US20040206952A1 - Buffer layers on metal alloy substrates for superconducting tapes - Google Patents

Buffer layers on metal alloy substrates for superconducting tapes Download PDF

Info

Publication number
US20040206952A1
US20040206952A1 US10/840,693 US84069304A US2004206952A1 US 20040206952 A1 US20040206952 A1 US 20040206952A1 US 84069304 A US84069304 A US 84069304A US 2004206952 A1 US2004206952 A1 US 2004206952A1
Authority
US
United States
Prior art keywords
layer
srruo
mgo
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/840,693
Inventor
Quanxi Jia
Stephen Foltyn
Paul Arendt
James Groves
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/840,693 priority Critical patent/US20040206952A1/en
Publication of US20040206952A1 publication Critical patent/US20040206952A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/93Electric superconducting

Definitions

  • the present invention relates to high temperature superconducting thick films on polycrystalline substrates with high J c 's and I c 's and to structural template articles for subsequent deposition of an oriented film, e.g., of superconducting thick films.
  • One process in the production of coated conductors has been referred to as a thick film process.
  • the thickness of the superconductive layer is generally at least one micron in thickness
  • the use of polycrystalline substrates, e.g., polycrystalline metal substrates has been preferred.
  • Buffer layers play an important role in the production of high critical current density superconducting films on polycrystalline metal substrates. Suitable buffer layers can provide the necessary structural template for subsequently deposited superconducting layers.
  • YSZ yttria-stabilized zirconia
  • IBAD ion beam assisted deposition
  • 5,872,080 described a coated conductor having the structure YBCO/Y 2 O 3 /YSZ/Al 2 O 3 /Ni alloy with a high critical current density (J c ) of about 1 ⁇ 10 6 A/cm 2 and a high transport critical current (I c ) of from about 100 to about 200 A/cm. While this current was satisfactory, the deposition of the YSZ layer was considered too slow for commercial production.
  • 6,190,752 included, e.g., YBCO/Y 2 O 3 /YSZ/MgO/MgO(IBAD)/Si 3 N 4 /Ni alloy with a NiO layer in between the YSZ layer and the MgO layer in most instances.
  • the structures of U.S. Pat. No. 6,190,752 had I c 's of only about 50 to about 75 A/cm.
  • the silicon nitride layer reacts with other materials in the system.
  • substrate structures were described including a layer of an inert oxide material such as aluminum oxide on the surface of the polycrystalline metallic substrate, a layer of an amorphous oxide or oxynitride material such as yttrium oxide or aluminum oxynitride on the inert oxide material layer, and, a layer of an oriented cubic oxide material having a rock-salt-like structure such as magnesium oxide upon the amorphous oxide or oxynitride material layer.
  • an inert oxide material such as aluminum oxide on the surface of the polycrystalline metallic substrate
  • an amorphous oxide or oxynitride material such as yttrium oxide or aluminum oxynitride on the inert oxide material layer
  • a layer of an oriented cubic oxide material having a rock-salt-like structure such as magnesium oxide upon the amorphous oxide or oxynitride material layer.
  • One exemplary structure described in that patent application included, e.g., YBCO/CeO 2 /YSZ/MgO(IBAD)/Y 2 O 3 /Al 2 O 3 /Ni alloy.
  • the critical current density (J c ) was measured as 1.4 ⁇ 10 6 A/cm 2 using a standard four-point measurement.
  • the projected transport critical current (I c ) was 210 Amperes across a sample 1 cm wide.
  • SrRuO 3 shows high chemical and thermal stability, and reasonably low electrical resistivity. Due to these properties, SrRuO 3 has found applications in various fields. For example, SrRuO 3 has been used as a bottom electrode for capacitors where ferroelectric or high dielectric constant perovskite oxides are used as dielectrics, taking advantage of the relatively low resistivity and the compatible structure of SrRuO 3 with the dielectric material (see, Eom et al., Appl. Phys. Lett., v. 63, pp. 2570-2572 (1993) and Jia et al., Appl. Phys. Lett., v. 66, pp. 2197-2199 (1995)). Also important was that the interface between SrRuO 3 and the ferroelectric materials is chemically stable since all these materials are oxides.
  • SrRuO 3 has also been used in superconductor applications.
  • SrRuO 3 combined with platinum (Pt) can be used as a bilayer buffer to grow highly oriented superconducting YBCO on single crystal MgO substrates (Tiwari et al., Appl. Phys. Lett., v. 64, pp. 634-636 (1994)).
  • High temperature superconductor Josephson junctions have also been fabricated using SrRuO 3 as a normal metal layer based on an edge-geometry superconductor/normal metal/superconductor configuration (Antognazza et al., Appl. Phys. Lett., v. 63, pp. 1005-1007 (1993)).
  • SrRuO 3 and SrRuO 3 /LaNiO 3 have been used as a buffer layer for depositing YBCO on single crystal LaAlO 3 substrates (see, Aytug et al., Appl. Phys. Lett., v. 76, pp. 760-762 (2000)).
  • SrRuO 3 and SrRuO 3 /LaNiO 3 have been used as a buffer layer for depositing YBCO on rolling-assisted biaxially textured (RABiTS) substrates (see, Aytug et al., J. Mater. Res., v. 16, no. 9, pp. 2661-2669 (2001)).
  • the conductive oxide strontium ruthenate was specifically described as providing an electrical couple of the high temperature superconductor layer to the underlying metal substrate.
  • the present invention provides an article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide or oxynitride material layer, a layer of SrRuO 3 as a buffer material upon the oriented cubic oxide material layer.
  • the article is a superconductive article and further includes a top-layer of a HTS material directly upon the SrRuO 3 buffer layer.
  • the present invention provides an article including a substrate, a layer of an amorphous oxide or oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide or oxynitride material layer, and a layer of SrRuO 3 buffer material upon the oriented cubic oxide material layer.
  • the article is a superconductive article and further includes a top-layer of a HTS material directly upon the SrRuO 3 buffer material layer.
  • the present invention also provides a thin film template structure including a flexible polycrystalline metal substrate, a layer of an inert oxide material upon the surface of the flexible polycrystalline metal substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide or oxynitride material layer, and a layer of SrRuO 3 as a buffer layer on the layer of an oriented cubic oxide material.
  • the thin film template structures of the present invention are useful for subsequent epitaxial growth of perovskite oxide thin films.
  • FIG. 1 shows an illustrative structure of a superconductive article in accordance with the present invention.
  • FIG. 2 shows a plot of a percentage of a number of samples having a corresponding critical current density in testing of over 150 different samples.
  • FIG. 3 shows the x-ray ⁇ -scan of SrRuO 3 (132) diffraction for a SrRuO 3 buffer on a homoepitaxial MgO/IBAD-MgO on Ni-alloy.
  • FIG. 4 shows the x-ray normal 20-scan of the superconducting film on SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy.
  • FIG. 5 shows the x-ray ⁇ -rocking curve on the YBCO (005) diffraction of the superconducting film on the SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy.
  • FIG. 6 shows the x-ray ⁇ -scan on the YBCO (103) diffraction for a YBCO film on a SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy.
  • FIG. 7 shows the ac susceptibility test result for a superconducting film on a SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy substrate.
  • FIG. 8 shows the resistivity versus temperature characteristic of a superconducting film on SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy substrates.
  • FIG. 9 shows the critical current density of a superconducting film on a SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy, where two bridges were patterned on a 1 by 1 cm 2 substrate.
  • FIG. 10 shows the x-ray normal 2 ⁇ -scan of the SrRuO 3 film on IBAD-MgO buffered Ni-alloy.
  • the present invention is concerned with high temperature superconducting wires or tapes and the use of high temperature superconducting thick films to form such wires or tapes.
  • the present invention is further concerned with the preparation of structural template articles for the subsequent deposition of oriented films, e.g., superconducting thick films.
  • CeO 2 /YSZ or Y 2 O 3 /YSZ buffer layers on IBAD-MgO makes the overall architecture of any resultant coated conductor too complex. Additionally, depsotion of YSZ is known to be a slow process and generally requires a thick layer.
  • FIG. 1 shows a generic architecture of the present invention.
  • the MgO layer is a composite layer and is formed preferably of a thin layer of IBAD-MgO with a layer of homoepitaxial MgO thereon.
  • This MgO layer is used as a template for subsequent heteroepitaxial growth of a buffer layer of SrRuO 3 , with this buffer layer used for subsequent heteroepitaxial growth of YBCO films.
  • the SrRuO 3 layer also serves as a barrier layer to reduce interactions between the substrate and the YBCO films.
  • the resistivity of the SrRuO 3 films is a strong function of the crystallinity of the films.
  • Epitaxial SrRuO 3 films can have a room temperature resistivity of about 280 micro-ohms per centimeter.
  • SrRuO 3 Most commonly used buffer layer materials and architectures have disadvantages.
  • the present invention using SrRuO 3 exhibits the following advantages over existing technology.
  • the high deposition rate possible with SrRuO 3 minimizes the processing time.
  • the good structural and chemical compatibility of SrRuO 3 with MgO makes epitaxial growth of the buffer layer easier.
  • the smooth surface morphology of SrRuO 3 improves the coverage of the deposited materials.
  • the high chemical stability of SrRuO 3 makes it a more stable buffer material for subsequent deposition of YBCO where chemical processing is preferred (see Feenstra et al., J. Appl. Phys., v. 69, p.
  • High critical current density YBCO films can be achieved by using the buffer material of SrRuO 3 ; and, texture of the resultant article is enhanced. Additionally, the SrRuO 3 can be replaced by (Sr 1-x Ca x )RuO 3 where (1 ⁇ x ⁇ 0).
  • the SrRuO 3 buffer material used in the present invention is especially useful in coated conductors where biaxially oriented MgO is used as a template.
  • the superconducting films were deposited by pulsed laser deposition using the same conditions as used for the deposition of the SrRuO 3 buffer layer except for the repetition rate of 10 Hz.
  • FIG. 2 compares these results to samples using IBAD-YSZ also deposited by the standard processing conditions of U.S. Pat. No. 5,470,668 and including buffer layers of CeO 2 or Y 2 O 3 upon the YSZ.
  • YBCO films have been deposited on a Ni-based alloy using IBAD-MgO as a template and a single layer of SrTiO 3 as a buffer.
  • the SrTiO 3 was deposited at the same conditions as the SrRuO 3 except that a repetition rate of 10 Hz was used for the SrTiO 3 deposition.
  • the YBCO film on a SrRuO 3 buffered substrate had a critical current density (J c ) over 1.2 MA/cm 2 but only a J c of 0.33 MA/cm 2 was achieved for a similar YBCO film on the SrTiO 3 buffered sample.
  • the x-ray 2 ⁇ -scan showed the SrRuO 3 film deposited under the above described conditions on homoepitaxial MgO/IBAD-MgO on nickel alloy was (001)-oriented.
  • FIG. 3 shows the x-ray phi-scan of SrRuO 3 (132) diffraction for a SrRuO 3 buffer on homoepitaxial MgO/IBAD-MgO on Ni-alloy.
  • the value of the full width at half maximum (FWHM) of (132) diffraction peak was in the range of 4.3 degrees to 6 degrees.
  • FIG. 4 shows the x-ray normal 2 ⁇ -scan of the superconducting film on SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy.
  • the x-ray omega-rocking curve on the YBCO (005) diffraction of the superconducting film on the SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy is shown in FIG. 5.
  • the value of the FWHM from rocking curve was 1.6 degrees.
  • FIG. 6 shows the x-ray phi-scan on the YBCO (103) diffraction for a YBCO film on SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy.
  • the value of the FWHM of the (103) diffraction peak was between 4.3 degrees.
  • FIG. 7 shows the ac susceptibility test result for two superconducting films on SrRuO 3 /IBAD-MgO buffered Ni-alloy substrates.
  • the transition temperature of the superconducting films was higher than 87 K with a transition in the range of 0.2 to 0.6 degrees. This relatively higher transition temperature was also confirmed by transport measurements.
  • FIG. 8 shows the resistivity versus temperature characteristic of a superconducting film on SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy substrates.
  • FIG. 9 shows the critical current density of a superconducting film on SrRuO 3 /homoepitaxial MgO/IBAD-MgO buffered Ni-alloy, where two bridges were patterned on a 1 by 1 cm 2 substrate.
  • a critical current density of 1.74 MA/cm 2 at 75.2 K has been achieved for a superconducting film with a thickness of 1.35 micrometers.
  • SrRuO 3 can also be used as a buffer layer upon an IBAD-YSZ template layer upon a nickel-alloy substrate and can be used directly upon a nickel-alloy substrate having a cerium oxide seed layer.
  • SrRuO 3 is highly resistant to chemical attack in comparison to other oxides such as cerium oxide (CeO 2 ), strontium titanate (SrTiO 3 ) and nickel oxide (NiO).
  • CeO 2 cerium oxide
  • SrTiO 3 strontium titanate
  • NiO nickel oxide
  • the resultant material can be highly stable in environmently challenging conditions.
  • hydrofluoric acid (HF) can be generated during the growth of YBCO films using a trifluoroacetate (TFA) process (see, e.g., McIntyre et al., J. Appl. Phys., v. 77, pp.
  • the high temperature superconducting (HTS) material is generally YBCO, e.g., YBa 2 Cu 3 O 7- ⁇ , Y 2 Ba 4 Cu 7 O 14+x , or YBa 2 CU 4 O 8 , although other minor variations of this basic superconducting material, such as use of other rare earth metals such as, e.g., erbium, samarium, neodymium, europium, gadolinium, holmium, ytterbium, or dysprosium, as a substitute for some or all of the yttrium as is well known, may also be used.
  • superconducting materials such as bismuth and thallium based superconductor materials may also be employed.
  • YBa 2 Cu 3 O 7- ⁇ is preferred as the superconducting material.
  • mixtures of superconducting materials may be used and multilayers of the same or differing superconducting materials may be used.
  • the initial or base substrate can be, e.g., any polycrystalline material such as a metal or a ceramic such as polycrystalline aluminum oxide or polycrystalline yttria-stabilized zirconia (YSZ).
  • the substrate can be a polycrystalline metal such as a nickel alloy.
  • Suitable nickel alloys can include nickel alloys such as various Hastelloy metals, Haynes metals and Inconel metals.
  • the base substrate may also be a textured metal or metal alloy, e.g., pure nickel, copper, nickel alloy or copper alloy as described by Goyal et al. in U.S. Pat. No.
  • RABiTS rolling assisted biaxially textured substrates
  • the metal substrate on which the superconducting material is eventually deposited should preferably allow for the resultant article to be flexible whereby superconducting articles (e.g., coils, motors or magnets) can be shaped.
  • superconducting articles e.g., coils, motors or magnets
  • a metal substrate can have a rough surface, it can be mechanically polished, electrochemically polished or chemically mechanically polished to provide a smoother surface.
  • the desired smoothness for subsequent depositions can be provided by the first coating layer, i.e., an inert oxide material layer.
  • a layer of an inert oxide material can be deposited upon the base substrate.
  • inert is meant that this oxide material does not react with the base substrate or with any subsequently deposited materials.
  • suitable inert oxide materials include aluminum oxide (Al 2 O 3 ), erbium oxide (Er 2 O 3 ), yttrium oxide (Y 2 O 3 ), and yttria-stabilized zirconia (YSZ).
  • the inert oxide layer can be deposited on the base substrate by pulsed laser deposition, e-beam evaporation, sputtering or by any other suitable means. The layer is deposited at temperatures of generally greater than about 400° C.
  • the base substrate When the base substrate is metallic, it often has a rough surface with, e.g., a RMS of 15 nm to 100 nm or greater.
  • the inert oxide layer has a thickness of from about 100 nanometers (nm) to about 1000 nm depending upon the roughness of the base substrate with a thicker coating layer for rougher base substrate surfaces.
  • the inert oxide layer serves to provide a smooth surface for subsequent depositions.
  • smooth is meant a surface having a root mean square (RMS) roughness of less than about 2 nm, preferably less than about 1 nm.
  • RMS root mean square
  • the inert oxide material can also serve as a nucleation layer for subsequent layers.
  • a layer of aluminum oxide can be directly formed in situ.
  • Using aluminum-containing metal substrates with less than about 30 atomic percent aluminum has generally required a heat treatment of the metal substrate to form the aluminum oxide layer, while with aluminum-containing metal substrates containing greater than about 30 atomic percent aluminum, an intermediate aluminum oxide layer is achieved without any required heat treatment other than that achieved during normal deposition processing.
  • Heat treatment of the aluminum-containing metal substrate generally involves heating at from about 800° C. to about 1000° C. in an oxygen atmosphere.
  • Substrates are prepared for subsequent IBAD MgO overcoatings by the following. If the as received metal alloy starts out with a RMS roughness of less than about 15 nm, the metal substrate can be chemically mechanically polished (CMP) to a RMS roughness of about 1.5 nm. (Note: For measuring roughness, all scans are done using scanning force microscopy and are over a 5 ⁇ 5 ⁇ m 2 area.) The time needed to do this is approximately 2 minutes.
  • the polishing slurry used is commercially available colloidal silica (e.g., Mastermet 2, 0.02 ⁇ m non-crystallizing colloidal silica suspension, available from Buehler, Ltd., Lake Bluff, Ill.).
  • the metal substrate is generally mechanically polished with a 1 micron or finer diamond paste for a short time period of from about 10 seconds to about 20 seconds to get the finish to about 4 nm to about 6 nm followed by a 2 minute CMP with silica as previously described.
  • the metal substrate starts out with a minimum of inclusions (less than about 5 inclusions per 5 ⁇ 5 ⁇ m 2 area). Inclusions are usually harder than the surrounding metal matrix and generally appear as bumps or holes (where the polishing plucks them out of the metal matrix) in surface profile scans.
  • a layer of an amorphous oxide or oxynitride material can be next deposited upon the inert oxide material layer.
  • the amorphous oxide or oxynitride layer can serve as a nucleation layer for oriented growth of subsequent layers.
  • the amorphous oxide or oxynitride layer can be deposited on the base substrate by pulsed laser deposition, e-beam evaporation, sputtering or by any other suitable means.
  • the layer is generally deposited at temperatures of generally about 100° C.
  • the amorphous oxide or oxynitride layer is typically from about 5 nm to about 100 nm in thickness, preferably from about 20 nm to about 40 nm.
  • oxide or oxynitride materials suitable as the amorphous layer are included yttrium oxide (Y 2 O 3 ), aluminum oxynitride (AlON), erbium oxide (Er 2 O 3 ), yttria-stabilized zirconia (YSZ), cerium oxide (CeO 2 ), europium oxide, nickel aluminate (NiAl 2 O 4 ), and barium zirconate (BaZrO 3 ).
  • the layer of oxide or oxynitride amorphous material is yttrium oxide, aluminum oxynitride, erbium oxide or yttria-stabilized zirconia and more preferably is yttrium oxide or erbium oxide.
  • a short (e.g., about 5 seconds) CMP step can be conducted.
  • a single layer of erbium oxide can be used to provide both the smoothness and the nucleation layer. Such a layer can be chemically mechanically polished if desired.
  • Such intermediate articles provide an excellent substrate for the subsequent deposition of a layer of an oriented cubic oxide material having a rock-salt-like structure.
  • oriented cubic oxide materials can be, e.g., magnesium oxide, calcium oxide, strontium oxide, zirconium oxide, barium oxide, europium oxide, samarium oxide and other materials such as described in U.S. Pat. No. 6,190,752 by Do et al.
  • the layer of oriented cubic oxide material having a rock-salt-like structure is a magnesium oxide (MgO) layer.
  • MgO magnesium oxide
  • Such a MgO layer is preferably deposited by electron beam or ion beam evaporation with an ion beam assist.
  • the MgO layer in the ion beam assisted deposition is typically evaporated from a crucible of magnesia.
  • a dual-ion-beam sputtering system similar to that described by Iijima et al., IEEE Trans. Appl. Super., vol. 3, no. 1, pp. 1510 (1993) can be used to deposit such a MgO film.
  • the substrate normal to ion-assist beam angle is 45 ⁇ 3°.
  • the ion source gas in the ion beam assisted deposition is preferably argon.
  • the ion beam assisted deposition of MgO is conducted with substrate temperatures of generally from about 20° C. to about 100° C.
  • the MgO layer deposited by the IBAD process is generally from about 5 nm to about 20 nm in thickness, preferably about 8 nm to about 15 nm.
  • an additional thin homo-epitaxial layer of the same oriented cubic oxide material, e.g., MgO can be optionally deposited by a process such as electron beam or magnetron sputter deposition. This thin layer can generally be about 40 nm to 100 nm in thickness. Deposition of the homo-epitaxial layer by such a process can be more readily accomplished than depositing the entire thickness by ion beam assisted deposition.
  • a thin film template structure includes a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide or oxynitride material layer, and a layer of strontium ruthenate upon the layer of an oriented cubic oxide material.
  • Such a thin film template structure is useful for subsequent deposition of epitaxial thin films.
  • Such epitaxial thin films can be formed from a material selected from the group consisting of superconductors, including high temperature superconductors, semiconductors, photovoltaic materials, magnetic or ferromagnetic materials, and precursors of superconductors or high temperature superconductors.
  • the thin film template structure is especially preferred for subsequent deposition of high temperature superconductor materials.
  • additional layers such as buffer layers can be employed for enhanced chemical or structural compatibility. In the case of YBCO as a high temperature superconductor, additional buffer layers are generally not required.
  • an intermediate layer of SrRuO 3 is deposited onto the MgO layer so that it is between the MgO layer deposited by the IBAD process or others such as e-beam evaporation or sputtering and the superconducting YBCO layer.
  • the intermediate layer serves as a buffer layer between the MgO layer and the YBCO and assists in lattice matching.
  • This so-called “buffer layer” should have good “structural compatibility” between the MgO or other oriented cubic oxide material deposited in the IBAD or other processes and the YBCO and should have good chemical compatibility with both adjacent layers.
  • the layer of strontium ruthenate is generally from about 50 nm to about 1000 nm in thickness, preferably from about 100 nm to about 500 nm in thickness.
  • the strontium ruthenate layer is generally deposited at temperatures of greater than about 700° C., preferably at temperatures of from about 700° C. to about 850° C., more preferably from about 730° C. to about 780° C.
  • a high temperature superconducting (HTS) layer e.g., a YBCO layer
  • HTS high temperature superconducting
  • a YBCO layer can be deposited, e.g., by pulsed laser deposition or by methods such as evaporation including coevaporation, e-beam evaporation and activated reactive evaporation, sputtering including magnetron sputtering, ion beam sputtering and ion assisted sputtering, cathodic arc deposition, chemical vapor deposition, organometallic chemical vapor deposition, plasma enhanced chemical vapor deposition, molecular beam epitaxy, a sol-gel process, liquid phase epitaxy, a trifluoroacetic acid process or a barium fluoride (BaF 2 ) process and the like.
  • evaporation including coevaporation, e-beam evaporation and activated reactive evaporation
  • sputtering including magnetron
  • powder of the material to be deposited can be initially pressed into a disk or pellet under high pressure, generally above about 1000 pounds per square inch (PSI) and the pressed disk then sintered in an oxygen atmosphere or an oxygen-containing atmosphere at temperatures of up to 950° C. for at least about 1 hour, preferably from about 12 to about 24 hours.
  • PSI pounds per square inch
  • An apparatus suitable for pulsed laser deposition is shown in Appl. Phys. Lett. 56, 578 (1990), “Effects of Beam Parameters on Excimer Laser Deposition of YBa 2 Cu 3 O 7- ⁇ ”, such description hereby incorporated by reference.
  • Suitable conditions for pulsed laser deposition include, e.g., the laser, such as an excimer laser (20 nanoseconds (ns), 248 or 308 nanometers (nm)), targeted upon a rotating pellet of the target material at an incident angle of about 45°.
  • the laser such as an excimer laser (20 nanoseconds (ns), 248 or 308 nanometers (nm)
  • the substrate can be mounted upon a heated holder rotated at about 0.5 rpm to minimize thickness variations in the resultant film or coating,
  • the substrate can be heated during deposition at temperatures from about 600° C. to about 950° C., preferably from about 700° C. to about 850° C.
  • Distance between the substrate and the pellet can be from about 4 centimeters (cm) to about 10 cm.
  • the deposition rate of the film can be varied from about 0.1 angstrom per second (′/s) to about 200′/s by changing the laser repetition rate from about 0.1 hertz (Hz) to about 200 Hz.
  • the laser beam focused on the substrate surface can have dimensions of about 3 millimeters (mm) by 4 mm with an average energy density of from about 1 to 4 joules per square centimeter (J/cm 2 ).
  • the films After deposition, the films generally are cooled within an oxygen atmosphere of greater than about 100 Torr to room temperature.
  • a nickel alloy substrate is initially coated with a layer of aluminum oxide from about 80 mm to 100 mm in thickness deposited by masgnetron ion beam sputtering.
  • the aluminum oxide layer is polished by chemical mechanical polishing to a smoothness of about 1 nm.
  • a layer of Y 2 O 3 of from about 5 m to about 20 nm in thickness is deposited on the aluminum oxide by pulsed laser deposition.
  • a layer of MgO (about 10 nm) is deposited on the yttrium oxide by ion beam assisted deposition.
  • a homoepitaxial layer of MgO (not shown) is preferably deposited upon the IBAD-MgO layer, the homoepitaxial layer of MgO of about 40 nm in thickness deposited in a process such as electron beam or magnetron sputter deposition. Then, a buffer layer of SrRuO 3 of from about 50 m to about 1000 nm in thickness is deposited on the MgO layer. Finally, a layer of YBCO is deposited, e.g., by pulsed laser deposition at a thickness of, e.g., about 1000 nm to 2000 mm.
  • a nickel alloy substrate (Hastelloy C276)
  • Hastelloy C276 was deposited by magnetron sputter deposition a layer of aluminum oxide about 800 to about 1000 Angstroms in thickness.
  • the substrates had been ultrasonically cleaned in soap and water, rinsed with deionized water, rinsed with methanol and blown dry with filtered nitrogen.
  • the aluminum oxide layer was then polished by CMP (chemical-mechanical polishing) with a colloidal suspension of silica as the polishing medium.
  • the resultant surface of the aluminum oxide had a smoothness (RMS roughness) of about 1 nm.
  • RMS roughness smoothness
  • Onto this resultant article was deposited a layer of Y 2 O 3 (about 5 nm) by e-beam evaporation.
  • the ion source gas was introduced to a background partial pressure of about 1.0 ⁇ 10 ⁇ 6 Torr with a total pressure during deposition of about 1 ⁇ 10 ⁇ 4 Torr.
  • the electron gun heated the MgO source to maintain a deposition rate of about 0.15 nm/sec.
  • the ion-assist gun voltage and current density were about 750 eV and 100 ⁇ A/cm 2 respectively.
  • SrRuO 3 target from Supercondutive Components, Inc. Columbus, Ohio
  • SrRuO 3 was deposited upon an homoepitaxial MgO/IBAD-MgO coated nickel-based alloy by pulsed laser deposition under the following typical conditions (system pressure of 200 mTorr oxygen, substrate temperature of 750° C., 5 pulses per second (pps), and 10 minutes deposition time).
  • the sample was soaked in buffered HF for 30 mintes and then 30 mintes in deionized (DI) water.
  • DI deionized
  • the substrate was coated with a high temperature superconducting layer of YBCO using the following conditions (200 mTorr oxygen, substrate temperature of 750° C., 8 pps, and 25 minutes) after the above treatment.
  • the high temperature superconducting layer of YBCO (1.1 microns in thickness) deposited using the above conditions on buffered HF and DI water treated substrates had a Tc of 91 K and a transition width of 0.4 K.
  • the critical current density of the film was 0.96 MA/cm 2 at 75.3 K.
  • XRD omega-rocking curve on (005) of the high temperature superconducting film had a FWHM of 1.6 degrees.
  • XRD phi-scan on (132) of the high temperature superconducting film had a FWHM of between about 4.6 and 6.2 degrees.
  • a series of samples were prepared and tested for critical current density of the top superconducting layer. All samples included a nickel alloy substrate as in example 1. A total of 113 samples were prepared with an IBAD layer of MgO on the substrate, a homoepitaxial layer of MgO, a buffer layer of YSZ and either CeO 2 or Y 2 O 3 on the MgO layer and a layer of YBCO (about 1 micron in thickness) on the layer of CeO 2 or Y 2 O 3 .
  • Another set of 57 samples included an IBAD layer of MgO on the substrate, a homoepitaxial layer of MgO as in example 1, a buffer layer of SrRuO 3 on the homoepitaxial MgO layer and a layer of YBCO (about 1 micron in thickness) on the layer of SrRuO 3 .
  • the measured critical current densities from all the prepared samples were plotted and are shown in FIG. 2 as critical current density versus percentage of number of examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO3 buffer material in such an article, Jc's of up to 1.3×106 A/cm2 have been demonstrated with projected Ic's of over 200 Amperes across a sample 1 cm wide.

Description

  • This application is a divisional of Ser. No. 10/113,476, filed on Mar. 28, 2002.[0001]
  • STATEMENT REGARDING FEDERAL RIGHTS
  • [0002] This invention was made with government support under Contract No. W-7405-ENG-36 awarded by the U.S. Department of Energy. The government has certain rights in the invention.
  • FIELD OF THE INVENTION
  • The present invention relates to high temperature superconducting thick films on polycrystalline substrates with high J[0003] c's and Ic's and to structural template articles for subsequent deposition of an oriented film, e.g., of superconducting thick films.
  • BACKGROUND OF THE INVENTION
  • One process in the production of coated conductors (superconductive tapes or films) has been referred to as a thick film process. In the deposition of thick films for such coated conductors where the thickness of the superconductive layer is generally at least one micron in thickness, the use of polycrystalline substrates, e.g., polycrystalline metal substrates has been preferred. Buffer layers play an important role in the production of high critical current density superconducting films on polycrystalline metal substrates. Suitable buffer layers can provide the necessary structural template for subsequently deposited superconducting layers. For example, a yttria-stabilized zirconia (YSZ) buffer layer deposited by ion beam assisted deposition (IBAD) has been described by both lijima et al., U.S. Pat. No. 5,650,378, and Russo et al., U.S. Pat. No. 5,432,151. Similarly, Arendt et al., U.S. Pat. No. 5,872,080 described a coated conductor having the structure YBCO/Y[0004] 2O3/YSZ/Al2O3/Ni alloy with a high critical current density (Jc) of about 1×106 A/cm2 and a high transport critical current (Ic) of from about 100 to about 200 A/cm. While this current was satisfactory, the deposition of the YSZ layer was considered too slow for commercial production.
  • In U.S. Pat. No. 6,190,752 by Do et al., thin films of a material having a rock salt-like structure were deposited by IBAD upon amorphous substrate surfaces. Among the preferred materials with a rock salt-like structure was magnesium oxide (MgO). In comparison to the deposition of YSZ, MgO can be rapidly deposited (about 100 times faster) through an IBAD process. The structures of U.S. Pat. No. 6,190,752 included, e.g., YBCO/Y[0005] 2O3/YSZ/MgO/MgO(IBAD)/Si3N4/Ni alloy with a NiO layer in between the YSZ layer and the MgO layer in most instances. Despite the improvement in processing speeds, the structures of U.S. Pat. No. 6,190,752 had Ic's of only about 50 to about 75 A/cm. In addition, at the elevated processing temperatures needed to form the superconductive layer, the silicon nitride layer reacts with other materials in the system.
  • In U.S. application Ser. No. 09/731,534 by Arendt et al., filed on Dec. 6, 2000, for “High Temperature Superconducting Thick Films”, substrate structures were described including a layer of an inert oxide material such as aluminum oxide on the surface of the polycrystalline metallic substrate, a layer of an amorphous oxide or oxynitride material such as yttrium oxide or aluminum oxynitride on the inert oxide material layer, and, a layer of an oriented cubic oxide material having a rock-salt-like structure such as magnesium oxide upon the amorphous oxide or oxynitride material layer. One exemplary structure described in that patent application included, e.g., YBCO/CeO[0006] 2/YSZ/MgO(IBAD)/Y2O3/Al2O3/Ni alloy. The critical current density (Jc) was measured as 1.4×106 A/cm2 using a standard four-point measurement. The projected transport critical current (Ic) was 210 Amperes across a sample 1 cm wide.
  • The metal oxide, SrRuO[0007] 3, shows high chemical and thermal stability, and reasonably low electrical resistivity. Due to these properties, SrRuO3 has found applications in various fields. For example, SrRuO3 has been used as a bottom electrode for capacitors where ferroelectric or high dielectric constant perovskite oxides are used as dielectrics, taking advantage of the relatively low resistivity and the compatible structure of SrRuO3 with the dielectric material (see, Eom et al., Appl. Phys. Lett., v. 63, pp. 2570-2572 (1993) and Jia et al., Appl. Phys. Lett., v. 66, pp. 2197-2199 (1995)). Also important was that the interface between SrRuO3 and the ferroelectric materials is chemically stable since all these materials are oxides.
  • SrRuO[0008] 3 has also been used in superconductor applications. For example, SrRuO3 combined with platinum (Pt), can be used as a bilayer buffer to grow highly oriented superconducting YBCO on single crystal MgO substrates (Tiwari et al., Appl. Phys. Lett., v. 64, pp. 634-636 (1994)). High temperature superconductor Josephson junctions have also been fabricated using SrRuO3 as a normal metal layer based on an edge-geometry superconductor/normal metal/superconductor configuration (Antognazza et al., Appl. Phys. Lett., v. 63, pp. 1005-1007 (1993)).
  • SrRuO[0009] 3 and SrRuO3/LaNiO3 have been used as a buffer layer for depositing YBCO on single crystal LaAlO3 substrates (see, Aytug et al., Appl. Phys. Lett., v. 76, pp. 760-762 (2000)). Similarly, SrRuO3 and SrRuO3/LaNiO3 have been used as a buffer layer for depositing YBCO on rolling-assisted biaxially textured (RABiTS) substrates (see, Aytug et al., J. Mater. Res., v. 16, no. 9, pp. 2661-2669 (2001)). The conductive oxide strontium ruthenate was specifically described as providing an electrical couple of the high temperature superconductor layer to the underlying metal substrate.
  • Despite the prior results of Do et al. and Arendt et al., continued improvements in the structure and resultant properties of coated conductors have been desired. After extensive and careful investigation, improvements have now been found in the preparation of superconducting films on polycrystalline substrates such as flexible polycrystalline metal substrates. In particular, strontium ruthenate (SrRuO[0010] 3) has now been used as a buffer layer directly on an IBAD-deposited magnesium oxide layer.
  • It is an object of the present invention to provide superconducting films, especially YBCO superconducting films, on polycrystalline substrates such resultant articles demonstrating properties such as high J[0011] c's and Ic's.
  • It is another object of the present invention to provide structural template articles for subsequent deposition of oriented films, e.g., superconducting films, especially YBCO superconducting films. [0012]
  • SUMMARY OF THE INVENTION
  • To achieve the foregoing and other objects, and in accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention provides an article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide or oxynitride material layer, a layer of SrRuO[0013] 3 as a buffer material upon the oriented cubic oxide material layer. In a preferred embodiment, the article is a superconductive article and further includes a top-layer of a HTS material directly upon the SrRuO3 buffer layer.
  • In another embodiment of the invention, the present invention provides an article including a substrate, a layer of an amorphous oxide or oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide or oxynitride material layer, and a layer of SrRuO[0014] 3 buffer material upon the oriented cubic oxide material layer. In another preferred embodiment, the article is a superconductive article and further includes a top-layer of a HTS material directly upon the SrRuO3 buffer material layer.
  • The present invention also provides a thin film template structure including a flexible polycrystalline metal substrate, a layer of an inert oxide material upon the surface of the flexible polycrystalline metal substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide or oxynitride material layer, and a layer of SrRuO[0015] 3 as a buffer layer on the layer of an oriented cubic oxide material. The thin film template structures of the present invention are useful for subsequent epitaxial growth of perovskite oxide thin films.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an illustrative structure of a superconductive article in accordance with the present invention. [0016]
  • FIG. 2 shows a plot of a percentage of a number of samples having a corresponding critical current density in testing of over 150 different samples. [0017]
  • FIG. 3 shows the x-ray φ-scan of SrRuO[0018] 3 (132) diffraction for a SrRuO3 buffer on a homoepitaxial MgO/IBAD-MgO on Ni-alloy.
  • FIG. 4 shows the x-ray normal 20-scan of the superconducting film on SrRuO[0019] 3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy.
  • FIG. 5 shows the x-ray ω-rocking curve on the YBCO (005) diffraction of the superconducting film on the SrRuO[0020] 3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy.
  • FIG. 6 shows the x-ray φ-scan on the YBCO (103) diffraction for a YBCO film on a SrRuO[0021] 3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy.
  • FIG. 7 shows the ac susceptibility test result for a superconducting film on a SrRuO[0022] 3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy substrate.
  • FIG. 8 shows the resistivity versus temperature characteristic of a superconducting film on SrRuO[0023] 3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy substrates.
  • FIG. 9 shows the critical current density of a superconducting film on a SrRuO[0024] 3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy, where two bridges were patterned on a 1 by 1 cm2 substrate.
  • FIG. 10 shows the x-ray normal 2θ-scan of the SrRuO[0025] 3 film on IBAD-MgO buffered Ni-alloy.
  • DETAILED DESCRIPTION
  • The present invention is concerned with high temperature superconducting wires or tapes and the use of high temperature superconducting thick films to form such wires or tapes. The present invention is further concerned with the preparation of structural template articles for the subsequent deposition of oriented films, e.g., superconducting thick films. [0026]
  • CeO[0027] 2/YSZ or Y2O3/YSZ buffer layers on IBAD-MgO makes the overall architecture of any resultant coated conductor too complex. Additionally, depsotion of YSZ is known to be a slow process and generally requires a thick layer.
  • In the preferred embodiment of the present invention, a single buffer layer of SrRuO[0028] 3 upon a MgO layer is used prior to deposition of a high performance superconducting film on a metal substrate. FIG. 1 shows a generic architecture of the present invention. The MgO layer is a composite layer and is formed preferably of a thin layer of IBAD-MgO with a layer of homoepitaxial MgO thereon. This MgO layer is used as a template for subsequent heteroepitaxial growth of a buffer layer of SrRuO3, with this buffer layer used for subsequent heteroepitaxial growth of YBCO films. The SrRuO3 layer also serves as a barrier layer to reduce interactions between the substrate and the YBCO films.
  • SrRuO[0029] 3 has an orthorhombic distorted-perovskite structure with lattice parameters of a=0.5573 nm, b=0.5538 nm, and c=0.7586 nm. It is conductive. The resistivity of the SrRuO3 films is a strong function of the crystallinity of the films. Epitaxial SrRuO3 films can have a room temperature resistivity of about 280 micro-ohms per centimeter.
  • Most commonly used buffer layer materials and architectures have disadvantages. The present invention using SrRuO[0030] 3 exhibits the following advantages over existing technology. First, the single buffer layer simplifies the processing. Next, the high deposition rate possible with SrRuO3 minimizes the processing time. The good structural and chemical compatibility of SrRuO3 with MgO makes epitaxial growth of the buffer layer easier. The smooth surface morphology of SrRuO3 improves the coverage of the deposited materials. Especially useful is that the high chemical stability of SrRuO3 makes it a more stable buffer material for subsequent deposition of YBCO where chemical processing is preferred (see Feenstra et al., J. Appl. Phys., v. 69, p. 6569 (1991) and Smith et al., IEEE Trans. Appl. Supercond., v. 9, p. 1531 (1999). High critical current density YBCO films can be achieved by using the buffer material of SrRuO3; and, texture of the resultant article is enhanced. Additionally, the SrRuO3 can be replaced by (Sr1-xCax)RuO3 where (1≦x≦0).
  • The SrRuO[0031] 3 buffer material used in the present invention is especially useful in coated conductors where biaxially oriented MgO is used as a template.
  • The growth of high performance YBCO films on polycrystalline Ni-alloy substrates using SrRuO[0032] 3 as a buffer layer has been successfully demonstrated where IBAD-MgO is used as a template. The results plotted in FIG. 2 show the superconducting properties of numerous superconducting films (each a YBCO layer of about 1 micron), where the IBAD-MgO was deposited by the standard processing conditions of U.S. Pat. No. 5,470,668 followed by deposition of homoepitaxial MgO. The SrRuO3 layer was deposited by pulsed laser deposition at a substrate temperature of 775° C. and an oxygen pressure of 200 mTorr. The repetition rate of the laser was 5 Hz. The superconducting films were deposited by pulsed laser deposition using the same conditions as used for the deposition of the SrRuO3 buffer layer except for the repetition rate of 10 Hz. FIG. 2 compares these results to samples using IBAD-YSZ also deposited by the standard processing conditions of U.S. Pat. No. 5,470,668 and including buffer layers of CeO2 or Y2O3 upon the YSZ.
  • For additional comparison purposes, YBCO films have been deposited on a Ni-based alloy using IBAD-MgO as a template and a single layer of SrTiO[0033] 3 as a buffer. The SrTiO3 was deposited at the same conditions as the SrRuO3 except that a repetition rate of 10 Hz was used for the SrTiO3 deposition. The YBCO film on a SrRuO3 buffered substrate had a critical current density (Jc) over 1.2 MA/cm2 but only a Jc of 0.33 MA/cm2 was achieved for a similar YBCO film on the SrTiO3 buffered sample. This implies that the SrTiO3 buffer deposited under these conditions is either not thick enough (not an effective barrier) or the deposition rate is lower compared with the SrRuO3 sample. It should be noted that good quality YBCO films (critical current density over 1 MA/cm2) have been obtained on Ni-based alloy substrates using IBAD-MgO as a template and single layer SrTiO3 as a buffer. In this case, relatively thicker SrTiO3 buffer layers were used (e.g., the SrTiO3 buffer layers were deposited at a repetition rate of 20 Hz and 20 minutes.
  • The SrRuO[0034] 3 films deposited under our standard conditions on homoepitaxial MgO/IBAD-MgO and metal substrates were quite smooth. An average RMS of from about 2.4 to about 3.1 nm was typical for a scan area across 4 by 4 micron. As a comparison, the average RMS for the IBAD-MgO on metal substrate was around 1.0 nm across the same scan area.
  • The x-ray 2θ-scan showed the SrRuO[0035] 3 film deposited under the above described conditions on homoepitaxial MgO/IBAD-MgO on nickel alloy was (001)-oriented. FIG. 3 shows the x-ray phi-scan of SrRuO3 (132) diffraction for a SrRuO3 buffer on homoepitaxial MgO/IBAD-MgO on Ni-alloy. The value of the full width at half maximum (FWHM) of (132) diffraction peak was in the range of 4.3 degrees to 6 degrees.
  • The superconducting films deposited upon a SrRuO[0036] 3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy were c-axis oriented. FIG. 4 shows the x-ray normal 2θ-scan of the superconducting film on SrRuO3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy. The x-ray omega-rocking curve on the YBCO (005) diffraction of the superconducting film on the SrRuO3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy is shown in FIG. 5. The value of the FWHM from rocking curve was 1.6 degrees.
  • The superconducting films on SrRuO[0037] 3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy were aligned in-plane. FIG. 6 shows the x-ray phi-scan on the YBCO (103) diffraction for a YBCO film on SrRuO3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy. The value of the FWHM of the (103) diffraction peak was between 4.3 degrees.
  • The superconducting films on SrRuO[0038] 3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy usually exhibited slightly higher transition temperatures in comparison with the films made using conventional buffer structures. FIG. 7 shows the ac susceptibility test result for two superconducting films on SrRuO3/IBAD-MgO buffered Ni-alloy substrates. The transition temperature of the superconducting films was higher than 87 K with a transition in the range of 0.2 to 0.6 degrees. This relatively higher transition temperature was also confirmed by transport measurements. FIG. 8 shows the resistivity versus temperature characteristic of a superconducting film on SrRuO3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy substrates.
  • The most important accomplishment using SrRuO[0039] 3 as a buffer for deposition of superconducting films on IBAD-MgO metal substrates is the reproducible high critical current density. FIG. 9 shows the critical current density of a superconducting film on SrRuO3/homoepitaxial MgO/IBAD-MgO buffered Ni-alloy, where two bridges were patterned on a 1 by 1 cm2 substrate. A critical current density of 1.74 MA/cm2 at 75.2 K has been achieved for a superconducting film with a thickness of 1.35 micrometers.
  • In addition to the use of SrRuO[0040] 3 as a buffer layer between a superconductive layer of YBCO and an IBAD-MgO layer upon a nickel-alloy substrate, SrRuO3 can also be used as a buffer layer upon an IBAD-YSZ template layer upon a nickel-alloy substrate and can be used directly upon a nickel-alloy substrate having a cerium oxide seed layer.
  • SrRuO[0041] 3 is highly resistant to chemical attack in comparison to other oxides such as cerium oxide (CeO2), strontium titanate (SrTiO3) and nickel oxide (NiO). By using SrRuO3 as a buffer layer, the resultant material can be highly stable in environmently challenging conditions. For example, hydrofluoric acid (HF) can be generated during the growth of YBCO films using a trifluoroacetate (TFA) process (see, e.g., McIntyre et al., J. Appl. Phys., v. 77, pp. 5263-5272 (1995)) and/or a barium fluoride (BaF2) process (see Smith et al., IEEE Trans. Appl. Supercond., v. 9, pp. 1531-1534 (1999)). By using conventional oxides as the buffer layer, the HF can destroy the buffer material due to the chemical reaction between HF and such conventional oxides. Nevertheless, HF does not attack SrRuO3 films.
  • In the present invention, the high temperature superconducting (HTS) material is generally YBCO, e.g., YBa[0042] 2Cu3O7-δ, Y2Ba4Cu7O14+x, or YBa2CU4O8, although other minor variations of this basic superconducting material, such as use of other rare earth metals such as, e.g., erbium, samarium, neodymium, europium, gadolinium, holmium, ytterbium, or dysprosium, as a substitute for some or all of the yttrium as is well known, may also be used. Other superconducting materials such as bismuth and thallium based superconductor materials may also be employed. YBa2Cu3O7-δ is preferred as the superconducting material. In addition, mixtures of superconducting materials may be used and multilayers of the same or differing superconducting materials may be used.
  • In the present invention, the initial or base substrate can be, e.g., any polycrystalline material such as a metal or a ceramic such as polycrystalline aluminum oxide or polycrystalline yttria-stabilized zirconia (YSZ). Preferably, the substrate can be a polycrystalline metal such as a nickel alloy. Suitable nickel alloys can include nickel alloys such as various Hastelloy metals, Haynes metals and Inconel metals. The base substrate may also be a textured metal or metal alloy, e.g., pure nickel, copper, nickel alloy or copper alloy as described by Goyal et al. in U.S. Pat. No. 5,741,377 Substrates from such a textured metal process are generally referred to as rolling assisted biaxially textured substrates (RABiTS). The metal substrate on which the superconducting material is eventually deposited should preferably allow for the resultant article to be flexible whereby superconducting articles (e.g., coils, motors or magnets) can be shaped. As such a metal substrate can have a rough surface, it can be mechanically polished, electrochemically polished or chemically mechanically polished to provide a smoother surface. Alternatively, the desired smoothness for subsequent depositions can be provided by the first coating layer, i.e., an inert oxide material layer. [0043]
  • Whether the metal substrate is polished or not, a layer of an inert oxide material can be deposited upon the base substrate. By “inert” is meant that this oxide material does not react with the base substrate or with any subsequently deposited materials. Examples of suitable inert oxide materials include aluminum oxide (Al[0044] 2O3), erbium oxide (Er2O3), yttrium oxide (Y2O3), and yttria-stabilized zirconia (YSZ). The inert oxide layer can be deposited on the base substrate by pulsed laser deposition, e-beam evaporation, sputtering or by any other suitable means. The layer is deposited at temperatures of generally greater than about 400° C. When the base substrate is metallic, it often has a rough surface with, e.g., a RMS of 15 nm to 100 nm or greater. Generally, the inert oxide layer has a thickness of from about 100 nanometers (nm) to about 1000 nm depending upon the roughness of the base substrate with a thicker coating layer for rougher base substrate surfaces. The inert oxide layer serves to provide a smooth surface for subsequent depositions. By “smooth” is meant a surface having a root mean square (RMS) roughness of less than about 2 nm, preferably less than about 1 nm. To obtain the desired smoothness, it can be preferred to treat the deposited inert oxide layer by chemical mechanical polishing. In the case of erbium oxide, the inert oxide material can also serve as a nucleation layer for subsequent layers.
  • Alternatively, when using aluminum-containing metal substrates a layer of aluminum oxide can be directly formed in situ. Using aluminum-containing metal substrates with less than about 30 atomic percent aluminum has generally required a heat treatment of the metal substrate to form the aluminum oxide layer, while with aluminum-containing metal substrates containing greater than about 30 atomic percent aluminum, an intermediate aluminum oxide layer is achieved without any required heat treatment other than that achieved during normal deposition processing. Heat treatment of the aluminum-containing metal substrate generally involves heating at from about 800° C. to about 1000° C. in an oxygen atmosphere. [0045]
  • Substrates are prepared for subsequent IBAD MgO overcoatings by the following. If the as received metal alloy starts out with a RMS roughness of less than about 15 nm, the metal substrate can be chemically mechanically polished (CMP) to a RMS roughness of about 1.5 nm. (Note: For measuring roughness, all scans are done using scanning force microscopy and are over a 5×5 μm[0046] 2 area.) The time needed to do this is approximately 2 minutes. The polishing slurry used is commercially available colloidal silica (e.g., Mastermet 2, 0.02 μm non-crystallizing colloidal silica suspension, available from Buehler, Ltd., Lake Bluff, Ill.). If the initial metal substrate is much rougher (e.g., a RMS roughness of greater than about 15 nm), then the metal substrate is generally mechanically polished with a 1 micron or finer diamond paste for a short time period of from about 10 seconds to about 20 seconds to get the finish to about 4 nm to about 6 nm followed by a 2 minute CMP with silica as previously described. Preferably, the metal substrate starts out with a minimum of inclusions (less than about 5 inclusions per 5×5 μm2 area). Inclusions are usually harder than the surrounding metal matrix and generally appear as bumps or holes (where the polishing plucks them out of the metal matrix) in surface profile scans.
  • In one embodiment, a layer of an amorphous oxide or oxynitride material can be next deposited upon the inert oxide material layer. The amorphous oxide or oxynitride layer can serve as a nucleation layer for oriented growth of subsequent layers. The amorphous oxide or oxynitride layer can be deposited on the base substrate by pulsed laser deposition, e-beam evaporation, sputtering or by any other suitable means. The layer is generally deposited at temperatures of generally about 100° C. The amorphous oxide or oxynitride layer is typically from about 5 nm to about 100 nm in thickness, preferably from about 20 nm to about 40 nm. Among the oxide or oxynitride materials suitable as the amorphous layer are included yttrium oxide (Y[0047] 2O3), aluminum oxynitride (AlON), erbium oxide (Er2O3), yttria-stabilized zirconia (YSZ), cerium oxide (CeO2), europium oxide, nickel aluminate (NiAl2O4), and barium zirconate (BaZrO3). Preferably, the layer of oxide or oxynitride amorphous material is yttrium oxide, aluminum oxynitride, erbium oxide or yttria-stabilized zirconia and more preferably is yttrium oxide or erbium oxide. For the very best surface finishes with a RMS roughness of less than about 1 nm, after the smooth or polished metal alloy is overcoated with the inert oxide film, a short (e.g., about 5 seconds) CMP step can be conducted. In another embodiment, a single layer of erbium oxide can be used to provide both the smoothness and the nucleation layer. Such a layer can be chemically mechanically polished if desired.
  • Such intermediate articles provide an excellent substrate for the subsequent deposition of a layer of an oriented cubic oxide material having a rock-salt-like structure. Such oriented cubic oxide materials can be, e.g., magnesium oxide, calcium oxide, strontium oxide, zirconium oxide, barium oxide, europium oxide, samarium oxide and other materials such as described in U.S. Pat. No. 6,190,752 by Do et al. Preferably, the layer of oriented cubic oxide material having a rock-salt-like structure is a magnesium oxide (MgO) layer. Such a MgO layer is preferably deposited by electron beam or ion beam evaporation with an ion beam assist. The MgO layer in the ion beam assisted deposition is typically evaporated from a crucible of magnesia. An ion-assisted, electron-beam evaporation system similar to that described by Wang et al., App. Phys. Lett., vol. 71, no. 20, pp. 2955-2957 (1997), can be used to deposit such a MgO film. Alternatively, a dual-ion-beam sputtering system similar to that described by Iijima et al., IEEE Trans. Appl. Super., vol. 3, no. 1, pp. 1510 (1993), can be used to deposit such a MgO film. Generally, the substrate normal to ion-assist beam angle is 45±3°. [0048]
  • The ion source gas in the ion beam assisted deposition is preferably argon. The ion beam assisted deposition of MgO is conducted with substrate temperatures of generally from about 20° C. to about 100° C. The MgO layer deposited by the IBAD process is generally from about 5 nm to about 20 nm in thickness, preferably about 8 nm to about 15 nm. After deposition of the oriented cubic oxide material having a rock-salt-like structure, e.g., MgO, an additional thin homo-epitaxial layer of the same oriented cubic oxide material, e.g., MgO, can be optionally deposited by a process such as electron beam or magnetron sputter deposition. This thin layer can generally be about 40 nm to 100 nm in thickness. Deposition of the homo-epitaxial layer by such a process can be more readily accomplished than depositing the entire thickness by ion beam assisted deposition. [0049]
  • A thin film template structure is provided in accordance with the present invention and includes a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide or oxynitride material layer, and a layer of strontium ruthenate upon the layer of an oriented cubic oxide material. Such a thin film template structure is useful for subsequent deposition of epitaxial thin films. Such epitaxial thin films can be formed from a material selected from the group consisting of superconductors, including high temperature superconductors, semiconductors, photovoltaic materials, magnetic or ferromagnetic materials, and precursors of superconductors or high temperature superconductors. The thin film template structure is especially preferred for subsequent deposition of high temperature superconductor materials. Depending upon the particular epitaxial thin film material deposited upon the thin film template structure, additional layers such as buffer layers can be employed for enhanced chemical or structural compatibility. In the case of YBCO as a high temperature superconductor, additional buffer layers are generally not required. [0050]
  • In one embodiment of the present invention, an intermediate layer of SrRuO[0051] 3 is deposited onto the MgO layer so that it is between the MgO layer deposited by the IBAD process or others such as e-beam evaporation or sputtering and the superconducting YBCO layer. The intermediate layer serves as a buffer layer between the MgO layer and the YBCO and assists in lattice matching. This so-called “buffer layer” should have good “structural compatibility” between the MgO or other oriented cubic oxide material deposited in the IBAD or other processes and the YBCO and should have good chemical compatibility with both adjacent layers. By “chemical compatibility” is meant that the intermediate layer does not undergo property-degrading chemical interactions with the adjacent layers. By “structural compatibility” is meant that the intermediate layer has a substantially similar lattice structure with the superconductive material so that the superconductive material can epitaxially grow on this intermediate layer. The layer of strontium ruthenate is generally from about 50 nm to about 1000 nm in thickness, preferably from about 100 nm to about 500 nm in thickness.
  • The strontium ruthenate layer is generally deposited at temperatures of greater than about 700° C., preferably at temperatures of from about 700° C. to about 850° C., more preferably from about 730° C. to about 780° C. [0052]
  • A high temperature superconducting (HTS) layer, e.g., a YBCO layer, can be deposited, e.g., by pulsed laser deposition or by methods such as evaporation including coevaporation, e-beam evaporation and activated reactive evaporation, sputtering including magnetron sputtering, ion beam sputtering and ion assisted sputtering, cathodic arc deposition, chemical vapor deposition, organometallic chemical vapor deposition, plasma enhanced chemical vapor deposition, molecular beam epitaxy, a sol-gel process, liquid phase epitaxy, a trifluoroacetic acid process or a barium fluoride (BaF[0053] 2) process and the like.
  • In pulsed laser deposition, powder of the material to be deposited can be initially pressed into a disk or pellet under high pressure, generally above about 1000 pounds per square inch (PSI) and the pressed disk then sintered in an oxygen atmosphere or an oxygen-containing atmosphere at temperatures of up to 950° C. for at least about 1 hour, preferably from about 12 to about 24 hours. An apparatus suitable for pulsed laser deposition is shown in Appl. Phys. Lett. 56, 578 (1990), “Effects of Beam Parameters on Excimer Laser Deposition of YBa[0054] 2Cu3O7-δ”, such description hereby incorporated by reference.
  • Suitable conditions for pulsed laser deposition include, e.g., the laser, such as an excimer laser (20 nanoseconds (ns), 248 or 308 nanometers (nm)), targeted upon a rotating pellet of the target material at an incident angle of about 45°. The substrate can be mounted upon a heated holder rotated at about 0.5 rpm to minimize thickness variations in the resultant film or coating, The substrate can be heated during deposition at temperatures from about 600° C. to about 950° C., preferably from about 700° C. to about 850° C. An oxygen atmosphere of from about 0.1 millitorr (mTorr) to about 500 mTorr, preferably from about 100 mTorr to about 250 mTorr, can be maintained within the deposition chamber during the deposition. Distance between the substrate and the pellet can be from about 4 centimeters (cm) to about 10 cm. [0055]
  • The deposition rate of the film can be varied from about 0.1 angstrom per second (′/s) to about 200′/s by changing the laser repetition rate from about 0.1 hertz (Hz) to about 200 Hz. Generally, the laser beam focused on the substrate surface can have dimensions of about 3 millimeters (mm) by 4 mm with an average energy density of from about 1 to 4 joules per square centimeter (J/cm[0056] 2). After deposition, the films generally are cooled within an oxygen atmosphere of greater than about 100 Torr to room temperature.
  • In one embodiment of the present invention illustrated in FIG. 1, a nickel alloy substrate is initially coated with a layer of aluminum oxide from about 80 mm to 100 mm in thickness deposited by masgnetron ion beam sputtering. The aluminum oxide layer is polished by chemical mechanical polishing to a smoothness of about 1 nm. Then, a layer of Y[0057] 2O3 of from about 5 m to about 20 nm in thickness is deposited on the aluminum oxide by pulsed laser deposition. Then, a layer of MgO (about 10 nm) is deposited on the yttrium oxide by ion beam assisted deposition. A homoepitaxial layer of MgO (not shown) is preferably deposited upon the IBAD-MgO layer, the homoepitaxial layer of MgO of about 40 nm in thickness deposited in a process such as electron beam or magnetron sputter deposition. Then, a buffer layer of SrRuO3 of from about 50 m to about 1000 nm in thickness is deposited on the MgO layer. Finally, a layer of YBCO is deposited, e.g., by pulsed laser deposition at a thickness of, e.g., about 1000 nm to 2000 mm.
  • The present invention is more particularly described in the following examples which are intended as illustrative only, since numerous modifications and variations will be apparent to those skilled in the art. [0058]
  • EXAMPLE 1
  • On a nickel alloy substrate (Hastelloy C276), was deposited by magnetron sputter deposition a layer of aluminum oxide about 800 to about 1000 Angstroms in thickness. The substrates had been ultrasonically cleaned in soap and water, rinsed with deionized water, rinsed with methanol and blown dry with filtered nitrogen. The aluminum oxide layer was then polished by CMP (chemical-mechanical polishing) with a colloidal suspension of silica as the polishing medium. The resultant surface of the aluminum oxide had a smoothness (RMS roughness) of about 1 nm. Onto this resultant article was deposited a layer of Y[0059] 2O3 (about 5 nm) by e-beam evaporation. Onto this resultant article was deposited a layer of MgO by ion-assisted, electron beam evaporation system similar to that of Wang et al., App. Phys. Lett., v. 71, no. 20, pp. 2955-2957 (1997). Onto the IBAD-MgO layer was then deposited a layer of homoepitaxial MgO by e-beam evaporation. The ion source was manufactured by Ion Tech, Inc. (Ft. Collins, Colo.) with a source geometry of 22 cm by 2.5 cm. The substrate normal to ion-assist beam angle was 45±3°. The ion source gas was argon. The ion source gas was introduced to a background partial pressure of about 1.0×10−6 Torr with a total pressure during deposition of about 1×10−4 Torr. The electron gun heated the MgO source to maintain a deposition rate of about 0.15 nm/sec. The ion-assist gun voltage and current density were about 750 eV and 100 μA/cm2 respectively.
  • The following tests were then conducted. SrRuO[0060] 3 (target from Supercondutive Components, Inc. Columbus, Ohio) was deposited upon an homoepitaxial MgO/IBAD-MgO coated nickel-based alloy by pulsed laser deposition under the following typical conditions (system pressure of 200 mTorr oxygen, substrate temperature of 750° C., 5 pulses per second (pps), and 10 minutes deposition time). The sample was soaked in buffered HF for 30 mintes and then 30 mintes in deionized (DI) water. The substrate was coated with a high temperature superconducting layer of YBCO using the following conditions (200 mTorr oxygen, substrate temperature of 750° C., 8 pps, and 25 minutes) after the above treatment.
  • The following was then observed. The RMS values (about 3 nm or so from a 5×5 μm[0061] 2 scan area) of the SrRuO3 film did not show any obvious change after the HF and DI water soakings. XRD analysis of the SrRuO3 film showed clear SrRuO3 diffraction peaks after the buffered HF and DI water soakings. XRD omega-rocking curve on (002) of SrRuO3 had a FWHM of 3.4 degrees. XRD phi-scan on (132) of SrRuO3 had a FWHM of between about 7.4 and 9.1 degrees.
  • The high temperature superconducting layer of YBCO (1.1 microns in thickness) deposited using the above conditions on buffered HF and DI water treated substrates had a Tc of 91 K and a transition width of 0.4 K. The critical current density of the film was 0.96 MA/cm[0062] 2 at 75.3 K. XRD omega-rocking curve on (005) of the high temperature superconducting film had a FWHM of 1.6 degrees. XRD phi-scan on (132) of the high temperature superconducting film had a FWHM of between about 4.6 and 6.2 degrees. These results clearly show that SrRuO3 provides a good buffer layer even in the presence of HF. In other words, HF does not attack SrRuO3 and SrRuO3 does not degrade in the HF, water or water vapor environment.
  • EXAMPLE 2
  • A series of samples were prepared and tested for critical current density of the top superconducting layer. All samples included a nickel alloy substrate as in example 1. A total of 113 samples were prepared with an IBAD layer of MgO on the substrate, a homoepitaxial layer of MgO, a buffer layer of YSZ and either CeO[0063] 2 or Y2O3 on the MgO layer and a layer of YBCO (about 1 micron in thickness) on the layer of CeO2 or Y2O3. Another set of 57 samples included an IBAD layer of MgO on the substrate, a homoepitaxial layer of MgO as in example 1, a buffer layer of SrRuO3 on the homoepitaxial MgO layer and a layer of YBCO (about 1 micron in thickness) on the layer of SrRuO3. The measured critical current densities from all the prepared samples were plotted and are shown in FIG. 2 as critical current density versus percentage of number of examples. These results showed that over 75 percent of the samples with the YSZ had a critical current density of at or below 0.2 MA/cm2 while 100 percent of the samples with MgO and SrRuO3 had a critical current density of above 0.2 MA/cm2. From these results it was concluded that superconducting structures including the SrRuO3 buffer layer had unexpectedly more consistent critical current density values than those samples based on a buffer layer of YSZ and either CeO2 or Y2O3. Also, the median critical current density for the YSZ based samples was less than about 0.1 MA/cm2 while the median critical current density for the SrRuO3 based samples was about 0.7 MA/cm2.
  • Although the present invention has been described with reference to specific details, it is not intended that such details should be regarded as limitations upon the scope of the invention, except as and to the extent that they are included in the accompanying claims. [0064]

Claims (6)

1-24. (canceled)
25. An article comprising:
a substrate;
an inert oxide material upon the surface of the substrate;
a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer;
a layer of oriented yttria-stabilized zirconia upon the amorphous oxide or oxynitride material layer; and,
a layer of strontium ruthenate upon the layer of yttria-stabilized zirconia.
26. The article of claim 25 further including a top-layer of a superconducting material upon the oriented cubic oxide material layer.
27. The article of claim 26 wherein said superconducting material is YBCO.
28. The article of claim 25 wherein the substrate is a flexible polycrystalline metal.
29. A thin film template structure for subsequent epitaxial thin film deposition comprising:
a polycrystalline flexible metal substrate;
a layer of an inert oxide material upon the surface of the polycrystalline flexible metal substrate;
a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer;
a layer of oriented yttria-stabilized zirconia upon the amorphous oxide or oxynitride material layer; and,
a layer of strontium ruthenate upon the layer of yttria-stabilized zirconia.
US10/840,693 2002-03-28 2004-05-06 Buffer layers on metal alloy substrates for superconducting tapes Abandoned US20040206952A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/840,693 US20040206952A1 (en) 2002-03-28 2004-05-06 Buffer layers on metal alloy substrates for superconducting tapes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/113,476 US6756139B2 (en) 2002-03-28 2002-03-28 Buffer layers on metal alloy substrates for superconducting tapes
US10/840,693 US20040206952A1 (en) 2002-03-28 2004-05-06 Buffer layers on metal alloy substrates for superconducting tapes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/113,476 Division US6756139B2 (en) 2002-03-28 2002-03-28 Buffer layers on metal alloy substrates for superconducting tapes

Publications (1)

Publication Number Publication Date
US20040206952A1 true US20040206952A1 (en) 2004-10-21

Family

ID=30769134

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/113,476 Expired - Fee Related US6756139B2 (en) 2002-03-28 2002-03-28 Buffer layers on metal alloy substrates for superconducting tapes
US10/242,895 Expired - Fee Related US6800591B2 (en) 2002-03-28 2002-09-11 Buffer layers on metal alloy substrates for superconducting tapes
US10/840,693 Abandoned US20040206952A1 (en) 2002-03-28 2004-05-06 Buffer layers on metal alloy substrates for superconducting tapes

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/113,476 Expired - Fee Related US6756139B2 (en) 2002-03-28 2002-03-28 Buffer layers on metal alloy substrates for superconducting tapes
US10/242,895 Expired - Fee Related US6800591B2 (en) 2002-03-28 2002-09-11 Buffer layers on metal alloy substrates for superconducting tapes

Country Status (3)

Country Link
US (3) US6756139B2 (en)
AU (1) AU2003223365A1 (en)
WO (1) WO2003082566A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050123186A1 (en) * 2003-12-09 2005-06-09 Reeves Jodi L. Tape manufacturing system
US20070238619A1 (en) * 2005-09-06 2007-10-11 Superpower, Inc. Superconductor components
US20080113869A1 (en) * 2006-11-10 2008-05-15 Venkat Selvamanickam Superconducting article and method of making
US20120181062A1 (en) * 2008-08-26 2012-07-19 Siemens Aktiengesellschaft Multifilament conductor and method for producing same
WO2016154578A1 (en) * 2015-03-25 2016-09-29 Eta Diagnostics, Inc. An optical cell constructed by anodically bonding a thin metal layer between two optically clear glass windows
US10199682B2 (en) 2011-06-29 2019-02-05 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10601074B2 (en) 2011-06-29 2020-03-24 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10658705B2 (en) 2018-03-07 2020-05-19 Space Charge, LLC Thin-film solid-state energy storage devices
US11527774B2 (en) 2011-06-29 2022-12-13 Space Charge, LLC Electrochemical energy storage devices
US11996517B2 (en) 2011-06-29 2024-05-28 Space Charge, LLC Electrochemical energy storage devices

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063926A1 (en) * 1999-04-15 2000-10-26 Fujikura Ltd. Oxide superconductor, method of manufacture thereof, and base material of oxide superconductor
US20030036483A1 (en) * 2000-12-06 2003-02-20 Arendt Paul N. High temperature superconducting thick films
JP4228569B2 (en) * 2001-11-28 2009-02-25 セイコーエプソン株式会社 Method for manufacturing substrate for electronic device and method for manufacturing electronic device
US6756139B2 (en) * 2002-03-28 2004-06-29 The Regents Of The University Of California Buffer layers on metal alloy substrates for superconducting tapes
US20050176585A1 (en) * 2002-04-26 2005-08-11 Sumitomo Electric Industries, Ltd Process for producing oxide superconductive thin-film
US6884527B2 (en) * 2003-07-21 2005-04-26 The Regents Of The University Of California Biaxially textured composite substrates
US7129196B2 (en) * 2003-07-21 2006-10-31 Los Alamos National Security, Llc Buffer layer for thin film structures
US20050230725A1 (en) * 2004-04-20 2005-10-20 Texas Instruments Incorporated Ferroelectric capacitor having an oxide electrode template and a method of manufacture therefor
JP2006027958A (en) * 2004-07-16 2006-02-02 Sumitomo Electric Ind Ltd Thin film material and its manufacturing method
US7642222B1 (en) * 2004-11-30 2010-01-05 Los Alamos National Security, Llc Method for improving performance of high temperature superconductors within a magnetic field
US7727934B2 (en) * 2004-12-23 2010-06-01 Los Alamos National Security, Llc Architecture for coated conductors
US7258927B2 (en) * 2004-12-23 2007-08-21 Los Alamos National Security, Llc High rate buffer layer for IBAD MgO coated conductors
US7553799B2 (en) * 2005-06-02 2009-06-30 Ut-Battelle, Llc Chemical solution deposition method of fabricating highly aligned MgO templates
WO2007009095A2 (en) * 2005-07-13 2007-01-18 Los Alamos National Security, Llc Coated conductors
US8003571B2 (en) * 2005-07-13 2011-08-23 Los Alamos National Security, Llc Buffer layers for coated conductors
US20070026136A1 (en) * 2005-07-27 2007-02-01 The Regents Of The University Of California Process for improvement of IBAD texturing on substrates in a continuous mode
KR100807640B1 (en) * 2006-12-22 2008-02-28 한국기계연구원 Synthesizing precursor solution enabling fabricating biaxially textured buffer layers by low temperature annealing
US20090098394A1 (en) * 2006-12-26 2009-04-16 General Electric Company Strain tolerant corrosion protecting coating and tape method of application
DE102007026176A1 (en) * 2007-01-04 2008-07-17 Dewind Ltd. SCADA unit
US8741158B2 (en) 2010-10-08 2014-06-03 Ut-Battelle, Llc Superhydrophobic transparent glass (STG) thin film articles
US20090036313A1 (en) * 2007-07-30 2009-02-05 Liliana Stan Coated superconducting materials
US8227082B2 (en) * 2007-09-26 2012-07-24 Ut-Battelle, Llc Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom
US20090110915A1 (en) * 2007-10-24 2009-04-30 Los Alamos National Security, Llc Universal nucleation layer/diffusion barrier for ion beam assisted deposition
WO2010014060A1 (en) * 2008-07-29 2010-02-04 Los Alamos National Security, Llc Coated superconducting materials
TWI387417B (en) * 2008-08-29 2013-02-21 Ind Tech Res Inst Circuit board structure and manufacturing method thereof
JP5448425B2 (en) * 2008-11-21 2014-03-19 公益財団法人国際超電導産業技術研究センター Superconducting film deposition substrate, superconducting wire, and method for producing them
US20110034336A1 (en) * 2009-08-04 2011-02-10 Amit Goyal CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)NbO6 IN REBCO FILMS
US20110034338A1 (en) * 2009-08-04 2011-02-10 Amit Goyal CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)TaO6 IN REBCO FILMS
CN102217008B (en) * 2009-09-07 2013-07-17 古河电气工业株式会社 Superconducting wire
US20110105336A1 (en) * 2009-10-29 2011-05-05 International Superconductivity Technology Center, The Juridical Foundation Rare earth element oxide superconductive wire material and method of producing the same
US8221909B2 (en) * 2009-12-29 2012-07-17 Ut-Battelle, Llc Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same
US8685549B2 (en) 2010-08-04 2014-04-01 Ut-Battelle, Llc Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same
US11292919B2 (en) 2010-10-08 2022-04-05 Ut-Battelle, Llc Anti-fingerprint coatings
US9221076B2 (en) 2010-11-02 2015-12-29 Ut-Battelle, Llc Composition for forming an optically transparent, superhydrophobic coating
US8993092B2 (en) 2011-02-18 2015-03-31 Ut-Battelle, Llc Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same
US8748350B2 (en) 2011-04-15 2014-06-10 Ut-Battelle Chemical solution seed layer for rabits tapes
US8748349B2 (en) 2011-04-15 2014-06-10 Ut-Battelle, Llc Buffer layers for REBCO films for use in superconducting devices
US9362025B1 (en) 2012-02-08 2016-06-07 Superconductor Technologies, Inc. Coated conductor high temperature superconductor carrying high critical current under magnetic field by intrinsic pinning centers, and methods of manufacture of same
US9564258B2 (en) 2012-02-08 2017-02-07 Superconductor Technologies, Inc. Coated conductor high temperature superconductor carrying high critical current under magnetic field by intrinsic pinning centers, and methods of manufacture of same
JP5622778B2 (en) * 2012-03-23 2014-11-12 株式会社東芝 Oxide superconductor and oriented oxide thin film
US9850569B2 (en) * 2013-11-27 2017-12-26 Varian Semiconductor Equipment Associates, Inc. Ion implantation for superconductor tape fabrication
US20150239773A1 (en) 2014-02-21 2015-08-27 Ut-Battelle, Llc Transparent omniphobic thin film articles

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135906A (en) * 1989-07-24 1992-08-04 Sumitomo Electric Industries, Ltd. Superconducting thin film of compound oxide and process for preparing the same
US5252551A (en) * 1991-12-27 1993-10-12 The United States Of America As Represented By The Department Of Energy Superconducting composite with multilayer patterns and multiple buffer layers
US5262934A (en) * 1992-06-23 1993-11-16 Analogic Corporation Bipolar voltage doubler circuit
US5278138A (en) * 1990-04-16 1994-01-11 Ott Kevin C Aerosol chemical vapor deposition of metal oxide films
US5432151A (en) * 1993-07-12 1995-07-11 Regents Of The University Of California Process for ion-assisted laser deposition of biaxially textured layer on substrate
US5545611A (en) * 1992-11-17 1996-08-13 Sumitomo Electric Industries, Ltd. Oxide superconductor thin film prepared by MBE
US5650378A (en) * 1992-10-02 1997-07-22 Fujikura Ltd. Method of making polycrystalline thin film and superconducting oxide body
US5696392A (en) * 1992-09-14 1997-12-09 Conductus, Inc. Barrier layers for oxide superconductor devices and circuits
US5872080A (en) * 1995-04-19 1999-02-16 The Regents Of The University Of California High temperature superconducting thick films
US6055446A (en) * 1994-09-09 2000-04-25 Martin Marietta Energy Systems, Inc. Continuous lengths of oxide superconductors
US6060433A (en) * 1998-01-26 2000-05-09 Nz Applied Technologies Corporation Method of making a microwave device having a polycrystalline ferrite substrate
US6251834B1 (en) * 1998-04-27 2001-06-26 Carpenter Technology (Uk) Limited Substrate materials
US6251835B1 (en) * 1997-05-08 2001-06-26 Epion Corporation Surface planarization of high temperature superconductors
US6716545B1 (en) * 2001-11-21 2004-04-06 The Regents Of The University Of California High temperature superconducting composite conductors
US6756139B2 (en) * 2002-03-28 2004-06-29 The Regents Of The University Of California Buffer layers on metal alloy substrates for superconducting tapes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262394A (en) * 1991-12-27 1993-11-16 The United States Of America As Represented By The United States Department Of Energy Superconductive articles including cerium oxide layer
JP2769101B2 (en) 1993-12-27 1998-06-25 大同メタル工業株式会社 Aluminum-based alloy bearing with excellent fatigue resistance
US6190752B1 (en) * 1997-11-13 2001-02-20 Board Of Trustees Of The Leland Stanford Junior University Thin films having rock-salt-like structure deposited on amorphous surfaces
US9925908B2 (en) * 2015-12-08 2018-03-27 Raymond Jacob Zwack, III Inflatable modular panel protection system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135906A (en) * 1989-07-24 1992-08-04 Sumitomo Electric Industries, Ltd. Superconducting thin film of compound oxide and process for preparing the same
US5278138A (en) * 1990-04-16 1994-01-11 Ott Kevin C Aerosol chemical vapor deposition of metal oxide films
US5252551A (en) * 1991-12-27 1993-10-12 The United States Of America As Represented By The Department Of Energy Superconducting composite with multilayer patterns and multiple buffer layers
US5262934A (en) * 1992-06-23 1993-11-16 Analogic Corporation Bipolar voltage doubler circuit
US5696392A (en) * 1992-09-14 1997-12-09 Conductus, Inc. Barrier layers for oxide superconductor devices and circuits
US5650378A (en) * 1992-10-02 1997-07-22 Fujikura Ltd. Method of making polycrystalline thin film and superconducting oxide body
US5545611A (en) * 1992-11-17 1996-08-13 Sumitomo Electric Industries, Ltd. Oxide superconductor thin film prepared by MBE
US5432151A (en) * 1993-07-12 1995-07-11 Regents Of The University Of California Process for ion-assisted laser deposition of biaxially textured layer on substrate
US6055446A (en) * 1994-09-09 2000-04-25 Martin Marietta Energy Systems, Inc. Continuous lengths of oxide superconductors
US5872080A (en) * 1995-04-19 1999-02-16 The Regents Of The University Of California High temperature superconducting thick films
US6251835B1 (en) * 1997-05-08 2001-06-26 Epion Corporation Surface planarization of high temperature superconductors
US6060433A (en) * 1998-01-26 2000-05-09 Nz Applied Technologies Corporation Method of making a microwave device having a polycrystalline ferrite substrate
US6251834B1 (en) * 1998-04-27 2001-06-26 Carpenter Technology (Uk) Limited Substrate materials
US6716545B1 (en) * 2001-11-21 2004-04-06 The Regents Of The University Of California High temperature superconducting composite conductors
US6756139B2 (en) * 2002-03-28 2004-06-29 The Regents Of The University Of California Buffer layers on metal alloy substrates for superconducting tapes
US6800591B2 (en) * 2002-03-28 2004-10-05 The Regents Of The University Of California Buffer layers on metal alloy substrates for superconducting tapes

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050123186A1 (en) * 2003-12-09 2005-06-09 Reeves Jodi L. Tape manufacturing system
US7146034B2 (en) 2003-12-09 2006-12-05 Superpower, Inc. Tape manufacturing system
US20070093376A1 (en) * 2003-12-09 2007-04-26 Superpower, Inc. Tape manufacturing system
US7805173B2 (en) 2003-12-09 2010-09-28 Superpower, Inc. Tape manufacturing system
US20070238619A1 (en) * 2005-09-06 2007-10-11 Superpower, Inc. Superconductor components
EP1941557A4 (en) * 2005-09-06 2012-06-06 Superpower Inc Superconductor components
EP1941557A1 (en) * 2005-09-06 2008-07-09 Superpower, Inc. Superconductor components
JP2009507357A (en) * 2005-09-06 2009-02-19 スーパーパワー インコーポレイテッド Superconductor component
US7879763B2 (en) * 2006-11-10 2011-02-01 Superpower, Inc. Superconducting article and method of making
US20080113869A1 (en) * 2006-11-10 2008-05-15 Venkat Selvamanickam Superconducting article and method of making
US20120181062A1 (en) * 2008-08-26 2012-07-19 Siemens Aktiengesellschaft Multifilament conductor and method for producing same
US9024192B2 (en) * 2009-08-26 2015-05-05 Siemens Aktiengesellschaft Multifilament conductor and method for producing same
US10199682B2 (en) 2011-06-29 2019-02-05 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10601074B2 (en) 2011-06-29 2020-03-24 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US11527774B2 (en) 2011-06-29 2022-12-13 Space Charge, LLC Electrochemical energy storage devices
US11996517B2 (en) 2011-06-29 2024-05-28 Space Charge, LLC Electrochemical energy storage devices
WO2016154578A1 (en) * 2015-03-25 2016-09-29 Eta Diagnostics, Inc. An optical cell constructed by anodically bonding a thin metal layer between two optically clear glass windows
US10658705B2 (en) 2018-03-07 2020-05-19 Space Charge, LLC Thin-film solid-state energy storage devices

Also Published As

Publication number Publication date
US6800591B2 (en) 2004-10-05
US6756139B2 (en) 2004-06-29
AU2003223365A1 (en) 2003-10-13
US20040018394A1 (en) 2004-01-29
WO2003082566A1 (en) 2003-10-09
US20040023077A1 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US6756139B2 (en) Buffer layers on metal alloy substrates for superconducting tapes
US6933065B2 (en) High temperature superconducting thick films
US7736761B2 (en) Buffer layer for thin film structures
US6383989B2 (en) Architecture for high critical current superconducting tapes
US6451450B1 (en) Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom
KR101119957B1 (en) Biaxially-textured film deposition for superconductor coated tapes
US5872080A (en) High temperature superconducting thick films
US6114287A (en) Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom
US6624122B1 (en) High critical current superconducting tapes
US5470668A (en) Metal oxide films on metal
US6884527B2 (en) Biaxially textured composite substrates
US7737085B2 (en) Coated conductors
US7258927B2 (en) High rate buffer layer for IBAD MgO coated conductors
US20070032384A1 (en) Structure for improved high critical current densities in YBCO coatings
US7642222B1 (en) Method for improving performance of high temperature superconductors within a magnetic field
US7727934B2 (en) Architecture for coated conductors
Jia et al. Growth and characterization of SrRuO/sub 3/buffer layer on MgO template for coated conductors
Groves et al. Biaxially textured composite substrates
US20110111964A1 (en) Coated conductor architecture
WO2003034448A1 (en) Superconducting composite structures

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION