US20050148070A1 - Cultivation of primate embryonic stem cells - Google Patents
Cultivation of primate embryonic stem cells Download PDFInfo
- Publication number
- US20050148070A1 US20050148070A1 US10/952,096 US95209604A US2005148070A1 US 20050148070 A1 US20050148070 A1 US 20050148070A1 US 95209604 A US95209604 A US 95209604A US 2005148070 A1 US2005148070 A1 US 2005148070A1
- Authority
- US
- United States
- Prior art keywords
- cells
- stem cells
- culture
- medium
- serum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0606—Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/90—Serum-free medium, which may still contain naturally-sourced components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
Definitions
- the present invention relates to methods for culturing primate embryonic stem cell cultures and culture media useful therewith.
- Primate e.g. monkey and human pluripotent embryonic stem cells have been derived from preimplantation embryos. See for example, U.S. Pat. No. 5,843,780 and J. Thomson et al., 282 Science 1145-1147 (1998). The disclosure of these publications and of all other publications referred to herein are incorporated by reference as if fully set forth herein. Notwithstanding prolonged culture, these cells stably maintain a developmental potential to form advanced derivatives of all three embryonic germ layers.
- mice Although the mouse is the mainstay of experimental mammalian developmental biology, and although many of the fundamental mechanisms that control development are conserved between mice and humans, there are significant differences between early mouse and human development. Primate/human ES cells should therefore provide important new insights into their differentiation and function.
- ES cell-derived cells Differentiated derivatives of primate ES cells could be used to identify gene targets for new drugs, used to test toxicity or teratogenicity of new compounds, and used for transplantation to replace cell populations in disease.
- Potential conditions that might be treated by the transplantation of ES cell-derived cells include Parkinson's disease, cardiac infarcts, juvenile-onset diabetes mellitus, and leukemia. See e.g. J. Rossant et al. 17 Nature Biotechnology 23-4 (1999) and J. Gearhart, 282 Science 1061-2 (1998).
- WO 98/30679 there was a discussion of providing a serum-free supplement in replacement for animal serum to support the growth of certain embryonic stem cells in culture.
- the serum replacement included albumins or albumin substitutes, one or more amino acids, one or more vitamins, one or more transferrins or transferrin substitutes, one or more antioxidants, one or more insulins or insulin substitutes, one or more collagen precursors, and one or more trace elements. It was noted that this replacement could be further supplemented with leukemia inhibitory factor, steel factor, or ciliary neurotrophic factor. Unfortunately, in the context of primate embryonic stem cell cultures (especially those grown on fibroblast feeder layers), these culture media did not prove satisfactory.
- nutrient serum culture media e.g. fetal bovine serum
- WO 99/20741 discusses the benefit of use of various growth factors such as bFGF in culturing primate stem cells.
- culture media without nutrient serum are not described.
- the first human embryonic stem cell cultures were grown using a layer of fibroblast feeder cells, which has the property of enabling the human embryonic stem cells to be proliferated while remaining undifferentiated. Later, it was discovered that it is sufficient to expose the culture medium to feeder cells, to create what is called conditioned medium, which had the same property as using feeder cells directly. Without the use of either feeder cells or conditioned medium, human embryonic stem cells in culture could not be maintained in an undifferentiated state. Since the use of feeder cells, or even the exposure of the medium to feeder cells, risks contamination of the culture with unwanted material, avoiding the use of feeder cells and conditioned medium is desirable. Medium which has not been exposed to feeder cells is referred to here as unconditioned medium.
- the invention provides a method of culturing primate embryonic stem cells.
- the fibroblast feeder layer previously required to sustain a stem cell culture, is rendered unnecessary by the addition of sufficient fibroblast growth factor.
- Fibroblast growth factors are essential molecules for mammalian development. There are currently more then twenty known fibroblast growth factor ligands and five signaling fibroblast growth factor receptors therefor (and their spliced variants). See generally D. Ornitz et al., 25 J. Biol. Chem. 15292-7 (1996); U.S. Pat. No. 5,453,357. Slight variations in these factors are expected to exist between species, and thus the term fibroblast growth factor is not species limited. However, we prefer to use human fibroblast growth factors, more preferably human basic fibroblast growth factor produced from a recombinant gene. This compound is readily available in quantity from Gibco BRL-Life Technologies and others.
- the culture may still be essentially free of the specified serum even though a discrete component (e.g. bovine serum albumin) has been isolated from serum and then is exogenously supplied.
- a discrete component e.g. bovine serum albumin
- bovine serum albumin e.g. bovine serum albumin
- the primate embryonic stem cells that are cultured using this method are human embryonic stem cells that are true ES cell lines in that they: (i) are capable of indefinite proliferation in vitro in an undifferentiated state; (ii) are capable of differentiation to derivatives of all three embryonic germ layers (endoderm, mesoderm, and ectoderm) even after prolonged culture; and (iii) maintain a normal karyotype throughout prolonged culture. They are therefore referred to as being pluripotent.
- the culturing permits the embryonic stem cells to stably proliferate in culture for over one month (preferably over six months; even more preferably over twelve months) while maintaining the potential of the stem cells to differentiate into derivatives of endoderm, mesoderm, and ectoderm tissues, and while maintaining the karyotype of the stem cells.
- the invention provides another method of culturing primate embryonic stem cells.
- the growth factor is preferably a fibroblast growth factor, it might also be other materials such as certain synthetic small peptides (e.g. produced by recombinant DNA variants or mutants) designed to activate fibroblast growth factor receptors. See generally T. Yamaguchi et al., 152 Dev. Biol. 75-88 (1992)(signaling receptors).
- the invention provides a culture system for culturing primate embryonic stem cells. It has a human basic fibroblast growth factor supplied by other than just the fibroblast feeder layer.
- the culture system is essentially free of animal serum.
- Yet another aspect of the invention provides cell lines (preferably cloned cell lines) derived using the above method. “Derived” is used in its broadest sense to cover directly or indirectly derived lines.
- FGF human fibroblast growth factor
- FGF aids in the cultivation and cloning of human ES cells. This phenomenon occurs because of the action of FGF in interacting with FGF receptors in the human ES cells. It is not particularly critical which of the many known FGF variants are used in the culture.
- basic FGF or bFGF, also known as FGF2
- FGF-1 the cheapest and most readily commercially available member of the FGF family of factors. More then twenty different FGF family members have been identified referred to as FGF-1 through FGF-27.
- the concentration of FGF here is given in amounts of bFGF, it should be understood that this is intended to quantify the amount of stimulation of the FGF receptors and that the concentration of FGF may have to adjusted, upward or downward, for other members of the FGF family.
- the preferred concentration of FGF in the ES cell medium is in the range of about 0.1 to about 1000 ng/ml, with concentrations in excess of about 100 ng/ml being sufficient to avoid the need for both serum and feeder cells.
- Human ES cell cultures in the defined human ES cell media described below in the examples can be cultivated indefinitely in the complete absence of fibroblast feeder cells and without conditioned media.
- the human ES cells retain all of the characteristics of human ES cells including characteristic morphology (small and compact with indistinct cell membranes), proliferation and the ability to differentiate into many, if not all, the cell types in the human body.
- the human ES cells will also retain the characteristic that they can form all three primordial cell layers when injected into immuno-compromised mice.
- the ES cells retain the ability to differentiate into ectoderm, mesoderm and endoderm.
- the ES cells still exhibit markers indicative of ES cell status, such as expression of the nuclear transcription factor Oct4, which is associated with pluripotency.
- the human ES cells retain normal karyotypes.
- bFGF basic fibroblast growth factor
- H-9 cultures were dissociated to single cells for 7 minutes with 0.05% trypsin/0.25% EDTA, washed by centrifugation, and plated on mitotically inactivated mouse embryonic fibroblasts (10 5 ES cells per well of a 6-well plate).
- individual cells were selected by direct observation under a stereomicroscope and transferred by micropipette to individual wells of a 96 well plate containing mouse embryonic fibroblasts feeders with medium containing 20% serum replacer and 4 ng/ml bFGF.
- H9 cells were expanded by routine passage every 5-7 days with 1 mg/ml collagenase type IV (Gibco BRL, Rockville, Md.).
- Six months after derivation H9 cells exhibited a normal XX karyotype by standard G-banding techniques (20 chromosomal spreads analyzed).
- seven months after derivation, in a single karyotype preparation 16/20 chromosomal spreads exhibited a normal XX karyotype, but 4/20 spreads demonstrated random abnormalities, including one with a translocation to chromosome 13 short arm, one with an inverted chromosome 20, one with a translocation to the number 4 short arm, and one with multiple fragmentation.
- H9 cells exhibited normal karyotypes in all 20 chromosomal spreads examined.
- exogenous bFGF is very important for continued undifferentiated proliferation of primate embryonic stem cells in the absence of animal serum.
- serum-free medium lacking exogenous bFGF, human ES cells uniformly differentiated by two weeks of culture. Addition of other factors such as LIF (in the absence of bFGF) did not prevent the differentiation.
- clones for expansion were selected by placing cells individually into wells of a 96 well plate under direct microscopic observation. Of 192 H-9 cells plated into wells of 96 well plates, two clones were successfully expanded (H-9.1 and H-9.2). Both of these clones were subsequently cultured continuously in media supplemented with serum replacer and bFGF.
- H9.1 and H9.2 cells both maintained a normal XX karyotype even after more than 8 months of continuous culture after cloning.
- the H-9.1 and H-9.2 clones maintained the potential to form derivatives of all three embryonic germ layers even after long term culture in serum-free medium. After 6 months of culture, H9.1 and H9.2 clones were confirmed to have normal karyotypes and were then injected into SCID-beige mice.
- Both H9.1 and H9.2 cells formed teratomas that contained derivatives of all three embryonic germ layers including gut epithelium (endoderm) embryonic kidney, striated muscle, smooth muscle, bone, cartilage (mesoderm), and neural tissue (ectoderm).
- endoderm gut epithelium
- striated muscle smooth muscle
- bone cartilage
- ectoderm neural tissue
- the lower cloning efficiency in medium containing serum suggests the presence of compounds in conventionally used serum that are detrimental to stem cell survival, particularly when the cells are dispersed to single cells. Avoiding the use of these compounds is therefore highly desired.
- UM100 refers to unconditioned medium to which has been added 100 ng/ml of bFGF.
- the UM100 medium does contain the Gibco Knockout Serum Replacer product but does not include or require the use of fibroblast feeder cells of any kind.
- the BM+ medium is basal medium (DMEM/F12) plus additives, described below, that also permits the culture of cells without feeder cells, but this medium omits the serum replacer product.
- DHEM refers to a defined human embryonic stem cell medium. This medium, also described below, is sufficient for the culture, cloning and indefinite proliferation of human ES cells while being composed entirely of inorganic constituents and only human proteins, as opposed to the BM+ medium which contains bovine albumin.
- UM100 media was prepared as follows: unconditioned media (UM) consisted of 80% (v/v) DMEM/F12 (Gibco/Invitrogen) and 20% (v/v) Knockout-Serum Replacer (Gibco/Invitrogen) supplemented with 1 mM glutamine (Gibco/Invitrogen), 0.1 mM ⁇ -mercaptoethanol (Sigma—St. Louis, Mo.), and 1% nonessential amino acid stock (Gibco/Invitrogen). To complete the media 100 ng/ml bFGF was added and the medium was filtered through a 0.22 uM nylon filter (Nalgene).
- BM+ medium was prepared as follows: 16.5 mg/ml BSA (Sigma), 196 ⁇ g/ml Insulin (Sigma), 108 ⁇ g/ml Transferrin (Sigma), 100 ng/ml bFGF, 1 mM glutamine (Gibco/Invitrogen), 0.1 mM ⁇ -mercaptoethanol (Sigma), and 1% nonessential amino acid stock (Gibco/Invitrogen) were combined in DMEM/F12 (Gibco/Invitrogen) and the osmolality was adjusted to 340 mOsm with SM NaCl. The medium was then filtered through a 0.22 uM nylon filter (Nalgene).
- DHEM media was prepared as follows: 16.5 mg/ml HSA (Sigma), 196 ⁇ g/ml Insulin (Sigma), 108 ⁇ g/ml Transferrin (Sigma), 100 ng/ml bFGF, 1 mM glutamine (Gibco/Invitrogen), 0.1 mM ⁇ -mercaptoethanol (Sigma), 1% nonessential amino acid stock (Gibco/Invitrogen), vitamin supplements (Sigma), trace minerals (Cell-gro®), and 0.014 mg/L to 0.07 mg/L selenium (Sigma), were combined in DMEM/F12 (Gibco/Invitrogen) and the osmolarity was adjusted to 340 mOsm with SM NaCl.
- the vitamin supplements in the media may include thiamine (6.6 g/L), reduced glutathione (2 mg/L) and ascorbic acid PO 4 .
- the trace minerals used in the media are a combination of Trace Elements B (Cell-gro®, Cat #: MT 99-175-Cl and C (Cell-gro®, Cat #: MT 99-176-Cl); each of which is sold as a 1,000 ⁇ solution. It is well known in the art that Trace Elements B and C contain the same composition as Cleveland's Trace Element I and II, respectively. (See Cleveland, W. L., Wood, I. Erlanger, B. F., J Imm. Methods 56: 221-234, 1983.) The medium was then filtered through a 0.22 uM nylon filter (Nalgene). Finally, sterile, defined lipids (Gibco/Invitrogen) were added to complete the medium.
- H1 or H9 human embryonic stem cells previously growing on MEF (mouse embryonic fibroblast) feeder cells were mechanically passaged with dispase (1 mg/ml) and plated onto Matrigel (Becton Dickinson, Bedford, Mass.). Appropriate medium was changed daily until cell density was determined to be adequate for cell passage. Cells were then passaged with dispase as described and maintained on Matrigel (Becton Dickinson).
- Human ES cells were removed from a 6-well tissue culture plate (Nalgene) with trypsin/EDTA (Gibco/Invitrogen) +2% chick serum (ICN Biomedicals, Inc., Aurora, Ohio)for 10 min. at 37° C. The cells were diluted in an equal volume of FACS Buffer (PBS+2% FBS+0.1% Sodium Azide) and filtered through an 80 ⁇ M cell strainer (Nalgene). Pellets were collected for 5 min. at 1000 RPM and resuspended in 1 ml 0.5% paraformaldehyde. Human ES cells were fixed for 10 min. at 37° C. and the pellets were collected as described.
- FACS Buffer PBS+2% FBS+0.1% Sodium Azide
- the ES cells were resuspended in 2 ml FACS Buffer and total cell number was counted with a hemacytometer. Cells were pelleted as described and permeablized for 30 min. on ice in 90% methanol. Human ES cells were pelleted as described and 1 ⁇ 10 5 cells were diluted into 1 ml of FACS Buffer+0.1% Triton X-100 (Sigma) in a FACS tube (Becton Dickinson). hESC were pelleted as described and resuspended in 50 ⁇ l of primary antibody diluted in FACS Buffer+0.1% Triton X-100 (Sigma). Samples of appropriate control antibodies were applied in parallel. HESC were incubated overnight at 4° C.
- H1 Cells of human ES cell line H1 have now been cultivated in the UM100 medium for over 14 passages (112 days) while retaining the morphology and characteristics of human ES cells.
- H1 cells were cultivated in the BM+ medium for over 6 passages (70 days) while retaining the morphology and characteristics of human ES cells.
- H9 cells have been cultivated in DHEM medium for over 5 passages (67 days).
- Currently, H9 and H7 human ES cells are also being cultivated in UM100 medium.
- Subsequent testing of the BM+ and UM100-cultured cells established normal karyotypes. This was demonstrated by FACS analysis discussed above.
- the present invention provides methods for culturing primate embryonic stem cells, and culture media for use therewith.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Developmental Biology & Embryology (AREA)
- Reproductive Health (AREA)
- Gynecology & Obstetrics (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
The invention relates to methods for culturing human embryonic stem cells by culturing the stem cells in an environment essentially free of mammalian fetal serum and in a stem cell culture medium including amino acids, vitamins, salts, minerals, transferring, insulin, albumin, and a fibroblast growth factor that is supplied from a source other than just a feeder layer the medium. Also disclosed are compositions capable of supporting the culture and proliferation of human embryonic stem cells without the need for feeder cells or for exposure of the medium to feeder cells.
Description
- This application is a continuation-in-part application of U.S. patent application Ser. No.
- 09/522,030 filed Mar. 9, 2000.
- To be determined.
- The present invention relates to methods for culturing primate embryonic stem cell cultures and culture media useful therewith.
- Primate (e.g. monkey and human) pluripotent embryonic stem cells have been derived from preimplantation embryos. See for example, U.S. Pat. No. 5,843,780 and J. Thomson et al., 282 Science 1145-1147 (1998). The disclosure of these publications and of all other publications referred to herein are incorporated by reference as if fully set forth herein. Notwithstanding prolonged culture, these cells stably maintain a developmental potential to form advanced derivatives of all three embryonic germ layers.
- Primate (particularly human) ES cell lines have widespread utility in connection with human developmental biology, drug discovery, drug testing, and transplantation medicine. For example, current knowledge of the post-implantation human embryo is largely based on a limited number of static histological sections. Because of ethical considerations the underlying mechanisms that control the developmental decisions of the early human embryo remain essentially unexplored.
- Although the mouse is the mainstay of experimental mammalian developmental biology, and although many of the fundamental mechanisms that control development are conserved between mice and humans, there are significant differences between early mouse and human development. Primate/human ES cells should therefore provide important new insights into their differentiation and function.
- Differentiated derivatives of primate ES cells could be used to identify gene targets for new drugs, used to test toxicity or teratogenicity of new compounds, and used for transplantation to replace cell populations in disease. Potential conditions that might be treated by the transplantation of ES cell-derived cells include Parkinson's disease, cardiac infarcts, juvenile-onset diabetes mellitus, and leukemia. See e.g. J. Rossant et al. 17 Nature Biotechnology 23-4 (1999) and J. Gearhart, 282 Science 1061-2 (1998).
- Long term proliferative capacity, developmental potential after prolonged culture, and karyotypic stability are key features with respect to the utility of primate embryonic stem cell cultures. Cultures of such cells (especially on fibroblast feeder layers) have typically been supplemented with animal serum (especially fetal bovine serum) to permit the desired proliferation during such culturing.
- For example, in U.S. Pat. Nos. 5,453,357, 5,670,372 and 5,690,296 various culture conditions were described, including some using a type of basic fibroblast growth factor together with animal serum. Unfortunately, serum tends to have variable properties from batch to batch, thus affecting culture characteristics.
- In WO 98/30679 there was a discussion of providing a serum-free supplement in replacement for animal serum to support the growth of certain embryonic stem cells in culture. The serum replacement included albumins or albumin substitutes, one or more amino acids, one or more vitamins, one or more transferrins or transferrin substitutes, one or more antioxidants, one or more insulins or insulin substitutes, one or more collagen precursors, and one or more trace elements. It was noted that this replacement could be further supplemented with leukemia inhibitory factor, steel factor, or ciliary neurotrophic factor. Unfortunately, in the context of primate embryonic stem cell cultures (especially those grown on fibroblast feeder layers), these culture media did not prove satisfactory.
- In the context of nutrient serum culture media (e.g. fetal bovine serum), WO 99/20741 discusses the benefit of use of various growth factors such as bFGF in culturing primate stem cells. However, culture media without nutrient serum are not described.
- In U.S. Pat. No. 5,405,772 growth media for hematopoietic cells and bone marrow stromal cells are described. There is a suggestion to use fibroblast growth factor in a serum-deprived media for this purpose. However, conditions for growth of primate embryonic stem cells are not described.
- The first human embryonic stem cell cultures were grown using a layer of fibroblast feeder cells, which has the property of enabling the human embryonic stem cells to be proliferated while remaining undifferentiated. Later, it was discovered that it is sufficient to expose the culture medium to feeder cells, to create what is called conditioned medium, which had the same property as using feeder cells directly. Without the use of either feeder cells or conditioned medium, human embryonic stem cells in culture could not be maintained in an undifferentiated state. Since the use of feeder cells, or even the exposure of the medium to feeder cells, risks contamination of the culture with unwanted material, avoiding the use of feeder cells and conditioned medium is desirable. Medium which has not been exposed to feeder cells is referred to here as unconditioned medium.
- It can therefore be seen that a need still exists for techniques to stably culture primate embryonic stem cells without the requirement for use of animal serum.
- In one aspect the invention provides a method of culturing primate embryonic stem cells. One cultures the stem cells in a culture essentially free of mammalian fetal serum (preferably also essentially free of any animal serum) and in the presence of fibroblast growth factor that is supplied from a source other than just a fibroblast feeder layer. In a preferred form, the fibroblast feeder layer, previously required to sustain a stem cell culture, is rendered unnecessary by the addition of sufficient fibroblast growth factor.
- Fibroblast growth factors are essential molecules for mammalian development. There are currently more then twenty known fibroblast growth factor ligands and five signaling fibroblast growth factor receptors therefor (and their spliced variants). See generally D. Ornitz et al., 25 J. Biol. Chem. 15292-7 (1996); U.S. Pat. No. 5,453,357. Slight variations in these factors are expected to exist between species, and thus the term fibroblast growth factor is not species limited. However, we prefer to use human fibroblast growth factors, more preferably human basic fibroblast growth factor produced from a recombinant gene. This compound is readily available in quantity from Gibco BRL-Life Technologies and others.
- It should be noted that for purposes of this patent the culture may still be essentially free of the specified serum even though a discrete component (e.g. bovine serum albumin) has been isolated from serum and then is exogenously supplied. The point is that when serum itself is added the variability concerns arise. However, when one or more well defined purified component(s) of such serum is added, they do not.
- Preferably the primate embryonic stem cells that are cultured using this method are human embryonic stem cells that are true ES cell lines in that they: (i) are capable of indefinite proliferation in vitro in an undifferentiated state; (ii) are capable of differentiation to derivatives of all three embryonic germ layers (endoderm, mesoderm, and ectoderm) even after prolonged culture; and (iii) maintain a normal karyotype throughout prolonged culture. They are therefore referred to as being pluripotent.
- The culturing permits the embryonic stem cells to stably proliferate in culture for over one month (preferably over six months; even more preferably over twelve months) while maintaining the potential of the stem cells to differentiate into derivatives of endoderm, mesoderm, and ectoderm tissues, and while maintaining the karyotype of the stem cells.
- In another aspect the invention provides another method of culturing primate embryonic stem cells. One cultures the stem cells in a culture essentially free of mammalian fetal serum (preferably also essentially free of any animal serum) and in the presence of a growth factor capable of activating a fibroblast growth factor signaling receptor, wherein the growth factor is supplied from a source other than just a fibroblast feeder layer. While the growth factor is preferably a fibroblast growth factor, it might also be other materials such as certain synthetic small peptides (e.g. produced by recombinant DNA variants or mutants) designed to activate fibroblast growth factor receptors. See generally T. Yamaguchi et al., 152 Dev. Biol. 75-88 (1992)(signaling receptors).
- In yet another aspect the invention provides a culture system for culturing primate embryonic stem cells. It has a human basic fibroblast growth factor supplied by other than just the fibroblast feeder layer. The culture system is essentially free of animal serum.
- Yet another aspect of the invention provides cell lines (preferably cloned cell lines) derived using the above method. “Derived” is used in its broadest sense to cover directly or indirectly derived lines.
- Variability in results due to differences in batches of animal serum is thereby avoided. Further, it has been discovered that avoiding use of animal serum while using fibroblast growth factor can increase the efficiency of cloning.
- It is therefore an advantage of the present invention to provide culture conditions for primate embryonic stem cell lines where the conditions are less variable and permit more efficient cloning. Other advantages of the present invention will become apparent after study of the specification and claims.
- In some of the following experiments one of the inventors here used the methods and culture systems of the invention to culture human ES cell lines without adding serum to the culture medium. Two clonally derived human ES cell lines proliferated for over eight months after clonal derivation and maintained the ability to differentiate to advanced derivatives of all three embryonic germ layers.
- In another of the experiments set forth below, it has now been demonstrated that the addition of relatively large amounts of a human fibroblast growth factor (FGF) aids in the culture and growth of human embryonic stem cells, even in the absence of both serum and feeder cells. This permits the culture of stem cells that have never been exposed either to animal cells or to media in which animal cells have been cultured.
- Techniques for the initial derivation, culture, and characterization of the human ES cell line H9 were described in J. Thomson et al., 282 Science 1145-1147 (1998). The experiments described below were conducted with this and other cells lines, but the processes and results are independent of the particular ES cells lines.
- It is described here that the addition of FGF aids in the cultivation and cloning of human ES cells. This phenomenon occurs because of the action of FGF in interacting with FGF receptors in the human ES cells. It is not particularly critical which of the many known FGF variants are used in the culture. Here basic FGF, or bFGF, also known as FGF2, is commonly used, but that is only because bFGF is the cheapest and most readily commercially available member of the FGF family of factors. More then twenty different FGF family members have been identified referred to as FGF-1 through FGF-27. While the concentration of FGF here is given in amounts of bFGF, it should be understood that this is intended to quantify the amount of stimulation of the FGF receptors and that the concentration of FGF may have to adjusted, upward or downward, for other members of the FGF family. For bFGF, the preferred concentration of FGF in the ES cell medium is in the range of about 0.1 to about 1000 ng/ml, with concentrations in excess of about 100 ng/ml being sufficient to avoid the need for both serum and feeder cells.
- Human ES cell cultures in the defined human ES cell media described below in the examples can be cultivated indefinitely in the complete absence of fibroblast feeder cells and without conditioned media. The human ES cells retain all of the characteristics of human ES cells including characteristic morphology (small and compact with indistinct cell membranes), proliferation and the ability to differentiate into many, if not all, the cell types in the human body. The human ES cells will also retain the characteristic that they can form all three primordial cell layers when injected into immuno-compromised mice. In particular, the ES cells retain the ability to differentiate into ectoderm, mesoderm and endoderm. The ES cells still exhibit markers indicative of ES cell status, such as expression of the nuclear transcription factor Oct4, which is associated with pluripotency. Throughout the process and at its end, the human ES cells retain normal karyotypes.
- In the first experiments described here human ES cells were plated on irradiated (35 gray gamma irradiation) mouse embryonic fibroblasts. Culture medium for the present work consisted of 80% “KnockOut” Dulbeco's modified Eagle's medium (DMEM) (Gibco BRL, Rockville, Md.), 1 mM L-Glutamine, 0.1 mM β-mercaptoethanol, and 1% nonessential amino acids stock (Gibco BRL, Rockville, Md.), supplemented with either 20% fetal bovine serum (HyClone, Logan, Utah) or 20% KnockOut SR, a serum-free replacement originally optimized for mouse ES cells (Gibco BRL, Rockville, Md.). The components of KnockOut SR are those described for serum replacements in WO 98/30679.
- In alternative experiments medium was supplemented with either serum or the aforesaid serum replacer KnockOut SR, and either with or without human recombinant basic fibroblast growth factor (bFGF, 4 ng/ml). The preferred concentration range of bFGF in the culture was between 0.1 ng/ml to 500 ng/ml.
- To determine cloning efficiency under varying culture conditions, H-9 cultures were dissociated to single cells for 7 minutes with 0.05% trypsin/0.25% EDTA, washed by centrifugation, and plated on mitotically inactivated mouse embryonic fibroblasts (105 ES cells per well of a 6-well plate). To confirm growth from single cells for the derivation of clonal ES cell lines, individual cells were selected by direct observation under a stereomicroscope and transferred by micropipette to individual wells of a 96 well plate containing mouse embryonic fibroblasts feeders with medium containing 20% serum replacer and 4 ng/ml bFGF.
- Clones were expanded by routine passage every 5-7 days with 1 mg/ml collagenase type IV (Gibco BRL, Rockville, Md.). Six months after derivation, H9 cells exhibited a normal XX karyotype by standard G-banding techniques (20 chromosomal spreads analyzed). However, seven months after derivation, in a single karyotype preparation, 16/20 chromosomal spreads exhibited a normal XX karyotype, but 4/20 spreads demonstrated random abnormalities, including one with a translocation to chromosome 13 short arm, one with an inverted chromosome 20, one with a translocation to the number 4 short arm, and one with multiple fragmentation. Subsequently, at 8, 10, and 12.75 months after derivation, H9 cells exhibited normal karyotypes in all 20 chromosomal spreads examined.
- We observed that the cloning efficiency of human ES cells in previously described culture conditions that included animal serum was poor (regardless of the presence or absence of bFGF). We also observed that in the absence of animal serum the cloning efficiency increased, and increased even more with bFGF. It has now been established that the addition of FGF facilitated the cultivation of human ES cells in general and is of particular help in facilitating the cloning of human ES cultures.
- The data expressed below is the total number of colonies resulting from 105 individualized ES cells plated, ± standard error of the mean (percent colony cloning efficiency). With 20% fetal serum and no bFGF there was a result of 240±28. With 20% serum and bFGF the result was about the same, 260±12. In the absence of the serum (presence of 20% serum replacer) the result with no bFGF was 633±43 and the result with bFGF was 826±61. Thus, serum adversely affected cloning efficiency, and the presence of the bFGF in the absence of serum had an added synergistic benefit insofar as cloning efficiency.
- The long term culture of human ES cells in the presence of serum does not require the addition of exogenously supplied bFGF, and (as noted above) the addition of bFGF to serum-containing medium does not significantly increase human ES cell cloning efficiency. However, in serum-free medium, bFGF increased the initial cloning efficiency of human ES cells.
- Further, it has been discovered that supplying exogenous bFGF is very important for continued undifferentiated proliferation of primate embryonic stem cells in the absence of animal serum. In serum-free medium lacking exogenous bFGF, human ES cells uniformly differentiated by two weeks of culture. Addition of other factors such as LIF (in the absence of bFGF) did not prevent the differentiation.
- The results perceived are particularly applicable to clonal lines. In this regard, clones for expansion were selected by placing cells individually into wells of a 96 well plate under direct microscopic observation. Of 192 H-9 cells plated into wells of 96 well plates, two clones were successfully expanded (H-9.1 and H-9.2). Both of these clones were subsequently cultured continuously in media supplemented with serum replacer and bFGF.
- H9.1 and H9.2 cells both maintained a normal XX karyotype even after more than 8 months of continuous culture after cloning. The H-9.1 and H-9.2 clones maintained the potential to form derivatives of all three embryonic germ layers even after long term culture in serum-free medium. After 6 months of culture, H9.1 and H9.2 clones were confirmed to have normal karyotypes and were then injected into SCID-beige mice.
- Both H9.1 and H9.2 cells formed teratomas that contained derivatives of all three embryonic germ layers including gut epithelium (endoderm) embryonic kidney, striated muscle, smooth muscle, bone, cartilage (mesoderm), and neural tissue (ectoderm). The range of differentiation observed within the teratomas of the high passage H9.1 and H9.2 cells was comparable to that observed in teratomas formed by low passage parental H9 cells.
- It should be appreciated from the description above that while animal serum is supportive of growth it is a complex mixture that can contain compounds both beneficial and detrimental to human ES cell culture. Moreover, different serum batches vary widely in their ability to support vigorous undifferentiated proliferation of human ES cells. Replacing serum with a clearly defined component reduces the variability of results associated with this serum batch variation, and should allow more carefully defined differentiation studies.
- Further, the lower cloning efficiency in medium containing serum suggests the presence of compounds in conventionally used serum that are detrimental to stem cell survival, particularly when the cells are dispersed to single cells. Avoiding the use of these compounds is therefore highly desired.
- The present invention has been described above with respect to its preferred embodiments. Other forms of this concept are also intended to be within the scope of the claims. For example, while recombinantly produced human basic fibroblast growth factor was used in the above experiments, naturally isolated fibroblast growth factor should also be suitable. Further, these techniques should also prove suitable for use on monkey and other primate cell cultures.
- Thus, the claims should be looked to in order to judge the full scope of the invention.
- Additional investigations later were directed to the culture of ES cells lines in higher concentrations of FGF but in the absence of both serum and feeder cells. Three different medium formulations have been used in this work, and those medium formulations are referred to here as UM100, BM+ and DHEM. The nomenclature UM100 refers to unconditioned medium to which has been added 100 ng/ml of bFGF. The UM100 medium does contain the Gibco Knockout Serum Replacer product but does not include or require the use of fibroblast feeder cells of any kind. The BM+ medium is basal medium (DMEM/F12) plus additives, described below, that also permits the culture of cells without feeder cells, but this medium omits the serum replacer product. Lastly, the name DHEM refers to a defined human embryonic stem cell medium. This medium, also described below, is sufficient for the culture, cloning and indefinite proliferation of human ES cells while being composed entirely of inorganic constituents and only human proteins, as opposed to the BM+ medium which contains bovine albumin.
- Culture of human ES cells lines H1 and H9 in UM100/BM+/DHEM
- UM100 media was prepared as follows: unconditioned media (UM) consisted of 80% (v/v) DMEM/F12 (Gibco/Invitrogen) and 20% (v/v) Knockout-Serum Replacer (Gibco/Invitrogen) supplemented with 1 mM glutamine (Gibco/Invitrogen), 0.1 mM β-mercaptoethanol (Sigma—St. Louis, Mo.), and 1% nonessential amino acid stock (Gibco/Invitrogen). To complete the media 100 ng/ml bFGF was added and the medium was filtered through a 0.22 uM nylon filter (Nalgene).
- BM+ medium was prepared as follows: 16.5 mg/ml BSA (Sigma), 196 μg/ml Insulin (Sigma), 108 μg/ml Transferrin (Sigma), 100 ng/ml bFGF, 1 mM glutamine (Gibco/Invitrogen), 0.1 mM β-mercaptoethanol (Sigma), and 1% nonessential amino acid stock (Gibco/Invitrogen) were combined in DMEM/F12 (Gibco/Invitrogen) and the osmolality was adjusted to 340 mOsm with SM NaCl. The medium was then filtered through a 0.22 uM nylon filter (Nalgene).
- DHEM media was prepared as follows: 16.5 mg/ml HSA (Sigma), 196 μg/ml Insulin (Sigma), 108 μg/ml Transferrin (Sigma), 100 ng/ml bFGF, 1 mM glutamine (Gibco/Invitrogen), 0.1 mM β-mercaptoethanol (Sigma), 1% nonessential amino acid stock (Gibco/Invitrogen), vitamin supplements (Sigma), trace minerals (Cell-gro®), and 0.014 mg/L to 0.07 mg/L selenium (Sigma), were combined in DMEM/F12 (Gibco/Invitrogen) and the osmolarity was adjusted to 340 mOsm with SM NaCl. It is noted that the vitamin supplements in the media may include thiamine (6.6 g/L), reduced glutathione (2 mg/L) and ascorbic acid PO4. Also, the trace minerals used in the media are a combination of Trace Elements B (Cell-gro®, Cat #: MT 99-175-Cl and C (Cell-gro®, Cat #: MT 99-176-Cl); each of which is sold as a 1,000×solution. It is well known in the art that Trace Elements B and C contain the same composition as Cleveland's Trace Element I and II, respectively. (See Cleveland, W. L., Wood, I. Erlanger, B. F., J Imm. Methods 56: 221-234, 1983.) The medium was then filtered through a 0.22 uM nylon filter (Nalgene). Finally, sterile, defined lipids (Gibco/Invitrogen) were added to complete the medium.
- H1 or H9 human embryonic stem cells previously growing on MEF (mouse embryonic fibroblast) feeder cells were mechanically passaged with dispase (1 mg/ml) and plated onto Matrigel (Becton Dickinson, Bedford, Mass.). Appropriate medium was changed daily until cell density was determined to be adequate for cell passage. Cells were then passaged with dispase as described and maintained on Matrigel (Becton Dickinson).
- Growth Rates
- To determine the growth rate of human ES cells in the various media, cells were plated at a density of about 2×105 cells/well in a 6-well tissue culture dish (Nalgene). On days 3, 5, and 7 duplicate wells were treated with trypsin/EDTA (Gibco/Invitrogen), individualized and cell numbers were counted. On day 7 an additional well was treated with dispase, counted, and used to re-seed a new plate at a cell density of about 2×105 cells/well. Growth rates were collected for 3 consecutive passages. Growth rate experiments show that UM100-cultured human ES cells grow as robustly as CM-cultured human ES cells.
- Attachment Dynamics
- To determine the attachment rate of human ES cells in the various media cells were plated at a density of 2×105 cells/well in a 6-well tissue culture dish (Nalgene). At time points ranging from 30 minutes to 48 hours unattached cells were washed away and attached cells were removed with trypsin/EDTA (Gibco/Invitrogen) and counted. These experiments were performed to examine if the UM100 growth rate data was due to a combination of better cell attachment and slower growth as opposed to equivalent growth rates for UM100 and CM. We found that attachment percentages were equivalent for both media at all time points tested. Thus, they grow at the same rate.
- FACS Analysis of Human ES Cells
- Human ES cells were removed from a 6-well tissue culture plate (Nalgene) with trypsin/EDTA (Gibco/Invitrogen) +2% chick serum (ICN Biomedicals, Inc., Aurora, Ohio)for 10 min. at 37° C. The cells were diluted in an equal volume of FACS Buffer (PBS+2% FBS+0.1% Sodium Azide) and filtered through an 80 μM cell strainer (Nalgene). Pellets were collected for 5 min. at 1000 RPM and resuspended in 1 ml 0.5% paraformaldehyde. Human ES cells were fixed for 10 min. at 37° C. and the pellets were collected as described. The ES cells were resuspended in 2 ml FACS Buffer and total cell number was counted with a hemacytometer. Cells were pelleted as described and permeablized for 30 min. on ice in 90% methanol. Human ES cells were pelleted as described and 1×105 cells were diluted into 1 ml of FACS Buffer+0.1% Triton X-100 (Sigma) in a FACS tube (Becton Dickinson). hESC were pelleted as described and resuspended in 50 μl of primary antibody diluted in FACS Buffer+0.1% Triton X-100 (Sigma). Samples of appropriate control antibodies were applied in parallel. HESC were incubated overnight at 4° C. Supernatants were poured off and cells were incubated in the dark for 30 min. at room temperature in 50 μl of secondary antibody (Molecular Probes/Invitrogen). FACS analysis was performed in a Facscalibur (Becton Dickinson) cell sorter with CellQuest Software (Becton Dickinson). This method for performing FACS analysis allows one to detect cell surface markers, to thus show that you have ES cells. The result observed was that human ES cells cultured in UM100 were 90% positive for Oct-4 as a population. This is comparible to CM-cultured ES cells and confirms that the cells are an ES cell population.
- Results
- Cells of human ES cell line H1 have now been cultivated in the UM100 medium for over 14 passages (112 days) while retaining the morphology and characteristics of human ES cells. H1 cells were cultivated in the BM+ medium for over 6 passages (70 days) while retaining the morphology and characteristics of human ES cells. H9 cells have been cultivated in DHEM medium for over 5 passages (67 days). Currently, H9 and H7 human ES cells are also being cultivated in UM100 medium. Subsequent testing of the BM+ and UM100-cultured cells established normal karyotypes. This was demonstrated by FACS analysis discussed above.
- Industrial Applicability
- The present invention provides methods for culturing primate embryonic stem cells, and culture media for use therewith.
Claims (5)
1. A method of culturing human embryonic stem cells, comprising:
culturing the stem cells in a culture essentially free of mammalian fetal serum and in a stem cell culture medium including amino acids, vitamins, salts, minerals, transferrin or a transferrin substitute, insulin or an insulin substitute, albumin, and a fibroblast growth factor that is supplied from a source other than just a feeder layer and is present in a concentration of at least about 100 ng/ml, the medium capable of supporting the culture and proliferation of human embryonic stem cells without the need for feeder cells or for exposure of the medium to feeder cells.
2. The method of claim 1 , wherein the culture is essentially free of any animal serum.
3. A method of culturing human embryonic stem cells in defined media without serum and without fibroblast feeder cells, the method comprising:
culturing the stem cells in a culture medium containing albumin, amino acids, vitamins, minerals, at least one transferrin or transferrin substitute, at least one insulin or insulin substitute, the culture medium essentially free of mammalian fetal serum and containing at least about 100 ng/ml of a fibroblast growth factor capable of activating a fibroblast growth factor signaling receptor, wherein the growth factor is supplied from a source other than just a fibroblast feeder layer, the medium supported the proliferation of stem cells in an undifferentiated state without feeder cells or conditioned medium.
4. The method of claim 3 , wherein said culturing step includes the embryonic stem cells proliferating in culture for over one month while maintaining the potential of the stem cells to differentiate into derivatives of endoderm, mesoderm, and ectoderm tissues, and while maintaining the karyotype of the stem cells.
5. A culture of human embryonic stem cells comprising:
human embryonic stem cells; and
a stem cell medium comprising containing albumin, amino acids, vitamins, minerals, at least one transferrin or transferrin substitute, at least one insulin or insulin substitute, the culture medium essentially free of mammalian fetal serum and containing at least about 100 ng/ml of a fibroblast growth factor capable of activating a fibroblast growth factor signaling receptor, the medium capable of culturing stem cells in the absence of serum and in the absence of feeder cells and also in the absence of medium exposed to feeder cells,
wherein the culture is capable of maintaining the stem cells in an undifferentiated state indefinitely.
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/952,096 US20050148070A1 (en) | 2000-03-09 | 2004-09-28 | Cultivation of primate embryonic stem cells |
US11/078,737 US7439064B2 (en) | 2000-03-09 | 2005-03-11 | Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium |
EP05801117.2A EP1799811B1 (en) | 2004-09-28 | 2005-09-27 | Cultivation of primate embryonic stem cells |
JP2007534698A JP2008514230A (en) | 2004-09-28 | 2005-09-27 | Culture of primate embryonic stem cells |
KR1020077009550A KR101437927B1 (en) | 2004-09-28 | 2005-09-27 | Cultivation of primate embryonic stem cells |
PCT/US2005/034510 WO2006036925A1 (en) | 2004-09-28 | 2005-09-27 | Cultivation of primate embryonic stem cells |
CA2582566A CA2582566C (en) | 2004-09-28 | 2005-09-27 | Cultivation of primate embryonic stem cells |
ES05801117T ES2800973T3 (en) | 2004-09-28 | 2005-09-27 | Primate embryonic stem cell culture |
AU2005289597A AU2005289597B2 (en) | 2004-09-28 | 2005-09-27 | Cultivation of primate embryonic stem cells |
CN200580032533.7A CN101072868B (en) | 2004-09-28 | 2005-09-27 | Cultivation of primate embryonic stem cells |
IL182143A IL182143A (en) | 2004-09-28 | 2007-03-22 | Cultivation of cultured primate embryonic stem cells expressing oct4, ssea4 or tra1-60 |
GB0707395A GB2433943B (en) | 2004-09-28 | 2007-04-17 | Cultivation of primate embryonic stem cells |
US12/240,640 US20090023208A1 (en) | 2000-03-09 | 2008-09-29 | Cultivation of Primate Embryonic Cells |
US12/489,978 US20100173410A1 (en) | 2000-03-09 | 2009-06-23 | Cultivation of Primate Embryonic Stem Cells |
US13/398,933 US20120178160A1 (en) | 2000-03-09 | 2012-02-17 | Cultivation Of Primate Embryonic Stem Cells |
JP2012064507A JP6216997B2 (en) | 2004-09-28 | 2012-03-21 | Culture of primate embryonic stem cells |
JP2016186252A JP6314193B2 (en) | 2004-09-28 | 2016-09-23 | Culture of primate embryonic stem cells |
JP2017081516A JP6446496B2 (en) | 2004-09-28 | 2017-04-17 | Culture of primate embryonic stem cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/522,030 US7005252B1 (en) | 2000-03-09 | 2000-03-09 | Serum free cultivation of primate embryonic stem cells |
US10/952,096 US20050148070A1 (en) | 2000-03-09 | 2004-09-28 | Cultivation of primate embryonic stem cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/522,030 Continuation-In-Part US7005252B1 (en) | 2000-03-09 | 2000-03-09 | Serum free cultivation of primate embryonic stem cells |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/078,737 Continuation-In-Part US7439064B2 (en) | 2000-03-09 | 2005-03-11 | Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050148070A1 true US20050148070A1 (en) | 2005-07-07 |
Family
ID=24079156
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/522,030 Expired - Lifetime US7005252B1 (en) | 2000-03-09 | 2000-03-09 | Serum free cultivation of primate embryonic stem cells |
US10/430,497 Expired - Lifetime US7217569B2 (en) | 2000-03-09 | 2003-05-06 | Clonal cultures of primate embryonic stem cells |
US10/952,096 Abandoned US20050148070A1 (en) | 2000-03-09 | 2004-09-28 | Cultivation of primate embryonic stem cells |
US11/257,704 Abandoned US20060040384A1 (en) | 2000-03-09 | 2005-10-25 | Serum free cultivation of primate embryonic stem cells |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/522,030 Expired - Lifetime US7005252B1 (en) | 2000-03-09 | 2000-03-09 | Serum free cultivation of primate embryonic stem cells |
US10/430,497 Expired - Lifetime US7217569B2 (en) | 2000-03-09 | 2003-05-06 | Clonal cultures of primate embryonic stem cells |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/257,704 Abandoned US20060040384A1 (en) | 2000-03-09 | 2005-10-25 | Serum free cultivation of primate embryonic stem cells |
Country Status (15)
Country | Link |
---|---|
US (4) | US7005252B1 (en) |
EP (1) | EP1261691B1 (en) |
JP (3) | JP5717311B2 (en) |
KR (1) | KR100795760B1 (en) |
CN (1) | CN100372928C (en) |
AU (2) | AU2001241973B2 (en) |
BR (1) | BR0108507A (en) |
CA (1) | CA2402299C (en) |
HK (1) | HK1053616A1 (en) |
IL (2) | IL151270A0 (en) |
IS (1) | IS6515A (en) |
MX (1) | MXPA02008698A (en) |
NO (1) | NO335780B1 (en) |
NZ (1) | NZ520701A (en) |
WO (1) | WO2001066697A2 (en) |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030017589A1 (en) * | 2001-01-10 | 2003-01-23 | Ramkumar Mandalam | Culture system for rapid expansion of human embryonic stem cells |
US20050015824A1 (en) * | 2001-11-09 | 2005-01-20 | Scholer Hans R. | Compositions for the derivation of germ cells from stem cells and methods of use thereof |
US20050037492A1 (en) * | 2000-01-11 | 2005-02-17 | Chunhui Xu | Medium for growing human embryonic stem cells |
US20050164385A1 (en) * | 1998-10-23 | 2005-07-28 | Gold Joseph D. | Embryonic stem cells having genetic modifications |
US20060263879A1 (en) * | 2004-12-30 | 2006-11-23 | Stemlifeline, Inc. | Methods and systems relating to embryonic stem cell lines |
US20060275899A1 (en) * | 2004-12-30 | 2006-12-07 | Stemlifeline, Inc. | Methods and compositions relating to embryonic stem cell lines |
US20060280729A1 (en) * | 2005-06-08 | 2006-12-14 | Sanjay Mistry | Cellular therapy for ocular degeneration |
US20070098696A1 (en) * | 2005-10-31 | 2007-05-03 | President And Fellows Of Harvard College | Immortalized fibroblasts |
US20070122903A1 (en) * | 2005-05-27 | 2007-05-31 | Alireza Rezania | Amniotic fluid derived cells |
US20070254359A1 (en) * | 2006-04-28 | 2007-11-01 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
WO2008018684A1 (en) * | 2006-08-11 | 2008-02-14 | Modern Cell & Tissue Technologies Inc. | Culture medium for co-culturing of human stem cells and their feeder cells |
US20090170198A1 (en) * | 2007-11-27 | 2009-07-02 | Alireza Rezania | Differentiation of human embryonic stem cells |
US20090215177A1 (en) * | 2008-02-21 | 2009-08-27 | Benjamin Fryer | Methods, surface modified plates and compositions for cell attachment, cultivation and detachment |
US20090269845A1 (en) * | 2008-04-24 | 2009-10-29 | Alireza Rezania | Pluripotent cells |
US20090325293A1 (en) * | 2008-04-24 | 2009-12-31 | Janet Davis | Treatment of pluripotent cells |
US20090325294A1 (en) * | 2007-07-01 | 2009-12-31 | Shelley Nelson | Single pluripotent stem cell culture |
US20100015100A1 (en) * | 2007-07-31 | 2010-01-21 | Jean Xu | Differentiation of human embryonic stem cells |
US20100015711A1 (en) * | 2008-06-30 | 2010-01-21 | Janet Davis | Differentiation of Pluripotent Stem Cells |
WO2010011352A2 (en) | 2008-07-25 | 2010-01-28 | The University Of Georgia Research Foundation, Inc. | Compositions for mesoderm derived isl1+ multipotent cells (imps), epicardial progenitor cells (epcs) and multipotent cxcr4+cd56+ cells (c56cs) and methods of use |
US20100028307A1 (en) * | 2008-07-31 | 2010-02-04 | O'neil John J | Pluripotent stem cell differentiation |
US20100087002A1 (en) * | 2008-02-21 | 2010-04-08 | Benjamin Fryer | Methods, Surface Modified Plates and Compositions for Cell Attachment, Cultivation and Detachment |
US20100112693A1 (en) * | 2008-10-31 | 2010-05-06 | Alireza Rezania | Differentiation of Human Embryonic Stem Cells |
US20100112692A1 (en) * | 2008-10-31 | 2010-05-06 | Alireza Rezania | Differentiation of Human Embryonic Stem Cells |
US20100124783A1 (en) * | 2008-11-20 | 2010-05-20 | Ya Xiong Chen | Methods and Compositions for Cell Attachment and Cultivation on Planar Substrates |
US20100166713A1 (en) * | 2007-01-30 | 2010-07-01 | Stephen Dalton | Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells (mmc) |
US20110014703A1 (en) * | 2009-07-20 | 2011-01-20 | Jean Xu | Differentiation of Human Embryonic Stem Cells |
US20110014702A1 (en) * | 2009-07-20 | 2011-01-20 | Jean Xu | Differentiation of Human Embryonic Stem Cells |
WO2011011300A2 (en) | 2009-07-20 | 2011-01-27 | Centocor Ortho Biotech Inc. | Differentiation of human embryonic stem cells |
US20110151561A1 (en) * | 2009-12-23 | 2011-06-23 | Janet Davis | Differentiation of human embryonic stem cells |
US20110151560A1 (en) * | 2009-12-23 | 2011-06-23 | Jean Xu | Differentiation of human embryonic stem cells |
US20110212067A1 (en) * | 2010-03-01 | 2011-09-01 | Centocor Ortho Biotech Inc. | Methods for Purifying Cells Derived from Pluripotent Stem Cells |
WO2012021698A2 (en) | 2010-08-12 | 2012-02-16 | Janssen Biotech, Inc. | Treatment of diabetes with pancreatic endocrine precursor cells |
WO2012030540A2 (en) | 2010-08-31 | 2012-03-08 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
EP2559756A1 (en) | 2007-07-01 | 2013-02-20 | Lifescan, Inc. | Single pluripotent stem cell culture |
EP2562248A1 (en) | 2007-07-18 | 2013-02-27 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
EP2584034A1 (en) | 2007-07-31 | 2013-04-24 | Lifescan, Inc. | Pluripotent stem cell differentiation by using human feeder cells |
WO2014105546A1 (en) | 2012-12-31 | 2014-07-03 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators |
WO2014105543A1 (en) | 2012-12-31 | 2014-07-03 | Janssen Biotech, Inc. | Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells |
US8778673B2 (en) | 2004-12-17 | 2014-07-15 | Lifescan, Inc. | Seeding cells on porous supports |
CN104357379A (en) * | 2014-09-30 | 2015-02-18 | 刘兴宇 | Stem cell culture medium |
EP2853589A1 (en) | 2010-08-31 | 2015-04-01 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
WO2015175307A1 (en) | 2014-05-16 | 2015-11-19 | Janssen Biotech, Inc. | Use of small molecules to enhance mafa expression in pancreatic endocrine cells |
US9434920B2 (en) | 2012-03-07 | 2016-09-06 | Janssen Biotech, Inc. | Defined media for expansion and maintenance of pluripotent stem cells |
US9506036B2 (en) | 2010-08-31 | 2016-11-29 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9732322B2 (en) | 2008-07-25 | 2017-08-15 | University Of Georgia Research Foundation, Inc. | Compositions for mesoderm derived ISL1+ multipotent cells (IMPs), epicardial progenitor cells (EPCs) and multipotent C56C cells (C56Cs) and methods of producing and using same |
US9752125B2 (en) | 2010-05-12 | 2017-09-05 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9969972B2 (en) | 2008-11-20 | 2018-05-15 | Janssen Biotech, Inc. | Pluripotent stem cell culture on micro-carriers |
US10066210B2 (en) | 2012-06-08 | 2018-09-04 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells |
US10358628B2 (en) | 2011-12-22 | 2019-07-23 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into single hormonal insulin positive cells |
US10370644B2 (en) | 2012-12-31 | 2019-08-06 | Janssen Biotech, Inc. | Method for making human pluripotent suspension cultures and cells derived therefrom |
US10377989B2 (en) | 2012-12-31 | 2019-08-13 | Janssen Biotech, Inc. | Methods for suspension cultures of human pluripotent stem cells |
EP3527658A1 (en) | 2006-04-28 | 2019-08-21 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US10420803B2 (en) | 2016-04-14 | 2019-09-24 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells to intestinal midgut endoderm cells |
Families Citing this family (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7015037B1 (en) | 1999-08-05 | 2006-03-21 | Regents Of The University Of Minnesota | Multiponent adult stem cells and methods for isolation |
US8252280B1 (en) | 1999-08-05 | 2012-08-28 | Regents Of The University Of Minnesota | MAPC generation of muscle |
US10638734B2 (en) | 2004-01-05 | 2020-05-05 | Abt Holding Company | Multipotent adult stem cells, sources thereof, methods of obtaining and maintaining same, methods of differentiation thereof, methods of use thereof and cells derived thereof |
US7439064B2 (en) * | 2000-03-09 | 2008-10-21 | Wicell Research Institute, Inc. | Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium |
US20100173410A1 (en) * | 2000-03-09 | 2010-07-08 | Wicell Research Institute, Inc. | Cultivation of Primate Embryonic Stem Cells |
EP1367899A4 (en) | 2001-02-14 | 2004-07-28 | Leo T Furcht | Multipotent adult stem cells, sources thereof, methods of obtaining and maintaining same, methods of differentiation thereof, methods of use thereof and cells derived thereof |
WO2003008535A2 (en) * | 2001-07-20 | 2003-01-30 | Technion Research And Development Foundation Ltd. | Methods of generating human cardiac cells and tissues and uses thereof |
GB0202149D0 (en) | 2002-01-30 | 2002-03-20 | Univ Edinburgh | Pluripotency determining factors and uses thereof |
US20040111285A1 (en) * | 2002-04-09 | 2004-06-10 | Mark Germain | Method for human pluripotent stem cells |
WO2004018654A2 (en) * | 2002-08-22 | 2004-03-04 | Celltran Limited | Cell culture surface |
CN1717478A (en) * | 2002-10-25 | 2006-01-04 | 湖南惠霖生命科技有限公司 | Feeder cell layer for in vitro culture of human embryonic stem cells and method for culturing embryonic stem cells |
GB0304918D0 (en) * | 2003-03-05 | 2003-04-09 | Celltran Ltd | Cell culture |
US7820439B2 (en) | 2003-09-03 | 2010-10-26 | Reliance Life Sciences Pvt Ltd. | In vitro generation of GABAergic neurons from pluripotent stem cells |
WO2005056755A2 (en) | 2003-12-02 | 2005-06-23 | Catholic Healthcare West | Compositions and methods for propagation of neural progenitor cells |
US20070269412A1 (en) | 2003-12-02 | 2007-11-22 | Celavie Biosciences, Llc | Pluripotent cells |
US8647873B2 (en) | 2004-04-27 | 2014-02-11 | Viacyte, Inc. | PDX1 expressing endoderm |
US7625753B2 (en) * | 2003-12-23 | 2009-12-01 | Cythera, Inc. | Expansion of definitive endoderm cells |
US7985585B2 (en) | 2004-07-09 | 2011-07-26 | Viacyte, Inc. | Preprimitive streak and mesendoderm cells |
US7541185B2 (en) * | 2003-12-23 | 2009-06-02 | Cythera, Inc. | Methods for identifying factors for differentiating definitive endoderm |
JP4819697B2 (en) | 2003-12-23 | 2011-11-24 | ヴィアサイト,インコーポレイテッド | Definitive endoderm |
US20050266554A1 (en) * | 2004-04-27 | 2005-12-01 | D Amour Kevin A | PDX1 expressing endoderm |
WO2007059007A2 (en) * | 2005-11-14 | 2007-05-24 | Cythera, Inc. | Markers of definitive endoderm |
WO2005065354A2 (en) * | 2003-12-31 | 2005-07-21 | The Burnham Institute | Defined media for pluripotent stem cell culture |
WO2005078070A1 (en) * | 2004-02-13 | 2005-08-25 | Reprocell, Inc. | Medium for preparing feeder cells for embryonic stem cells and feeder cells |
RU2375448C2 (en) * | 2004-03-23 | 2009-12-10 | Асубио Фарма Ко., Лтд. | Method of cultivation pluripotential stem cells |
EP2377922B1 (en) | 2004-04-27 | 2020-04-08 | Viacyte, Inc. | PDX1 expressing endoderm |
GB2429211B (en) | 2004-05-21 | 2008-12-17 | Wicell Res Inst Inc | Feeder independent extended culture of embryonic stem cells |
EP3505622A1 (en) | 2004-07-09 | 2019-07-03 | Viacyte, Inc. | Preprimitive streak and mesendoderm cells |
MX2007001772A (en) * | 2004-08-13 | 2007-07-11 | Univ Georgia Res Found | Compositions and methods for self-renewal and differentiation in human embryonic stem cells. |
CA2579643C (en) | 2004-09-08 | 2011-12-06 | Wisconsin Alumni Research Foundation | Medium and culture of embryonic stem cells |
ES2800973T3 (en) * | 2004-09-28 | 2021-01-07 | Wisconsin Alumni Res Found | Primate embryonic stem cell culture |
CN1298843C (en) * | 2005-02-07 | 2007-02-07 | 十堰市太和医院 | Human embryonic stem cells culture medium without dependent feeding cell |
US9074181B2 (en) | 2005-06-22 | 2015-07-07 | Asterias Biotherapeutics, Inc. | Suspension culture of human embryonic stem cells |
US9101590B2 (en) * | 2005-07-29 | 2015-08-11 | Yale University | Defined culture conditions of human embryonic stem cells |
KR100670616B1 (en) * | 2005-08-25 | 2007-01-17 | 주식회사 메디아나전자 | Artificial blstocyst for cultivating cells using epithelial cell or fibroblast, cultivating apparatus thereof |
AU2006285468A1 (en) * | 2005-09-02 | 2007-03-08 | Agency For Science, Technology And Research | Method of deriving progenitor cell line |
CA2625078A1 (en) * | 2005-10-06 | 2007-04-19 | University Of Massachusetts | Cell division marker |
EP1945758A2 (en) * | 2005-10-07 | 2008-07-23 | Cellartis AB | A method for obtaining a xeno-free hbs cell line |
US20070122905A1 (en) | 2005-10-27 | 2007-05-31 | D Amour Kevin A | PDX1-expressing dorsal and ventral foregut endoderm |
US7695965B2 (en) | 2006-03-02 | 2010-04-13 | Cythera, Inc. | Methods of producing pancreatic hormones |
EP2650359B1 (en) | 2006-03-02 | 2022-05-04 | Viacyte, Inc. | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US11254916B2 (en) | 2006-03-02 | 2022-02-22 | Viacyte, Inc. | Methods of making and using PDX1-positive pancreatic endoderm cells |
US7989204B2 (en) * | 2006-04-28 | 2011-08-02 | Viacyte, Inc. | Hepatocyte lineage cells |
CN100465268C (en) * | 2006-05-17 | 2009-03-04 | 北京大学 | Culture method for human embryonic stem cell and special culture medium thereof |
US7964402B2 (en) * | 2006-05-25 | 2011-06-21 | Sanford-Burnham Medical Research Institute | Methods for culture and production of single cell populations of human embryonic stem cells |
EP2032689A1 (en) * | 2006-06-20 | 2009-03-11 | Genzyme Corporation | Serum-free media and their uses for chondrocyte expansion |
WO2008048647A1 (en) * | 2006-10-17 | 2008-04-24 | Cythera, Inc. | Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells |
AU2007321928A1 (en) | 2006-11-24 | 2008-05-29 | Regents Of The University Of Minnesota | Endodermal progenitor cells |
US10829733B2 (en) * | 2007-01-04 | 2020-11-10 | Biolamina Ab | Composition and method for enabling proliferation of pluripotent human stem cells |
US7883698B2 (en) * | 2007-01-17 | 2011-02-08 | Maria Michejda | Isolation and preservation of fetal hematopoietic and mesencymal system cells from non-controversial materials and/or tissues resulting from miscarriages and methods of therapeutic use |
US7951593B2 (en) * | 2007-03-20 | 2011-05-31 | Universite Rene Descartes-Paris V | Culture medium for gingival fibroblasts |
US7695963B2 (en) | 2007-09-24 | 2010-04-13 | Cythera, Inc. | Methods for increasing definitive endoderm production |
US8338170B2 (en) | 2008-04-21 | 2012-12-25 | Viacyte, Inc. | Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells |
AU2008355123B2 (en) | 2008-04-21 | 2014-12-04 | Viacyte, Inc. | Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells |
JP5746016B2 (en) | 2008-04-30 | 2015-07-08 | サンバイオ,インコーポレイティド | Nerve regenerative cells with alterations in DNA methylation Not applicable for federal assistance |
WO2009154606A1 (en) | 2008-06-03 | 2009-12-23 | Cythera, Inc. | Growth factors for production of definitive endoderm |
US20090298178A1 (en) * | 2008-06-03 | 2009-12-03 | D Amour Kevin Allen | Growth factors for production of definitive endoderm |
RU2011103183A (en) * | 2008-06-30 | 2012-08-10 | Сентокор Орто Байотек Инк. (Us) | DIFFERENTIATION OF PLURIPOTENT STEM CELLS |
WO2010053472A1 (en) | 2008-11-04 | 2010-05-14 | Novocell, Inc. | Stem cell aggregate suspension compositions and methods for differentiation thereof |
AU2009313870B2 (en) | 2008-11-14 | 2013-07-11 | Viacyte, Inc. | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
US20100209399A1 (en) * | 2009-02-13 | 2010-08-19 | Celavie Biosciences, Llc | Brain-derived stem cells for repair of musculoskeletal system in vertebrate subjects |
WO2010096496A2 (en) | 2009-02-17 | 2010-08-26 | Memorial Sloan-Kettering Cancer Center | Methods of neural conversion of human embryonic stem cells |
US9109245B2 (en) | 2009-04-22 | 2015-08-18 | Viacyte, Inc. | Cell compositions derived from dedifferentiated reprogrammed cells |
US20100272695A1 (en) * | 2009-04-22 | 2010-10-28 | Alan Agulnick | Cell compositions derived from dedifferentiated reprogrammed cells |
ES2550202T3 (en) | 2009-08-03 | 2015-11-05 | Recombinetics, Inc. | Methods and compositions for targeted gene modification |
EP2494035B1 (en) * | 2009-10-29 | 2018-02-28 | Janssen Biotech, Inc. | Pluripotent stem cells |
WO2011063005A2 (en) | 2009-11-17 | 2011-05-26 | Advanced Cell Technology, Inc. | Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells |
ES2963295T3 (en) | 2010-07-12 | 2024-03-26 | Univ Southern California | Biocompatible substrate to facilitate interconnections between stem cells and target tissues and methods to implant it |
CA2814860C (en) | 2010-10-22 | 2020-08-25 | Biotime Inc. | Methods of modifying transcriptional regulatory networks in stem cells |
KR101921350B1 (en) * | 2010-12-17 | 2018-11-22 | 바이오라미나 에이비 | A system for maintaining human pluripotent stem cells |
WO2012121971A2 (en) | 2011-03-04 | 2012-09-13 | The Regents Of The University Of California | Locally released growth factors to mediate motor recovery after stroke |
CN103547275B (en) | 2011-04-06 | 2016-12-28 | 桑比欧公司 | For regulating the method and composition of periphery immunologic function |
US8877489B2 (en) | 2011-12-05 | 2014-11-04 | California Institute Of Technology | Ultrathin parylene-C semipermeable membranes for biomedical applications |
WO2012149468A2 (en) | 2011-04-29 | 2012-11-01 | University Of Southern California | Instruments and methods for the implantation of cell-seeded substrates |
WO2012170853A1 (en) | 2011-06-10 | 2012-12-13 | Wisconsin Alumni Research Foundation ("Warf") | Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage |
WO2013010045A1 (en) | 2011-07-12 | 2013-01-17 | Biotime Inc. | Novel methods and formulations for orthopedic cell therapy |
IL295556A (en) | 2011-11-04 | 2022-10-01 | Memorial Sloan Kettering Cancer Center | Midbrain dopamine (da) neurons for engraftment |
US9248013B2 (en) | 2011-12-05 | 2016-02-02 | California Institute Of Technology | 3-Dimensional parylene scaffold cage |
WO2013174794A1 (en) | 2012-05-23 | 2013-11-28 | F. Hoffmann-La Roche Ag | Compositions and methods of obtaining and using endoderm and hepatocyte cells |
CN102732477B (en) * | 2012-06-15 | 2013-06-19 | 江苏瑞思坦生物科技有限公司 | Human adipose-derived stem cell serum-free basic medium |
CN105612176B (en) | 2012-07-31 | 2021-01-19 | 阿格克斯治疗有限公司 | HLA G-modified cells and methods |
EP2716751A1 (en) | 2012-10-08 | 2014-04-09 | BioTime, Inc. | Differentiated progeny of clonal progenitor cell lines |
AU2013248265B2 (en) | 2012-11-08 | 2018-11-01 | Viacyte, Inc. | Scalable primate pluripotent stem cell aggregate suspension culture and differentiation thereof |
US8859286B2 (en) | 2013-03-14 | 2014-10-14 | Viacyte, Inc. | In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells |
EP2989198A4 (en) | 2013-04-26 | 2016-10-26 | Sloan Kettering Inst Cancer | Cortical interneurons and other neuronal cells produced by the directed differentiation of pluripotent and multipotent cells |
CA2914615C (en) | 2013-06-05 | 2023-10-17 | Biotime, Inc. | Compositions and methods for induced tissue regeneration in mammalian species |
US10900022B2 (en) | 2013-06-14 | 2021-01-26 | The University Of Queensland | Renal progenitor cells |
IL298654A (en) | 2013-11-21 | 2023-01-01 | Memorial Sloan Kettering Cancer Center | Specification of functional cranial placode derivatives from human pluripotent stem cells |
US11078462B2 (en) | 2014-02-18 | 2021-08-03 | ReCyte Therapeutics, Inc. | Perivascular stromal cells from primate pluripotent stem cells |
US20170114323A1 (en) | 2014-06-19 | 2017-04-27 | Whitehead Institute For Biomedical Research | Uses of kinase inhibitors for inducing and maintaining pluripotency |
US10240127B2 (en) | 2014-07-03 | 2019-03-26 | ReCyte Therapeutics, Inc. | Exosomes from clonal progenitor cells |
CN108779435B (en) | 2015-12-07 | 2022-05-03 | 再生疗法有限公司 | Method for the re-derivation of different pluripotent stem cell-derived brown adipocytes |
CN109069870B (en) | 2016-02-24 | 2022-04-29 | 洛克菲勒大学 | Embryonic cell-based therapeutic candidate screening systems, models for huntington's disease and uses thereof |
KR101877793B1 (en) * | 2016-07-15 | 2018-07-13 | 주식회사 엔바이오텍 | Serum-Free Medium Composition for Stem Cell Culture and Methods for Culturing Stem Cells Using the Same |
EP3519558B1 (en) | 2016-09-28 | 2023-08-09 | Organovo, Inc. | Use of engineered renal tissues in assays |
CN106754652B (en) * | 2017-03-06 | 2019-04-02 | 广州润虹医药科技股份有限公司 | IPS cell differentiation at ectoderm progenitor cells serum-free induced medium and abductive approach |
CN106754657B (en) * | 2017-03-28 | 2022-07-22 | 北京赛斯达生物技术有限公司 | Serum-free medium for monkey embryonic stem cells |
WO2019213276A1 (en) | 2018-05-02 | 2019-11-07 | Novartis Ag | Regulators of human pluripotent stem cells and uses thereof |
CN114109294A (en) * | 2020-08-26 | 2022-03-01 | 中石化胜利石油工程有限公司管具技术服务中心 | Flashboard dismouting device and control system thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405772A (en) * | 1993-06-18 | 1995-04-11 | Amgen Inc. | Medium for long-term proliferation and development of cells |
US5453357A (en) * | 1992-10-08 | 1995-09-26 | Vanderbilt University | Pluripotential embryonic stem cells and methods of making same |
US5690296A (en) * | 1992-07-21 | 1997-11-25 | Fabio Perini, S.P.A. | Machine and method for the formation of coreless logs of web material |
US5843780A (en) * | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
US20030017589A1 (en) * | 2001-01-10 | 2003-01-23 | Ramkumar Mandalam | Culture system for rapid expansion of human embryonic stem cells |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US670372A (en) * | 1898-01-13 | 1901-03-19 | William D Carpenter | Process of producing casein products. |
US5612211A (en) * | 1990-06-08 | 1997-03-18 | New York University | Stimulation, production and culturing of hematopoietic progenitor cells by fibroblast growth factors |
US5750376A (en) * | 1991-07-08 | 1998-05-12 | Neurospheres Holdings Ltd. | In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny |
US5690926A (en) | 1992-10-08 | 1997-11-25 | Vanderbilt University | Pluripotential embryonic cells and methods of making same |
AU3392697A (en) | 1996-06-14 | 1998-01-07 | Regents Of The University Of California, The | (in vitro) derivation and culture of primate pluripotent stem cells and therapeutic uses thereof |
AU5734998A (en) | 1997-01-10 | 1998-08-03 | Life Technologies, Inc. | Embryonic stem cell serum replacement |
US6331406B1 (en) * | 1997-03-31 | 2001-12-18 | The John Hopkins University School Of Medicine | Human enbryonic germ cell and methods of use |
GB9722370D0 (en) * | 1997-10-22 | 1997-12-17 | Ici Plc | Dye sheet cassette and printing apparatus |
EP1025204A4 (en) * | 1997-10-23 | 2001-02-28 | Geron Corp | Methods and materials for the growth of primate-derived primordial stem cells |
DE19756864C5 (en) | 1997-12-19 | 2014-07-10 | Oliver Brüstle | Neural precursor cells, methods for their production and their use for the therapy of neural defects |
US6667176B1 (en) | 2000-01-11 | 2003-12-23 | Geron Corporation | cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells |
EP1179046B1 (en) | 1999-05-07 | 2006-03-08 | University Of Utah Research Foundation | Lineage-restricted precursor cells isolated from mouse neural tube and mouse embryonic stem cells |
IL129966A (en) * | 1999-05-14 | 2009-12-24 | Technion Res & Dev Foundation | ISOLATED HUMAN EMBRYOID BODIES (hEB) DERIVED FROM HUMAN EMBRYONIC STEM CELLS |
US6750581B2 (en) * | 2002-01-24 | 2004-06-15 | Visteon Global Technologies, Inc. | Automotive alternator stator assembly with rectangular continuous wire |
-
2000
- 2000-03-09 US US09/522,030 patent/US7005252B1/en not_active Expired - Lifetime
-
2001
- 2001-03-02 MX MXPA02008698A patent/MXPA02008698A/en active IP Right Grant
- 2001-03-02 CN CNB018062350A patent/CN100372928C/en not_active Expired - Lifetime
- 2001-03-02 NZ NZ520701A patent/NZ520701A/en not_active IP Right Cessation
- 2001-03-02 JP JP2001565854A patent/JP5717311B2/en not_active Expired - Lifetime
- 2001-03-02 KR KR1020027011681A patent/KR100795760B1/en active IP Right Grant
- 2001-03-02 AU AU2001241973A patent/AU2001241973B2/en not_active Expired
- 2001-03-02 WO PCT/US2001/006912 patent/WO2001066697A2/en active IP Right Grant
- 2001-03-02 EP EP01913296.8A patent/EP1261691B1/en not_active Expired - Lifetime
- 2001-03-02 IL IL15127001A patent/IL151270A0/en unknown
- 2001-03-02 AU AU4197301A patent/AU4197301A/en active Pending
- 2001-03-02 CA CA2402299A patent/CA2402299C/en not_active Expired - Lifetime
- 2001-03-02 BR BR0108507-7A patent/BR0108507A/en not_active Application Discontinuation
-
2002
- 2002-08-14 IL IL151270A patent/IL151270A/en unknown
- 2002-08-20 IS IS6515A patent/IS6515A/en unknown
- 2002-09-03 NO NO20024200A patent/NO335780B1/en not_active IP Right Cessation
-
2003
- 2003-05-06 US US10/430,497 patent/US7217569B2/en not_active Expired - Lifetime
- 2003-08-22 HK HK03106031A patent/HK1053616A1/en unknown
-
2004
- 2004-09-28 US US10/952,096 patent/US20050148070A1/en not_active Abandoned
-
2005
- 2005-10-25 US US11/257,704 patent/US20060040384A1/en not_active Abandoned
-
2011
- 2011-07-27 JP JP2011164743A patent/JP2011234735A/en active Pending
- 2011-07-27 JP JP2011164419A patent/JP5839666B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5690296A (en) * | 1992-07-21 | 1997-11-25 | Fabio Perini, S.P.A. | Machine and method for the formation of coreless logs of web material |
US5453357A (en) * | 1992-10-08 | 1995-09-26 | Vanderbilt University | Pluripotential embryonic stem cells and methods of making same |
US5670372A (en) * | 1992-10-08 | 1997-09-23 | Vanderbilt University | Pluripotential embryonic stem cells and methods of making same |
US5405772A (en) * | 1993-06-18 | 1995-04-11 | Amgen Inc. | Medium for long-term proliferation and development of cells |
US5843780A (en) * | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
US20040235159A1 (en) * | 2000-01-11 | 2004-11-25 | Ramkumar Mandalam | Medium for growing human embryonic stem cells |
US20030017589A1 (en) * | 2001-01-10 | 2003-01-23 | Ramkumar Mandalam | Culture system for rapid expansion of human embryonic stem cells |
Cited By (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7413904B2 (en) | 1998-10-23 | 2008-08-19 | Geron Corporation | Human embryonic stem cells having genetic modifications |
US20100203633A1 (en) * | 1998-10-23 | 2010-08-12 | Ramkumar Mandalam | Culture System for Rapid Expansion of Human Embryonic Stem Cells |
US20050164385A1 (en) * | 1998-10-23 | 2005-07-28 | Gold Joseph D. | Embryonic stem cells having genetic modifications |
US20100317101A1 (en) * | 1998-10-23 | 2010-12-16 | Geron Corporation | Culture System for Rapid Expansion of Human Embryonic Stem Cells |
US8951800B2 (en) | 1998-10-23 | 2015-02-10 | Asterias Biotherapeutics, Inc. | Primate pluripotent stem cell expansion without feeder cells and in the presence of FGF and matrigel or Engelbreth-Holm-Swarm tumor cell preparation |
US20080299582A1 (en) * | 1998-10-23 | 2008-12-04 | Geron Corporation | Culture System for Rapid Expansion of Human Embryonic Stem Cells |
US8637311B2 (en) | 1998-10-23 | 2014-01-28 | Asterias Biotherapeutics, Inc. | Human embryonic stem cells genetically modified to contain a nucleic acid and cultured with fibroblast growth factor |
US8097458B2 (en) | 1998-10-23 | 2012-01-17 | Geron Corporation | Micro-carrier culture system for rapid expansion of human embryonic stem cells |
US10059939B2 (en) | 1998-10-23 | 2018-08-28 | Asterias Biotherapeutics, Inc. | Screening methods for human embryonic stem cells |
US20040235159A1 (en) * | 2000-01-11 | 2004-11-25 | Ramkumar Mandalam | Medium for growing human embryonic stem cells |
US20050037492A1 (en) * | 2000-01-11 | 2005-02-17 | Chunhui Xu | Medium for growing human embryonic stem cells |
US7455983B2 (en) | 2000-01-11 | 2008-11-25 | Geron Corporation | Medium for growing human embryonic stem cells |
US7297539B2 (en) * | 2000-01-11 | 2007-11-20 | Geron Corporation | Medium for growing human embryonic stem cells |
US20080020458A9 (en) * | 2001-01-10 | 2008-01-24 | Ramkumar Mandalam | Culture system for rapid expansion of human embryonic stem cells |
US7410798B2 (en) * | 2001-01-10 | 2008-08-12 | Geron Corporation | Culture system for rapid expansion of human embryonic stem cells |
US20030017589A1 (en) * | 2001-01-10 | 2003-01-23 | Ramkumar Mandalam | Culture system for rapid expansion of human embryonic stem cells |
US20050015824A1 (en) * | 2001-11-09 | 2005-01-20 | Scholer Hans R. | Compositions for the derivation of germ cells from stem cells and methods of use thereof |
US7704736B2 (en) | 2001-11-09 | 2010-04-27 | Trustees Of The University Of Pennsylvania | Compositions for the derivation of germ cells from stem cells and methods of use thereof |
US8778673B2 (en) | 2004-12-17 | 2014-07-15 | Lifescan, Inc. | Seeding cells on porous supports |
US20060275899A1 (en) * | 2004-12-30 | 2006-12-07 | Stemlifeline, Inc. | Methods and compositions relating to embryonic stem cell lines |
US20060263879A1 (en) * | 2004-12-30 | 2006-11-23 | Stemlifeline, Inc. | Methods and systems relating to embryonic stem cell lines |
US20070122903A1 (en) * | 2005-05-27 | 2007-05-31 | Alireza Rezania | Amniotic fluid derived cells |
US20060280729A1 (en) * | 2005-06-08 | 2006-12-14 | Sanjay Mistry | Cellular therapy for ocular degeneration |
US9074189B2 (en) | 2005-06-08 | 2015-07-07 | Janssen Biotech, Inc. | Cellular therapy for ocular degeneration |
US7413900B2 (en) | 2005-10-31 | 2008-08-19 | President And Fellows Of Harvard College | Immortalized fibroblasts |
US20070098696A1 (en) * | 2005-10-31 | 2007-05-03 | President And Fellows Of Harvard College | Immortalized fibroblasts |
EP3527658A1 (en) | 2006-04-28 | 2019-08-21 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
EP4438720A2 (en) | 2006-04-28 | 2024-10-02 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9725699B2 (en) | 2006-04-28 | 2017-08-08 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US20070254359A1 (en) * | 2006-04-28 | 2007-11-01 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US8741643B2 (en) | 2006-04-28 | 2014-06-03 | Lifescan, Inc. | Differentiation of pluripotent stem cells to definitive endoderm lineage |
WO2008018684A1 (en) * | 2006-08-11 | 2008-02-14 | Modern Cell & Tissue Technologies Inc. | Culture medium for co-culturing of human stem cells and their feeder cells |
US9175260B2 (en) | 2007-01-30 | 2015-11-03 | TheUniversity of Georgia Research Foundation, Inc. | Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells (MMC) |
US20100166713A1 (en) * | 2007-01-30 | 2010-07-01 | Stephen Dalton | Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells (mmc) |
EP2559756A1 (en) | 2007-07-01 | 2013-02-20 | Lifescan, Inc. | Single pluripotent stem cell culture |
US20090325294A1 (en) * | 2007-07-01 | 2009-12-31 | Shelley Nelson | Single pluripotent stem cell culture |
US9080145B2 (en) | 2007-07-01 | 2015-07-14 | Lifescan Corporation | Single pluripotent stem cell culture |
EP3192865A1 (en) | 2007-07-01 | 2017-07-19 | Lifescan, Inc. | Single pluripotent stem cell culture |
US10316293B2 (en) | 2007-07-01 | 2019-06-11 | Janssen Biotech, Inc. | Methods for producing single pluripotent stem cells and differentiation thereof |
EP3957716A1 (en) | 2007-07-18 | 2022-02-23 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
EP2562248A1 (en) | 2007-07-18 | 2013-02-27 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US9744195B2 (en) | 2007-07-31 | 2017-08-29 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US10456424B2 (en) | 2007-07-31 | 2019-10-29 | Janssen Biotech, Inc. | Pancreatic endocrine cells and methods thereof |
US20100015100A1 (en) * | 2007-07-31 | 2010-01-21 | Jean Xu | Differentiation of human embryonic stem cells |
US9096832B2 (en) | 2007-07-31 | 2015-08-04 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
EP2610336A1 (en) | 2007-07-31 | 2013-07-03 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
EP2584034A1 (en) | 2007-07-31 | 2013-04-24 | Lifescan, Inc. | Pluripotent stem cell differentiation by using human feeder cells |
US9062290B2 (en) | 2007-11-27 | 2015-06-23 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US20090170198A1 (en) * | 2007-11-27 | 2009-07-02 | Alireza Rezania | Differentiation of human embryonic stem cells |
US9969982B2 (en) | 2007-11-27 | 2018-05-15 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US11001802B2 (en) | 2008-02-21 | 2021-05-11 | Nunc A/S | Surface of a vessel with polystyrene, nitrogen, oxygen and a static sessile contact angle for attachment and cultivation of cells |
US20100087002A1 (en) * | 2008-02-21 | 2010-04-08 | Benjamin Fryer | Methods, Surface Modified Plates and Compositions for Cell Attachment, Cultivation and Detachment |
US20090215177A1 (en) * | 2008-02-21 | 2009-08-27 | Benjamin Fryer | Methods, surface modified plates and compositions for cell attachment, cultivation and detachment |
US10066203B2 (en) | 2008-02-21 | 2018-09-04 | Janssen Biotech Inc. | Methods, surface modified plates and compositions for cell attachment, cultivation and detachment |
EP2669366A2 (en) | 2008-04-24 | 2013-12-04 | Janssen Biotech, Inc. | Pluripotent cells |
EP3327114A1 (en) | 2008-04-24 | 2018-05-30 | Janssen Biotech, Inc. | Pluripotent cells |
US7939322B2 (en) | 2008-04-24 | 2011-05-10 | Centocor Ortho Biotech Inc. | Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm |
US8623648B2 (en) | 2008-04-24 | 2014-01-07 | Janssen Biotech, Inc. | Treatment of pluripotent cells |
US9845460B2 (en) | 2008-04-24 | 2017-12-19 | Janssen Biotech, Inc. | Treatment of pluripotent cells |
US20090325293A1 (en) * | 2008-04-24 | 2009-12-31 | Janet Davis | Treatment of pluripotent cells |
USRE43876E1 (en) | 2008-04-24 | 2012-12-25 | Centocor Ortho Biotech Inc. | Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm |
US20090269845A1 (en) * | 2008-04-24 | 2009-10-29 | Alireza Rezania | Pluripotent cells |
US9593306B2 (en) | 2008-06-30 | 2017-03-14 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US9593305B2 (en) | 2008-06-30 | 2017-03-14 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US10233421B2 (en) | 2008-06-30 | 2019-03-19 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US20100015711A1 (en) * | 2008-06-30 | 2010-01-21 | Janet Davis | Differentiation of Pluripotent Stem Cells |
US10351820B2 (en) | 2008-06-30 | 2019-07-16 | Janssen Biotech, Inc. | Methods for making definitive endoderm using at least GDF-8 |
WO2010011352A2 (en) | 2008-07-25 | 2010-01-28 | The University Of Georgia Research Foundation, Inc. | Compositions for mesoderm derived isl1+ multipotent cells (imps), epicardial progenitor cells (epcs) and multipotent cxcr4+cd56+ cells (c56cs) and methods of use |
US9732322B2 (en) | 2008-07-25 | 2017-08-15 | University Of Georgia Research Foundation, Inc. | Compositions for mesoderm derived ISL1+ multipotent cells (IMPs), epicardial progenitor cells (EPCs) and multipotent C56C cells (C56Cs) and methods of producing and using same |
US20100028307A1 (en) * | 2008-07-31 | 2010-02-04 | O'neil John J | Pluripotent stem cell differentiation |
US20100112692A1 (en) * | 2008-10-31 | 2010-05-06 | Alireza Rezania | Differentiation of Human Embryonic Stem Cells |
US9012218B2 (en) | 2008-10-31 | 2015-04-21 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
EP3517605A1 (en) | 2008-10-31 | 2019-07-31 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9234178B2 (en) | 2008-10-31 | 2016-01-12 | Janssen Biotech, Inc. | Differentiation of human pluripotent stem cells |
US9388387B2 (en) | 2008-10-31 | 2016-07-12 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9752126B2 (en) | 2008-10-31 | 2017-09-05 | Janssen Biotech, Inc. | Differentiation of human pluripotent stem cells |
US20100112693A1 (en) * | 2008-10-31 | 2010-05-06 | Alireza Rezania | Differentiation of Human Embryonic Stem Cells |
US9969972B2 (en) | 2008-11-20 | 2018-05-15 | Janssen Biotech, Inc. | Pluripotent stem cell culture on micro-carriers |
US20100124783A1 (en) * | 2008-11-20 | 2010-05-20 | Ya Xiong Chen | Methods and Compositions for Cell Attachment and Cultivation on Planar Substrates |
US9969973B2 (en) | 2008-11-20 | 2018-05-15 | Janssen Biotech, Inc. | Methods and compositions for cell attachment and cultivation on planar substrates |
US10076544B2 (en) | 2009-07-20 | 2018-09-18 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US8785184B2 (en) | 2009-07-20 | 2014-07-22 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US20110014703A1 (en) * | 2009-07-20 | 2011-01-20 | Jean Xu | Differentiation of Human Embryonic Stem Cells |
US20110014702A1 (en) * | 2009-07-20 | 2011-01-20 | Jean Xu | Differentiation of Human Embryonic Stem Cells |
WO2011011349A2 (en) | 2009-07-20 | 2011-01-27 | Centocor Ortho Biotech Inc. | Differentiation of human embryonic stem cells |
WO2011011302A2 (en) | 2009-07-20 | 2011-01-27 | Centocor Ortho Biotech Inc. | Differentiation of human embryonic stem cells |
US8785185B2 (en) | 2009-07-20 | 2014-07-22 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US10471104B2 (en) | 2009-07-20 | 2019-11-12 | Janssen Biotech, Inc. | Lowering blood glucose |
WO2011011300A2 (en) | 2009-07-20 | 2011-01-27 | Centocor Ortho Biotech Inc. | Differentiation of human embryonic stem cells |
US10704025B2 (en) | 2009-12-23 | 2020-07-07 | Janssen Biotech, Inc. | Use of noggin, an ALK5 inhibitor and a protein kinase c activator to produce endocrine cells |
US20110151561A1 (en) * | 2009-12-23 | 2011-06-23 | Janet Davis | Differentiation of human embryonic stem cells |
US9150833B2 (en) | 2009-12-23 | 2015-10-06 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US20110151560A1 (en) * | 2009-12-23 | 2011-06-23 | Jean Xu | Differentiation of human embryonic stem cells |
EP4410991A2 (en) | 2009-12-23 | 2024-08-07 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9593310B2 (en) | 2009-12-23 | 2017-03-14 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9133439B2 (en) | 2009-12-23 | 2015-09-15 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US10329534B2 (en) | 2010-03-01 | 2019-06-25 | Janssen Biotech, Inc. | Methods for purifying cells derived from pluripotent stem cells |
US20110212067A1 (en) * | 2010-03-01 | 2011-09-01 | Centocor Ortho Biotech Inc. | Methods for Purifying Cells Derived from Pluripotent Stem Cells |
US9969981B2 (en) | 2010-03-01 | 2018-05-15 | Janssen Biotech, Inc. | Methods for purifying cells derived from pluripotent stem cells |
EP3498825A1 (en) | 2010-05-12 | 2019-06-19 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9752125B2 (en) | 2010-05-12 | 2017-09-05 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
WO2012021698A2 (en) | 2010-08-12 | 2012-02-16 | Janssen Biotech, Inc. | Treatment of diabetes with pancreatic endocrine precursor cells |
EP3981415A1 (en) | 2010-08-12 | 2022-04-13 | Janssen Biotech, Inc. | Treatment of diabetes with pancreatic endocrine precursor cells |
EP3372672A1 (en) | 2010-08-31 | 2018-09-12 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
WO2012030540A2 (en) | 2010-08-31 | 2012-03-08 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US9951314B2 (en) | 2010-08-31 | 2018-04-24 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9181528B2 (en) | 2010-08-31 | 2015-11-10 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US9528090B2 (en) | 2010-08-31 | 2016-12-27 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9506036B2 (en) | 2010-08-31 | 2016-11-29 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9458430B2 (en) | 2010-08-31 | 2016-10-04 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
EP3211070A1 (en) | 2010-08-31 | 2017-08-30 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
EP2853589A1 (en) | 2010-08-31 | 2015-04-01 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US11377640B2 (en) | 2011-12-22 | 2022-07-05 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into single hormonal insulin positive cells |
US10358628B2 (en) | 2011-12-22 | 2019-07-23 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into single hormonal insulin positive cells |
US9434920B2 (en) | 2012-03-07 | 2016-09-06 | Janssen Biotech, Inc. | Defined media for expansion and maintenance of pluripotent stem cells |
US9593307B2 (en) | 2012-03-07 | 2017-03-14 | Janssen Biotech, Inc. | Defined media for expansion and maintenance of pluripotent stem cells |
US10208288B2 (en) | 2012-06-08 | 2019-02-19 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells |
US10066210B2 (en) | 2012-06-08 | 2018-09-04 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells |
US10138465B2 (en) | 2012-12-31 | 2018-11-27 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using HB9 regulators |
US10377989B2 (en) | 2012-12-31 | 2019-08-13 | Janssen Biotech, Inc. | Methods for suspension cultures of human pluripotent stem cells |
US10344264B2 (en) | 2012-12-31 | 2019-07-09 | Janssen Biotech, Inc. | Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells |
WO2014105543A1 (en) | 2012-12-31 | 2014-07-03 | Janssen Biotech, Inc. | Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells |
EP4219683A1 (en) | 2012-12-31 | 2023-08-02 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators |
US10947511B2 (en) | 2012-12-31 | 2021-03-16 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using thyroid hormone and/or alk5, an inhibitor of tgf-beta type 1 receptor |
WO2014105546A1 (en) | 2012-12-31 | 2014-07-03 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators |
US10370644B2 (en) | 2012-12-31 | 2019-08-06 | Janssen Biotech, Inc. | Method for making human pluripotent suspension cultures and cells derived therefrom |
EP3954759A1 (en) | 2014-05-16 | 2022-02-16 | Janssen Biotech, Inc. | Use of small molecules to enhance mafa expression in pancreatic endocrine cells |
WO2015175307A1 (en) | 2014-05-16 | 2015-11-19 | Janssen Biotech, Inc. | Use of small molecules to enhance mafa expression in pancreatic endocrine cells |
US10870832B2 (en) | 2014-05-16 | 2020-12-22 | Janssen Biotech, Inc. | Use of small molecules to enhance MAFA expression in pancreatic endocrine cells |
US10006006B2 (en) | 2014-05-16 | 2018-06-26 | Janssen Biotech, Inc. | Use of small molecules to enhance MAFA expression in pancreatic endocrine cells |
CN104357379A (en) * | 2014-09-30 | 2015-02-18 | 刘兴宇 | Stem cell culture medium |
US10420803B2 (en) | 2016-04-14 | 2019-09-24 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells to intestinal midgut endoderm cells |
Also Published As
Publication number | Publication date |
---|---|
IL151270A0 (en) | 2003-04-10 |
IS6515A (en) | 2002-08-20 |
KR20030032926A (en) | 2003-04-26 |
US7005252B1 (en) | 2006-02-28 |
CN1416345A (en) | 2003-05-07 |
HK1053616A1 (en) | 2003-10-31 |
JP5839666B2 (en) | 2016-01-06 |
JP2012005489A (en) | 2012-01-12 |
JP5717311B2 (en) | 2015-05-13 |
EP1261691A2 (en) | 2002-12-04 |
CA2402299A1 (en) | 2001-09-13 |
AU4197301A (en) | 2001-09-17 |
CN100372928C (en) | 2008-03-05 |
US20030190748A1 (en) | 2003-10-09 |
WO2001066697A2 (en) | 2001-09-13 |
US7217569B2 (en) | 2007-05-15 |
AU2001241973B2 (en) | 2006-11-09 |
US20060040384A1 (en) | 2006-02-23 |
EP1261691B1 (en) | 2013-07-31 |
CA2402299C (en) | 2012-12-18 |
WO2001066697A3 (en) | 2002-03-07 |
JP2003525625A (en) | 2003-09-02 |
NO20024200D0 (en) | 2002-09-03 |
NO335780B1 (en) | 2015-02-16 |
KR100795760B1 (en) | 2008-01-21 |
IL151270A (en) | 2008-07-08 |
JP2011234735A (en) | 2011-11-24 |
MXPA02008698A (en) | 2003-04-14 |
NZ520701A (en) | 2004-03-26 |
NO20024200L (en) | 2002-09-03 |
BR0108507A (en) | 2002-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7439064B2 (en) | Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium | |
US20050148070A1 (en) | Cultivation of primate embryonic stem cells | |
AU2001241973A1 (en) | Serum free cultivation of primate embryonic stem cells | |
JP5227318B2 (en) | Cell growth medium | |
US20120178160A1 (en) | Cultivation Of Primate Embryonic Stem Cells | |
JP6446496B2 (en) | Culture of primate embryonic stem cells | |
AU2007200575B2 (en) | Serum free cultivation of primate embryonic stem cells | |
CN113388574A (en) | Serum-free and feed layer-free culture medium and culture method for effectively inhibiting stem cell differentiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WISCONSIN ALUMNI RESEARCH FOUNDATION, WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEVENSTEIN, MARK E.;THOMSON, JAMES A.;REEL/FRAME:015833/0674;SIGNING DATES FROM 20050302 TO 20050314 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |