to claim 90 , wherein the crystalline or crystal-like lipopeptide is administered as a targeted release form.
97. The method according to claim 95 , wherein the lipopeptide is daptomycin.
98. The method according to claim 90 , wherein the administration is done subcutaneously, intravenously or intramuscularly.
99. A method for storing a lipopeptide, wherein the lipopeptide is selected from the group consisting of a daptomycin, an A54145, an A-21978C analog, and a daptomycin-related lipopeptide, comprising the steps of
a) providing a dissolved solution of a lipopeptide;
b) crystallizing or precipitating the lipopeptide;
c) collecting and drying the lipopeptide; and
d) storing the lipopeptide;
wherein the crystalline or crystal-like lipopeptide is more stable than an amorphous form of the lipopeptide.
100. A method for manufacturing a crystalline or crystal-like lipopeptide, wherein the lipopeptide is selected from the group consisting of a daptomycin, an A54145, an A-21978C analog, and a daptomycin-related lipopeptide, comprising the steps of
a) providing an amorphous form of a lipopeptide;
b) crystallizing or precipitating the lipopeptide; and
c) collecting the crystalline or crystal-like lipopeptide.
101. The method according to claim 99 , wherein said collecting is performed by filtration.
102. The method according to claim 101 , further comprising the step of washing the lipopeptide after step b).
103. The method according to claim 100 , further comprising the step of drying the lipopeptide after step c).
104. The method according to claim 103 , further comprising the step of sterilizing the lipopeptide after drying.
105. The method according to claim 100 , wherein step c) is performed under sterile conditions.
106. The method according to claim 105 , wherein step b) is performed under sterile conditions.
107. The method according to claim 106 , further comprising the step of drying the lipopeptide after step c) under sterile conditions.
108. The method according to claim 99 , wherein the purity of the crystalline or crystal-like lipopeptide is higher than the amorphous form of the lipopeptide.
109. The method according to claim 108 , wherein the purity of the amorphous form is approximately 90% and the purity of the crystalline or crystal-like form is greater than 95%.
110. The method according to claim 108 , wherein the purity of the amorphous form is approximately 93%, and the purity of the crystalline or crystal-like form is greater than 95%.
111. The method according to claim 108 , wherein the purity of the amorphous form is approximately 93%, and the purity of the crystalline or crystal-like form is approximately 98%.
112. A method for preparing daptomycin, comprising the steps of providing an amorphous form of daptomycin and crystallizing the daptomycin from a crystallization solution comprising a cation from a salt, a buffer, an organic precipitant, and a low molecular weight alcohol.
113. The method according to claim 112 , wherein the buffer is selected from the group consisting of HEPES, Tris HCl, imidazole, MES, CHES, a citrate salt and a cacodylate salt.
114. The method according to claim 112 , wherein the alcohol is selected from the group consisting of ethylene glycol, propylene glycol, t-butanol, glycerol, isopropanol, 1,4-butanediol, 1,2-propanediol and methanol.
115. The method according to claim 112 , wherein the organic precipitant is polyethylene glycol or polyethylene glycol monomethyl ether.
116. The method according to claim 112 , wherein the crystallizing solution further comprises a divalent cation.
117. The method according to claim 116 , wherein the divalent cation is calcium, zinc or magnesium.
118. The method according to claim 112 , wherein the pH of the crystallization solution is in the range of 5 to 8.5.
119. The method according to claim 118 , wherein the pH of the crystallization solution is in the range of 5.5 to 7.5.
120. The method according to claim 119 , wherein the pH of the crystallization solution is in the range of 5.9 to 6.6.
121. The method according to claim 112 , wherein the crystallization is done by the hanging drop method or by batch crystallization.
122. The method according to claim 112 , wherein a crystal of the daptomycin is an urchin-like or a cluster of needles form.
123. The method according to claim 112 , wherein a crystal of the daptomycin is a rod-like form.
124. The method according to claim 112 , further comprising the step of collecting the daptomycin crystals.
125. The method according to claim 124 , wherein said collecting is done by centrifugation, precipitation or filtration.
126. The method according to claim 112 , further comprising washing the crystalline daptomycin.
127. The method according to claim 112 , wherein the daptomycin is at a starting purity of at least 90%.
128. The method according to claim 112 , wherein the daptomycin is at a starting purity of at least 93%.
129. The method according to claim 112 , wherein said crystallizing is performed at a temperature below 20° C.
130. The method according to claim 129 , wherein said crystallizing is performed at about 4° C.
131. The method according to claim 112 , wherein said crystallizing is performed at above 20° C.
132. The method according to claim 112 , wherein said crystallizing is performed with stirring.
133. A method for preparing a crystalline or crystal-like daptomycin, comprising the steps of
a) providing a solution comprising daptomycin, a salt comprising a monovalent or divalent cation, a pH buffering agent and a low molecular weight or polyhydric alcohol; and
b) allowing the daptomycin to crystallize or precipitate from the solution to obtain a crystalline or crystal-like daptomycin preparation, respectively.
134. The method according to claim 133 , wherein the buffering agent is selected from the group consisting of HEPES, Tris HCl, imidazole, MES, CHES, sodium acetate, calcium acetate, a citrate salt and a cacodylate salt.
135. The method according to claim 133 , wherein the alcohol is selected from the group consisting of ethylene glycol, propylene glycol, t-butanol, glycerol, isopropanol, 1,4-butanediol, 1,2-propanediol and methanol.
136. The method according to claim 135 , wherein the alcohol is isopropanol.
137. The method according to claim 133 , wherein the salt comprises a divalent cation.
138. The method according to claim 137 , wherein the divalent cation is a magnesium cation, a zinc cation or a calcium cation.
139. The method according to claim 138 , wherein the divalent cation is a calcium cation.
140. A method for preparing a crystalline or crystal-like daptomycin, comprising the steps of
a) providing a solution comprising daptomycin, a pH buffering agent that is a salt comprising a monovalent or divalent cation, and a low molecular weight or polyhydric alcohol; and
b) allowing the daptomycin to crystallize or precipitate from the solution to obtain a crystalline or crystal-like daptomycin preparation, respectively.
141. The method according to claim 140 , wherein the buffering agent comprises a divalent cation selected from a calcium cation or a magnesium cation.
142. The method according to claim 133 or 140 , wherein the pH of the solution is in the range of 5.0 to 9.5.
143. The method according to claim 142 , wherein the pH of the solution is in the range of 5.5 to 7.5.
144. The method according to claim 143 , wherein the pH of the solution is in the range of 5.9 to 6.3.
145. The method according to claim 133 or 140 , wherein said crystallizing or precipitating step is done at a temperature of 0-30° C.
146. The method according to claim 145 , wherein the temperature is 23-28° C.
147. The method according to claim 140 , wherein the solution comprises calcium acetate pH 6.1 and isopropanol.
148. The method according to claim 147 , wherein said crystallizing or precipitating step comprises adding isopropanol until the mixture becomes cloudy.
149. The method according to claim 148 , wherein said crystallizing or precipitating step is done for a period of time of from one hour to three weeks.
150. The method according to claim 140 , wherein said crystallizing or precipitating is done by batch crystallization or batch precipitation, respectively.
151. The method according to claim 133 or 140 , further comprising the step of collecting the crystalline or crystal-like daptomycin.
152. The method according to claim 151 , wherein said collecting step is performed by filtration or centrifugation.
153. The method according to claim 152 , wherein said collecting is performed by filtration.
154. The method according to claim 151 , further comprising the step of washing the crystalline or crystal-like daptomycin.
155. The method according to claim 133 or 140 , wherein the crystalline or crystal-like daptomycin has an urchin-like form.
156. The method according to claim 133 or 140 , wherein the daptomycin has a purity before crystallizing or precipitating of no greater than 90% and has a purity after crystallization or precipitation of at least 95%.
157. The method according to claim 156 , wherein the daptomycin has a purity before crystallizing or precipitating of no greater than 80% and has a purity after crystallization or precipitation of at least 95%.
158. The method according to claim 156 , wherein the daptomycin has a purity before crystallizing or precipitating of no greater than 60% and has a purity after crystallization or precipitation of at least 95%.
159. The method according to claim 156 , wherein the daptomycin has a purity before crystallizing or precipitating of no greater than 40% and has a purity after crystallization or precipitation of at least 95%.
160. The method according to claim 156 , wherein the daptomycin is at a starting purity of no greater than 10% and has a purity after crystallization or precipitation of at least 95%.
161. The method according to claim 156 , wherein the daptomycin has a purity after crystallization or precipitation of at least 96%.
162. The method according to claim 156 , wherein the daptomycin has a purity after crystallization or precipitation of at least 97%.
163. The method according to claim 156 , wherein the daptomycin has a purity after crystallization or precipitation of at least 98%.
164. A method for preparing a purified daptomycin, comprising the steps of
a) providing a solution comprising daptomycin, a pH buffering agent that is a salt comprising a monovalent or divalent cation, and a low molecular weight or polyhydric alcohol; and
b) allowing the daptomycin to crystallize or precipitate from the solution to obtain a purified daptomycin preparation.
165. The method according to claim 164 , wherein the purified daptomycin preparation is at least 95% pure.
166. The method according to claim 165 , wherein said purified daptomycin preparation is at least 96% pure.
167. The method according to claim 166 , wherein said purified daptomycin preparation is at least 97% pure.
168. The method according to claim 167 , wherein said purified daptomycin preparation is at least 98% pure.
169. A method of preparing a crystalline form of a lipopeptide which comprises combining the lipopeptide with a crystallization solution comprising at least one cation and at least one alcohol chosen from the group consisting of polyhydric alcohols and low molecular weight alcohols and combinations thereof, wherein the lipopeptide is chosen from the group consisting of daptomycin and daptomycin analogs.
170. The method of claim 169 , wherein the polyhydric alcohol is chosen from the group consisting of ethylene glycol, propylene glycol, glycerol, 1,2-propane diol, 2-methyl-2,4-pentanediol, 1,6-hexanediol, and 1,4-butanediol.
171. The method of claim 169 , wherein the low molecular weight alcohol is chosen from the group consisting of methanol, isopropanol, tert-butanol, and n-propanol.
172. The method of claim 169 , wherein the cation is a divalent cation.
173. The method of claim 172 , wherein the divalent cation is chosen from the group consisting of manganese, magnesium, and calcium.
174. The method of claim 173 , wherein the divalent cation is calcium.
175. The method of claim 169 , wherein the crystallization solution consists of at least one salt and at least one low molecular weight alcohol.
176. The method of claim 169 , wherein the crystallization solution further comprises one or more additional components chosen from the group consisting of organic precipitants, pH buffers, low molecular weight alcohols and detergents.
177. The method of claim 176 , wherein the crystallization solution comprises as an organic precipitant polyethylene glycol.
178. A method for treating a disease caused by a gram-positive pathogen in a subject which comprises administering to the subject the pharmaceutical composition of claim 77 which comprises the crystalline lipopeptide in a therapeutically effective amount.
179. The method of claim 178 , wherein the disease is chosen from the group consisting of complicated skin and soft tissue infections, community-acquired pneumonia, complicated urinary tract infections, enteroccocal infections, endocarditis and bacteremia.
180. A method for administering to a subject in need thereof a crystalline lipopeptide or salt thereof, wherein the crystalline or crystal-like lipopeptide is chosen from the group consisting of crystalline daptomycin and crystalline A-21978C analogs, which comprises administering to the subject a pharmaceutical composition comprising the crystalline or crystal-like lipopeptide or salt thereof and a pharmaceutically acceptable carrier.
181. The method of claim 180 , wherein the crystalline or crystal-like lipopeptide or salt thereof is administered to the subject by pulmonary administration as a micronized particle.
182. The method of claim 180 , wherein the crystalline or crystal-like lipopeptide or salt thereof is administered to the subject as a sustained release form.
183. The method of claim 180 , wherein the crystalline or crystal-like lipopeptide is administered orally.
184. The method of claim 180 , wherein the crystalline or crystal-like lipopeptide is administered subcutaneously.
185. The method of claim 180 , wherein the crystalline or crystal-like lipopeptide is administered intravenously or intramuscularly.
186. A method of storing a lipopeptide selected from the group consisting of daptomyin and A-21978C analogs which comprises preparing the lipopeptide in crystalline form and storing the crystalline or crystal-like lipopeptide.
187. In a method for preparing a lipopeptide selected from the group consisting of daptomycin and A-21978C analogs, the improvement which comprises preparing the lipopeptide in crystalline form.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/108,380 US20060014674A1 (en) | 2000-12-18 | 2005-04-18 | Methods for preparing purified lipopeptides |
US12/198,666 US8697638B2 (en) | 2000-12-18 | 2008-08-26 | Methods for preparing purified lipopeptides |
US13/928,505 US8796224B2 (en) | 2000-12-18 | 2013-06-27 | Methods for preparing purified lipopeptides |
US13/955,495 US8846610B2 (en) | 2000-12-18 | 2013-07-31 | Methods for preparing purified lipopeptides |
US14/500,469 US20150183830A1 (en) | 2000-12-18 | 2014-09-29 | Methods for preparing purified lipopeptides |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25626800P | 2000-12-18 | 2000-12-18 | |
US27474101P | 2001-03-09 | 2001-03-09 | |
US34131501P | 2001-12-13 | 2001-12-13 | |
US34052501P | 2001-12-13 | 2001-12-13 | |
US10/023,517 US20030045678A1 (en) | 2000-12-18 | 2001-12-17 | Methods for preparing purified lipopeptides |
US10/024,701 US20030045484A1 (en) | 2000-12-18 | 2001-12-17 | Methods for preparing purified daptomycin |
US10/024,405 US20020111311A1 (en) | 2000-12-18 | 2001-12-18 | Daptomycin and related analogs in crystalline form |
US11/108,380 US20060014674A1 (en) | 2000-12-18 | 2005-04-18 | Methods for preparing purified lipopeptides |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/024,701 Continuation-In-Part US20030045484A1 (en) | 2000-12-18 | 2001-12-17 | Methods for preparing purified daptomycin |
US10/023,517 Continuation-In-Part US20030045678A1 (en) | 2000-12-18 | 2001-12-17 | Methods for preparing purified lipopeptides |
US10/024,405 Continuation-In-Part US20020111311A1 (en) | 2000-12-18 | 2001-12-18 | Daptomycin and related analogs in crystalline form |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/198,666 Continuation US8697638B2 (en) | 2000-12-18 | 2008-08-26 | Methods for preparing purified lipopeptides |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060014674A1 true US20060014674A1 (en) | 2006-01-19 |
Family
ID=46321925
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/108,380 Abandoned US20060014674A1 (en) | 2000-12-18 | 2005-04-18 | Methods for preparing purified lipopeptides |
US12/198,666 Expired - Lifetime US8697638B2 (en) | 2000-12-18 | 2008-08-26 | Methods for preparing purified lipopeptides |
US13/928,505 Expired - Fee Related US8796224B2 (en) | 2000-12-18 | 2013-06-27 | Methods for preparing purified lipopeptides |
US13/955,495 Expired - Fee Related US8846610B2 (en) | 2000-12-18 | 2013-07-31 | Methods for preparing purified lipopeptides |
US14/500,469 Abandoned US20150183830A1 (en) | 2000-12-18 | 2014-09-29 | Methods for preparing purified lipopeptides |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/198,666 Expired - Lifetime US8697638B2 (en) | 2000-12-18 | 2008-08-26 | Methods for preparing purified lipopeptides |
US13/928,505 Expired - Fee Related US8796224B2 (en) | 2000-12-18 | 2013-06-27 | Methods for preparing purified lipopeptides |
US13/955,495 Expired - Fee Related US8846610B2 (en) | 2000-12-18 | 2013-07-31 | Methods for preparing purified lipopeptides |
US14/500,469 Abandoned US20150183830A1 (en) | 2000-12-18 | 2014-09-29 | Methods for preparing purified lipopeptides |
Country Status (1)
Country | Link |
---|---|
US (5) | US20060014674A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090197799A1 (en) * | 2000-12-18 | 2009-08-06 | Dennis Keith | Methods for preparing purified lipotides |
US20110124551A1 (en) * | 2009-11-23 | 2011-05-26 | Eagle Pharmaceuticals, Inc. | Formulations of daptomycin |
CN102325787A (en) * | 2008-12-22 | 2012-01-18 | 丘比斯特药物股份有限公司 | Novel antibacterial agents for the treatment of gram positive infections |
US8604164B2 (en) | 2000-01-20 | 2013-12-10 | Cubist Pharmaceuticals, Inc. | High purity lipopeptides |
US8835382B2 (en) | 2009-11-23 | 2014-09-16 | Cubist Pharmaceuticals, Inc. | Lipopeptide compositions and related methods |
WO2020128506A1 (en) * | 2018-12-21 | 2020-06-25 | Arecor Limited | Novel composition |
WO2020229369A1 (en) * | 2019-05-10 | 2020-11-19 | Xellia Pharmaceuticals Aps | Daptomycin aqueous formulations |
CN113717253A (en) * | 2021-09-15 | 2021-11-30 | 丽珠集团福州福兴医药有限公司 | Purification method of daptomycin |
WO2023165050A1 (en) * | 2022-03-04 | 2023-09-07 | 海南普利制药股份有限公司 | Stable depsipeptide pharmaceutical composition |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5752609B2 (en) | 2009-02-19 | 2015-07-22 | クセリア ファーマシューティカルズ エーピーエスXellia Pharmaceuticals ApS | Method for purifying lipopeptides |
ES2645769T3 (en) | 2011-01-05 | 2017-12-07 | Hospira, Inc. | Vancomycin spray drying |
ES2612511T3 (en) * | 2011-01-27 | 2017-05-17 | Glaxosmithkline Biologicals Sa | Adjuvant nanoemulsions with crystallization inhibitors |
WO2013103801A1 (en) * | 2012-01-04 | 2013-07-11 | Hospira, Inc. | Pharmaceutical spray drying |
CN104043104B (en) | 2013-03-15 | 2018-07-10 | 浙江创新生物有限公司 | The spray dried powder and its industrialized process for preparing of hydrochloric vancomycin |
WO2020018888A1 (en) | 2018-07-20 | 2020-01-23 | The Board Of Regents Of The University Of Oklahoma | Antimicrobial peptides and methods of use |
Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3773919A (en) * | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
USRE31396E (en) * | 1978-10-16 | 1983-09-27 | Eli Lilly And Company | A-21978 Antibiotics and process for their production |
US4439425A (en) * | 1978-12-20 | 1984-03-27 | Ciba-Geigy Corporation | Peptide derivatives |
US4482487A (en) * | 1982-05-21 | 1984-11-13 | Eli Lilly And Company | A-21978C cyclic peptides |
US4485045A (en) * | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
US4522811A (en) * | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
US4524135A (en) * | 1982-05-21 | 1985-06-18 | Eli Lilly And Company | A-21978C cyclic peptides |
US4537717A (en) * | 1982-05-21 | 1985-08-27 | Eli Lilly And Company | Derivatives of A-21978C cyclic peptides |
US4544545A (en) * | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
US4600526A (en) * | 1982-09-22 | 1986-07-15 | Centre National de la Recherche Schientifique (C N R S) | Lipopeptides, their preparation and their application as emulsifiers |
USRE32311E (en) * | 1982-05-21 | 1986-12-16 | Eli Lilly And Company | Derivatives of A-21978C cyclic peptides |
USRE32310E (en) * | 1982-05-21 | 1986-12-16 | Eli Lilly And Company | Derivatives of A-21978C cyclic peptides |
US4800157A (en) * | 1985-09-09 | 1989-01-24 | Eli Lilly And Company | Process for producing the A-21978C antibiotics |
US4874843A (en) * | 1987-12-03 | 1989-10-17 | Eli Lilly And Company | Chromatographic purification process |
US4885243A (en) * | 1984-10-09 | 1989-12-05 | Eli Lilly And Company | Process for producing A-21978C derivatives |
US4994270A (en) * | 1988-04-11 | 1991-02-19 | Eli Lilly And Company | A54145 antibiotics and process for their production |
US5013556A (en) * | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5039789A (en) * | 1988-04-11 | 1991-08-13 | Eli Lilly And Company | A54145 cyclic peptides |
US5336756A (en) * | 1991-05-01 | 1994-08-09 | Merck & Co., Inc. | Process for crystalline cyclic lipopeptides |
US5527534A (en) * | 1992-10-21 | 1996-06-18 | Gynetech Laboratories, Ltd. | Vaginal sponge delivery system |
US5529782A (en) * | 1992-05-07 | 1996-06-25 | Staab; Robert | Dissolvable device for contraception or delivery of medication |
US5602097A (en) * | 1994-09-13 | 1997-02-11 | Ceres Technologies, Inc. | Synthetic antibiotics |
US5696084A (en) * | 1996-08-16 | 1997-12-09 | Abbott Laboratories | Amino-lipopetide antifungal agents |
US5912226A (en) * | 1987-06-10 | 1999-06-15 | Eli Lilly And Company | Anhydro- and isomer-A-21978C cyclic peptides |
US5928666A (en) * | 1996-11-12 | 1999-07-27 | Cygnus Inc. | Crystalline form of estradiol and pharmaceutical formulations comprising same |
US5932015A (en) * | 1996-07-05 | 1999-08-03 | Towa Chemical Industry Co., Ltd. | Process for manufacturing crystalline maltitol and crystalline mixture solid containing the same |
US5959108A (en) * | 1995-12-13 | 1999-09-28 | Cu Chemie Uetikon Gmbh | Method for preparing a crystalline polymorph of terazosin monohydrochloride |
US5969156A (en) * | 1995-07-17 | 1999-10-19 | Warner-Lambert Company | Crystalline [R- (R*,R*)]-2-(4-Dfluorophenyl)-β,δ-dihydroxy-5-(1-methylethyl)- 3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid hemi calcium salt (atorvastatin) |
US5972551A (en) * | 1996-12-26 | 1999-10-26 | Sharp Kabushiki Kaisha | Crystalline titanyl phthalocyanines and use thereof |
US5972331A (en) * | 1995-12-22 | 1999-10-26 | Schering Corporation | Crystalline interferon alpha for pulmonary delivery and method for producing the same |
US6017562A (en) * | 1997-04-28 | 2000-01-25 | Arch Chemicals, Inc. | Non-spherical and non-platelet crystalline forms of pyrithione salts |
US6017921A (en) * | 1995-01-13 | 2000-01-25 | U.S. Bioscience, Inc. | Crystalline trimetrexate salts and the process for making the same |
US6043303A (en) * | 1995-03-03 | 2000-03-28 | New Japan Chemical Co. Ltd. | Hexagonal crystals of diacetals, nucleating agent comprising said hexagonal crystal, polyolefin resin composition and molding containing said hexagonal crystals, and method for molding said composition |
US20020111311A1 (en) * | 2000-12-18 | 2002-08-15 | Chandrika Govardhan | Daptomycin and related analogs in crystalline form |
US20020142948A1 (en) * | 1998-09-25 | 2002-10-03 | Cubist Pharmaceuticals Incorporated | Methods for administration of antibiotics |
US6794490B2 (en) * | 1999-12-15 | 2004-09-21 | Cubist Pharmaceuticals, Inc. | Lipopeptides as antibacterial agents |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US111311A (en) | 1871-01-31 | Improvement in head-stocks for milling-machines | ||
US142948A (en) | 1873-09-16 | Improvement in blasting-plugs | ||
US4331594A (en) * | 1978-10-16 | 1982-05-25 | Eli Lilly And Company | A-21978 Antibiotics and process for their production |
USRE32455E (en) * | 1978-10-16 | 1987-07-07 | Eli Lilly And Company | A-21978 antibiotics and process for their production |
USRE32333E (en) * | 1978-10-16 | 1987-01-20 | Eli Lilly And Company | A-21978 Antibiotics and process for their production |
IL68700A0 (en) | 1982-05-21 | 1983-09-30 | Lilly Co Eli | Improvements relating to a-21978c cyclic peptide derivatives and their production |
ZA857759B (en) | 1984-10-09 | 1987-05-27 | Lilly Co Eli | Process for the production of a-21978c derivatives |
CA1319886C (en) * | 1987-02-03 | 1993-07-06 | Alberto Ferro | Mixed micelle solutions |
EP0294990A3 (en) | 1987-06-10 | 1990-05-09 | Eli Lilly And Company | Chromatographic purification process |
US5271935A (en) * | 1988-02-05 | 1993-12-21 | Hoechst Aktiengesellschaft | Antibiotic, cammunocin, a process for the preparation thereof, and the use thereof as a pharmaceutical |
CA1337758C (en) | 1988-04-11 | 1995-12-19 | Eli Lilly And Company | Peptide antibiotics |
EP0386951A3 (en) | 1989-03-06 | 1992-05-20 | Eli Lilly And Company | An improved diluent formulation for daptomycin |
DE69031730T2 (en) * | 1990-01-26 | 1998-04-23 | Hoechst Ag | New antibiotic, deoxymulundocandin, process for its production and use as a drug |
EP0460882B1 (en) * | 1990-06-07 | 1996-07-24 | Eli Lilly And Company | Lipopeptide deacylase |
JPH04224197A (en) | 1990-12-26 | 1992-08-13 | Fujitsu Ltd | Method and device for crystallizing biopolymer |
TW213468B (en) * | 1991-06-29 | 1993-09-21 | Hoechst Ag | |
JP3421338B2 (en) | 1992-04-20 | 2003-06-30 | アボツト・ラボラトリーズ | Method for producing vancomycin |
TW455591B (en) * | 1993-06-08 | 2001-09-21 | Hoechst Ag | Lipopeptides from actinoplanes sp. with pharmacological action, process for their production and the use thereof |
DE4411025A1 (en) * | 1994-03-30 | 1995-10-05 | Hoechst Ag | New lipopeptide A1437 derivs. with modified acyl gp. |
US5955509A (en) * | 1996-05-01 | 1999-09-21 | Board Of Regents, The University Of Texas System | pH dependent polymer micelles |
FR2755857B1 (en) | 1996-11-19 | 1998-12-24 | Rhone Poulenc Rorer Sa | STABILIZED PHARMACEUTICAL COMPOSITIONS BASED ON QUINUPRISTINE AND DALFOPRISTINE AND THEIR PREPARATION |
US5965747A (en) * | 1997-07-10 | 1999-10-12 | Merck & Co., Inc. | Crystalline forms of antibiotic side chain intermediates |
FR2771640B1 (en) | 1997-12-03 | 2000-02-11 | Inst Nat Sante Rech Med | MIXED MICELLES OF LIPOPEPTIDES FOR INDUCING AN IMMUNE RESPONSE AND THEIR USES FOR THERAPEUTIC PURPOSES |
WO1999027957A1 (en) | 1997-12-03 | 1999-06-10 | The Immune Response Corporation | Vaccination and methods against multiple sclerosis using specific tcr vbeta peptides |
FR2772272B1 (en) | 1997-12-16 | 2000-01-14 | Rhone Poulenc Rorer Sa | PHARMACEUTICAL COMPOSITIONS BASED ON DALFOPRISTINE AND QUINUPRISTINE AND THEIR PREPARATION |
WO1999055310A1 (en) | 1998-04-27 | 1999-11-04 | Altus Biologics Inc. | Stabilized protein crystals, formulations containing them and methods of making them |
FR2774687B1 (en) | 1998-02-06 | 2002-03-22 | Inst Nat Sante Rech Med | LIPOPEPTIDES CONTAINING A FRAGMENT OF THE INTERFERON GAMMA, AND THEIR USE IN PHARMACEUTICAL COMPOSITIONS |
JP2002503538A (en) | 1998-02-18 | 2002-02-05 | バイオスペース インターナショナル インコーポレイテッド | Kinetic controlled crystallization method and apparatus and crystals obtained by them |
DE19807972A1 (en) | 1998-02-25 | 1999-08-26 | Hoechst Marion Roussel De Gmbh | New stable, water soluble calcium salts of cyclic lipopeptide antibiotics, useful as antibacterial agents |
US7408025B2 (en) | 1999-12-15 | 2008-08-05 | Cubist Pharmaceuticals, Inc. | Lipopeptides as antibacterial agents |
CA2393907A1 (en) | 1999-12-15 | 2001-06-21 | Cubist Pharmaceuticals Inc. | Novel lipopeptides as antibacterial agents |
US6696412B1 (en) * | 2000-01-20 | 2004-02-24 | Cubist Pharmaceuticals, Inc. | High purity lipopeptides, Lipopeptide micelles and processes for preparing same |
JP4224197B2 (en) | 2000-10-24 | 2009-02-12 | 新日本製鐵株式会社 | Hot metal dephosphorization method with high reaction efficiency |
NZ571597A (en) * | 2000-12-18 | 2010-05-28 | Cubist Pharm Inc | Method for preparing crystalline and crystal-like forms of purified daptomycin lipopeptides |
US20060014674A1 (en) * | 2000-12-18 | 2006-01-19 | Dennis Keith | Methods for preparing purified lipopeptides |
JP2005508622A (en) * | 2001-08-06 | 2005-04-07 | キュービスト ファーマシューティカルズ, インコーポレイテッド | Compositions and methods for daptomycin biosynthetic gene clusters |
US20030144362A1 (en) | 2002-01-28 | 2003-07-31 | Utterberg David S. | High viscosity antibacterials for cannulae |
US8912174B2 (en) * | 2003-04-16 | 2014-12-16 | Mylan Pharmaceuticals Inc. | Formulations and methods for treating rhinosinusitis |
WO2004104019A2 (en) | 2003-05-14 | 2004-12-02 | Zengen, Inc. | Anti-inflammatory/anti-microbial peptides for use in dialysis |
CA2610716A1 (en) * | 2005-05-31 | 2006-12-07 | Cubist Pharmaceuticals, Inc. | Daptomycin for the treatment of biofilm and catheter salvage |
GB0704603D0 (en) | 2007-03-09 | 2007-04-18 | Ge Healthcare Bio Sciences Ab | Packing system and method for chromatography columns |
US8431539B2 (en) * | 2009-09-17 | 2013-04-30 | Eagle Pharmaceuticals, Inc. | Formulations of daptomycin |
AR079127A1 (en) * | 2009-11-23 | 2011-12-28 | Cubist Pharm Inc | DAPTOMYCIN COMPOSITIONS AND RELATED METHODS |
JP5239090B2 (en) | 2010-12-20 | 2013-07-17 | グローリー株式会社 | Voting support method and system |
-
2005
- 2005-04-18 US US11/108,380 patent/US20060014674A1/en not_active Abandoned
-
2008
- 2008-08-26 US US12/198,666 patent/US8697638B2/en not_active Expired - Lifetime
-
2013
- 2013-06-27 US US13/928,505 patent/US8796224B2/en not_active Expired - Fee Related
- 2013-07-31 US US13/955,495 patent/US8846610B2/en not_active Expired - Fee Related
-
2014
- 2014-09-29 US US14/500,469 patent/US20150183830A1/en not_active Abandoned
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3773919A (en) * | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
USRE31396E (en) * | 1978-10-16 | 1983-09-27 | Eli Lilly And Company | A-21978 Antibiotics and process for their production |
US4439425A (en) * | 1978-12-20 | 1984-03-27 | Ciba-Geigy Corporation | Peptide derivatives |
US4485045A (en) * | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
USRE32310E (en) * | 1982-05-21 | 1986-12-16 | Eli Lilly And Company | Derivatives of A-21978C cyclic peptides |
US4482487A (en) * | 1982-05-21 | 1984-11-13 | Eli Lilly And Company | A-21978C cyclic peptides |
US4524135A (en) * | 1982-05-21 | 1985-06-18 | Eli Lilly And Company | A-21978C cyclic peptides |
US4537717A (en) * | 1982-05-21 | 1985-08-27 | Eli Lilly And Company | Derivatives of A-21978C cyclic peptides |
USRE32311E (en) * | 1982-05-21 | 1986-12-16 | Eli Lilly And Company | Derivatives of A-21978C cyclic peptides |
US4522811A (en) * | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
US4600526A (en) * | 1982-09-22 | 1986-07-15 | Centre National de la Recherche Schientifique (C N R S) | Lipopeptides, their preparation and their application as emulsifiers |
US4544545A (en) * | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
US4885243A (en) * | 1984-10-09 | 1989-12-05 | Eli Lilly And Company | Process for producing A-21978C derivatives |
US4800157A (en) * | 1985-09-09 | 1989-01-24 | Eli Lilly And Company | Process for producing the A-21978C antibiotics |
US5912226A (en) * | 1987-06-10 | 1999-06-15 | Eli Lilly And Company | Anhydro- and isomer-A-21978C cyclic peptides |
US4874843A (en) * | 1987-12-03 | 1989-10-17 | Eli Lilly And Company | Chromatographic purification process |
US4994270A (en) * | 1988-04-11 | 1991-02-19 | Eli Lilly And Company | A54145 antibiotics and process for their production |
US5039789A (en) * | 1988-04-11 | 1991-08-13 | Eli Lilly And Company | A54145 cyclic peptides |
US5013556A (en) * | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5336756A (en) * | 1991-05-01 | 1994-08-09 | Merck & Co., Inc. | Process for crystalline cyclic lipopeptides |
US5529782A (en) * | 1992-05-07 | 1996-06-25 | Staab; Robert | Dissolvable device for contraception or delivery of medication |
US5527534A (en) * | 1992-10-21 | 1996-06-18 | Gynetech Laboratories, Ltd. | Vaginal sponge delivery system |
US5602097A (en) * | 1994-09-13 | 1997-02-11 | Ceres Technologies, Inc. | Synthetic antibiotics |
US6017921A (en) * | 1995-01-13 | 2000-01-25 | U.S. Bioscience, Inc. | Crystalline trimetrexate salts and the process for making the same |
US6043303A (en) * | 1995-03-03 | 2000-03-28 | New Japan Chemical Co. Ltd. | Hexagonal crystals of diacetals, nucleating agent comprising said hexagonal crystal, polyolefin resin composition and molding containing said hexagonal crystals, and method for molding said composition |
US5969156A (en) * | 1995-07-17 | 1999-10-19 | Warner-Lambert Company | Crystalline [R- (R*,R*)]-2-(4-Dfluorophenyl)-β,δ-dihydroxy-5-(1-methylethyl)- 3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid hemi calcium salt (atorvastatin) |
US5959108A (en) * | 1995-12-13 | 1999-09-28 | Cu Chemie Uetikon Gmbh | Method for preparing a crystalline polymorph of terazosin monohydrochloride |
US5972331A (en) * | 1995-12-22 | 1999-10-26 | Schering Corporation | Crystalline interferon alpha for pulmonary delivery and method for producing the same |
US5932015A (en) * | 1996-07-05 | 1999-08-03 | Towa Chemical Industry Co., Ltd. | Process for manufacturing crystalline maltitol and crystalline mixture solid containing the same |
US5696084A (en) * | 1996-08-16 | 1997-12-09 | Abbott Laboratories | Amino-lipopetide antifungal agents |
US5928666A (en) * | 1996-11-12 | 1999-07-27 | Cygnus Inc. | Crystalline form of estradiol and pharmaceutical formulations comprising same |
US5972551A (en) * | 1996-12-26 | 1999-10-26 | Sharp Kabushiki Kaisha | Crystalline titanyl phthalocyanines and use thereof |
US6017562A (en) * | 1997-04-28 | 2000-01-25 | Arch Chemicals, Inc. | Non-spherical and non-platelet crystalline forms of pyrithione salts |
US20020142948A1 (en) * | 1998-09-25 | 2002-10-03 | Cubist Pharmaceuticals Incorporated | Methods for administration of antibiotics |
US6794490B2 (en) * | 1999-12-15 | 2004-09-21 | Cubist Pharmaceuticals, Inc. | Lipopeptides as antibacterial agents |
US20020111311A1 (en) * | 2000-12-18 | 2002-08-15 | Chandrika Govardhan | Daptomycin and related analogs in crystalline form |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9358267B2 (en) | 2000-01-20 | 2016-06-07 | Cubist Pharmaceuticals Llc | High purity lipopeptides |
US8853357B2 (en) | 2000-01-20 | 2014-10-07 | Cubist Pharmaceuticals, Inc. | High purity lipopeptides |
US8604164B2 (en) | 2000-01-20 | 2013-12-10 | Cubist Pharmaceuticals, Inc. | High purity lipopeptides |
US8846610B2 (en) | 2000-12-18 | 2014-09-30 | Cubist Pharmaceuticals, Inc. | Methods for preparing purified lipopeptides |
US20100041589A2 (en) * | 2000-12-18 | 2010-02-18 | Dennis Keith | Methods for preparing purified lipopeptides |
US20090197799A1 (en) * | 2000-12-18 | 2009-08-06 | Dennis Keith | Methods for preparing purified lipotides |
US8697638B2 (en) | 2000-12-18 | 2014-04-15 | Cubist Pharmaceuticals, Inc. | Methods for preparing purified lipopeptides |
US8796224B2 (en) | 2000-12-18 | 2014-08-05 | Cubist Pharmaceuticals, Inc. | Methods for preparing purified lipopeptides |
CN102325787A (en) * | 2008-12-22 | 2012-01-18 | 丘比斯特药物股份有限公司 | Novel antibacterial agents for the treatment of gram positive infections |
US9138456B2 (en) | 2009-11-23 | 2015-09-22 | Cubist Pharmaceuticals Llc | Lipopeptide compositions and related methods |
AU2010321531C1 (en) * | 2009-11-23 | 2020-10-01 | Cubist Pharmaceuticals Llc | Lipopeptide compositions and related methods |
EP2504020A4 (en) * | 2009-11-23 | 2013-05-29 | Eagle Pharmaceuticals Inc | Formulations of daptomycin |
EP2504020A1 (en) * | 2009-11-23 | 2012-10-03 | Eagle Pharmaceuticals, Inc. | Formulations of daptomycin |
US20110124551A1 (en) * | 2009-11-23 | 2011-05-26 | Eagle Pharmaceuticals, Inc. | Formulations of daptomycin |
AU2010321531B2 (en) * | 2009-11-23 | 2016-11-03 | Cubist Pharmaceuticals Llc | Lipopeptide compositions and related methods |
US9662397B2 (en) | 2009-11-23 | 2017-05-30 | Merck Sharp & Dohme Corp. | Lipopeptide compositions and related methods |
US8835382B2 (en) | 2009-11-23 | 2014-09-16 | Cubist Pharmaceuticals, Inc. | Lipopeptide compositions and related methods |
WO2020128506A1 (en) * | 2018-12-21 | 2020-06-25 | Arecor Limited | Novel composition |
WO2020128507A1 (en) * | 2018-12-21 | 2020-06-25 | Arecor Limited | Novel composition |
CN113271922A (en) * | 2018-12-21 | 2021-08-17 | 艾瑞克有限公司 | Novel compositions |
CN113301885A (en) * | 2018-12-21 | 2021-08-24 | 艾瑞克有限公司 | Novel compositions |
WO2020229369A1 (en) * | 2019-05-10 | 2020-11-19 | Xellia Pharmaceuticals Aps | Daptomycin aqueous formulations |
CN113811290A (en) * | 2019-05-10 | 2021-12-17 | 埃克斯利亚制药有限公司 | Aqueous daptomycin formulations |
CN113717253A (en) * | 2021-09-15 | 2021-11-30 | 丽珠集团福州福兴医药有限公司 | Purification method of daptomycin |
WO2023165050A1 (en) * | 2022-03-04 | 2023-09-07 | 海南普利制药股份有限公司 | Stable depsipeptide pharmaceutical composition |
Also Published As
Publication number | Publication date |
---|---|
US20150183830A1 (en) | 2015-07-02 |
US8697638B2 (en) | 2014-04-15 |
US8846610B2 (en) | 2014-09-30 |
US20140087425A1 (en) | 2014-03-27 |
US20090197799A1 (en) | 2009-08-06 |
US8796224B2 (en) | 2014-08-05 |
US20100041589A2 (en) | 2010-02-18 |
US20140024577A1 (en) | 2014-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2261237B1 (en) | Daptomycin in crystalline form and their preparation | |
US8796224B2 (en) | Methods for preparing purified lipopeptides | |
AU2002246687A1 (en) | Methods for preparing purified lipopeptides | |
JP5303087B2 (en) | High purity lipopeptides, lipopeptide micelles and treatments for preparing them | |
WO2002059145A1 (en) | Methods for preparing purified lipopeptides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CUBIST PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KEITH, DENNIS;LAI, JAN-JI;GOVARDHAN, CHANDRIKA;AND OTHERS;REEL/FRAME:016839/0953;SIGNING DATES FROM 20050721 TO 20050915 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |