US20050037164A1 - Liquid-trapping bag for use in vacuum packaging - Google Patents
Liquid-trapping bag for use in vacuum packaging Download PDFInfo
- Publication number
- US20050037164A1 US20050037164A1 US10/795,149 US79514904A US2005037164A1 US 20050037164 A1 US20050037164 A1 US 20050037164A1 US 79514904 A US79514904 A US 79514904A US 2005037164 A1 US2005037164 A1 US 2005037164A1
- Authority
- US
- United States
- Prior art keywords
- bag
- panel
- gas
- inner layer
- baffles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000009461 vacuum packaging Methods 0.000 title abstract description 31
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 238000001816 cooling Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 7
- 229920005992 thermoplastic resin Polymers 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 229920000573 polyethylene Polymers 0.000 claims description 5
- -1 polyethylene Polymers 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- 239000004715 ethylene vinyl alcohol Substances 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 claims 2
- 230000009969 flowable effect Effects 0.000 claims 2
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 claims 2
- 239000007789 gas Substances 0.000 abstract description 10
- 239000010410 layer Substances 0.000 description 46
- 238000000034 method Methods 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 235000013305 food Nutrition 0.000 description 9
- 238000007789 sealing Methods 0.000 description 7
- 238000004049 embossing Methods 0.000 description 6
- 230000000979 retarding effect Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 235000021190 leftovers Nutrition 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/30—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/04—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/0076—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised in that the layers are not bonded on the totality of their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0036—Heat treatment
- B32B38/004—Heat treatment by physically contacting the layers, e.g. by the use of heated platens or rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B61/00—Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages
- B65B61/02—Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages for perforating, scoring, slitting, or applying code or date marks on material prior to packaging
- B65B61/025—Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages for perforating, scoring, slitting, or applying code or date marks on material prior to packaging for applying, e.g. printing, code or date marks on material prior to packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B9/00—Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
- B65B9/02—Enclosing successive articles, or quantities of material between opposed webs
- B65B9/04—Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
- B65B9/042—Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material for fluent material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D31/00—Bags or like containers made of paper and having structural provision for thickness of contents
- B65D31/02—Bags or like containers made of paper and having structural provision for thickness of contents with laminated walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D33/00—Details of, or accessories for, sacks or bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D33/00—Details of, or accessories for, sacks or bags
- B65D33/004—Information or decoration elements, e.g. level indicators, detachable tabs or coupons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/18—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
- B65D81/20—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
- B65D81/2007—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under vacuum
- B65D81/2038—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under vacuum with means for establishing or improving vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B—MAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B2160/00—Shape of flexible containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/31—Heat sealable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/40—Closed containers
- B32B2439/46—Bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/70—Food packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B9/00—Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
- B65B9/02—Enclosing successive articles, or quantities of material between opposed webs
- B65B9/04—Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
- B65B2009/047—Rotary pocket formers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/18—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
- B65D81/20—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
- B65D81/2007—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under vacuum
- B65D81/2023—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under vacuum in a flexible container
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1303—Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
Definitions
- the present invention relates to bags for use in vacuum packaging and methods and devices for manufacturing bags for use in vacuum packaging.
- a common method and device includes placing food into a gas-impermeable plastic bag, evacuating the air from the bag using suction from a vacuum pump or other suction source, and tightly sealing the bag.
- a bag for use in vacuum packaging can consist of a first panel and second panel, each panel consisting of a single layer of heat-sealable, plastic-based film (for example, polyethylene).
- the panels are sealed together along a substantial portion of the periphery of the panels by heat-sealing techniques so as to form an envelope.
- Perishable products such as spoilable food, or other products are packed into the envelope via the unsealed portion through which air is subsequently evacuated. After perishable products are packed into the bag and air is evacuated from the inside of the bag, the unsealed portion is heated and pressed such that the panels adhere to each other, sealing the bag.
- the embossing forms a pattern of protuberances on at least one of the panels.
- the protuberances can be discrete pyramids, hemispheres, etc., and are formed by pressing a panel using heated female and male dies.
- the first panel is overlaid on the second panel such that the protuberances from one panel face the opposite panel.
- the contacting peripheral edges of the panels are sealed to each other to form an envelope having an inlet at an unsealed portion of the periphery.
- the perishable or other products are packed into the envelope through the inlet, and the inlet is sealed. Thereafter, an opening is pierced in a part of the panel material that communicates with the charnels, air is removed from the interior of the envelope through the channels and opening, and the opening is sealed.
- This type of bag requires two additional sealing steps after the perishable or other product is packed into the envelope.
- embossing creates impressions on the plastic such that indentations are formed on the opposite side of the panel
- a vacuum bag having a first panel and a second panel consisting of laminated films.
- Each panel comprises a heat-sealable inner layer, a gas-impermeable outer layer, and optionally, one or more intermediate layers.
- Such a bag is described in U.S. Pat. No. Re. 34,929, incorporated herein by reference.
- At least one film from at least one panel is embossed using an embossing mold to form protuberances and channels defined by the space between protuberances, so that air is readily evacuated from the vacuum bag.
- the bag consists of a first and second panel, each panel consisting of a gas-impermeable outer layer and a heat-sealable inner layer.
- a plurality of heat-sealable strand elements are heat bonded at regular intervals to the inner layer of either the first panel or the second panel.
- the spaces between strand elements act as channels for the evacuation of air.
- the strand elements are extruded from an extrusion head and heat bonded to the heat-sealable layer by use of pressure rolls. Separate equipment is required for producing strand elements, and a procedure of heat bonding a plurality of strand elements at regular intervals to the heat-sealable inner layer is complicated. Also, various shapes of pattern are hard to form using this process.
- FIG. 1A is a perspective view of a method for manufacturing a vacuum bag in accordance with one embodiment of the present invention
- FIG. 1B is a side view of the method shown in FIG. 1A illustrating the embossing method used in an embodiment of the present invention
- FIG. 1C is a close-up view of a portion of FIG. 1B ;
- FIG. 2A is a top view of a partial portion of a first panel overlapping a partial portion of a second panel in accordance with one embodiment of the present invention
- FIG. 2B is a cross-section view through line 2 B- 2 B of FIG. 2A ;
- FIG. 3A-3E are plan views of exemplary patterns on a panel in accordance with embodiments of the present invention, manufactured by the process shown in FIG. 1 ;
- FIG. 4 is a perspective view of a vacuum bag in accordance with one embodiment of the present invention.
- FIGS. 1A-1C illustrate one embodiment of a method for manufacturing a vacuum bag in accordance with the present invention.
- the vacuum bag comprises a first panel and a second panel, wherein each panel comprises a gas-impermeable base layer 108 and a heat-sealable inner layer 106 with at least one panel having liquid flow obstructing protuberances and/or channels.
- a laminating roll 102 and a cooling roll 104 are arranged so that melt-extruded resin can be introduced between the rolls and cooled to form the heat-sealable inner layer 106 and to laminate the formed inner layer 106 to the gas-impermeable base layer 108 . As illustrated in FIG.
- a gap between the laminating roll 102 and the cooling roll 104 can be controlled according to specifications (for example, thickness) of a panel for use in vacuum packaging.
- the temperature of the cooling roll 104 is maintained in a range such that the melt-extruded resin can be sufficiently cooled to form a desired pattern. For example, a temperature range of about ⁇ 15° C. to about ⁇ 10° C. can be sufficient to properly form the desired pattern.
- the temperature range of the cooling roll 104 can vary according to the composition of the resin, the composition of the gas-impermeable base layer 108 , environmental conditions, etc. and can require calibration.
- the cooling roll 104 can be sized to have a larger diameter than the laminating roll 102 , thereby bringing the melt-extruded resin into contact with more cooled surface area.
- the diameter of the cooling roll 104 can be about one-and-a-half to about three times as large (or more) as that of the laminating roll 102 .
- the heat-sealable inner layer 106 typically comprises a thermoplastic resin.
- the resin can be comprised of polyethylene (PE) suitable for preserving foods and harmless to a human body.
- PE polyethylene
- a vacuum bag can be manufactured by overlapping two panels such that the heat-sealable inner layers 106 of the two panels are brought into contact and heat is applied to a portion of the periphery of the panels to form an envelope.
- the thermoplastic resin can be chosen so that the two panels strongly bond to each other when sufficient heat is applied.
- the gas-impermeable base layer 108 is fed to the gap between the cooling roll 104 and the laminating roll 102 by a feeding means (not shown).
- the gas-impermeable base layer can be comprised of polyester, polyamide, ethylene vinyl alcohol (EVOH), nylon, or other material having similar properties, that is capable of being heated and capable of being used in this manufacturing process.
- the gas-impermeable base layer 108 can consist of one layer, or two or more layers. When employing a multilayer-structured base layer, it should be understood that a total thickness thereof is also adjusted within the allowable range for the total gas-impermeable base layer 108 .
- An extruder 110 is positioned in such a way that the melt-extruded resin is layered on the gas-impermeable base layer 108 by feeding the melt-extruded resin to a nip between the cooling roll 104 and the gas-impermeable base layer 108 .
- the resin is fed through a nozzle 112 of the extruder 110 .
- the temperature of the melt-extruded resin is dependent on the type of resin used, and can typically range from about 200° C. to about 250° C.
- the amount of resin extruded into the laminating unit 100 is dependent on the desired thickness of the heat-sealable inner layer 106 .
- a pattern fabricated on the circumferential surface of the cooling roll 104 in accordance with one embodiment of the present invention can include cavities (and/or protuberances) defining a plurality of discrete channels having a baffled structure.
- the resin extruded from the nozzle 112 is pressed between the cooling roll 104 and the gas-impermeable base layer 108 and flows into the cavities of the cooling roll 104 .
- the resin quickly cools and solidifies in the desired pattern while adhering to the gas-impermeable base layer 108 , thereby forming the heat-sealable inner layer 106 of the panel.
- the heat-sealable inner layer 106 can be formed while the resin is sufficiently heated to allow the resin to flow, thereby molding the resin, unlike other methods adopting a post-embossing treatment where the heat-sealable inner layer is drawn by a die or embossed between male and female components.
- each protuberance formed on the heat-sealable inner layer 106 of a panel can be determined by the depth of the cavities of the cooling roll 104 , and the width of the channel can be determined by the interval between the cavities.
- the shape, width, and thickness of the channels for the evacuation of air and/or other gases can be controlled by changing the specifications for the cavities of the cooling roll 104 .
- FIGS. 2A and 2B illustrate a cross-section (along line 2 B- 2 B) of two panels in accordance with one embodiment of the present invention (the thickness of the panels are exaggerated relative to the width of the channel walls and baffles).
- the heat-sealable inner layer 106 can range from preferably 0.5-6.0 mils in thickness at the channels 224 , and preferably 1.0-12.0 mils in thickness at the protuberances 226 , 228 , while the gas-impermeable base layer 108 can range from about preferably 0.5-8.0 mils in thickness.
- the dimensions of the inner layer and the base layer are set forth to illustrate, but are not to be construed to limit the dimensions of the inner layer and the base layer.
- FIG. 3A is a plan view of a pattern 320 formed on a panel by the cooling roll 104 for use in a vacuum bag, in which the heat-sealable inner layer 106 is molded in such a way that protuberances form the plurality of channels 224 having channels walls 226 and baffles 228 .
- the baffles 228 can be arranged in a herringbone pattern at angles such that air and/or other gases 340 (shown schematically) can be drawn around the baffles 228 by suction and evacuated from the vacuum bag, while heavier liquid particles 342 can be trapped between the channel walls 226 and the baffles 228 .
- baffles 228 and channel walls 226 Angles formed by the intersection of baffles 228 and channel walls 226 , and gaps between adjacent baffles 228 can be defined when producing the cooling roll 104 to suit the liquid intended to be trapped.
- Different arrangements of the baffles 228 relative to the chamber walls 226 , and relative to other baffles 228 can be multi-fold (shaped to define liquid-trapping vessels), and can be optimized to improve evacuation of the air and/or other gases 340 , while effectively preventing liquids 342 from being drawn out of the vacuum bag. For example, as shown in FIG.
- the baffles 228 can be arranged such that an approach angle for passing through the channel opening between the baffles 228 is severe and that vessels formed by the baffles 228 are relatively deep, thereby retarding liquid flow by deflecting liquid 342 into the vessels and trapping a significant amount of liquid 342 .
- baffle arrangements for retarding the evacuation of liquid 342 relative to the evacuation of air and/or other gases 340 .
- a pattern 320 fabricated on the circumferential surface of the cooling roll 104 , and thereafter the panel can mold protuberances forming a plurality of channels 224 defined by “V”-shaped baffles 228 , eliminating the need for molding channel walls.
- the channel walls 226 can extend substantially the length of the panel with only a portion of the length of the channels near an evacuation opening having baffles 228 .
- a pattern 320 fabricated on the circumferential surface of the cooling roll 104 , and thereafter the panel can mold protuberances forming a plurality of channels 224 having channels walls 226 and baffles 228 , wherein each baffle 228 extends across a substantial portion of the width of the channel 224 , thereby defining a path between the baffle 228 and the channel wall 226 for the air and/or other gases 340 to be drawn.
- the baffles 228 can alternatively be parabolic or rounded, as shown in FIG. 3D , to form pockets for collecting liquid particles 342 .
- FIG. 3E illustrates still another embodiment of a pattern 320 fabricated on the circumferential surface of the cooling roll 104 , and thereafter the panel, that can include parabolically-shaped or “U”-shaped baffles 228 arranged like fish-scales either along the length of the panel, or a portion of the panel to capture liquid particles 342 .
- the U-shaped baffles 228 can also include slits 330 in the troughs of the U-shaped baffles 228 small enough to improve the flow of air and/or other gases 340 while retarding an amount of liquid particles 342 .
- the baffles 228 can be more or less parabolic.
- One of ordinary skill in the art can appreciate the multitude of different baffle shapes for retarding the evacuation of liquid relative to the evacuation of air or other gases.
- FIG. 4 illustrates a bag for use in vacuum packaging in accordance with one embodiment of the present invention.
- the vacuum bag 450 comprises a first panel 452 and a second panel 454 overlapping each other. Channels 224 are formed on at least one of the panels 452 , 454 in accordance with an embodiment described above.
- the heat-sealable inner layer 106 and the gas-impermeable base layer 108 of the first and second panels 452 , 454 are typically made of the same material respectively, but can alternatively be made of different materials that exhibit heat-sealability and gas-impermeability respectively.
- the resin-formed layer 106 is used as an inner layer and the gas-impermeable base layer 108 is used as an outer layer.
- the lower, left, and right edges of the first and the second panel 452 , 454 are bonded to each other by heating, so as to form an envelope for receiving a perishable or other product to be vacuum packaged.
- air and/or other gases can be evacuated from the bag 450 , for example by a vacuum sealing machine as described in the above referenced U.S. Pat. No. 4,941,310, which is incorporated herein by reference.
- the inlet can be sealed by applying heat, thereby activating the heat-sealable inner layers 106 and bonding them together where contacted by the heat.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Packages (AREA)
Abstract
A bag for use in vacuum packaging comprises a first panel and a second panel overlapping each other. A plurality of channels having a plurality of baffles is formed on one or more of the panels for evacuating air and/or other gases from inside the bag using a suction source, while preventing liquids from being drawn into the suction source. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Description
- This application claims priority to the following U.S. Provisional Patent Application:
- U.S. Provisional Patent Application No. 60/452,168, entitled “LIQUID-TRAPPING BAG FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01177US0).
- This U.S. patent application incorporates by reference all of the following co-pending applications:
-
- U.S. Provisional Patent Application No. 60/452,138, entitled “METHOD FOR MANUFACTURING LIQUID-TRAPPING BAG FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01177US1);
- U.S. Provisional Patent Application No. 60/452,172, entitled “SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01178US0);
- U.S. Provisional Patent Application No. 60/452,171, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01178US1);
- U.S. Provisional Patent Application No. 60/451,954, entitled “SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01179US0);
- U.S. Provisional Patent Application No. 60/451,948, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01179US1);
- U.S. Provisional Patent Application No. 60/452,142, entitled “SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01180US0);
- U.S. Provisional Patent Application No. 60/452,021, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01180US1);
- U.S. Provisional Patent Application No. 60/451,955, entitled “SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01181US0);
- U.S. Provisional Patent Application No. 60/451,956, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01181US1);
- U.S. Provisional Patent Application No. 60/452,157, entitled “SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01182US0);
- U.S. Provisional Patent Application No. 60/452,139, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003 (Attorney Docket No. TILA-01182US1);
- U.S. patent application Ser. No. 10/169,485, entitled “METHOD FOR PREPARING AIR CHANNEL EQUIPPED FILM FOR USE IN VACUUM PACKAGE,” filed Jun. 26, 2002;
- U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING LIQUID-TRAPPING BAG FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01177US3, filed concurrently;
- U.S. patent application Ser. No. ______, entitled “SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01178US2, filed concurrently;
- U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01178US3, filed concurrently;
- U.S. patent application Ser. No. ______, entitled “SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01179US2, filed concurrently;
- U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01179US3, filed concurrently;
- U.S. patent application Ser. No. ______, entitled “SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01180US2, filed concurrently;
- U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01180US3, filed concurrently;
- U.S. patent application Ser. No. ______, entitled “SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01181US2, filed concurrently;
- U.S. patent application Ser. No. ______, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01181US3, filed concurrently;
- U.S. patent application Ser. No. ______, entitled “SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01182US2, filed concurrently; and
- U.S. patent application Ser. No. ______, entitled“METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” Attorney Docket No. TILA-01182US3, filed concurrently.
- The present invention relates to bags for use in vacuum packaging and methods and devices for manufacturing bags for use in vacuum packaging.
- Methods and devices for preserving perishable foods such as fish and meats, processed foods, prepared meals, and left-overs, and non-perishable items are widely known, and widely varied. Foods are perishable because organisms such as bacteria, fungus and mold grow over time after a food container is opened and the food is left exposed to the atmosphere. Most methods and devices preserve food by protecting food from organism-filled air. A common method and device includes placing food into a gas-impermeable plastic bag, evacuating the air from the bag using suction from a vacuum pump or other suction source, and tightly sealing the bag.
- A bag for use in vacuum packaging can consist of a first panel and second panel, each panel consisting of a single layer of heat-sealable, plastic-based film (for example, polyethylene). The panels are sealed together along a substantial portion of the periphery of the panels by heat-sealing techniques so as to form an envelope. Perishable products, such as spoilable food, or other products are packed into the envelope via the unsealed portion through which air is subsequently evacuated. After perishable products are packed into the bag and air is evacuated from the inside of the bag, the unsealed portion is heated and pressed such that the panels adhere to each other, sealing the bag.
- U.S. Pat. No. 2,778,173, incorporated herein by reference, discloses a method for improving the evacuation of air from the bag by forming channels in at least one of the panels with the aid of embossing techniques. Air escapes from the bag along the channels during evacuation. The embossing forms a pattern of protuberances on at least one of the panels. The protuberances can be discrete pyramids, hemispheres, etc., and are formed by pressing a panel using heated female and male dies. The first panel is overlaid on the second panel such that the protuberances from one panel face the opposite panel. The contacting peripheral edges of the panels are sealed to each other to form an envelope having an inlet at an unsealed portion of the periphery. The perishable or other products are packed into the envelope through the inlet, and the inlet is sealed. Thereafter, an opening is pierced in a part of the panel material that communicates with the charnels, air is removed from the interior of the envelope through the channels and opening, and the opening is sealed. This type of bag requires two additional sealing steps after the perishable or other product is packed into the envelope. One further problem is that embossing creates impressions on the plastic such that indentations are formed on the opposite side of the panel
- To avoid additional sealing steps, a vacuum bag is formed having a first panel and a second panel consisting of laminated films. Each panel comprises a heat-sealable inner layer, a gas-impermeable outer layer, and optionally, one or more intermediate layers. Such a bag is described in U.S. Pat. No. Re. 34,929, incorporated herein by reference. At least one film from at least one panel is embossed using an embossing mold to form protuberances and channels defined by the space between protuberances, so that air is readily evacuated from the vacuum bag.
- U.S. Pat. No. 5,554,423, incorporated herein by reference, discloses still another bag usable in vacuum packaging. The bag consists of a first and second panel, each panel consisting of a gas-impermeable outer layer and a heat-sealable inner layer. A plurality of heat-sealable strand elements are heat bonded at regular intervals to the inner layer of either the first panel or the second panel. The spaces between strand elements act as channels for the evacuation of air. The strand elements are extruded from an extrusion head and heat bonded to the heat-sealable layer by use of pressure rolls. Separate equipment is required for producing strand elements, and a procedure of heat bonding a plurality of strand elements at regular intervals to the heat-sealable inner layer is complicated. Also, various shapes of pattern are hard to form using this process.
- Further details of embodiments of the present invention are explained with the help of the attached drawings in which:
-
FIG. 1A is a perspective view of a method for manufacturing a vacuum bag in accordance with one embodiment of the present invention; -
FIG. 1B is a side view of the method shown inFIG. 1A illustrating the embossing method used in an embodiment of the present invention; -
FIG. 1C is a close-up view of a portion ofFIG. 1B ; -
FIG. 2A is a top view of a partial portion of a first panel overlapping a partial portion of a second panel in accordance with one embodiment of the present invention; -
FIG. 2B is a cross-section view throughline 2B-2B ofFIG. 2A ; -
FIG. 3A-3E are plan views of exemplary patterns on a panel in accordance with embodiments of the present invention, manufactured by the process shown inFIG. 1 ; and -
FIG. 4 is a perspective view of a vacuum bag in accordance with one embodiment of the present invention. - The detailed embodiments of the present invention are disclosed herein. It should be understood, however, that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, the details disclosed herein are not to be interpreted as limiting, but merely as the basis for the claims and as a basis for teaching one skilled in the art how to make and/or use the invention.
-
FIGS. 1A-1C illustrate one embodiment of a method for manufacturing a vacuum bag in accordance with the present invention. The vacuum bag comprises a first panel and a second panel, wherein each panel comprises a gas-impermeable base layer 108 and a heat-sealableinner layer 106 with at least one panel having liquid flow obstructing protuberances and/or channels. Alaminating roll 102 and acooling roll 104 are arranged so that melt-extruded resin can be introduced between the rolls and cooled to form the heat-sealableinner layer 106 and to laminate the formedinner layer 106 to the gas-impermeable base layer 108. As illustrated inFIG. 1C , a gap between thelaminating roll 102 and thecooling roll 104 can be controlled according to specifications (for example, thickness) of a panel for use in vacuum packaging. The temperature of thecooling roll 104 is maintained in a range such that the melt-extruded resin can be sufficiently cooled to form a desired pattern. For example, a temperature range of about −15° C. to about −10° C. can be sufficient to properly form the desired pattern. The temperature range of thecooling roll 104 can vary according to the composition of the resin, the composition of the gas-impermeable base layer 108, environmental conditions, etc. and can require calibration. Also, thecooling roll 104 can be sized to have a larger diameter than thelaminating roll 102, thereby bringing the melt-extruded resin into contact with more cooled surface area. For example, the diameter of thecooling roll 104 can be about one-and-a-half to about three times as large (or more) as that of thelaminating roll 102. - The heat-sealable
inner layer 106 typically comprises a thermoplastic resin. For example, the resin can be comprised of polyethylene (PE) suitable for preserving foods and harmless to a human body. A vacuum bag can be manufactured by overlapping two panels such that the heat-sealableinner layers 106 of the two panels are brought into contact and heat is applied to a portion of the periphery of the panels to form an envelope. The thermoplastic resin can be chosen so that the two panels strongly bond to each other when sufficient heat is applied. - The gas-
impermeable base layer 108 is fed to the gap between the coolingroll 104 and thelaminating roll 102 by a feeding means (not shown). The gas-impermeable base layer can be comprised of polyester, polyamide, ethylene vinyl alcohol (EVOH), nylon, or other material having similar properties, that is capable of being heated and capable of being used in this manufacturing process. The gas-impermeable base layer 108 can consist of one layer, or two or more layers. When employing a multilayer-structured base layer, it should be understood that a total thickness thereof is also adjusted within the allowable range for the total gas-impermeable base layer 108. - An
extruder 110 is positioned in such a way that the melt-extruded resin is layered on the gas-impermeable base layer 108 by feeding the melt-extruded resin to a nip between the coolingroll 104 and the gas-impermeable base layer 108. The resin is fed through a nozzle 112 of theextruder 110. The temperature of the melt-extruded resin is dependent on the type of resin used, and can typically range from about 200° C. to about 250° C. The amount of resin extruded into thelaminating unit 100 is dependent on the desired thickness of the heat-sealableinner layer 106. - A pattern fabricated on the circumferential surface of the
cooling roll 104 in accordance with one embodiment of the present invention can include cavities (and/or protuberances) defining a plurality of discrete channels having a baffled structure. The resin extruded from the nozzle 112 is pressed between the coolingroll 104 and the gas-impermeable base layer 108 and flows into the cavities of thecooling roll 104. The resin quickly cools and solidifies in the desired pattern while adhering to the gas-impermeable base layer 108, thereby forming the heat-sealableinner layer 106 of the panel. The heat-sealableinner layer 106 can be formed while the resin is sufficiently heated to allow the resin to flow, thereby molding the resin, unlike other methods adopting a post-embossing treatment where the heat-sealable inner layer is drawn by a die or embossed between male and female components. - The thickness of each protuberance formed on the heat-sealable
inner layer 106 of a panel can be determined by the depth of the cavities of thecooling roll 104, and the width of the channel can be determined by the interval between the cavities. Thus, the shape, width, and thickness of the channels for the evacuation of air and/or other gases can be controlled by changing the specifications for the cavities of thecooling roll 104.FIGS. 2A and 2B illustrate a cross-section (alongline 2B-2B) of two panels in accordance with one embodiment of the present invention (the thickness of the panels are exaggerated relative to the width of the channel walls and baffles). The heat-sealableinner layer 106 can range from preferably 0.5-6.0 mils in thickness at thechannels 224, and preferably 1.0-12.0 mils in thickness at theprotuberances impermeable base layer 108 can range from about preferably 0.5-8.0 mils in thickness. The dimensions of the inner layer and the base layer are set forth to illustrate, but are not to be construed to limit the dimensions of the inner layer and the base layer. -
FIG. 3A is a plan view of a pattern 320 formed on a panel by thecooling roll 104 for use in a vacuum bag, in which the heat-sealableinner layer 106 is molded in such a way that protuberances form the plurality ofchannels 224 havingchannels walls 226 and baffles 228. Thebaffles 228 can be arranged in a herringbone pattern at angles such that air and/or other gases 340 (shown schematically) can be drawn around thebaffles 228 by suction and evacuated from the vacuum bag, while heavierliquid particles 342 can be trapped between thechannel walls 226 and thebaffles 228. Angles formed by the intersection ofbaffles 228 andchannel walls 226, and gaps betweenadjacent baffles 228 can be defined when producing thecooling roll 104 to suit the liquid intended to be trapped. Different arrangements of thebaffles 228 relative to thechamber walls 226, and relative toother baffles 228 can be multi-fold (shaped to define liquid-trapping vessels), and can be optimized to improve evacuation of the air and/orother gases 340, while effectively preventingliquids 342 from being drawn out of the vacuum bag. For example, as shown inFIG. 3A thebaffles 228 can be arranged such that an approach angle for passing through the channel opening between thebaffles 228 is severe and that vessels formed by thebaffles 228 are relatively deep, thereby retarding liquid flow by deflecting liquid 342 into the vessels and trapping a significant amount ofliquid 342. - As indicated above, one of ordinary skill in the art can appreciate the multitude of different baffle arrangements for retarding the evacuation of
liquid 342 relative to the evacuation of air and/orother gases 340. As shown inFIG. 3B , in other embodiments a pattern 320 fabricated on the circumferential surface of thecooling roll 104, and thereafter the panel, can mold protuberances forming a plurality ofchannels 224 defined by “V”-shapedbaffles 228, eliminating the need for molding channel walls. In still other embodiments, thechannel walls 226 can extend substantially the length of the panel with only a portion of the length of the channels near an evacuationopening having baffles 228. - As shown in
FIG. 3C , in other embodiments a pattern 320 fabricated on the circumferential surface of thecooling roll 104, and thereafter the panel, can mold protuberances forming a plurality ofchannels 224 havingchannels walls 226 and baffles 228, wherein eachbaffle 228 extends across a substantial portion of the width of thechannel 224, thereby defining a path between thebaffle 228 and thechannel wall 226 for the air and/orother gases 340 to be drawn. Thebaffles 228 can alternatively be parabolic or rounded, as shown inFIG. 3D , to form pockets for collectingliquid particles 342. -
FIG. 3E illustrates still another embodiment of a pattern 320 fabricated on the circumferential surface of thecooling roll 104, and thereafter the panel, that can include parabolically-shaped or “U”-shapedbaffles 228 arranged like fish-scales either along the length of the panel, or a portion of the panel to captureliquid particles 342. The U-shaped baffles 228 can also includeslits 330 in the troughs of theU-shaped baffles 228 small enough to improve the flow of air and/orother gases 340 while retarding an amount ofliquid particles 342. In other embodiments, thebaffles 228 can be more or less parabolic. One of ordinary skill in the art can appreciate the multitude of different baffle shapes for retarding the evacuation of liquid relative to the evacuation of air or other gases. - It is understood that the trapping of liquid in baffles or vessels formed in the bag is advantageous as this structure retards and prevents liquids from being drawn into the vacuum pump or suction device of a vacuum sealing tool such as disclosed in U.S. Pat. No. 4,941,310, which is incorporated herein by reference.
-
FIG. 4 illustrates a bag for use in vacuum packaging in accordance with one embodiment of the present invention. Thevacuum bag 450 comprises afirst panel 452 and asecond panel 454 overlapping each other.Channels 224 are formed on at least one of thepanels inner layer 106 and the gas-impermeable base layer 108 of the first andsecond panels layer 106 is used as an inner layer and the gas-impermeable base layer 108 is used as an outer layer. The lower, left, and right edges of the first and thesecond panel vacuum bag 450, air and/or other gases can be evacuated from thebag 450, for example by a vacuum sealing machine as described in the above referenced U.S. Pat. No. 4,941,310, which is incorporated herein by reference. Once the air and/or other gases are evacuated to the satisfaction of the user, the inlet can be sealed by applying heat, thereby activating the heat-sealableinner layers 106 and bonding them together where contacted by the heat. - The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. It is to be understood that many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.
Claims (30)
1. A bag adapted to receive an article, comprising:
a first panel including a plurality of protuberances;
a second panel; and
the first panel and the second panel secured together to form the bag.
2. A bag adapted to receive an article, comprising:
a first panel having:
a first outer layer; and
a first inner layer connected with the first outer layer, the first inner layer including a plurality of protuberances; and
a second panel connected with the first panel such that the first panel and the second panel form an envelope having an inlet, the second panel having:
a second outer layer; and
a second inner layer connected with the second outer layer;
wherein when the first inner layer contacts the second inner layer the plurality of protuberances obstruct liquid flow through the inlet.
3. The bag of claim 2 , wherein the first outer layer and the second outer layer comprise a gas-impermeable material.
4. The bag of claim 3 , wherein the gas-impermeable material is one of polyester, polyamide, ethylene vinyl alcohol, and nylon.
5. The bag of claim 2 , wherein the first inner layer and the second inner layer comprise a thermoplastic resin.
6. The bag of claim 5 , wherein the thermoplastic resin is polyethylene.
7. The bag of claim 2 , wherein the plurality of protuberances define a plurality of channels.
8. The bag of claim 7 , wherein the plurality of channels includes a plurality of baffles.
9. The bag of claim 8 , wherein the plurality of baffles are arranged in a herringbone pattern.
10. The bag of claim 8 , wherein the plurality of baffles form a plurality of pockets for trapping liquid particles.
11. The bag of claim 2 , wherein the plurality of protuberances define a plurality of baffles.
12. The bag of claim 11 , wherein the plurality of baffles form a plurality of pockets for trapping liquid particles.
13. The bag of claim 8 , wherein the plurality of baffles comprise a U-shape.
14. The bag of claim 13 , wherein the plurality of baffles include a slit in a trough of the U-shape, the slit being sized such that gas can pass through the slit.
15. A bag adapted to receive an article, comprising:
a first panel including:
a first gas-impermeable layer; and
a first inner layer laminated to the first gas-impermeable layer, the first inner layer having a textured exposed surface;
wherein the textured exposed surface obstructs liquid flow when gas is evacuated through the heat-sealable opening; and
a second panel including:
a second gas-impermeable layer; and
a second inner layer laminated to the second gas-impermeable layer;
wherein the first panel is connected with the second panel to form an envelope such that the first inner layer opposes the second inner layer, the envelope including a heat-sealable opening for evacuating gas.
16. A heat-sealable bag adapted to receive an article, comprising:
a first panel including:
a first gas-impermeable layer;
at least one first intermediate layer connected with the first gas-impermeable layer; and
a first inner layer laminated to the at least one first intermediate layer, the first inner layer having a textured exposed surface;
wherein the textured exposed surface obstructs liquid flow when gas is evacuated through the heat-sealable opening; and
a second panel including:
a second gas-impermeable layer;
at least one second intermediate layer connected with the second gas-impermeable layer; and
a second inner layer laminated to the at least one second intermediate layer;
wherein the first panel is connected with the second panel to form an envelope such that the first inner layer opposes the second inner layer, the envelope including a heat-sealable opening for evacuating gas.
17. The bag of claim 16 , wherein the first gas-impermeable layer and the second gas-impermeable layer comprise one of polyester, polyamide, ethylene vinyl alcohol, and nylon.
18. The bag of claim 16 , wherein the first inner layer and the second inner layer comprise a thermoplastic resin.
19. The bag of claim 18 , wherein the thermoplastic resin is polyethylene.
20. The bag of claim 16 , wherein the textured exposed surface comprises a plurality of channels.
21. The bag of claim 20 , wherein the textured exposed surface further comprises a plurality of baffles.
22. The bag of claim 21 , wherein the plurality of baffles are arranged in a herringbone pattern.
23. The bag of claim 21 , wherein the plurality of baffles form a plurality of pockets for trapping liquid particles.
24. The bag of claim 16 , wherein the textured exposed surface comprises a plurality of baffles.
25. The bag of claim 24 , wherein the plurality of baffles form a plurality of pockets for trapping liquid particles.
26. The bag of claim 24 , wherein the plurality of baffles comprise a U-shape.
27. The bag of claim 26 , wherein the plurality of baffles includes a slit in a trough of the U-shape, the slit being sized such that air can pass through the slit.
28. A bag adapted to receive an article, comprising:
a first panel defining a plurality of receptacles adapted to trap a liquid and a plurality of channels that pass by said receptacles, which channels are adapted to allow the passage of a gas;
a second panel; and
the first panel and the second panel secured together to form the bag.
29. A bag adapted to receive an article, comprising:
a first panel defining a plurality of receptacles adapted to trap a liquid, which receptacles are formed with a first wall that runs about along a length of the bag and a plurality of second walls that run in a direction that is across the length of the bag;
a second panel; and
the first panel and the second panel secured together to form the bag.
30. A system for forming a bag including a three-dimensional structure formed on at least one panel, comprising:
a cooling roll having a plurality of cavities for forming one or more structures;
wherein the one or more structures include a plurality of receptacles adapted to trap a liquid;
a laminating roll;
a backing material; and
a flowable material that can be flowed into the one or more cavities to form the one or more structures, the flowable material adhering to the backing material.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/795,149 US20050037164A1 (en) | 2003-03-05 | 2004-03-04 | Liquid-trapping bag for use in vacuum packaging |
PCT/US2004/006769 WO2004078609A1 (en) | 2003-03-05 | 2004-03-05 | Liquid-trapping bag and method of making it |
MXPA05009456A MXPA05009456A (en) | 2003-03-05 | 2004-03-05 | Liquid-trapping bag and method of making it. |
KR1020057016431A KR20050115890A (en) | 2003-03-05 | 2004-03-05 | Liquid-trapping bag and method of making it |
AU2004217917A AU2004217917A1 (en) | 2003-03-05 | 2004-03-05 | Liquid-trapping bag and method of making it |
CA002517808A CA2517808A1 (en) | 2003-03-05 | 2004-03-05 | Liquid-trapping bag and method of making it |
EP04718048A EP1615834A1 (en) | 2003-03-05 | 2004-03-05 | Liquid-trapping bag and method of making it |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45195603P | 2003-03-05 | 2003-03-05 | |
US45214203P | 2003-03-05 | 2003-03-05 | |
US45217203P | 2003-03-05 | 2003-03-05 | |
US45202103P | 2003-03-05 | 2003-03-05 | |
US45195403P | 2003-03-05 | 2003-03-05 | |
US45213903P | 2003-03-05 | 2003-03-05 | |
US45215703P | 2003-03-05 | 2003-03-05 | |
US45217103P | 2003-03-05 | 2003-03-05 | |
US45195503P | 2003-03-05 | 2003-03-05 | |
US45216803P | 2003-03-05 | 2003-03-05 | |
US45194803P | 2003-03-05 | 2003-03-05 | |
US10/795,149 US20050037164A1 (en) | 2003-03-05 | 2004-03-04 | Liquid-trapping bag for use in vacuum packaging |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050037164A1 true US20050037164A1 (en) | 2005-02-17 |
Family
ID=34140022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/795,149 Abandoned US20050037164A1 (en) | 2003-03-05 | 2004-03-04 | Liquid-trapping bag for use in vacuum packaging |
Country Status (1)
Country | Link |
---|---|
US (1) | US20050037164A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050286808A1 (en) * | 2004-06-29 | 2005-12-29 | Zimmerman Dean A | Flexible storage bag |
US20060048483A1 (en) * | 2004-07-23 | 2006-03-09 | Tilman Paul A | Storage system having a disposable vacuum bag |
US20070092167A1 (en) * | 2005-10-24 | 2007-04-26 | Paul Tilman | Polymeric Package With Resealable Closure And Valve, And Methods |
US20070110340A1 (en) * | 2005-11-17 | 2007-05-17 | Buchman James E | Tamper evident polymeric package with zipper closure and valve, and methods |
US20070132876A1 (en) * | 2005-12-14 | 2007-06-14 | Tsuyoshi Ohno | Solid-state image pickup device, color separation image pickup optical system and image pickup apparatus |
US20070172157A1 (en) * | 2004-07-23 | 2007-07-26 | Alcoa Inc. | Polymeric package with resealable closure and valve and methods relating thereto |
US20080256901A1 (en) * | 2005-10-24 | 2008-10-23 | Reynolds Foil Inc, D/B/A Reynolds Consumer Products Company | Polymeric package with resealable closure and valve, and methods |
US20080307614A1 (en) * | 2007-06-15 | 2008-12-18 | Dais Brian C | Closure mechanism for a reclosable pouch |
US20090003736A1 (en) * | 2005-01-12 | 2009-01-01 | Unovo, Inc. | Method and apparatus for evacuating and sealing containers |
US20090290817A1 (en) * | 2004-06-29 | 2009-11-26 | Borchardt Michael G | Flexible Storage Bag |
US20100177990A1 (en) * | 2007-07-17 | 2010-07-15 | Neltner Andrew E | Storage bag |
US7784160B2 (en) | 2007-03-16 | 2010-08-31 | S.C. Johnson & Son, Inc. | Pouch and airtight resealable closure mechanism therefor |
US7857514B2 (en) | 2006-12-12 | 2010-12-28 | Reynolds Foil Inc. | Resealable closures, polymeric packages and systems and methods relating thereto |
US7857515B2 (en) | 2007-06-15 | 2010-12-28 | S.C. Johnson Home Storage, Inc. | Airtight closure mechanism for a reclosable pouch |
US7874731B2 (en) | 2007-06-15 | 2011-01-25 | S.C. Johnson Home Storage, Inc. | Valve for a recloseable container |
US7887238B2 (en) | 2007-06-15 | 2011-02-15 | S.C. Johnson Home Storage, Inc. | Flow channels for a pouch |
US7886412B2 (en) | 2007-03-16 | 2011-02-15 | S.C. Johnson Home Storage, Inc. | Pouch and airtight resealable closure mechanism therefor |
US7946766B2 (en) | 2007-06-15 | 2011-05-24 | S.C. Johnson & Son, Inc. | Offset closure mechanism for a reclosable pouch |
US7967509B2 (en) | 2007-06-15 | 2011-06-28 | S.C. Johnson & Son, Inc. | Pouch with a valve |
US8192182B2 (en) | 2008-01-09 | 2012-06-05 | S.C. Johnson Home Storage, Inc. | Manual evacuation system |
US8397958B2 (en) | 2010-08-05 | 2013-03-19 | Ds Smith Plastics Limited | Closure valve assembly for a container |
US20160137325A1 (en) * | 2014-11-13 | 2016-05-19 | Thomas Calvin Cannon, Jr. | Method and apparatus for vacuum packing resealable bags |
US10391718B2 (en) * | 2005-07-01 | 2019-08-27 | Reebok International Limited | Inflatable article of footwear or bladders for use in inflatable articles of manufacture |
WO2019217400A1 (en) * | 2018-05-08 | 2019-11-14 | The Glad Products Company | Thermoplastic bags with liquid directing structures |
Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US274447A (en) * | 1883-03-20 | William-kentish | ||
US2105376A (en) * | 1936-12-18 | 1938-01-11 | Chase Bag Company | Valve bag |
US2633442A (en) * | 1949-03-08 | 1953-03-31 | Albert E Caldwell | Method of making tufted material |
US2642372A (en) * | 1950-02-02 | 1953-06-16 | Chittick Charles Yardley | Flexible corrugated sheet material and method of fabricating same |
US2670501A (en) * | 1951-08-24 | 1954-03-02 | Us Rubber Co | Method of forming plastic material |
US2776452A (en) * | 1952-09-03 | 1957-01-08 | Chavannes Ind Synthetics Inc | Apparatus for embossing thermoplastic film |
US2778173A (en) * | 1950-11-29 | 1957-01-22 | Wilts United Dairies Ltd | Method of producing airtight packages |
US2789609A (en) * | 1952-03-14 | 1957-04-23 | Flexigrip Inc | Actuator for zippers and pouch embodying the same |
US2821338A (en) * | 1954-10-21 | 1958-01-28 | Melvin R Metzger | Valve-equipped container |
US3026231A (en) * | 1957-12-23 | 1962-03-20 | Sealed Air Corp | Method of making an embossed laminated structure |
US3077262A (en) * | 1961-03-22 | 1963-02-12 | Poly Sil Inc | Novel container |
US3077428A (en) * | 1956-06-29 | 1963-02-12 | Union Carbide Corp | Heat sealable polyethylene laminate and method of making same |
US3135411A (en) * | 1963-05-09 | 1964-06-02 | Wiley W Osborne | Vacuum sealing means |
US3237844A (en) * | 1963-10-07 | 1966-03-01 | Ici Ltd | Bag closure |
US3251463A (en) * | 1961-11-04 | 1966-05-17 | Bodet Jean Augustin | Pellet package |
US3325084A (en) * | 1965-10-18 | 1967-06-13 | Ausnit Steven | Pressure closable fastener |
US3381887A (en) * | 1967-04-14 | 1968-05-07 | Nat Distillers Chem Corp | Sealing patch valve for plastic bags |
US3423231A (en) * | 1965-05-20 | 1969-01-21 | Ethyl Corp | Multilayer polymeric film |
US3516217A (en) * | 1968-03-07 | 1970-06-23 | Bemis Co Inc | Compression packaging |
US3565147A (en) * | 1968-11-27 | 1971-02-23 | Steven Ausnit | Plastic bag having reinforced closure |
US3575781A (en) * | 1969-05-16 | 1971-04-20 | Stauffer Hoechst Polymer Corp | Plastic film wrapping material |
US3661677A (en) * | 1969-10-10 | 1972-05-09 | Allied Chem | Post-heat treatment for polyvinylidene chloride-coated film |
US3785111A (en) * | 1972-02-04 | 1974-01-15 | Schneider W | Method of forming containers and packages |
US3799427A (en) * | 1972-12-04 | 1974-03-26 | L Goglio | Degassing valve for hermetically sealed flexible containers and a container provided with the valve |
US3809217A (en) * | 1969-07-22 | 1974-05-07 | Franklin Mint Corp | Packaging for flat objects |
US3937395A (en) * | 1973-07-30 | 1976-02-10 | British Visqueen Limited | Vented bags |
US3958693A (en) * | 1975-01-20 | 1976-05-25 | E-Z-Em Company Inc. | Vacuum X-ray envelope |
US3958391A (en) * | 1974-11-21 | 1976-05-25 | Kabushiki Kaisha Furukawa Seisakusho | Vacuum packaging method and apparatus |
US4018253A (en) * | 1975-10-09 | 1977-04-19 | Seth Ian Kaufman | Home vacuum apparatus for freezer bags |
US4066167A (en) * | 1976-07-08 | 1978-01-03 | Keebler Company | Recloseable package |
US4155453A (en) * | 1978-02-27 | 1979-05-22 | Ono Dan D | Inflatable grip container |
US4186786A (en) * | 1978-09-29 | 1980-02-05 | Union Carbide Corporation | Colored interlocking closure strips for a container |
US4310118A (en) * | 1979-08-10 | 1982-01-12 | C. I. Kasei Co. Ltd. | Packaging bags for powdery materials |
US4370187A (en) * | 1979-12-21 | 1983-01-25 | Mitsui Polychemicals Co. Ltd. | Process and apparatus for producing a laminated structure composed of a substrate web and a thermoplastic resin web extrusion-coated thereon |
US4372921A (en) * | 1980-01-28 | 1983-02-08 | Sanderson Roger S | Sterilized storage container |
US4449243A (en) * | 1981-09-10 | 1984-05-15 | Cafes Collet | Vacuum package bag |
US4569712A (en) * | 1982-11-12 | 1986-02-11 | Sanyo Kokusaku Pulp Co., Ltd. | Process for producing support for use in formation of polyurethan films |
US4576285A (en) * | 1983-05-20 | 1986-03-18 | Fres-Co System Usa, Inc. | Sealed flexible container with non-destructive peelable opening and apparatus and method for forming same |
US4576283A (en) * | 1983-01-25 | 1986-03-18 | Bernard Fafournoux | Bag for vacuum packaging of articles |
US4575990A (en) * | 1982-01-19 | 1986-03-18 | W. R. Grace & Co., Cryovac Div. | Shrink packaging process |
US4579756A (en) * | 1984-08-13 | 1986-04-01 | Edgel Rex D | Insulation material with vacuum compartments |
US4583347A (en) * | 1982-10-07 | 1986-04-22 | W. R. Grace & Co., Cryovac Div. | Vacuum packaging apparatus and process |
US4658434A (en) * | 1986-05-29 | 1987-04-14 | Grain Security Foundation Ltd. | Laminates and laminated articles |
US4669124A (en) * | 1984-05-23 | 1987-05-26 | Yoken Co., Ltd. | Beverage container with tamperproof screwthread cap |
US4672684A (en) * | 1983-10-06 | 1987-06-09 | C I L, Inc. | Thermoplastic bag |
US4747702A (en) * | 1983-06-30 | 1988-05-31 | First Brands Corporation | Interlocking closure device having controlled separation and improved ease of occlusion |
US4812056A (en) * | 1985-03-25 | 1989-03-14 | The Dow Chemical Company | Reclosable, flexible container having an externally operated fastener |
US4834554A (en) * | 1987-11-16 | 1989-05-30 | J. C. Brock Corp. | Plastic bag with integral venting structure |
US4890637A (en) * | 1988-12-12 | 1990-01-02 | Flavorcoffee Co. Inc. | One way valve |
US4892414A (en) * | 1988-07-05 | 1990-01-09 | Minigrip, Inc. | Bags with reclosable plastic fastener having automatic sealing gasket means |
US4903718A (en) * | 1988-10-19 | 1990-02-27 | Ipco Corporation | Flexible ultrasonic cleaning bag |
US4906108A (en) * | 1989-03-08 | 1990-03-06 | Mobil Oil Corporation | Corrugated sticky tape bag tie closure |
US4913561A (en) * | 1988-11-15 | 1990-04-03 | Fres-Co System Usa, Inc. | Gussetted flexible package with presealed portions and method of making the same |
US4917506A (en) * | 1983-06-30 | 1990-04-17 | First Brands Corporation | Interlocking closure device having controlled separation and improved ease of occlusion |
US4917844A (en) * | 1987-04-01 | 1990-04-17 | Fuji Photo Film Co., Ltd. | Method of manufacturing laminate product |
US5006056A (en) * | 1989-09-01 | 1991-04-09 | The Black Clawson Company | Film extrusion apparatus including a quickly replaceable chill roll |
US5080155A (en) * | 1990-12-28 | 1992-01-14 | Hooleon Corporation | Keyboard enclosure |
US5098497A (en) * | 1989-02-23 | 1992-03-24 | Anthony Industries, Inc. | Process for preparing embossed, coated paper |
US5097956A (en) * | 1988-09-07 | 1992-03-24 | Paramount Packaging Corporation | Vacuum package with smooth surface and method of making same |
US5111838A (en) * | 1991-11-25 | 1992-05-12 | Shipping Systems, Inc. | Dunnage bag air valve and coupling |
US5203458A (en) * | 1992-03-02 | 1993-04-20 | Quality Containers International, Inc. | Cryptoplate disposable surgical garment container |
US5209264A (en) * | 1991-07-05 | 1993-05-11 | Yoshihiro Koyanagi | Check valve |
US5397182A (en) * | 1993-10-13 | 1995-03-14 | Reynolds Consumer Products Inc. | Write-on profile strips for recloseable plastic storage bags |
US5402906A (en) * | 1992-07-16 | 1995-04-04 | Brown; Richard S. | Fresh produce container system |
USRE34929E (en) * | 1985-09-23 | 1995-05-09 | Tilia, Inc. | Plastic bag for vacuum sealing |
US5480030A (en) * | 1993-12-15 | 1996-01-02 | New West Products, Inc. | Reusable, evacuable enclosure for storage of clothing and the like |
US5592697A (en) * | 1995-04-18 | 1997-01-14 | Young; Russell | Waterproof pocket |
US5620098A (en) * | 1994-06-08 | 1997-04-15 | Southern California Foam, Inc. | Full recovery reduced-volume packaging system |
US5709467A (en) * | 1996-06-18 | 1998-01-20 | Galliano, Ii; Carol J. | Device and apparatus for mixing alginate |
US5735395A (en) * | 1996-06-28 | 1998-04-07 | Lo; Luke | Airtight garment hanging bag |
US5749493A (en) * | 1983-10-17 | 1998-05-12 | The Coca-Cola Company | Conduit member for collapsible container |
US5873217A (en) * | 1997-05-09 | 1999-02-23 | Smith; George E. | Vacuum sealing methods and apparatus |
US5874155A (en) * | 1995-06-07 | 1999-02-23 | American National Can Company | Easy-opening flexible packaging laminates and packaging materials made therefrom |
US5881881A (en) * | 1997-06-16 | 1999-03-16 | Carrington; Thomas | Evacuateable bag |
US5893822A (en) * | 1997-10-22 | 1999-04-13 | Keystone Mfg. Co., Inc. | System for vacuum evacuation and sealing of plastic bags |
US5898113A (en) * | 1997-07-30 | 1999-04-27 | Bellaire Industries, Inc. | Multi-ply material sealed container |
US6021624A (en) * | 1990-04-27 | 2000-02-08 | Kapak Corporation | Vented pouch arrangement and method |
US6030652A (en) * | 1997-08-05 | 2000-02-29 | Hanus; John | Food bag featuring gusset opening, method of making the food bag, and method of using the food bag |
US6029810A (en) * | 1997-10-17 | 2000-02-29 | Chen; Shu-Ling | Dress bag and hanger assembly |
US6035769A (en) * | 1997-04-16 | 2000-03-14 | Hikari Kinzoku Industry Co., Ltd. | Method for preserving cooked food and vacuum sealed preservation container therefor |
US6039182A (en) * | 1998-08-13 | 2000-03-21 | Light; Barry | Bag |
US6045006A (en) * | 1998-06-02 | 2000-04-04 | The Coca-Cola Company | Disposable liquid containing and dispensing package and an apparatus for its manufacture |
US6045264A (en) * | 1998-01-29 | 2000-04-04 | Miniea; Stephen H. | Self-sealing, disposable storage bag |
US6053606A (en) * | 1996-10-07 | 2000-04-25 | Seiko Epson Corporation | Ink cartridge |
US6059457A (en) * | 1998-01-02 | 2000-05-09 | Com-Pac International, Inc. | Evacuable storage bag with integral zipper seal |
USD425786S (en) * | 1998-05-04 | 2000-05-30 | Voller Ronald L | Multi ply reinforced dunnage bag and valve therefor |
US6202849B1 (en) * | 1999-07-07 | 2001-03-20 | David B. Graham | Evacuatable rigid storage unit for storing compressible articles therein |
US6220702B1 (en) * | 1998-12-24 | 2001-04-24 | Seiko Epson Corporation | Ink bag for ink jet type recording apparatus and package suitable for packing such ink bag |
US6224528B1 (en) * | 1997-04-11 | 2001-05-01 | Kapak Corporation | Method for making bag constructions having inwardly directed side seal portions |
US6227706B1 (en) * | 2000-06-26 | 2001-05-08 | Thoai S. Tran | Two piece, compressible storage satchel for compressible articles |
US6231236B1 (en) * | 1998-07-28 | 2001-05-15 | Reynolds Consumer Products, Inc. | Resealable package having venting structure and methods |
US6231234B1 (en) * | 1998-05-13 | 2001-05-15 | Tc Manufacturing Co., Inc. | One piece snap closure for a plastic bag |
US6357915B2 (en) * | 1999-08-13 | 2002-03-19 | New West Products, Inc. | Storage bag with one-way air valve |
US6520071B1 (en) * | 1999-05-21 | 2003-02-18 | Aracaria B. . | Hand-held suction pump |
US20040000501A1 (en) * | 2002-06-28 | 2004-01-01 | Shah Ketan N. | Recloseable storage bag with secondary closure members |
US20040000503A1 (en) * | 2002-06-28 | 2004-01-01 | Shah Ketan N. | Recloseable storage bag with porous evacuation portal |
US20040000502A1 (en) * | 2002-06-28 | 2004-01-01 | Shah Ketan N. | Recloseable storage bag with user-deformable air vent |
US20040007494A1 (en) * | 2002-07-15 | 2004-01-15 | Popeil Ronald M. | Apparatus and method to more effectively vacuum package foods and other objects |
-
2004
- 2004-03-04 US US10/795,149 patent/US20050037164A1/en not_active Abandoned
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US274447A (en) * | 1883-03-20 | William-kentish | ||
US2105376A (en) * | 1936-12-18 | 1938-01-11 | Chase Bag Company | Valve bag |
US2633442A (en) * | 1949-03-08 | 1953-03-31 | Albert E Caldwell | Method of making tufted material |
US2642372A (en) * | 1950-02-02 | 1953-06-16 | Chittick Charles Yardley | Flexible corrugated sheet material and method of fabricating same |
US2778173A (en) * | 1950-11-29 | 1957-01-22 | Wilts United Dairies Ltd | Method of producing airtight packages |
US2670501A (en) * | 1951-08-24 | 1954-03-02 | Us Rubber Co | Method of forming plastic material |
US2789609A (en) * | 1952-03-14 | 1957-04-23 | Flexigrip Inc | Actuator for zippers and pouch embodying the same |
US2776452A (en) * | 1952-09-03 | 1957-01-08 | Chavannes Ind Synthetics Inc | Apparatus for embossing thermoplastic film |
US2821338A (en) * | 1954-10-21 | 1958-01-28 | Melvin R Metzger | Valve-equipped container |
US3077428A (en) * | 1956-06-29 | 1963-02-12 | Union Carbide Corp | Heat sealable polyethylene laminate and method of making same |
US3026231A (en) * | 1957-12-23 | 1962-03-20 | Sealed Air Corp | Method of making an embossed laminated structure |
US3077262A (en) * | 1961-03-22 | 1963-02-12 | Poly Sil Inc | Novel container |
US3251463A (en) * | 1961-11-04 | 1966-05-17 | Bodet Jean Augustin | Pellet package |
US3135411A (en) * | 1963-05-09 | 1964-06-02 | Wiley W Osborne | Vacuum sealing means |
US3237844A (en) * | 1963-10-07 | 1966-03-01 | Ici Ltd | Bag closure |
US3423231A (en) * | 1965-05-20 | 1969-01-21 | Ethyl Corp | Multilayer polymeric film |
US3325084A (en) * | 1965-10-18 | 1967-06-13 | Ausnit Steven | Pressure closable fastener |
US3381887A (en) * | 1967-04-14 | 1968-05-07 | Nat Distillers Chem Corp | Sealing patch valve for plastic bags |
US3516217A (en) * | 1968-03-07 | 1970-06-23 | Bemis Co Inc | Compression packaging |
US3565147A (en) * | 1968-11-27 | 1971-02-23 | Steven Ausnit | Plastic bag having reinforced closure |
US3575781A (en) * | 1969-05-16 | 1971-04-20 | Stauffer Hoechst Polymer Corp | Plastic film wrapping material |
US3809217A (en) * | 1969-07-22 | 1974-05-07 | Franklin Mint Corp | Packaging for flat objects |
US3661677A (en) * | 1969-10-10 | 1972-05-09 | Allied Chem | Post-heat treatment for polyvinylidene chloride-coated film |
US3785111A (en) * | 1972-02-04 | 1974-01-15 | Schneider W | Method of forming containers and packages |
US3799427A (en) * | 1972-12-04 | 1974-03-26 | L Goglio | Degassing valve for hermetically sealed flexible containers and a container provided with the valve |
US3799427B1 (en) * | 1972-12-04 | 1987-02-03 | ||
US3937395A (en) * | 1973-07-30 | 1976-02-10 | British Visqueen Limited | Vented bags |
US3958391A (en) * | 1974-11-21 | 1976-05-25 | Kabushiki Kaisha Furukawa Seisakusho | Vacuum packaging method and apparatus |
US3958693A (en) * | 1975-01-20 | 1976-05-25 | E-Z-Em Company Inc. | Vacuum X-ray envelope |
US4018253A (en) * | 1975-10-09 | 1977-04-19 | Seth Ian Kaufman | Home vacuum apparatus for freezer bags |
US4066167A (en) * | 1976-07-08 | 1978-01-03 | Keebler Company | Recloseable package |
US4155453A (en) * | 1978-02-27 | 1979-05-22 | Ono Dan D | Inflatable grip container |
US4186786A (en) * | 1978-09-29 | 1980-02-05 | Union Carbide Corporation | Colored interlocking closure strips for a container |
US4310118A (en) * | 1979-08-10 | 1982-01-12 | C. I. Kasei Co. Ltd. | Packaging bags for powdery materials |
US4370187A (en) * | 1979-12-21 | 1983-01-25 | Mitsui Polychemicals Co. Ltd. | Process and apparatus for producing a laminated structure composed of a substrate web and a thermoplastic resin web extrusion-coated thereon |
US4372921A (en) * | 1980-01-28 | 1983-02-08 | Sanderson Roger S | Sterilized storage container |
US4449243A (en) * | 1981-09-10 | 1984-05-15 | Cafes Collet | Vacuum package bag |
US4575990A (en) * | 1982-01-19 | 1986-03-18 | W. R. Grace & Co., Cryovac Div. | Shrink packaging process |
US4583347A (en) * | 1982-10-07 | 1986-04-22 | W. R. Grace & Co., Cryovac Div. | Vacuum packaging apparatus and process |
US4569712A (en) * | 1982-11-12 | 1986-02-11 | Sanyo Kokusaku Pulp Co., Ltd. | Process for producing support for use in formation of polyurethan films |
US4576283A (en) * | 1983-01-25 | 1986-03-18 | Bernard Fafournoux | Bag for vacuum packaging of articles |
US4576285A (en) * | 1983-05-20 | 1986-03-18 | Fres-Co System Usa, Inc. | Sealed flexible container with non-destructive peelable opening and apparatus and method for forming same |
US4747702A (en) * | 1983-06-30 | 1988-05-31 | First Brands Corporation | Interlocking closure device having controlled separation and improved ease of occlusion |
US4917506A (en) * | 1983-06-30 | 1990-04-17 | First Brands Corporation | Interlocking closure device having controlled separation and improved ease of occlusion |
US4672684A (en) * | 1983-10-06 | 1987-06-09 | C I L, Inc. | Thermoplastic bag |
US5749493A (en) * | 1983-10-17 | 1998-05-12 | The Coca-Cola Company | Conduit member for collapsible container |
US4669124A (en) * | 1984-05-23 | 1987-05-26 | Yoken Co., Ltd. | Beverage container with tamperproof screwthread cap |
US4579756A (en) * | 1984-08-13 | 1986-04-01 | Edgel Rex D | Insulation material with vacuum compartments |
US4812056A (en) * | 1985-03-25 | 1989-03-14 | The Dow Chemical Company | Reclosable, flexible container having an externally operated fastener |
USRE34929E (en) * | 1985-09-23 | 1995-05-09 | Tilia, Inc. | Plastic bag for vacuum sealing |
US4658434A (en) * | 1986-05-29 | 1987-04-14 | Grain Security Foundation Ltd. | Laminates and laminated articles |
US4917844A (en) * | 1987-04-01 | 1990-04-17 | Fuji Photo Film Co., Ltd. | Method of manufacturing laminate product |
US4834554A (en) * | 1987-11-16 | 1989-05-30 | J. C. Brock Corp. | Plastic bag with integral venting structure |
US4892414A (en) * | 1988-07-05 | 1990-01-09 | Minigrip, Inc. | Bags with reclosable plastic fastener having automatic sealing gasket means |
US5097956A (en) * | 1988-09-07 | 1992-03-24 | Paramount Packaging Corporation | Vacuum package with smooth surface and method of making same |
US4903718A (en) * | 1988-10-19 | 1990-02-27 | Ipco Corporation | Flexible ultrasonic cleaning bag |
US4913561A (en) * | 1988-11-15 | 1990-04-03 | Fres-Co System Usa, Inc. | Gussetted flexible package with presealed portions and method of making the same |
US4890637A (en) * | 1988-12-12 | 1990-01-02 | Flavorcoffee Co. Inc. | One way valve |
US5098497A (en) * | 1989-02-23 | 1992-03-24 | Anthony Industries, Inc. | Process for preparing embossed, coated paper |
US4906108A (en) * | 1989-03-08 | 1990-03-06 | Mobil Oil Corporation | Corrugated sticky tape bag tie closure |
US5006056A (en) * | 1989-09-01 | 1991-04-09 | The Black Clawson Company | Film extrusion apparatus including a quickly replaceable chill roll |
US6023914A (en) * | 1990-04-27 | 2000-02-15 | Kapak Corporation | Vented pouch arrangement and method |
US6021624A (en) * | 1990-04-27 | 2000-02-08 | Kapak Corporation | Vented pouch arrangement and method |
US5080155A (en) * | 1990-12-28 | 1992-01-14 | Hooleon Corporation | Keyboard enclosure |
US5209264A (en) * | 1991-07-05 | 1993-05-11 | Yoshihiro Koyanagi | Check valve |
US5111838A (en) * | 1991-11-25 | 1992-05-12 | Shipping Systems, Inc. | Dunnage bag air valve and coupling |
US5203458A (en) * | 1992-03-02 | 1993-04-20 | Quality Containers International, Inc. | Cryptoplate disposable surgical garment container |
US5402906A (en) * | 1992-07-16 | 1995-04-04 | Brown; Richard S. | Fresh produce container system |
US5397182A (en) * | 1993-10-13 | 1995-03-14 | Reynolds Consumer Products Inc. | Write-on profile strips for recloseable plastic storage bags |
US5480030A (en) * | 1993-12-15 | 1996-01-02 | New West Products, Inc. | Reusable, evacuable enclosure for storage of clothing and the like |
US5620098A (en) * | 1994-06-08 | 1997-04-15 | Southern California Foam, Inc. | Full recovery reduced-volume packaging system |
US5592697A (en) * | 1995-04-18 | 1997-01-14 | Young; Russell | Waterproof pocket |
US5874155A (en) * | 1995-06-07 | 1999-02-23 | American National Can Company | Easy-opening flexible packaging laminates and packaging materials made therefrom |
US5709467A (en) * | 1996-06-18 | 1998-01-20 | Galliano, Ii; Carol J. | Device and apparatus for mixing alginate |
US5735395A (en) * | 1996-06-28 | 1998-04-07 | Lo; Luke | Airtight garment hanging bag |
US6053606A (en) * | 1996-10-07 | 2000-04-25 | Seiko Epson Corporation | Ink cartridge |
US6224528B1 (en) * | 1997-04-11 | 2001-05-01 | Kapak Corporation | Method for making bag constructions having inwardly directed side seal portions |
US6035769A (en) * | 1997-04-16 | 2000-03-14 | Hikari Kinzoku Industry Co., Ltd. | Method for preserving cooked food and vacuum sealed preservation container therefor |
US5873217A (en) * | 1997-05-09 | 1999-02-23 | Smith; George E. | Vacuum sealing methods and apparatus |
US5881881A (en) * | 1997-06-16 | 1999-03-16 | Carrington; Thomas | Evacuateable bag |
US5898113A (en) * | 1997-07-30 | 1999-04-27 | Bellaire Industries, Inc. | Multi-ply material sealed container |
US6030652A (en) * | 1997-08-05 | 2000-02-29 | Hanus; John | Food bag featuring gusset opening, method of making the food bag, and method of using the food bag |
US6029810A (en) * | 1997-10-17 | 2000-02-29 | Chen; Shu-Ling | Dress bag and hanger assembly |
US5893822A (en) * | 1997-10-22 | 1999-04-13 | Keystone Mfg. Co., Inc. | System for vacuum evacuation and sealing of plastic bags |
US6059457A (en) * | 1998-01-02 | 2000-05-09 | Com-Pac International, Inc. | Evacuable storage bag with integral zipper seal |
US6045264A (en) * | 1998-01-29 | 2000-04-04 | Miniea; Stephen H. | Self-sealing, disposable storage bag |
USD425786S (en) * | 1998-05-04 | 2000-05-30 | Voller Ronald L | Multi ply reinforced dunnage bag and valve therefor |
US6231234B1 (en) * | 1998-05-13 | 2001-05-15 | Tc Manufacturing Co., Inc. | One piece snap closure for a plastic bag |
US6045006A (en) * | 1998-06-02 | 2000-04-04 | The Coca-Cola Company | Disposable liquid containing and dispensing package and an apparatus for its manufacture |
US6231236B1 (en) * | 1998-07-28 | 2001-05-15 | Reynolds Consumer Products, Inc. | Resealable package having venting structure and methods |
US6039182A (en) * | 1998-08-13 | 2000-03-21 | Light; Barry | Bag |
US6220702B1 (en) * | 1998-12-24 | 2001-04-24 | Seiko Epson Corporation | Ink bag for ink jet type recording apparatus and package suitable for packing such ink bag |
US6520071B1 (en) * | 1999-05-21 | 2003-02-18 | Aracaria B. . | Hand-held suction pump |
US6202849B1 (en) * | 1999-07-07 | 2001-03-20 | David B. Graham | Evacuatable rigid storage unit for storing compressible articles therein |
US6357915B2 (en) * | 1999-08-13 | 2002-03-19 | New West Products, Inc. | Storage bag with one-way air valve |
US6227706B1 (en) * | 2000-06-26 | 2001-05-08 | Thoai S. Tran | Two piece, compressible storage satchel for compressible articles |
US20040000501A1 (en) * | 2002-06-28 | 2004-01-01 | Shah Ketan N. | Recloseable storage bag with secondary closure members |
US20040000503A1 (en) * | 2002-06-28 | 2004-01-01 | Shah Ketan N. | Recloseable storage bag with porous evacuation portal |
US20040000502A1 (en) * | 2002-06-28 | 2004-01-01 | Shah Ketan N. | Recloseable storage bag with user-deformable air vent |
US20040007494A1 (en) * | 2002-07-15 | 2004-01-15 | Popeil Ronald M. | Apparatus and method to more effectively vacuum package foods and other objects |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7726880B2 (en) | 2004-06-29 | 2010-06-01 | The Glad Products Company | Flexible storage bag |
US20070292055A1 (en) * | 2004-06-29 | 2007-12-20 | Reuhs Rebecca S | Bag with Valve |
US20060193540A1 (en) * | 2004-06-29 | 2006-08-31 | Borchardt Michael G | Flexible Storage Bag |
US20060280388A1 (en) * | 2004-06-29 | 2006-12-14 | The Glad Products Company | Flexible storage bag |
US20060280389A1 (en) * | 2004-06-29 | 2006-12-14 | The Glad Products Company | Flexible storage bag |
US20060283148A1 (en) * | 2004-06-29 | 2006-12-21 | The Glad Products Company | Flexible storage bag |
US8419279B2 (en) | 2004-06-29 | 2013-04-16 | The Glad Products Company | Flexible storage bag |
US20090290817A1 (en) * | 2004-06-29 | 2009-11-26 | Borchardt Michael G | Flexible Storage Bag |
US7578320B2 (en) | 2004-06-29 | 2009-08-25 | The Glad Products Company | Flexible storage bag |
US20050286808A1 (en) * | 2004-06-29 | 2005-12-29 | Zimmerman Dean A | Flexible storage bag |
US20070101685A1 (en) * | 2004-07-23 | 2007-05-10 | Tilman Paul A | Storage system having a disposable vacuum bag |
US20070172157A1 (en) * | 2004-07-23 | 2007-07-26 | Alcoa Inc. | Polymeric package with resealable closure and valve and methods relating thereto |
US20060048483A1 (en) * | 2004-07-23 | 2006-03-09 | Tilman Paul A | Storage system having a disposable vacuum bag |
US20110041466A1 (en) * | 2004-07-23 | 2011-02-24 | Closure Systems International Inc. | Storage system having a disposable vacuum bag |
US20070101682A1 (en) * | 2004-07-23 | 2007-05-10 | Tilman Paul A | Storage system having a disposable vacuum bag |
US20090007523A1 (en) * | 2005-01-12 | 2009-01-08 | Unovo, Inc. | Method and apparatus for evacuating and sealing containers |
US7805913B2 (en) | 2005-01-12 | 2010-10-05 | Unovo, Inc. | Method and apparatus for evacuating and sealing containers |
US20090003736A1 (en) * | 2005-01-12 | 2009-01-01 | Unovo, Inc. | Method and apparatus for evacuating and sealing containers |
US7490452B2 (en) | 2005-01-12 | 2009-02-17 | Unovo, Inc. | Method and apparatus for evacuating and sealing containers |
US10391718B2 (en) * | 2005-07-01 | 2019-08-27 | Reebok International Limited | Inflatable article of footwear or bladders for use in inflatable articles of manufacture |
US20070286534A1 (en) * | 2005-10-24 | 2007-12-13 | Alcoa Inc. | Polymeric package with resealable closure and valve, and methods |
US20070092167A1 (en) * | 2005-10-24 | 2007-04-26 | Paul Tilman | Polymeric Package With Resealable Closure And Valve, And Methods |
US20080256901A1 (en) * | 2005-10-24 | 2008-10-23 | Reynolds Foil Inc, D/B/A Reynolds Consumer Products Company | Polymeric package with resealable closure and valve, and methods |
US20070110340A1 (en) * | 2005-11-17 | 2007-05-17 | Buchman James E | Tamper evident polymeric package with zipper closure and valve, and methods |
US20070132876A1 (en) * | 2005-12-14 | 2007-06-14 | Tsuyoshi Ohno | Solid-state image pickup device, color separation image pickup optical system and image pickup apparatus |
US7857514B2 (en) | 2006-12-12 | 2010-12-28 | Reynolds Foil Inc. | Resealable closures, polymeric packages and systems and methods relating thereto |
US7886412B2 (en) | 2007-03-16 | 2011-02-15 | S.C. Johnson Home Storage, Inc. | Pouch and airtight resealable closure mechanism therefor |
US8176604B2 (en) | 2007-03-16 | 2012-05-15 | S.C. Johnson & Son, Inc. | Pouch and airtight resealable closure mechanism therefor |
US7784160B2 (en) | 2007-03-16 | 2010-08-31 | S.C. Johnson & Son, Inc. | Pouch and airtight resealable closure mechanism therefor |
US8827556B2 (en) | 2007-03-16 | 2014-09-09 | S.C. Johnson & Son, Inc. | Pouch and airtight resealable closure mechanism therefor |
US7967509B2 (en) | 2007-06-15 | 2011-06-28 | S.C. Johnson & Son, Inc. | Pouch with a valve |
US20110085748A1 (en) * | 2007-06-15 | 2011-04-14 | Turvey Robert R | Flow Channels for a Pouch |
US7946766B2 (en) | 2007-06-15 | 2011-05-24 | S.C. Johnson & Son, Inc. | Offset closure mechanism for a reclosable pouch |
US7874731B2 (en) | 2007-06-15 | 2011-01-25 | S.C. Johnson Home Storage, Inc. | Valve for a recloseable container |
US7857515B2 (en) | 2007-06-15 | 2010-12-28 | S.C. Johnson Home Storage, Inc. | Airtight closure mechanism for a reclosable pouch |
US20080307614A1 (en) * | 2007-06-15 | 2008-12-18 | Dais Brian C | Closure mechanism for a reclosable pouch |
US8196269B2 (en) | 2007-06-15 | 2012-06-12 | S.C. Johnson & Son, Inc. | Closure mechanism for a recloseable pouch |
US8231273B2 (en) * | 2007-06-15 | 2012-07-31 | S.C. Johnson & Son, Inc. | Flow channel profile and a complementary groove for a pouch |
US7887238B2 (en) | 2007-06-15 | 2011-02-15 | S.C. Johnson Home Storage, Inc. | Flow channels for a pouch |
US20100177990A1 (en) * | 2007-07-17 | 2010-07-15 | Neltner Andrew E | Storage bag |
US8192182B2 (en) | 2008-01-09 | 2012-06-05 | S.C. Johnson Home Storage, Inc. | Manual evacuation system |
US8820591B2 (en) | 2010-08-05 | 2014-09-02 | Ds Smith Plastics Limited | Closure valve assembly for a container |
US8973789B2 (en) | 2010-08-05 | 2015-03-10 | Ds Smith Plastics Limited | Closure valve assembly for a container |
US8397958B2 (en) | 2010-08-05 | 2013-03-19 | Ds Smith Plastics Limited | Closure valve assembly for a container |
US20160137325A1 (en) * | 2014-11-13 | 2016-05-19 | Thomas Calvin Cannon, Jr. | Method and apparatus for vacuum packing resealable bags |
US9499288B2 (en) * | 2014-11-13 | 2016-11-22 | Thomas Calvin Cannon, Jr. | Method and apparatus for vacuum packing resealable bags |
WO2019217400A1 (en) * | 2018-05-08 | 2019-11-14 | The Glad Products Company | Thermoplastic bags with liquid directing structures |
AU2019265526B2 (en) * | 2018-05-08 | 2022-12-22 | The Glad Products Company | Thermoplastic bags with liquid directing structures |
US12017836B2 (en) | 2018-05-08 | 2024-06-25 | The Glad Products Company | Thermoplastic bags with liquid directing structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7625459B2 (en) | Method for manufacturing liquid-trapping bag for use in vacuum packaging | |
US20050037164A1 (en) | Liquid-trapping bag for use in vacuum packaging | |
US20050036718A1 (en) | Sealable bag having an integrated valve structure for use in vacuum packaging | |
AU2002234998B2 (en) | Method for preparing air channel-equipped film for use in vacuum package | |
US20050036719A1 (en) | Sealable bag having an indicia for use in vacuum packaging | |
US20050065007A1 (en) | Method for manufacturing a sealable bag having an integrated valve structure for use in vacuum packaging | |
CA2812814C (en) | Vacuum packaging films patterned with protruding cavernous structures | |
US20050036717A1 (en) | Sealable bag having an integrated zipper for use in vacuum packaging | |
US7087130B2 (en) | Method for manufacturing a sealable bag having an integrated zipper for use in vacuum packaging | |
US7138025B2 (en) | Method for manufacturing a sealable bag having an integrated tray for use in vacuum packaging | |
US20050035020A1 (en) | Sealable bag having an integrated tray for use in vacuum packaging | |
US20050037163A1 (en) | Sealable bag having an integrated timer/sensor for use in vacuum packaging | |
US20050029704A1 (en) | Method for manufacturing a sealable bag having an indicia for use in vacuum packaging | |
US20050043158A1 (en) | Method for manufacturing a sealable bag having an integrated timer/sensor for use in vacuum packaging | |
WO2004078609A1 (en) | Liquid-trapping bag and method of making it | |
US20060283757A1 (en) | System and method for forming an integrated tray for use in vacuum packaging | |
EP1608556A2 (en) | System and method for forming an integrated tray for use in vacuum packaging | |
AU2004217859A1 (en) | System and method for forming an indicia for use in vacuum packaging | |
JP3986639B2 (en) | Cylindrical package, manufacturing method thereof, and manufacturing apparatus thereof | |
WO2004078590A2 (en) | System and method for forming an integrated timer/sensor for use in vacuum packaging | |
CN1777549A (en) | Method and system for forming integrated plate for vacuum package | |
CN1777543A (en) | Liquid-collection bag and making method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TILIA INTERNATIONAL, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, HONGYU;ALBRITTON, CHARLES WADE;BRAKES, DAVID;REEL/FRAME:015940/0790;SIGNING DATES FROM 20041013 TO 20041014 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |