US20050082946A1 - Actuator Device - Google Patents
Actuator Device Download PDFInfo
- Publication number
- US20050082946A1 US20050082946A1 US10/896,769 US89676904A US2005082946A1 US 20050082946 A1 US20050082946 A1 US 20050082946A1 US 89676904 A US89676904 A US 89676904A US 2005082946 A1 US2005082946 A1 US 2005082946A1
- Authority
- US
- United States
- Prior art keywords
- piezoelectric
- plate member
- electrostrictive
- electrostrictive body
- actuator element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005684 electric field Effects 0.000 claims abstract description 12
- 238000006073 displacement reaction Methods 0.000 claims description 100
- 125000006850 spacer group Chemical group 0.000 claims description 59
- 238000000149 argon plasma sintering Methods 0.000 claims description 19
- 239000010410 layer Substances 0.000 description 105
- 238000000034 method Methods 0.000 description 32
- 230000008569 process Effects 0.000 description 32
- 239000000463 material Substances 0.000 description 25
- 230000004048 modification Effects 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- 230000003287 optical effect Effects 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 10
- 239000002131 composite material Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000000945 filler Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- CBECDWUDYQOTSW-UHFFFAOYSA-N 2-ethylbut-3-enal Chemical compound CCC(C=C)C=O CBECDWUDYQOTSW-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- XKENYNILAAWPFQ-UHFFFAOYSA-N dioxido(oxo)germane;lead(2+) Chemical compound [Pb+2].[O-][Ge]([O-])=O XKENYNILAAWPFQ-UHFFFAOYSA-N 0.000 description 2
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 2
- MLOKPANHZRKTMG-UHFFFAOYSA-N lead(2+);oxygen(2-);tin(4+) Chemical compound [O-2].[O-2].[O-2].[Sn+4].[Pb+2] MLOKPANHZRKTMG-UHFFFAOYSA-N 0.000 description 2
- 239000000113 methacrylic resin Substances 0.000 description 2
- 238000013008 moisture curing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- JTHNLKXLWOXOQK-UHFFFAOYSA-N n-propyl vinyl ketone Natural products CCCC(=O)C=C JTHNLKXLWOXOQK-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- ZBSCCQXBYNSKPV-UHFFFAOYSA-N oxolead;oxomagnesium;2,4,5-trioxa-1$l^{5},3$l^{5}-diniobabicyclo[1.1.1]pentane 1,3-dioxide Chemical compound [Mg]=O.[Pb]=O.[Pb]=O.[Pb]=O.O1[Nb]2(=O)O[Nb]1(=O)O2 ZBSCCQXBYNSKPV-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000001846 repelling effect Effects 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229910003334 KNbO3 Inorganic materials 0.000 description 1
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 229910012463 LiTaO3 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 229920001166 Poly(vinylidene fluoride-co-trifluoroethylene) Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- IGDGIZKERQBUNG-UHFFFAOYSA-N [Cu].[Ba] Chemical compound [Cu].[Ba] IGDGIZKERQBUNG-UHFFFAOYSA-N 0.000 description 1
- VNSWULZVUKFJHK-UHFFFAOYSA-N [Sr].[Bi] Chemical compound [Sr].[Bi] VNSWULZVUKFJHK-UHFFFAOYSA-N 0.000 description 1
- 229910002064 alloy oxide Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- FSAJRXGMUISOIW-UHFFFAOYSA-N bismuth sodium Chemical compound [Na].[Bi] FSAJRXGMUISOIW-UHFFFAOYSA-N 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- CJXLIMFTIKVMQN-UHFFFAOYSA-N dimagnesium;oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mg+2].[Mg+2].[Ta+5].[Ta+5] CJXLIMFTIKVMQN-UHFFFAOYSA-N 0.000 description 1
- CRLHSBRULQUYOK-UHFFFAOYSA-N dioxido(dioxo)tungsten;manganese(2+) Chemical compound [Mn+2].[O-][W]([O-])(=O)=O CRLHSBRULQUYOK-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- JQJCSZOEVBFDKO-UHFFFAOYSA-N lead zinc Chemical compound [Zn].[Pb] JQJCSZOEVBFDKO-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- DJZHPOJZOWHJPP-UHFFFAOYSA-N magnesium;dioxido(dioxo)tungsten Chemical compound [Mg+2].[O-][W]([O-])(=O)=O DJZHPOJZOWHJPP-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- -1 or the like Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0018—Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/0841—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/0858—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
- H04R17/005—Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/204—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
- H10N30/2047—Membrane type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/872—Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
- H10N30/874—Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices embedded within piezoelectric or electrostrictive material, e.g. via connections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/03—Microengines and actuators
- B81B2201/032—Bimorph and unimorph actuators, e.g. piezo and thermo
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/003—Mems transducers or their use
Definitions
- the present invention relates to an actuator element for converting electric energy into mechanical energy (mechanical displacement, stress, vibration, or the like), such as a display, a relay, an actuator (an actuator of the type for generating flexural displacement, for use in a servo displacement device or the like), or the like, and for converting mechanical energy into electric energy, such as a sensor (a filter, an acceleration sensor, a shock sensor, or the like), a transformer, a microphone, a sound producing member (a speaker or the like), a vibrator, or an oscillator (for power or communication use), and a device incorporating such an actuator element.
- an actuator element for converting electric energy into mechanical energy such as a display, a relay, an actuator (an actuator of the type for generating flexural displacement, for use in a servo displacement device or the like), or the like
- mechanical energy into electric energy such as a sensor (a filter, an acceleration sensor, a shock sensor, or the like), a transformer, a microphone, a sound producing member (a speaker
- actuator elements which utilize a displacement based on an inverse piezoelectric effect or an electrostrictive effect that occurs when an electric field is applied to a piezoelectric/electrostrictive material such as a ferroelectric material or the like, or a reverse phenomenon.
- a conventional actuator element 200 has a ceramic substrate 202 and piezoelectric/electrostrictive operation units 204 formed on the ceramic substrate 202 .
- the ceramic substrate 202 has cavities 206 providing thin-plate portions functioning as vibration plates 208 .
- the piezoelectric/electrostrictive operation units 204 are formed on the vibration plates 208 .
- Each of the piezoelectric/electrostrictive operation units 204 has a lower electrode 210 directly formed on the vibration plate 208 , a piezoelectric/electrostrictive layer 212 formed on the lower electrode 210 , and an upper electrode 214 formed on the piezoelectric/electrostrictive layer 212 .
- the piezoelectric/electrostrictive layer 212 is made of a piezoelectric material, then when a voltage is applied between the upper electrode 214 and the lower electrode 210 such that the voltage has the same positive and negative values as a voltage applied to polarize the piezoelectric/electrostrictive layer 212 , the piezoelectric/electrostrictive layer 212 is flexurally displaced toward the cavity 206 due to the lateral effect of an electric field induced strain (see, for example, Japanese laid-open patent publication No. 7-202284).
- the above actuator element 200 employs the vibration plates 208 .
- the vibration plates 208 are advantageous in that they can amplify the displacement of the piezoelectric/electrostrictive layer 212 , since the cavities 206 need to be formed in the ceramic substrate 202 , there are limitations on efforts to make the actuator element 200 lower in profile, lighter in weight, and lower in cost.
- the present invention has been made in view of the above problems. It is an object of the present invention to provide an actuator element which is capable of producing a desired displacement without the need for a vibration plate, or increasing the dynamic range of a displacement that can be converted into an electric signal without the need for a vibration plate, and which can be lower in profile, lighter in weight, and lower in cost, and a device incorporating such an actuator element.
- An actuator element has a plate member, a piezoelectric/electrostrictive body disposed in facing relation to the plate member, and a beam disposed between the plate member and the piezoelectric/electrostrictive body and fixing the piezoelectric/electrostrictive body to the plate member, the piezoelectric/electrostrictive body having a piezoelectric/electrostrictive layer, an upper electrode formed on a surface of the piezoelectric/electrostrictive layer which faces the plate member, and a lower electrode formed on a surface of the piezoelectric/electrostrictive layer which is opposite to the surface thereof facing the plate member, whereby when an electric field is applied to the upper electrode and the lower electrode, a portion of the piezoelectric/electrostrictive body is displaced toward or away from the plate member.
- the actuator element does not use vibration plates, it does not need to have a ceramic substrate or the like, making itself lower in profile, lighter in weight, and lower in cost.
- the actuator element may alternatively be used as a sensor for producing an electric signal from the upper electrode and the lower electrode by displacing a portion of the piezoelectric/electrostrictive body toward and away from the plate member.
- the upper electrode and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the beam.
- an electric field is applied to the upper electrode and the lower electrode, a portion of the piezoelectric/electrostrictive body which corresponds to the drive region is displaced away from the plate member, for example.
- the upper electrode and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the drive region.
- the portion of the piezoelectric/electrostrictive body which corresponds to the drive region is displaced toward the plate member, for example.
- the upper electrode and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the beam and a portion of the piezoelectric/electrostrictive body which corresponds to the drive region.
- the portion of the piezoelectric/electrostrictive body which corresponds to the drive region is displaced away from the plate member, for example.
- the portion of the piezoelectric/electrostrictive body which corresponds to the drive region is displaced toward the plate member, for example.
- the upper electrode may be connected to the surface of the piezoelectric/electrostrictive layer on which the lower electrode is formed, through a through hole formed in the piezoelectric/electrostrictive layer.
- the actuator element can easily be wired to a drive circuit.
- the piezoelectric/electrostrictive body may comprise a laminated assembly of piezoelectric/electrostrictive layers, an upper electrode formed on a surface of the laminated assembly which faces the plate member, a lower electrode formed on a surface of the laminated assembly which is opposite to the surface thereof facing the plate member, and an intermediate electrode formed in the laminated assembly between the piezoelectric/electrostrictive layers.
- the actuator element is capable of achieving a parallel-type drive mode to obtain a desired displacement without using vibration plates, or of increasing the dynamic range of a displacement that can be converted into an electric signal without the need for a vibration plate.
- the actuator element can be lower in profile, lighter in weight, and lower in cost.
- the upper electrode, the intermediate electrode, and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the beam or a portion of the piezoelectric/electrostrictive body which corresponds to the drive region.
- the upper electrode, the intermediate electrode, and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the beam and a portion of the piezoelectric/electrostrictive body which corresponds to the drive region.
- the upper electrode and the intermediate electrode may be connected to the surface of the laminated assembly on which the lower electrode is formed, via through holes formed in the laminated assembly.
- the upper electrode and the intermediate electrode formed on the laminated assembly can easily be connected (signals can easily be supplied), and can easily be wired to a drive circuit.
- the actuator element may further include a displacement transmitter for transmitting displacement of the piezoelectric/electrostrictive body to the plate member in a drive region disposed between the plate member and the piezoelectric/electrostrictive body and divided by the beam.
- a displacement transmitter for transmitting displacement of the piezoelectric/electrostrictive body to the plate member in a drive region disposed between the plate member and the piezoelectric/electrostrictive body and divided by the beam.
- the plate member comprises a transparent plate into which light is introduced
- at least a light scattering layer may be disposed on the displacement transmitter.
- displacement of the piezoelectric/electrostrictive body is transmitted to the transparent plate by the displacement transmitter.
- the light scattering layer is brought into contact with the transparent plate, for example, light is emitted from the drive region.
- one drive region is constructed as one pixel or a plurality of drive regions are constructed as one pixel, then the actuator element can easily be applied to a display device.
- a spacer may be disposed between the plate member and the piezoelectric/electrostrictive body, and in the case where the plate member is held in contact with an upper surface of the spacer and the piezoelectric/electrostrictive body is held in contact with a lower surface of the spacer, the beam may include the spacer.
- the spacer itself functions as the beam.
- a spacer may be disposed between the plate member and the piezoelectric/electrostrictive body, and in the case where at least one-layer film is formed between a lower surface of the spacer and the piezoelectric/electrostrictive body, the beam may include the spacer and a portion of the film directly beneath the spacer.
- the displacement transmitter is formed on the piezoelectric/electrostrictive body with the upper electrode formed thereon, at least one film (e.g., the light scattering layer) is formed on the entire surface including the displacement transmitter, the spacer is formed in a given location on the film, and the plate member is disposed on the spacer, then the spacer and a portion directly beneath the spacer often tend to be hard under pressing forces. Therefore, the portion of the film directly beneath the spacer functions as the beam in coaction with the spacer.
- the film e.g., the light scattering layer
- the beam may include a buffer layer. If the spacer is made of a hard material, and the above film is formed on the lower surface of the spacer, stresses tend to concentrate on a portion of the film (a boundary between itself and the spacer), causing the film to be broken due to repeated displacement of the piezoelectric/electrostrictive body. This drawback can be avoided by including a buffer layer in the beam.
- a device using the actuator element according to the present invention as described above may be a device for converting electric energy into mechanical energy (mechanical displacement, stress, vibration, or the like), such as a display, a relay, an actuator (an actuator of the type for generating flexural displacement, for use in a servo displacement device or the like), or the like, or a device for converting mechanical energy into electric energy, such as a sensor (a filter, an acceleration sensor, a shock sensor, or the like), a transformer, a microphone, a sound producing member (a speaker or the like), a vibrator, or an oscillator (for power or communication use).
- a sensor a filter, an acceleration sensor, a shock sensor, or the like
- a transformer a transformer
- microphone a microphone
- a sound producing member a speaker or the like
- vibrator for power or communication use
- the actuator element and the device employing the actuator element according to the present invention are capable of obtaining a desired displacement without using vibration plates, or of increasing the dynamic range of a displacement that can be converted into an electric signal without the need-for a vibration plate.
- the actuator element and the device employing the actuator element can be lower in profile, lighter in weight, and lower in cost.
- FIG. 1 is a cross-sectional view, partly omitted from illustration, of an actuator element according to a first embodiment
- FIG. 2 is a cross-sectional view, partly omitted from illustration, showing another example of displacement transmitters
- FIG. 3 is a view showing an example of the layout of spacers constituting beams, as viewed from the back of a plate member;
- FIG. 4 is a view showing another example of the layout of spacers constituting beams, as viewed from the back of a plate member;
- FIG. 5 is a cross-sectional view of an example of an interconnected pattern of an upper electrode and a lower electrode
- FIG. 6 is a cross-sectional view, partly omitted from illustration, showing an example in which a plurality of actuator units are provided in association with one beam, according to the first embodiment
- FIG. 7 is a cross-sectional view, partly omitted from illustration, showing a first modification of the actuator element according to the first embodiment
- FIG. 8 is a cross-sectional view, partly omitted from illustration, showing an example in which a plurality of actuator units are provided in association with one drive region, in the first modification according to the first embodiment;
- FIG. 9 is a cross-sectional view, partly omitted from illustration, showing a second modification of the actuator element according to the first embodiment
- FIG. 10 is a cross-sectional view, partly omitted from illustration, of an actuator element according to a second embodiment
- FIG. 11 is a cross-sectional view of an example of an interconnected pattern of an upper electrode, an intermediate electrode, and a lower electrode;
- FIG. 12 is a cross-sectional view, partly omitted from illustration, showing an example in which a plurality of actuator units are provided in association with one beam, according to the second embodiment;
- FIG. 13 is a cross-sectional view, partly omitted from illustration, showing a first modification of the actuator element according to the second embodiment
- FIG. 14 is a cross-sectional view, partly omitted from illustration, showing an example in which a plurality of actuator units are provided in association with one drive region, in the first modification according to the second embodiment;
- FIG. 15 is a cross-sectional view, partly omitted from illustration, showing a second modification of the actuator element according to the second embodiment
- FIG. 16 is a cross-sectional view, partly omitted from illustration, of a display apparatus according to an embodiment.
- FIG. 17 is a cross-sectional view, partly omitted from illustration, of a conventional actuator element.
- Embodiments of actuator elements and a device incorporating an actuator element according to the present invention will be described below with reference to FIGS. 1 through 16 .
- an actuator element 10 A has a plate member 12 , a piezoelectric/electrostrictive body 14 disposed in facing relation to the plate member 12 , and beams 16 disposed between the piezoelectric/electrostrictive body 14 and the plate member 12 and fixing the piezoelectric/electrostrictive body 14 to the plate member 12 .
- Each beam 16 includes a spacer 18 .
- the spacers 18 may be a plurality of spacers 18 a arranged in a grid pattern, as shown in FIG. 3 , or may be a unitary spacer 18 b shaped as a grid, as shown in FIG. 4 .
- the actuator element 10 A has displacement transmitters 24 formed on the upper surface of the piezoelectric/electrostrictive body 14 in association with the respective drive regions 20 , as shown in FIG. 1 .
- Each of the displacement transmitters 24 may have a peripheral portion slanted gradually (the displacement transmitter 24 has a trapezoidal cross section), as shown in FIG. 1 , or may have a peripheral portion slanted sharply (the displacement transmitter 24 has a rectangular cross section), as shown in FIG. 2 .
- a joining layer 22 may be formed on the entire upper surface of the piezoelectric/electrostrictive body 14 , and the displacement transmitters 24 may be formed on the upper surface of the joining layer 22 in association with the respective drive regions 20 .
- each spacer 18 has an upper surface held in contact with the plate member 12 and a lower surface held in contact with the joining layer 22 . Therefore, each beam 16 includes the spacer 18 disposed between the plate member 12 and the piezoelectric/electrostrictive body 14 , and a part of the joining layer 22 that is present directly beneath the spacer 18 .
- the piezoelectric/electrostrictive body 14 has a single piezoelectric/electrostrictive layer 26 , upper electrodes 28 formed on the upper surface (the surface facing the plate member 12 ) of the piezoelectric/electrostrictive layer 26 , and lower electrodes 30 formed on the lower surface (the surface opposite to the surface facing the plate member 12 ) of the piezoelectric/electrostrictive layer 26 .
- the upper electrodes 28 are formed in positions on the upper surface of the piezoelectric/electrostrictive layer 26 which correspond to the beams 16
- the lower electrodes 30 are formed in positions on the lower surface of the piezoelectric/electrostrictive layer 26 which correspond to the beams 16 .
- one upper electrode 28 , one lower electrode 30 , and a portion of the piezoelectric/electrostrictive layer 26 that is sandwiched between these upper and lower electrodes 28 , 30 function as one actuator unit 32 .
- a terminal 34 for the upper electrode 28 is formed on the lower surface of the piezoelectric/electrostrictive layer 26 separately from the lower electrode 30 , and the upper electrode 28 and the terminal 34 are electrically connected to each other through a through hole 36 that is formed in the piezoelectric/electrostrictive layer 26 .
- the lower electrode 30 doubles as a terminal.
- this terminal (the terminal for the lower electrode 30 ) may be formed on the same surface at a position separate from the lower electrode 30 .
- the piezoelectric/electrostrictive body 14 When the piezoelectric/electrostrictive body 14 is in a natural state, the upper end faces of the displacement transmitters 24 are held in contact with the lower surface of the plate member 12 .
- a drive voltage of positive polarity is applied between the upper electrodes 28 and the lower electrodes 30 that sandwich the piezoelectric/electrostrictive layer 26 to space the upper end face of the displacement transmitter 24 from the plate member 12 .
- a drive voltage of opposite polarity e.g., a voltage of ⁇ 25 V, for example, with respect to the lower electrodes 30
- a drive voltage of opposite polarity may be applied between the upper electrodes 28 and the lower electrodes 30 , or the direction of polarization of the piezoelectric/electrostrictive layer 26 or the voltage value may be varied.
- the portion of the piezoelectric/electrostrictive body 14 which corresponds to the drive region 20 is displaced so as to be convex toward the plate member 12 , causing the upper end face of the displacement transmitter 24 to strongly press the lower surface of the plate member 12 .
- the displacement transmitter 24 may be driven into and out of contact with the plate member 12 .
- the plate member 12 may be made of a metal, ceramics, glass, or an organic resin, but is not limited to any particular materials insofar as they are capable of the functions thereof as described above.
- SUS304 Young's modulus: 193 GPa, coefficient of linear expansion: 17.3 ⁇ 10 ⁇ 6 /° C.
- SUS403 Young's modulus: 200 GPa, coefficient of linear expansion: 10.4 ⁇ 10 ⁇ 6 /° C.
- zirconium oxide Young's modulus: 245.2 GPa, coefficient of linear expansion: 9.2 ⁇ 10 ⁇ 6 /° C.
- glass e.g., Corning 0211, Young's modulus: 74.4 GPa, coefficient of linear expansion: 7.38 ⁇ 10 ⁇ 6 /° C.
- acrylic sheet are preferably used.
- the spacers 18 should preferably be made of a material which is not deformable with heat and pressure, e.g., thermosetting rein such as epoxy resin or the like, light curing resin, moisture curing resin, cold-setting resin, or the like which is set.
- the spacers 18 may be made of metal, glass, or ceramic.
- a filler may be contained in the spacers 18 .
- Each spacer 18 with a filler contained therein has higher hardness and greater heat resistance, strength, and dimensional stability than a spacer with no filler contained therein. Stated otherwise, the hardness, heat resistance, and strength of the set resin can be increased and the amount by which it thermally expands and shrinks can be greatly reduced by including a filler in each spacer 18 .
- the upper electrodes 28 , the lower electrodes 30 , and the terminals 34 are made of a metal such as aluminum, titanium, chromium, iron, cobalt, nickel, copper, zinc, niobium, molybdenum, ruthenium, palladium, rhodium, silver, tin, tantalum, tungsten, iridium, platinum, gold, lead, or the like, or an alloy of at least two of these metals.
- a metal such as aluminum, titanium, chromium, iron, cobalt, nickel, copper, zinc, niobium, molybdenum, ruthenium, palladium, rhodium, silver, tin, tantalum, tungsten, iridium, platinum, gold, lead, or the like, or an alloy of at least two of these metals.
- the upper electrodes 28 , the lower electrodes 30 , and the terminals 34 may be made of a composite of the above metal or alloy and metal oxide such as aluminum oxide, titanium oxide, zirconium oxide, cerium oxide, copper oxide, or the like, or made of an electrically conductive material such as a cermet containing the metal or alloy in which the same material as the material of the piezoelectric/electrostrictive layer 26 to be described below is dispersed.
- the upper electrodes 28 , the lower electrodes 30 , and the terminals 34 may be formed on the piezoelectric/electrostrictive layer 26 by a film forming process such as photolithography, screen printing, dipping, coating, electrophoresis, ion beam process, sputtering, vacuum evaporation, ion plating, chemical vapor deposition (CVD), plating, etc.
- a film forming process such as photolithography, screen printing, dipping, coating, electrophoresis, ion beam process, sputtering, vacuum evaporation, ion plating, chemical vapor deposition (CVD), plating, etc.
- constituent materials of the piezoelectric/electrostrictive layer 26 include lead zirconate, lead manganese tungstate, bismuth sodium titanate, bismuth ferrate, sodium potassium niobate, bismuth strontium tantalate, lead magnesium niobate, lead nickel niobate, lead zinc niobate, lead manganese niobate, lead magnesium tantalate, lead nickel tantalate, lead antimony stannate, lead titanate, barium titanate, barium copper tungstate, lead magnesium tungstate, lead cobalt niobate, or a composite oxide comprising at least two of the above compounds.
- These piezoelectric/electrostrictive materials may contain a solid solution of an oxide of lanthanum, calcium, strontium, molybdenum, tungsten, barium, niobium, zinc, nickel, manganese, cerium, cadmium, chromium, cobalt, antimony, iron, yttrium, tantalum, lithium, bismuth, tin, copper, etc.
- the piezoelectric/electrostrictive layer 26 may be made of a composite piezoelectric material/composite material comprising a mixture of piezoelectric ceramic powder, piezoelectric ceramic fiber, and an organic material.
- the piezoelectric/electrostrictive layer 26 may be made of piezoelectric high polymer film (polyvinylidene fluoride (PVDF) or the like such as unoriented P (VDF-TrFE) copolymer film, uniaxially oriented P(VDF-TrFE) copolymer film, or the like).
- PVDF polyvinylidene fluoride
- the piezoelectric/electrostrictive layer 26 may be made of piezoelectric single crystal (e.g., quartz crystal, LiNbO 3 , LiTaO 3 , KNbO 3 , or the like), or piezoelectric thin film (e.g., ZnO, AlN, or the like).
- piezoelectric single crystal e.g., quartz crystal, LiNbO 3 , LiTaO 3 , KNbO 3 , or the like
- piezoelectric thin film e.g., ZnO, AlN, or the like
- An antiferroelectric layer may be used in place of the piezoelectric/electrostrictive layer 26 .
- lead zirconate, a composite oxide of lead zirconate and lead stannate, or a composite oxide of lead zirconate, lead stannate, and lead niobate may be used.
- These antiferroelectric materials may contain a solid solution of the above elements.
- a material produced by adding lithium bismuthate, lead germanate, or the like to the above material e.g., a material produced by adding lithium bismuthate or lead germanate to a composite oxide of lead zirconate, lead titanate, and lead magnesium niobate, is preferable because it allows the piezoelectric/electrostrictive layer 26 to be fired at a low temperature and achieve high material characteristics.
- the piezoelectric/electrostrictive layer 26 can also be fired at a low temperature by adding glass (e.g., silicate glass, borate glass, phosphate glass, germanate glass, or a mixture thereof). However, since excessively adding the glass would invite deterioration of material characteristics, it is desirable to determine an amount of glass to be added depending on the required characteristics.
- Each displacement transmitter 24 may comprise an adhesive which may be a filler-containing adhesive.
- Each displacement transmitter 24 is not limited to any material, but may preferably be made of thermoplastic resin, thermosetting rein, light curing resin, moisture curing resin, cold-setting resin, or the like.
- acrylic resin modified acrylic resin, epoxy resin, modified epoxy rein, silicone resin, modified silicone resin, vinyl acetate resin, ethylene-vinyl acetate copolymer resin, vinyl butyral resin, cyanoacrylate resin, urethane rein, polyimide resin, methacrylic resin, modified methacrylic resin, polyolefin resin, special silicone modified polymer, polycarbonate resin, natural rubber, synthetic rubber, etc. are given by way of example.
- vinyl butyral resin, acrylic resin, modified acrylic resin, epoxy resin, modified epoxy resin, or a mixture of two or more of these resins is preferable for their excellent bonding strength.
- epoxy resin, modified epoxy resin, or a mixture thereof is preferable.
- the displacement transmitters 24 and the light scattering layer 108 are as follows: For keeping constant a natural state (a position when not driven) of a portion of the piezoelectric/electrostrictive body 14 which corresponds to the drive region 20 due to driving operation of the piezoelectric/electrostrictive body 14 , the displacement transmitters 24 and the light scattering layer 108 , to be described later, should preferably be of a material of reduced plastic deformation (should preferably be of a material having a high yield point).
- the thicknesses of the displacement transmitters 24 and the light scattering layer 108 should preferably be small. Specifically, the thickness of each of the displacement transmitters 24 and the light scattering layer 108 should preferably be 300 ⁇ m or less, or more preferably be 50 ⁇ m or less, or much more preferably be 10 ⁇ m or less.
- the portion of the piezoelectric/electrostrictive body 14 which corresponds to the drive region 20 tends to be in different positions in the natural state before and after the driving operation under the influence of the displacement transmitter 14 and the light scattering layer 108 which are extended or shrunk.
- the actuator element 10 A according to the first embodiment does not use vibration plates, it does not need to have a ceramic substrate or the like, making itself lower in profile, lighter in weight, and lower in cost.
- the piezoelectric/electrostrictive layer 26 included in the piezoelectric/electrostrictive body 14 is of a one-layer structure, the fabrication process can be simplified, and the actuator element can be lower in cost and profile.
- one actuator unit 32 is provided in association with one beam 16 .
- a plurality of actuator units 32 may be provided in association with one beam 16 . In this case, even if one or two actuator units 32 are defective due to manufacturing variations, since the displacement can be compensated for by the other actuator units 32 , the yield of the actuator element 10 A can be increased.
- each upper electrode 28 is connected to the lower surface of the piezoelectric/electrostrictive layer 26 through the through hole 36 formed in the piezoelectric/electrostrictive layer 26 , the upper electrodes 28 can easily be wired to a drive circuit (not shown).
- the upper electrodes 28 may be turned into a common structure or the lower electrodes 30 may be turned into a common structure.
- Turning the upper electrodes 28 into a common structure includes electrically connecting upper electrodes 28 or forming one upper electrode 28 on the entire upper surface of the piezoelectric/electrostrictive layer 26 .
- Turning the lower electrodes 30 into a common structure includes electrically connecting lower electrodes 30 or forming one lower electrode 30 on the entire lower surface of the piezoelectric/electrostrictive layer 26 .
- the fabrication process can be simplified, and the wiring can be facilitated.
- the waveform of the drive voltage can also be simplified, and the drive circuit system can be simplified. Turning the upper electrodes 28 into a common structure is more preferable than turning the lower electrodes 30 into a common structure.
- the actuator element may alternatively be used as a sensor for producing an electric signal from the upper electrodes 28 and the lower electrodes 30 by displacing the displacement transmitter 24 toward and away from the plate member 12 .
- an actuator element 10 A a differs in that it has upper electrodes 28 and lower electrodes 30 which are formed on portions of the piezoelectric/electrostrictive body 14 which correspond to the drive regions 20 .
- each upper end face of the displacement transmitters 24 is spaced from the lower surface of the plate member 12 .
- a drive voltage of positive polarity e.g., a voltage of +25 V, for example, with respect to the lower electrode 30
- a certain drive region 20 e.g., the right drive region 20 in FIG. 7
- the actuator unit 32 that corresponds to the drive region 20 is flexurally displaced so as to be convex upwardly, as shown in FIG. 7 .
- the driving displacement is transmitted to the displacement transmitter 24 , causing the upper end face of the displacement transmitter 24 to contact the plate member 12 .
- the actuator unit 32 of the drive region 20 is displaced back to its original state, allowing the upper end face of the displacement transmitter 24 to be spaced from the plate member 12 again.
- the portion of the piezoelectric/electrostrictive body 14 which corresponds to the drive region 20 is flexurally displaced so as to be convex downwardly.
- the displacement transmitter 24 may be driven into and out of contact with the plate member 12 .
- a plurality of actuator units 32 may be provided in association with one drive region 20 .
- the upper electrodes 28 may be turned into a common structure or the lower electrodes 30 may be turned into a common structure.
- an actuator element 10 A b according to a second modification differs in that it has upper electrodes 28 and lower electrodes 30 which are formed on portions of the piezoelectric/electrostrictive body 14 which correspond to the beams 16 and portions of the piezoelectric/electrostrictive body 14 which correspond to the drive regions 20 .
- a drive voltage of positive polarity (e.g., a voltage of +25 V, for example, with respect to the lower electrode 30 ) may be applied between the upper electrode 28 and the lower electrode 30 which are formed on a portion corresponding to the drive region 20 .
- the displacement transmitter 24 when the application of the drive voltage is stopped, the displacement transmitter 24 is brought into contact with the plate member 12 only under repelling forces from the piezoelectric/electrostrictive body 14 , the displacement transmitter 24 , etc.
- the second modification since the drive force of the actuator unit 32 on the portion corresponding to the drive region 20 can also be used, the upper end face of the displacement transmitter 24 can reliably be brought into contact with the lower surface of the plate member 12 .
- the upper electrodes 28 may be turned into a common structure or the lower electrodes 30 may be turned into a common structure.
- Turning the upper electrodes 28 into a common structure includes electrically connecting upper electrodes 28 formed on portions corresponding to the beams 16 or electrically connecting upper electrodes 28 formed on portions corresponding to the drive regions 20 , or forming one upper electrode 28 on the entire upper surface of the piezoelectric/electrostrictive layer 26 .
- Turning the lower electrodes 30 into a common structure includes electrically connecting lower electrodes 30 formed on portions corresponding to the beams 16 , electrically connecting lower electrodes 30 formed on portions corresponding to the drive regions 20 , or forming one lower electrode 30 on the entire upper surface of the piezoelectric/electrostrictive layer 26 .
- a plurality of actuator units 32 may be provided in association with one beam 16 , or a plurality of actuator units 32 may be provided in association with one drive region 20 .
- An actuator element 10 B according to a second embodiment will be described below with reference to FIG. 10 .
- the actuator element 10 B according to the second embodiment is closely similar to the actuator element 10 A according to the first embodiment, but differs therefrom in that the piezoelectric/electrostrictive body 14 has a laminated assembly 40 of two piezoelectric/electrostrictive layers (first and second piezoelectric/electrostrictive layers 26 A, 26 B), upper electrodes 28 formed on the upper surface (the surface facing the plate member 12 ) of the laminated assembly 40 , lower electrodes 30 formed on the lower surface (the surface opposite to the surface facing the plate member 12 ) of the laminated assembly 40 , and intermediate electrodes 42 formed between the first and second piezoelectric/electrostrictive layers 26 A, 26 B.
- first and second piezoelectric/electrostrictive layers 26 A, 26 B the piezoelectric/electrostrictive body 14 has a laminated assembly 40 of two piezoelectric/electrostrictive layers (first and second piezoelectric/electrostrictive layers 26 A, 26 B), upper electrodes 28 formed on the
- one upper electrode 28 , one intermediate electrode 42 , one lower electrode 30 , and a portion of each of the piezoelectric/electrostrictive layers 26 A, 26 B that is sandwiched between these upper, intermediate, and lower electrodes 28 , 42 , 30 function as one actuator unit 32 .
- the intermediate electrodes 42 may be made of the same material as the material of the upper electrodes 28 and the lower electrodes 30 as described above.
- a terminal 44 for the upper electrode 28 and a terminal 46 for the intermediate electrode 42 are formed on the lower surface of the second piezoelectric/electrostrictive layer 26 B separately from the lower electrode 30 , and a relay electrode 48 for the upper electrode 28 is formed between the first piezoelectric/electrostrictive layer 26 A and the second piezoelectric/electrostrictive layer 26 B.
- the upper electrode 28 and the relay electrode 48 are electrically connected to each other through a through hole 50 that is formed in the first piezoelectric/electrostrictive layer 26 A.
- the relay electrode 48 and the terminal 44 are electrically connected to each other through a through hole 52 that is formed in the second piezoelectric/electrostrictive layer 26 B.
- the intermediate electrode 42 and the terminal 46 are electrically connected to each other through a through hole 54 that is formed in the second piezoelectric/electrostrictive layer 26 B.
- the lower electrode 30 doubles as a terminal.
- this terminal (the terminal for the lower electrode 30 ) may be formed on the same surface at a position separate from the lower electrode 30 .
- a driving process for the actuator element 10 B according to the second embodiment will be described below.
- the piezoelectric/electrostrictive body 14 When the piezoelectric/electrostrictive body 14 is in a natural state, the upper end faces of the displacement transmitters 24 are held in contact with the lower surface of the plate member 12 .
- a drive voltage of positive polarity (e.g., a voltage of +25 V, for example, with respect to the intermediate electrodes 42 ) is applied between the upper electrodes 28 and the intermediate electrodes 42 of the actuator units 32 that are formed around a certain drive region 20 (e.g., the right drive region 20 in FIG. 10 ), and a drive voltage of positive polarity (e.g., a voltage of +25 V, for example, with respect to the intermediate electrodes 42 ) is applied between the lower electrodes 30 and the intermediate electrodes 42 .
- the peripheral portion of the drive region 20 tends to be flexurally displaced so as to be convex toward the plate member 12 .
- a drive voltage of positive polarity is applied between the upper electrodes 28 and the intermediate electrodes 42 that sandwich the first piezoelectric/electrostrictive layer 26 A and also between the lower electrodes 30 and the intermediate electrodes 42 that sandwich the second piezoelectric/electrostrictive layer 26 B to space the upper end face of the displacement transmitter 24 from the plate member 12 (first driving process).
- a drive voltage of positive polarity may be applied only between the upper electrodes 28 and the intermediate electrodes 42 that sandwich the first piezoelectric/electrostrictive layer 26 A (second driving process), or a drive voltage of positive polarity may be applied only between the lower electrodes 30 and the intermediate electrodes 42 that sandwich the second piezoelectric/electrostrictive layer 26 B (third driving process).
- first through third driving processes perform similar operations, the displacement produced by the first driving process is the greatest, the displacement produced by the third driving process is the second greatest, and the displacement produced by the second driving process is the smallest, if the drive voltage is the same. Therefore, the actuator element can be driven at a low voltage if the first driving process or the third driving process is employed.
- a drive voltage of opposite polarity (e.g., a voltage of ⁇ 25 V, for example, with respect to the intermediate electrodes 42 ) may be applied between the upper electrodes 28 and the intermediate electrodes 42 and/or between,the lower electrodes 30 and the intermediate electrodes 42 , or the direction of polarization of the first and second piezoelectric/electrostrictive layers 26 A, 26 B or the voltage value may be varied.
- the portion of the piezoelectric/electrostrictive body 14 which corresponds to the drive region 20 is flexurally displaced so as to be convex toward the plate member 12 , causing the upper end face of the displacement transmitter 24 to strongly press the lower surface of the plate member 12 .
- the actuator element 10 B according to the second embodiment as described above is capable of achieving a parallel-type drive mode to obtain a desired displacement without using vibration plates, and can be made lower in profile, lighter in weight, and lower in cost.
- the piezoelectric/electrostrictive layers included in the piezoelectric/electrostrictive body 14 are of a dual-layer structure (the first and second piezoelectric/electrostrictive layers 26 A, 26 B)
- each of the first and second piezoelectric/electrostrictive layers 26 A, 26 B can be thinned, with the results that a high electric field can be applied under a low voltage for producing a large driving force and displacement.
- each upper electrode 28 and each intermediate electrode 42 are connected to the lower surface of the laminated assembly 40 through the through holes 50 , 52 , 54 formed in the laminated assembly 40 , the upper electrodes 28 and the intermediate electrodes 42 formed on the laminated assembly 40 can easily be connected (signals can easily be supplied), and can easily be wired to a drive circuit (not shown).
- the intermediate electrodes 42 may be turned into a common structure. Turning the intermediate electrodes 42 into a common structure includes electrically connecting intermediate electrodes 42 or forming one intermediate electrode 42 on the entire upper surface of the second piezoelectric/electrostrictive layer 26 B. By turning the intermediate electrodes 42 into a common structure, the fabrication process can be simplified, and the wiring can be facilitated. The waveform of the drive voltage can also be simplified, and the drive circuit system can be simplified.
- the actuator element 10 B according to the second embodiment can employ a structure in which a plurality of actuator units 32 are provided in association with one beam 16 , as shown in FIG. 12 .
- an actuator element 10 B a according to a first modification differs in that it has upper electrodes 28 , intermediate electrodes 42 , and lower electrodes 30 which are formed on portions of the piezoelectric/electrostrictive body 14 which correspond to the drive regions 20 .
- each upper end face of the displacement transmitters 24 is spaced from the lower surface of the plate member 12 .
- a drive voltage of positive polarity is applied between the upper electrode 28 and the intermediate electrode 42 of the actuator unit 32 that corresponds to a certain drive region 20 (e.g., the right drive region 20 in FIG. 13 ), and a drive voltage of positive polarity is applied between the lower electrode 30 and the intermediate electrode 42 .
- the portion of the piezoelectric/electrostrictive body 14 which corresponds to the drive region 20 is flexurally displaced so as to be convex toward the plate member 12 .
- the displacement is transmitted to the displacement transmitter 24 , and the upper end face of the displacement transmitter 24 is brought into contact with the lower surface of the plate member 12 , as shown in FIG. 13 .
- the actuator unit 32 of the drive region 20 is displaced back to its original state, spacing the upper end face of the displacement transmitter 24 from the plate member 12 .
- a drive voltage of positive polarity is applied between the upper electrode 28 and the intermediate electrode 42 that sandwich the first piezoelectric/electrostrictive layer 26 A and also between the lower electrode 30 and the intermediate electrode 42 that sandwich the second piezoelectric/electrostrictive layer 26 B to bring the upper end face of the displacement transmitter 24 into contact with the plate member 12 (fourth driving process).
- a drive voltage of positive polarity may be applied only between the upper electrode 28 and the intermediate electrode 42 that sandwich the first piezoelectric/electrostrictive layer 26 A (fifth driving process), or a drive voltage of positive polarity may be applied only between the lower electrode 30 and the intermediate electrode 42 that sandwich the second piezoelectric/electrostrictive layer 26 B (sixth driving process).
- the fourth through sixth driving processes perform similar displacing operations, the displacement produced by the fourth driving process is the greatest, the displacement produced by the sixth driving process is the second greatest, and the displacement produced by the fifth driving process is the smallest, if the drive voltage is the same. Therefore, the actuator element can be driven at a low voltage if the fourth driving process or the sixth driving process is employed.
- a drive voltage of opposite polarity (e.g., a voltage of ⁇ 25 V, for example, with respect to the intermediate electrode 42 ) may be applied between the upper electrode 28 and the intermediate electrode 42 and/or between the lower electrode 30 and the intermediate electrode 42 , or the direction of polarization of the first and second piezoelectric/electrostrictive layers 26 A, 26 B or the voltage value may be varied.
- the portion of the piezoelectric/electrostrictive body 14 which corresponds to the drive region 20 is flexurally displaced so as to be concave toward the plate member 12 , causing the upper end face of the displacement transmitter 24 to be spaced from the lower surface of the plate member 12 .
- a plurality of actuator units 32 may be provided in association with one drive region 20 .
- the intermediate electrodes 42 may be turned into a common structure.
- an actuator element 10 B b according to a second modification differs in that it has upper electrodes 28 , intermediate electrodes 42 , and lower electrodes 30 which are formed on portions of the piezoelectric/electrostrictive body 14 which correspond to the beams 16 and portions of the piezoelectric/electrostrictive body 14 which correspond to the drive regions 20 .
- the intermediate electrodes 42 may be turned into a common structure. Turning the intermediate electrodes 42 into a common structure includes electrically connecting intermediate electrodes 42 formed on portions corresponding to the beams 16 or electrically connecting intermediate electrodes 42 formed on portions corresponding to the drive regions 20 , or forming one intermediate electrode 42 on the entire upper surface of the second piezoelectric/electrostrictive layer 26 B.
- a plurality of actuator units 32 may be provided in association with one beam 16 , or a plurality of actuator units 32 may be provided in association with one drive region 20 .
- a display device 100 employs an optical waveguide plate 104 as the plate member 12 into which light (introduced light) 102 from a light source (not shown) is introduced from an end face thereof.
- a joining layer 22 is formed on the entire upper surface of the piezoelectric/electrostrictive body 14 , and the displacement transmitters 24 are formed on the upper surface of the joining layer 22 in association with the respective drive regions 20 .
- a light scattering layer 108 is formed so as to wholly overlap the displacement transmitters 24 and the joining layer 22 through a joining layer 106 .
- the spacers 18 are disposed in portions where the beams 16 are to be disposed, in a region between the optical waveguide plate 104 and the piezoelectric/electrostrictive body 14 .
- the spacers 18 have upper surfaces held in contact with the optical waveguide plate 104 and lower surfaces held in contact with the light scattering layer 108 .
- Each beam 16 includes one spacer 18 disposed between the optical waveguide plate 104 and the piezoelectric/electrostrictive body 14 , a portion of the light scattering layer 108 and portions of the joining layers 106 , 22 which are present directly beneath the spacer 18 .
- the drive regions 20 divided by the beams 16 are arranged in a matrix or staggered pattern, making a single pixel of a single drive region 20 or making a single pixel of a plurality of drive regions 20 .
- Each spacer 18 may be constructed of a light absorbing layer,.
- Each spacer 18 may be constructed of another member, and a light absorbing layer may be interposed between the spacers 18 and the optical waveguide plate 104 .
- the end face of the light scattering layer 108 contacts the back of the optical waveguide plate 104 by a distance equal to or smaller than the wavelength of the introduced light 100 (the light introduced into the optical waveguide plate). Therefore, white light 110 , for example, is emitted from the principal surface of the optical waveguide plate 104 .
- a drive voltage of positive polarity is applied between the upper electrodes 28 and the intermediate electrodes 42 that are formed around a certain drive region 20 (e.g., the right drive region 20 in FIG. 16 ), and a drive voltage of positive polarity is applied between the lower electrodes 30 and the intermediate electrodes 42 .
- the peripheral portion of the drive region 20 tends to be flexurally displaced so as to be convex toward the optical waveguide plate 104 .
- the energy produced at this time is transmitted to the portion of the piezoelectric/electrostrictive body 14 which corresponds to the drive region 20 . Therefore, as shown in FIG. 16 , that portion of the piezoelectric/electrostrictive body 14 is flexurally displaced so as to be convex downwardly, extinguishing light from the drive region 20 .
- the display apparatus 100 can be made lower in profile, lighter in weight, and lower in cost.
- Each beam 16 includes buffer layers.
- the joining layers 106 , 22 are interposed between the light scattering layer 108 directly beneath the spacers 18 and the piezoelectric/electrostrictive body 14 . If the spacers 18 are made of a hard material, and a thin film such as the light scattering layer 108 is formed on the lower surfaces of the spacers 18 , stresses tend to concentrate on portions of the light scattering layer 108 (boundaries between itself and the spacers 18 ), causing the light scattering layer 108 to be broken due to repeated displacement of the piezoelectric/electrostrictive body 14 . According to the present embodiment, the joining layers 106 , 22 that are interposed function as buffer layers to avoid the above drawback.
- the actuator elements 10 A, 10 B according to the first and second embodiments may be used for a device for converting electric energy into mechanical energy (mechanical displacement, stress, vibration, or the like), such as a display, a relay, an actuator (an actuator of the type for generating flexural displacement, for use in a servo displacement device or the like), or the like, or a device for converting mechanical energy into electric energy, such as a sensor (a filter, an acceleration sensor, a shock sensor, or the like), a transformer, a microphone, a sound producing member (a speaker or the like), a vibrator, an oscillator (for power or communication use), a micropump, or a highly sensitive electric transducer module (electric generator).
- a device for converting electric energy into mechanical energy such as a display, a relay, an actuator (an actuator of the type for generating flexural displacement, for use in a servo displacement device or the like), or the like
- a device for converting mechanical energy into electric energy such as a sensor (a
- the actuator element and the device employing the actuator element according to the present invention are not limited to the above embodiments, but may incorporate various structures without departing from the essential features of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Micromachines (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to an actuator element for converting electric energy into mechanical energy (mechanical displacement, stress, vibration, or the like), such as a display, a relay, an actuator (an actuator of the type for generating flexural displacement, for use in a servo displacement device or the like), or the like, and for converting mechanical energy into electric energy, such as a sensor (a filter, an acceleration sensor, a shock sensor, or the like), a transformer, a microphone, a sound producing member (a speaker or the like), a vibrator, or an oscillator (for power or communication use), and a device incorporating such an actuator element.
- 2. Description of the Related Art
- In recent years, there has been a demand in the optical and precision machining fields for displacement elements for adjusting optical path lengths and positions in the order of submicrons and detection elements for detecting a minute displacement as a change in an electric signal.
- To meet such a demand, efforts are being made to develop actuators and sensors (hereinafter referred to as actuator elements) which utilize a displacement based on an inverse piezoelectric effect or an electrostrictive effect that occurs when an electric field is applied to a piezoelectric/electrostrictive material such as a ferroelectric material or the like, or a reverse phenomenon.
- In the above fields, the development of actuator elements which are inexpensive, small in size, operate under low voltages, and have high-speed response is under way.
- As shown in
FIG. 17 , aconventional actuator element 200 has aceramic substrate 202 and piezoelectric/electrostrictive operation units 204 formed on theceramic substrate 202. - The
ceramic substrate 202 hascavities 206 providing thin-plate portions functioning asvibration plates 208. The piezoelectric/electrostrictive operation units 204 are formed on thevibration plates 208. Each of the piezoelectric/electrostrictive operation units 204 has alower electrode 210 directly formed on thevibration plate 208, a piezoelectric/electrostrictive layer 212 formed on thelower electrode 210, and anupper electrode 214 formed on the piezoelectric/electrostrictive layer 212. - If the piezoelectric/
electrostrictive layer 212 is made of a piezoelectric material, then when a voltage is applied between theupper electrode 214 and thelower electrode 210 such that the voltage has the same positive and negative values as a voltage applied to polarize the piezoelectric/electrostrictive layer 212, the piezoelectric/electrostrictive layer 212 is flexurally displaced toward thecavity 206 due to the lateral effect of an electric field induced strain (see, for example, Japanese laid-open patent publication No. 7-202284). - The
above actuator element 200 employs thevibration plates 208. Though thevibration plates 208 are advantageous in that they can amplify the displacement of the piezoelectric/electrostrictive layer 212, since thecavities 206 need to be formed in theceramic substrate 202, there are limitations on efforts to make theactuator element 200 lower in profile, lighter in weight, and lower in cost. - The present invention has been made in view of the above problems. It is an object of the present invention to provide an actuator element which is capable of producing a desired displacement without the need for a vibration plate, or increasing the dynamic range of a displacement that can be converted into an electric signal without the need for a vibration plate, and which can be lower in profile, lighter in weight, and lower in cost, and a device incorporating such an actuator element.
- An actuator element according to the present invention has a plate member, a piezoelectric/electrostrictive body disposed in facing relation to the plate member, and a beam disposed between the plate member and the piezoelectric/electrostrictive body and fixing the piezoelectric/electrostrictive body to the plate member, the piezoelectric/electrostrictive body having a piezoelectric/electrostrictive layer, an upper electrode formed on a surface of the piezoelectric/electrostrictive layer which faces the plate member, and a lower electrode formed on a surface of the piezoelectric/electrostrictive layer which is opposite to the surface thereof facing the plate member, whereby when an electric field is applied to the upper electrode and the lower electrode, a portion of the piezoelectric/electrostrictive body is displaced toward or away from the plate member.
- Since the actuator element does not use vibration plates, it does not need to have a ceramic substrate or the like, making itself lower in profile, lighter in weight, and lower in cost.
- Though an electric field is applied to the upper electrode and the lower electrode to displace a portion of the piezoelectric/electrostrictive body toward and away from the plate member as described above, the actuator element may alternatively be used as a sensor for producing an electric signal from the upper electrode and the lower electrode by displacing a portion of the piezoelectric/electrostrictive body toward and away from the plate member.
- If a region disposed between the plate member and the piezoelectric/electrostrictive body and divided by the beam serves as a drive region, then the upper electrode and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the beam. When an electric field is applied to the upper electrode and the lower electrode, a portion of the piezoelectric/electrostrictive body which corresponds to the drive region is displaced away from the plate member, for example.
- The upper electrode and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the drive region. When an electric field is applied to the upper electrode and the lower electrode, the portion of the piezoelectric/electrostrictive body which corresponds to the drive region is displaced toward the plate member, for example.
- The upper electrode and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the beam and a portion of the piezoelectric/electrostrictive body which corresponds to the drive region. When an electric field is applied to the upper electrode and the lower electrode which are formed on the portion corresponding to the beam, the portion of the piezoelectric/electrostrictive body which corresponds to the drive region is displaced away from the plate member, for example. When an electric field is applied to the upper electrode and the lower electrode which are formed on the portion corresponding to the drive region, the portion of the piezoelectric/electrostrictive body which corresponds to the drive region is displaced toward the plate member, for example.
- The upper electrode may be connected to the surface of the piezoelectric/electrostrictive layer on which the lower electrode is formed, through a through hole formed in the piezoelectric/electrostrictive layer. In this case, the actuator element can easily be wired to a drive circuit.
- According to the present invention, the piezoelectric/electrostrictive body may comprise a laminated assembly of piezoelectric/electrostrictive layers, an upper electrode formed on a surface of the laminated assembly which faces the plate member, a lower electrode formed on a surface of the laminated assembly which is opposite to the surface thereof facing the plate member, and an intermediate electrode formed in the laminated assembly between the piezoelectric/electrostrictive layers.
- In this case, the actuator element is capable of achieving a parallel-type drive mode to obtain a desired displacement without using vibration plates, or of increasing the dynamic range of a displacement that can be converted into an electric signal without the need for a vibration plate. The actuator element can be lower in profile, lighter in weight, and lower in cost.
- The upper electrode, the intermediate electrode, and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the beam or a portion of the piezoelectric/electrostrictive body which corresponds to the drive region. Alternatively, the upper electrode, the intermediate electrode, and the lower electrode may be formed on a portion of the piezoelectric/electrostrictive body which corresponds to the beam and a portion of the piezoelectric/electrostrictive body which corresponds to the drive region.
- The upper electrode and the intermediate electrode may be connected to the surface of the laminated assembly on which the lower electrode is formed, via through holes formed in the laminated assembly. In this case, the upper electrode and the intermediate electrode formed on the laminated assembly can easily be connected (signals can easily be supplied), and can easily be wired to a drive circuit.
- According to the present invention, the actuator element may further include a displacement transmitter for transmitting displacement of the piezoelectric/electrostrictive body to the plate member in a drive region disposed between the plate member and the piezoelectric/electrostrictive body and divided by the beam. Inasmuch as the displacement transmitter is disposed in the region surrounded by the beam, the thickness of the actuator element itself is not increased by the displacement transmitter. Therefore, the thickness of the actuator element solely depends on the thickness of the beam. This makes the actuator element lower in profile.
- With the above arrangement, if the plate member comprises a transparent plate into which light is introduced, then at least a light scattering layer may be disposed on the displacement transmitter. In a certain drive region, displacement of the piezoelectric/electrostrictive body is transmitted to the transparent plate by the displacement transmitter. When the light scattering layer is brought into contact with the transparent plate, for example, light is emitted from the drive region. If one drive region is constructed as one pixel or a plurality of drive regions are constructed as one pixel, then the actuator element can easily be applied to a display device.
- With the above arrangement, a spacer may be disposed between the plate member and the piezoelectric/electrostrictive body, and in the case where the plate member is held in contact with an upper surface of the spacer and the piezoelectric/electrostrictive body is held in contact with a lower surface of the spacer, the beam may include the spacer. Thus, the spacer itself functions as the beam.
- With the above arrangement, a spacer may be disposed between the plate member and the piezoelectric/electrostrictive body, and in the case where at least one-layer film is formed between a lower surface of the spacer and the piezoelectric/electrostrictive body, the beam may include the spacer and a portion of the film directly beneath the spacer.
- If the displacement transmitter is formed on the piezoelectric/electrostrictive body with the upper electrode formed thereon, at least one film (e.g., the light scattering layer) is formed on the entire surface including the displacement transmitter, the spacer is formed in a given location on the film, and the plate member is disposed on the spacer, then the spacer and a portion directly beneath the spacer often tend to be hard under pressing forces. Therefore, the portion of the film directly beneath the spacer functions as the beam in coaction with the spacer.
- With the above arrangement, the beam may include a buffer layer. If the spacer is made of a hard material, and the above film is formed on the lower surface of the spacer, stresses tend to concentrate on a portion of the film (a boundary between itself and the spacer), causing the film to be broken due to repeated displacement of the piezoelectric/electrostrictive body. This drawback can be avoided by including a buffer layer in the beam.
- A device using the actuator element according to the present invention as described above may be a device for converting electric energy into mechanical energy (mechanical displacement, stress, vibration, or the like), such as a display, a relay, an actuator (an actuator of the type for generating flexural displacement, for use in a servo displacement device or the like), or the like, or a device for converting mechanical energy into electric energy, such as a sensor (a filter, an acceleration sensor, a shock sensor, or the like), a transformer, a microphone, a sound producing member (a speaker or the like), a vibrator, or an oscillator (for power or communication use).
- As described above, the actuator element and the device employing the actuator element according to the present invention are capable of obtaining a desired displacement without using vibration plates, or of increasing the dynamic range of a displacement that can be converted into an electric signal without the need-for a vibration plate. The actuator element and the device employing the actuator element can be lower in profile, lighter in weight, and lower in cost.
- The above and other objects, features, and advantages of the present invention will become more apparent from the following description of preferred embodiments in conjunction with the accompanying drawings.
-
FIG. 1 is a cross-sectional view, partly omitted from illustration, of an actuator element according to a first embodiment; -
FIG. 2 is a cross-sectional view, partly omitted from illustration, showing another example of displacement transmitters; -
FIG. 3 is a view showing an example of the layout of spacers constituting beams, as viewed from the back of a plate member; -
FIG. 4 is a view showing another example of the layout of spacers constituting beams, as viewed from the back of a plate member; -
FIG. 5 is a cross-sectional view of an example of an interconnected pattern of an upper electrode and a lower electrode; -
FIG. 6 is a cross-sectional view, partly omitted from illustration, showing an example in which a plurality of actuator units are provided in association with one beam, according to the first embodiment; -
FIG. 7 is a cross-sectional view, partly omitted from illustration, showing a first modification of the actuator element according to the first embodiment; -
FIG. 8 is a cross-sectional view, partly omitted from illustration, showing an example in which a plurality of actuator units are provided in association with one drive region, in the first modification according to the first embodiment; -
FIG. 9 is a cross-sectional view, partly omitted from illustration, showing a second modification of the actuator element according to the first embodiment; -
FIG. 10 is a cross-sectional view, partly omitted from illustration, of an actuator element according to a second embodiment; -
FIG. 11 is a cross-sectional view of an example of an interconnected pattern of an upper electrode, an intermediate electrode, and a lower electrode; -
FIG. 12 is a cross-sectional view, partly omitted from illustration, showing an example in which a plurality of actuator units are provided in association with one beam, according to the second embodiment; -
FIG. 13 is a cross-sectional view, partly omitted from illustration, showing a first modification of the actuator element according to the second embodiment; -
FIG. 14 is a cross-sectional view, partly omitted from illustration, showing an example in which a plurality of actuator units are provided in association with one drive region, in the first modification according to the second embodiment; -
FIG. 15 is a cross-sectional view, partly omitted from illustration, showing a second modification of the actuator element according to the second embodiment; -
FIG. 16 is a cross-sectional view, partly omitted from illustration, of a display apparatus according to an embodiment; and -
FIG. 17 is a cross-sectional view, partly omitted from illustration, of a conventional actuator element. - Embodiments of actuator elements and a device incorporating an actuator element according to the present invention will be described below with reference to
FIGS. 1 through 16 . - As shown in
FIG. 1 , anactuator element 10A according to a first embodiment has aplate member 12, a piezoelectric/electrostrictive body 14 disposed in facing relation to theplate member 12, and beams 16 disposed between the piezoelectric/electrostrictive body 14 and theplate member 12 and fixing the piezoelectric/electrostrictive body 14 to theplate member 12. Eachbeam 16 includes aspacer 18. - The
spacers 18 may be a plurality ofspacers 18 a arranged in a grid pattern, as shown inFIG. 3 , or may be aunitary spacer 18 b shaped as a grid, as shown inFIG. 4 . - If regions divided by the
spacers 18 a or thespacer 18 b between theplate member 12 and the piezoelectric/electrostrictive body 14 serve asdrive regions 20, as shown inFIGS. 3 and 4 , then theactuator element 10A according to the first embodiment hasdisplacement transmitters 24 formed on the upper surface of the piezoelectric/electrostrictive body 14 in association with therespective drive regions 20, as shown inFIG. 1 . - Each of the
displacement transmitters 24 may have a peripheral portion slanted gradually (thedisplacement transmitter 24 has a trapezoidal cross section), as shown inFIG. 1 , or may have a peripheral portion slanted sharply (thedisplacement transmitter 24 has a rectangular cross section), as shown inFIG. 2 . - As shown in
FIG. 6 , a joininglayer 22 may be formed on the entire upper surface of the piezoelectric/electrostrictive body 14, and thedisplacement transmitters 24 may be formed on the upper surface of the joininglayer 22 in association with therespective drive regions 20. In this case, eachspacer 18 has an upper surface held in contact with theplate member 12 and a lower surface held in contact with the joininglayer 22. Therefore, eachbeam 16 includes thespacer 18 disposed between theplate member 12 and the piezoelectric/electrostrictive body 14, and a part of the joininglayer 22 that is present directly beneath thespacer 18. With the joininglayer 22 being formed, when theactuator element 10A is fabricated, thespacers 18 and thedisplacement transmitters 24 can simultaneously be bonded to the piezoelectric/electrostrictive body 14. Therefore, the process can be simplified. - The piezoelectric/
electrostrictive body 14 has a single piezoelectric/electrostrictive layer 26,upper electrodes 28 formed on the upper surface (the surface facing the plate member 12) of the piezoelectric/electrostrictive layer 26, andlower electrodes 30 formed on the lower surface (the surface opposite to the surface facing the plate member 12) of the piezoelectric/electrostrictive layer 26. Theupper electrodes 28 are formed in positions on the upper surface of the piezoelectric/electrostrictive layer 26 which correspond to thebeams 16, and thelower electrodes 30 are formed in positions on the lower surface of the piezoelectric/electrostrictive layer 26 which correspond to thebeams 16. In the piezoelectric/electrostrictive body 14 of this embodiment, oneupper electrode 28, onelower electrode 30, and a portion of the piezoelectric/electrostrictive layer 26 that is sandwiched between these upper andlower electrodes actuator unit 32. - According to an interconnected pattern of the
upper electrode 28 and thelower electrode 30, as shown inFIG. 5 , for example, a terminal 34 for theupper electrode 28 is formed on the lower surface of the piezoelectric/electrostrictive layer 26 separately from thelower electrode 30, and theupper electrode 28 and the terminal 34 are electrically connected to each other through a throughhole 36 that is formed in the piezoelectric/electrostrictive layer 26. InFIG. 5 , thelower electrode 30 doubles as a terminal. Alternatively, this terminal (the terminal for the lower electrode 30) may be formed on the same surface at a position separate from thelower electrode 30. - A driving process for the
actuator element 10A according to the first embodiment will be described below. - When the piezoelectric/
electrostrictive body 14 is in a natural state, the upper end faces of thedisplacement transmitters 24 are held in contact with the lower surface of theplate member 12. - When a drive voltage of positive polarity (e.g., a voltage of +25 V, for example, with respect to the lower electrodes 30) is applied between the
upper electrodes 28 and thelower electrodes 30 of theactuator units 32 that are formed around a certain drive region 20 (e.g., theright drive region 20 inFIG. 1 ), the peripheral portion of thedrive region 20 tends to be flexurally displaced so as to be convex toward theplate member 12. However, since the flexural displacement is suppressed by thespacers 18 and theplate member 12, the energy produced at this time is transmitted to the portion of the piezoelectric/electrostrictive body 14 which corresponds to thedrive region 20. Therefore, as shown inFIG. 1 , that portion of the piezoelectric/electrostrictive body 14 is flexurally displaced so as to be convex downwardly, causing the upper end face of thedisplacement transmitter 24 in thedrive region 20 to be spaced from theplate member 12. - When the application of the above drive voltage is stopped, the portion of the piezoelectric/
electrostrictive body 14 which corresponds to thedrive region 20 is displaced back to its original state, allowing the upper end face of thedisplacement transmitter 24 to contact theplate member 12 again. - According to the above driving process, a drive voltage of positive polarity is applied between the
upper electrodes 28 and thelower electrodes 30 that sandwich the piezoelectric/electrostrictive layer 26 to space the upper end face of thedisplacement transmitter 24 from theplate member 12. Alternatively, a drive voltage of opposite polarity (e.g., a voltage of −25 V, for example, with respect to the lower electrodes 30) may be applied between theupper electrodes 28 and thelower electrodes 30, or the direction of polarization of the piezoelectric/electrostrictive layer 26 or the voltage value may be varied. In this case, the portion of the piezoelectric/electrostrictive body 14 which corresponds to thedrive region 20 is displaced so as to be convex toward theplate member 12, causing the upper end face of thedisplacement transmitter 24 to strongly press the lower surface of theplate member 12. With a structure in which theplate member 12 and the piezoelectric/electrostrictive body 14 are spaced from each other by thespacer 18 in advance, thedisplacement transmitter 24 may be driven into and out of contact with theplate member 12. - Preferred constituent materials of the various components will be described below. The
plate member 12 may be made of a metal, ceramics, glass, or an organic resin, but is not limited to any particular materials insofar as they are capable of the functions thereof as described above. For example, SUS304 (Young's modulus: 193 GPa, coefficient of linear expansion: 17.3×10−6/° C.), SUS403 (Young's modulus: 200 GPa, coefficient of linear expansion: 10.4×10−6/° C.), zirconium oxide (Young's modulus: 245.2 GPa, coefficient of linear expansion: 9.2×10−6/° C.), glass (e.g., Corning 0211, Young's modulus: 74.4 GPa, coefficient of linear expansion: 7.38×10−6/° C.), and acrylic sheet are preferably used. - The
spacers 18 should preferably be made of a material which is not deformable with heat and pressure, e.g., thermosetting rein such as epoxy resin or the like, light curing resin, moisture curing resin, cold-setting resin, or the like which is set. Thespacers 18 may be made of metal, glass, or ceramic. - A filler may be contained in the
spacers 18. Eachspacer 18 with a filler contained therein has higher hardness and greater heat resistance, strength, and dimensional stability than a spacer with no filler contained therein. Stated otherwise, the hardness, heat resistance, and strength of the set resin can be increased and the amount by which it thermally expands and shrinks can be greatly reduced by including a filler in eachspacer 18. - The
upper electrodes 28, thelower electrodes 30, and theterminals 34 are made of a metal such as aluminum, titanium, chromium, iron, cobalt, nickel, copper, zinc, niobium, molybdenum, ruthenium, palladium, rhodium, silver, tin, tantalum, tungsten, iridium, platinum, gold, lead, or the like, or an alloy of at least two of these metals. Alternatively, theupper electrodes 28, thelower electrodes 30, and theterminals 34 may be made of a composite of the above metal or alloy and metal oxide such as aluminum oxide, titanium oxide, zirconium oxide, cerium oxide, copper oxide, or the like, or made of an electrically conductive material such as a cermet containing the metal or alloy in which the same material as the material of the piezoelectric/electrostrictive layer 26 to be described below is dispersed. - The
upper electrodes 28, thelower electrodes 30, and theterminals 34 may be formed on the piezoelectric/electrostrictive layer 26 by a film forming process such as photolithography, screen printing, dipping, coating, electrophoresis, ion beam process, sputtering, vacuum evaporation, ion plating, chemical vapor deposition (CVD), plating, etc. - Preferred examples of constituent materials of the piezoelectric/
electrostrictive layer 26 include lead zirconate, lead manganese tungstate, bismuth sodium titanate, bismuth ferrate, sodium potassium niobate, bismuth strontium tantalate, lead magnesium niobate, lead nickel niobate, lead zinc niobate, lead manganese niobate, lead magnesium tantalate, lead nickel tantalate, lead antimony stannate, lead titanate, barium titanate, barium copper tungstate, lead magnesium tungstate, lead cobalt niobate, or a composite oxide comprising at least two of the above compounds. These piezoelectric/electrostrictive materials may contain a solid solution of an oxide of lanthanum, calcium, strontium, molybdenum, tungsten, barium, niobium, zinc, nickel, manganese, cerium, cadmium, chromium, cobalt, antimony, iron, yttrium, tantalum, lithium, bismuth, tin, copper, etc. - The piezoelectric/
electrostrictive layer 26 may be made of a composite piezoelectric material/composite material comprising a mixture of piezoelectric ceramic powder, piezoelectric ceramic fiber, and an organic material. Alternatively, the piezoelectric/electrostrictive layer 26 may be made of piezoelectric high polymer film (polyvinylidene fluoride (PVDF) or the like such as unoriented P (VDF-TrFE) copolymer film, uniaxially oriented P(VDF-TrFE) copolymer film, or the like). Further alternatively, the piezoelectric/electrostrictive layer 26 may be made of piezoelectric single crystal (e.g., quartz crystal, LiNbO3, LiTaO3, KNbO3, or the like), or piezoelectric thin film (e.g., ZnO, AlN, or the like). - An antiferroelectric layer may be used in place of the piezoelectric/
electrostrictive layer 26. In this case, lead zirconate, a composite oxide of lead zirconate and lead stannate, or a composite oxide of lead zirconate, lead stannate, and lead niobate may be used. These antiferroelectric materials may contain a solid solution of the above elements. - A material produced by adding lithium bismuthate, lead germanate, or the like to the above material, e.g., a material produced by adding lithium bismuthate or lead germanate to a composite oxide of lead zirconate, lead titanate, and lead magnesium niobate, is preferable because it allows the piezoelectric/
electrostrictive layer 26 to be fired at a low temperature and achieve high material characteristics. The piezoelectric/electrostrictive layer 26 can also be fired at a low temperature by adding glass (e.g., silicate glass, borate glass, phosphate glass, germanate glass, or a mixture thereof). However, since excessively adding the glass would invite deterioration of material characteristics, it is desirable to determine an amount of glass to be added depending on the required characteristics. - Each
displacement transmitter 24 may comprise an adhesive which may be a filler-containing adhesive. Eachdisplacement transmitter 24 is not limited to any material, but may preferably be made of thermoplastic resin, thermosetting rein, light curing resin, moisture curing resin, cold-setting resin, or the like. - Specifically, acrylic resin, modified acrylic resin, epoxy resin, modified epoxy rein, silicone resin, modified silicone resin, vinyl acetate resin, ethylene-vinyl acetate copolymer resin, vinyl butyral resin, cyanoacrylate resin, urethane rein, polyimide resin, methacrylic resin, modified methacrylic resin, polyolefin resin, special silicone modified polymer, polycarbonate resin, natural rubber, synthetic rubber, etc. are given by way of example.
- Particularly, vinyl butyral resin, acrylic resin, modified acrylic resin, epoxy resin, modified epoxy resin, or a mixture of two or more of these resins is preferable for their excellent bonding strength. Among others, epoxy resin, modified epoxy resin, or a mixture thereof is preferable.
- Preferred materials and structures of the
displacement transmitters 24 and a light scattering layer 108 (seeFIG. 16 ), to be described later, are as follows: For keeping constant a natural state (a position when not driven) of a portion of the piezoelectric/electrostrictive body 14 which corresponds to thedrive region 20 due to driving operation of the piezoelectric/electrostrictive body 14, thedisplacement transmitters 24 and thelight scattering layer 108, to be described later, should preferably be of a material of reduced plastic deformation (should preferably be of a material having a high yield point). The thicknesses of thedisplacement transmitters 24 and thelight scattering layer 108 should preferably be small. Specifically, the thickness of each of thedisplacement transmitters 24 and thelight scattering layer 108 should preferably be 300 μm or less, or more preferably be 50 μm or less, or much more preferably be 10 μm or less. - The reasons are as follows: Upon driving operation of the piezoelectric/
electrostrictive body 14 to move a portion of the piezoelectric/electrostrictive body 14 which corresponds to thedrive region 20 toward and away from theplate member 12, forces are applied to thedisplacement transmitter 24 and the light scattering layer 108 (seeFIG. 16 ) to cause them to extend and shrink. If forces in excess of the yield point are applied to thedisplacement transmitter 24 and thelight scattering layer 108, then they are subjected to plastic deformation, and remain in an extended or shrunk shape. In this case, the portion of the piezoelectric/electrostrictive body 14 which corresponds to thedrive region 20 tends to be in different positions in the natural state before and after the driving operation under the influence of thedisplacement transmitter 14 and thelight scattering layer 108 which are extended or shrunk. - Since the
actuator element 10A according to the first embodiment does not use vibration plates, it does not need to have a ceramic substrate or the like, making itself lower in profile, lighter in weight, and lower in cost. Particularly, because the piezoelectric/electrostrictive layer 26 included in the piezoelectric/electrostrictive body 14 is of a one-layer structure, the fabrication process can be simplified, and the actuator element can be lower in cost and profile. - In the above example, one
actuator unit 32 is provided in association with onebeam 16. However, as shown inFIG. 6 , a plurality ofactuator units 32 may be provided in association with onebeam 16. In this case, even if one or twoactuator units 32 are defective due to manufacturing variations, since the displacement can be compensated for by theother actuator units 32, the yield of theactuator element 10A can be increased. - As shown in
FIG. 5 , as eachupper electrode 28 is connected to the lower surface of the piezoelectric/electrostrictive layer 26 through the throughhole 36 formed in the piezoelectric/electrostrictive layer 26, theupper electrodes 28 can easily be wired to a drive circuit (not shown). - The
upper electrodes 28 may be turned into a common structure or thelower electrodes 30 may be turned into a common structure. Turning theupper electrodes 28 into a common structure includes electrically connectingupper electrodes 28 or forming oneupper electrode 28 on the entire upper surface of the piezoelectric/electrostrictive layer 26. Turning thelower electrodes 30 into a common structure includes electrically connectinglower electrodes 30 or forming onelower electrode 30 on the entire lower surface of the piezoelectric/electrostrictive layer 26. - By turning the
upper electrodes 28 into a common structure or turning thelower electrodes 30 into a common structure, the fabrication process can be simplified, and the wiring can be facilitated. The waveform of the drive voltage can also be simplified, and the drive circuit system can be simplified. Turning theupper electrodes 28 into a common structure is more preferable than turning thelower electrodes 30 into a common structure. - It has been illustrated to apply an electric field to the
upper electrodes 28 and thelower electrodes 30 to displace thedisplacement transmitter 24 toward and away from theplate member 12. The actuator element may alternatively be used as a sensor for producing an electric signal from theupper electrodes 28 and thelower electrodes 30 by displacing thedisplacement transmitter 24 toward and away from theplate member 12. - Some modifications of the
actuator element 10A according to the first embodiment will be described below with reference toFIGS. 7 through 9 . Those parts which correspond to those shown inFIG. 1 are denoted by identical reference characters, and will not be described overlappingly. - As shown in
FIG. 7 , an actuator element 10Aa according to a first modification differs in that it hasupper electrodes 28 andlower electrodes 30 which are formed on portions of the piezoelectric/electrostrictive body 14 which correspond to thedrive regions 20. - An example of a driving process for the actuator element will be described below. While the piezoelectric/
electrostrictive body 14 is in a natural state, each upper end face of thedisplacement transmitters 24 is spaced from the lower surface of theplate member 12. - When a drive voltage of positive polarity (e.g., a voltage of +25 V, for example, with respect to the lower electrode 30) is applied between the
upper electrode 28 and thelower electrode 30 of theactuator unit 32 that corresponds to a certain drive region 20 (e.g., theright drive region 20 inFIG. 7 ), theactuator unit 32 that corresponds to thedrive region 20 is flexurally displaced so as to be convex upwardly, as shown inFIG. 7 . The driving displacement is transmitted to thedisplacement transmitter 24, causing the upper end face of thedisplacement transmitter 24 to contact theplate member 12. - When the application of the above drive voltage is stopped, the
actuator unit 32 of thedrive region 20 is displaced back to its original state, allowing the upper end face of thedisplacement transmitter 24 to be spaced from theplate member 12 again. - According to the above driving process, a drive voltage of positive polarity is applied between the
upper electrode 28 and thelower electrode 30 that sandwich the piezoelectric/electrostrictive layer 26 to bring the upper end face of thedisplacement transmitter 24 into contact with the lower surface of theplate member 12. Alternatively, a drive voltage of opposite polarity (e.g., a voltage of −25 V, for example, with respect to the lower electrode 30) may be applied between theupper electrode 28 and thelower electrode 30, or the direction of polarization of the piezoelectric/electrostrictive layer 26 or the voltage value may be varied. In this case, the portion of the piezoelectric/electrostrictive body 14 which corresponds to thedrive region 20 is flexurally displaced so as to be convex downwardly. With a structure in which the upper end face of the piezoelectric/electrostrictive body 14 is kept in contact with the lower surface of theplate member 12 in advance, thedisplacement transmitter 24 may be driven into and out of contact with theplate member 12. - According to the first modification, as shown in
FIG. 8 , a plurality ofactuator units 32 may be provided in association with onedrive region 20. Theupper electrodes 28 may be turned into a common structure or thelower electrodes 30 may be turned into a common structure. - As shown in
FIG. 9 , an actuator element 10Ab according to a second modification differs in that it hasupper electrodes 28 andlower electrodes 30 which are formed on portions of the piezoelectric/electrostrictive body 14 which correspond to thebeams 16 and portions of the piezoelectric/electrostrictive body 14 which correspond to thedrive regions 20. - For bringing the upper end face of the
displacement transmitter 24 into contact with the lower surface of theplate member 12, no drive voltage is applied between theupper electrodes 28 andlower electrodes 30 which are formed on each portion corresponding to thebeams 16, but a drive voltage of positive polarity (e.g., a voltage of +25 V, for example, with respect to the lower electrode 30) may be applied between theupper electrode 28 and thelower electrode 30 which are formed on a portion corresponding to thedrive region 20. - Conversely, for spacing the upper end face of the
displacement transmitter 24 from the lower surface of theplate member 12, no drive voltage is applied between theupper electrode 28 andlower electrode 30 which are formed on the portion corresponding to thedrive region 20, but a drive voltage of positive polarity may be applied between theupper electrodes 28 and thelower electrodes 30 which are formed on each portion corresponding to thebeams 16. - According to the first embodiment (see
FIG. 1 ), when the application of the drive voltage is stopped, thedisplacement transmitter 24 is brought into contact with theplate member 12 only under repelling forces from the piezoelectric/electrostrictive body 14, thedisplacement transmitter 24, etc. According to the second modification, since the drive force of theactuator unit 32 on the portion corresponding to thedrive region 20 can also be used, the upper end face of thedisplacement transmitter 24 can reliably be brought into contact with the lower surface of theplate member 12. - In the second modification, the
upper electrodes 28 may be turned into a common structure or thelower electrodes 30 may be turned into a common structure. Turning theupper electrodes 28 into a common structure includes electrically connectingupper electrodes 28 formed on portions corresponding to thebeams 16 or electrically connectingupper electrodes 28 formed on portions corresponding to thedrive regions 20, or forming oneupper electrode 28 on the entire upper surface of the piezoelectric/electrostrictive layer 26. Turning thelower electrodes 30 into a common structure includes electrically connectinglower electrodes 30 formed on portions corresponding to thebeams 16, electrically connectinglower electrodes 30 formed on portions corresponding to thedrive regions 20, or forming onelower electrode 30 on the entire upper surface of the piezoelectric/electrostrictive layer 26. - As with
FIGS. 6 and 8 , a plurality ofactuator units 32 may be provided in association with onebeam 16, or a plurality ofactuator units 32 may be provided in association with onedrive region 20. - An
actuator element 10B according to a second embodiment will be described below with reference toFIG. 10 . - As shown in
FIG. 10 , theactuator element 10B according to the second embodiment is closely similar to theactuator element 10A according to the first embodiment, but differs therefrom in that the piezoelectric/electrostrictive body 14 has alaminated assembly 40 of two piezoelectric/electrostrictive layers (first and second piezoelectric/electrostrictive layers upper electrodes 28 formed on the upper surface (the surface facing the plate member 12) of thelaminated assembly 40,lower electrodes 30 formed on the lower surface (the surface opposite to the surface facing the plate member 12) of thelaminated assembly 40, andintermediate electrodes 42 formed between the first and second piezoelectric/electrostrictive layers - In the piezoelectric/
electrostrictive body 14 of this embodiment, oneupper electrode 28, oneintermediate electrode 42, onelower electrode 30, and a portion of each of the piezoelectric/electrostrictive layers lower electrodes actuator unit 32. Theintermediate electrodes 42 may be made of the same material as the material of theupper electrodes 28 and thelower electrodes 30 as described above. - According to an interconnected pattern of the
upper electrode 28, theintermediate electrode 42, and thelower electrode 30, as shown inFIG. 11 , for example, a terminal 44 for theupper electrode 28 and a terminal 46 for theintermediate electrode 42 are formed on the lower surface of the second piezoelectric/electrostrictive layer 26B separately from thelower electrode 30, and arelay electrode 48 for theupper electrode 28 is formed between the first piezoelectric/electrostrictive layer 26A and the second piezoelectric/electrostrictive layer 26B. Theupper electrode 28 and therelay electrode 48 are electrically connected to each other through a throughhole 50 that is formed in the first piezoelectric/electrostrictive layer 26A. Therelay electrode 48 and the terminal 44 are electrically connected to each other through a throughhole 52 that is formed in the second piezoelectric/electrostrictive layer 26B. Theintermediate electrode 42 and the terminal 46 are electrically connected to each other through a throughhole 54 that is formed in the second piezoelectric/electrostrictive layer 26B. InFIG. 11 , thelower electrode 30 doubles as a terminal. Alternatively, this terminal (the terminal for the lower electrode 30) may be formed on the same surface at a position separate from thelower electrode 30. - A driving process for the
actuator element 10B according to the second embodiment will be described below. - When the piezoelectric/
electrostrictive body 14 is in a natural state, the upper end faces of thedisplacement transmitters 24 are held in contact with the lower surface of theplate member 12. - A drive voltage of positive polarity (e.g., a voltage of +25 V, for example, with respect to the intermediate electrodes 42) is applied between the
upper electrodes 28 and theintermediate electrodes 42 of theactuator units 32 that are formed around a certain drive region 20 (e.g., theright drive region 20 inFIG. 10 ), and a drive voltage of positive polarity (e.g., a voltage of +25 V, for example, with respect to the intermediate electrodes 42) is applied between thelower electrodes 30 and theintermediate electrodes 42. The peripheral portion of thedrive region 20 tends to be flexurally displaced so as to be convex toward theplate member 12. However, since the flexural displacement is suppressed by thespacers 18 and theplate member 12, the energy produced at this time is transmitted to the portion of the piezoelectric/electrostrictive body 14 which corresponds to thedrive region 20. Therefore, as shown inFIG. 10 , that portion of piezoelectric/electrostrictive body 14 is flexurally displaced so as to be convex downwardly, causing the upper end face of thedisplacement transmitter 24 in thedrive region 20 to be spaced from theplate member 12. - When the application of the above drive voltage is stopped, the portion of the piezoelectric/
electrostrictive body 14 which corresponds to thedrive region 20 is displaced back to its original state, allowing the upper end face of thedisplacement transmitter 24 to contact theplate member 12 again. - According to the above driving process, a drive voltage of positive polarity is applied between the
upper electrodes 28 and theintermediate electrodes 42 that sandwich the first piezoelectric/electrostrictive layer 26A and also between thelower electrodes 30 and theintermediate electrodes 42 that sandwich the second piezoelectric/electrostrictive layer 26B to space the upper end face of thedisplacement transmitter 24 from the plate member 12 (first driving process). Alternatively, a drive voltage of positive polarity may be applied only between theupper electrodes 28 and theintermediate electrodes 42 that sandwich the first piezoelectric/electrostrictive layer 26A (second driving process), or a drive voltage of positive polarity may be applied only between thelower electrodes 30 and theintermediate electrodes 42 that sandwich the second piezoelectric/electrostrictive layer 26B (third driving process). Though the first through third driving processes perform similar operations, the displacement produced by the first driving process is the greatest, the displacement produced by the third driving process is the second greatest, and the displacement produced by the second driving process is the smallest, if the drive voltage is the same. Therefore, the actuator element can be driven at a low voltage if the first driving process or the third driving process is employed. - Alternatively, a drive voltage of opposite polarity (e.g., a voltage of −25 V, for example, with respect to the intermediate electrodes 42) may be applied between the
upper electrodes 28 and theintermediate electrodes 42 and/or between,thelower electrodes 30 and theintermediate electrodes 42, or the direction of polarization of the first and second piezoelectric/electrostrictive layers electrostrictive body 14 which corresponds to thedrive region 20 is flexurally displaced so as to be convex toward theplate member 12, causing the upper end face of thedisplacement transmitter 24 to strongly press the lower surface of theplate member 12. - The
actuator element 10B according to the second embodiment as described above is capable of achieving a parallel-type drive mode to obtain a desired displacement without using vibration plates, and can be made lower in profile, lighter in weight, and lower in cost. Particularly, because the piezoelectric/electrostrictive layers included in the piezoelectric/electrostrictive body 14 are of a dual-layer structure (the first and second piezoelectric/electrostrictive layers electrostrictive layers - As shown in
FIG. 11 , as eachupper electrode 28 and eachintermediate electrode 42 are connected to the lower surface of thelaminated assembly 40 through the throughholes laminated assembly 40, theupper electrodes 28 and theintermediate electrodes 42 formed on thelaminated assembly 40 can easily be connected (signals can easily be supplied), and can easily be wired to a drive circuit (not shown). - The
intermediate electrodes 42 may be turned into a common structure. Turning theintermediate electrodes 42 into a common structure includes electrically connectingintermediate electrodes 42 or forming oneintermediate electrode 42 on the entire upper surface of the second piezoelectric/electrostrictive layer 26B. By turning theintermediate electrodes 42 into a common structure, the fabrication process can be simplified, and the wiring can be facilitated. The waveform of the drive voltage can also be simplified, and the drive circuit system can be simplified. - The
actuator element 10B according to the second embodiment can employ a structure in which a plurality ofactuator units 32 are provided in association with onebeam 16, as shown inFIG. 12 . - Some modifications of the
actuator element 10B according to the second embodiment will be described below with reference toFIGS. 13 and 14 . Those parts which correspond to those shown inFIG. 10 are denoted by identical reference characters, and will not be described overlappingly. - As shown in
FIG. 13 , an actuator element 10Ba according to a first modification differs in that it hasupper electrodes 28,intermediate electrodes 42, andlower electrodes 30 which are formed on portions of the piezoelectric/electrostrictive body 14 which correspond to thedrive regions 20. - An example of a driving process will be described below. While the piezoelectric/electrostrictive body,14 is in a natural state, each upper end face of the
displacement transmitters 24 is spaced from the lower surface of theplate member 12. - A drive voltage of positive polarity is applied between the
upper electrode 28 and theintermediate electrode 42 of theactuator unit 32 that corresponds to a certain drive region 20 (e.g., theright drive region 20 inFIG. 13 ), and a drive voltage of positive polarity is applied between thelower electrode 30 and theintermediate electrode 42. The portion of the piezoelectric/electrostrictive body 14 which corresponds to thedrive region 20 is flexurally displaced so as to be convex toward theplate member 12. The displacement is transmitted to thedisplacement transmitter 24, and the upper end face of thedisplacement transmitter 24 is brought into contact with the lower surface of theplate member 12, as shown inFIG. 13 . - When the application of the above drive voltage is stopped, the
actuator unit 32 of thedrive region 20 is displaced back to its original state, spacing the upper end face of thedisplacement transmitter 24 from theplate member 12. - According to the above driving process, a drive voltage of positive polarity is applied between the
upper electrode 28 and theintermediate electrode 42 that sandwich the first piezoelectric/electrostrictive layer 26A and also between thelower electrode 30 and theintermediate electrode 42 that sandwich the second piezoelectric/electrostrictive layer 26B to bring the upper end face of thedisplacement transmitter 24 into contact with the plate member 12 (fourth driving process). Alternatively, a drive voltage of positive polarity may be applied only between theupper electrode 28 and theintermediate electrode 42 that sandwich the first piezoelectric/electrostrictive layer 26A (fifth driving process), or a drive voltage of positive polarity may be applied only between thelower electrode 30 and theintermediate electrode 42 that sandwich the second piezoelectric/electrostrictive layer 26B (sixth driving process). Though the fourth through sixth driving processes perform similar displacing operations, the displacement produced by the fourth driving process is the greatest, the displacement produced by the sixth driving process is the second greatest, and the displacement produced by the fifth driving process is the smallest, if the drive voltage is the same. Therefore, the actuator element can be driven at a low voltage if the fourth driving process or the sixth driving process is employed. - Alternatively, a drive voltage of opposite polarity (e.g., a voltage of −25 V, for example, with respect to the intermediate electrode 42) may be applied between the
upper electrode 28 and theintermediate electrode 42 and/or between thelower electrode 30 and theintermediate electrode 42, or the direction of polarization of the first and second piezoelectric/electrostrictive layers electrostrictive body 14 which corresponds to thedrive region 20 is flexurally displaced so as to be concave toward theplate member 12, causing the upper end face of thedisplacement transmitter 24 to be spaced from the lower surface of theplate member 12. - According to the first modification, as shown in
FIG. 14 , a plurality ofactuator units 32 may be provided in association with onedrive region 20. Theintermediate electrodes 42 may be turned into a common structure. - As shown in
FIG. 15 , an actuator element 10Bb according to a second modification differs in that it hasupper electrodes 28,intermediate electrodes 42, andlower electrodes 30 which are formed on portions of the piezoelectric/electrostrictive body 14 which correspond to thebeams 16 and portions of the piezoelectric/electrostrictive body 14 which correspond to thedrive regions 20. - For bringing the upper end face of the
displacement transmitter 24 into contact with the lower surface of theplate member 12, no drive voltage is applied between theupper electrodes 28 and theintermediate electrodes 42 and between thelower electrodes 30 and theintermediate electrodes 42 which are formed on a portion corresponding to thebeams 16, but a drive voltage of positive polarity may be applied between theupper electrode 28 and theintermediate electrode 42 and/or between thelower electrode 30 and theintermediate electrode 42 which are formed on a portion corresponding to thedrive region 20. - For spacing the upper end face of the
displacement transmitter 24 from the lower surface of theplate member 12, no drive voltage is applied between theupper electrode 28 and theintermediate electrode 42 and between thelower electrode 30 and theintermediate electrode 42 which are formed on the portion corresponding to thedrive region 20, but a drive voltage of positive polarity may be applied between theupper electrodes 28 and theintermediate electrodes 42 and/or between thelower electrodes 30 and theintermediate electrodes 42 which are formed on the portions corresponding to thebeams 16. - In
FIG. 10 , when the application of the drive voltage is stopped, thedisplacement transmitter 24 is brought into contact with theplate member 12 only under repelling forces from the piezoelectric/electrostrictive body 14, thedisplacement transmitter 24, etc. According to the second modification, since the drive force of theactuator unit 32 on the portion corresponding to thedrive region 20 can also be used, the upper end face of thedisplacement transmitter 24 can reliably be brought into contact with the lower surface of theplate member 12. - In the second modification, the
intermediate electrodes 42 may be turned into a common structure. Turning theintermediate electrodes 42 into a common structure includes electrically connectingintermediate electrodes 42 formed on portions corresponding to thebeams 16 or electrically connectingintermediate electrodes 42 formed on portions corresponding to thedrive regions 20, or forming oneintermediate electrode 42 on the entire upper surface of the second piezoelectric/electrostrictive layer 26B. - As with
FIGS. 12 and 14 , a plurality ofactuator units 32 may be provided in association with onebeam 16, or a plurality ofactuator units 32 may be provided in association with onedrive region 20. - An embodiment in which the
actuator element 10B according to the second embodiment is applied to a display device will be described below with reference toFIG. 16 . - As shown in
FIG. 16 , adisplay device 100 according to the present embodiment employs anoptical waveguide plate 104 as theplate member 12 into which light (introduced light) 102 from a light source (not shown) is introduced from an end face thereof. - A joining
layer 22 is formed on the entire upper surface of the piezoelectric/electrostrictive body 14, and thedisplacement transmitters 24 are formed on the upper surface of the joininglayer 22 in association with therespective drive regions 20. Alight scattering layer 108 is formed so as to wholly overlap thedisplacement transmitters 24 and the joininglayer 22 through a joininglayer 106. Thespacers 18 are disposed in portions where thebeams 16 are to be disposed, in a region between theoptical waveguide plate 104 and the piezoelectric/electrostrictive body 14. Thespacers 18 have upper surfaces held in contact with theoptical waveguide plate 104 and lower surfaces held in contact with thelight scattering layer 108. - Each
beam 16 includes onespacer 18 disposed between theoptical waveguide plate 104 and the piezoelectric/electrostrictive body 14, a portion of thelight scattering layer 108 and portions of the joininglayers spacer 18. Thedrive regions 20 divided by thebeams 16 are arranged in a matrix or staggered pattern, making a single pixel of asingle drive region 20 or making a single pixel of a plurality ofdrive regions 20. Eachspacer 18 may be constructed of a light absorbing layer,. Eachspacer 18 may be constructed of another member, and a light absorbing layer may be interposed between thespacers 18 and theoptical waveguide plate 104. - Operation of the
display device 100 according to the present embodiment will be described below. While the piezoelectric/electrostrictive body 14 is in a natural state, the end face of thelight scattering layer 108 contacts the back of theoptical waveguide plate 104 by a distance equal to or smaller than the wavelength of the introduced light 100 (the light introduced into the optical waveguide plate). Therefore,white light 110, for example, is emitted from the principal surface of theoptical waveguide plate 104. - Then, a drive voltage of positive polarity is applied between the
upper electrodes 28 and theintermediate electrodes 42 that are formed around a certain drive region 20 (e.g., theright drive region 20 inFIG. 16 ), and a drive voltage of positive polarity is applied between thelower electrodes 30 and theintermediate electrodes 42. The peripheral portion of thedrive region 20 tends to be flexurally displaced so as to be convex toward theoptical waveguide plate 104. However, since the flexural displacement is suppressed by thespacers 18 and theoptical waveguide plate 104, the energy produced at this time is transmitted to the portion of the piezoelectric/electrostrictive body 14 which corresponds to thedrive region 20. Therefore, as shown inFIG. 16 , that portion of the piezoelectric/electrostrictive body 14 is flexurally displaced so as to be convex downwardly, extinguishing light from thedrive region 20. - Since the
display device 100 according to the present embodiment employs theactuator element 10B according to the second embodiment, thedisplay apparatus 100 can be made lower in profile, lighter in weight, and lower in cost. - Each
beam 16 includes buffer layers. Specifically, the joininglayers light scattering layer 108 directly beneath thespacers 18 and the piezoelectric/electrostrictive body 14. If thespacers 18 are made of a hard material, and a thin film such as thelight scattering layer 108 is formed on the lower surfaces of thespacers 18, stresses tend to concentrate on portions of the light scattering layer 108 (boundaries between itself and the spacers 18), causing thelight scattering layer 108 to be broken due to repeated displacement of the piezoelectric/electrostrictive body 14. According to the present embodiment, the joininglayers - The
actuator elements - The actuator element and the device employing the actuator element according to the present invention are not limited to the above embodiments, but may incorporate various structures without departing from the essential features of the present invention.
Claims (16)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-277887 | 2003-07-22 | ||
JP2003277887 | 2003-07-22 | ||
JP2004195070 | 2004-06-30 | ||
JP2004-195070 | 2004-06-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
US20050082946A1 true US20050082946A1 (en) | 2005-04-21 |
US20060197413A9 US20060197413A9 (en) | 2006-09-07 |
US7141915B2 US7141915B2 (en) | 2006-11-28 |
Family
ID=34525357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/896,769 Expired - Fee Related US7141915B2 (en) | 2003-07-22 | 2004-07-22 | Actuator device |
Country Status (1)
Country | Link |
---|---|
US (1) | US7141915B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080093952A1 (en) * | 2004-03-16 | 2008-04-24 | Palo Alto Research Center Incorporated | Hypersonic transducer |
US20090122381A1 (en) * | 2006-07-06 | 2009-05-14 | Nikon Corporation | Microactuator, optical device and exposure apparatus, and device manufacturing method |
US20130182878A1 (en) * | 2012-01-12 | 2013-07-18 | Lin Liu | Vibration Speaker |
WO2015033346A1 (en) * | 2013-09-09 | 2015-03-12 | Audio Pixels Ltd. | Microelectromechanical apparatus for generating a physical effect |
US9190604B2 (en) | 2009-04-24 | 2015-11-17 | Ngk Insulators, Ltd. | Manufacturing method for thin board-shaped fired piezoelectric body |
US20150353430A1 (en) * | 2013-03-28 | 2015-12-10 | Tdk Corporation | Ceramic composition |
US9287491B2 (en) * | 2014-01-20 | 2016-03-15 | Seiko Epson Corporation | Piezoelectric element, liquid ejecting head, and sensor |
CN105519134A (en) * | 2013-09-04 | 2016-04-20 | 原子能和替代能源委员会 | Digital acoustic device with increased sound power |
CN105700129A (en) * | 2011-10-03 | 2016-06-22 | 三美电机株式会社 | Optical scanner apparatus and optical scanner control apparatus |
RU168462U1 (en) * | 2016-07-01 | 2017-02-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" | HEAT MICROMECHANICAL ACTUATOR |
US10433067B2 (en) | 2015-07-22 | 2019-10-01 | Audio Pixels Ltd. | DSR speaker elements and methods of manufacturing thereof |
US10567883B2 (en) | 2015-07-22 | 2020-02-18 | Audio Pixels Ltd. | Piezo-electric actuators |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100653651B1 (en) * | 2004-12-02 | 2006-12-05 | 한국전자통신연구원 | Structure for optical device and a method for fabricating the same |
JP4484778B2 (en) * | 2005-07-08 | 2010-06-16 | 富士フイルム株式会社 | Small thin film movable element, small thin film movable element array, and driving method of small thin film movable element |
US8237334B2 (en) | 2009-04-22 | 2012-08-07 | Parker-Hannifin Corporation | Piezo actuator |
JP5828368B2 (en) * | 2010-12-14 | 2015-12-02 | セイコーエプソン株式会社 | Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, and piezoelectric sensor |
US8659816B2 (en) | 2011-04-25 | 2014-02-25 | Qualcomm Mems Technologies, Inc. | Mechanical layer and methods of making the same |
IL225374A0 (en) * | 2013-03-21 | 2013-07-31 | Noveto Systems Ltd | Transducer system |
US20160376144A1 (en) * | 2014-07-07 | 2016-12-29 | W. L. Gore & Associates, Inc. | Apparatus and Method For Protecting a Micro-Electro-Mechanical System |
US10404954B2 (en) * | 2016-01-21 | 2019-09-03 | Ricoh Company, Ltd. | Optical deflection apparatus, image projector, optical writing unit, and object recognition device |
DE102016111909B4 (en) * | 2016-06-29 | 2020-08-13 | Infineon Technologies Ag | Micromechanical structure and method of making it |
CN111405455B (en) * | 2019-01-02 | 2022-06-07 | 京东方科技集团股份有限公司 | Sound production device, manufacturing method thereof and display device |
IT201900002481A1 (en) * | 2019-02-20 | 2020-08-20 | Ask Ind Spa | METHOD OF REALIZATION OF A PIEZOELECTRIC MICROPHONE SENSOR WITH A PILLAR STRUCTURE. |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4742264A (en) * | 1985-03-08 | 1988-05-03 | Murata Manufacturing Co., Ltd. | Piezoelectric sound generator |
US5233256A (en) * | 1991-01-30 | 1993-08-03 | Murata Manufacturing Co., Ltd. | Method of driving piezoelectric bimorph device and piezoelectric bimorph device |
US5266964A (en) * | 1990-09-14 | 1993-11-30 | Brother Kogyo Kabushiki Kaisha | Piezoelectric ink jet printer head |
US5517076A (en) * | 1993-10-14 | 1996-05-14 | Ngk Insulators, Ltd. | Zirconia diaphragm structure and piezoelectric/electrostrictive element incorporating same |
US5545461A (en) * | 1994-02-14 | 1996-08-13 | Ngk Insulators, Ltd. | Ceramic diaphragm structure having convex diaphragm portion and method of producing the same |
US5594292A (en) * | 1993-11-26 | 1997-01-14 | Ngk Insulators, Ltd. | Piezoelectric device |
US5600197A (en) * | 1994-02-14 | 1997-02-04 | Ngk Insulators, Ltd. | Piezoelectric/electrostrictive film element and method of producing the same |
US5634999A (en) * | 1994-09-06 | 1997-06-03 | Ngk Insulators, Ltd. | Method of producing ceramic diaphragm structure having convex diaphragm portion |
US5709802A (en) * | 1991-06-11 | 1998-01-20 | International Business Machines Corporation | Method of making a micro-actuator device |
US5771321A (en) * | 1996-01-04 | 1998-06-23 | Massachusetts Institute Of Technology | Micromechanical optical switch and flat panel display |
US5852337A (en) * | 1996-05-27 | 1998-12-22 | Ngk Insulators, Ltd. | Piezoelectric film-type element |
US5862275A (en) * | 1996-07-10 | 1999-01-19 | Ngk Insulators, Ltd. | Display device |
US5867302A (en) * | 1997-08-07 | 1999-02-02 | Sandia Corporation | Bistable microelectromechanical actuator |
US5953469A (en) * | 1996-10-29 | 1999-09-14 | Xeotron Corporation | Optical device utilizing optical waveguides and mechanical light-switches |
US6028978A (en) * | 1996-12-16 | 2000-02-22 | Ngk Insulators, Ltd. | Display device having a colored layer disposed between a displacement transmitting section and an optical waveguide plate |
US6174051B1 (en) * | 1996-08-19 | 2001-01-16 | Brother Kogyo Kabushiki Kaisha | Ink jet head |
US6265811B1 (en) * | 1996-11-29 | 2001-07-24 | Ngk Insulators, Ltd. | Ceramic element, method for producing ceramic element, display device, relay device and capacitor |
US6291932B1 (en) * | 1998-02-17 | 2001-09-18 | Canon Kabushiki Kaisha | Stacked piezoelectric element and producing method therefor |
US20010041489A1 (en) * | 2000-03-10 | 2001-11-15 | Ngk Insulators, Ltd. | Method for producing display apparatus |
US6347441B1 (en) * | 1999-07-07 | 2002-02-19 | Samsung Electro-Mechanics Co., Ltd. | Manufacturing method of multilayered piezoelectric/electrostrictive ceramic actuator |
US6381381B1 (en) * | 1998-01-20 | 2002-04-30 | Seiko Epson Corporation | Optical switching device and image display device |
US6452583B1 (en) * | 1997-07-18 | 2002-09-17 | Ngk Insulators, Ltd. | Display-driving device and display-driving method |
US20020140348A1 (en) * | 2001-03-27 | 2002-10-03 | Ngk Insulators, Ltd. | Display apparatus |
US20020146330A1 (en) * | 2001-04-06 | 2002-10-10 | Ngk Insulators, Ltd. | Micropump |
US6470115B1 (en) * | 1997-06-18 | 2002-10-22 | Seiko Epson Corporation | Optical switching element and image display device |
US20030020370A1 (en) * | 2001-04-06 | 2003-01-30 | Ngk Insulators, Ltd. | Cell driving type actuator and method for manufacturing the same |
US20030063368A1 (en) * | 2001-09-03 | 2003-04-03 | Ngk Insulators, Ltd. | Display device and method for producing the same |
US6565331B1 (en) * | 1999-03-03 | 2003-05-20 | Ngk Insulators, Ltd. | Pump |
US6578245B1 (en) * | 1998-08-31 | 2003-06-17 | Eastman Kodak Company | Method of making a print head |
US6672714B2 (en) * | 1998-02-18 | 2004-01-06 | Sony Corporation | Ink-jet printhead |
US6690344B1 (en) * | 1999-05-14 | 2004-02-10 | Ngk Insulators, Ltd. | Method and apparatus for driving device and display |
US6700305B2 (en) * | 1999-12-20 | 2004-03-02 | Minolta Co., Ltd. | Actuator using a piezoelectric element |
US6919667B2 (en) * | 2001-09-13 | 2005-07-19 | Ngk Insulators, Ltd. | Piezoelectric/electrostrictive film device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0965669A (en) | 1995-08-28 | 1997-03-07 | Sony Corp | Piezoelectric actuator |
JP3850130B2 (en) | 1998-03-13 | 2006-11-29 | キヤノン株式会社 | Multilayer piezoelectric element |
JPH11252333A (en) | 1998-02-27 | 1999-09-17 | Matsushita Electric Ind Co Ltd | Image reader |
JPH11339561A (en) | 1998-05-27 | 1999-12-10 | Ngk Insulators Ltd | Ceramic element, manufacture of ceramic element, display device, relay device and capacitor |
US6699018B2 (en) | 2001-04-06 | 2004-03-02 | Ngk Insulators, Ltd. | Cell driving type micropump member and method for manufacturing the same |
JP3942388B2 (en) | 2001-04-06 | 2007-07-11 | 日本碍子株式会社 | Micro pump |
JP2003052181A (en) | 2001-05-29 | 2003-02-21 | Olympus Optical Co Ltd | Piezoelectric actuator, driver of the same and camera having variable mirror using the piezoelectric actuator |
JP2003161896A (en) | 2001-09-03 | 2003-06-06 | Ngk Insulators Ltd | Display device and method for producing the same |
-
2004
- 2004-07-22 US US10/896,769 patent/US7141915B2/en not_active Expired - Fee Related
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4742264A (en) * | 1985-03-08 | 1988-05-03 | Murata Manufacturing Co., Ltd. | Piezoelectric sound generator |
US5266964A (en) * | 1990-09-14 | 1993-11-30 | Brother Kogyo Kabushiki Kaisha | Piezoelectric ink jet printer head |
US5233256A (en) * | 1991-01-30 | 1993-08-03 | Murata Manufacturing Co., Ltd. | Method of driving piezoelectric bimorph device and piezoelectric bimorph device |
US5709802A (en) * | 1991-06-11 | 1998-01-20 | International Business Machines Corporation | Method of making a micro-actuator device |
US5733670A (en) * | 1993-10-14 | 1998-03-31 | Ngk Insulators, Ltd. | Zirconia diaphragm structure, method of producing the same, and piezoelectric/electrostrictive film element having the zirconia diaphragm structure |
US5517076A (en) * | 1993-10-14 | 1996-05-14 | Ngk Insulators, Ltd. | Zirconia diaphragm structure and piezoelectric/electrostrictive element incorporating same |
US5594292A (en) * | 1993-11-26 | 1997-01-14 | Ngk Insulators, Ltd. | Piezoelectric device |
US5600197A (en) * | 1994-02-14 | 1997-02-04 | Ngk Insulators, Ltd. | Piezoelectric/electrostrictive film element and method of producing the same |
US5545461A (en) * | 1994-02-14 | 1996-08-13 | Ngk Insulators, Ltd. | Ceramic diaphragm structure having convex diaphragm portion and method of producing the same |
US5634999A (en) * | 1994-09-06 | 1997-06-03 | Ngk Insulators, Ltd. | Method of producing ceramic diaphragm structure having convex diaphragm portion |
US5771321A (en) * | 1996-01-04 | 1998-06-23 | Massachusetts Institute Of Technology | Micromechanical optical switch and flat panel display |
US5852337A (en) * | 1996-05-27 | 1998-12-22 | Ngk Insulators, Ltd. | Piezoelectric film-type element |
US5862275A (en) * | 1996-07-10 | 1999-01-19 | Ngk Insulators, Ltd. | Display device |
US6174051B1 (en) * | 1996-08-19 | 2001-01-16 | Brother Kogyo Kabushiki Kaisha | Ink jet head |
US5953469A (en) * | 1996-10-29 | 1999-09-14 | Xeotron Corporation | Optical device utilizing optical waveguides and mechanical light-switches |
US6265811B1 (en) * | 1996-11-29 | 2001-07-24 | Ngk Insulators, Ltd. | Ceramic element, method for producing ceramic element, display device, relay device and capacitor |
US6476540B2 (en) * | 1996-11-29 | 2002-11-05 | Ngk Insulators, Ltd. | Ceramic element, method for producing ceramic element, display device, relay device, and capacitor |
US6028978A (en) * | 1996-12-16 | 2000-02-22 | Ngk Insulators, Ltd. | Display device having a colored layer disposed between a displacement transmitting section and an optical waveguide plate |
US6470115B1 (en) * | 1997-06-18 | 2002-10-22 | Seiko Epson Corporation | Optical switching element and image display device |
US6452583B1 (en) * | 1997-07-18 | 2002-09-17 | Ngk Insulators, Ltd. | Display-driving device and display-driving method |
US5867302A (en) * | 1997-08-07 | 1999-02-02 | Sandia Corporation | Bistable microelectromechanical actuator |
US6381381B1 (en) * | 1998-01-20 | 2002-04-30 | Seiko Epson Corporation | Optical switching device and image display device |
US6291932B1 (en) * | 1998-02-17 | 2001-09-18 | Canon Kabushiki Kaisha | Stacked piezoelectric element and producing method therefor |
US6672714B2 (en) * | 1998-02-18 | 2004-01-06 | Sony Corporation | Ink-jet printhead |
US6578245B1 (en) * | 1998-08-31 | 2003-06-17 | Eastman Kodak Company | Method of making a print head |
US6565331B1 (en) * | 1999-03-03 | 2003-05-20 | Ngk Insulators, Ltd. | Pump |
US6690344B1 (en) * | 1999-05-14 | 2004-02-10 | Ngk Insulators, Ltd. | Method and apparatus for driving device and display |
US6347441B1 (en) * | 1999-07-07 | 2002-02-19 | Samsung Electro-Mechanics Co., Ltd. | Manufacturing method of multilayered piezoelectric/electrostrictive ceramic actuator |
US6700305B2 (en) * | 1999-12-20 | 2004-03-02 | Minolta Co., Ltd. | Actuator using a piezoelectric element |
US20010041489A1 (en) * | 2000-03-10 | 2001-11-15 | Ngk Insulators, Ltd. | Method for producing display apparatus |
US20020140348A1 (en) * | 2001-03-27 | 2002-10-03 | Ngk Insulators, Ltd. | Display apparatus |
US20030020370A1 (en) * | 2001-04-06 | 2003-01-30 | Ngk Insulators, Ltd. | Cell driving type actuator and method for manufacturing the same |
US20020146330A1 (en) * | 2001-04-06 | 2002-10-10 | Ngk Insulators, Ltd. | Micropump |
US20030063368A1 (en) * | 2001-09-03 | 2003-04-03 | Ngk Insulators, Ltd. | Display device and method for producing the same |
US6919667B2 (en) * | 2001-09-13 | 2005-07-19 | Ngk Insulators, Ltd. | Piezoelectric/electrostrictive film device |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080093952A1 (en) * | 2004-03-16 | 2008-04-24 | Palo Alto Research Center Incorporated | Hypersonic transducer |
US7482729B2 (en) * | 2004-03-16 | 2009-01-27 | Xerox Corporation | Hypersonic transducer |
US8570632B2 (en) | 2006-07-06 | 2013-10-29 | Nikon Corporation | Microactuator, optical device and exposure apparatus, and device manufacturing method |
US7952780B2 (en) | 2006-07-06 | 2011-05-31 | Nikon Corporation | Microactuator, optical device and exposure apparatus, and device manufacturing method |
US20110187810A1 (en) * | 2006-07-06 | 2011-08-04 | Nikon Corporation | Microactuator, optical device and exposure apparatus, and device manufacturing method |
US20090122381A1 (en) * | 2006-07-06 | 2009-05-14 | Nikon Corporation | Microactuator, optical device and exposure apparatus, and device manufacturing method |
US9190604B2 (en) | 2009-04-24 | 2015-11-17 | Ngk Insulators, Ltd. | Manufacturing method for thin board-shaped fired piezoelectric body |
CN105700129A (en) * | 2011-10-03 | 2016-06-22 | 三美电机株式会社 | Optical scanner apparatus and optical scanner control apparatus |
US20130182878A1 (en) * | 2012-01-12 | 2013-07-18 | Lin Liu | Vibration Speaker |
US9148716B2 (en) * | 2012-01-12 | 2015-09-29 | Aac Acoustic Technologies (Shenzhen) Co., Ltd. | Vibration speaker |
US20150353430A1 (en) * | 2013-03-28 | 2015-12-10 | Tdk Corporation | Ceramic composition |
US9487445B2 (en) * | 2013-03-28 | 2016-11-08 | Tdk Corporation | Ceramic composition |
US9900700B2 (en) * | 2013-09-04 | 2018-02-20 | Commissariat à l'énergie atomique et aux énergies alternatives | Digital acoustic device with increased sound power |
CN105519134A (en) * | 2013-09-04 | 2016-04-20 | 原子能和替代能源委员会 | Digital acoustic device with increased sound power |
US20160205478A1 (en) * | 2013-09-04 | 2016-07-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Digital acoustic device with increased sound power |
US9510103B2 (en) * | 2013-09-09 | 2016-11-29 | Audio Pixels Ltd. | Microelectromechanical apparatus for generating a physical effect |
KR20160069517A (en) * | 2013-09-09 | 2016-06-16 | 오디오 픽셀즈 리미티드 | Microelectromechanical apparatus for generating a physical effect |
US20150071467A1 (en) * | 2013-09-09 | 2015-03-12 | Audio Pixels Ltd. | Microelectromechanical apparatus for generating a physical effect |
WO2015033346A1 (en) * | 2013-09-09 | 2015-03-12 | Audio Pixels Ltd. | Microelectromechanical apparatus for generating a physical effect |
US10522733B2 (en) | 2013-09-09 | 2019-12-31 | Audio Pixels Ltd. | Microelectromechanical apparatus for generating a physical effect |
KR102180850B1 (en) * | 2013-09-09 | 2020-11-20 | 오디오 픽셀즈 리미티드 | Microelectromechanical apparatus for generating a physical effect |
US9287491B2 (en) * | 2014-01-20 | 2016-03-15 | Seiko Epson Corporation | Piezoelectric element, liquid ejecting head, and sensor |
US10433067B2 (en) | 2015-07-22 | 2019-10-01 | Audio Pixels Ltd. | DSR speaker elements and methods of manufacturing thereof |
US10567883B2 (en) | 2015-07-22 | 2020-02-18 | Audio Pixels Ltd. | Piezo-electric actuators |
RU168462U1 (en) * | 2016-07-01 | 2017-02-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" | HEAT MICROMECHANICAL ACTUATOR |
Also Published As
Publication number | Publication date |
---|---|
US20060197413A9 (en) | 2006-09-07 |
US7141915B2 (en) | 2006-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7126254B2 (en) | Actuator element and device including the actuator element | |
US20050082946A1 (en) | Actuator Device | |
JP4139434B2 (en) | Packaged strain actuator | |
US6512323B2 (en) | Piezoelectric actuator device | |
US5276657A (en) | Metal-electroactive ceramic composite actuators | |
US6476538B2 (en) | Piezoelectric/electrostrictive device and method of manufacturing same | |
US6140740A (en) | Piezoelectric transducer | |
EP0165886B1 (en) | Sheet-like piezoelectric element | |
EP0867043A1 (en) | Metal-electroactive ceramic composite transducers | |
US11614634B2 (en) | Piezoelectric MEMS actuator for compensating unwanted movements and manufacturing process thereof | |
US20050012434A1 (en) | Robust piezoelectric power generation module | |
CN108389958A (en) | Ultrasonic activation element and ultrasonic sensor | |
WO2015107932A1 (en) | Piezoelectric sensor | |
JPH11211748A (en) | Machine-electricity conversion element and its manufacture and acceleration sensor | |
JPH10190086A (en) | Piezo-electric/electrostrictive device | |
US6947201B2 (en) | Transverse electrodisplacive actuator array | |
US11571712B2 (en) | Vibration panel and electronic apparatus | |
US20130020910A1 (en) | Vibration power generation device and method of making the same | |
JPH11186626A (en) | Laminated piezoelectric actuator | |
US20130034252A1 (en) | Transducer module | |
CN111641350A (en) | Flextensional transducer based on shearing piezoelectric mode | |
US20050000629A1 (en) | Method of making ultrasound transducer or actuator | |
CN114325896B (en) | Zoom lens with radial telescopic-arch type amplifying structure and working method thereof | |
JPH1172723A (en) | Microoptical element, function element unit and their production | |
KR102391894B1 (en) | Piezoelectric device, piezoelectric actuator including the device, and piezoelectric module including the actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NGK INSULATORS, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKEUCHI, YUKIHISA;NANATAKI, TSUTOMU;KIMURA, KOJI;AND OTHERS;REEL/FRAME:016044/0208 Effective date: 20041129 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20181128 |