US20040243217A1 - Expandable stent - Google Patents
Expandable stent Download PDFInfo
- Publication number
- US20040243217A1 US20040243217A1 US10/489,181 US48918104A US2004243217A1 US 20040243217 A1 US20040243217 A1 US 20040243217A1 US 48918104 A US48918104 A US 48918104A US 2004243217 A1 US2004243217 A1 US 2004243217A1
- Authority
- US
- United States
- Prior art keywords
- stent
- closed cell
- elements
- tubular
- members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003814 drug Substances 0.000 claims description 43
- 229940124597 therapeutic agent Drugs 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 11
- 238000005304 joining Methods 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 2
- 229940079593 drug Drugs 0.000 description 23
- 238000000034 method Methods 0.000 description 8
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000002788 crimping Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002399 angioplasty Methods 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 208000031481 Pathologic Constriction Diseases 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000002966 stenotic effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/852—Two or more distinct overlapping stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/826—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/828—Means for connecting a plurality of stents allowing flexibility of the whole structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91508—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91525—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91575—Adjacent bands being connected to each other connected peak to trough
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91591—Locking connectors, e.g. using male-female connections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0013—Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/006—Additional features; Implant or prostheses properties not otherwise provided for modular
- A61F2250/0063—Nested prosthetic parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
- A61F2250/0068—Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
Definitions
- This invention relates to an expandable tubular stent for implantation in the lumen of a body duct in order to ensure a passage therein.
- Such stents are used mainly in the treatment of blood vessels exhibiting stenoses, and more generally in the treatment of diseases of various anatomical ducts of the human or animal body, such as, for example, the urinary ducts, especially the urethra, or the digestive ducts, especially the oesophagus.
- a known type of expandable tubular stent consists of an assembly of radially expandable, tubular elements aligned along a common longitudinal axis and successively joined together in pairs by respective sets of linking members.
- Such a stent is disclosed, for example, in international patent application WO 98/58600 in which each of the tubular elements consists of a strip forming a zigzag corrugation defining bent extreme portions which are successively connected together in pairs in opposite directions by rectilinear intermediate portions.
- the stent is expandable between a first, unexpanded state, enabling it to be implanted percutaneously by means of an insertion device of reduced diameter, and a second, expanded state, in which the stent makes it possible to ensure a passage in the lumen of the body duct.
- Stents of this type are also disclosed in international patent applications WO 96/26689 and WO 98/20810.
- the stent To install the stent, it is placed in the unexpanded state on an angioplasty balloon catheter. Once in place, the balloon is inflated in order to cause the stent to expand.
- the stent may be made from a material which has a recovery capacity, so that the stent may automatically expand, once in place.
- a stent comprising a tubular body made up of a plurality of separate, radially expandable, tubular elements aligned along a common longitudinal axis, wherein at least some of the tubular elements each comprise a plurality of closed cell elements, each joined to the next by a circumferentially-extending linking member.
- each tubular element comprises a closed loop consisting of a series of alternating closed cell elements and circumferential linking members.
- the tubular elements are physically linked to one another by longitudinally extending linking members.
- One or more of such longitudinally extending linking members may link each pair of adjacent tubular elements.
- the stent consists simply of a collection of separate tubular members whose alignment along a common axis to form the stent is achieved by other means.
- the tubular elements, as well as being expandable are also compressible.
- a tubular member or framework which is not directly joined to the adjacent tubular elements but over which or within which the tubular elements are positioned in the desired alignment.
- the balloon which is used to expand the stent can be used to maintain the position of the tubular members with respect to one another.
- both these techniques are employed: the tubular elements are placed over the balloon and interlocked together so that the stent remains structurally stable during its often tortuous passage to the treatment site. Upon expansion, the interlocking is released, and the balloon alone then maintains the positional stability of the stent components. After the balloon has been deflated, the expanded stent, which has undergone plastic deformation, maintains its expanded shape and thus keeps the vessel being treated at its desired diameter. The expanded vessel applies a reaction force, due to its elastic nature, against the stent and thus maintains the position of the individual tubular elements making up the stent with respect to one another.
- each tubular element is constructed in such a way that it is expandable in the circumferential direction.
- This may be achieved by the closed cell construction of the invention in which the expansion capabilities of the tubular elements are contained wholly or primarily in the closed cell elements.
- the closed cell elements be positioned symmetrically with respect to the circumferential linking members, but asymmetric arrangements are also possible.
- tubular elements making up the stent may be all identical, or they may be different—for example, a stent could be made up of a combination of tubular elements comprising closed cell elements, and tubular elements constructed in some other way, arranged to create particular desired properties of the stent as a whole.
- the circumferential linking members may simply consist of rectilinear members extending in the circumferential direction.
- the circumferential linking members may be angled to the circumferential direction, so long as they have a component in the circumferential direction so that the adjacent closed cell elements are spaced apart in the circumferential direction.
- the circumferential linking members are not rectilinear, but are some other shape to create particular desired characteristics—for example, the circumferential linking members could be such as to provide a degree of flexibility in the circumferential direction, although the expansion capabilities of the tubular element will still be primarily due to the closed cell elements.
- all of the circumferential linking members are the same length in the circumferential direction so that the closed cell elements are evenly distributed about the circumference of the tubular element.
- each closed cell element attachs to the closed cell elements at respective spaced attachment points, and each closed cell element is constructed in such a way that it is capable of expanding from a first position in which the attachment points are relatively close together to a second position in which the attachment points are relatively further apart. In this way, the circumferential length of the tubular element can be increased from a relatively low value, corresponding to the unexpanded condition of the stent, to a relatively higher value, corresponding to the expanded condition of the stent.
- each closed cell element comprises two individual members extending between said attachment points, said members being spaced apart in the direction of the longitudinal axis of the stent.
- one of said members may be said to be the proximal member, the other the distal member.
- the proximal and distal members are preferably symmetrically arranged about a straight line joining the two attachment points, this line being coaxial around the circumference with the general direction of the circumferential linking members.
- each of the proximal and distal members are capable of bending in order to enable the expansion of the closed cell element from the first position to the second position.
- This may be achieved in various ways.
- each of the proximal and distal members may be fabricated from a flexible member which is thus able to bend to accommodate the required movement.
- each of the proximal and distal members is fabricated by a plurality of relatively rigid side members joined by hinge members.
- each of the proximal and distal members comprises two such side members joined together by a hinge.
- the two side members are of equal length, but they do not need to be; however, for a symmetric construction the corresponding side members in each of the proximal and distal members should be of equal length.
- each closed cell element has a generally rhombic or diamond shape, comprising four side members of relatively stiff construction, joined by four hinge members corresponding to the corners of the rhombus.
- the circumferential linking members attach to the closed cell element at the location of opposite hinge members.
- each circumferential linking member has, at one end, one of the hinge members of one closed cell element and, at the opposite end, the opposite hinge member of the adjacent closed cell element.
- every other closed cell element is of rhombic shape, as described above, whilst the closed cell elements in between comprise “double rhombic” elements, each comprising two rhombic shapes, as described above, aligned in the circumferential direction, but joined by a narrow, but not closed, neck portion.
- the aforesaid interlock means can conveniently be provided by providing an enlarged portion at each of the hinge members to which the link members are not attached.
- the interlock means do not have to be provided on every closed cell element. It may be adequate to provide them on just a few closed cell elements, but evenly spaced about the circumference, so as to give a balanced attachment between adjacent tubular elements. For this purpose some of the closed cell elements may extend further in the axial direction of the stent than the remaining closed cell elements, so that these extended portions may interlink with the adjacent tubular element.
- This enlarged portion can be formed as a flexible open cell with a narrowed neck, or can be formed as a relatively rigid block, from which, for example, the two side members may emerge via a respective narrowed portion to act as a hinge—in this latter case, the hinge member actually consists of two separate hinges.
- the stent In current medical practice, it is often the case that, in addition to its role in providing ongoing support for the vessel wall, the stent is required to act as a means whereby therapeutic agents may conveniently be applied. Indeed the trauma caused during the angioplasty procedure may call for localised drug treatment. In addition, drugs may be used to counteract restenosis, and for other purposes. Conventionally, such therapeutic agents are contained within some form of coating which is applied to the stent so that the drug will be released over a period of time.
- One problem with such an arrangement is that, whereas the drug needs primarily to be applied through the wall of the vessel being treated, in practice as much of the drug is released into the fluid, e.g. blood, flowing within the vessel as passes through the vessel wall. Not only is the drug which is washed away effectively wasted, it can also do positive harm elsewhere if, for example, it enters a sensitive organ such as the heart.
- the stent is equipped with wells opening into its exterior surface—that surface which, when the stent is in place, will face the wall of the vessel being treated—said wells being suitable to contain therapeutic agent.
- the wells may comprise holes or grooves opening into the exterior surface of the stent, and may or may not pass right through the material of the stent to the interior of the stent.
- the wells pass through to the interior of the stent there is clearly a danger of at least some of the drug being released into the fluid flowing within the vessel. Therefore it is preferred that, in such a case, that end of the well which opens into the interior of the stent is constructed, for example by being made narrower, and/or being plugged by a material which prevents or considerably reduces the tendency of the therapeutic agent to flow therethrough.
- the well is wholly or primarily open to the exterior surface of the stent so that the therapeutic agent may act directly on the wall of the vessel and does not get washed away by the fluid flowing along the vessel being treated.
- the wells may open onto any suitable exterior surface of the stent.
- the wells may conveniently be formed in the blocks which form the enlarged portions of the closed cell elements.
- each block could be formed with a well in the form of a hole, which may or may not be a through hole and which opens into that surface of the block which forms part of the exterior surface of the stent.
- the wells may be formed as grooves in the side members of the closed cell elements, the grooves opening into that surface of the side members which forms part of the exterior surface of the stent. It will be understood, however, that the above positions are given just as examples.
- the wells contain therapeutic agents which are intended to be released at a controlled rate against the wall of the vessel being treated. Not all of the wells necessarily will contain the therapeutic agent, and not all wells need to contain the same therapeutic agent. It is possible, for example, that the wells of different tubular elements contain different therapeutic agent, opening up the possibility of providing mixtures of drugs by choosing particular tubular elements carrying particular drugs to make up the stent. Clearly this is particularly easy with a stent in which the tubular elements are separate from one another.
- the therapeutic agents may also be provided in separate layers within the well, with the drug needed first being in the top layer, and the drugs needed later in lower layers, in correct sequence.
- some of the wells contain therapeutic agents which have different rates of release.
- the drug contained in the wells of those tubular elements at or near the ends of the stent could be arranged to have a more rapid or a slower release rate than the remainder.
- the therapeutic agents may be provided in any suitable form for retention in the wells, and for sustained release, once installed within the vessel. Examples are liquid, gel or powder form.
- FIG. 1 is a two-dimensional view of the evolute of the surface of a stent according to a first aspect of the present invention, in its “as cut” condition;
- FIG. 2 is a view corresponding to FIG. 1, but showing just a single tubular element
- FIG. 3 is an enlarged view of one of the closed cell elements in the embodiment of FIG. 1;
- FIGS. 4A and B are side and perspective views of the stent of FIG. 1, but in which the number of elements is just three, in its “as cut” condition;
- FIG. 5 is a perspective view of a single tubular element from the stent of FIG. 1;
- FIGS. 6 and 7 are views similar to FIGS. 4A and 4B respectively, but showing the stent in the crimped condition
- FIGS. 8 and 9 are views similar to FIGS. 4A and 4B respectively, but showing the stent in the expanded condition
- FIGS. 10 and 11 are views similar to FIG. 4B, but showing two further embodiments showing both the first and second aspect of the invention.
- FIG. 12 is a view similar to FIG. 2 showing a still further embodiment of the invention.
- FIGS. 12A, B and C are views on the lines A-A, B-B and C-C respectively of FIG. 12;
- FIG. 13 is a view similar to that of FIG. 5, but showing the embodiment of FIG. 12;
- FIG. 14 is an enlarged view of part of FIG. 13;
- FIG. 15 is a view similar to FIG. 2 showing a still further embodiment of the invention.
- FIGS. 15A and B are views on the lines A-A and B-B respectively of FIG. 15;
- FIG. 16 is a view similar to that of FIG. 5, but showing the embodiment of FIG. 15;
- FIG. 17 is an enlarged view of part of FIG. 16;
- FIG. 18 is a view similar to FIG. 2 showing a still further embodiment of the invention.
- FIG. 18A is a view on the line A-A of FIG. 18;
- FIG. 19 is a view similar to that of FIG. 5, but showing the embodiment of FIG. 18;
- FIG. 20 is a view similar to FIG. 2 showing a still further embodiment of the invention.
- FIG. 21 is a view similar to FIG. 5, but showing the embodiment of FIG. 20,
- FIG. 22 is a view similar to FIG. 2 showing a still further embodiment of the invention.
- FIG. 23 is a view similar to FIG. 5, but showing the embodiment of FIG. 22;
- FIG. 24 is a view similar to FIG. 4 b , but showing the embodiment of FIG. 22.
- the stent comprises a series of radially expandable tubular elements 1 aligned along a common longitudinal axis. Both of these Figures show the stent in its “as cut” condition by which is meant the condition in which it comes out of the manufacturing process.
- FIG. 1 illustrates the stent folded out in two dimensions, illustrated by the X-Y coordinates printed to the side of the drawing.
- the stent is, of course, a three dimensional object, as illustrated in elevation and in perspective in FIGS. 4A and 4B respectively; thus it is assumed that the ends 12 , 13 of each tubular element in FIG. 1 are in fact joined so that each element forms a closed loop of generally tubular configuration.
- the longitudinal direction of the stent is parallel to the X-axis illustrated in FIG. 1, while the circumferential direction of the stent is parallel to the Y-axis in FIG. 1.
- tubular elements 1 are separate from one another in the sense that there is no direct physical link between them, keeping the tubular elements 1 in position. Instead alternative means are used to maintain the structural integrity of the stent. This will be explained in more detail below.
- tubular element 1 is shown, in two dimensional form in FIG. 2, and in three dimensional form in FIG. 5.
- Each tubular element comprises a plurality of closed cell elements 2 equally spaced apart by circumferentially extending linking members 3 .
- each tubular element 1 comprises six closed cell elements 2 , spaced apart circumferentially by 60°, but other numbers of closed cell elements are possible, according to the circumstances.
- a single closed cell element 2 is shown in enlarged detail in FIG. 3.
- the closed cell element has a generally rhombic or diamond shape defined by four side members 24 to 27 joined together by respective hinge members 20 to 23 .
- the circumferential linking members 3 attached to respective opposite hinge members 21 , 23 .
- the hinge members 21 , 23 are formed by narrowed sections 28 , 29 where the respective side members 24 / 27 , 25 / 26 join the respective linking member 3 .
- the hinge members 20 , 22 are formed as a loop 30 having a narrowed opening 31 into the interior 32 of the cell element. This narrowed opening 31 corresponds to a waisted portion 33 which cooperates in the interlocking of individual tubular elements 1 , as will be explained below.
- the crimping process involves compressing the “as cut” stent onto the balloon so that it is securely gripped.
- the diameter of the tubular elements decreases and this is achieved by a deformation of the closed cell elements 2 in such a way as to tend to close the elements up—i.e. so that the hinge members 21 and 23 move towards one another, thus reducing the circumferential length of the tubular element 1 .
- the closed cell elements bend at the hinge members 20 to 23 the crimped condition of the stent is illustrated in FIGS. 6 and 7 and since, in effect, the stent is expanded from this condition, the crimped condition can also be regarded as the unexpanded condition of the stent.
- FIGS. 6 and 7 It will be noted in FIGS. 6 and 7 that, in the crimped condition of the stent, the hinge members 20 , 22 belonging to adjacent tubular elements are interlocked, thus maintaining the structural integrity of the stent as a whole.
- This interlocking is achieved by the cooperating interlocking shapes of the hinge members 20 , 22 in which each of the enlarged loops 30 lie between a pair of waisted portions 33 belonging to circumferentially adjacent closed cell elements 2 belonging to the same tubular element 1 .
- the closed cell elements can be configured to grip one another to maintain the shape of the stent so that it is not dislodged or deformed during its often long and tortuous passage to the treatment site.
- each loop 30 is allowed to move longitudinally a short but controlled distance towards the adjacent linking member 3 .
- the loops 30 on one side move slightly, as described, whilst those on the other side move in the opposite direction.
- still greater longitudinal flexibility can be achieved by arranging that the elements are interlocked in such a way as to allow the loops to move, in a controlled manner, in either longitudinal direction.
- the balloon carrying the stent is expanded, in the known manner, to expand the stent from its condition shown in FIGS. 6 and 7 to its dilated condition shown in FIGS. 8 and 9.
- the closed cell element 2 deform to a final shape clearly illustrated in FIG. 8.
- the hinge members 21 , 23 have moved apart in the circumferential direction, thus increasing the circumferential length of each tubular element 1 .
- the hinge members 20 , 22 of adjacent closed cell elements 2 move apart in the circumferential direction thus releasing the grip which they had previously exerted on the corresponding members of adjacent tubular elements.
- the stent however by now is supported both from within and without and so maintains its structural shape, even though the interlocking is released.
- the support from within comes from the balloon which is being internally pressurised to expand the stent; the support from without comes from the wall of the vessel being treated.
- each of the closed cell elements 2 reduces and this effect, in a stent with linking members between adjacent tubular elements, causes the overall length of the stent to reduce. This reduction in length is undesirable for various reasons, and it will be seen that the use of independent tubular elements 1 substantially eliminates this problem.
- FIGS. 10 and 11 show modified versions of the stent of FIG. 1 in which the hinge members 20 , 23 are modified from the open loop form described previously.
- the stents of FIGS. 10 and 11 differ from that of FIG. 1 in that the hinge members 20 , 22 comprise a block 34 of material from which the side members 24 / 27 and 25 / 26 emerge, via a respective narrowed portion to act as a hinge.
- the hinge members 20 , 22 each comprise a pair of hinges by which the respective side members 24 / 27 and 25 / 26 are attached to the blocks 34 .
- these blocks 34 are formed integrally with the remainder of the tubular element, and are of the same material.
- each block 34 acts as an enlarged end in a similar manner to loop 30 of the FIG. 1 embodiment, and defines a narrowed waist portion where it joins the adjacent side members. The arrangement is thus able to interlock the individual tubular elements 1 in the same way as described above.
- the crimped stent has a high degree of longitudinal flexibility since it is not restrained by the inter-element linking members of known stents.
- the crimped stent has a high degree of longitudinal conformability due to its tubular elements being interlocked at multiple cell locations.
- the stent Once deployed, the stent has a high degree of longitudinal flexibility and of longitudinal and radial conformability due to the absence of the restraint imposed by inter-element linking members.
- FIGS. 10 and 11 also illustrate the use of wells for containing therapeutic agent. It will be seen that, in each of FIGS. 10 and 1 the blocks 34 have formed on their exterior surface a well 35 which is intended to act as a reservoir for a therapeutic agent. Each well 35 takes the form of a shallow blind hole which opens into the exterior surface which, when the stent is deployed faces the wall of the vessel being treated.
- any therapeutic agent contained within the wells 35 acts directly on the wall of the vessel, and is not substantially affected by the flow of fluid within the vessel.
- each block 34 Although only a single well 35 is formed in each block 34 , it is possible for multiple smaller wells to be formed, perhaps each containing different drugs. Different drugs can be supplied on different tubular elements, making it easy to create a stent, as needed, containing an appropriate recipe of drugs.
- the holes making up the wells 35 can be formed as through-holes, and plugged from the interior side to create a blind hole.
- the through hole can be left, and a suitable substance which will resist the washing away of the drug contained within the well can be deposited at the inner end of the through hole.
- the wells 35 are shown as circular holes, it will be understood that other shapes are possible, including multi-sided, square or rectangular. Alternatively, the wells can be formed as grooves or slots opening into the exterior surface of the block 34 .
- the wells may additionally or instead of be provided at other locations, such as on the side members 24 to 27 of the closed cell elements 2 .
- the side members would have to be made less deformable than they might otherwise be since any deformation of the reservoir during stent crimping or deployment might result in delamination of the reservoir contents, which would be undesirable.
- the blocks 34 are seen as attractive since they suffer substantially less deformation than other parts of the stent because their bulk, relative to the remaining components of the stent, is such that they are relatively stiff.
- FIGS. 12 to 19 illustrate further embodiments similar to that of FIGS. 10 and 11, showing alternative arrangements of wells.
- Half of the wells 35 have the shape of a short slot 36 which opens only into the exterior surface of the tubular element; the other half of the wells 35 have the shape of a slot 37 which opens both into the exterior surface of the tubular element 1 , but also info the edge of the tubular element 1 .
- Various combinations of these shaped wells can be used.
- FIG. 14 The enlarged view of FIG. 14 is of interest in that it clearly shows the structure of the left-hand hinge member 20 . This can be seen to comprise two narrowed (i.e. less wide) portions 50 , 51 where the respective side members 24 and 27 join the block 34 .
- FIGS. 15 to 17 there is again a combination of different well shapes: a first type of well 35 formed of a short slot 38 extending in the circumferential direction of the stent; a second type of well 35 formed of a slot 39 which extends right across the block 34 in the circumferential direction of the stent, and is open at both ends.
- FIGS. 18 and 19 show an embodiment in which again two different styles of well 35 are shown.
- a block 40 is formed within the loop 30 of a hinge member of the type described above in relation to the embodiment of FIG. 1.
- the block 40 is formed with a well 35 formed as a blind hole, in a similar manner to the wells 35 of the embodiment of FIG. 11.
- a block 41 is formed outside of the loop 30 and, once again, is equipped with a well 35 in the form of a blind hole. Since there is room beyond the hinge members 20 , 22 , the block 41 does not interfere with the interlocking of the tubular element 1 together during crimping, as described above.
- the well can hold drugs without the need for a polymer matrix coating.
- the use of wells can eliminate coating delamination during stent deployment, thus reducing the risk of thrombosis.
- the reservoir can be loaded with a high dose and long life time.
- the reservoir dimensions can be readily varied to the particular circumstances such as blood flow direction and drug release kinetics.
- Each well can contain a single drug and therefore different drugs can be individually held in different wells without the danger of their reacting with each other.
- FIGS. 20 to 24 show two further embodiments in which the closed cell elements in each tubular element 1 are not all identical, and in which the locating means are not provided on every closed cell element.
- each tubular element 1 is made up of two different shapes of closed cell element which alternate around the tubular element.
- the first shape of closed cell element, illustrated under reference 50 is similar to that of the closed cell elements described above with reference to FIG. 3, except that the loops 30 on one side of the rhombic shaped structure are positioned at the end of a pair of extended arms 51 , 52 .
- these “extended” loops 30 protrude, in the axial direction of the stent, with respect to the remaining parts of the tubular element 1 , and are thus able to interlock with the next adjacent tubular element.
- FIGS. 22 to 24 illustrate an embodiment similar to that of FIGS. 20 and 21 but in which the extended loops 30 are open at their neck, as distinct from the arrangement in FIGS. 20 and 21, where each extended loop 30 takes the form of a closed ring which is attached at the ends of the arms 51 , 52 .
- the closed cell elements between the elements 50 are of different shape to the elements 50 .
- These elements given the reference 53 , each comprise two rhombic-shaped sections 54 , 55 which are joined by a narrow open neck portion 57 .
- FIG. 24 actually shows the embodiment of FIGS. 22 and 23, but it will be understood that the same interlocking technique can be used for the embodiment of FIGS. 20 and 21.
- FIG. 24 it should also be noted that the drawing shows the tubular elements in their expanded state—i.e. in a state in which they would not ordinarily be interlocked—see above.
- the aperture 56 formed within the loop 30 in the embodiment of FIGS. 20 and 21 could be used as a well for containing a therapeutic agent, in the manner described above.
- the aperture 56 may be a through aperture, plugged at its inner end, or may be a blind bore, opening into the outer surface only.
- the stent which has been described is expandable between an unexpanded state (in practice, probably the crimped condition mentioned above), in which it is able to be guided inside the lumen through a body duct, such as a blood vessel, for example, and an expanded state, in which the stent, after a uniform expansion, comes into contact with the inner wall of the body duct, defining a passage of approximately constant diameter inside said duct.
- the stent will generally be forcibly expanded mechanically under the action of a force exerted radially outwards, for example under the effect of the inflation of a balloon.
- the stent may be of the “auto-expandable” type, i.e. capable of changing by itself from a first, unexpanded condition under stress, enabling it to be guided through the body duct, to a second, expanded, working condition.
- the stent may be made of any material compatible with the body duct and the body fluids with which it may come into contact.
- a material with a low elastic recovery capacity may be used to advantage.
- metallic materials such as tungsten, platinum, tantalum, gold, or stainless steel.
- the tubular elements 1 may be manufactured from a hollow tube with an approximately constant thickness corresponding to the desired thickness.
- the shape of the tubular elements may be formed either by laser cutting followed by electrochemical polishing, or by chemical or electrochemical treatment.
- the tubular elements may alternatively be manufactured from a sheet of approximately constant thickness corresponding to the desired thickness of the stent.
- the geometric configuration of the tubular elements can be obtained either by laser cutting followed by electrochemical polishing, or by chemical or electrochemical treatment. The sheet cut in this way is then rolled up to form a cylinder and welded to give the desired final structure.
- the stent can be deployed in a manner known per se.
- the insertion system will preferably comprise a balloon catheter onto which the stent will be crimped in the unexpanded state before being introduced into an insertion tube for guiding it to the site to be treated.
- the stent of the invention can be intended for both temporary or permanent placement in the duct or vessel to be treated.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
An expandable stent comprising a tubular body made up of a plurality of separated tubular elements (1) arranged along a common longitudinal axis. Each tubular element (1) comprises a plurality of rhombic-shaped closed cell elements (2) joined by circumferentially extending linking members (3). The closed cell elements (2) are expandable to allow the tubular elements, and hence the stent itself, to expand. In the direction of the longitudinal axis of the stent, the extremities of each of the closed cell elements has an enlarged loop (30) with waisted portions (33) which allow the tubular elements to interlock to create a stable structure, at least when in the unexpanded condition.
Description
- This invention relates to an expandable tubular stent for implantation in the lumen of a body duct in order to ensure a passage therein.
- Such stents are used mainly in the treatment of blood vessels exhibiting stenoses, and more generally in the treatment of diseases of various anatomical ducts of the human or animal body, such as, for example, the urinary ducts, especially the urethra, or the digestive ducts, especially the oesophagus.
- The percutaneous implantation of an expandable tubular stent in a stenotic blood vessel is generally recommended, for example after a conventional angioplasty procedure, for preventing the dilated vessel from closing up again spontaneously or for preventing its occlusion by the formation of a new atheromatous plaque and the possible recurrence of stenosis.
- A known type of expandable tubular stent consists of an assembly of radially expandable, tubular elements aligned along a common longitudinal axis and successively joined together in pairs by respective sets of linking members. Such a stent is disclosed, for example, in international patent application WO 98/58600 in which each of the tubular elements consists of a strip forming a zigzag corrugation defining bent extreme portions which are successively connected together in pairs in opposite directions by rectilinear intermediate portions. By virtue of this zigzag corrugation, the stent is expandable between a first, unexpanded state, enabling it to be implanted percutaneously by means of an insertion device of reduced diameter, and a second, expanded state, in which the stent makes it possible to ensure a passage in the lumen of the body duct. Stents of this type are also disclosed in international patent applications WO 96/26689 and WO 98/20810.
- To install the stent, it is placed in the unexpanded state on an angioplasty balloon catheter. Once in place, the balloon is inflated in order to cause the stent to expand. Alternatively, the stent may be made from a material which has a recovery capacity, so that the stent may automatically expand, once in place.
- According to the invention there is provided a stent comprising a tubular body made up of a plurality of separate, radially expandable, tubular elements aligned along a common longitudinal axis, wherein at least some of the tubular elements each comprise a plurality of closed cell elements, each joined to the next by a circumferentially-extending linking member.
- It will thus be seen that each tubular element comprises a closed loop consisting of a series of alternating closed cell elements and circumferential linking members.
- In most known stents, the tubular elements are physically linked to one another by longitudinally extending linking members. One or more of such longitudinally extending linking members may link each pair of adjacent tubular elements. However, there are a number of advantages to be obtained by not using longitudinally-extending linking members, so that the stent consists simply of a collection of separate tubular members whose alignment along a common axis to form the stent is achieved by other means. Preferably the tubular elements, as well as being expandable, are also compressible.
- By “separate” is meant that the tubular elements are not directly connected together by longitudinally-extending linking members. The word “separate” does not imply that the elements may not touch and, as will be explained below, in certain conditions of the stent, the linking members will touch and will indeed link together. In the absence of longitudinally-extending linking members, the structural integrity of the stent is realised by alternative means, such as:
- 1) A tubular member or framework which is not directly joined to the adjacent tubular elements but over which or within which the tubular elements are positioned in the desired alignment. For example, the balloon which is used to expand the stent can be used to maintain the position of the tubular members with respect to one another.
- 2) Interlock means which mechanically holds the tubular members together even though they are not directly joined. An example of this would be to provide co-operating interlock means on the tubular elements themselves.
- In an embodiment of the invention, both these techniques are employed: the tubular elements are placed over the balloon and interlocked together so that the stent remains structurally stable during its often tortuous passage to the treatment site. Upon expansion, the interlocking is released, and the balloon alone then maintains the positional stability of the stent components. After the balloon has been deflated, the expanded stent, which has undergone plastic deformation, maintains its expanded shape and thus keeps the vessel being treated at its desired diameter. The expanded vessel applies a reaction force, due to its elastic nature, against the stent and thus maintains the position of the individual tubular elements making up the stent with respect to one another.
- In order to allow the stent to expand it is necessary that the tubular elements be radially expandable. For this purpose, each tubular element is constructed in such a way that it is expandable in the circumferential direction. This may be achieved by the closed cell construction of the invention in which the expansion capabilities of the tubular elements are contained wholly or primarily in the closed cell elements. To avoid out of balance forces during expansion, it is preferred that the closed cell elements be positioned symmetrically with respect to the circumferential linking members, but asymmetric arrangements are also possible.
- The tubular elements making up the stent may be all identical, or they may be different—for example, a stent could be made up of a combination of tubular elements comprising closed cell elements, and tubular elements constructed in some other way, arranged to create particular desired properties of the stent as a whole.
- The circumferential linking members may simply consist of rectilinear members extending in the circumferential direction. Alternatively the circumferential linking members may be angled to the circumferential direction, so long as they have a component in the circumferential direction so that the adjacent closed cell elements are spaced apart in the circumferential direction. In a further alternative, the circumferential linking members are not rectilinear, but are some other shape to create particular desired characteristics—for example, the circumferential linking members could be such as to provide a degree of flexibility in the circumferential direction, although the expansion capabilities of the tubular element will still be primarily due to the closed cell elements. Preferably, all of the circumferential linking members are the same length in the circumferential direction so that the closed cell elements are evenly distributed about the circumference of the tubular element.
- The circumferential linking members attach to the closed cell elements at respective spaced attachment points, and each closed cell element is constructed in such a way that it is capable of expanding from a first position in which the attachment points are relatively close together to a second position in which the attachment points are relatively further apart. In this way, the circumferential length of the tubular element can be increased from a relatively low value, corresponding to the unexpanded condition of the stent, to a relatively higher value, corresponding to the expanded condition of the stent. In one possible construction, each closed cell element comprises two individual members extending between said attachment points, said members being spaced apart in the direction of the longitudinal axis of the stent. Thus, one of said members may be said to be the proximal member, the other the distal member. The proximal and distal members are preferably symmetrically arranged about a straight line joining the two attachment points, this line being coaxial around the circumference with the general direction of the circumferential linking members.
- The proximal and distal members are capable of bending in order to enable the expansion of the closed cell element from the first position to the second position. This may be achieved in various ways. For example, each of the proximal and distal members may be fabricated from a flexible member which is thus able to bend to accommodate the required movement. Alternatively, each of the proximal and distal members is fabricated by a plurality of relatively rigid side members joined by hinge members. In the preferred embodiment, each of the proximal and distal members comprises two such side members joined together by a hinge. Preferably the two side members are of equal length, but they do not need to be; however, for a symmetric construction the corresponding side members in each of the proximal and distal members should be of equal length.
- In an embodiment, each closed cell element has a generally rhombic or diamond shape, comprising four side members of relatively stiff construction, joined by four hinge members corresponding to the corners of the rhombus. The circumferential linking members attach to the closed cell element at the location of opposite hinge members. Thus, each circumferential linking member has, at one end, one of the hinge members of one closed cell element and, at the opposite end, the opposite hinge member of the adjacent closed cell element.
- It is not essential that all the closed cell elements in each tubular element are the same shape. In an alternative embodiment every other closed cell element is of rhombic shape, as described above, whilst the closed cell elements in between comprise “double rhombic” elements, each comprising two rhombic shapes, as described above, aligned in the circumferential direction, but joined by a narrow, but not closed, neck portion.
- Other arrangements of closed cell elements are possible, according to the circumstances.
- The aforesaid interlock means can conveniently be provided by providing an enlarged portion at each of the hinge members to which the link members are not attached. The narrowing side members as they approach each hinge member, together with the respective enlarged portion, form a narrow or waist portion which can overlap with an enlarged portion from the next adjacent tubular element. Two such waist portions acting together can thus retain an enlarged portion from the next adjacent tubular element.
- The interlock means do not have to be provided on every closed cell element. It may be adequate to provide them on just a few closed cell elements, but evenly spaced about the circumference, so as to give a balanced attachment between adjacent tubular elements. For this purpose some of the closed cell elements may extend further in the axial direction of the stent than the remaining closed cell elements, so that these extended portions may interlink with the adjacent tubular element.
- This enlarged portion can be formed as a flexible open cell with a narrowed neck, or can be formed as a relatively rigid block, from which, for example, the two side members may emerge via a respective narrowed portion to act as a hinge—in this latter case, the hinge member actually consists of two separate hinges.
- In current medical practice, it is often the case that, in addition to its role in providing ongoing support for the vessel wall, the stent is required to act as a means whereby therapeutic agents may conveniently be applied. Indeed the trauma caused during the angioplasty procedure may call for localised drug treatment. In addition, drugs may be used to counteract restenosis, and for other purposes. Conventionally, such therapeutic agents are contained within some form of coating which is applied to the stent so that the drug will be released over a period of time. One problem with such an arrangement, however, is that, whereas the drug needs primarily to be applied through the wall of the vessel being treated, in practice as much of the drug is released into the fluid, e.g. blood, flowing within the vessel as passes through the vessel wall. Not only is the drug which is washed away effectively wasted, it can also do positive harm elsewhere if, for example, it enters a sensitive organ such as the heart.
- Thus, in an embodiment of the invention the stent is equipped with wells opening into its exterior surface—that surface which, when the stent is in place, will face the wall of the vessel being treated—said wells being suitable to contain therapeutic agent.
- The wells may comprise holes or grooves opening into the exterior surface of the stent, and may or may not pass right through the material of the stent to the interior of the stent. However, if the wells pass through to the interior of the stent there is clearly a danger of at least some of the drug being released into the fluid flowing within the vessel. Therefore it is preferred that, in such a case, that end of the well which opens into the interior of the stent is constructed, for example by being made narrower, and/or being plugged by a material which prevents or considerably reduces the tendency of the therapeutic agent to flow therethrough.
- Thus it is preferred that the well is wholly or primarily open to the exterior surface of the stent so that the therapeutic agent may act directly on the wall of the vessel and does not get washed away by the fluid flowing along the vessel being treated.
- The wells may open onto any suitable exterior surface of the stent. For example, the wells may conveniently be formed in the blocks which form the enlarged portions of the closed cell elements. For example, each block could be formed with a well in the form of a hole, which may or may not be a through hole and which opens into that surface of the block which forms part of the exterior surface of the stent. Alternatively the wells may be formed as grooves in the side members of the closed cell elements, the grooves opening into that surface of the side members which forms part of the exterior surface of the stent. It will be understood, however, that the above positions are given just as examples.
- As mentioned above, the wells contain therapeutic agents which are intended to be released at a controlled rate against the wall of the vessel being treated. Not all of the wells necessarily will contain the therapeutic agent, and not all wells need to contain the same therapeutic agent. It is possible, for example, that the wells of different tubular elements contain different therapeutic agent, opening up the possibility of providing mixtures of drugs by choosing particular tubular elements carrying particular drugs to make up the stent. Clearly this is particularly easy with a stent in which the tubular elements are separate from one another. The therapeutic agents may also be provided in separate layers within the well, with the drug needed first being in the top layer, and the drugs needed later in lower layers, in correct sequence.
- In addition, it is possible to provide that some of the wells contain therapeutic agents which have different rates of release. For example the drug contained in the wells of those tubular elements at or near the ends of the stent could be arranged to have a more rapid or a slower release rate than the remainder.
- The therapeutic agents may be provided in any suitable form for retention in the wells, and for sustained release, once installed within the vessel. Examples are liquid, gel or powder form.
- In order that the invention may be better understood, several embodiments thereof will now be described by way of example only and with reference to the accompanying drawings in which:
- FIG. 1 is a two-dimensional view of the evolute of the surface of a stent according to a first aspect of the present invention, in its “as cut” condition;
- FIG. 2 is a view corresponding to FIG. 1, but showing just a single tubular element;
- FIG. 3 is an enlarged view of one of the closed cell elements in the embodiment of FIG. 1;
- FIGS. 4A and B are side and perspective views of the stent of FIG. 1, but in which the number of elements is just three, in its “as cut” condition;
- FIG. 5 is a perspective view of a single tubular element from the stent of FIG. 1;
- FIGS. 6 and 7 are views similar to FIGS. 4A and 4B respectively, but showing the stent in the crimped condition;
- FIGS. 8 and 9 are views similar to FIGS. 4A and 4B respectively, but showing the stent in the expanded condition;
- FIGS. 10 and 11 are views similar to FIG. 4B, but showing two further embodiments showing both the first and second aspect of the invention;
- FIG. 12 is a view similar to FIG. 2 showing a still further embodiment of the invention;
- FIGS. 12A, B and C are views on the lines A-A, B-B and C-C respectively of FIG. 12;
- FIG. 13 is a view similar to that of FIG. 5, but showing the embodiment of FIG. 12;
- FIG. 14 is an enlarged view of part of FIG. 13;
- FIG. 15 is a view similar to FIG. 2 showing a still further embodiment of the invention;
- FIGS. 15A and B are views on the lines A-A and B-B respectively of FIG. 15;
- FIG. 16 is a view similar to that of FIG. 5, but showing the embodiment of FIG. 15;
- FIG. 17 is an enlarged view of part of FIG. 16;
- FIG. 18 is a view similar to FIG. 2 showing a still further embodiment of the invention;
- FIG. 18A is a view on the line A-A of FIG. 18;
- FIG. 19 is a view similar to that of FIG. 5, but showing the embodiment of FIG. 18;
- FIG. 20 is a view similar to FIG. 2 showing a still further embodiment of the invention;
- FIG. 21 is a view similar to FIG. 5, but showing the embodiment of FIG. 20,
- FIG. 22 is a view similar to FIG. 2 showing a still further embodiment of the invention;
- FIG. 23 is a view similar to FIG. 5, but showing the embodiment of FIG. 22; and
- FIG. 24 is a view similar to FIG. 4b, but showing the embodiment of FIG. 22.
- Referring firstly to FIGS. 1 and 4, the stent comprises a series of radially expandable
tubular elements 1 aligned along a common longitudinal axis. Both of these Figures show the stent in its “as cut” condition by which is meant the condition in which it comes out of the manufacturing process. FIG. 1 illustrates the stent folded out in two dimensions, illustrated by the X-Y coordinates printed to the side of the drawing. In practice the stent is, of course, a three dimensional object, as illustrated in elevation and in perspective in FIGS. 4A and 4B respectively; thus it is assumed that the ends 12, 13 of each tubular element in FIG. 1 are in fact joined so that each element forms a closed loop of generally tubular configuration. In this description the longitudinal direction of the stent is parallel to the X-axis illustrated in FIG. 1, while the circumferential direction of the stent is parallel to the Y-axis in FIG. 1. - It will be noted that the
tubular elements 1 are separate from one another in the sense that there is no direct physical link between them, keeping thetubular elements 1 in position. Instead alternative means are used to maintain the structural integrity of the stent. This will be explained in more detail below. - In the stent illustrated, all of the tubular elements are identical in structure and size although, as mentioned above, this need not necessarily be the case. A single
tubular element 1 is shown, in two dimensional form in FIG. 2, and in three dimensional form in FIG. 5. Each tubular element comprises a plurality ofclosed cell elements 2 equally spaced apart by circumferentially extending linkingmembers 3. In the embodiment illustrated eachtubular element 1 comprises sixclosed cell elements 2, spaced apart circumferentially by 60°, but other numbers of closed cell elements are possible, according to the circumstances. - A single
closed cell element 2 is shown in enlarged detail in FIG. 3. The closed cell element has a generally rhombic or diamond shape defined by fourside members 24 to 27 joined together byrespective hinge members 20 to 23. Thecircumferential linking members 3 attached to respectiveopposite hinge members - The
hinge members sections respective side members 24/27, 25/26 join therespective linking member 3. Thehinge members loop 30 having a narrowedopening 31 into the interior 32 of the cell element. This narrowedopening 31 corresponds to awaisted portion 33 which cooperates in the interlocking of individualtubular elements 1, as will be explained below. Before the stent is used, it will generally be crimped to the balloon which will carry it to the treatment site and subsequently expand it. The crimping process involves compressing the “as cut” stent onto the balloon so that it is securely gripped. During compression the diameter of the tubular elements, decreases and this is achieved by a deformation of theclosed cell elements 2 in such a way as to tend to close the elements up—i.e. so that thehinge members tubular element 1. During this process the closed cell elements bend at thehinge members 20 to 23 the crimped condition of the stent is illustrated in FIGS. 6 and 7 and since, in effect, the stent is expanded from this condition, the crimped condition can also be regarded as the unexpanded condition of the stent. - It will be noted in FIGS. 6 and 7 that, in the crimped condition of the stent, the
hinge members hinge members enlarged loops 30 lie between a pair ofwaisted portions 33 belonging to circumferentially adjacentclosed cell elements 2 belonging to the sametubular element 1. By careful design, the closed cell elements can be configured to grip one another to maintain the shape of the stent so that it is not dislodged or deformed during its often long and tortuous passage to the treatment site. The longitudinal flexibility of the stent is ensured in the crimped condition by the fact that eachloop 30 is allowed to move longitudinally a short but controlled distance towards theadjacent linking member 3. Thus, as the stent is bent longitudinally theloops 30 on one side move slightly, as described, whilst those on the other side move in the opposite direction. In an alternative embodiment (not shown) still greater longitudinal flexibility can be achieved by arranging that the elements are interlocked in such a way as to allow the loops to move, in a controlled manner, in either longitudinal direction. - When the stent reaches the treatment site, and the physician is satisfied as to its correct position, the balloon carrying the stent is expanded, in the known manner, to expand the stent from its condition shown in FIGS. 6 and 7 to its dilated condition shown in FIGS. 8 and 9. During this expansion process, the
closed cell element 2 deform to a final shape clearly illustrated in FIG. 8. It will be seen that thehinge members tubular element 1. At the same time, thehinge members closed cell elements 2 move apart in the circumferential direction thus releasing the grip which they had previously exerted on the corresponding members of adjacent tubular elements. The stent however by now is supported both from within and without and so maintains its structural shape, even though the interlocking is released. The support from within comes from the balloon which is being internally pressurised to expand the stent; the support from without comes from the wall of the vessel being treated. - It will also be noted that, during expansion, the length, in the longitudinal direction of the stent, of each of the
closed cell elements 2 reduces and this effect, in a stent with linking members between adjacent tubular elements, causes the overall length of the stent to reduce. This reduction in length is undesirable for various reasons, and it will be seen that the use of independenttubular elements 1 substantially eliminates this problem. - FIGS. 10 and 11 show modified versions of the stent of FIG. 1 in which the
hinge members - The stents of FIGS. 10 and 11 differ from that of FIG. 1 in that the
hinge members block 34 of material from which theside members 24/27 and 25/26 emerge, via a respective narrowed portion to act as a hinge. Thus, in this case thehinge members respective side members 24/27 and 25/26 are attached to theblocks 34. Preferably theseblocks 34 are formed integrally with the remainder of the tubular element, and are of the same material. - The difference between the embodiments of FIGS. 10 and 11 is in the shape of the
blocks 34 which in the case of FIG. 10 is substantially rectangular and in the case of FIG. 11 is substantially circular. In both cases, eachblock 34 acts as an enlarged end in a similar manner toloop 30 of the FIG. 1 embodiment, and defines a narrowed waist portion where it joins the adjacent side members. The arrangement is thus able to interlock the individualtubular elements 1 in the same way as described above. - The advantages of a stent with independent tubular elements over one in which the tubular elements are linked by linking members can be summarised as follows:
- 1) Manufacture is made easier because only a basic tubular element has to be cut. Any stent length can readily be created by adding the appropriate number of tubular elements at the commencement of the assembly or crimping process.
- 2) The crimped stent has a high degree of longitudinal flexibility since it is not restrained by the inter-element linking members of known stents.
- 3) The crimped stent has a high degree of longitudinal conformability due to its tubular elements being interlocked at multiple cell locations.
- 4) There is substantially no shortening of the stent during expansion because the shortening of each tubular element does not affect the stent as a whole.
- 5) Once deployed, the stent has a high degree of longitudinal flexibility and of longitudinal and radial conformability due to the absence of the restraint imposed by inter-element linking members.
- 6) Once deployed the stent has a good vessel repartition and vessel scaffolding, with homogeneous support for the vessel wall—see particularly FIG. 8.
- FIGS. 10 and 11 also illustrate the use of wells for containing therapeutic agent. It will be seen that, in each of FIGS. 10 and 1 the
blocks 34 have formed on their exterior surface a well 35 which is intended to act as a reservoir for a therapeutic agent. Each well 35 takes the form of a shallow blind hole which opens into the exterior surface which, when the stent is deployed faces the wall of the vessel being treated. - Thus, any therapeutic agent contained within the
wells 35 acts directly on the wall of the vessel, and is not substantially affected by the flow of fluid within the vessel. - Although only a
single well 35 is formed in eachblock 34, it is possible for multiple smaller wells to be formed, perhaps each containing different drugs. Different drugs can be supplied on different tubular elements, making it easy to create a stent, as needed, containing an appropriate recipe of drugs. - The holes making up the
wells 35 can be formed as through-holes, and plugged from the interior side to create a blind hole. Alternatively, the through hole can be left, and a suitable substance which will resist the washing away of the drug contained within the well can be deposited at the inner end of the through hole. - Although the
wells 35 are shown as circular holes, it will be understood that other shapes are possible, including multi-sided, square or rectangular. Alternatively, the wells can be formed as grooves or slots opening into the exterior surface of theblock 34. - The wells may additionally or instead of be provided at other locations, such as on the
side members 24 to 27 of theclosed cell elements 2. However, for this purpose, the side members would have to be made less deformable than they might otherwise be since any deformation of the reservoir during stent crimping or deployment might result in delamination of the reservoir contents, which would be undesirable. Theblocks 34 are seen as attractive since they suffer substantially less deformation than other parts of the stent because their bulk, relative to the remaining components of the stent, is such that they are relatively stiff. - FIGS.12 to 19 illustrate further embodiments similar to that of FIGS. 10 and 11, showing alternative arrangements of wells.
- In the embodiment shown in FIGS.12 to 14, two shapes of wells are shown. Half of the
wells 35 have the shape of ashort slot 36 which opens only into the exterior surface of the tubular element; the other half of thewells 35 have the shape of aslot 37 which opens both into the exterior surface of thetubular element 1, but also info the edge of thetubular element 1. Various combinations of these shaped wells can be used. - The enlarged view of FIG. 14 is of interest in that it clearly shows the structure of the left-
hand hinge member 20. This can be seen to comprise two narrowed (i.e. less wide)portions respective side members block 34. - In the embodiment of FIGS.15 to 17, there is again a combination of different well shapes: a first type of well 35 formed of a
short slot 38 extending in the circumferential direction of the stent; a second type of well 35 formed of aslot 39 which extends right across theblock 34 in the circumferential direction of the stent, and is open at both ends. - FIGS. 18 and 19 show an embodiment in which again two different styles of well35 are shown. On the left hand side a
block 40 is formed within theloop 30 of a hinge member of the type described above in relation to the embodiment of FIG. 1. Theblock 40 is formed with a well 35 formed as a blind hole, in a similar manner to thewells 35 of the embodiment of FIG. 11. - On the right hand side a
block 41 is formed outside of theloop 30 and, once again, is equipped with a well 35 in the form of a blind hole. Since there is room beyond thehinge members block 41 does not interfere with the interlocking of thetubular element 1 together during crimping, as described above. - The advantages of stents incorporating wells, as described above, can be summarised as follows:
- 1) The well can hold drugs without the need for a polymer matrix coating. The use of wells can eliminate coating delamination during stent deployment, thus reducing the risk of thrombosis.
- 2) The absence of a polymer matrix coating eliminates any potential biocompatibility problems arising from their use.
- 3) Once the stent is fully deployed, the outside surface of the stent is pushed against the wall of the vessel being treated; this means that the well is open only towards the vessel wall, to enable diffusion of the drugs into the vessel wall. In addition, the drug cannot be washed out by the flow of fluid in the vessel and so cannot have undesired effects elsewhere.
- 4) Compared to a thin (0.1-5 micron) drug layer coated on the stent, the reservoir can be loaded with a high dose and long life time.
- 5) The reservoir dimensions (diameter, length, width, depth) can be readily varied to the particular circumstances such as blood flow direction and drug release kinetics.
- 6) Each well can contain a single drug and therefore different drugs can be individually held in different wells without the danger of their reacting with each other.
- FIGS.20 to 24 show two further embodiments in which the closed cell elements in each
tubular element 1 are not all identical, and in which the locating means are not provided on every closed cell element. - Referring to FIGS. 20 and 21, there is shown an embodiment in which each
tubular element 1 is made up of two different shapes of closed cell element which alternate around the tubular element. The first shape of closed cell element, illustrated underreference 50 is similar to that of the closed cell elements described above with reference to FIG. 3, except that theloops 30 on one side of the rhombic shaped structure are positioned at the end of a pair ofextended arms loops 30 protrude, in the axial direction of the stent, with respect to the remaining parts of thetubular element 1, and are thus able to interlock with the next adjacent tubular element. - FIGS.22 to 24 illustrate an embodiment similar to that of FIGS. 20 and 21 but in which the
extended loops 30 are open at their neck, as distinct from the arrangement in FIGS. 20 and 21, where eachextended loop 30 takes the form of a closed ring which is attached at the ends of thearms - In both embodiments, the closed cell elements between the
elements 50 are of different shape to theelements 50. These elements, given thereference 53, each comprise two rhombic-shapedsections open neck portion 57. - The joining of adjacent tubular elements is shown in FIG. 24. FIG. 24 actually shows the embodiment of FIGS. 22 and 23, but it will be understood that the same interlocking technique can be used for the embodiment of FIGS. 20 and 21. In relation to FIG. 24, it should also be noted that the drawing shows the tubular elements in their expanded state—i.e. in a state in which they would not ordinarily be interlocked—see above.
- The
aperture 56 formed within theloop 30 in the embodiment of FIGS. 20 and 21 could be used as a well for containing a therapeutic agent, in the manner described above. For this purpose, theaperture 56 may be a through aperture, plugged at its inner end, or may be a blind bore, opening into the outer surface only. - The stent which has been described is expandable between an unexpanded state (in practice, probably the crimped condition mentioned above), in which it is able to be guided inside the lumen through a body duct, such as a blood vessel, for example, and an expanded state, in which the stent, after a uniform expansion, comes into contact with the inner wall of the body duct, defining a passage of approximately constant diameter inside said duct.
- The stent will generally be forcibly expanded mechanically under the action of a force exerted radially outwards, for example under the effect of the inflation of a balloon. However, the stent may be of the “auto-expandable” type, i.e. capable of changing by itself from a first, unexpanded condition under stress, enabling it to be guided through the body duct, to a second, expanded, working condition.
- The stent may be made of any material compatible with the body duct and the body fluids with which it may come into contact.
- In the case of an auto-expandable stent, it will be preferable to use a material with a recovery capacity, for example, stainless steel, Phynox® or nitinol.
- In the case of a stent utilising a forced expansion, a material with a low elastic recovery capacity may be used to advantage. Examples are metallic materials such as tungsten, platinum, tantalum, gold, or stainless steel.
- The
tubular elements 1 may be manufactured from a hollow tube with an approximately constant thickness corresponding to the desired thickness. The shape of the tubular elements may be formed either by laser cutting followed by electrochemical polishing, or by chemical or electrochemical treatment. - The tubular elements may alternatively be manufactured from a sheet of approximately constant thickness corresponding to the desired thickness of the stent. The geometric configuration of the tubular elements can be obtained either by laser cutting followed by electrochemical polishing, or by chemical or electrochemical treatment. The sheet cut in this way is then rolled up to form a cylinder and welded to give the desired final structure.
- After assembly of the
tubular elements 1 into a stent of the desired length, the stent can be deployed in a manner known per se. In the case of a stent utilising mechanically forced expansion, the insertion system will preferably comprise a balloon catheter onto which the stent will be crimped in the unexpanded state before being introduced into an insertion tube for guiding it to the site to be treated. - The stent of the invention can be intended for both temporary or permanent placement in the duct or vessel to be treated.
Claims (28)
1. A stent comprising a tubular body made up of a plurality of separate, radially expandable, tubular elements aligned along a common longitudinal axis, wherein at least some of the tubular elements each comprise a plurality of closed cell elements, each joined to the next by a circumferentially-extending linking member.
2. A stent as claimed in claim 1 wherein the tubular elements are also compressible.
3. A stent as claimed in claim 1 further including interlock means for mechanically holding the tubular elements together, at least in an unexpanded condition of the stent.
4. A stent as claimed in claim 3 in which said interlock means are provided by inter-engaging elements provided on said tubular elements.
5. A stent as claimed in claim 4 wherein each of said closed cell elements is provided with a respective inter-engaging element which engages a corresponding inter-engaging element on an adjacent tubular element.
6. A stent as claimed in claim 1 wherein some, but not all, of said closed cell elements are provided with a respective inter-engaging element which engages a corresponding inter-engaging element on an adjacent tubular element.
7. A stent as claimed in claim 1 wherein each closed cell element is expandable in the circumferential direction of the tubular element, thus allowing the tubular element to expand and contract.
8. A stent as claimed in claim 7 wherein each closed cell element is positioned symmetrically with respect to the circumferential linking members.
9. A stent as claimed in claim 7 wherein each closed cell element comprises two attachment points at each of which it joins to a respective circumferential linking member, and wherein the closed cell element is such as to be capable of expanding from a first position in which the attachment points are relatively close together, to a second position in which the attachment points are relatively further apart.
10. A stent as claimed in claim 9 wherein, between said attachment points, each closed cell element comprises proximal and distal members, mutually spaced apart in the direction of the longitudinal axis, said proximal and distal members being capable of bending to accommodate the expansion from the first position to the second position.
11. A stent as claimed in claim 10 wherein the proximal and distal members of each closed cell element are joined together at each of their circumferentially spaced ends by means of a respective hinge member.
12. A stent as claimed in claim 11 wherein each hinge member is attached at one end of a respective circumferentially-extending linking members the other end of the linking member having attached thereto the opposite hinge member of the next adjacent closed cell element.
13. A stent as claimed in claim 10 wherein the proximal and distal members each comprise a flexible member joining the attachment points.
14. A stent as claimed in claim 10 wherein the proximal and distal members each comprise two or more relatively rigid side members joined by a hinge.
15. A stent as claimed in claim 14 wherein said four side members together form the shape of a rhombus.
16. A stent as claimed in claim 14 wherein each of said side members is of rectilinear shape.
17. A stent as claimed in claims 5 or 10 wherein said inter-engaging elements are each formed by a respective loop formed by each of said proximal and distal members.
18. A stent as claimed in claim 14 wherein the hinge joining each of said two side members comprises a loop which forms one of said inter-engaging elements, and wherein the loop joins the adjacent side members by a waisted portion which, together with the corresponding waisted portion from the next adjacent closed cell element in the same tubular element, forms a cooperating inter-engaging element.
19. A stent as claimed in claim 1 wherein all of the closed cell elements making up each tubular element are of the same shape.
20. A stent as claimed in claim 1 wherein some of the closed cell elements making up each tubular element are of a different shape to the remainder.
21. A stent as claimed in claim 1 wherein the exterior surface of the tubular body is equipped with wells which open onto its exterior surface, said wells being suitable to contain one or more therapeutic agents.
22. A stent as claimed in claim 21 in which the wells comprise holes or grooves opening into the exterior surface of the stent.
23. A stent as claimed in claim 22 wherein the holes or grooves are blind, i.e. do not pass through the material of the stent.
24. A stent as claimed in claim 22 wherein the holes or grooves pass through to the interior of the stent.
25. A stent as claimed in claim 24 in which the inner end of the hole or groove, is plugged by a material which prevents or considerably reduces the flow of therapeutic agent therethrough.
26. A stent as claimed in claim 25 wherein said material is, or contains, therapeutic agent.
27. A stent as claimed in claim 21 wherein the closed cell elements are formed with blocks on each of which are formed one or more of said wells.
28. A stent as claimed in claim 21 wherein at least some of said wells contain multiple therapeutic agents arranged in layers so as to release in sequence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/481,792 US8257427B2 (en) | 2001-09-11 | 2009-06-10 | Expandable stent |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0121980.7A GB0121980D0 (en) | 2001-09-11 | 2001-09-11 | Expandable stent |
GB0121980.7 | 2001-09-11 | ||
EP02252698 | 2002-04-16 | ||
PCT/EP2002/009931 WO2003022178A1 (en) | 2001-09-11 | 2002-09-05 | Expandable stent |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/481,792 Continuation US8257427B2 (en) | 2001-09-11 | 2009-06-10 | Expandable stent |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040243217A1 true US20040243217A1 (en) | 2004-12-02 |
Family
ID=26077612
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/489,181 Abandoned US20040243217A1 (en) | 2001-09-11 | 2002-09-05 | Expandable stent |
US12/481,792 Expired - Fee Related US8257427B2 (en) | 2001-09-11 | 2009-06-10 | Expandable stent |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/481,792 Expired - Fee Related US8257427B2 (en) | 2001-09-11 | 2009-06-10 | Expandable stent |
Country Status (8)
Country | Link |
---|---|
US (2) | US20040243217A1 (en) |
EP (2) | EP1427353B1 (en) |
JP (2) | JP2005501654A (en) |
CN (2) | CN1575154B (en) |
AT (1) | ATE430537T1 (en) |
DE (1) | DE60232255D1 (en) |
GB (1) | GB0121980D0 (en) |
WO (1) | WO2003022178A1 (en) |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030199970A1 (en) * | 1998-03-30 | 2003-10-23 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US20060235505A1 (en) * | 2005-03-14 | 2006-10-19 | Oepen Randolf V | Visible endoprosthesis |
US20070073373A1 (en) * | 2005-09-28 | 2007-03-29 | Craig Bonsignore | Intraluminal medical device with nested interlocking segments |
US20070213810A1 (en) * | 2005-03-14 | 2007-09-13 | Richard Newhauser | Segmented endoprosthesis |
US20070224235A1 (en) * | 2006-03-24 | 2007-09-27 | Barron Tenney | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
WO2009137296A1 (en) * | 2008-05-08 | 2009-11-12 | Boston Scientific Scimed, Inc. | Stent with tabs and holes for drug delivery |
US20100010622A1 (en) * | 2006-03-13 | 2010-01-14 | Abbott Laboratories | Hybrid segmented endoprosthesis |
US7704275B2 (en) | 2007-01-26 | 2010-04-27 | Reva Medical, Inc. | Circumferentially nested expandable device |
US7722662B2 (en) | 1998-02-17 | 2010-05-25 | Reva Medical, Inc. | Expandable stent with sliding and locking radial elements |
US7763065B2 (en) | 2004-07-21 | 2010-07-27 | Reva Medical, Inc. | Balloon expandable crush-recoverable stent device |
US7842083B2 (en) | 2001-08-20 | 2010-11-30 | Innovational Holdings, Llc. | Expandable medical device with improved spatial distribution |
US7892274B2 (en) | 2001-12-03 | 2011-02-22 | Xtent, Inc. | Apparatus and methods for deployment of vascular prostheses |
US7892273B2 (en) | 2001-12-03 | 2011-02-22 | Xtent, Inc. | Custom length stent apparatus |
US7914574B2 (en) | 2005-08-02 | 2011-03-29 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US7918881B2 (en) | 2003-06-09 | 2011-04-05 | Xtent, Inc. | Stent deployment systems and methods |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US7942926B2 (en) | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7947071B2 (en) | 2008-10-10 | 2011-05-24 | Reva Medical, Inc. | Expandable slide and lock stent |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
US7985252B2 (en) | 2008-07-30 | 2011-07-26 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US7988721B2 (en) | 2007-11-30 | 2011-08-02 | Reva Medical, Inc. | Axially-radially nested expandable device |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8002821B2 (en) | 2006-09-18 | 2011-08-23 | Boston Scientific Scimed, Inc. | Bioerodible metallic ENDOPROSTHESES |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8016871B2 (en) | 2001-12-03 | 2011-09-13 | Xtent, Inc. | Apparatus and methods for delivery of multiple distributed stents |
US8016870B2 (en) | 2001-12-03 | 2011-09-13 | Xtent, Inc. | Apparatus and methods for delivery of variable length stents |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US8048150B2 (en) | 2006-04-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis having a fiber meshwork disposed thereon |
US8052744B2 (en) | 2006-09-15 | 2011-11-08 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US8052743B2 (en) | 2006-08-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis with three-dimensional disintegration control |
US8052745B2 (en) | 2007-09-13 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US8057534B2 (en) | 2006-09-15 | 2011-11-15 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US8066763B2 (en) | 1998-04-11 | 2011-11-29 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
US8080048B2 (en) | 2001-12-03 | 2011-12-20 | Xtent, Inc. | Stent delivery for bifurcated vessels |
US8080055B2 (en) | 2006-12-28 | 2011-12-20 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8083788B2 (en) | 2001-12-03 | 2011-12-27 | Xtent, Inc. | Apparatus and methods for positioning prostheses for deployment from a catheter |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US8128689B2 (en) | 2006-09-15 | 2012-03-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis with biostable inorganic layers |
US8177831B2 (en) | 2001-12-03 | 2012-05-15 | Xtent, Inc. | Stent delivery apparatus and method |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8221822B2 (en) | 2007-07-31 | 2012-07-17 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
US8236046B2 (en) | 2008-06-10 | 2012-08-07 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US8257427B2 (en) | 2001-09-11 | 2012-09-04 | J.W. Medical Systems, Ltd. | Expandable stent |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
US8277500B2 (en) | 2004-12-17 | 2012-10-02 | Reva Medical, Inc. | Slide-and-lock stent |
US8282680B2 (en) * | 2003-01-17 | 2012-10-09 | J. W. Medical Systems Ltd. | Multiple independent nested stent structures and methods for their preparation and deployment |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
US8303643B2 (en) | 2001-06-27 | 2012-11-06 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US8317859B2 (en) | 2004-06-28 | 2012-11-27 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US8353949B2 (en) | 2006-09-14 | 2013-01-15 | Boston Scientific Scimed, Inc. | Medical devices with drug-eluting coating |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8460358B2 (en) | 2004-03-30 | 2013-06-11 | J.W. Medical Systems, Ltd. | Rapid exchange interventional devices and methods |
US8486132B2 (en) | 2007-03-22 | 2013-07-16 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US8523936B2 (en) | 2010-04-10 | 2013-09-03 | Reva Medical, Inc. | Expandable slide and lock stent |
US8574282B2 (en) | 2001-12-03 | 2013-11-05 | J.W. Medical Systems Ltd. | Apparatus and methods for delivery of braided prostheses |
US8585747B2 (en) | 2003-12-23 | 2013-11-19 | J.W. Medical Systems Ltd. | Devices and methods for controlling and indicating the length of an interventional element |
US8652198B2 (en) | 2006-03-20 | 2014-02-18 | J.W. Medical Systems Ltd. | Apparatus and methods for deployment of linked prosthetic segments |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
US8702781B2 (en) | 2001-12-03 | 2014-04-22 | J.W. Medical Systems Ltd. | Apparatus and methods for delivery of multiple distributed stents |
US8769796B2 (en) | 2008-09-25 | 2014-07-08 | Advanced Bifurcation Systems, Inc. | Selective stent crimping |
US8771343B2 (en) | 2006-06-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Medical devices with selective titanium oxide coatings |
US8795347B2 (en) | 2008-09-25 | 2014-08-05 | Advanced Bifurcation Systems, Inc. | Methods and systems for treating a bifurcation with provisional side branch stenting |
US8808347B2 (en) | 2008-09-25 | 2014-08-19 | Advanced Bifurcation Systems, Inc. | Stent alignment during treatment of a bifurcation |
US8808726B2 (en) | 2006-09-15 | 2014-08-19 | Boston Scientific Scimed. Inc. | Bioerodible endoprostheses and methods of making the same |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
US8821562B2 (en) | 2008-09-25 | 2014-09-02 | Advanced Bifurcation Systems, Inc. | Partially crimped stent |
US8834556B2 (en) * | 2012-08-13 | 2014-09-16 | Abbott Cardiovascular Systems Inc. | Segmented scaffold designs |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8900292B2 (en) | 2007-08-03 | 2014-12-02 | Boston Scientific Scimed, Inc. | Coating for medical device having increased surface area |
US8920491B2 (en) | 2008-04-22 | 2014-12-30 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
US8932346B2 (en) | 2008-04-24 | 2015-01-13 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
US8980297B2 (en) | 2007-02-20 | 2015-03-17 | J.W. Medical Systems Ltd. | Thermo-mechanically controlled implants and methods of use |
US8979917B2 (en) | 2008-09-25 | 2015-03-17 | Advanced Bifurcation Systems, Inc. | System and methods for treating a bifurcation |
US8986362B2 (en) | 2004-06-28 | 2015-03-24 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US9101503B2 (en) | 2008-03-06 | 2015-08-11 | J.W. Medical Systems Ltd. | Apparatus having variable strut length and methods of use |
US9149378B2 (en) | 2005-08-02 | 2015-10-06 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US9254210B2 (en) | 2011-02-08 | 2016-02-09 | Advanced Bifurcation Systems, Inc. | Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use |
US9284409B2 (en) | 2007-07-19 | 2016-03-15 | Boston Scientific Scimed, Inc. | Endoprosthesis having a non-fouling surface |
US9364356B2 (en) | 2011-02-08 | 2016-06-14 | Advanced Bifurcation System, Inc. | System and methods for treating a bifurcation with a fully crimped stent |
US9408732B2 (en) | 2013-03-14 | 2016-08-09 | Reva Medical, Inc. | Reduced-profile slide and lock stent |
US9737424B2 (en) | 2008-09-25 | 2017-08-22 | Advanced Bifurcation Systems, Inc. | Partially crimped stent |
US9855159B2 (en) | 2011-03-29 | 2018-01-02 | Terumo Kabushiki Kaisha | Stent and stent delivery system |
US10231856B2 (en) | 2016-10-27 | 2019-03-19 | Cook Medical Technologies Llc | Stent with segments capable of uncoupling during expansion |
US11298252B2 (en) | 2008-09-25 | 2022-04-12 | Advanced Bifurcation Systems Inc. | Stent alignment during treatment of a bifurcation |
US12076258B2 (en) | 2008-09-25 | 2024-09-03 | Advanced Bifurcation Systems Inc. | Selective stent crimping |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8663311B2 (en) * | 1997-01-24 | 2014-03-04 | Celonova Stent, Inc. | Device comprising biodegradable bistable or multistable cells and methods of use |
EP1258230A3 (en) | 2001-03-29 | 2003-12-10 | CardioSafe Ltd | Balloon catheter device |
US7326245B2 (en) * | 2002-01-31 | 2008-02-05 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
US6814746B2 (en) * | 2002-11-01 | 2004-11-09 | Ev3 Peripheral, Inc. | Implant delivery system with marker interlock |
EP1707161B1 (en) | 2005-03-30 | 2012-09-05 | Terumo Kabushiki Kaisha | Stent and stent delivery device |
JP4846414B2 (en) * | 2005-03-30 | 2011-12-28 | テルモ株式会社 | In vivo indwelling stent and biological organ dilator |
US20060282149A1 (en) | 2005-06-08 | 2006-12-14 | Xtent, Inc., A Delaware Corporation | Apparatus and methods for deployment of multiple custom-length prostheses (II) |
US7938851B2 (en) | 2005-06-08 | 2011-05-10 | Xtent, Inc. | Devices and methods for operating and controlling interventional apparatus |
WO2009069113A1 (en) | 2007-11-28 | 2009-06-04 | The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin | A luminal prosthesis |
WO2009155328A2 (en) | 2008-06-18 | 2009-12-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8298279B2 (en) | 2009-09-24 | 2012-10-30 | Medtronic Vascular, Inc. | Stent including a toggle lock strut |
WO2012132753A1 (en) | 2011-03-25 | 2012-10-04 | テルモ株式会社 | Stent and stent delivery system |
US10028854B2 (en) * | 2012-02-02 | 2018-07-24 | Covidien Lp | Stent retaining systems |
WO2016141215A1 (en) * | 2015-03-03 | 2016-09-09 | Efemoral Medical Llc | Multi-element bioresorbable intravascular stent |
KR102450174B1 (en) * | 2016-10-04 | 2022-10-05 | 야스히로 쇼바야시 | flexible stent |
CN107822740A (en) * | 2017-10-25 | 2018-03-23 | 中国人民解放军总医院 | Artery medicine elution bracket of biological absorbable material and preparation method thereof |
CN107822751A (en) * | 2017-10-25 | 2018-03-23 | 中国人民解放军总医院 | Artery medicine elution bracket based on 3D printing technique and preparation method thereof |
CN113599036B (en) * | 2021-08-18 | 2024-05-14 | 江苏大学 | Flexible vascular stent applied to peripheral blood vessel |
CN115006103B (en) * | 2022-06-10 | 2023-07-18 | 健诺维(成都)生物科技有限公司 | Eye implantation tube |
GB202209796D0 (en) * | 2022-07-04 | 2022-08-17 | Oxford Endovascular Ltd | An expandable tube for deployment within a blood vessel |
Citations (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4069825A (en) * | 1976-01-28 | 1978-01-24 | Taichiro Akiyama | Surgical thread and cutting apparatus for the same |
US4512338A (en) * | 1983-01-25 | 1985-04-23 | Balko Alexander B | Process for restoring patency to body vessels |
US4564014A (en) * | 1980-01-30 | 1986-01-14 | Thomas J. Fogarty | Variable length dilatation catheter apparatus and method |
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4891225A (en) * | 1984-05-21 | 1990-01-02 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4988356A (en) * | 1987-02-27 | 1991-01-29 | C. R. Bard, Inc. | Catheter and guidewire exchange system |
US4994066A (en) * | 1988-10-07 | 1991-02-19 | Voss Gene A | Prostatic stent |
US4994069A (en) * | 1988-11-02 | 1991-02-19 | Target Therapeutics | Vaso-occlusion coil and method |
US5092877A (en) * | 1988-09-01 | 1992-03-03 | Corvita Corporation | Radially expandable endoprosthesis |
US5102417A (en) * | 1985-11-07 | 1992-04-07 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US5104404A (en) * | 1989-10-02 | 1992-04-14 | Medtronic, Inc. | Articulated stent |
US5195984A (en) * | 1988-10-04 | 1993-03-23 | Expandable Grafts Partnership | Expandable intraluminal graft |
US5282824A (en) * | 1990-10-09 | 1994-02-01 | Cook, Incorporated | Percutaneous stent assembly |
US5300085A (en) * | 1986-04-15 | 1994-04-05 | Advanced Cardiovascular Systems, Inc. | Angioplasty apparatus facilitating rapid exchanges and method |
US5490837A (en) * | 1991-07-05 | 1996-02-13 | Scimed Life Systems, Inc. | Single operator exchange catheter having a distal catheter shaft section |
US5496346A (en) * | 1987-01-06 | 1996-03-05 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
US5507768A (en) * | 1991-01-28 | 1996-04-16 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US5507771A (en) * | 1992-06-15 | 1996-04-16 | Cook Incorporated | Stent assembly |
US5593412A (en) * | 1994-03-01 | 1997-01-14 | Cordis Corporation | Stent delivery method and apparatus |
US5607463A (en) * | 1993-03-30 | 1997-03-04 | Medtronic, Inc. | Intravascular medical device |
US5607444A (en) * | 1993-12-02 | 1997-03-04 | Advanced Cardiovascular Systems, Inc. | Ostial stent for bifurcations |
US5709701A (en) * | 1996-05-30 | 1998-01-20 | Parodi; Juan C. | Apparatus for implanting a prothesis within a body passageway |
US5716393A (en) * | 1994-05-26 | 1998-02-10 | Angiomed Gmbh & Co. Medizintechnik Kg | Stent with an end of greater diameter than its main body |
US5723003A (en) * | 1994-09-13 | 1998-03-03 | Ultrasonic Sensing And Monitoring Systems | Expandable graft assembly and method of use |
US5722669A (en) * | 1995-09-26 | 1998-03-03 | Keeper Co., Ltd. | Resin CVJ boot with distinct large and small crest portions |
US5735869A (en) * | 1994-11-30 | 1998-04-07 | Schneider (Europe) A.G. | Balloon catheter and stent delivery device |
US5741323A (en) * | 1993-04-28 | 1998-04-21 | Focal, Inc. | Polymeric article for intraluminal photothermoforming |
US5855563A (en) * | 1992-11-02 | 1999-01-05 | Localmed, Inc. | Method and apparatus for sequentially performing multiple intraluminal procedures |
US5858556A (en) * | 1997-01-21 | 1999-01-12 | Uti Corporation | Multilayer composite tubular structure and method of making |
US5870381A (en) * | 1995-07-10 | 1999-02-09 | Matsushita Electric Industrial Co., Ltd. | Method for transmitting signals from a plurality of transmitting units and receiving the signals |
US5879370A (en) * | 1994-02-25 | 1999-03-09 | Fischell; Robert E. | Stent having a multiplicity of undulating longitudinals |
US5891190A (en) * | 1989-08-24 | 1999-04-06 | Boneau; Michael D. | Endovascular support device and method |
US5895398A (en) * | 1996-02-02 | 1999-04-20 | The Regents Of The University Of California | Method of using a clot capture coil |
US6022374A (en) * | 1997-12-16 | 2000-02-08 | Cardiovasc, Inc. | Expandable stent having radiopaque marker and method |
US6022359A (en) * | 1999-01-13 | 2000-02-08 | Frantzen; John J. | Stent delivery system featuring a flexible balloon |
US6033434A (en) * | 1995-06-08 | 2000-03-07 | Ave Galway Limited | Bifurcated endovascular stent and methods for forming and placing |
US6039721A (en) * | 1996-07-24 | 2000-03-21 | Cordis Corporation | Method and catheter system for delivering medication with an everting balloon catheter |
US6042589A (en) * | 1998-03-17 | 2000-03-28 | Medicorp, S.A. | Reversible-action endoprosthesis delivery device |
US6179878B1 (en) * | 1996-10-22 | 2001-01-30 | Thomas Duerig | Composite self expanding stent device having a restraining element |
US6183509B1 (en) * | 1995-05-04 | 2001-02-06 | Alain Dibie | Endoprosthesis for the treatment of blood-vessel bifurcation stenosis and purpose-built installation device |
US6187034B1 (en) * | 1999-01-13 | 2001-02-13 | John J. Frantzen | Segmented stent for flexible stent delivery system |
US6190402B1 (en) * | 1996-06-21 | 2001-02-20 | Musc Foundation For Research Development | Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same |
US6196995B1 (en) * | 1998-09-30 | 2001-03-06 | Medtronic Ave, Inc. | Reinforced edge exchange catheter |
US6200337B1 (en) * | 1996-03-10 | 2001-03-13 | Terumo Kabushiki Kaisha | Implanting stent |
US6334871B1 (en) * | 1996-03-13 | 2002-01-01 | Medtronic, Inc. | Radiopaque stent markers |
US6344272B1 (en) * | 1997-03-12 | 2002-02-05 | Wm. Marsh Rice University | Metal nanoshells |
US6357104B1 (en) * | 1993-08-18 | 2002-03-19 | David J. Myers | Method of making an intraluminal stent graft |
US20020037358A1 (en) * | 1997-08-13 | 2002-03-28 | Barry James J. | Loading and release of water-insoluble drugs |
US6375676B1 (en) * | 1999-05-17 | 2002-04-23 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent with enhanced delivery precision and stent delivery system |
US6379365B1 (en) * | 1999-03-29 | 2002-04-30 | Alexis Diaz | Stent delivery catheter system having grooved shaft |
US6511468B1 (en) * | 1997-10-17 | 2003-01-28 | Micro Therapeutics, Inc. | Device and method for controlling injection of liquid embolic composition |
US6520986B2 (en) * | 1995-12-14 | 2003-02-18 | Gore Enterprise Holdings, Inc. | Kink resistant stent-graft |
US6520987B1 (en) * | 1997-02-25 | 2003-02-18 | Symbiotech Medical, Inc | Expandable intravascular stent |
US6527799B2 (en) * | 1998-10-29 | 2003-03-04 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US20030045923A1 (en) * | 2001-08-31 | 2003-03-06 | Mehran Bashiri | Hybrid balloon expandable/self expanding stent |
US6530944B2 (en) * | 2000-02-08 | 2003-03-11 | Rice University | Optically-active nanoparticles for use in therapeutic and diagnostic methods |
US6540777B2 (en) * | 2001-02-15 | 2003-04-01 | Scimed Life Systems, Inc. | Locking stent |
US6551350B1 (en) * | 1996-12-23 | 2003-04-22 | Gore Enterprise Holdings, Inc. | Kink resistant bifurcated prosthesis |
US6555157B1 (en) * | 2000-07-25 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Method for coating an implantable device and system for performing the method |
US6676695B2 (en) * | 2001-05-30 | 2004-01-13 | Jan Otto Solem | Vascular instrument and method |
US6679909B2 (en) * | 2001-07-31 | 2004-01-20 | Advanced Cardiovascular Systems, Inc. | Rapid exchange delivery system for self-expanding stent |
US6685730B2 (en) * | 2001-09-26 | 2004-02-03 | Rice University | Optically-absorbing nanoparticles for enhanced tissue repair |
US20040024450A1 (en) * | 2002-04-24 | 2004-02-05 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US20040030380A1 (en) * | 2002-04-24 | 2004-02-12 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US6692465B2 (en) * | 1991-06-11 | 2004-02-17 | Advanced Cardiovascular Systems, Inc. | Catheter system with catheter and guidewire exchange |
US6699724B1 (en) * | 1998-03-11 | 2004-03-02 | Wm. Marsh Rice University | Metal nanoshells for biosensing applications |
US6699280B2 (en) * | 1999-04-15 | 2004-03-02 | Mayo Foundation For Medical Education And Research | Multi-section stent |
US20040044395A1 (en) * | 2002-09-03 | 2004-03-04 | Scimed Life Systems, Inc. | Elephant trunk thoracic endograft and delivery system |
US6702843B1 (en) * | 2000-04-12 | 2004-03-09 | Scimed Life Systems, Inc. | Stent delivery means with balloon retraction means |
US6709379B1 (en) * | 1998-11-02 | 2004-03-23 | Alcove Surfaces Gmbh | Implant with cavities containing therapeutic agents |
US6709440B2 (en) * | 2001-05-17 | 2004-03-23 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6712845B2 (en) * | 2001-04-24 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Coating for a stent and a method of forming the same |
US6712827B2 (en) * | 1996-08-23 | 2004-03-30 | Scimed Life Systems, Inc. | Stent delivery system |
US6837901B2 (en) * | 2001-04-27 | 2005-01-04 | Intek Technology L.L.C. | Methods for delivering, repositioning and/or retrieving self-expanding stents |
US20050010276A1 (en) * | 2001-12-03 | 2005-01-13 | Xtent, Inc. | Apparatus and methods for positioning prostheses for deployment from a catheter |
US6849084B2 (en) * | 2002-12-31 | 2005-02-01 | Intek Technology L.L.C. | Stent delivery system |
US6852252B2 (en) * | 1997-03-12 | 2005-02-08 | William Marsh Rice University | Use of metalnanoshells to impede the photo-oxidation of conjugated polymer |
US6855125B2 (en) * | 1999-05-20 | 2005-02-15 | Conor Medsystems, Inc. | Expandable medical device delivery system and method |
US6856034B2 (en) * | 2000-08-25 | 2005-02-15 | Ford Global Technologies, Llc | Method of operating a hybrid electric vehicle to reduce emissions |
US20050038505A1 (en) * | 2001-11-05 | 2005-02-17 | Sun Biomedical Ltd. | Drug-delivery endovascular stent and method of forming the same |
US20050049673A1 (en) * | 2001-12-03 | 2005-03-03 | Xtent, Inc. A Delaware Corporation | Apparatus and methods for delivery of braided prostheses |
US6994721B2 (en) * | 2002-10-21 | 2006-02-07 | Israel Henry M | Stent assembly |
US7005454B2 (en) * | 1995-07-28 | 2006-02-28 | Rutgers, The State University | Polymeric drug formulations |
US20060069424A1 (en) * | 2004-09-27 | 2006-03-30 | Xtent, Inc. | Self-constrained segmented stents and methods for their deployment |
US7169172B2 (en) * | 2002-11-01 | 2007-01-30 | Counter Clockwise, Inc. | Method and apparatus for caged stent delivery |
US20070027521A1 (en) * | 2005-06-08 | 2007-02-01 | Xtent, Inc., A Delaware Corporation | Apparatus and methods for deployment of multiple custom-length prostheses |
US7192440B2 (en) * | 2003-10-15 | 2007-03-20 | Xtent, Inc. | Implantable stent delivery devices and methods |
US20070067012A1 (en) * | 2001-12-03 | 2007-03-22 | Xtent, Inc. | Custom length stent apparatus |
US7314480B2 (en) * | 2003-02-27 | 2008-01-01 | Boston Scientific Scimed, Inc. | Rotating balloon expandable sheath bifurcation delivery |
US7323006B2 (en) * | 2004-03-30 | 2008-01-29 | Xtent, Inc. | Rapid exchange interventional devices and methods |
US7326236B2 (en) * | 2003-12-23 | 2008-02-05 | Xtent, Inc. | Devices and methods for controlling and indicating the length of an interventional element |
US20080077229A1 (en) * | 2004-06-28 | 2008-03-27 | Xtent, Inc. | Custom-length self-expanding stent delivery systems with stent bumpers |
Family Cites Families (293)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4468224A (en) | 1982-01-28 | 1984-08-28 | Advanced Cardiovascular Systems, Inc. | System and method for catheter placement in blood vessels of a human patient |
US5693083A (en) | 1983-12-09 | 1997-12-02 | Endovascular Technologies, Inc. | Thoracic graft and delivery catheter |
DE3442736C2 (en) | 1984-11-23 | 1987-03-05 | Tassilo Dr.med. 7800 Freiburg Bonzel | Dilatation catheter |
US4690684A (en) | 1985-07-12 | 1987-09-01 | C. R. Bard, Inc. | Meltable stent for anastomosis |
US4770176A (en) | 1985-07-12 | 1988-09-13 | C. R. Bard, Inc. | Vessel anastomosis using meltable stent |
US4681110A (en) | 1985-12-02 | 1987-07-21 | Wiktor Dominik M | Catheter arrangement having a blood vessel liner, and method of using it |
US5061273A (en) | 1989-06-01 | 1991-10-29 | Yock Paul G | Angioplasty apparatus facilitating rapid exchanges |
US5040548A (en) | 1989-06-01 | 1991-08-20 | Yock Paul G | Angioplasty mehtod |
US4775337A (en) | 1986-12-02 | 1988-10-04 | Universal Manufacturing Corporation | Conductive wire with integral electrical terminal |
EP0282143B1 (en) | 1987-02-27 | 1993-09-15 | C.R. Bard, Inc. | Catheter and guidewire exchange system |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5171222A (en) | 1988-03-10 | 1992-12-15 | Scimed Life Systems, Inc. | Interlocking peel-away dilation catheter |
US6730105B2 (en) | 1988-07-29 | 2004-05-04 | Samuel Shiber | Clover leaf shaped tubular medical device |
US5226913A (en) | 1988-09-01 | 1993-07-13 | Corvita Corporation | Method of making a radially expandable prosthesis |
EP0638327B1 (en) | 1989-01-30 | 2008-08-20 | C.R. Bard, Inc. | Rapidly exchangeable coronary catheter |
US5217495A (en) | 1989-05-10 | 1993-06-08 | United States Surgical Corporation | Synthetic semiabsorbable composite yarn |
US5035706A (en) | 1989-10-17 | 1991-07-30 | Cook Incorporated | Percutaneous stent and method for retrieval thereof |
US5064435A (en) | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US5013318A (en) | 1990-07-31 | 1991-05-07 | Special Devices Incorporated | Medical instrument for measuring depth of fastener hold in bone |
US5122154A (en) * | 1990-08-15 | 1992-06-16 | Rhodes Valentine J | Endovascular bypass graft |
AR246020A1 (en) | 1990-10-03 | 1994-03-30 | Hector Daniel Barone Juan Carl | A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms. |
US5527354A (en) | 1991-06-28 | 1996-06-18 | Cook Incorporated | Stent formed of half-round wire |
US5976107A (en) | 1991-07-05 | 1999-11-02 | Scimed Life Systems. Inc. | Catheter having extendable guide wire lumen |
DE59103240D1 (en) | 1991-07-29 | 1994-11-17 | Brandes Bernd | Device and method for determining leaks on double-walled conduit pipes for liquid media. |
US5456713A (en) | 1991-10-25 | 1995-10-10 | Cook Incorporated | Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting |
CA2380683C (en) | 1991-10-28 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5628775A (en) | 1991-11-08 | 1997-05-13 | Ep Technologies, Inc. | Flexible bond for sleeves enclosing a bendable electrode tip assembly |
US5192297A (en) | 1991-12-31 | 1993-03-09 | Medtronic, Inc. | Apparatus and method for placement and implantation of a stent |
ATE200432T1 (en) | 1992-01-09 | 2001-04-15 | Advanced Cardiovascular System | DEVICE FOR REPLACING A GUIDE WIRE |
US5246421A (en) | 1992-02-12 | 1993-09-21 | Saab Mark A | Method of treating obstructed regions of bodily passages |
US5273536A (en) | 1992-04-02 | 1993-12-28 | Vicky Savas | Tapered balloon catheter |
US5201757A (en) | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
US5562725A (en) | 1992-09-14 | 1996-10-08 | Meadox Medicals Inc. | Radially self-expanding implantable intraluminal device |
US5312415A (en) | 1992-09-22 | 1994-05-17 | Target Therapeutics, Inc. | Assembly for placement of embolic coils using frictional placement |
ES2089342T3 (en) | 1992-10-31 | 1996-10-01 | Schneider Europ Ag | DISPOSITION OF INTRODUCTION OF A SELF-EXPANDING ENDOPROTESIS. |
JPH08500757A (en) | 1992-12-30 | 1996-01-30 | シュナイダー・(ユーエスエイ)・インコーポレーテッド | Device for deploying a stent implantable in the body |
US5549553A (en) | 1993-04-29 | 1996-08-27 | Scimed Life Systems, Inc. | Dilation ballon for a single operator exchange intravascular catheter or similar device |
US5480423A (en) | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
US5334187A (en) | 1993-05-21 | 1994-08-02 | Cathco, Inc. | Balloon catheter system with slit opening handle |
US5391172A (en) | 1993-05-24 | 1995-02-21 | Advanced Cardiovascular Systems, Inc. | Stent delivery system with coaxial catheter handle |
US5458615A (en) | 1993-07-06 | 1995-10-17 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US5989280A (en) | 1993-10-22 | 1999-11-23 | Scimed Lifesystems, Inc | Stent delivery apparatus and method |
US5445646A (en) | 1993-10-22 | 1995-08-29 | Scimed Lifesystems, Inc. | Single layer hydraulic sheath stent delivery apparatus and method |
US5549635A (en) | 1994-01-24 | 1996-08-27 | Solar, Rita & Gaterud, Ltd. | Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore |
US6051020A (en) | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5449373A (en) | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
US6165210A (en) | 1994-04-01 | 2000-12-26 | Gore Enterprise Holdings, Inc. | Self-expandable helical intravascular stent and stent-graft |
AU690684B2 (en) | 1994-04-01 | 1998-04-30 | Prograft Medical, Inc. | Self-expandable stent and stent-graft and method of using them |
US5478349A (en) | 1994-04-28 | 1995-12-26 | Boston Scientific Corporation | Placement of endoprostheses and stents |
EP0858298A4 (en) | 1994-04-29 | 1999-04-07 | Boston Scient Corp | Medical prosthetic stent and method of manufacture |
ATE219343T1 (en) | 1994-04-29 | 2002-07-15 | Scimed Life Systems Inc | STENT WITH COLLAGEN |
US5554181A (en) | 1994-05-04 | 1996-09-10 | Regents Of The University Of Minnesota | Stent |
US5456694A (en) | 1994-05-13 | 1995-10-10 | Stentco, Inc. | Device for delivering and deploying intraluminal devices |
US5514093A (en) | 1994-05-19 | 1996-05-07 | Scimed Life Systems, Inc. | Variable length balloon dilatation catheter |
US5683451A (en) | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses |
US5824041A (en) | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
US5636641A (en) | 1994-07-25 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | High strength member for intracorporeal use |
US5575816A (en) | 1994-08-12 | 1996-11-19 | Meadox Medicals, Inc. | High strength and high density intraluminal wire stent |
US5470315A (en) | 1994-09-20 | 1995-11-28 | Scimed Life Systems, Inc. | Over-the-wire type balloon catheter with proximal hypotube |
US5531735A (en) | 1994-09-27 | 1996-07-02 | Hercules Incorporated | Medical devices containing triggerable disintegration agents |
US5549563A (en) | 1994-10-11 | 1996-08-27 | Kronner; Richard F. | Reinforcing insert for uterine manipulator |
US5836964A (en) | 1996-10-30 | 1998-11-17 | Medinol Ltd. | Stent fabrication method |
CA2163823A1 (en) | 1994-11-28 | 1996-05-29 | Richard S. Stack | System and method for delivering multiple stents |
US5628755A (en) | 1995-02-20 | 1997-05-13 | Schneider (Europe) A.G. | Balloon catheter and stent delivery system |
CA2163708C (en) | 1994-12-07 | 2007-08-07 | Robert E. Fischell | Integrated dual-function catheter system for balloon angioplasty and stent delivery |
US5549551A (en) | 1994-12-22 | 1996-08-27 | Advanced Cardiovascular Systems, Inc. | Adjustable length balloon catheter |
US5662675A (en) | 1995-02-24 | 1997-09-02 | Intervascular, Inc. | Delivery catheter assembly |
DE69622231T2 (en) | 1995-03-01 | 2002-12-05 | Scimed Life Systems, Inc. | LENGTHFLEXIBLE AND EXPANDABLE STENT |
US5709713A (en) | 1995-03-31 | 1998-01-20 | Cardiovascular Concepts, Inc. | Radially expansible vascular prosthesis having reversible and other locking structures |
US5807398A (en) | 1995-04-28 | 1998-09-15 | Shaknovich; Alexander | Shuttle stent delivery catheter |
US5534007A (en) | 1995-05-18 | 1996-07-09 | Scimed Life Systems, Inc. | Stent deployment catheter with collapsible sheath |
US5681347A (en) | 1995-05-23 | 1997-10-28 | Boston Scientific Corporation | Vena cava filter delivery system |
WO1996037167A1 (en) | 1995-05-25 | 1996-11-28 | Raychem Corporation | Stent assembly |
US5639274A (en) | 1995-06-02 | 1997-06-17 | Fischell; Robert E. | Integrated catheter system for balloon angioplasty and stent delivery |
KR100262837B1 (en) | 1995-06-06 | 2000-09-01 | 스피겔 알렌 제이 | Endovascular measuring apparatus, loading and deployment means |
US5797951A (en) | 1995-08-09 | 1998-08-25 | Mueller; Edward Gene | Expandable support member |
US5776141A (en) | 1995-08-28 | 1998-07-07 | Localmed, Inc. | Method and apparatus for intraluminal prosthesis delivery |
DE19531659C2 (en) | 1995-08-29 | 1998-07-02 | Ernst Peter Prof Dr M Strecker | Stent |
US5769882A (en) | 1995-09-08 | 1998-06-23 | Medtronic, Inc. | Methods and apparatus for conformably sealing prostheses within body lumens |
US5702418A (en) | 1995-09-12 | 1997-12-30 | Boston Scientific Corporation | Stent delivery system |
AU6862596A (en) | 1995-09-18 | 1997-04-09 | W.L. Gore & Associates, Inc. | A delivery system for intraluminal vascular grafts |
US5749848A (en) | 1995-11-13 | 1998-05-12 | Cardiovascular Imaging Systems, Inc. | Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment |
US5824040A (en) | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
US6090063A (en) | 1995-12-01 | 2000-07-18 | C. R. Bard, Inc. | Device, system and method for implantation of filaments and particles in the body |
US6579305B1 (en) | 1995-12-07 | 2003-06-17 | Medtronic Ave, Inc. | Method and apparatus for delivery deployment and retrieval of a stent comprising shape-memory material |
US6878161B2 (en) | 1996-01-05 | 2005-04-12 | Medtronic Vascular, Inc. | Stent graft loading and deployment device and method |
US5749921A (en) | 1996-02-20 | 1998-05-12 | Medtronic, Inc. | Apparatus and methods for compression of endoluminal prostheses |
US6533805B1 (en) | 1996-04-01 | 2003-03-18 | General Surgical Innovations, Inc. | Prosthesis and method for deployment within a body lumen |
US5670161A (en) | 1996-05-28 | 1997-09-23 | Healy; Kevin E. | Biodegradable stent |
US6666883B1 (en) | 1996-06-06 | 2003-12-23 | Jacques Seguin | Endoprosthesis for vascular bifurcation |
US8728143B2 (en) | 1996-06-06 | 2014-05-20 | Biosensors International Group, Ltd. | Endoprosthesis deployment system for treating vascular bifurcations |
FR2749500B1 (en) | 1996-06-06 | 1998-11-20 | Jacques Seguin | DEVICE ALLOWING THE TREATMENT OF BODY DUCTS AT THE LEVEL OF A BIFURCATION |
US7238197B2 (en) | 2000-05-30 | 2007-07-03 | Devax, Inc. | Endoprosthesis deployment system for treating vascular bifurcations |
US5697971A (en) | 1996-06-11 | 1997-12-16 | Fischell; Robert E. | Multi-cell stent with cells having differing characteristics |
US5980514A (en) | 1996-07-26 | 1999-11-09 | Target Therapeutics, Inc. | Aneurysm closure device assembly |
DE19630469C2 (en) | 1996-07-27 | 2000-12-21 | Michael Betzler | Vascular endoprosthesis, especially for the endovascular treatment of aortic aneurysms |
US6090136A (en) | 1996-07-29 | 2000-07-18 | Radiance Medical Systems, Inc. | Self expandable tubular support |
US5922020A (en) * | 1996-08-02 | 1999-07-13 | Localmed, Inc. | Tubular prosthesis having improved expansion and imaging characteristics |
US5755781A (en) | 1996-08-06 | 1998-05-26 | Iowa-India Investments Company Limited | Embodiments of multiple interconnected stents |
US6007517A (en) | 1996-08-19 | 1999-12-28 | Anderson; R. David | Rapid exchange/perfusion angioplasty catheter |
US6123712A (en) | 1996-08-23 | 2000-09-26 | Scimed Life Systems, Inc. | Balloon catheter with stent securement means |
US5968069A (en) | 1996-08-23 | 1999-10-19 | Scimed Life Systems, Inc. | Stent delivery system having stent securement apparatus |
US20030093143A1 (en) | 1999-03-01 | 2003-05-15 | Yiju Zhao | Medical device having surface depressions containing nitric oxide releasing compound |
US5921971A (en) | 1996-09-13 | 1999-07-13 | Boston Scientific Corporation | Single operator exchange biliary catheter |
US6254628B1 (en) | 1996-12-09 | 2001-07-03 | Micro Therapeutics, Inc. | Intracranial stent |
US5772669A (en) | 1996-09-27 | 1998-06-30 | Scimed Life Systems, Inc. | Stent deployment catheter with retractable sheath |
US5755776A (en) | 1996-10-04 | 1998-05-26 | Al-Saadon; Khalid | Permanent expandable intraluminal tubular stent |
WO1998020810A1 (en) | 1996-11-12 | 1998-05-22 | Medtronic, Inc. | Flexible, radially expansible luminal prostheses |
DE59610631D1 (en) | 1996-11-15 | 2003-09-04 | Schneider Europ Gmbh Buelach | Balloon catheter and stent delivery device |
WO1998032412A2 (en) | 1997-01-24 | 1998-07-30 | Scimed Life Systems Inc | Bistable spring construction for a stent and other medical apparatus |
JP3523765B2 (en) | 1997-01-24 | 2004-04-26 | テルモ株式会社 | Living organ dilator |
US5882329A (en) | 1997-02-12 | 1999-03-16 | Prolifix Medical, Inc. | Apparatus and method for removing stenotic material from stents |
US5814064A (en) | 1997-03-06 | 1998-09-29 | Scimed Life Systems, Inc. | Distal protection device |
US6035856A (en) | 1997-03-06 | 2000-03-14 | Scimed Life Systems | Percutaneous bypass with branching vessel |
IL128261A0 (en) | 1999-01-27 | 1999-11-30 | Disc O Tech Medical Tech Ltd | Expandable element |
US5817101A (en) | 1997-03-13 | 1998-10-06 | Schneider (Usa) Inc | Fluid actuated stent delivery system |
US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US6143016A (en) | 1997-04-21 | 2000-11-07 | Advanced Cardiovascular Systems, Inc. | Sheath and method of use for a stent delivery system |
DE59711575D1 (en) | 1997-06-10 | 2004-06-03 | Schneider Europ Gmbh Buelach | catheter system |
US6004328A (en) | 1997-06-19 | 1999-12-21 | Solar; Ronald J. | Radially expandable intraluminal stent and delivery catheter therefore and method of using the same |
FR2764794B1 (en) | 1997-06-20 | 1999-11-12 | Nycomed Lab Sa | EXPANDED TUBULAR DEVICE WITH VARIABLE THICKNESS |
US6070589A (en) | 1997-08-01 | 2000-06-06 | Teramed, Inc. | Methods for deploying bypass graft stents |
US5899935A (en) | 1997-08-04 | 1999-05-04 | Schneider (Usa) Inc. | Balloon expandable braided stent with restraint |
US5984957A (en) | 1997-08-12 | 1999-11-16 | Schneider (Usa) Inc | Radially expanded prostheses with axial diameter control |
US6056722A (en) | 1997-09-18 | 2000-05-02 | Iowa-India Investments Company Limited Of Douglas | Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use |
WO1999015108A2 (en) | 1997-09-24 | 1999-04-01 | Med Institute, Inc. | Radially expandable stent |
US5972027A (en) * | 1997-09-30 | 1999-10-26 | Scimed Life Systems, Inc | Porous stent drug delivery system |
US5961536A (en) | 1997-10-14 | 1999-10-05 | Scimed Life Systems, Inc. | Catheter having a variable length balloon and method of using the same |
NO311781B1 (en) | 1997-11-13 | 2002-01-28 | Medinol Ltd | Metal multilayer stents |
US6241691B1 (en) | 1997-12-05 | 2001-06-05 | Micrus Corporation | Coated superelastic stent |
US6280467B1 (en) | 1998-02-26 | 2001-08-28 | World Medical Manufacturing Corporation | Delivery system for deployment and endovascular assembly of a multi-stage stented graft |
US6428811B1 (en) | 1998-03-11 | 2002-08-06 | Wm. Marsh Rice University | Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery |
US6425898B1 (en) | 1998-03-13 | 2002-07-30 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6129756A (en) | 1998-03-16 | 2000-10-10 | Teramed, Inc. | Biluminal endovascular graft system |
US6132460A (en) | 1998-03-27 | 2000-10-17 | Intratherapeutics, Inc. | Stent |
US6102942A (en) | 1998-03-30 | 2000-08-15 | Endovascular Technologies, Inc. | Stent/graft deployment catheter with a stent/graft attachment mechanism |
US6063111A (en) | 1998-03-31 | 2000-05-16 | Cordis Corporation | Stent aneurysm treatment system and method |
US6037647A (en) | 1998-05-08 | 2000-03-14 | Fujitsu Limited | Semiconductor device having an epitaxial substrate and a fabrication process thereof |
US6036725A (en) * | 1998-06-10 | 2000-03-14 | General Science And Technology | Expandable endovascular support device |
US6171334B1 (en) * | 1998-06-17 | 2001-01-09 | Advanced Cardiovascular Systems, Inc. | Expandable stent and method of use |
DE19829702C1 (en) | 1998-07-03 | 2000-03-16 | Heraeus Gmbh W C | Radially expandable support device V |
US20020038146A1 (en) * | 1998-07-29 | 2002-03-28 | Ulf Harry | Expandable stent with relief cuts for carrying medicines and other materials |
WO2000012832A2 (en) | 1998-08-26 | 2000-03-09 | Molecular Geodesics, Inc. | Radially expandable device |
US6120522A (en) | 1998-08-27 | 2000-09-19 | Scimed Life Systems, Inc. | Self-expanding stent delivery catheter |
AU6144599A (en) * | 1998-09-16 | 2000-04-03 | Isostent, Inc. | Linkage stent |
US5997563A (en) | 1998-09-28 | 1999-12-07 | Medtronic, Inc. | Implantable stent having variable diameter |
US6254612B1 (en) | 1998-10-22 | 2001-07-03 | Cordis Neurovascular, Inc. | Hydraulic stent deployment system |
US6214036B1 (en) | 1998-11-09 | 2001-04-10 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
SG75982A1 (en) | 1998-12-03 | 2000-10-24 | Medinol Ltd | Controlled detachment stents |
US6340366B2 (en) | 1998-12-08 | 2002-01-22 | Bandula Wijay | Stent with nested or overlapping rings |
US6350277B1 (en) | 1999-01-15 | 2002-02-26 | Scimed Life Systems, Inc. | Stents with temporary retaining bands |
US6558414B2 (en) | 1999-02-02 | 2003-05-06 | Impra, Inc. | Partial encapsulation of stents using strips and bands |
US6248122B1 (en) | 1999-02-26 | 2001-06-19 | Vascular Architects, Inc. | Catheter with controlled release endoluminal prosthesis |
JP2002537065A (en) | 1999-02-26 | 2002-11-05 | ヴァスキュラー・アーキテクツ・インコーポレイテッド | Catheter assembly with endoluminal prosthesis and method of placement thereof |
US6251134B1 (en) * | 1999-02-28 | 2001-06-26 | Inflow Dynamics Inc. | Stent with high longitudinal flexibility |
US5976155A (en) | 1999-03-05 | 1999-11-02 | Advanced Cardiovascular Systems, Inc. | System for removably securing a stent on a catheter assembly and method of use |
US6730116B1 (en) | 1999-04-16 | 2004-05-04 | Medtronic, Inc. | Medical device for intraluminal endovascular stenting |
US6273911B1 (en) | 1999-04-22 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Variable strength stent |
US6585756B1 (en) | 1999-05-14 | 2003-07-01 | Ernst P. Strecker | Implantable lumen prosthesis |
US6858034B1 (en) | 1999-05-20 | 2005-02-22 | Scimed Life Systems, Inc. | Stent delivery system for prevention of kinking, and method of loading and using same |
US6241758B1 (en) | 1999-05-28 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system and method of use |
DE19938377A1 (en) | 1999-08-06 | 2001-03-01 | Biotronik Mess & Therapieg | Stent for vascular branching |
US6415696B1 (en) | 1999-09-01 | 2002-07-09 | Kennametal Pc Inc. | Toolholder assembly |
US6605062B1 (en) | 1999-09-02 | 2003-08-12 | Advanced Cardiovascular Systems, Inc. | Catheter for guidewire support or exchange |
WO2001026707A2 (en) | 1999-10-12 | 2001-04-19 | Allan R. Will | Methods and devices for protecting a passageway in a body |
US6383171B1 (en) | 1999-10-12 | 2002-05-07 | Allan Will | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
US6409753B1 (en) | 1999-10-26 | 2002-06-25 | Scimed Life Systems, Inc. | Flexible stent |
US6325823B1 (en) | 1999-10-29 | 2001-12-04 | Revasc Corporation | Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use |
US6428569B1 (en) | 1999-11-09 | 2002-08-06 | Scimed Life Systems Inc. | Micro structure stent configurations |
US6287291B1 (en) | 1999-11-09 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Protective sheath for catheters |
JP4473390B2 (en) | 2000-01-07 | 2010-06-02 | 川澄化学工業株式会社 | Stent and stent graft |
US6322586B1 (en) | 2000-01-10 | 2001-11-27 | Scimed Life Systems, Inc. | Catheter tip designs and method of manufacture |
US6312458B1 (en) | 2000-01-19 | 2001-11-06 | Scimed Life Systems, Inc. | Tubular structure/stent/stent securement member |
US20010049547A1 (en) | 2000-02-04 | 2001-12-06 | Moore Scott T. | Stent introducer apparatus |
US7373197B2 (en) | 2000-03-03 | 2008-05-13 | Intramedical Imaging, Llc | Methods and devices to expand applications of intraoperative radiation probes |
EP1263318A4 (en) | 2000-03-08 | 2006-05-03 | Given Imaging Ltd | A device and system for in vivo imaging |
DE10012460A1 (en) | 2000-03-15 | 2001-09-20 | Biotronik Mess & Therapieg | Stent consists of several adjacent lengthwise tubular sections joined by first and second connections consisting of cell-type elements of one orientation. |
US6264683B1 (en) | 2000-03-17 | 2001-07-24 | Advanced Cardiovascular Systems, Inc. | Stent delivery catheter with bumpers for improved retention of balloon expandable stents |
AUPQ641400A0 (en) | 2000-03-23 | 2000-04-15 | Kleiner, Daniel E. | A device incorporating a hollow member for being positioned along a body cavity of a patient and method of positioning same |
US6315708B1 (en) | 2000-03-31 | 2001-11-13 | Cordis Corporation | Stent with self-expanding end sections |
US6964676B1 (en) | 2000-04-14 | 2005-11-15 | Scimed Life Systems, Inc. | Stent securement system |
EP1276475A2 (en) | 2000-04-28 | 2003-01-22 | Memorial Sloan-Kettering Cancer Center | Topical anesthetic/opioid formulations and uses thereof |
US6451050B1 (en) | 2000-04-28 | 2002-09-17 | Cardiovasc, Inc. | Stent graft and method |
AU2001259429A1 (en) | 2000-05-02 | 2001-11-12 | Wilson-Cook Medical Inc. | Introducer device for catheters o.t.l. with eversible sleeve |
US6602282B1 (en) | 2000-05-04 | 2003-08-05 | Avantec Vascular Corporation | Flexible stent structure |
US6569180B1 (en) | 2000-06-02 | 2003-05-27 | Avantec Vascular Corporation | Catheter having exchangeable balloon |
US6773446B1 (en) | 2000-08-02 | 2004-08-10 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6629992B2 (en) | 2000-08-04 | 2003-10-07 | Advanced Cardiovascular Systems, Inc. | Sheath for self-expanding stent |
US6945989B1 (en) | 2000-09-18 | 2005-09-20 | Endotex Interventional Systems, Inc. | Apparatus for delivering endoluminal prostheses and methods of making and using them |
JP5053501B2 (en) | 2000-09-22 | 2012-10-17 | ボストン サイエンティフィック リミテッド | Flexible and expandable stent |
US6602226B1 (en) | 2000-10-12 | 2003-08-05 | Scimed Life Systems, Inc. | Low-profile stent delivery system and apparatus |
WO2002059226A2 (en) | 2000-11-03 | 2002-08-01 | Wm. Marsh Rice University | Partial coverage metal nanoshells and method of making same |
US6582394B1 (en) | 2000-11-14 | 2003-06-24 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcated vessels |
US6743251B1 (en) | 2000-11-15 | 2004-06-01 | Scimed Life Systems, Inc. | Implantable devices with polymeric detachment junction |
US6607553B1 (en) | 2000-11-17 | 2003-08-19 | B. Braun Medical, Inc. | Method for deploying a thermo-mechanically expandable stent |
US6582460B1 (en) | 2000-11-20 | 2003-06-24 | Advanced Cardiovascular Systems, Inc. | System and method for accurately deploying a stent |
US6884257B1 (en) | 2000-11-28 | 2005-04-26 | Advanced Cardiovascular Systems, Inc. | Stent delivery system with adjustable length balloon |
US6468298B1 (en) | 2000-12-28 | 2002-10-22 | Advanced Cardiovascular Systems, Inc. | Gripping delivery system for self-expanding stents and method of using the same |
DE10103000B4 (en) | 2001-01-24 | 2007-08-30 | Qualimed Innovative Medizinprodukte Gmbh | Radially re-expandable vascular support |
DE10105160B4 (en) | 2001-02-06 | 2005-09-01 | Osypka, Peter, Dr.-Ing. | Implantable vascular support |
AU2002233342B2 (en) | 2001-02-16 | 2007-10-25 | Abbott Laboratories Vascular Enterprises Limited | Implants with FK506 for prophylaxis and treatment of restonoses |
US20030097169A1 (en) | 2001-02-26 | 2003-05-22 | Brucker Gregory G. | Bifurcated stent and delivery system |
US7799064B2 (en) | 2001-02-26 | 2010-09-21 | Boston Scientific Scimed, Inc. | Bifurcated stent and delivery system |
US20020123786A1 (en) | 2001-03-02 | 2002-09-05 | Ventrica, Inc. | Methods and devices for bypassing an obstructed target vessel by placing the vessel in communication with a heart chamber containing blood |
US6592549B2 (en) | 2001-03-14 | 2003-07-15 | Scimed Life Systems, Inc. | Rapid exchange stent delivery system and associated components |
EP1258230A3 (en) | 2001-03-29 | 2003-12-10 | CardioSafe Ltd | Balloon catheter device |
US6660031B2 (en) | 2001-04-11 | 2003-12-09 | Scimed Life Systems, Inc. | Multi-length delivery system |
GB0110551D0 (en) | 2001-04-30 | 2001-06-20 | Angiomed Ag | Self-expanding stent delivery service |
US8337540B2 (en) | 2001-05-17 | 2012-12-25 | Advanced Cardiovascular Systems, Inc. | Stent for treating bifurcations and method of use |
US6599314B2 (en) | 2001-06-08 | 2003-07-29 | Cordis Corporation | Apparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements |
US6676693B1 (en) | 2001-06-27 | 2004-01-13 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for delivering a self-expanding stent |
EP1277449B2 (en) | 2001-07-20 | 2012-07-11 | Sorin Biomedica Cardio S.R.L. | Stent |
US6599296B1 (en) | 2001-07-27 | 2003-07-29 | Advanced Cardiovascular Systems, Inc. | Ratcheting handle for intraluminal catheter systems |
SG108867A1 (en) | 2001-09-06 | 2005-02-28 | Medinol Ltd | Self articulating stent |
GB0121980D0 (en) | 2001-09-11 | 2001-10-31 | Cathnet Science Holding As | Expandable stent |
US6778316B2 (en) | 2001-10-24 | 2004-08-17 | William Marsh Rice University | Nanoparticle-based all-optical sensors |
JP4043216B2 (en) | 2001-10-30 | 2008-02-06 | オリンパス株式会社 | Stent |
US7309350B2 (en) | 2001-12-03 | 2007-12-18 | Xtent, Inc. | Apparatus and methods for deployment of vascular prostheses |
US7351255B2 (en) | 2001-12-03 | 2008-04-01 | Xtent, Inc. | Stent delivery apparatus and method |
US20030135266A1 (en) | 2001-12-03 | 2003-07-17 | Xtent, Inc. | Apparatus and methods for delivery of multiple distributed stents |
US7294146B2 (en) | 2001-12-03 | 2007-11-13 | Xtent, Inc. | Apparatus and methods for delivery of variable length stents |
US8080048B2 (en) | 2001-12-03 | 2011-12-20 | Xtent, Inc. | Stent delivery for bifurcated vessels |
US20040186551A1 (en) | 2003-01-17 | 2004-09-23 | Xtent, Inc. | Multiple independent nested stent structures and methods for their preparation and deployment |
US7137993B2 (en) | 2001-12-03 | 2006-11-21 | Xtent, Inc. | Apparatus and methods for delivery of multiple distributed stents |
US8353945B2 (en) | 2001-12-03 | 2013-01-15 | J.W. Medical System Ltd. | Delivery catheter having active engagement mechanism for prosthesis |
US7270668B2 (en) | 2001-12-03 | 2007-09-18 | Xtent, Inc. | Apparatus and methods for delivering coiled prostheses |
US20030114919A1 (en) | 2001-12-10 | 2003-06-19 | Mcquiston Jesse | Polymeric stent with metallic rings |
US6991646B2 (en) | 2001-12-18 | 2006-01-31 | Linvatec Biomaterials, Inc. | Method and apparatus for delivering a stent into a body lumen |
US20030163085A1 (en) | 2002-01-16 | 2003-08-28 | Tanner Howard M. | Catheter hand-piece apparatus and method of using the same |
US6939368B2 (en) | 2002-01-17 | 2005-09-06 | Scimed Life Systems, Inc. | Delivery system for self expanding stents for use in bifurcated vessels |
US6981985B2 (en) | 2002-01-22 | 2006-01-03 | Boston Scientific Scimed, Inc. | Stent bumper struts |
US6911040B2 (en) | 2002-01-24 | 2005-06-28 | Cordis Corporation | Covered segmented stent |
US6866679B2 (en) | 2002-03-12 | 2005-03-15 | Ev3 Inc. | Everting stent and stent delivery system |
GB0206061D0 (en) | 2002-03-14 | 2002-04-24 | Angiomed Ag | Metal structure compatible with MRI imaging, and method of manufacturing such a structure |
US6800065B2 (en) | 2002-04-04 | 2004-10-05 | Medtronic Ave, Inc. | Catheter and guide wire exchange system |
US7052511B2 (en) | 2002-04-04 | 2006-05-30 | Scimed Life Systems, Inc. | Delivery system and method for deployment of foreshortening endoluminal devices |
US20030195609A1 (en) | 2002-04-10 | 2003-10-16 | Scimed Life Systems, Inc. | Hybrid stent |
US7648515B2 (en) | 2002-04-16 | 2010-01-19 | Tyco Healthcare Group Lp | Method and apparatus for anastomosis including an expandable anchor |
US7470281B2 (en) | 2002-04-26 | 2008-12-30 | Medtronic Vascular, Inc. | Coated stent with crimpable coating |
US6645547B1 (en) | 2002-05-02 | 2003-11-11 | Labcoat Ltd. | Stent coating device |
US20030225446A1 (en) | 2002-05-29 | 2003-12-04 | William A. Cook Australia Pty Ltd. | Multi-piece prosthesis deployment apparatus |
US6761734B2 (en) | 2002-07-22 | 2004-07-13 | William S. Suhr | Segmented balloon catheter for stenting bifurcation lesions |
US7141063B2 (en) | 2002-08-06 | 2006-11-28 | Icon Medical Corp. | Stent with micro-latching hinge joints |
US6945995B2 (en) | 2002-08-29 | 2005-09-20 | Boston Scientific Scimed, Inc. | Stent overlap point markers |
WO2004021923A2 (en) | 2002-09-04 | 2004-03-18 | Reva Medical, Inc. | A slide and lock stent and method of manufacture from a single piece shape |
US6893417B2 (en) | 2002-09-20 | 2005-05-17 | Medtronic Vascular, Inc. | Catheter and guide wire exchange system with improved proximal shaft and transition section |
JP4033747B2 (en) | 2002-09-30 | 2008-01-16 | テルモ株式会社 | Biological organ expansion device |
US7223283B2 (en) | 2002-10-09 | 2007-05-29 | Boston Scientific Scimed, Inc. | Stent with improved flexibility |
CA2513721C (en) | 2002-11-08 | 2013-04-16 | Conor Medsystems, Inc. | Method and apparatus for reducing tissue damage after ischemic injury |
ITRM20020596A1 (en) | 2002-11-27 | 2004-05-28 | Mauro Ferrari | IMPLANT VASCULAR PROSTHESIS WITH COMBINED, LAPAROSCOPIC AND ENDOVASCULAR TECHNIQUES, FOR THE TREATMENT OF ABDOMINAL AORTIC ANEURYSMS, AND OPERATIONAL EQUIPMENT FOR THE RELEASE OF A PROSTHESIS EQUIPPED WITH ANCHORING STENTS. |
ATE421302T1 (en) | 2002-12-04 | 2009-02-15 | Cook Inc | METHOD AND DEVICE FOR TREATING AORTA SECTION |
AU2003297832A1 (en) | 2002-12-09 | 2004-06-30 | Medtronic Vascular | Modular stent having polymer bridges at modular unit contact sites |
EP1613242B1 (en) | 2003-03-26 | 2013-02-20 | The Foundry, LLC | Devices for treatment of abdominal aortic aneurysms |
JP2006521161A (en) | 2003-03-26 | 2006-09-21 | カーディオマインド インコーポレイティッド | Implant delivery technology |
US7208001B2 (en) | 2003-04-24 | 2007-04-24 | Medtronic Vascular, Inc. | Catheter with detached proximal inflation and guidewire shafts |
US7241308B2 (en) | 2003-06-09 | 2007-07-10 | Xtent, Inc. | Stent deployment systems and methods |
US7744620B2 (en) | 2003-07-18 | 2010-06-29 | Intervalve, Inc. | Valvuloplasty catheter |
US8784472B2 (en) | 2003-08-15 | 2014-07-22 | Boston Scientific Scimed, Inc. | Clutch driven stent delivery system |
US20050209674A1 (en) | 2003-09-05 | 2005-09-22 | Kutscher Tuvia D | Balloon assembly (V) |
US20070219613A1 (en) | 2003-10-06 | 2007-09-20 | Xtent, Inc. | Apparatus and methods for interlocking stent segments |
US20050080475A1 (en) | 2003-10-14 | 2005-04-14 | Xtent, Inc. A Delaware Corporation | Stent delivery devices and methods |
US7553324B2 (en) | 2003-10-14 | 2009-06-30 | Xtent, Inc. | Fixed stent delivery devices and methods |
US7175654B2 (en) | 2003-10-16 | 2007-02-13 | Cordis Corporation | Stent design having stent segments which uncouple upon deployment |
US20050085897A1 (en) | 2003-10-17 | 2005-04-21 | Craig Bonsignore | Stent design having independent stent segments which uncouple upon deployment |
US7220755B2 (en) | 2003-11-12 | 2007-05-22 | Biosensors International Group, Ltd. | 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same |
US7090694B1 (en) | 2003-11-19 | 2006-08-15 | Advanced Cardiovascular Systems, Inc. | Portal design for stent for treating bifurcated vessels |
US8157855B2 (en) | 2003-12-05 | 2012-04-17 | Boston Scientific Scimed, Inc. | Detachable segment stent |
US7244336B2 (en) | 2003-12-17 | 2007-07-17 | Lam Research Corporation | Temperature controlled hot edge ring assembly for reducing plasma reactor etch rate drift |
US20070156225A1 (en) | 2003-12-23 | 2007-07-05 | Xtent, Inc. | Automated control mechanisms and methods for custom length stent apparatus |
US20050222671A1 (en) | 2004-03-31 | 2005-10-06 | Schaeffer Darin G | Partially biodegradable stent |
US20050228477A1 (en) | 2004-04-09 | 2005-10-13 | Xtent, Inc. | Topographic coatings and coating methods for medical devices |
US7820732B2 (en) | 2004-04-30 | 2010-10-26 | Advanced Cardiovascular Systems, Inc. | Methods for modulating thermal and mechanical properties of coatings on implantable devices |
WO2006001367A1 (en) | 2004-06-25 | 2006-01-05 | Zeon Corporation | Stent |
US8317859B2 (en) | 2004-06-28 | 2012-11-27 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US7534449B2 (en) | 2004-07-01 | 2009-05-19 | Yale University | Targeted and high density drug loaded polymeric materials |
US9308104B2 (en) | 2004-10-25 | 2016-04-12 | Merit Medical Systems, Inc. | Stent removal and repositioning device and associated method |
US7402168B2 (en) | 2005-04-11 | 2008-07-22 | Xtent, Inc. | Custom-length stent delivery system with independently operable expansion elements |
US8641746B2 (en) | 2005-05-31 | 2014-02-04 | J.W. Medical Systems Ltd. | In situ stent formation |
US7938851B2 (en) | 2005-06-08 | 2011-05-10 | Xtent, Inc. | Devices and methods for operating and controlling interventional apparatus |
US8021426B2 (en) | 2005-06-15 | 2011-09-20 | Ouroboros Medical, Inc. | Mechanical apparatus and method for artificial disc replacement |
WO2007035805A2 (en) | 2005-09-20 | 2007-03-29 | Purdue Research Foundation | Biocompatable nanophase materials |
US20070179587A1 (en) | 2006-01-30 | 2007-08-02 | Xtent, Inc. | Apparatus and methods for deployment of custom-length prostheses |
JP2009530060A (en) | 2006-03-20 | 2009-08-27 | エックステント・インコーポレーテッド | Apparatus and method for deploying connected prosthetic segments |
US20070265637A1 (en) | 2006-04-21 | 2007-11-15 | Xtent, Inc. | Devices and methods for controlling and counting interventional elements |
US20070281117A1 (en) | 2006-06-02 | 2007-12-06 | Xtent, Inc. | Use of plasma in formation of biodegradable stent coating |
US8603530B2 (en) | 2006-06-14 | 2013-12-10 | Abbott Cardiovascular Systems Inc. | Nanoshell therapy |
ATE515996T1 (en) | 2006-06-30 | 2011-07-15 | Boston Scient Ltd | STENT DESIGN WITH VARIABLE EXPANSION COLUMNS AROUND THE CIRCUMFERENCE |
US20080269865A1 (en) | 2006-08-07 | 2008-10-30 | Xtent, Inc. | Custom Length Stent Apparatus |
US20080199510A1 (en) | 2007-02-20 | 2008-08-21 | Xtent, Inc. | Thermo-mechanically controlled implants and methods of use |
US8486132B2 (en) | 2007-03-22 | 2013-07-16 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US9370642B2 (en) | 2007-06-29 | 2016-06-21 | J.W. Medical Systems Ltd. | Adjustable-length drug delivery balloon |
US20090076584A1 (en) | 2007-09-19 | 2009-03-19 | Xtent, Inc. | Apparatus and methods for deployment of multiple custom-length prostheses |
US9101503B2 (en) | 2008-03-06 | 2015-08-11 | J.W. Medical Systems Ltd. | Apparatus having variable strut length and methods of use |
-
2001
- 2001-09-11 GB GBGB0121980.7A patent/GB0121980D0/en not_active Ceased
-
2002
- 2002-09-05 CN CN02820957.5A patent/CN1575154B/en not_active Expired - Lifetime
- 2002-09-05 US US10/489,181 patent/US20040243217A1/en not_active Abandoned
- 2002-09-05 DE DE60232255T patent/DE60232255D1/en not_active Expired - Lifetime
- 2002-09-05 AT AT02779307T patent/ATE430537T1/en not_active IP Right Cessation
- 2002-09-05 EP EP02779307A patent/EP1427353B1/en not_active Expired - Lifetime
- 2002-09-05 JP JP2003526310A patent/JP2005501654A/en active Pending
- 2002-09-05 CN CN201010118638.7A patent/CN101779993B/en not_active Expired - Lifetime
- 2002-09-05 WO PCT/EP2002/009931 patent/WO2003022178A1/en active Application Filing
- 2002-09-05 EP EP09159388.9A patent/EP2085051B1/en not_active Expired - Lifetime
-
2009
- 2009-06-10 US US12/481,792 patent/US8257427B2/en not_active Expired - Fee Related
- 2009-06-15 JP JP2009142782A patent/JP5017320B2/en not_active Expired - Lifetime
Patent Citations (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4069825A (en) * | 1976-01-28 | 1978-01-24 | Taichiro Akiyama | Surgical thread and cutting apparatus for the same |
US4564014A (en) * | 1980-01-30 | 1986-01-14 | Thomas J. Fogarty | Variable length dilatation catheter apparatus and method |
US4512338A (en) * | 1983-01-25 | 1985-04-23 | Balko Alexander B | Process for restoring patency to body vessels |
US4891225A (en) * | 1984-05-21 | 1990-01-02 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4739762A (en) * | 1985-11-07 | 1988-04-26 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4739762B1 (en) * | 1985-11-07 | 1998-10-27 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4733665B1 (en) * | 1985-11-07 | 1994-01-11 | Expandable Grafts Partnership | Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft |
US5102417A (en) * | 1985-11-07 | 1992-04-07 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US5501227A (en) * | 1986-04-15 | 1996-03-26 | Yock; Paul G. | Angioplasty apparatus facilitating rapid exchange and method |
US5300085A (en) * | 1986-04-15 | 1994-04-05 | Advanced Cardiovascular Systems, Inc. | Angioplasty apparatus facilitating rapid exchanges and method |
US5496346A (en) * | 1987-01-06 | 1996-03-05 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
US4988356A (en) * | 1987-02-27 | 1991-01-29 | C. R. Bard, Inc. | Catheter and guidewire exchange system |
US5092877A (en) * | 1988-09-01 | 1992-03-03 | Corvita Corporation | Radially expandable endoprosthesis |
US5195984A (en) * | 1988-10-04 | 1993-03-23 | Expandable Grafts Partnership | Expandable intraluminal graft |
US4994066A (en) * | 1988-10-07 | 1991-02-19 | Voss Gene A | Prostatic stent |
US4994069A (en) * | 1988-11-02 | 1991-02-19 | Target Therapeutics | Vaso-occlusion coil and method |
US5891190A (en) * | 1989-08-24 | 1999-04-06 | Boneau; Michael D. | Endovascular support device and method |
US5104404A (en) * | 1989-10-02 | 1992-04-14 | Medtronic, Inc. | Articulated stent |
US5282824A (en) * | 1990-10-09 | 1994-02-01 | Cook, Incorporated | Percutaneous stent assembly |
US5507768A (en) * | 1991-01-28 | 1996-04-16 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US6527789B1 (en) * | 1991-01-28 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US6692465B2 (en) * | 1991-06-11 | 2004-02-17 | Advanced Cardiovascular Systems, Inc. | Catheter system with catheter and guidewire exchange |
US5490837A (en) * | 1991-07-05 | 1996-02-13 | Scimed Life Systems, Inc. | Single operator exchange catheter having a distal catheter shaft section |
US5507771A (en) * | 1992-06-15 | 1996-04-16 | Cook Incorporated | Stent assembly |
US5855563A (en) * | 1992-11-02 | 1999-01-05 | Localmed, Inc. | Method and apparatus for sequentially performing multiple intraluminal procedures |
US5607463A (en) * | 1993-03-30 | 1997-03-04 | Medtronic, Inc. | Intravascular medical device |
US5741323A (en) * | 1993-04-28 | 1998-04-21 | Focal, Inc. | Polymeric article for intraluminal photothermoforming |
US6357104B1 (en) * | 1993-08-18 | 2002-03-19 | David J. Myers | Method of making an intraluminal stent graft |
US5607444A (en) * | 1993-12-02 | 1997-03-04 | Advanced Cardiovascular Systems, Inc. | Ostial stent for bifurcations |
US5879370A (en) * | 1994-02-25 | 1999-03-09 | Fischell; Robert E. | Stent having a multiplicity of undulating longitudinals |
US5593412A (en) * | 1994-03-01 | 1997-01-14 | Cordis Corporation | Stent delivery method and apparatus |
US5716393A (en) * | 1994-05-26 | 1998-02-10 | Angiomed Gmbh & Co. Medizintechnik Kg | Stent with an end of greater diameter than its main body |
US5723003A (en) * | 1994-09-13 | 1998-03-03 | Ultrasonic Sensing And Monitoring Systems | Expandable graft assembly and method of use |
US5735869A (en) * | 1994-11-30 | 1998-04-07 | Schneider (Europe) A.G. | Balloon catheter and stent delivery device |
US6183509B1 (en) * | 1995-05-04 | 2001-02-06 | Alain Dibie | Endoprosthesis for the treatment of blood-vessel bifurcation stenosis and purpose-built installation device |
US6033434A (en) * | 1995-06-08 | 2000-03-07 | Ave Galway Limited | Bifurcated endovascular stent and methods for forming and placing |
US5870381A (en) * | 1995-07-10 | 1999-02-09 | Matsushita Electric Industrial Co., Ltd. | Method for transmitting signals from a plurality of transmitting units and receiving the signals |
US7005454B2 (en) * | 1995-07-28 | 2006-02-28 | Rutgers, The State University | Polymeric drug formulations |
US5722669A (en) * | 1995-09-26 | 1998-03-03 | Keeper Co., Ltd. | Resin CVJ boot with distinct large and small crest portions |
US6520986B2 (en) * | 1995-12-14 | 2003-02-18 | Gore Enterprise Holdings, Inc. | Kink resistant stent-graft |
US5895398A (en) * | 1996-02-02 | 1999-04-20 | The Regents Of The University Of California | Method of using a clot capture coil |
US6200337B1 (en) * | 1996-03-10 | 2001-03-13 | Terumo Kabushiki Kaisha | Implanting stent |
US6334871B1 (en) * | 1996-03-13 | 2002-01-01 | Medtronic, Inc. | Radiopaque stent markers |
US5709701A (en) * | 1996-05-30 | 1998-01-20 | Parodi; Juan C. | Apparatus for implanting a prothesis within a body passageway |
US6190402B1 (en) * | 1996-06-21 | 2001-02-20 | Musc Foundation For Research Development | Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same |
US6039721A (en) * | 1996-07-24 | 2000-03-21 | Cordis Corporation | Method and catheter system for delivering medication with an everting balloon catheter |
US6712827B2 (en) * | 1996-08-23 | 2004-03-30 | Scimed Life Systems, Inc. | Stent delivery system |
US6179878B1 (en) * | 1996-10-22 | 2001-01-30 | Thomas Duerig | Composite self expanding stent device having a restraining element |
US6551350B1 (en) * | 1996-12-23 | 2003-04-22 | Gore Enterprise Holdings, Inc. | Kink resistant bifurcated prosthesis |
US5858556A (en) * | 1997-01-21 | 1999-01-12 | Uti Corporation | Multilayer composite tubular structure and method of making |
US6520987B1 (en) * | 1997-02-25 | 2003-02-18 | Symbiotech Medical, Inc | Expandable intravascular stent |
US6852252B2 (en) * | 1997-03-12 | 2005-02-08 | William Marsh Rice University | Use of metalnanoshells to impede the photo-oxidation of conjugated polymer |
US6344272B1 (en) * | 1997-03-12 | 2002-02-05 | Wm. Marsh Rice University | Metal nanoshells |
US20020037358A1 (en) * | 1997-08-13 | 2002-03-28 | Barry James J. | Loading and release of water-insoluble drugs |
US6511468B1 (en) * | 1997-10-17 | 2003-01-28 | Micro Therapeutics, Inc. | Device and method for controlling injection of liquid embolic composition |
US6022374A (en) * | 1997-12-16 | 2000-02-08 | Cardiovasc, Inc. | Expandable stent having radiopaque marker and method |
US6699724B1 (en) * | 1998-03-11 | 2004-03-02 | Wm. Marsh Rice University | Metal nanoshells for biosensing applications |
US6042589A (en) * | 1998-03-17 | 2000-03-28 | Medicorp, S.A. | Reversible-action endoprosthesis delivery device |
US6196995B1 (en) * | 1998-09-30 | 2001-03-06 | Medtronic Ave, Inc. | Reinforced edge exchange catheter |
US6527799B2 (en) * | 1998-10-29 | 2003-03-04 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US6709379B1 (en) * | 1998-11-02 | 2004-03-23 | Alcove Surfaces Gmbh | Implant with cavities containing therapeutic agents |
US6187034B1 (en) * | 1999-01-13 | 2001-02-13 | John J. Frantzen | Segmented stent for flexible stent delivery system |
US6022359A (en) * | 1999-01-13 | 2000-02-08 | Frantzen; John J. | Stent delivery system featuring a flexible balloon |
US6379365B1 (en) * | 1999-03-29 | 2002-04-30 | Alexis Diaz | Stent delivery catheter system having grooved shaft |
US6699280B2 (en) * | 1999-04-15 | 2004-03-02 | Mayo Foundation For Medical Education And Research | Multi-section stent |
US6375676B1 (en) * | 1999-05-17 | 2002-04-23 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent with enhanced delivery precision and stent delivery system |
US6855125B2 (en) * | 1999-05-20 | 2005-02-15 | Conor Medsystems, Inc. | Expandable medical device delivery system and method |
US6530944B2 (en) * | 2000-02-08 | 2003-03-11 | Rice University | Optically-active nanoparticles for use in therapeutic and diagnostic methods |
US6702843B1 (en) * | 2000-04-12 | 2004-03-09 | Scimed Life Systems, Inc. | Stent delivery means with balloon retraction means |
US6555157B1 (en) * | 2000-07-25 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Method for coating an implantable device and system for performing the method |
US6856034B2 (en) * | 2000-08-25 | 2005-02-15 | Ford Global Technologies, Llc | Method of operating a hybrid electric vehicle to reduce emissions |
US6540777B2 (en) * | 2001-02-15 | 2003-04-01 | Scimed Life Systems, Inc. | Locking stent |
US6712845B2 (en) * | 2001-04-24 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Coating for a stent and a method of forming the same |
US6837901B2 (en) * | 2001-04-27 | 2005-01-04 | Intek Technology L.L.C. | Methods for delivering, repositioning and/or retrieving self-expanding stents |
US6709440B2 (en) * | 2001-05-17 | 2004-03-23 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6676695B2 (en) * | 2001-05-30 | 2004-01-13 | Jan Otto Solem | Vascular instrument and method |
US6679909B2 (en) * | 2001-07-31 | 2004-01-20 | Advanced Cardiovascular Systems, Inc. | Rapid exchange delivery system for self-expanding stent |
US20030045923A1 (en) * | 2001-08-31 | 2003-03-06 | Mehran Bashiri | Hybrid balloon expandable/self expanding stent |
US6685730B2 (en) * | 2001-09-26 | 2004-02-03 | Rice University | Optically-absorbing nanoparticles for enhanced tissue repair |
US20050038505A1 (en) * | 2001-11-05 | 2005-02-17 | Sun Biomedical Ltd. | Drug-delivery endovascular stent and method of forming the same |
US20070067012A1 (en) * | 2001-12-03 | 2007-03-22 | Xtent, Inc. | Custom length stent apparatus |
US7182779B2 (en) * | 2001-12-03 | 2007-02-27 | Xtent, Inc. | Apparatus and methods for positioning prostheses for deployment from a catheter |
US20050049673A1 (en) * | 2001-12-03 | 2005-03-03 | Xtent, Inc. A Delaware Corporation | Apparatus and methods for delivery of braided prostheses |
US20050010276A1 (en) * | 2001-12-03 | 2005-01-13 | Xtent, Inc. | Apparatus and methods for positioning prostheses for deployment from a catheter |
US20040030380A1 (en) * | 2002-04-24 | 2004-02-12 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US20040024450A1 (en) * | 2002-04-24 | 2004-02-05 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US20040044395A1 (en) * | 2002-09-03 | 2004-03-04 | Scimed Life Systems, Inc. | Elephant trunk thoracic endograft and delivery system |
US6994721B2 (en) * | 2002-10-21 | 2006-02-07 | Israel Henry M | Stent assembly |
US7169172B2 (en) * | 2002-11-01 | 2007-01-30 | Counter Clockwise, Inc. | Method and apparatus for caged stent delivery |
US6849084B2 (en) * | 2002-12-31 | 2005-02-01 | Intek Technology L.L.C. | Stent delivery system |
US7314480B2 (en) * | 2003-02-27 | 2008-01-01 | Boston Scientific Scimed, Inc. | Rotating balloon expandable sheath bifurcation delivery |
US7192440B2 (en) * | 2003-10-15 | 2007-03-20 | Xtent, Inc. | Implantable stent delivery devices and methods |
US7326236B2 (en) * | 2003-12-23 | 2008-02-05 | Xtent, Inc. | Devices and methods for controlling and indicating the length of an interventional element |
US7323006B2 (en) * | 2004-03-30 | 2008-01-29 | Xtent, Inc. | Rapid exchange interventional devices and methods |
US20080077229A1 (en) * | 2004-06-28 | 2008-03-27 | Xtent, Inc. | Custom-length self-expanding stent delivery systems with stent bumpers |
US20060069424A1 (en) * | 2004-09-27 | 2006-03-30 | Xtent, Inc. | Self-constrained segmented stents and methods for their deployment |
US7320702B2 (en) * | 2005-06-08 | 2008-01-22 | Xtent, Inc. | Apparatus and methods for deployment of multiple custom-length prostheses (III) |
US20080071345A1 (en) * | 2005-06-08 | 2008-03-20 | Xtent, Inc. | Apparatus and methods for deployment of multiple custom-length prostheses (iii) |
US20070027521A1 (en) * | 2005-06-08 | 2007-02-01 | Xtent, Inc., A Delaware Corporation | Apparatus and methods for deployment of multiple custom-length prostheses |
Cited By (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7722662B2 (en) | 1998-02-17 | 2010-05-25 | Reva Medical, Inc. | Expandable stent with sliding and locking radial elements |
US7179288B2 (en) * | 1998-03-30 | 2007-02-20 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US20030199970A1 (en) * | 1998-03-30 | 2003-10-23 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US8066763B2 (en) | 1998-04-11 | 2011-11-29 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
US8303643B2 (en) | 2001-06-27 | 2012-11-06 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US7842083B2 (en) | 2001-08-20 | 2010-11-30 | Innovational Holdings, Llc. | Expandable medical device with improved spatial distribution |
US8257427B2 (en) | 2001-09-11 | 2012-09-04 | J.W. Medical Systems, Ltd. | Expandable stent |
US8574282B2 (en) | 2001-12-03 | 2013-11-05 | J.W. Medical Systems Ltd. | Apparatus and methods for delivery of braided prostheses |
US8016871B2 (en) | 2001-12-03 | 2011-09-13 | Xtent, Inc. | Apparatus and methods for delivery of multiple distributed stents |
US8956398B2 (en) | 2001-12-03 | 2015-02-17 | J.W. Medical Systems Ltd. | Custom length stent apparatus |
US8080048B2 (en) | 2001-12-03 | 2011-12-20 | Xtent, Inc. | Stent delivery for bifurcated vessels |
US8177831B2 (en) | 2001-12-03 | 2012-05-15 | Xtent, Inc. | Stent delivery apparatus and method |
US8070789B2 (en) | 2001-12-03 | 2011-12-06 | Xtent, Inc. | Apparatus and methods for deployment of vascular prostheses |
US8083788B2 (en) | 2001-12-03 | 2011-12-27 | Xtent, Inc. | Apparatus and methods for positioning prostheses for deployment from a catheter |
US8016870B2 (en) | 2001-12-03 | 2011-09-13 | Xtent, Inc. | Apparatus and methods for delivery of variable length stents |
US9326876B2 (en) | 2001-12-03 | 2016-05-03 | J.W. Medical Systems Ltd. | Apparatus and methods for delivery of multiple distributed stents |
US7892274B2 (en) | 2001-12-03 | 2011-02-22 | Xtent, Inc. | Apparatus and methods for deployment of vascular prostheses |
US7892273B2 (en) | 2001-12-03 | 2011-02-22 | Xtent, Inc. | Custom length stent apparatus |
US8702781B2 (en) | 2001-12-03 | 2014-04-22 | J.W. Medical Systems Ltd. | Apparatus and methods for delivery of multiple distributed stents |
US20130060321A1 (en) * | 2003-01-17 | 2013-03-07 | J.W. Medical Systems Ltd. | Multiple independent nested stent structures and methods for their preparation and deployment |
US8282680B2 (en) * | 2003-01-17 | 2012-10-09 | J. W. Medical Systems Ltd. | Multiple independent nested stent structures and methods for their preparation and deployment |
US8740968B2 (en) * | 2003-01-17 | 2014-06-03 | J.W. Medical Systems Ltd. | Multiple independent nested stent structures and methods for their preparation and deployment |
US7918881B2 (en) | 2003-06-09 | 2011-04-05 | Xtent, Inc. | Stent deployment systems and methods |
US9566179B2 (en) | 2003-12-23 | 2017-02-14 | J.W. Medical Systems Ltd. | Devices and methods for controlling and indicating the length of an interventional element |
US8585747B2 (en) | 2003-12-23 | 2013-11-19 | J.W. Medical Systems Ltd. | Devices and methods for controlling and indicating the length of an interventional element |
US8460358B2 (en) | 2004-03-30 | 2013-06-11 | J.W. Medical Systems, Ltd. | Rapid exchange interventional devices and methods |
US8317859B2 (en) | 2004-06-28 | 2012-11-27 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US8986362B2 (en) | 2004-06-28 | 2015-03-24 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US9700448B2 (en) | 2004-06-28 | 2017-07-11 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US8512394B2 (en) | 2004-07-21 | 2013-08-20 | Reva Medical Inc. | Balloon expandable crush-recoverable stent device |
US7763065B2 (en) | 2004-07-21 | 2010-07-27 | Reva Medical, Inc. | Balloon expandable crush-recoverable stent device |
US9173751B2 (en) | 2004-12-17 | 2015-11-03 | Reva Medical, Inc. | Slide-and-lock stent |
US8277500B2 (en) | 2004-12-17 | 2012-10-02 | Reva Medical, Inc. | Slide-and-lock stent |
US8292944B2 (en) | 2004-12-17 | 2012-10-23 | Reva Medical, Inc. | Slide-and-lock stent |
US7837726B2 (en) | 2005-03-14 | 2010-11-23 | Abbott Laboratories | Visible endoprosthesis |
US20070213810A1 (en) * | 2005-03-14 | 2007-09-13 | Richard Newhauser | Segmented endoprosthesis |
US20060235505A1 (en) * | 2005-03-14 | 2006-10-19 | Oepen Randolf V | Visible endoprosthesis |
US8617235B2 (en) | 2005-08-02 | 2013-12-31 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US7914574B2 (en) | 2005-08-02 | 2011-03-29 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US9149378B2 (en) | 2005-08-02 | 2015-10-06 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US20070073373A1 (en) * | 2005-09-28 | 2007-03-29 | Craig Bonsignore | Intraluminal medical device with nested interlocking segments |
EP1769779A2 (en) * | 2005-09-28 | 2007-04-04 | Nitinol Development Corporation | Intraluminal medical device with nested interlocking segments |
EP1769779A3 (en) * | 2005-09-28 | 2007-04-11 | Nitinol Development Corporation | Intraluminal medical device with nested interlocking segments |
US8562666B2 (en) * | 2005-09-28 | 2013-10-22 | Nitinol Development Corporation | Intraluminal medical device with nested interlocking segments |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US20100010622A1 (en) * | 2006-03-13 | 2010-01-14 | Abbott Laboratories | Hybrid segmented endoprosthesis |
US8652198B2 (en) | 2006-03-20 | 2014-02-18 | J.W. Medical Systems Ltd. | Apparatus and methods for deployment of linked prosthetic segments |
US9883957B2 (en) | 2006-03-20 | 2018-02-06 | J.W. Medical Systems Ltd. | Apparatus and methods for deployment of linked prosthetic segments |
US20070224235A1 (en) * | 2006-03-24 | 2007-09-27 | Barron Tenney | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8574615B2 (en) | 2006-03-24 | 2013-11-05 | Boston Scientific Scimed, Inc. | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
US8048150B2 (en) | 2006-04-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis having a fiber meshwork disposed thereon |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
US8771343B2 (en) | 2006-06-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Medical devices with selective titanium oxide coatings |
US8052743B2 (en) | 2006-08-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis with three-dimensional disintegration control |
US8353949B2 (en) | 2006-09-14 | 2013-01-15 | Boston Scientific Scimed, Inc. | Medical devices with drug-eluting coating |
US8057534B2 (en) | 2006-09-15 | 2011-11-15 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8808726B2 (en) | 2006-09-15 | 2014-08-19 | Boston Scientific Scimed. Inc. | Bioerodible endoprostheses and methods of making the same |
US8052744B2 (en) | 2006-09-15 | 2011-11-08 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US8128689B2 (en) | 2006-09-15 | 2012-03-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis with biostable inorganic layers |
US8002821B2 (en) | 2006-09-18 | 2011-08-23 | Boston Scientific Scimed, Inc. | Bioerodible metallic ENDOPROSTHESES |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
US8715339B2 (en) | 2006-12-28 | 2014-05-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8080055B2 (en) | 2006-12-28 | 2011-12-20 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US7704275B2 (en) | 2007-01-26 | 2010-04-27 | Reva Medical, Inc. | Circumferentially nested expandable device |
US8540762B2 (en) | 2007-01-26 | 2013-09-24 | Reva Medical, Inc. | Circumferentially nested expandable device |
US8172894B2 (en) | 2007-01-26 | 2012-05-08 | Reva Medical, Inc. | Circumferentially nested expandable device |
US9457133B2 (en) | 2007-02-20 | 2016-10-04 | J.W. Medical Systems Ltd. | Thermo-mechanically controlled implants and methods of use |
US8980297B2 (en) | 2007-02-20 | 2015-03-17 | J.W. Medical Systems Ltd. | Thermo-mechanically controlled implants and methods of use |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8486132B2 (en) | 2007-03-22 | 2013-07-16 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US9339404B2 (en) | 2007-03-22 | 2016-05-17 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US7942926B2 (en) | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US9284409B2 (en) | 2007-07-19 | 2016-03-15 | Boston Scientific Scimed, Inc. | Endoprosthesis having a non-fouling surface |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
US8221822B2 (en) | 2007-07-31 | 2012-07-17 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
US8900292B2 (en) | 2007-08-03 | 2014-12-02 | Boston Scientific Scimed, Inc. | Coating for medical device having increased surface area |
US8052745B2 (en) | 2007-09-13 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US9314354B2 (en) | 2007-11-30 | 2016-04-19 | Reva Medical, Inc. | Axially-radially nested expandable device |
US8460363B2 (en) | 2007-11-30 | 2013-06-11 | Reva Medical, Inc. | Axially-radially nested expandable device |
US7988721B2 (en) | 2007-11-30 | 2011-08-02 | Reva Medical, Inc. | Axially-radially nested expandable device |
US9101503B2 (en) | 2008-03-06 | 2015-08-11 | J.W. Medical Systems Ltd. | Apparatus having variable strut length and methods of use |
US8920491B2 (en) | 2008-04-22 | 2014-12-30 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
US8932346B2 (en) | 2008-04-24 | 2015-01-13 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
US20090281615A1 (en) * | 2008-05-08 | 2009-11-12 | Boston Scientific Scimed, Inc. | Stent with tabs and holes for drug delivery |
WO2009137296A1 (en) * | 2008-05-08 | 2009-11-12 | Boston Scientific Scimed, Inc. | Stent with tabs and holes for drug delivery |
US8114151B2 (en) | 2008-05-08 | 2012-02-14 | Boston Scientific Scimed, Inc. | Stent with tabs and holes for drug delivery |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8236046B2 (en) | 2008-06-10 | 2012-08-07 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US7985252B2 (en) | 2008-07-30 | 2011-07-26 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US11426297B2 (en) | 2008-09-25 | 2022-08-30 | Advanced Bifurcation Systems Inc. | Selective stent crimping |
US10610391B2 (en) | 2008-09-25 | 2020-04-07 | Advanced Bifurcation Systems Inc. | Stent alignment during treatment of a bifurcation |
US11857442B2 (en) | 2008-09-25 | 2024-01-02 | Advanced Bifurcation Systems Inc. | System and methods for treating a bifurcation |
US8979917B2 (en) | 2008-09-25 | 2015-03-17 | Advanced Bifurcation Systems, Inc. | System and methods for treating a bifurcation |
US12042412B2 (en) | 2008-09-25 | 2024-07-23 | Advanced Bifurcation Systems Inc. | Stent alignment during treatment of a bifurcation |
US9724218B2 (en) | 2008-09-25 | 2017-08-08 | Advanced Bifurcation Systems, Inc. | Methods and systems for ostial stenting of a bifurcation |
US8828071B2 (en) | 2008-09-25 | 2014-09-09 | Advanced Bifurcation Systems, Inc. | Methods and systems for ostial stenting of a bifurcation |
US8821562B2 (en) | 2008-09-25 | 2014-09-02 | Advanced Bifurcation Systems, Inc. | Partially crimped stent |
US11298252B2 (en) | 2008-09-25 | 2022-04-12 | Advanced Bifurcation Systems Inc. | Stent alignment during treatment of a bifurcation |
US11000392B2 (en) | 2008-09-25 | 2021-05-11 | Advanced Bifurcation Systems Inc. | Partially crimped stent |
US10918506B2 (en) | 2008-09-25 | 2021-02-16 | Advanced Bifurcation Systems Inc. | System and methods for treating a bifurcation |
US11839562B2 (en) | 2008-09-25 | 2023-12-12 | Advanced Bifurcation Systems Inc. | Partially crimped stent |
US10219927B2 (en) | 2008-09-25 | 2019-03-05 | Advanced Bifurcation Systems Inc. | System and methods for treating a bifurcation |
US8808347B2 (en) | 2008-09-25 | 2014-08-19 | Advanced Bifurcation Systems, Inc. | Stent alignment during treatment of a bifurcation |
US10219926B2 (en) | 2008-09-25 | 2019-03-05 | Advanced Bifurcation Systems Inc. | Selective stent crimping |
US12076258B2 (en) | 2008-09-25 | 2024-09-03 | Advanced Bifurcation Systems Inc. | Selective stent crimping |
US9855158B2 (en) | 2008-09-25 | 2018-01-02 | Advanced Bifurcation Systems, Inc. | Stent alignment during treatment of a bifurcation |
US8795347B2 (en) | 2008-09-25 | 2014-08-05 | Advanced Bifurcation Systems, Inc. | Methods and systems for treating a bifurcation with provisional side branch stenting |
US8769796B2 (en) | 2008-09-25 | 2014-07-08 | Advanced Bifurcation Systems, Inc. | Selective stent crimping |
US9737424B2 (en) | 2008-09-25 | 2017-08-22 | Advanced Bifurcation Systems, Inc. | Partially crimped stent |
US9730821B2 (en) | 2008-09-25 | 2017-08-15 | Advanced Bifurcation Systems, Inc. | Methods and systems for treating a bifurcation with provisional side branch stenting |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8545547B2 (en) | 2008-10-10 | 2013-10-01 | Reva Medical Inc. | Expandable slide and lock stent |
US9066827B2 (en) | 2008-10-10 | 2015-06-30 | Reva Medical, Inc. | Expandable slide and lock stent |
US7947071B2 (en) | 2008-10-10 | 2011-05-24 | Reva Medical, Inc. | Expandable slide and lock stent |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
US8523936B2 (en) | 2010-04-10 | 2013-09-03 | Reva Medical, Inc. | Expandable slide and lock stent |
US9452068B2 (en) | 2010-04-10 | 2016-09-27 | Reva Medical, Inc. | Expandable slide and lock stent |
US11717428B2 (en) | 2011-02-08 | 2023-08-08 | Advanced Bifurcation Systems Inc. | System and methods for treating a bifurcation with a fully crimped stent |
US11484424B2 (en) | 2011-02-08 | 2022-11-01 | Advanced Bifurcation Systems Inc. | Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use |
US12053400B2 (en) | 2011-02-08 | 2024-08-06 | Advanced Bifurcation Systems Inc. | Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use |
US9254210B2 (en) | 2011-02-08 | 2016-02-09 | Advanced Bifurcation Systems, Inc. | Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use |
US11000393B2 (en) | 2011-02-08 | 2021-05-11 | Advanced Bifurcation Systems Inc. | System and methods for treating a bifurcation with a fully crimped stent |
US9364356B2 (en) | 2011-02-08 | 2016-06-14 | Advanced Bifurcation System, Inc. | System and methods for treating a bifurcation with a fully crimped stent |
US10406010B2 (en) | 2011-02-08 | 2019-09-10 | Advanced Bifurcation Systems Inc. | Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use |
US10285832B2 (en) | 2011-02-08 | 2019-05-14 | Advanced Bifurcation Systems Inc. | System and methods for treating a bifurcation with a fully crimped stent |
US9855159B2 (en) | 2011-03-29 | 2018-01-02 | Terumo Kabushiki Kaisha | Stent and stent delivery system |
US9585779B2 (en) | 2012-08-13 | 2017-03-07 | Abbott Cardiovascular Systems Inc. | Segmented scaffold designs |
US8834556B2 (en) * | 2012-08-13 | 2014-09-16 | Abbott Cardiovascular Systems Inc. | Segmented scaffold designs |
US9585778B2 (en) | 2012-08-13 | 2017-03-07 | Abbott Cardiovascular Systems Inc. | Segmented scaffold designs |
US9408732B2 (en) | 2013-03-14 | 2016-08-09 | Reva Medical, Inc. | Reduced-profile slide and lock stent |
US10231856B2 (en) | 2016-10-27 | 2019-03-19 | Cook Medical Technologies Llc | Stent with segments capable of uncoupling during expansion |
Also Published As
Publication number | Publication date |
---|---|
WO2003022178A1 (en) | 2003-03-20 |
EP1427353B1 (en) | 2009-05-06 |
EP2085051B1 (en) | 2015-03-18 |
JP2005501654A (en) | 2005-01-20 |
US20090248137A1 (en) | 2009-10-01 |
GB0121980D0 (en) | 2001-10-31 |
US8257427B2 (en) | 2012-09-04 |
CN1575154B (en) | 2010-04-28 |
DE60232255D1 (en) | 2009-06-18 |
ATE430537T1 (en) | 2009-05-15 |
CN1575154A (en) | 2005-02-02 |
CN101779993B (en) | 2011-10-26 |
EP2085051A1 (en) | 2009-08-05 |
JP5017320B2 (en) | 2012-09-05 |
JP2009240796A (en) | 2009-10-22 |
CN101779993A (en) | 2010-07-21 |
EP1427353A1 (en) | 2004-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8257427B2 (en) | Expandable stent | |
US10596018B2 (en) | Intravascular stent | |
EP1616534B1 (en) | Intraluminal stent with expandable unit cell | |
EP1158934B1 (en) | Stent with varying strut geometry | |
EP1295574B1 (en) | Longitudinally flexible stent | |
US9775728B2 (en) | Vascular bifurcation prosthesis | |
US7972372B2 (en) | Kit for treating vascular bifurcations | |
US20040133270A1 (en) | Drug eluting stent and methods of manufacture | |
CA2598164C (en) | Expandable medical device with differential hinge performance | |
EP2462903A1 (en) | Stepped balloon catheter and prosthesis for treating vascular bifurcations | |
US20030144726A1 (en) | Stent with enhanced crossability | |
US20080183269A2 (en) | Prosthesis for treating vascular bifurcations | |
JP2008501480A (en) | Stent with protruding branch for branch pipe | |
US8790388B2 (en) | Stent with reduced profile | |
CA2458996A1 (en) | Longitudinally flexible stent | |
JP3519565B2 (en) | Stent | |
WO2007117362A1 (en) | Tethered expansion columns for controlled stent expansion | |
US9968471B1 (en) | Longitudinally flexible stent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CUBE MEDICAL A/S, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDERSEN, ERIK;WEN, NING;REEL/FRAME:015666/0750;SIGNING DATES FROM 20040517 TO 20040519 |
|
AS | Assignment |
Owner name: XTENT, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUBE MEDICAL A/S;REEL/FRAME:021823/0910 Effective date: 20081016 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |