US20040191816A1 - In vitro amplification of nucleic acid molecules via circular replicons - Google Patents
In vitro amplification of nucleic acid molecules via circular replicons Download PDFInfo
- Publication number
- US20040191816A1 US20040191816A1 US10/759,644 US75964404A US2004191816A1 US 20040191816 A1 US20040191816 A1 US 20040191816A1 US 75964404 A US75964404 A US 75964404A US 2004191816 A1 US2004191816 A1 US 2004191816A1
- Authority
- US
- United States
- Prior art keywords
- molecule
- primer
- amplification
- stranded
- polynucleotide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003321 amplification Effects 0.000 title claims abstract description 204
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 204
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 103
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 94
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 94
- 238000000338 in vitro Methods 0.000 title claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 102000040430 polynucleotide Human genes 0.000 claims description 152
- 108091033319 polynucleotide Proteins 0.000 claims description 152
- 239000002157 polynucleotide Substances 0.000 claims description 152
- 230000000295 complement effect Effects 0.000 claims description 75
- 239000000047 product Substances 0.000 claims description 75
- 108090000623 proteins and genes Proteins 0.000 claims description 36
- 230000001419 dependent effect Effects 0.000 claims description 22
- 241000282414 Homo sapiens Species 0.000 claims description 20
- 241001465754 Metazoa Species 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 230000009261 transgenic effect Effects 0.000 claims description 6
- 238000001574 biopsy Methods 0.000 claims description 5
- 239000003651 drinking water Substances 0.000 claims description 4
- 235000020188 drinking water Nutrition 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000008267 milk Substances 0.000 claims description 4
- 235000013336 milk Nutrition 0.000 claims description 4
- 210000004080 milk Anatomy 0.000 claims description 4
- 239000008280 blood Substances 0.000 claims description 3
- 210000004369 blood Anatomy 0.000 claims description 3
- 239000002351 wastewater Substances 0.000 claims description 3
- 206010036790 Productive cough Diseases 0.000 claims description 2
- 208000000260 Warts Diseases 0.000 claims description 2
- 210000003097 mucus Anatomy 0.000 claims description 2
- 238000009595 pap smear Methods 0.000 claims description 2
- 210000003296 saliva Anatomy 0.000 claims description 2
- 210000002966 serum Anatomy 0.000 claims description 2
- 201000010153 skin papilloma Diseases 0.000 claims description 2
- 210000003802 sputum Anatomy 0.000 claims description 2
- 208000024794 sputum Diseases 0.000 claims description 2
- 210000002700 urine Anatomy 0.000 claims description 2
- 235000021067 refined food Nutrition 0.000 claims 1
- 210000001138 tear Anatomy 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 125
- 239000000376 reactant Substances 0.000 abstract description 5
- 230000002255 enzymatic effect Effects 0.000 abstract description 2
- 239000013615 primer Substances 0.000 description 352
- 238000006243 chemical reaction Methods 0.000 description 139
- 125000003729 nucleotide group Chemical group 0.000 description 124
- 239000012082 adaptor molecule Substances 0.000 description 103
- 108020004414 DNA Proteins 0.000 description 102
- 239000002773 nucleotide Substances 0.000 description 91
- 101150036876 cre gene Proteins 0.000 description 64
- 239000000523 sample Substances 0.000 description 51
- 108091008146 restriction endonucleases Proteins 0.000 description 42
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 41
- 230000006798 recombination Effects 0.000 description 37
- 238000005215 recombination Methods 0.000 description 37
- 239000012634 fragment Substances 0.000 description 32
- 238000009396 hybridization Methods 0.000 description 31
- 102000053602 DNA Human genes 0.000 description 30
- 230000015572 biosynthetic process Effects 0.000 description 28
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 26
- 108091034117 Oligonucleotide Proteins 0.000 description 22
- 230000006978 adaptation Effects 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 21
- 238000003776 cleavage reaction Methods 0.000 description 21
- 238000002474 experimental method Methods 0.000 description 21
- 230000007017 scission Effects 0.000 description 21
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 18
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 18
- 239000002585 base Substances 0.000 description 18
- 230000027455 binding Effects 0.000 description 18
- 230000008569 process Effects 0.000 description 18
- 230000009471 action Effects 0.000 description 17
- 108700025694 p53 Genes Proteins 0.000 description 17
- 102000003960 Ligases Human genes 0.000 description 16
- 108090000364 Ligases Proteins 0.000 description 16
- 108010091086 Recombinases Proteins 0.000 description 16
- 102000018120 Recombinases Human genes 0.000 description 16
- 239000000758 substrate Substances 0.000 description 16
- 230000001404 mediated effect Effects 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 15
- 102000004190 Enzymes Human genes 0.000 description 14
- 108090000790 Enzymes Proteins 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 13
- 238000011901 isothermal amplification Methods 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- 238000001514 detection method Methods 0.000 description 12
- 238000006073 displacement reaction Methods 0.000 description 12
- 239000002243 precursor Substances 0.000 description 11
- 125000006850 spacer group Chemical group 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 10
- 238000003556 assay Methods 0.000 description 10
- 238000010369 molecular cloning Methods 0.000 description 10
- 230000035772 mutation Effects 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 102100031780 Endonuclease Human genes 0.000 description 7
- 238000004925 denaturation Methods 0.000 description 7
- 230000036425 denaturation Effects 0.000 description 7
- 230000036961 partial effect Effects 0.000 description 7
- 235000011178 triphosphate Nutrition 0.000 description 7
- 239000001226 triphosphate Substances 0.000 description 7
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 6
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 238000012408 PCR amplification Methods 0.000 description 6
- 108010006785 Taq Polymerase Proteins 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 244000052769 pathogen Species 0.000 description 6
- 230000001717 pathogenic effect Effects 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 108010051219 Cre recombinase Proteins 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 108010052160 Site-specific recombinase Proteins 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 5
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 5
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 5
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- -1 processed foodstuff Substances 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 102000012410 DNA Ligases Human genes 0.000 description 4
- 108010061982 DNA Ligases Proteins 0.000 description 4
- 230000004544 DNA amplification Effects 0.000 description 4
- 108010042546 GCGGCCGC-specific type II deoxyribonucleases Proteins 0.000 description 4
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 4
- 108020004682 Single-Stranded DNA Proteins 0.000 description 4
- RZCIEJXAILMSQK-JXOAFFINSA-N TTP Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 RZCIEJXAILMSQK-JXOAFFINSA-N 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000001502 gel electrophoresis Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 238000007899 nucleic acid hybridization Methods 0.000 description 4
- 239000002987 primer (paints) Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 241001515965 unidentified phage Species 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 241000606161 Chlamydia Species 0.000 description 3
- 108010042407 Endonucleases Proteins 0.000 description 3
- 101710173308 Gene 4 protein Proteins 0.000 description 3
- 101000607560 Homo sapiens Ubiquitin-conjugating enzyme E2 variant 3 Proteins 0.000 description 3
- 108091028664 Ribonucleotide Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- 102100039936 Ubiquitin-conjugating enzyme E2 variant 3 Human genes 0.000 description 3
- 101710203596 Virion export protein Proteins 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 210000002230 centromere Anatomy 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000011325 microbead Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002336 ribonucleotide Substances 0.000 description 3
- 125000002652 ribonucleotide group Chemical group 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 108091035539 telomere Proteins 0.000 description 3
- 210000003411 telomere Anatomy 0.000 description 3
- 102000055501 telomere Human genes 0.000 description 3
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 239000003155 DNA primer Substances 0.000 description 2
- 241000701959 Escherichia virus Lambda Species 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 108060004795 Methyltransferase Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 101710183280 Topoisomerase Proteins 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000009850 completed effect Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 230000002101 lytic effect Effects 0.000 description 2
- 238000001668 nucleic acid synthesis Methods 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MXHRCPNRJAMMIM-SHYZEUOFSA-N 2'-deoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-SHYZEUOFSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 1
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 102000016559 DNA Primase Human genes 0.000 description 1
- 108010092681 DNA Primase Proteins 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 102100029764 DNA-directed DNA/RNA polymerase mu Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000702191 Escherichia virus P1 Species 0.000 description 1
- 108010046914 Exodeoxyribonuclease V Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 102100037091 Exonuclease V Human genes 0.000 description 1
- 108010046276 FLP recombinase Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101710085030 Gene 32 protein Proteins 0.000 description 1
- 102100036263 Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial Human genes 0.000 description 1
- 241000224421 Heterolobosea Species 0.000 description 1
- 108010056307 Hin recombinase Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001001786 Homo sapiens Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 241000224016 Plasmodium Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 1
- 101710088729 Single-stranded nucleic acid-binding protein Proteins 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 208000003028 Stuttering Diseases 0.000 description 1
- 101150104425 T4 gene Proteins 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 108010010574 Tn3 resolvase Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 108010078072 VDJ Recombinases Proteins 0.000 description 1
- 241000726445 Viroids Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 210000003001 amoeba Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000001745 anti-biotin effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 229950004398 broxuridine Drugs 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000012677 causal agent Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 108010087471 cin recombinase Proteins 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- MXHRCPNRJAMMIM-UHFFFAOYSA-N desoxyuridine Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000004374 forensic analysis Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000001320 lysogenic effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000002331 protein detection Methods 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 125000002264 triphosphate group Chemical group [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6853—Nucleic acid amplification reactions using modified primers or templates
Definitions
- the present invention is in the field of recombinant DNA technology. This invention is directed to a process for amplifying a nucleic acid molecule, and to the molecules, cells, and non-human transgenic animals employed and/or produced through this process.
- Assays capable of detecting the presence of a particular nucleic acid molecule in a sample are of substantial importance in forensics, medicine, epidemiology and public health, and in the prediction and diagnosis of disease.
- Such assays can be used, for example, to identify the causal agent of an infectious disease, to predict the likelihood that an individual will suffer from a genetic disease, to determine the purity of drinking water or milk, or to identify tissue samples.
- the desire to increase the utility and applicability of such assays is often frustrated by assay sensitivity. Hence, it would be highly desirable to develop more sensitive detection assays.
- One method for overcoming the sensitivity limitation of nucleic acid concentration is to selectively amplify the nucleic acid molecule whose detection is desired prior to performing the assay.
- Recombinant DNA methodologies capable of amplifying purified nucleic acid fragments in vivo have long been recognized. Typically, such methodologies involve the introduction of the nucleic acid fragment into a DNA or RNA vector, the clonal amplification of the vector, and the recovery of the amplified nucleic acid fragment. Examples of such methodologies are provided by Cohen et al. (U.S. Pat. No. 4,237,224), Maniatis, T. et al., Molecular Cloning ( A Laboratory Manual ), Cold Spring Harbor Laboratory, 1982, etc.
- nucleic acid molecule is used as a template for extension of a nucleic acid primer in a reaction catalyzed by polymerase.
- PCR polymerase chain reaction
- the polymerase chain reaction can be used to selectively increase the concentration of a nucleic acid molecule even when that molecule has not been previously purified and is present only in a single copy in a particular sample.
- the method can be used to amplify either single- or double-stranded DNA.
- the essence of the method involves the use of two oligonucleotides to serve as primers for the template-dependent, polymerase mediated replication of the desired nucleic acid molecule.
- a molecule of DNA or RNA possesses directionality, which is conferred through the 5′ ⁇ 3′ linkage of the sugar-phosphate backbone of the molecule.
- Two DNA or RNA molecules may be linked together through the formation of a phosphodiester bond between the terminal 5′ phosphate group of one molecule and the terminal 3′ hydroxyl group of the second molecule.
- Polymerase dependent amplification of a nucleic acid molecule proceeds by the addition of a nucleotide having 5′ phosphate to the 3′ hydroxyl end of a nucleic acid molecule.
- oligonucleotide sequences of the two primers of the PCR method are selected such that they contain sequences identical to, or complementary to, sequences which flank the sequence of the particular nucleic acid molecule whose amplification is desired.
- the nucleotide sequence of the Amplification Primer is selected such that it is capable of hybridizing to an oligonucleotide sequence located 3′ to the sequence of the desired nucleic acid molecule that is to be amplified
- the nucleotide sequence of the Target Primer is selected such that it contains a nucleotide sequence identical to one present 5′ to the sequence of the desired nucleic acid molecule that is to be amplified.
- Both primers possess the 3′ hydroxyl groups which are necessary for enzyme mediated nucleic acid synthesis.
- the reaction conditions must be cycled between those conducive to hybridization and nucleic acid polymerization, and those which result in the denaturation of duplex molecules.
- the nucleic acid molecules of the sample are transiently heated, and then cooled, in order to denature any double stranded molecules that may be present.
- the amplification and Target Primers are then added to the sample at a concentration which greatly exceeds that of the desired nucleic acid molecule.
- the Amplification Primer will hybridize to the nucleic acid molecule of the sample at a position 3′ to the sequence of the desired molecule to be amplified.
- the Target Primer will hybridize to the complementary strand of the nucleic acid molecule at a position 3′ to the sequence of the desired molecule that is the complement of the sequence whose amplification is desired.
- the 3′ ends of the amplification and (if the nucleic acid molecule was double stranded) Target Primers will be extended.
- the extension of the Amplification Primer will result in the synthesis of a DNA molecule having the exact sequence of the complement of the desired nucleic acid.
- Extension of the Target Primer will result in the synthesis of a DNA molecule having the exact sequence of the desired nucleic acid.
- the PCR reaction is capable of exponentially amplifying the desired nucleic acid sequences, with a near doubling of the number of molecules having the desired sequence in each cycle.
- This exponential increase occurs because the extension product of the Amplification Primer contains a sequence which is complementary to a sequence of the Target Primer, and thus can serve as a template for the production of an extension product of the Target Primer.
- the extension product of the Target Primer of necessity, contain a sequence which is complementary to a sequence of the Amplification Primer, and thus can serve as a template for the production of an extension product of the Amplification Primer.
- PCR technology is useful in that it can achieve the rapid and extensive amplification of a polynucleotide molecule.
- the method has several salient deficiencies. First, it requires the preparation of two different primers which hybridize to two oligonucleotide sequences of the target sequence flanking the region that is to be amplified.
- the concentration of the two primers can be rate limiting for the reaction. Although it is not essential that the concentration of the two primers be identical, a disparity between the concentrations of the two primers can greatly reduce the overall yield of the reaction.
- a further disadvantage of the PCR reaction is that when two different primers are used, the reaction conditions chosen must be such that both primers “prime” with similar efficiency. Since the two primers necessarily have different sequences, this requirement can constrain the choice of primers and require considerable experimentation. Furthermore, if one tries to amplify two different sequences simultaneously using PCR (i.e. using two sets of two primers), the reaction conditions must be optimized for four different primers.
- thermocycling requirement denatures conventional polymerases, it thus requires the addition of new polymerase at the commencement of each cycle.
- the requirement for additional polymerase increases the expense of the reaction, and can be avoided only through the use of thermostable polymerases, such as Taq polymerase.
- thermostable polymerases such as Taq polymerase.
- the thermocycling requirement attenuates the overall rate of amplification because further extension of a primer ceases when the sample is heated to denature double-stranded nucleic acid molecules. Thus, to the extent that the extension of any primer molecule has not been completed prior to the next heating step of the cycle, the rate of amplification is impaired.
- nucleic acid amplification procedures include transcription-based amplification systems (Kwoh D. et al., Proc. Natl. Acad. Sci. ( U.S.A. ) 86:1173 (1989); Gingeras T. R. et al., PCT appl. WO 88/10315 (priority: U.S. patent applications Ser. Nos. 064,141 and 202,978); Davey, C. et .al., European Patent Application Publication no. 329,822; Miller, H. I, et al., PCT appl. WO 89/06700(priority: U.S. patent application Ser. No. 146,462, filed 21 Jan.
- thermocycling e.g. PCR or Wu, D. Y. et al., Genomics 4:560 (1989)
- the increase is always lower than 2-fold.
- Further slowing the amplification is the time spent in changing the temperature.
- adding delay is the need to allow enough time in a cycle for all molecules to have finished a step. Molecules that finish a step quickly must “wait” for their slower counterparts to finish before proceeding to the next step in the cycle; to shorten the cycle time would lead to skipping of one cycle by the “slower” molecules, leading to a lower exponent of amplification.
- the present invention concerns a method and in vitro polynucleotide complexes for achieving the amplification of a nucleic acid molecule using a single primer, under isothermal conditions.
- the invention provides a composition for amplifying in vitro a target polynucleotide region of an initial linear nucleic acid molecule, wherein the composition comprises:
- the present invention particularly concerns the embodiments of such a composition wherein the composition additionally comprise a template-dependent polymerase sufficient to extend a 3′ terminus of a polynucleotide hybridized to the single-stranded first polynucleotide in vitro to thereby produce a template-dependent extension product and wherein the polymerase is additionally capable of causing extension-dependent strand displacement of hybridized polynucleotides.
- the present invention particularly concerns the embodiments of such compositions wherein, the single-stranded first polynucleotide is circularizable via the action of a ligase, or is circularizable via the action of a recombinase.
- the present invention particularly concerns the embodiments of such compositions wherein, the single-stranded first polynucleotide contains a modified nucleotide, especially a ribonucleotide or a biotinylated nucleotide.
- the present invention further concerns a kit for amplifying in vitro a target polynucleotide region of an initial linear nucleic acid molecule, wherein the kit comprises:
- the present invention particularly concerns the embodiments of such a kit wherein the kit additionally comprise a third container containing a template-dependent polymerase sufficient to extend a 3′ terminus of a polynucleotide hybridized to the single-stranded first polynucleotide in vitro to thereby produce a template-dependent extension product and wherein the polymerase is additionally capable of causing extension-dependent strand displacement of hybridized polynucleotides.
- the present invention particularly concerns the embodiments of such kits wherein, the single-stranded first polynucleotide is circularizable via the action of a ligase, or is circularizable via the action of a recombinase.
- the present invention particularly concerns the embodiments of such kits wherein, the single-stranded first polynucleotide contains a modified nucleotide, especially a ribonucleotide or a biotinylated nucleotide.
- FIG. 1 shows examples of suitable 5′ adaptor molecules.
- FIGS. 2A and 2B (comprising Drawings A,B,C and D) show examples of suitable 3′ adaptor molecules.
- FIGS. 3A and 3B show the adaptation of the 3′ terminus of the primer extension product.
- Lines A, B and C of FIG. 3A illustrate the use of different adaptor molecules to modify the 3′ terminus of the primer extension product through further primer extension.
- Line D of FIG. 3B shows the use of ligation to modify the 3′ terminus.
- FIGS. 4A, 4B, 4 C, and 4 D show the formation of double-stranded circular molecules from linear molecules adapted using adaptor molecules that contain a recombinational site.
- FIG. 5 shows the formation of hairpin loop molecules from the adaptation of the primer extension product with a 3′ adaptor molecule having an inverted repeated sequence.
- FIG. 6 shows the formation of “bow-tie” molecules from the adaptation of the primer extension product with a 3′ adaptor molecule having a pair of nested inverted repeated sequences.
- FIG. 7 shows the conversion of hairpin loop and “bow-tie” molecules having directly repeated recombinational sites into single strand circular molecules.
- FIGS. 8A and 8B show the amplification replicons of the present invention.
- FIG. 8A shows the twin origin “rolling circle” replicon that results from the extension of two primers during the amplification of a single-stranded circular molecule.
- FIG. 8B shows the ⁇ (“theta”) and “rolling circle” replicons that result from the amplification of a double-stranded circular molecule.
- FIG. 9 provides a diagramatic representation of an illustrative isothermal amplification reaction described in Example 1.
- FIG. 10 provides a diagramatic representation of an alternative illustrative isothermal amplification reaction described in Example 1.
- the Figure illustrates the use of a 5′ fourth region of Primer I that is complementary to a portion of the proto-Lox site.
- FIG. 11 provides a diagramatic representation of the use of ligation to form double-stranded circular molecules, as described in Example 2.
- the 5′ fourth region of Primer I that is complementary to a portion of the proto-Lox site may be deleted, if desired.
- FIG. 12 provides a diagramatic representation of an alternative use of ligation to form double-stranded circular molecules, as described in Example 2.
- the 5′ fourth region of Primer I that is complementary to a portion of the proto-Lox site may be deleted, if desired.
- FIG. 13 provides a diagramatic representation of the alternative illustrative isothermal amplification reaction described in Example 4 in which an unmodified primer is used and a DNA ligase is employed.
- the present invention provides a method for amplifying a “target” polynucleotide region of a nucleic acid molecule that is present in a sample.
- samples may include biological samples derived from a human or other animal source (such as, for example, blood, stool, sputum, mucus, serum, urine, saliva, teardrop, a biopsy sample, an histology tissue sample, a PAP smear, a mole, a wart, an agricultural product, waste water, drinking water, milk, processed foodstuff, air, etc.) including samples derived from a bacterial or viral preparation, as well as other samples (such as, for example, agricultural products, waste or drinking water, milk or other processed foodstuff, air, etc.).
- a human or other animal source such as, for example, blood, stool, sputum, mucus, serum, urine, saliva, teardrop, a biopsy sample, an histology tissue sample, a PAP smear, a mole, a wart,
- the term “desired” nucleic acid molecule is intended to refer to the nucleic acid molecule that is to be amplified by the present methods.
- the “desired” molecule can have been purified, or partially purified, or may be present in an unpurified state in the sample.
- a nucleic acid molecule that contains the “desired” molecule is said to be a “target” molecule.
- the nucleic acid molecules of the present invention are described as “polynucleotides” in order to denote that they contain more than three nucleotide residues.
- the nucleic acid molecules of the present invention are further described as comprising “regions,” in order to more fully describe the structural components of the molecules.
- the linear nucleic acid molecules of the invention contain terminal “portions.” As used herein, such portions define a region at the end of the molecules.
- the term “amplification” refers to a “template-dependent process” that results in an increase in the concentration of a nucleic acid molecule relative to its initial concentration.
- the term “template-dependent process” is intended to refer to a process that involves the template-dependent extension of a primer molecule.
- the term amplification is intended to exclude in vivo vector-mediated propagation of the type described by Cohen et al. (U.S. Pat. No. 4,237,224); Maniatis, T. et al., ( Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, 1982), etc.
- template dependent process refers to nucleic acid synthesis of RNA or DNA wherein the sequence of the newly synthesized strand of nucleic acid is dictated by the well-known rules of complementary base pairing (see, for example, Watson, J. D. et al., In: Molecular Biology of the Gene, 4th Ed., W. A. Benjamin, Inc., Menlo Park, Calif. (1987)).
- a sequence of one nucleic acid molecule is said to be the “complement” of another if it contains a T (or U), A, C, or G at a position in which the other molecule contains an A, T (or U), G or C, respectively.
- the present invention employs a variety of different enzymes to accomplish the amplification of the desired nucleic acid molecule.
- a “polymerase” is an enzyme that is capable of incorporating nucleotides to extend a 3′ hydroxyl terminus of a “primer molecule.”
- a nucleotide that has been incorporated into a nucleic acid molecule is termed a nucleotide “residue.”
- a “primer” or “primer molecule” is a nucleic acid molecule, that when hybridized to a nucleic acid molecule, possesses a 3′ hydroxyl terminus that can be extended by a polymerase. Polymerase enzymes are discussed in Watson, J. D.
- DNA polymerases examples include E. coli DNA polymerase I, the large proteolytic fragment of E. coli DNA polymerase I, commonly known as “Klenow” polymerase, “Taq” polymerase, T7 polymerase, T4 polymerase, T5 polymerase, reverse transcriptase, etc.
- amplification is achieved by extending a hybridized primer on a single-stranded DNA template that is base paired to itself.
- polymerases capable of mediating such primer extension and strand displacement are particularly preferred.
- preferred polymerases include T5 DNA polymerase (Chatterjee, D. K. et al., Gene 97:13-19 (1991), T4 polymerase, and T7 polymerase. Where a DNA polymerase does not displace a base-paired stand of a DNA molecule and extend a primer into the previously base-paired region with sufficient efficiency, such capacity may be facilitated by the addition of an accessory protein.
- T7 polymerase For example, the capacity of T7 polymerase to displace a strand of a base-paired molecule is enhanced by the presence of T7 gene 4 protein (Kolodner, R. et al., J. Biol. Chem 253:574-584 (1978)).
- T4 DNA polymerase can catalyze extensive primer extension if the reaction additionally contains T4 gene 32 protein (Gillin, F. D. et al., J. Biol. Chem 251:5219-5224 (1976)).
- Use of the T7 promoter and gene 4 protein has the advantage that the gene 4 protein is used catalytically rather than stoichiometrically during the primer extension reaction.
- amplification is achieved by extending a hybridized primer on a DNA template of a double-stranded DNA molecule composed of two separable strands.
- polymerases capable of mediating such primer extension are preferred. Examples of preferred polymerases include those cited above.
- the capacity to extend primer molecules using such double-stranded DNA templates may be facilitated through the addition of topisomerases and/or gyrases (Eki, T. et al., J. Biol. Chem 266:3087-3100 (1991); Parada, C. A. et al., J. Biol. Chem 264:15120-15129 (1989)).
- Excess in reference to components of the amplification reaction refers to an amount of each component such that the ability to achieve the desired amplification is not substantially limited by the concentration of that component.
- a “ligase” is an enzyme that is capable of covalently linking the 3′ hydroxyl group of a nucleotide to the 5′ phosphate group of a second nucleotide. Ligases capable of joining “blunt ended” or “staggered ended” double-stranded nucleic acids, may be employed. Examples of suitable ligases include E. coli DNA ligase, T4 DNA ligase, etc.
- the present invention employs a “recombinase,” and most preferably, a “site-specific recombinase.”
- a recombinase is an enzyme whose action on two nucleic acid molecules results in recombination between the two molecules. Recombination is a well-studied natural process which results in the scission of two nucleic acid molecules having identical or substantially similar (i.e. “homologous”) sequences, and the reformation of the two molecules such that one region of each initially present molecule becomes ligated to a region of the other initially present molecule (Sedivy, J. M., Bio - Technol. 6:1192-1196 (1988), which reference is incorporated herein by reference).
- Recombinases are naturally present in both prokaryotic and eucaryotic cells (Smith, G. R., In: Lambda II, (Hendrix, R. et al., Eds.), Cold Spring Harbor Press, Cold Spring Harbor, N.Y., pp. 175-209 (1983), herein incorporated by reference)).
- any two homologous sequences can be recognized by the recombinase (i.e. a “general recombinase”), and can thus act as substrates for the reaction.
- the recombinase in the first type of reaction, “general” or “homologous” recombination, any two homologous sequences can be recognized by the recombinase (i.e. a “general recombinase”), and can thus act as substrates for the reaction.
- site-specific recombination the second type of recombination
- only homologous molecules having a particular sequence may act as substrates for the reaction.
- Site specific recombination is thus mediated by a site-specific recombinase acting on two “recombinational sites.”
- site-specific recombination systems have been described.
- the most preferred site-specific recombinational system is the site-specific recombination system of the E. coli bacteriophage P 1 .
- the P 1 bacteriophage cycles between a quiescent, lysogenic state and an active, lytic state.
- the bacteriophage's site-specific recombination system catalyzes the circularization of P 1 DNA upon its entry into a host cell. It is also involved in the breakdown of dimeric P 1 DNA molecules which may form as a result of replication or homologous recombination.
- the P 1 site-specific recombination system catalyzes recombination between specialized “recombinational sites” known as “lox” sites (e.g.,“loxP,” “loxB” etc.).
- the loxP site is the preferred lox site of the present invention has been shown to consist of a double-stranded 34 bp sequence. This sequence contains two 13 bp inverted repeated sequences which are separated from one another by an 8 bp spacer region (Hoess, R. et al., Proc. Natl. Acad. Sci. ( U.S.A. ) 79:3398-3402 (1982); Sauer, B. L., U.S. Pat. No. 4,959,317, herein incorporated by reference).
- Cre P 1 -encoded protein
- the Cre protein mediates recombination between two loxP sequences (Sternberg, N. et al., Cold Spring Harbor Symp. Quant. Biol. 45:297-309 (1981)). These sequences may be present on the same DNA molecule, or they may be present on different molecules. Cre protein has a molecular weight of 35,000.
- the protein has been purified to homogeneity, and its reaction with the loxP site has been extensively characterized (Abremski, K. et al., J. Molec. Biol. 259:1509-1514 (1984), herein incorporated by reference).
- the cre gene (which encodes the Cre protein) has been cloned (Abremski, K. et al., Cell 32:1301-1311 (1983), herein incorporated by reference).
- Plasmids producing Cre may be obtained from Life Technologies, Inc. (Gaithersburg, Md.). Cre protein is available from Novogen, Inc. (Madison, Wis.).
- Any protein that is capable of mediating recombination between two lox sites is the functional equivalent of Cre protein.
- Any nucleotide sequence that can be recombined with a lox sequence by Cre is the functional equivalent of a lox site.
- Cre-mediated recombination can occur between lox sites which are present on two different molecules. Because the internal spacer sequence of the loxp site is asymmetrical, two loxp sites exhibit directionality relative to one another (Hoess, R. H. et al., Proc. Natl. Acad. Sci. ( U.S.A. ) 81:1026-1029 (1984)). If the loxp sites are in the same relative orientation, Cre acts to excise and circularize the DNA between them. If the sites are in an opposite relative orientation, Cre acts to flip the DNA between them. The recombinational event works efficiently on linear or circular molecules (Abremski, K. et al., Cell 32:1301-1311 (1983); Abremski, K. et al., J. Molec. Biol. Chem. 261:391-396 (1986)).
- Cre mutants thus far identified have been found to catalyze recombination at a much slower rate than that of the wild-type Cre protein. lox mutants have been identified which recombine at lower efficiency than the wild-type site (Abremski, K. et al., J. Molec. Biol. Chem. 261:391-396 (1986); Abremski, K. et al., J. Molec. Biol. 202:59-66 (1988), herein incorporated by reference).
- the Cre protein is capable of mediating lox-specific recombination in eucaryotic hosts, such as Saccharomyces cerevisiae (Sauer, B., Molec. Cell. Biol. 7:2087-2096 (1987); Sauer. B. L., U.S. Pat. No. 4,959,317, herein incorporated by reference), or mammalian cells (Sauer, B. et al., Proc. Natl. Acad. Sci. ( U.S.A. ) 85:5166-5170 (1988), Sauer, B. et al., Nucleic Acids Res. 17:147-161 (1989), both references herein incorporated by reference).
- Saccharomyces cerevisiae Sauer, B., Molec. Cell. Biol. 7:2087-2096 (1987); Sauer. B. L., U.S. Pat. No. 4,959,317, herein incorporated by reference
- mammalian cells Sauer, B.
- the lox-Cre system can mediate site-specific recombination between lox sites separated by extremely large numbers of nucleotides (Sauer, B. et al., Gene 70:331-341 (1988); Stemberg, N., Proc. Natl. Acad. Sci. ( U.S.A. ) 87:103-107 (1990); Sauer, B. et al., Proc. Natl. Acad. Sci. ( U.S.A. ) 84:9108-9112 (1987); Palazzolo, M. J. et al., Gene 88:25-36 (1990), all herein incorporated by reference).
- Cre-lox site-specific recombination system is preferred, alternative site-specific recombination systems have been identified, and can be used in accordance with the methods of the present invention.
- the site-specific recombination system of the E. coli bacteriophage ⁇ (Weisberg, R. et al., In: Lambda II, (Hendrix, R. et al., Eds.), Cold Spring Harbor Press, Cold Spring Harbor, N.Y., pp. 211-250 (1983), herein incorporated by reference) can be employed.
- Bacteriophage ⁇ uses its recombinational system in order to integrate its genome into its host, the bacterium E. coli. The system is also employed to excise the bacteriophage from the host genome in preparation for virus' lytic growth.
- the ⁇ recombination system is composed of four proteins—Int and Xis, which are encoded by the bacteriophage, and two host integrative factors encoded by the E. coli. These proteins catalyze site-specific recombination between “att” sites.
- the ⁇ Int protein (together with the E. coli host integration factors) will catalyze recombination between “attP” and “attB” sites. If the attP sequence is present on a circular molecule, and the attB site is present on a linear molecule, the result of the recombination is the disruption of both att sites, and the insertion of the entire attP-containing molecule into the attB site of the second molecule. The newly formed linear molecule will contain an attL and an attR site at the termini of the inserted molecule.
- the ⁇ Int enzyme is unable to catalyze the excision of the inserted molecule.
- the reaction is unidirectional.
- the reverse reaction can proceed, and a site-specific recombinational event will occur between the attR and attL sites to regenerate the initial molecules.
- Additional site-specific recombination systems that may be employed include TpnI and the ⁇ -lactamase transposons (Levesque, R. C., J. Bacteriol. 172:3745-3757 (1990)); the Tn3 resolvase (Flanagan, P. M. et al., J. Molec. Biol. 206:295-304 (1989); Stark, W. M. et al., Cell 58:779-790 (1989)); the yeast recombinases (Matsuzaki, H. et al., J. Bacteriol. 172:610-618 (1990)); the B. subtilis SpoIVC recombinase (Sato, T.
- Conditions or agents which increase the rate or the extent of priming, primer elongation, or strand displacement may be used to increase the extent of the amplification obtained with the methods of the present invention.
- the addition of topoisomerases, helicases, gyrases or single-stranded nucleic acid binding proteins may be used to increase the strand displacement rate of a DNA polym erase, or may allow the use of a DNA polymerase that might not ordinarily give substantial amplification.
- nucleotide analogues, etc. can be substituted or added to those specified above, provided that the base pairing, polymerase and strand displacing functions are not adversely affected to the point that the amplification does not proceed to the desired extent.
- the methods of the present invention may be used to amplify any desired target nucleic acid molecule.
- Such molecules may be either DNA or RNA.
- the molecule may be homologous to other nucleic acid molecules present in the sample (for example, it may be a fragment of a human chromosome isolated from a human cell biopsy, etc.).
- the molecule may be heterologous to other nucleic acid molecules present in the sample (for example, it may be a viral, bacterial, or fungal nucleic acid molecule isolated from a sample of human blood, stools, etc.).
- the methods of the invention are capable of simultaneously amplifying both heterologous and homologous molecules. For example, amplification of a human tissue sample infected with a virus may result in amplification of both viral and human sequences.
- the molecules which may be amplified include any naturally occurring procaryotic (for example, pathogenic or non-pathogenic bacteria, Escherichia, Salmonella, Clostridium, Agrobacter, Staphylococcus and Streptomyces, Streptococcus, Rickettsiae, Chlamydia, Mycoplasma, etc.), eucaryotic (for example, protozoans (such as amoebas, etc.), parasites (such as Plasmodium, and Trypanosomes), fungi, yeast, higher plants, lower and higher animals, including mammals and humans) or viral (for example, Herpes viruses, HIV, influenza virus, Epstein-Barr virus, hepatitis virus, polio virus, etc.) or viroid nucleic acid.
- the nucleic acid molecule can also be any nucleic acid molecule which has been or can be chemically synthesized.
- the target nucleic acid molecule which is to be amplified may be in either a double-stranded or single-stranded form. If the nucleic acid is double-stranded at the start of the amplification reaction it may be first treated to render the two strands into a single-stranded, or partially single-stranded, form. Methods are known to render double-stranded nucleic acids into single-stranded, or partially single-stranded, forms, such as heating, or by alkali treatment, or by enzymatic methods (such a by helicase action, etc.), or by binding proteins, etc. General methods for accomplishing this treatment are provided by Maniatis, T., et al.
- Single-stranded RNA, double-stranded RNA or mRNA are also capable of being amplified by the method of the invention.
- the RNA genomes of certain viruses can be converted to DNA by reaction with enzymes such as reverse transcriptase (Maniatis, T. et a., Molecular Cloning ( A Laboratory Manual ), Cold Spring Harbor Laboratory, 1982; Noonan, K. F. et al., Nucleic Acids Res. 16:10366 (1988)).
- the product of the reverse transcriptase reaction may then be amplified according to the invention.
- the complete nucleotide sequence of the desired molecule need not be known in order to employ the methods of the present invention.
- the present invention requires knowledge only of the sequences that flank the sequence that is to be amplified.
- the target polynucleotide that is to be amplified may thus be envisioned as consisting of three regions.
- the first region, corresponding to the 3′ terminus of the desired molecule that is to be amplified is the region to which the single-primer of the present invention hybridizes, or to which double-stranded ligation adaptors are added.
- the sequence of this first region must be ascertained in order to construct a complementary primer that would be capable of hybridizing to the desired molecule.
- nucleic acid molecules are said to be able to hybridize to one another if their sequences are complementary and they are thus capable of forming a stable anti-parallel double-stranded nucleic acid structure.
- Conditions of nucleic acid hybridization suitable for forming such double stranded structures are described by Maniatis, T., et al. (In: Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y. (1982)), and by Haymes, B. D., et al. (In: Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985)).
- sequences need not exhibit precise complementarity, but need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure. Thus, departures from complete complementarity are permissible, so long as such departures are not sufficient to completely preclude hybridization to form a double-stranded structure.
- the size of the first region of the target molecule is such as to permit a primer molecule to stably hybridize to it.
- the first region of the desired molecule will be greater than 10 nucleotides in length, and most preferably, 15 to 50 nucleotides in length.
- Longer or shorter primers may be used, however. The use of shorter primers may result in the amplification of nucleic acid sequences in addition to that of the desired sequence. The use of longer primers may slow the rate of hybridization.
- Extension of the primer may be done with reverse transcriptase where the desired molecule is present as RNA. Alternatively, such extension can be accomplished with other DNA polymerases where the desired molecule is DNA. If the first region is not used as a template for a primer, it need not be of a length sufficient to permit stable priming.
- the second region of the desired molecule is located 5′ to the first region, and consists of the central portion of the desired molecule.
- the second region of the desired molecule may have any sequence, and be of any length. As stated above, the sequence of this region need not be known in order to follow the methods of the present invention. Typically, the second region may extend from a few nucleotides to several kilobases.
- the third region of the desired molecule is located at the 5′ terminus of the desired molecule.
- the sequence of this region must be known in order to follow the methods of the present invention.
- the third region may extend from as few as 3 nucleotides to 10-20. If the third region is not used as a template for a primer, it need not be of a length sufficient to permit stable priming. In a preferred embodiment, however, the third region must be of sufficient length to permit stable hybridization to occur. In this embodiment, the third region is preferably of a length of 15 to 50 nucleotides in length. Longer or shorter primers may be used, however.
- the extent of sequence information of the desired molecule that is needed to practice the present invention is typically less than that needed to practice PCR methods.
- the present invention employs a single primer to achieve the amplification of the desired molecule.
- This single primer is also referred to herein as an “Amplification Primer,” in order to distinguish it from other primers that optionally may be employed.
- the single primer molecule is of suitable length to stably hybridize to the first region of the desired molecule. Primer molecules of 10-50 nucleotides are thus suitable. In a most preferred embodiment, the primer molecule will comprise from 3′ terminus to 5′ terminus:
- a second polynucleotide region containing modified nucleotides especially methylated nucleotides or ( ⁇ -thio)phosphorothioate nucleotides, wherein, if the second polynucleotide region were hybridized to a complementary polynucleotide, a double-stranded polynucleotide would thereby be formed that would contain one or more restriction endonuclease cleavage sites that would be recognized by a restriction endonuclease that is substantially incapable of cleaving a strand of a nucleic acid molecule that contains the modified nucleotides; and
- the nucleotide sequence of the second polynucleotide region of the Amplification Primer may be selected from any of a wide variety of sequences that, if hybridized to a complementary polynucleotide, would form a double-stranded polynucleotide that would contain one or more restriction endonuclease sites.
- restriction endonuclease(s) that recognizes the contained site(s) be substantially incapable of cleaving a strand of a nucleic acid molecule that contains the modified nucleotides and that the contained site(s) not be present in the target polynucleotide that is to be amplified (i.e., that the second polynucleotide region of the Amplification Primer not be complementary to any portion of the target polynucleotide).
- the single primer will additionally contain a fourth polynucleotide region, the fourth polynucleotide region of the Amplification Primer molecules being located 5′ to the third polynucleotide region of the Amplification Primer molecules, and having a nucleotide sequence complementary thereto, such that the third and fourth polynucleotide regions of the Amplification Primer molecules are hybridized to one another forming a complete or (more preferably) a partial recombinational site.
- the primer molecule can be excised from a vector that contains it using suitable enzymes, such as restriction enzymes. Most preferably, however, the primer will be made synthetically, using well-known chemical methods.
- the lox site is the most preferred recombinational site of the present invention, the following description illustrates the invention by reference to the lox recombinational site. It will, however, be recognized that any of the above-described recombinational sites may be alternatively employed.
- the above-described single primer is preferably employed in concert with a target polynucleotide that has been adapted to be a part of a circular double-stranded DNA molecule that comprises: (a) a lox site; (b) the target polynucleotide region; and (c) a hemi-modified restriction site located between the target polynucleotide region and the lox site, wherein one strand of the hemi-modified restriction contains modified nucleotides (especially methylated nucleotides and ( ⁇ -thio)-phosphorothioate nucleotides), such that a restriction endonuclease that recognizes such restriction site will be incapable of cleaving that strand containing the modified nucleotides, but will cleave that stand lacking modified bases (or vice versa).
- the target polynucleotide will be present in that strand of the hemi-modified site that is cleaved by the restriction endonuclea
- Such a double-stranded circular molecule can be obtained in any of a variety of ways (see FIGS. 11 and 12).
- a circular double-stranded DNA precursor molecule comprising: (a) a lox site; (b) a target restriction endonuclease cleavage site; and (c) a hemi-modified restriction site located between the target restriction endonuclease cleavage site and the lox site will be employed.
- the target polynucleotide is introduced (e.g., via target restriction site cleavage and ligation) into such a circular precursor molecule in order to form the desired double-stranded circular molecule.
- the molecule's lox site must be oriented (3′ ⁇ 5′) opposite to the orientation of the single primer (such that if that strand of the desired circular molecule that lacks modified nucleotides were linearized by cleavage at the hemi-modified restriction site, and were hybridized to the single primer, primer extension of the linearized molecule would yield a linear double-stranded molecule having a lox site at each end that would be in direct orientation with respect to one another (see, FIG. 11).
- such a double-stranded circular molecule is obtained via Cre-mediated recombination of a linear double-stranded DNA molecule that comprises: (a) a first lox site located at a first end of the linear molecule, (b) a second lox site located at a second end of the linear molecule, wherein the first and the second lox sites are directly oriented with respect to one another so as to permit the Cre to mediate the circularization of the linear double-stranded molecules, and to thereby form the double-stranded circular molecule; (c) the target polynucleotide region located internal to the first and second lox sites; and (d) a hemi-modified restriction site located between the target polynucleotide region and one of the lox sites, wherein one strand of the hemi-modified restriction site of each of the linear molecules contains modified nucleotides (especially methylated nucleotides and ( ⁇ -thio)phosphorothioate nu
- such a linear molecule may be obtained by inserting the target polynucleotide into a target restriction endonuclease site of a precursor double-stranded linear nucleic acid molecule that comprises: (a) a first lox site located at a first end of the linear molecule, (b) a second lox site located at a second end of the linear molecule, wherein the first and the second lox sites are directly oriented with respect to one another so as to permit the Cre to mediate the circularization of the linear double-stranded molecules, and to thereby form the double-stranded circular molecule; (c) a target restriction endonuclease cleavage site; and (d) a hemi-modified restriction site located between the target restriction site and one of the lox sites.
- such linear molecules may be obtained using one or more specialized “adaptor molecules.”
- Such adaptor molecules alter the 3′ and 5′ termini of the target molecule in order to install the lox sites and hemi-modified restriction site onto the target molecule.
- Such adaptor molecules may be either partially single-stranded, partially double-stranded nucleic acid molecules, completely single-stranded or completely double-stranded molecule.
- the adaptation of the 5′ terminus is accomplished by employing a primer molecule whose 5′ terminus is designed such that it contains the desired adaptation.
- the 5′ terminus of the primer extension product is altered (e.g., via ligation) using a 5′ adaptor molecule.
- such alteration can be accomplished using either a single adaptor molecule, or, in an alternate embodiment with a pair of adaptor molecules having similar structure (and resulting in a mixture of primer extension products, some of which have been modified by one of the 3′ adaptor molecules, and some of which have been modified by the other 3′ adaptor molecule).
- a linear double-stranded nucleic acid molecule containing the desired sequence may be incubated in the presence of ligase and double-stranded nucleic acid adaptor molecules so as to cause the adaptation of both ends of the linear molecule.
- such adaptation may be accomplished using primers and a polymerase-mediated primer extension reaction.
- a combination of ligation (to adapt one end of the linear nucleic acid molecule containing the desired sequence) and primer extension (to adapt the linear molecule's other end) may be employed.
- the adaptor molecules permit the linear molecule to form either single-stranded or double-stranded circular nucleic acid molecules which may be readily amplified under isothermal conditions.
- any of a variety of adaptor molecules may be used to modify the 5′ terminus of the primer molecule or the primer extension product such that it contains a recombinational site, most preferably a lox site.
- the adaptor molecule of the 5′ terminus can be added to the primer molecule either before or after its template dependent extension.
- a primer molecule is employed that has been modified to contain the 5′ adaptor molecule.
- the primer may be synthesized such that it contains an additional region (including the recombinational site) at its 5′ terminus.
- some of the primer may be synthesized with the lox site in one orientation, and some of the primer synthesized with the lox site in the opposite orientation.
- 5′ adaptor primer molecules that all have their recombinational site in a single orientation can be used in conjunction with 3′ adaptor molecules that contain their recombinational site in an appropriate orientation.
- the 5′ terminus can be modified through the action of a ligase using either single-stranded or, more preferably, double-stranded DNA containing the recombinational site.
- a ligase using either single-stranded or, more preferably, double-stranded DNA containing the recombinational site.
- such ligation substrates will possess a 5′ terminus (such as a 5′ hydroxyl group) that prevents the ligation of more than one such ligation substrate molecule to the primer extension molecule.
- the adaptor molecule may be a single-stranded molecule, that exhibits intra-strand hybridization (i.e. a “hairpin” loop).
- the use of a recombinational site having directionality will generally require the use of two hairpin loop species having opposite orientations for their recombinational sites.
- any of a variety of different adaptor molecules can be used to alter the 3′ terminus of the primer extension molecule.
- the choice of which type of adaptor molecule to use will depend upon whether the formation of single-stranded or double-stranded molecules is preferred. Examples of suitable 3′ adaptor molecules are shown in FIGS. 2A and 2B.
- a partially single-stranded and partially double-stranded nucleic acid adaptor molecule is employed to alter the 3′ terminus of the primer extension product as a prelude to the formation of single-stranded circular molecules.
- a feature of such molecules is that they possess a 3′ protruding region having a predefined sequence. The sequence of this protruding sequence is selected such that 3′-most portion of the region has the same sequence as that of the third region of the desired molecule.
- this protruding terminus is blocked, as by the use or presence of a dideoxynucleotide, etc., such that it is incapable of being extended by a polymerase in a template-directed process.
- the strand of the adaptor molecule that contains the 3′ protruding sequence may be composed of RNA, such that it can be readily degraded by the inclusion of RNAse to the reaction, or by alkali treatment.
- Methods of forming RNA oligonucleotides are disclosed by Sharmeen, L. et al. ( Nucleic Acids Res. 15:6705-6711 (1987)) and by Milligan, J. F., et al., Nucleic Acids Res. 15:8783-8798 (1987)).
- the strand of the adaptor molecule that contains this protruding sequence is composed of a nucleic acid that has been biotinylated, such that the strand can be selectively removed from the reaction by addition of agents such as anti-biotin antibodies, avidin, streptavidin, etc.
- a second feature of the adaptor molecules is the presence of a double-stranded region located 5′ to the above-described protruding 3′ terminus.
- the invention employs a single such 3′ terminus adaptor molecule whose double-stranded region comprises a pair of inverted repeated sequences, preferably separated by a spacer sequence.
- This aspect of the invention is shown in FIG. 2A (Drawing A), wherein the terms X and X′ are used to designate complementary sequences that comprise the inverted repeated sequence.
- the spacer sequence is preferably 3-100 nucleotides in length. The length of the spacer is selected such that the inverted repeated sequences are sterically capable of hybridizing to one another. Thus, if the inverted repeated sequences are of sufficient length, the sequences will be capable of hybridizing to one another in the absence of a spacer sequence.
- the spacer sequence is 10-50 nucleotide long, and preferably not an inverted repeated sequence.
- the spacer sequence is adapted to function as a primer binding site (designated “PBS” in the Figures) for the amplification of the desired sequence.
- the invention employs two different 3′ terminus adaptor molecules.
- the spacer sequence is composed of a second pair of inverted repeated sequences, such that the structure of the adaptor molecule provides a pair of external inverted repeated sequences that flank a pair of internal inverted repeated sequences.
- the sequences of the pair of internal inverted repeated sequences are interrupted by a primer binding site that is preferably 10-50 bases long, and preferably not an inverted repeated sequence. This aspect of the invention is shown in FIG. 2A (Drawing B) and FIG.
- sequences of the external and internal repeated sequences are different.
- the sequences of the two adaptor molecules are selected such that the nucleotide sequence of the external inverted repeat sequence of the first of the two adaptor molecules is different from the external inverted repeated sequence of the second of the two adaptor molecules.
- sequences of the external inverted repeats of the first and second adaptor molecules are thus selected such that they are substantially incapable of hybridizing to one another (i.e. the external repeat sequence of the first adaptor molecule is substantially incapable of hybridizing to the external inverted repeat of the second adaptor molecule).
- the nucleotide sequence of the internal inverted repeated sequences of the two adaptor molecules is preferably the same, or at least sufficiently similar to allow the respective internal repeated sequences of the adaptor molecules to hybridize to one another. If the internal repeated sequences are interrupted by a primer binding site, such sequences may be different, but will preferably be the same.
- two sequences are said to be “inverted repeats” of one another if they are complementary to one another.
- an “inverted repeat sequence” is composed of two oligonucleotide or polynucleotide sequences (“arms”) which are complimentary to one another.
- a feature of the adaptor molecules is that, although the inverted repeat sequences of the two strands of the double-stranded region of the adaptor molecules are hybridized to one another in the adaptor molecule, they would-be capable of intra-strand hybridization (i.e. “snapping-back” and forming a hairpin loop structure) if the adaptor molecule were denatured or converted to a single-stranded form.
- the length of the inverted repeated sequences is selected such that intra-strand hybridization would be possible if the adaptor molecule were denatured or converted to a single-stranded form.
- the inverted repeated sequences are preferably greater than 10 nucleotides in length, and most preferably, 15 to 50 or more nucleotides in length. Longer or shorter inverted repeated sequences may however be used. The use of shorter inverted repeated sequences may result in a decreased rate of hairpin formation. The use of longer sequences may lead to a destablization of inter-strand hybridization, and thus may be undesirable where such hybridization is desired.
- candidate primers should be tested in reactions which address this issue prior to use in the amplification process.
- One such example is to measure the addition of nucleotides by a polymerase to the 3′ end of the candidate primer in the absence of any target molecule.
- the above-described adaptor molecules can be synthesized using any of a variety of methods.
- the “inverted repeated sequence-inverted repeated sequence,” “inverted repeated sequence-spacer sequence-inverted repeated sequence” or the “external inverted repeated sequence-internal inverted repeated sequence-internal inverted repeated sequence-external inverted repeated sequence” segment of the adaptor molecules can be obtained by cloning such a sequence, propagating the vector, and then excising the sequence using a restriction endonuclease.
- the protruding 3′ terminus can be formed using deoxynucleotide terminal transferase and the appropriate nucleotide triphosphates.
- the protruding 3′ terminus can be added by ligating a single- or double-stranded molecule to the “inverted repeat-inverted repeat” segment of the adaptor molecule (or any of the above-described variants thereof), and then removing the sequence complementary to the “protruding 3′ sequence” to thereby render that sequence actually protruding.
- the strands of the adaptor molecule(s) are prepared separately (preferably by primer extension using suitable primers and templates, or by clonal propagation, by transcription, by synthetic means, or by any combination of these methods), and then mixed together under conditions sufficient to permit the molecules to hybridize to one another.
- This method is particularly suited to the embodiments wherein the strand that contains the protruding 3′ end is RNA or is biotinylated.
- the adaptor molecule(s) in the formation of single-stranded circular molecules will be single-stranded DNA (preferably biotinylated) or RNA molecules.
- Such molecules will have a sequence and structure that are identical to the structure of the that strand of the above-described partially single-stranded and partially double-stranded adaptor molecules which contain the discussed protruding 3′ terminus.
- the 3′ terminus of the molecule is blocked, such that it cannot be extended by a polymerase.
- 3′ adaptor molecules are designed to permit the formation of single-stranded circular molecules.
- a different type of 3′ adaptor molecule is preferably employed.
- the 3′ terminus of the primer extension product is modified such that it contains a recombinational site. If a site such as lox is employed, the orientation of the site must be such that upon adaptation, the two lox sites are present in a direct repeat orientation.
- a partially single-stranded and partially double-stranded adaptor molecule or a single-stranded molecule is employed.
- the partially single-stranded and partially double-stranded adaptor molecule will have a protruding 3′ terminus that is capable of hybridizing to the primer extension product in the manner described above, and of being extended in a template-dependent manner.
- the double-stranded region of the molecule located 5′ to the protruding 3′ terminus, will comprise a recombinational site. Most preferably, the double-stranded region will also contain a region that is substantially incapable of participating in inter-strand hybridization flanked by sequences that are capable of participating in such hybridization. Most preferably, such incapacity is obtained through the use of sequences that are identical, and have the attributes of the primer binding sequence discussed above. Such a molecule is illustrated in FIG. 2B (Drawing C).
- the molecule will preferably contain the same structure and sequence as that strand of the above-described partially single-stranded and partially double-stranded adaptor molecule that possess the protruding 3′ terminus.
- one may ligate a double-stranded molecule having the above-described attributes of the single-stranded 3′ adaptor to one end of the linear double-stranded molecules of the sample.
- the present invention employs amplification substrate molecules in order to achieve the amplification of the desired molecule.
- any of a variety of amplification substrates may be employed.
- such substrates are either the primer molecule used to form the primer extension product (i.e., a 5′ adaptor primer (either containing or lacking the 5′ recombinational site) or a sequence complementary to that of the optional primer binding site of the 3′ terminus adaptor molecule.
- the substrate is a primer that contains the 5′ adaptor molecule (including a recombinational site). The above-described single primer is the most preferred amplification substrate.
- the nucleic acid molecules of the sample are incubated with the above-described single primer molecule in the presence of DNA polymerase, and requisite nucleotide triphosphates and co-factors.
- the molecules are incubated under conditions sufficient to permit the primer to hybridize to its target sequence, and to be extended to form a primer extension product.
- the desired sequence is a double-stranded DNA or RNA molecule
- the strands are separated as by heat denaturation, or other means. If the desired sequence is a single-stranded DNA or RNA molecule, the denaturation step may be omitted.
- the molecules can be denatured and renatured in a cyclical manner so as to permit repeated rounds of primer extension.
- thermostable polymerases such as Taq polymerase is preferred, so that the expense of adding new polymerase can be avoided.
- the conditions of the primer extension will be controlled such that the average length of the extended single primers will be the length separating the beginning of the first region from the end of the third region of the desired molecule.
- Such controlling of conditions can be accomplished by altering the concentration of DNA polymerase, the duration of the polymerization reaction, or by limiting the concentration of a nucleotide triphosphate such that “stuttering” of the primer extension product occurs when it reaches the desired average length.
- the reaction is treated, preferably with heat or RNAse H (if the target molecule was RNA) so as to denature double-stranded nucleic acid molecules and render such molecules single-stranded. If desired, excess primer can be removed from the sample (as by filtration, adsorption, etc.), however, such action is not necessary to the invention.
- the second step of this embodiment of the method entails the adaptation of the primer extension product such that it is capable of conversion into a circular molecule.
- the adaptation of the 3′ terminus may precede or follow the adaptation of the 5′ terminus, depending upon the adaptor molecules selected. Adaptation of the termini may also be accomplished simultaneously. As indicated, the adaptation of the 5′ terminus may be accomplished through the use of modified primers, and may thus be accomplished prior to the primer extension step.
- the adaptation of the 3′ terminus of the primer extension product is accomplished through the further template-mediated extension of the primer extension products (FIG. 3A, lines A, B, C).
- the adaptor molecules used in this embodiment will contain blocked 3′ termini.
- the primer extension products which have been rendered single-stranded, are permitted to hybridize to the adaptor molecules.
- the molecules have regions of homology sufficient to permit the primer extension products to hybridize to the adaptor molecule.
- the further extension of the primer extension products results in the formation of a partially-double-stranded and partially single stranded molecule.
- the molecule is characterized in possessing a protruding 5′ terminus whose sequence comprises that of the primer extension product. If the adaptor molecule was partially double-stranded, the further extension of the primer extension product causes the displacement or destruction of the strand that was initially complementary to the template.
- the adaptation of the 3′ terminus of the primer extension product is accomplished by the ligation of the primer extension molecule to the 3′ adaptor molecule (FIG. 3B, line D). Because of the complementarity between the sequence of the protruding 3′ terminus of the adaptor molecule and the 5′ terminus of the primer extension molecule, the two molecules can hybridize to one another. Since the primer extension reaction has been controlled so that the average extension product terminates at a length corresponding to the end of the third region of the desired molecule, the average primer extension product will have a 5′ terminus that can hybridize to the adaptor molecule.
- the molecules of the sample need not be denatured and can be directly cleaved into double-stranded molecules and then incubated with double-stranded or “hairpin”-shaped adaptors that contain recombinational sites and the other adaptor attributes described herein, so as to produce double-stranded molecules that contain the desired 3′ and 5′ adaptations.
- any DNA ligase may be used to accomplish the ligation of the strands.
- primer extension products that are longer or shorter than the precise length needed to permit the recessed 5′ terminus of the adaptor to abut the 3′ terminus of the primer extension are not amplified by the methods of the invention. They need not be removed from the reaction, and do not interfere with the subsequent desired amplification.
- T4 ligase is employed to ligate the DNA strands together (Lehman, I. R., Science 186:790-797 (1974); Olivers, B. M. et al., J. Molec. Biol. 26:261 (1968); Kleppe, K. et al., Proc. Natl. Acad. Sci. ( U.S.A. ) 67:68 (1970);. Fareed, G. C. et al., J. Biol. Chem. 246:925 (1971); Sgaramella, V. et al., Proc. Natl. Acad. Sci. ( U.S.A. ) 67:1468 (1970)).
- the primer molecules will also have been modified to contain a recombinational site at their 5′ terminus as discussed above. Such modification may be performed prior to or after the primer extension of the first or second steps of the method. If the modification is performed by ligation using a single-stranded molecule, the modification is performed prior to the third step of the process. If the modification is performed by ligation using a double-stranded molecule, the modification is performed after the 5′ terminus of the primer extension product has been rendered double-stranded.
- the orientation of that site be the same as the orientation of the recombinational site that is to adapt, or has adapted, the 5′ terminus of the primer or primer extension product.
- the single-stranded adaptor molecule (if that 3′ terminus adaptor molecule was used), or the strand of the above-described partially single-stranded and partially double-stranded adaptor Molecule that possesses the protruding 3′ terminus (if that 3′ terminus adaptor molecule was used) is not removed, and is extended by a DNA polymerase to form a double stranded linear DNA molecule having termini that comprise recombinational sites (in direct orientation, if loxp sites).
- the use of a primer binding site in the adaptor molecule will create a “bubble” of single-stranded region located between the recombinational sites.
- Action by a recombinase on the recombinational sites yields a double-stranded circular molecule. If the molecule contains the described primer binding site, then such site will provide a single-stranded region which may be used to initiate the replication of the circular molecule.
- such replication leads to a theta replicon.
- the double-stranded circle is “nicked” in one strand to permit a “rolling circle” replicon to form.
- the strand of the adaptor molecule that contained the “protruding 3′ terminus” is separated from the primer extension strand. Any means known in the art may be used to accomplish such separation.
- the strand of the adaptor molecule that contained the “protruding 3′ terminus” is removed from the sample.
- the strand of the adaptor molecule that contained the “protruding 3′ terminus” is labelled with biotin.
- the sample is heated to denature double-stranded molecules and treated with a biotin-binding agent (for example, streptavidin) to thereby separate or remove the biotinylated molecule from the primer extension product.
- a biotin-binding agent for example, streptavidin
- the strand of the adaptor molecule that contained the “protruding 3′ terminus” is RNA, and is separated or removed from primer extension product through the enzymatic activity of RNAse H, which preferentially. degrades the RNA strand of an RNA/DNA hybrid.
- reaction conditions are then adjusted, if necessary, to permit DNA polymerization to occur.
- DNA polymerase is added, if needed, to the reaction, along with nucleotide triphosphates, etc., such that template-dependent extension of the 3′ terminus of the adapted molecules can occur.
- the adaptor molecule contains an inverted repeat, such polymerization results in the formation of a hairpin loop structure.
- the adaptation of the 5′ terminus of the extension product is accomplished after such hairpin loop structures have formed, by providing double-stranded recombinational sites to the reaction, and permitting such sites to ligate to the terminus of the hairpin.
- This mode of adaptation is preferred, since the ligation of such molecules will occur in a randomized orientation, such that, on average one-half of the molecules will contain recombinational sites that are in one orientation, and one-half of the molecules will contain recombinational sites that are in the opposite orientation.
- Action by a recombinase on the recombinational sites of two adapted hairpin loop molecules having the opposite orientation yields a single-stranded circular molecule. If the molecule contains the described primer binding site, then such site will provide a region which may be used to initiate the replication of the circle in a twin origin “rolling circle” replicon manner as described below.
- the strand of the adaptor molecule that contained the “protruding 3′ terminus” is separated from the primer extension strand, in the manner described above.
- the reaction conditions are then adjusted, if necessary, to permit DNA hybridization to occur.
- the random hybridization of the primer extension products will also result in the formation of a double-stranded molecule having different external inverted repeated sequences (i.e. formed from different 3′ adaptor molecules, having different external inverted repeated sequences such as are depicted as X/X′ and Q/Q′).
- the strands of these molecules will anneal to one another due to hybridization between their respective internal inverted repeated sequences. Because the external inverted repeated sequences of the two strands are not complementary to one another, they will not hybridize to one another. Thus, the external repeated sequences of each strand will be able to participate in intra-strand hybridization.
- DNA polymerase is added, if needed, to the reaction, along with nucleotide triphosphates, etc., such that template dependent extension of the 3′ terminus of the adapted molecules can occur.
- the action of DNA polymerase on these molecules will lead to the formation of a “bow-tie” molecule characterized in possessing two hairpin loops that are annealed to one another by virtue of the hybridization between the internal inverted repeated sequences of the molecules.
- terminus of these molecules is then preferably adapted by providing double-stranded recombinational sites to the reaction, and permitting such sites to ligate to the terminus of the hairpin, in the manner described above. Approximately one-half of all bow-tie molecules will contain recombinational sites in direct repeat.
- Action by a recombinase on the recombinational sites of two adapted hairpin loop molecules having the opposite orientation yields a single-stranded circular molecule. If the molecule contains the described primer binding site, then such site will provide a region which may be used to initiate the replication of the circle in a twin-origin “rolling circle” manner as described below.
- amplification may be accomplished by providing a primer that is complementary to the optional primer binding site. Since the circular molecule does not contain any sequence complementary to the primer binding site, such primer molecules can readily access the site and initiate amplification without thermal denaturation.
- primer extension yields a twin-origin “rolling circle” replicon (i.e. a rolling circle replicon having two extending strands, as shown in FIG. 8A).
- amplification can be preferably obtained in either of two manners.
- the double-stranded molecule is replicated to form a theta replicon (FIG. 8B). More preferably, one strand of the double-stranded molecule is nicked, such that primer extension results in the displacement of the nicked strand and the formation of a “rolling circle” replicon.
- nicks can be produced by radiation, by chemical adducts (ethidium bromide, etc.), by an endonuclease, or by other means.
- a preferred method for forming such nicks is by incorporating at least one modified nucleotide (e.g., ⁇ 5′-[a-thio]triphosphate (Pharmacia) or methylated nucleotide) into one strand of a restriction site (preferably present in the 3′ adaptor molecule). Cleavage at that site by the relevant restriction endonuclease will create a single-strand nick (Walker, G. T. et al., Proc. Natl. Acad. Sci. ( U.S.A. ) 89:392-396 (1992)).
- a modified nucleotide e.g., ⁇ 5′-[a-thio]triphosphate (Pharmacia) or methylated nucleotide
- All of the enzymes used in this amplification reaction may be active under the same reaction conditions. Indeed, buffers exist in which all enzymes are near their optimal reaction conditions. Therefore, the amplification process of the present invention can be done in a single reaction volume without any change of conditions such as the replacement of reactants. Thus, though this process has several steps at a molecular level, operationally it may have a single step. Once the reactants are mixed together, one need not add anything or change conditions, e.g. temperature, until the amplification reaction has exhausted one or more components. During this time, the nucleic acid sequence being amplified will have been increased many-fold.
- the nucleic acid of the sample is cleaved (either enzymatically, or by physical means, such as shearing, sonication, etc.) into linear double-stranded polynucleotides.
- the ends of the polynucleotides are adapted (if necessary) so as to permit the polynucleotide to be inserted (most preferably via ligation) into a target restriction endonuclease cleavage site of either a precursor linear double-stranded molecule, or into a precursor circular molecule.
- the ligase will not be thermally stable, or will be otherwise labile, such that after the initial ligation reaction the ligase can be substantially inactivated.
- the target polynucleotide is introduced (via ligation, preferably at a restriction site) into the above-described linear precursor molecule.
- Such introduction forms a double-stranded DNA molecule that comprises: (a) a first lox site located at a first end of the linear molecule, (b) a second lox site located at a second end of the linear molecule, wherein the first and the second lox sites are directly oriented with respect to one another so as to permit the Cre to mediate the circularization of the linear double-stranded molecules, and to thereby form the double-stranded circular molecule; (c) the target polynucleotide region located internal to the first and second lox sites; and (d) a hemi-modified restriction site located between the target polynucleotide-region and one of the lox sites, wherein one strand of the hemi-modified restriction site of each of the linear molecules contains modified nucleot
- such a molecule is then incubated in the presence of Cre under conditions sufficient to permit circularization of the molecule such that a circular molecule
- This subembodiment is similar to the above-described precursor linear molecule method, except that the step of the initial circularization is rendered unnecessary because the molecules are initially circularized.
- the target polynucleotide is introduced (via ligation) into the target restriction site of the above-described circular precursor molecule.
- the resulting circular molecule comprises: (a) a lox site; (b) the target polynucleotide; and (c) a hemi-modified restriction site located between the target restriction endonuclease cleavage site and the lox site.
- This circular molecule is then incubated in the presence of a restriction endonuclease that recognizes the hemi-modified site and causes a single-strand nick or gap having a 3′ hydroxyl terminus to be created.
- a polymerase and nucleotides are added to the reaction (if not already present). Under such conditions, the polymerase will mediate the extension of the created 3′ terminus, and the consequent strand displacement of the 5′ terminus of the cut strand.
- the nucleotides employed will preferably be unmodified, such that primer extension will recreate the hemi-modified restriction site, which is then cut, generating a new extendible 3′ terminus.
- the net effect of such primer extension, strand displacement and nicking reactions is the displacement of a linear single-stranded molecule having a lox site at (or near) its 5′ terminus and a region complimentary to the single primer at its 3′ terminus.
- the single primer is added (if not already present in the reaction).
- the presence of the single primer (and the polymerase and unmodified nucleotides) permits the linear molecule and the single primer to act as templates for one another to recreate the initially formed double-stranded DNA molecule.
- the above reactions use a single primer to mediate the amplification of a specific target polynucleotide even if that molecule were initially present in a complex mixture of undesired polynucleotides.
- This invention may be combined with many other processes in the arts of molecular biology to achieve a specific end.
- Of particular interest is purifying the target sequence from the other sequences in the nucleic acid sample. This can be accomplished most advantageously by annealing the nucleic acid sample to an oligonucleotide that is complementary to the target and is immobilized on a solid support.
- a convenient support would be a micro-bead, especially a magnetic micro-bead. After being so bound, the non-target sequences could be washed away, resulting in a complete or a partial purification.
- RNA:DNA hybrids thus formed may then be detected by antibodies that bind RNA:DNA heteroduplexes. Detection of the binding of such antibodies can be done by a number of methods well known to the art.
- amplified nucleic acid can be detected by gel electrophoresis, hybridization, or a combination of the two, as is well understood in the art. Since the molecules that are being amplified comprise both strands of the desired sequence, the use of restriction endonucleases can cleave the reaction products into discrete and defined fragments. Those in the art will find that the present invention can be adapted to incorporate many detection schemes.
- Sequences amplified according to the methods of the invention may be purified (for example, by gel electrophoresis, by column chromatography, by affinity chromatography, by hybridization, etc.) and the fractions containing the purified products may be subjected to further amplification in accordance with the methods of the invention.
- the methods of the present invention provide a means for obtaining a double-stranded linear DNA molecule comprising a lox site at each end, in direct repeat orientation, and a mammalian gene, or a polynucleotide fragment or cDNA transcript thereof between such lox sites.
- DNA molecules can be used as the substrate for the insertion of DNA into non-bacterial cells by, for example, the method of Sauer, B. L., U.S. Pat. No. 4,959,317 (herein incorporated by reference).
- the present invention may be employed in concert with the methods of Sauer,. B. L., U.S. Pat. No.
- the methods of the present invention in concert with such known methods of generating recombinant cells and non-human transgenic animals (such as transgenic rodents) thus permits a non-bacterial cell (e.g., a yeast cell, a mammalian cell (especially a mammalian embryonic stem cell) to be produced by introducing a double-stranded linear DNA molecule comprising a lox site at each end, in direct repeat orientation, and a mammalian gene, or a polynucleotide fragment or cDNA transcript thereof between such lox sites, into a chromosome of such cell, wherein the DNA molecule either contains a hemi-modified restriction site, or was derived from a DNA molecule that contained such a hemi-modified restriction site (as cloning such DNA molecule into a plasmid and permitting in vivo amplification to occur in the absence of modified nucleotides; by employing such DNA molecules in PCR or other in vitr
- kits will, typically, be specially adapted to contain in close compartmentalization a first container which contains a nucleic acid molecule comprising a recombinational site at its 5′ terminus and a region complementary to the desired polynucleotide at its 3′ terminus, and a second container which contains a nucleic acid molecule comprising a recombinational site at its 5′ terminus and a region having a sequence complementary to the 5′ terminus of the desired polynucleotide at its 3′ terminus, and, optionally, a third containing a recombinase suitable for catalyzing the recombination of the sequence of the first container which.
- the kit may also, optionally, contain one or more DNA and/or RNA polymerases,ligase, buffers, etc. in amounts sufficient to permit the amplification of a desired nucleic acid molecule.
- the kit may additionally contain instructional brochures, and the like.
- the methods and reagents of the present invention may be used to accomplish the detection of genes, gene expression, chromosomal elements (such as telomeres, centromeres, etc.) and polymorphisms, and to facilitate the identification of pathogens and tissue.
- chromosomal elements such as telomeres, centromeres, etc.
- polymorphisms such as telomeres, centromeres, etc.
- a sample containing DNA (such as a fixed cell or tissue biopsy) is treated with the reagents of the present invention under conditions sufficient to permit either linear or exponential amplification of target sequences that are unique to a particular pathogen or to a particular tissue.
- the detection of amplification thus establishes the presence of the pathogen in the sample, or the identity and or location of the particular tissue in the sample.
- a sample of tissue may be treated in situ (or in solution) with oligonucleotide primer reagents of the present invention whose sequences have been selected to amplify DNA sequences unique to chlamydia. The detection of amplification thus establishes the presence of the pathogen.
- the sample of tissue may be treated in situ (or in solution) with oligonucleotide primer reagents of the present invention whoses sequences have been selected to amplify an antibiotic resistance determinant possibly possessed by a pathogen (for example, chlamydia).
- a pathogen for example, chlamydia
- Such reagents can be used to determine the susceptibility of the pathogen to particular antibiotics.
- oligonucleotide primer reagents of the present invention and the processes of the present invention may be performed to assess the presence of mRNA rather than genomic DNA.
- the first or second primer molecules will be designed to hybridize to the single-stranded mRNA of transcribed genes selected such that they will together mediate amplification only if the, for example, gene encoding the antibiotic resistance determinant is being expressed.
- the primer molecules can be used to assess, and reveal, the presence of cells of a particular tissue in a sample or biopsy.
- the present invention can be used to detect pancreatic cells that express insulin.
- the primers of the present invention can be designed to amplify sequences of any expressed mRNA, and thereby provide a sensitive means of histological evaluation.
- the present invention can be used to detect and locate metastasized tumor cells, and to assess the state of differentiation of tumor cells.
- the primer molecules of the present invention may be designed such that their sequences will amplify DNA only if the DNA in question contains a particular nucleotide residue at a polymorphic site.
- the reagents and methods of the present invention can be used for polymorphic analysis.
- either of the primers the present invention can be designed such that their 3′ terminus corresponds to a polymorphic site, such that the 3′ terminus will hybridize to a target DNA sequence only if that sequence possesses a complementary polymorphic-nucleotide.
- the primers of the present invention will be designed such that their 3′ termini will each correspond to the same polymorphic site (such that the primers for aligned for hybridization, their 3′ termini would overlap by a single nucleotide corresponding to the polymorphic site).
- Detection of genes and gene expression may be accomplished by any of a variety of means, for example by labeling the amplified product, by hybridization assays (including in situ hybridization), etc.
- the reagents and methods of the present invention may be adapted to permit the quantitative amplification of DNA and RNA molecules.
- quantitative amplification can be obtained by conducting the isothermal amplification in the presence of limiting, and preferably exhausted, amounts of Amplification Primer, such that amplification will be substantially linear and non exponential.
- the unique catalysis mediated by site-specific recombinases may be exploited to achieve quantitative amplification.
- a site-specific recombinase such as Cre
- Cre a site-specific recombinase
- the reaction leads to the formation of a circular molecule and to the formation of a Lox oligonucleotide.
- Cre a site-specific recombinase
- the rate of formation of the Lox oligonucleotide becomes proportional to the concentration of target DNA present in the sample. Accordingly, one may measure the concentration of the target DNA initially present in the sample by determining the concentration of lox oligonucleotide present and the specific activity of the Cre enzyme employed.
- the reagents and methods of the present invention may also be used to facilitate the detection of DNA, or protein or other antigens that may be present in a sample.
- this may advantageously be accomplished by exploiting the fact that certain site-specific recombinases, such as Cre, become covalently bound to DNA as a consequence of the recombinational reaction. Accordingly, amplified DNA can be bound and detected using anti-Cre antibodies.
- This feature of the invention permits DNA amplification to be discerned through an immunoassay format (such as ELISA or radioimmunoassay).
- chimeric antibodies capable of bonding to Cre and to a protein or antigen of interest may be constructed.
- Cre In the presence of Cre, such antibodies will cause Cre to become bound to the antibody, and will form a reagent that is capable of binding to a protein or antigen of interest, if present in a sample, and mediating site-specific amplification of target DNA in the presence of suitable primers.
- the employed primers will be designed with overlapping sequences such that they are capable of hybridizing to one another even the absence of exogenous template.
- the presence of the protein of interest in the sample can thus be detected by DNA amplification mediated by Cre and the employed primers.
- the employed primers will not possess overlapping sequences, and additional complementary target template molecule will be provided to the reaction.
- FIG. 9 provides a diagrammatic representation of a first preferred method for achieving the amplification of a desired region of genomic DNA.
- a sample of double-stranded genomic DNA is denatured, as by heat, etc., and incubated in the presence of either an Amplification Primer molecule whose 3′ terminus is complementary to a target polynucleotide region whose amplification is desired, or a Target Primer whose 3′ terminus contains a target polynucleotide region (or, equivalently, a region complementary to the complement of a target polynucleotide region whose amplification is desired).
- the Target Primer is added as the initial primer (i.e., prior to the addition of Amplification Primer).
- the purpose of this primer is to create an initial template for further amplification that is mediated by the Amplification Primer.
- the Target Primer may be provided at lower concentration than the Amplification Primer, which should be present in significant excess.
- the Target Primer comprises two polynucleotide regions: (1) a “target” polynucleotide region present at the 5′ end of the polynucleotide that is to be amplified, and (2) a “proto-lox” polynucleotide region.
- the “proto-lox” region is located 5′ to the “target” region of the primer.
- the Amplification Primer comprises three polynucleotide regions: (1) a “target complement” polynucleotide region (i.e., a polynucleotide complementary to a polynucleotide present at the 3′ end of the target polynucleotide that is to be amplified), (2) a polynucleotide region containing modified nucleotides and (3) a “proto-lox” polynucleotide region (i.e., a polynucleotide, which, if hybridized to a complementary polynucleotide would form a double-stranded molecule that would comprise a lox site.
- a “target complement” polynucleotide region i.e., a polynucleotide complementary to a polynucleotide present at the 3′ end of the target polynucleotide that is to be amplified
- a “proto-lox” polynucleotide region
- the polynucleotide region containing modified nucleotides is located 3′ to the “proto-lox” region.
- the sequence of the polynucleotide region containing modified nucleotides is selected such that if it were hybridized to a complementary polynucleotide, the resulting double-stranded polynucleotide would comprise one or more restriction endonuclease recognition site(s).
- the sequence of the polynucleotide region containing modified nucleotides of the primer is preferably further selected such that this restriction endonuclease recognition site is recognized by a restriction endonuclease that is capable of cleaving DNA that lacks such modified nucleotides, but is substantially or completely incapable of cleaving a polynucleotide containing such modified nucleotides.
- modified nucleotides include ribonucleotides (where the polynucleotides are DNA), phosphorothioate nucleotides, methylated nucleotides, bromodeoxyuridine, deoxyuridine, etc.
- the primer (either Amplification Primer or Target Primer) is incubated with the denatured DNA of the sample under conditions which permit both hybridization and template dependent primer extension to occur.
- a polymerase and (non-modified) nucleotides are provided to the reaction.
- the primer extension reaction is terminated by adjusting the reaction conditions to cause the denaturation of the extended primer from its template molecule.
- the extension product of the Amplification Primer molecule will contain a region that is complementary to the target molecule, and thus complementary to the 3′ terminus of the Target Primer (see FIG. 9). As such, it and can hybridize to the Target Primer. If the Target Primer was employed in the initial primer extension reaction, then the resulting extension product will comprise a region that is complementary to the 3′ terminus of the Amplification Primer (see FIG. 9), and can hybridize to the Amplification Primer. A second primer extension reaction is conducted using whichever primer (amplification or Target Primer) was not used in the initial primer extension reaction.
- the reaction conditions are adjusted to permit hybridization and primer extension to occur.
- the annealed amplification and Target Primers produce blunt-ended linear molecules in which the desired “target” region is flanked by lox sites.
- the “proto-lox” polynucleotides of the amplification and Target Primers are oriented (with respect to the target complement and target polynucleotide regions) such that the flanking lox sites are in a direct repeated orientation.
- Cre recombinase is added to the reaction.
- Cre may be added at an earlier step in the process if desired.
- the presence of Cre catalyzes the circularization of the lox sites of the blunt-ended linear molecules produced above.
- the double-stranded molecule contains the target polynucleotide, a single lox site, and a restriction endonuclease site in which one strand (i.e., the strand derived from the Amplification Primer) contains modified nucleotides and the other strand (i.e., that derived from the extension of the Target Primer via DNA polymerase) does not contain modified nucleotides.
- a restriction endonuclease that recognizes the restriction endonuclease recognition site of the double-stranded circular molecule is added to the reaction.
- the restriction endonuclease and the recognition site are selected such that the endonuclease does not cleave DNA containing modified nucleotides.
- Such “nicking” or “gapping” creates a 3′ terminus which may be extended by the previously added polymerase. Such extension displaces the 5′ terminus of the non-modified strand.
- a new hemi-modified site is created. This new site is “nicked” or “gapped” by the previously added restriction endonuclease, and thus generates yet another 3′ terminus that may be extended by the polymerase (see, FIG. 9). Since the cleavage that creates this subsequent 3′ terminus occurs behind the initially created 3′ terminus, it does not affect the ability of a polymerase to extend the initially created 3′ terminus. In a like manner, the reactions continue without further intervention: generating a new 3′ terminus, extending that terminus, creating a new hemi-modified restriction site, “nicking” or “gapping that site to create yet another 3′ terminus.
- each primer extension product As each primer extension product is extended, it displaces the prior strand that was hybridized to its template. This strand displacement reaction continues without further intervention, and generates a set of identical linear molecules, all of which contain a “proto-lox” site and the target polynucleotide region.
- the linear molecule is converted into the above-described double-stranded circular molecule.
- the newly formed circular molecule contains the same hemi-modified restriction endonuclease recognition site as the initially formed circular molecules. Thus, cleavage of that site results in a “nick” or “gap,” which creates a further amplification nucleus.
- the Amplification Primer were provided in limiting amounts, were made of RNA and degraded (as with RNase A, etc.) after the reaction had been initiated, or if it contained other nuclease sensitive bases, or was at least partially biotinylated, it would be possible to exhaust, degrade or remove the Amplification Primer from the reaction after the reaction had initiated. Upon such exhaustion, degradation or removal, the reaction will shift from an exponential amplification reaction that amplifies both strands of the target to a linear reaction that amplifies only the target polynucleotide strand. Such a modification is desirable in instances in which the purification and recovery of only a single strand is desired (e.g., in DNA sequencing, and in probe generation).
- FIG. 10 provides an alternative embodiment of the above-described method.
- either or both of the amplification and Target Primers is modified to contain a sequence that causes the 5′ terminus of the primer(s) to partially self-hybridize to the primer, such that the 3′ terminus of the primer is single-stranded.
- Such self-hybridization acts to minimize or prevent any hybridization between the Amplification Primer and the Target Primer molecules.
- FIGS. 11 and 12 provide diagrammatic representations of alternate preferred methods for achieving the amplification of a desired region of genomic DNA.
- an amplification “cassette” is employed.
- the cassette comprises a linear double-stranded polynucleotide having directly oriented lox sites at its two termini.
- the lox sites are separated from one another by a double-stranded region that comprises a hemi-modified restriction site, and a target restriction site region that contains one of more restriction sites suitable for receiving the target DNA fragment(s).
- the target restriction site region will have multiple restriction cleavage sites, such that, by treating the cassette with multiple restriction endonucleases two fragments are produced, one of which contains a lox site and a first partial restriction site, and the other of which contains a second, and preferably different partial partial restriction site, the hemi-modified restriction site, and a lox site.
- the use of a cassette whose target restriction site region contains two restriction sites having different sequences, and yielding incompatible termini upon cleavage is preferred, since such prevents the religation of the cassette.
- Incompatible termini are termini that cannot be ligated to one another.
- Compatible termini are termini that are ligatable.
- Genomic or other target DNA is cleaved using a restriction fragment that produces termini that are compatible with the termini generated from the restriction cleavage of the cassette.
- the target fragments and the cassette fragments are incubated together in the presence of ligase under conditions sufficient to form a ligation product in which the target fragment has been inserted into the target restriction site region (replacing any DNA present between the original restriction sites).
- the resulting molecule is a double-stranded linear molecule having lox sites at its ends.
- the molecule is preferably purified away from the restriction enzymes and ligase used above. Alternatively, such enzymes can be inactivated by heat, antibodies, or other means.
- Cre present or now added to the reaction, catalyzes the circularization of the target fragment-bearing cassette. Since the circular molecule bears a hemi-modified restriction site, it comprises a substrate for a restriction enzyme that recognizes this site. As in Example 1, such a restriction endonuclease will cleave only the unmodified strand, and will produce a nick in one strand of the double-stranded circular molecule. The 3′ termini genertated from such cleavage is extended by polymerase, in the presence of all four nucleotide species. Such extension regenerates the restriction site, and leads to the production of a linear single-stranded molecule containing the entire length of one circular strand.
- An Amplification Primer is added to the reaction (it may be provided earlier, if desired).
- the Amplification Primer is identical to that described in Example 1.
- the Amplification Primer contains a region complementary to the 3′ terminus of the linear single-stranded molecule produced above.
- the amplification moleule hybridizes with the linear single-stranded molecule, and, because polymerase and nucleotides are present, mediates the formation of a double-stranded molecule whose structure is essentially identical to that of the target fragment-bearing cassette (differing only in having a partial restriction site at one terminus).
- the molecule has two directly oriented lox sites, and is thus circularized by Cre to yield a molecule that is identical to the double-standed circular molecule discussed above. This molecule is processed in the manner described above, leading to exponential amplification
- FIG. 12 shows a related embodiment, differing only in employing a precircularized “cassette” molecule.
- FIGS. 9-12 show the circularization of a single “full-length” linear molecule into a “unit length” circle.
- the same lox orientations responsible for circularization of nucleic acid molecules can mediate multiple head to tail joining of full-length linear molecules so as to form a “multi-unit length” circle.
- the lox site is asymmetric, such head to tail joining conserves the both the orientation of lox sites, and the orientation of strands.
- Such a circle will be processed in the same manner as a unit length circle, but will result in the production of multiple copies of the target (or target complement) strand each time the entire circle is replicated.
- the same unit length amplification product will be produced regardless of the number of full-length linear molecules that have recombined to form a circle.
- This attribute of the present invention is of particular significance since it permits one to amplify target molecules that would otherwise be too small (i.e., too thermodynamically rigid) to circularize readily into unit length circles.
- the processes of the invention without any additional intervention or attention, mediate the head to tail joining of target molecules until a multimer is formed that possesses sufficient thermodynamic flexibility to be capable of circularizing into a circle. If the target molecule is large, the resulting circle can be of unit length; if the target molecule is small, a multi-unit length circle can be formed.
- amplification is single-primer mediated.
- the method would mediate a general, linear amplification of one strand of all of the DNA in a sample.
- Such reaction conditions are useful in applications, such as those encountered in forensic analysis, in which the supply of target material is limited and finite. The method provides a means for amplifying all molecules present, thus increasing target material supply.
- the Amplification Primer controls both the sequence specificity of the reaction, and the extent of exponential amplification.
- the reactions of this Example 2 mediate a linear amplification of all target DNA present in the sample
- reactions conducted in the presence of Amplification Primer mediate an exponential amplification of those molecules of the sample containing sequences complementary to the sequence of the target region of the Amplification Primer.
- multiple Amplification Primers may be employed in lieu of the single Amplification Primer described.
- the use of multiple Amplification Primers permits one to selectively amplify sub-populations of molecules having desired characteristics. However, this use is particularly valuable with the single primer amplification methods of this Example 2. For example, if such methods are conducted with an Amplification Primer that contains a sequence complementary to a promoter sequence, an exponential amplification of all molecules having such a promoter sequence will occur. If a second Amplification Primer is employed that contains a sequence complementary to a repressor binding site, an exponential amplification of all molecules having both a repressor binding site and a promoter will occur.
- the primers may be used to amplify polynucleotides having desired attributes without prior knowledge of their sequences.
- the methods of the present invention permit amplification of nucleic acid molecules that possess both the promoter (or centromere) sequence and the telomere sequence.
- FIG. 13 provides a diagrammatic representation of a second preferred method for achieving the amplification of a desired region of genomic DNA.
- a sample of double-stranded genomic DNA is denatured, as by heat, etc., and incubated in the presence of an Amplification Primer molecule whose 3′ terminus is complementary to a target polynucleotide region whose amplification is desired.
- the Amplification Primer need not be modified in any respect. It merely needs to be of sufficient length to permit stable hybridization.
- the primer is incubated with the denatured DNA of the sample under conditions which permit both hybridization and template dependent primer extension to occur.
- a polymerase and (non-modified) nucleotides are provided to the reaction.
- the primer extension reaction is terminated by modifying the reaction conditions to cause the denaturation of the extended primer from its template molecule.
- a Target Primer is added to the reaction. Although, in a preferred embodiment, this Target Primer is introduced after the termination of the primer extension reaction, such Target Primer may be introduced at any time before, during or after the introduction of the modified Amplification Primer discussed above.
- the Target Primer comprises a partially single-stranded-partially double-stranded “loop” structure. It contains a protruding 3′ terminus whose sequence is the same as a sequence present at the 5′ end of the polynucleotide that is to be amplified, such that the protruding 3′ terminus is complementary to the 3′ terminus of the extension product of the Amplification Primer.
- the reaction conditions are adjusted to permit both the ligation of the primer extension product of the Amplification Primer to the recessed 5′ terminus of the Target Primer, and the template dependent extension of the protruding 3′ terminus of the Target Primer.
- ligase, polymerase and nucleotides are provided.
- the resulting product comprises a double-stranded, blunt-ended, target molecule having the 5′ terminus of one strand connected to the 3′ terminus of the other via the “loop” structure of the Target Primer (see, FIG. 13).
- a linker molecule is introduced into the reaction.
- the linker molecule is a blunt-ended, double-stranded linear molecule which comprises a lox site flanked by one or more pairs of restriction endonuclease recognition sites.
- the restriction sites are composed of modified nucleotides. Both strands of the restriction site are modified.
- the previously added ligase catalyzes the ligation of the linker molecule to the free 3′/5′ terminus of the previously formed product (FIG. 13) to form a “looped target molecule.”
- Such ligation can occur in either of two possible orientations (owing to the directionality of the lox site). The orientation of ligation is unimportant to the reaction.
- a third primer is introduced which is preferably complementary to a polynucleotide region of the non-base paired “loop” part of the molecule.
- the previously added polymerase causes the 3′ terminus of this third primer to be extended around the “loop” and into the polynucleotide region of the target, displacing the hybridized non-template strand.
- the third primer is optional, and added to facilitate the initiation of the amplification reaction. Its presence is not needed during amplification.
- Extension of the primer past the modified restriction site creates a hemi-modified restriction site.
- the introduction into the reaction of a restriction endonuclease that recognizes this site causes a “nick” or “gap” in the non-modified strand.
- primer extension creates a hemi-modified site, that site is cleaved by a restriction endonuclease thereby creating a new 3′ terminus which is extended to form a new hemi-modified site, thereby restarting the cycle.
- the cleavage that creates a new 3′ terminus occurs behind a previously created 3′ terminus, and thus does not affect the ability of a polymerase to extend the initially created 3′ terminus.
- the product of such primer extension and cleavage reactions is the same “looped target molecule” as that described above.
- the method achieves the exponential amplification of both strands of the target polynucleotide without using modified primers.
- pBR322 is a double-stranded DNA plasmid 4,362 nucleotides long Maniatis, T. et al., In: “Molecular Cloning A Laboratory Manual,” Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1982)). It has a single EcoRI site located at nucleotide 4360, and a single BamHI site located at nucleotide 375. Accordingly, pBR322 DNA that is restricted with both EcoRI and BamHI yields two fragments whose lengths are 377 and 3,985 nucleotides (the 3,985 nucleotide fragment is referred to as the 4 kb fragment).
- LOX-pBR322 derivative is made as follows:
- pBR322 EcoRI—BamHI fragment
- pBR322 is obtained (Life Technologies, Gaithersburg, Md.) and cleaved with both EcoRI and BamHI (Life Technologies, Gaithersburg, Md.) according to the manufacturer's instructions.
- Linear molecules having a length of approximately 4,000 nucleotides are purified by agarose gel electrophoresis (Sambrook, J. et al., In “Molecular Cloning A Laboratory Manual,” Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989)).
- a double-stranded EcoRI-NotI-LOX-BamHI DNA linker molecule is. produced having the sequences SEQ ID NO:1: 5′ aattcgcggc cgcataactt cgtataatgt atgctatacg aagttatg 3′
- the underlined nucleotides in SEQ ID NO:2. are 5-methylcytosine (however, phosphorothioated residues may be used).
- the double-stranded DNA linker molecule can be obtained in any of a variety of ways. In one embodiment, it may be formed by mixing equimolar amounts of synthetic oligonucleotides having the sequences SEQ ID NO:1 and SEQ ID NO:2.
- the double-stranded EcoRI-NotI-LOX-BamHI DNA linker molecule can be made by incubating an oligonucleotide primer having the sequence of SEQ ID NO:3: 5′ aattcgcggc cgc 3′
- the desired pBR322-LOX derivative is constructed by incubating the previously isolated 4 kb EcoRI-BamHI pBR322 fragment in the presence of the EcoRI-NotI-LOX-BamHI DNA linker molecule, and DNA ligase. After permitting the ligation reaction to occur, the ligated material is purified by gel electrophoresis, and material migrating at the position of relaxed double-stranded circular DNA is recovered. This material is the desired pBR322-LOX derivative.
- pBR322-LOX derivative is alternatively made as follows: pBR322 is obtained (Life Technologies, Gaithersburg, Md.) and cleaved with both EcoRI and BamHI (Life Technologies, Gaithersburg, Md.) according to the manufacturer's instructions. Linear molecules having a length of approximately 4,000 nucleotides are thereby obtained (Sambrook, J. et al., In “Molecular Cloning A Laboratory Manual,” Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989)).
- the restricted DNA is then subjected to a PCR amplification using two PCR primers comprising the sequences, SEQ ID NO:4 and SEQ ID NO:5.
- SEQ ID NO: 4 5′ tatacgaagt tatggatcca taacttcgta tagcatacat tatacgaagt tatg c gg cc g c gaattcttg aagacgaaag 3′
- the first PCR primer contains a 13 base long span of nucleotides (nucleotides 1-13) that is connected to a BamHI recognition sequence (14-19).
- Nucleotides 20-53 are a LOX site. The initial span of nucleotides is complementary to the initial 13 nucleotides of the LOX site, such that a “loop” can form between these regions of the primer.
- Nucleotides 54-61 are a NotI site.
- Nucleotides 62-80 comprise the sequence of the EcoRI site of plasmid pBR322 and nucleotides 4359-4347 of pBR322.
- nucleotides 1-13 of the second PCR primer are complementary to the first 13 nucleotides of the LOX site that is present at nucleotides 20-53.
- Nucleotides 14-19 are an EcoRI site.
- Nucleotides 54-70 are the BamHI site of pBR322, and the eleven nucleotides of pBR322 that follow that site.
- the PCR amplification thus yields linear double-stranded molecules having LOX sites on each terminus.
- the molecule is circularized using Cre.
- the Amplification Primer is most preferably obtained by nucleotide synthesis.
- the primer is single-stranded, and has 80 nucleotides comprising the sequence, SEQ ID NO:4: 5′ tatacgaagt tatggatcca taacttcgta tagcatacat tatacgaagt tatg c gg cc g c gaattcttg aagacgaaag 3′
- a Target Primer may be synthesized having 70 nucleotides, and comprising the sequence, SEQ ID NO:5: 5′ tatacgaagt tatgaattca taacttcgta taatgtatgc tatacgaagt tatggatcct ctacgccgga 3′
- the Amplification Primer and the Target Primer are oriented with respect to one another so as to comprise primers that may be used in PCR for amplifying the 4 kb pBR322 EcoRI BamHI derivative.
- Cre is obtained from Novogen, Inc. (Madison, Wis.). Alternatively, it may be purified according to the methods of Abremski, K. et al. (J. Molec. Biol. 150:467-486 (1981), herein incorporated by reference). NotI endonuclease, Klenow DNA polymerase, Taq polymerase and plasmids that overproduce Cre are obtained from Life Technologies, Inc., Gaithersburg Md.
- Amplification is obtained by incubating either the circular pBR322-LOX derivative produced in Method I, or the linear pBR322-LOX derivative produced in Method II, in the presence of 10 units/ml DNA polymerase (Klenow), 1 unit/ml NotI endonuclease, Amplification Primer and Cre.
- a typical reaction aliquot (50 ⁇ l) contains 50 mM Tris-HCl (pH 7.5), 33 mM NaCl, 1 ⁇ g/ml pBR322-LOX derivative, 0.2 ⁇ g/ml of Amplification Primer, 50 ⁇ g/ml each of dATP, TTP, dCTP, and dGTP, and 2 ⁇ g/ml Cre. 2 mM MgCl 2 is added in reactions conducted with Taq polymerase. Reactions are incubated at 37-45° C. for 1-2 hours, or longer.
- a series of control experiments are conducted. Each such experiment is conducted in a reaction volume of 50 ⁇ l.
- the Buffer in the experiments is 50 mM Tris-HCl (pH 7.5), 33 mM NaCl, and 50 ⁇ g/ml each of dATP, TTP, dCTP, and dGTP. All reactions are incubated for 2 hours either isothermally, or under thermocycling conditions, with 10 ⁇ l aliquots removed at 0, 30, 60 and 120 minutes.
- Experiment 1 is a Cre-facilitated amplification reaction.
- Experiments 2-6 explore the effect of deleting Cre, Polymerase, Amplification Primer, NotI and Substrate, respectively, from the amplification reaction.
- Experiments 7-8 are designed to permit a comparison between Cre-facilitated amplification and PCR under approximately identical conditions.
- Experiment 7 is an amplification reaction run under isothermal conditions 37-45° C. using Taq polymerase instead of Klenow.
- Experiment 8 is a PCR protocol performed as described by Sambrook, J. et al.
- Experiment 9 is a Cre control for demonstrating the capacity of the Cre to mediate recombination.
- Experiments 10-12 are controls to identify the nature and migration of the DNA substrates.
- Experiments 13 and 14 demonstrate the capacity of Cre-mediated amplification to amplify DNA lacking lox sites. Experiments 13 and 14 are performed as follows:
- Target Primer and Taq polymerase are added, and a polymerization reaction is permitted to occur for 20 minutes.
- the p53 gene is a human tumor suppressor gene that comprises approximately 20 kilobases, and contains 11 exons (393 codons). The gene is located at chromosome region 17p13.105-p12. Its sequence can be obtained from the GSDB database at accession X54156. Mutations in the p53 gene are the single most common genetic alteration in human cancers. Indeed, of the more than 100,000 additional cases of colon, lung and breast cancer diagnosed each year, more than half have been reported to contain p53 mutations (Levine, A. J., Canc. Surveys 12:59-79 (1992); herein incorporated by reference).
- the p53 gene of an individual can be amplified by incubating the gene in the presence of a Target Primer which is capable of hybridizing to the 5′ terminus of one strand of the individual's p53 gene, and then in the presence of an Amplification Primer which is capable of hybridizing to the 5′ terminus of the other strand of the individual's p53 gene.
- a Target Primer which is capable of hybridizing to the 5′ terminus of one strand of the individual's p53 gene
- an Amplification Primer which is capable of hybridizing to the 5′ terminus of the other strand of the individual's p53 gene.
- Both the Target Primer and the Amplification Primer have 5′ termini that, if hybridized to a complementary polynucleotide, would form a double-stranded polynucleotide that contains a lox site.
- the Amplification Primer additionally includes a polynucleotide region containing at least one modified nucleotide residues, such that, if this polynucleotide region were hybridized to a complementary polynucleotide, a double-stranded polynucleotide would thereby be formed that would contain one or more restriction endonuclease cleavage sites that would be recognized by a restriction endonuclease but which could not (because of the presence of the modified nucleotide residue(s)) be cleaved. Rather, only that strand of the restriction site that lacked modified nucleotide residues would be cleaved.
- Target Primer (SEQ ID NO:6): 5′ tatacgaagt tatgaattca taacttcgta taatgtatgc tatacgaagt tatttcccat caagccctag ggctcc 3′
- nucleotides 1-13 of the Target Primer are complementary to the first 13 nucleotides of the LOX site that is present at nucleotides 20-53.
- Nucleotides 14-19 are an EcoRI site.
- Nucleotides 54-76 comprise the sequence of the nucleotides 1 through 23 of the p53 gene.
- sequence of a suitable Amplification Primer is (SEQ ID NO:7): 5′ tatacgaagt tatggatcca taacttcgta tagcatacat tatacgaagt tatg c gg cc g c ccaccctgt tcccttggaa cccaggta 3′
- the Amplification Primer contains a 13 base long span of nucleotides (nucleotides 1-13) that is connected to a BamHI recognition sequence (14-19).
- Nucleotides 20-53 are a LOX site. The initial span of nucleotides is complementary to the initial 13 nucleotides of the LOX site, such that a “loop” can form between these regions of the primer.
- Nucleotides 54-61 are a NotI site.
- Nucleotides 62-88 are complementary to nucleotides 20303 through 20277 of the human p53 gene. The underscoring of C residues in the NotI site indicates that at least one of the residues is methylated or phosphorothioated.
- Amplification is achieved by incubating a sample containing the p53 gene of an individual in the presence of the Target Primer and in the presence of Klenow (or Taq) polymerase, and nucleotides. Incubation is conducted under conditions sufficient to permit the Target Primer to hybridize to the p53 template.
- a typical reaction aliquot (50 ⁇ l) contains 50 mM Tris-HCl (pH 7.5), 33 mM NaCl, 50 units/ml DNA polymerase (Klenow), 1 ⁇ g/ml sample DNA, 0.2 ⁇ g/ml of Target Primer, and 100 ⁇ g/ml each of dATP, TTP, dCTP, and dGTP. The polymerization reaction is monitored, and permitted to proceed until full length Target Primer extension product molecules of 20 kb have been obtained.
- the reaction is then treated so as to denature the Target Primer extension product from its p53 template. It is then returned to conditions suitable hot nucleic acid hybridization and primer extension. Cre (2 ⁇ g/ml), Amplification Primer (0.2 ⁇ g/ml), and 1 unit/ml NotI endonuclease are then added to the reaction. If heat is used as the denaturant, such action will inactivate any non-thermostabile reagents present. Thus, an additional 50 units/ml of Klenow polymerase is also added to the reaction.
- the 3′ terminus of the Amplification Primer is complementary to the 3′ terminus of the full length Target Primer extension product. It thus hybridizes to that product, and the polymerase mediates both the formation of an Amplification Primer extension product, and the further extension of the Target Primer extension product until a double-stranded linear molecule is formed having lox sites on each end and a hemi-modified NotI recognition site.
- the added Cre converts this linear molecule into a double-stranded circular molecule.
- the NotI endonuclease cleaves the target strand at the NotI restriction site, thereby generating a free 3′ terminus that initiates target strand synthesis. This synthesis repairs the NotI site and thus permits its repeated cleavage, thereby “shedding” full length target strand molecules. Since the Amplification Primer is still present in the reaction, it hybridizes with these full length target strand molecules, and is extended by the polymerase to form a new double-stranded linear molecule having lox sites on each end and a hemi-modified NotI recognition site. The amplification process then continues as described above.
- Target Primer 3aLox and Amplification Primer 1794LoxNot were obtained by custom synthesis (Genosys).
- the sequence of Target Primer 3aLox is shown below as SEQ ID NO:8.
- Bases complementary to the p53 gene are shown in underline.
- SEQ ID NO: 8 ATAACTTCGT ATAATGTATG CTATACGAAG TTAT TAATTC TTAAAGCACC TGCACCG
- Amplification Primer 1794LoxNot is shown below as SEQ ID NO:9. Bases complementary to the p53 gene are shown in underline; the NotI site (containing methylated C nucleotide residues) is shown in lowercase. SEQ ID NO: 9 ATAACTTCGT ATAGCATACA TTATACGAAG TTATgcggcc gc CCATAACT AAGTAATCCA GAAAA
- the reaction was isolated into three “steps:” (1) the production of a double-stranded linear nucleic acid molecule in which a target polynucleotide is flanked by Lox sites (i.e., a lox site is present at each terminus of the linear molecule), and which contains a hemi-modified (NotI) restriction site between the target polynucleotide and one of the Lox sites; (2) the circularization of such a linear molecule by Cre; and (3) the nicking and amplification of such circular molecules by the restriction endonuclease and a polymerase.
- Lox sites i.e., a lox site is present at each terminus of the linear molecule
- NotI hemi-modified restriction site
- Amplified product is purified by glassMax filtration according to the manufacturer's instructions, or by ethanol precipitation. Circularization reactions are performed in 30 ⁇ l volumes that contained: 13.5 ⁇ l of water, 3 ⁇ l of 10 ⁇ Cre Buffer (50 mM Tris (pH 7.5), 33 mM NaCl, 10 mM MgCl2), 10 mg/ml BSA (0.4 ⁇ l of a 75 ⁇ g/ ⁇ l solution), 12.5 ⁇ l of the purified amplified product, and (except for control reactions) 1 ⁇ l of Cre (Novagen stock solution diluted ⁇ fraction (1/10) ⁇ in 10 ⁇ Cre Buffer). Reactions are incubated for 30 minutes at 37° C., and then were stopped by heating to 70° C. for 5 minutes.
- 10 ⁇ Cre Buffer 50 mM Tris (pH 7.5), 33 mM NaCl, 10 mM MgCl2
- BSA 0.4 ⁇ l of a 75 ⁇ g/ ⁇ l
- Circularization is determined by treating the reaction products with HinDIII.
- HinDIII digestion is performed as follows: 15 ⁇ l of Cre-treated or control reactions are incubated with 2 ⁇ l of a HinDIII solution (16 ⁇ l water, 2 ⁇ l 10 ⁇ React II buffer (Life Technologies, Inc.), 2 ⁇ l HinDIII (Life Technologies, Inc.)). Digestion is stopped after a one hour incubation at 37° C. Digestion products are analyzed by electrophoresis using 0.8% agarose gels. Bands of approximately 550 and 1150 base pairs are observed in the HinDIII-treated, Cre-treated samples, but are not observed in samples incubated without Cre or without HinDIII.
- the amplified linear product contained functional lox termini, and that Cre recombinase could mediate the circularization of the linear reaction products into the desired double-stranded circular molecule having a recombinational site, a hemi-modified restriction site and a polynucleotide fragment of a mammalian gene.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Methods and compositions suitable for accomplishing the in vitro amplification of nucleic acid molecules via enzymatic means are provided. The preferred means employ circular rather than linear replicons. Means for producing such circular replicons from linear reactants are also provided.
Description
- This application is a continuation of U.S. patent application Ser. No. 09/899,834 (filed Jul. 9, 2001), which application is a continuation-in-part of U.S. patent application Ser. No. 09/657,943 (filed Sep. 8, 2000, which issued on Jul. 17, 2001, as U.S. Pat. No. 6,621,808), which application is a continuation-in-part of U.S. patent application Ser. No. 09/188,214 (filed Nov. 9, 1998, which issued on Apr. 17, 2001, as U.S. Pat. No. 6,218,152), which application is incorporated herein by reference in its entirety, and which is a continuation application of U.S. patent application Ser. No. 08/906,491 (filed Aug. 5, 1997, which issued on Nov. 10, 1998, as U.S. Pat. No. 5,834,202), which application is a continuation-in-part of U.S. patent application Ser No. 08/595,226 (filed Feb. 1, 1996; issued Mar. 31, 1998, as U.S. Pat. No. 5,733,733), which is a continuation-in-part of U.S. patent application Ser. No. 08/533,852 (filed Sep. 26, 1995; issued Mar. 25, 1997, as U.S. Pat. No. 5,614,389), which is a continuation-in-part of U.S. patent application Ser. No. 08/383,327 (filed Feb. 3, 1995; issued Jan. 7, 1997, as U.S. Pat. No. 5,591,609), which is a continuation-in-part of PCT Application No. PCT/US93/07309 (filed Aug. 4, 1993), which is a continuation-in-part of U.S. patent application Ser. No. 07/933,945, filed Aug. 24, 1992 (which application was abandoned in favor of continuation application U.S. patent application Ser. No. 08/136,405, filed Oct. 15, 1993, which issued on Oct. 11, 1994 as U.S. Pat. No. 5,354,668), which is a continuation-in-part of U.S. patent application Ser. No. 07/924,643, filed Aug. 4, 1992 (abandoned), all herein incorporated by reference.
- The present invention is in the field of recombinant DNA technology. This invention is directed to a process for amplifying a nucleic acid molecule, and to the molecules, cells, and non-human transgenic animals employed and/or produced through this process.
- Assays capable of detecting the presence of a particular nucleic acid molecule in a sample are of substantial importance in forensics, medicine, epidemiology and public health, and in the prediction and diagnosis of disease. Such assays can be used, for example, to identify the causal agent of an infectious disease, to predict the likelihood that an individual will suffer from a genetic disease, to determine the purity of drinking water or milk, or to identify tissue samples. The desire to increase the utility and applicability of such assays is often frustrated by assay sensitivity. Hence, it would be highly desirable to develop more sensitive detection assays.
- The usefulness of a detection assay is often limited by the concentration at which a particular target nucleic acid molecule is present in a sample. Thus, methods that are capable of amplifying the concentration of a nucleic acid molecule have been developed as adjuncts to detection assays.
- One method for overcoming the sensitivity limitation of nucleic acid concentration is to selectively amplify the nucleic acid molecule whose detection is desired prior to performing the assay. Recombinant DNA methodologies capable of amplifying purified nucleic acid fragments in vivo have long been recognized. Typically, such methodologies involve the introduction of the nucleic acid fragment into a DNA or RNA vector, the clonal amplification of the vector, and the recovery of the amplified nucleic acid fragment. Examples of such methodologies are provided by Cohen et al. (U.S. Pat. No. 4,237,224), Maniatis, T. et al.,Molecular Cloning (A Laboratory Manual), Cold Spring Harbor Laboratory, 1982, etc.
- In many instances in clinical medicine and diagnostics, however, the concentration of a target species in a sample under evaluation is so low that it cannot be readily cloned. To address such situations, methods of in vitro nucleic acid amplification have been developed that employ template directed extension. In such methods, the nucleic acid molecule is used as a template for extension of a nucleic acid primer in a reaction catalyzed by polymerase.
- One such template extension method is the “polymerase chain reaction” (“PCR”), which is among the most widely used methods of DNAn amplification (Mullis, K. et al.,Cold Spring Harbor Symp. Quant. Biol. 51:263-273 (1986); Erlich H. et al., EP 50,424; EP 84,796, EP 258,017, EP 237,362; Mullis, K., EP 201,184; Mullis K. et al., U.S. Pat. No. 4,683,202; Erlich, H., U.S. Pat. No. 4,582,788; Saiki, R. et al., U.S. Pat. No. 4,683,194 and Higuchi, R. “PCR Technology,” Ehrlich, H. (ed.), Stockton Press, NY, 1989, pp 61-68), which references are incorporated herein by reference).
- The polymerase chain reaction can be used to selectively increase the concentration of a nucleic acid molecule even when that molecule has not been previously purified and is present only in a single copy in a particular sample. The method can be used to amplify either single- or double-stranded DNA. The essence of the method involves the use of two oligonucleotides to serve as primers for the template-dependent, polymerase mediated replication of the desired nucleic acid molecule.
- The precise nature of the two oligonucleotide primers of the PCR method is critical to the success of the method. As is well known, a molecule of DNA or RNA possesses directionality, which is conferred through the 5′→3′ linkage of the sugar-phosphate backbone of the molecule. Two DNA or RNA molecules may be linked together through the formation of a phosphodiester bond between the
terminal 5′ phosphate group of one molecule and theterminal 3′ hydroxyl group of the second molecule. Polymerase dependent amplification of a nucleic acid molecule proceeds by the addition of a nucleotide having 5′ phosphate to the 3′ hydroxyl end of a nucleic acid molecule. Thus, the action of a polymerase extends the 3′ end of a nucleic acid molecule. These inherent properties are exploited in the selection of the two oligonucleotide primers of the PCR. The oligonucleotide sequences of the two primers of the PCR method are selected such that they contain sequences identical to, or complementary to, sequences which flank the sequence of the particular nucleic acid molecule whose amplification is desired. More specifically, the nucleotide sequence of the Amplification Primer is selected such that it is capable of hybridizing to an oligonucleotide sequence located 3′ to the sequence of the desired nucleic acid molecule that is to be amplified, whereas the nucleotide sequence of the Target Primer is selected such that it contains a nucleotide sequence identical to one present 5′ to the sequence of the desired nucleic acid molecule that is to be amplified. Both primers possess the 3′ hydroxyl groups which are necessary for enzyme mediated nucleic acid synthesis. - In the polymerase chain reaction, the reaction conditions must be cycled between those conducive to hybridization and nucleic acid polymerization, and those which result in the denaturation of duplex molecules. In the first step of the reaction, the nucleic acid molecules of the sample are transiently heated, and then cooled, in order to denature any double stranded molecules that may be present. The amplification and Target Primers are then added to the sample at a concentration which greatly exceeds that of the desired nucleic acid molecule. When the sample is then incubated under conditions conducive to hybridization and polymerization, the Amplification Primer will hybridize to the nucleic acid molecule of the sample at a
position 3′ to the sequence of the desired molecule to be amplified. If the nucleic acid molecule of the sample was initially double stranded, the Target Primer will hybridize to the complementary strand of the nucleic acid molecule at aposition 3′ to the sequence of the desired molecule that is the complement of the sequence whose amplification is desired. Upon addition of a polymerase, the 3′ ends of the amplification and (if the nucleic acid molecule was double stranded) Target Primers will be extended. The extension of the Amplification Primer will result in the synthesis of a DNA molecule having the exact sequence of the complement of the desired nucleic acid. Extension of the Target Primer will result in the synthesis of a DNA molecule having the exact sequence of the desired nucleic acid. - The PCR reaction is capable of exponentially amplifying the desired nucleic acid sequences, with a near doubling of the number of molecules having the desired sequence in each cycle. This exponential increase occurs because the extension product of the Amplification Primer contains a sequence which is complementary to a sequence of the Target Primer, and thus can serve as a template for the production of an extension product of the Target Primer. Similarly, the extension product of the Target Primer, of necessity, contain a sequence which is complementary to a sequence of the Amplification Primer, and thus can serve as a template for the production of an extension product of the Amplification Primer. Thus, by permitting cycles of hybridization, polymerization, and denaturation, an exponential increase in the concentration of the desired nucleic acid molecule can be achieved. Reviews of the polymerase chain reaction are provided by Mullis, K. B. (Cold Spring Harbor Symp. Quant. Biol. 51:263-273(1986)); Saiki, R. K., et al. (Bio/Technology 3:1008-1012 (1985)); and Mullis, K. B., et al. (Met. Enzymol. 155:335-350 (1987), which references are incorporated herein by reference).
- PCR technology is useful in that it can achieve the rapid and extensive amplification of a polynucleotide molecule. However, the method has several salient deficiencies. First, it requires the preparation of two different primers which hybridize to two oligonucleotide sequences of the target sequence flanking the region that is to be amplified. The concentration of the two primers can be rate limiting for the reaction. Although it is not essential that the concentration of the two primers be identical, a disparity between the concentrations of the two primers can greatly reduce the overall yield of the reaction.
- A further disadvantage of the PCR reaction is that when two different primers are used, the reaction conditions chosen must be such that both primers “prime” with similar efficiency. Since the two primers necessarily have different sequences, this requirement can constrain the choice of primers and require considerable experimentation. Furthermore, if one tries to amplify two different sequences simultaneously using PCR (i.e. using two sets of two primers), the reaction conditions must be optimized for four different primers.
- A further disadvantage of PCR is that it requires the thermocycling of the molecules being amplified. Since this thermocycling requirement denatures conventional polymerases, it thus requires the addition of new polymerase at the commencement of each cycle. The requirement for additional polymerase increases the expense of the reaction, and can be avoided only through the use of thermostable polymerases, such as Taq polymerase. Moreover, the thermocycling requirement attenuates the overall rate of amplification because further extension of a primer ceases when the sample is heated to denature double-stranded nucleic acid molecules. Thus, to the extent that the extension of any primer molecule has not been completed prior to the next heating step of the cycle, the rate of amplification is impaired.
- Other known nucleic acid amplification procedures include transcription-based amplification systems (Kwoh D. et al.,Proc. Natl. Acad. Sci. (U.S.A.) 86:1173 (1989); Gingeras T. R. et al., PCT appl. WO 88/10315 (priority: U.S. patent applications Ser. Nos. 064,141 and 202,978); Davey, C. et .al., European Patent Application Publication no. 329,822; Miller, H. I, et al., PCT appl. WO 89/06700(priority: U.S. patent application Ser. No. 146,462, filed 21 Jan. 1988)), and “race” (Frobman, M. A., In: PCR Protocols: A Guide to Methods and Applications, Academic Press, NY (1990)) and “one-sided PCR” (Ohara, O. et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:5673-5677 (1989)).
- Methods based on ligation of two (or more) oligonucleotides in the presence of nucleic acid having the sequence of the resulting “di-oligonucleotide”, thereby amplifying the di-oligonucleotide, are also known (Wu, D. Y. et al.,Genomics 4:560 (1989)).
- An isothermal amplification method has been described in which a restriction endonuclease is used to achieve the amplification of target molecules that contain
nucleotide 5′-[a-thio]triphosphates in one strand of a restriction site (Walker, G. T. et al., Proc. Natl. Acad. Sci. (U.S.A.) 89:392-396 (1992)). - All of the above amplification procedures depend on the principle that an end-product of a cycle is functionally identical to a starting material. Thus, by repeating cycles, the nucleic acid is amplified exponentially.
- Methods that use thermocycling, e.g. PCR or Wu, D. Y. et al.,Genomics 4:560 (1989)), have a theoretical maximum increase of product of 2-fold per cycle, because in each cycle a single product is made from each template. In practice, the increase is always lower than 2-fold. Further slowing the amplification is the time spent in changing the temperature. Also adding delay is the need to allow enough time in a cycle for all molecules to have finished a step. Molecules that finish a step quickly must “wait” for their slower counterparts to finish before proceeding to the next step in the cycle; to shorten the cycle time would lead to skipping of one cycle by the “slower” molecules, leading to a lower exponent of amplification.
- The present invention concerns a method and in vitro polynucleotide complexes for achieving the amplification of a nucleic acid molecule using a single primer, under isothermal conditions.
- In detail, the invention provides a composition for amplifying in vitro a target polynucleotide region of an initial linear nucleic acid molecule, wherein the composition comprises:
- (A) a single-stranded first polynucleotide, wherein the polynucleotide (i) contains a polynucleotide region that is complementary in sequence to the target polynucleotide region, and (ii) is a circular polynucleotide or is circularizable when hybridized to the target polynucleotide region in vitro; and
- (B) a second polynucleotide comprising the target polynucleotide region.
- The present invention particularly concerns the embodiments of such a composition wherein the composition additionally comprise a template-dependent polymerase sufficient to extend a 3′ terminus of a polynucleotide hybridized to the single-stranded first polynucleotide in vitro to thereby produce a template-dependent extension product and wherein the polymerase is additionally capable of causing extension-dependent strand displacement of hybridized polynucleotides.
- The present invention particularly concerns the embodiments of such compositions wherein, the single-stranded first polynucleotide is circularizable via the action of a ligase, or is circularizable via the action of a recombinase.
- The present invention particularly concerns the embodiments of such compositions wherein, the single-stranded first polynucleotide contains a modified nucleotide, especially a ribonucleotide or a biotinylated nucleotide.
- The present invention further concerns a kit for amplifying in vitro a target polynucleotide region of an initial linear nucleic acid molecule, wherein the kit comprises:
- (A) a first container containing a single-stranded first polynucleotide, wherein the polynucleotide (i) contains a polynucleotide region that is complementary in sequence to the target polynucleotide region, and (ii) is a circular polynucleotide or is circularizable when hybridized to the target polynucleotide region; and
- (B) a second container containing a second polynucleotide comprising the target polynucleotide region.
- The present invention particularly concerns the embodiments of such a kit wherein the kit additionally comprise a third container containing a template-dependent polymerase sufficient to extend a 3′ terminus of a polynucleotide hybridized to the single-stranded first polynucleotide in vitro to thereby produce a template-dependent extension product and wherein the polymerase is additionally capable of causing extension-dependent strand displacement of hybridized polynucleotides.
- The present invention particularly concerns the embodiments of such kits wherein, the single-stranded first polynucleotide is circularizable via the action of a ligase, or is circularizable via the action of a recombinase.
- The present invention particularly concerns the embodiments of such kits wherein, the single-stranded first polynucleotide contains a modified nucleotide, especially a ribonucleotide or a biotinylated nucleotide.
- FIG. 1 shows examples of suitable 5′ adaptor molecules.
- FIGS. 2A and 2B (comprising Drawings A,B,C and D) show examples of suitable 3′ adaptor molecules.
- FIGS. 3A and 3B show the adaptation of the 3′ terminus of the primer extension product. Lines A, B and C of FIG. 3A illustrate the use of different adaptor molecules to modify the 3′ terminus of the primer extension product through further primer extension. Line D of FIG. 3B shows the use of ligation to modify the 3′ terminus.
- FIGS. 4A, 4B,4C, and 4D show the formation of double-stranded circular molecules from linear molecules adapted using adaptor molecules that contain a recombinational site.
- FIG. 5 shows the formation of hairpin loop molecules from the adaptation of the primer extension product with a 3′ adaptor molecule having an inverted repeated sequence.
- FIG. 6 shows the formation of “bow-tie” molecules from the adaptation of the primer extension product with a 3′ adaptor molecule having a pair of nested inverted repeated sequences.
- FIG. 7 shows the conversion of hairpin loop and “bow-tie” molecules having directly repeated recombinational sites into single strand circular molecules.
- FIGS. 8A and 8B show the amplification replicons of the present invention. FIG. 8A shows the twin origin “rolling circle” replicon that results from the extension of two primers during the amplification of a single-stranded circular molecule. FIG. 8B shows the θ (“theta”) and “rolling circle” replicons that result from the amplification of a double-stranded circular molecule.
- FIG. 9 provides a diagramatic representation of an illustrative isothermal amplification reaction described in Example 1.
- FIG. 10 provides a diagramatic representation of an alternative illustrative isothermal amplification reaction described in Example 1. The Figure illustrates the use of a 5′ fourth region of Primer I that is complementary to a portion of the proto-Lox site.
- FIG. 11 provides a diagramatic representation of the use of ligation to form double-stranded circular molecules, as described in Example 2. In FIG. 1, the 5′ fourth region of Primer I that is complementary to a portion of the proto-Lox site may be deleted, if desired.
- FIG. 12 provides a diagramatic representation of an alternative use of ligation to form double-stranded circular molecules, as described in Example 2. In FIG. 12, the 5′ fourth region of Primer I that is complementary to a portion of the proto-Lox site may be deleted, if desired.
- FIG. 13 provides a diagramatic representation of the alternative illustrative isothermal amplification reaction described in Example 4 in which an unmodified primer is used and a DNA ligase is employed.
- I. Terminology of the Invention
- The present invention provides a method for amplifying a “target” polynucleotide region of a nucleic acid molecule that is present in a sample. Such samples may include biological samples derived from a human or other animal source (such as, for example, blood, stool, sputum, mucus, serum, urine, saliva, teardrop, a biopsy sample, an histology tissue sample, a PAP smear, a mole, a wart, an agricultural product, waste water, drinking water, milk, processed foodstuff, air, etc.) including samples derived from a bacterial or viral preparation, as well as other samples (such as, for example, agricultural products, waste or drinking water, milk or other processed foodstuff, air, etc.).
- As used herein, the term “desired” nucleic acid molecule is intended to refer to the nucleic acid molecule that is to be amplified by the present methods. The “desired” molecule can have been purified, or partially purified, or may be present in an unpurified state in the sample. A nucleic acid molecule that contains the “desired” molecule is said to be a “target” molecule. The nucleic acid molecules of the present invention are described as “polynucleotides” in order to denote that they contain more than three nucleotide residues. The nucleic acid molecules of the present invention are further described as comprising “regions,” in order to more fully describe the structural components of the molecules. The linear nucleic acid molecules of the invention contain terminal “portions.” As used herein, such portions define a region at the end of the molecules.
- As used herein, the term “amplification” refers to a “template-dependent process” that results in an increase in the concentration of a nucleic acid molecule relative to its initial concentration. As used herein, the term “template-dependent process” is intended to refer to a process that involves the template-dependent extension of a primer molecule. As such, the term amplification, as used herein, is intended to exclude in vivo vector-mediated propagation of the type described by Cohen et al. (U.S. Pat. No. 4,237,224); Maniatis, T. et al., (Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, 1982), etc. The term “template dependent process” refers to nucleic acid synthesis of RNA or DNA wherein the sequence of the newly synthesized strand of nucleic acid is dictated by the well-known rules of complementary base pairing (see, for example, Watson, J. D. et al., In: Molecular Biology of the Gene, 4th Ed., W. A. Benjamin, Inc., Menlo Park, Calif. (1987)). As used herein, a sequence of one nucleic acid molecule is said to be the “complement” of another if it contains a T (or U), A, C, or G at a position in which the other molecule contains an A, T (or U), G or C, respectively.
- The present invention employs a variety of different enzymes to accomplish the amplification of the desired nucleic acid molecule. A “polymerase” is an enzyme that is capable of incorporating nucleotides to extend a 3′ hydroxyl terminus of a “primer molecule.” A nucleotide that has been incorporated into a nucleic acid molecule is termed a nucleotide “residue.” As used herein, a “primer” or “primer molecule” is a nucleic acid molecule, that when hybridized to a nucleic acid molecule, possesses a 3′ hydroxyl terminus that can be extended by a polymerase. Polymerase enzymes are discussed in Watson, J. D. et al., In:Molecular Biology of the Gene, 4th Ed., W. A. Benjamin, Inc., Menlo Park, Calif. (1987), which reference is incorporated herein by reference, and similar texts. Examples of DNA polymerases that can be used in accordance with the methods described herein include E. coli DNA polymerase I, the large proteolytic fragment of E. coli DNA polymerase I, commonly known as “Klenow” polymerase, “Taq” polymerase, T7 polymerase, T4 polymerase, T5 polymerase, reverse transcriptase, etc.
- Polymerases exhibiting processivity (the capacity to continue the extension of a particular primer to thereby produce an extension product of significant length) are preferred.
- In several of the embodiments of the present invention, amplification is achieved by extending a hybridized primer on a single-stranded DNA template that is base paired to itself. Thus, polymerases capable of mediating such primer extension and strand displacement are particularly preferred. Examples of preferred polymerases include T5 DNA polymerase (Chatterjee, D. K. et al.,Gene 97:13-19 (1991), T4 polymerase, and T7 polymerase. Where a DNA polymerase does not displace a base-paired stand of a DNA molecule and extend a primer into the previously base-paired region with sufficient efficiency, such capacity may be facilitated by the addition of an accessory protein. For example, the capacity of T7 polymerase to displace a strand of a base-paired molecule is enhanced by the presence of
T7 gene 4 protein (Kolodner, R. et al., J. Biol. Chem 253:574-584 (1978)). Similarly, T4 DNA polymerase can catalyze extensive primer extension if the reaction additionally contains T4 gene 32 protein (Gillin, F. D. et al., J. Biol. Chem 251:5219-5224 (1976)). Use of the T7 promoter andgene 4 protein, however, has the advantage that thegene 4 protein is used catalytically rather than stoichiometrically during the primer extension reaction. - In some embodiments of the invention, amplification is achieved by extending a hybridized primer on a DNA template of a double-stranded DNA molecule composed of two separable strands. Thus, in such embodiments, polymerases capable of mediating such primer extension are preferred. Examples of preferred polymerases include those cited above. The capacity to extend primer molecules using such double-stranded DNA templates may be facilitated through the addition of topisomerases and/or gyrases (Eki, T. et al.,J. Biol. Chem 266:3087-3100 (1991); Parada, C. A. et al., J. Biol. Chem 264:15120-15129 (1989)).
- When an enzymatic reaction, such as a polymerization reaction, is being conducted, it is preferable to provide the components required for such reaction in “excess” in the reaction vessel. “Excess” in reference to components of the amplification reaction refers to an amount of each component such that the ability to achieve the desired amplification is not substantially limited by the concentration of that component.
- A “ligase” is an enzyme that is capable of covalently linking the 3′ hydroxyl group of a nucleotide to the 5′ phosphate group of a second nucleotide. Ligases capable of joining “blunt ended” or “staggered ended” double-stranded nucleic acids, may be employed. Examples of suitable ligases includeE. coli DNA ligase, T4 DNA ligase, etc.
- The present invention employs a “recombinase,” and most preferably, a “site-specific recombinase.” As used herein, a recombinase is an enzyme whose action on two nucleic acid molecules results in recombination between the two molecules. Recombination is a well-studied natural process which results in the scission of two nucleic acid molecules having identical or substantially similar (i.e. “homologous”) sequences, and the reformation of the two molecules such that one region of each initially present molecule becomes ligated to a region of the other initially present molecule (Sedivy, J. M.,Bio-Technol. 6:1192-1196 (1988), which reference is incorporated herein by reference). Recombinases are naturally present in both prokaryotic and eucaryotic cells (Smith, G. R., In: Lambda II, (Hendrix, R. et al., Eds.), Cold Spring Harbor Press, Cold Spring Harbor, N.Y., pp. 175-209 (1983), herein incorporated by reference)).
- Two types of recombinational reactions have been identified. In the first type of reaction, “general” or “homologous” recombination, any two homologous sequences can be recognized by the recombinase (i.e. a “general recombinase”), and can thus act as substrates for the reaction. In contrast, in the second type of recombination, termed “site-specific” recombination, the recombinase can catalyze recombination only between certain specialized “recombinational sites.” Thus, in “site-specific recombination,” only homologous molecules having a particular sequence may act as substrates for the reaction.
- Site specific recombination is thus mediated by a site-specific recombinase acting on two “recombinational sites.” Several such site-specific recombination systems have been described. The most preferred site-specific recombinational system is the site-specific recombination system of theE. coli bacteriophage P1. The P1 bacteriophage cycles between a quiescent, lysogenic state and an active, lytic state. The bacteriophage's site-specific recombination system catalyzes the circularization of P1 DNA upon its entry into a host cell. It is also involved in the breakdown of dimeric P1 DNA molecules which may form as a result of replication or homologous recombination.
- The P1 site-specific recombination system catalyzes recombination between specialized “recombinational sites” known as “lox” sites (e.g.,“loxP,” “loxB” etc.). The loxP site is the preferred lox site of the present invention has been shown to consist of a double-stranded 34 bp sequence. This sequence contains two 13 bp inverted repeated sequences which are separated from one another by an 8 bp spacer region (Hoess, R. et al., Proc. Natl. Acad. Sci. (U.S.A.) 79:3398-3402 (1982); Sauer, B. L., U.S. Pat. No. 4,959,317, herein incorporated by reference).
- The recombination of lox sites is mediated by a P1-encoded protein known as “Cre” (Hamilton, D. L. et al., J. Molec. Biol. 178:481-486 (1984), herein incorporated by reference). The Cre protein mediates recombination between two loxP sequences (Sternberg, N. et al., Cold Spring Harbor Symp. Quant. Biol. 45:297-309 (1981)). These sequences may be present on the same DNA molecule, or they may be present on different molecules. Cre protein has a molecular weight of 35,000. The protein has been purified to homogeneity, and its reaction with the loxP site has been extensively characterized (Abremski, K. et al., J. Molec. Biol. 259:1509-1514 (1984), herein incorporated by reference). The cre gene (which encodes the Cre protein) has been cloned (Abremski, K. et al., Cell 32:1301-1311 (1983), herein incorporated by reference). Plasmids producing Cre may be obtained from Life Technologies, Inc. (Gaithersburg, Md.). Cre protein is available from Novogen, Inc. (Madison, Wis.).
- Any protein that is capable of mediating recombination between two lox sites is the functional equivalent of Cre protein. Any nucleotide sequence that can be recombined with a lox sequence by Cre is the functional equivalent of a lox site.
- The site specific recombination catalyzed by the action of Cre protein on two lox sites is dependent only upon the presence of the above-described lox sites and Cre. No energy is needed for this reaction; thus, there is no requirement for ATP or other similar high energy molecules. Moreover, no factors or proteins other than the Cre protein is required in order to mediate site-specific recombination at lox sites (Abremski, K. et al.,J. Molec. Biol. Chem. 259:1509-1514 (1984)). In vitro, the reaction is highly efficient; Cre is able to convert 70% of the DNA substrate into products and it appears to act in a stoichiometric manner (Abremski, K. et al., J. Molec. Biol. Chem. 259:1509-1514 (1984)).
- Cre-mediated recombination can occur between lox sites which are present on two different molecules. Because the internal spacer sequence of the loxp site is asymmetrical, two loxp sites exhibit directionality relative to one another (Hoess, R. H. et al.,Proc. Natl. Acad. Sci. (U.S.A.) 81:1026-1029 (1984)). If the loxp sites are in the same relative orientation, Cre acts to excise and circularize the DNA between them. If the sites are in an opposite relative orientation, Cre acts to flip the DNA between them. The recombinational event works efficiently on linear or circular molecules (Abremski, K. et al., Cell 32:1301-1311 (1983); Abremski, K. et al., J. Molec. Biol. Chem. 261:391-396 (1986)).
- The nature of the interaction between Cre and lox sites has been extensively studied (Hoess, R. P. et al.,Cold Spring. Harb. Symp. Quant. Biol. 49:761-768 (1984), herein incorporated by reference). In particular, mutations have been produced both in Cre, and in the lox site.
- The Cre mutants thus far identified have been found to catalyze recombination at a much slower rate than that of the wild-type Cre protein. lox mutants have been identified which recombine at lower efficiency than the wild-type site (Abremski, K. et al.,J. Molec. Biol. Chem. 261:391-396 (1986); Abremski, K. et al., J. Molec. Biol. 202:59-66 (1988), herein incorporated by reference).
- Experiments with mutant lox sites in which either the left or right inverted repeat had been removed, has revealed that Cre is capable of binding to partial loxp sites, but is incapable of mediating efficient recombination between such sites. Insertions in the spacer region impair the ability of Cre to catalyze recombination. Of particular interest to the present invention is the use of a loxP511 mutant site.
- The Cre protein is capable of mediating lox-specific recombination in eucaryotic hosts, such asSaccharomyces cerevisiae (Sauer, B., Molec. Cell. Biol. 7:2087-2096 (1987); Sauer. B. L., U.S. Pat. No. 4,959,317, herein incorporated by reference), or mammalian cells (Sauer, B. et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:5166-5170 (1988), Sauer, B. et al., Nucleic Acids Res. 17:147-161 (1989), both references herein incorporated by reference).
- Significantly, the lox-Cre system can mediate site-specific recombination between lox sites separated by extremely large numbers of nucleotides (Sauer, B. et al.,Gene 70:331-341 (1988); Stemberg, N., Proc. Natl. Acad. Sci. (U.S.A.) 87:103-107 (1990); Sauer, B. et al., Proc. Natl. Acad. Sci. (U.S.A.) 84:9108-9112 (1987); Palazzolo, M. J. et al., Gene 88:25-36 (1990), all herein incorporated by reference).
- It has been found that certainE. coli enzymes inhibit efficient circularization of linear molecules which contain two lox sites. Hence, enhanced in vivo circularization efficiency can be obtained through the use of E. coli mutants which lack exonuclease V activity (Sauer, B. et al., Gene 70:331-341 (1988)).
- Although the Cre-lox site-specific recombination system is preferred, alternative site-specific recombination systems have been identified, and can be used in accordance with the methods of the present invention.
- For example, the site-specific recombination system of theE. coli bacteriophage λ (Weisberg, R. et al., In: Lambda II, (Hendrix, R. et al., Eds.), Cold Spring Harbor Press, Cold Spring Harbor, N.Y., pp. 211-250 (1983), herein incorporated by reference) can be employed. Bacteriophage λ uses its recombinational system in order to integrate its genome into its host, the bacterium E. coli. The system is also employed to excise the bacteriophage from the host genome in preparation for virus' lytic growth.
- The λ recombination system is composed of four proteins—Int and Xis, which are encoded by the bacteriophage, and two host integrative factors encoded by theE. coli. These proteins catalyze site-specific recombination between “att” sites.
- The λ Int protein (together with theE. coli host integration factors) will catalyze recombination between “attP” and “attB” sites. If the attP sequence is present on a circular molecule, and the attB site is present on a linear molecule, the result of the recombination is the disruption of both att sites, and the insertion of the entire attP-containing molecule into the attB site of the second molecule. The newly formed linear molecule will contain an attL and an attR site at the termini of the inserted molecule.
- The λ Int enzyme is unable to catalyze the excision of the inserted molecule. Thus, the reaction is unidirectional. In the presence of the λ Xis protein, the reverse reaction can proceed, and a site-specific recombinational event will occur between the attR and attL sites to regenerate the initial molecules.
- The nucleotide sequence of both the Int and Xis proteins are known, and both proteins (as well as the host integrative factors) have been purified to homogeneity. Both the integration and the excision reaction can be conducted in vitro (Better, M.; Wickner, S.; Auerbach, J. and Echols, H.,Cell 32:161-168 (1983)). The nucleotide sequences of the four att sites has also been determined (Weisberg, R. et al., In: Lambda II, (Hendrix, R. et al., Eds.), Cold Spring Harbor Press, Cold Spring Harbor, N.Y., pp. 211-250 (1983), which reference has been herein incorporated by reference).
- Additional site-specific recombination systems that may be employed include TpnI and the β-lactamase transposons (Levesque, R. C.,J. Bacteriol. 172:3745-3757 (1990)); the Tn3 resolvase (Flanagan, P. M. et al., J. Molec. Biol. 206:295-304 (1989); Stark, W. M. et al., Cell 58:779-790 (1989)); the yeast recombinases (Matsuzaki, H. et al., J. Bacteriol. 172:610-618 (1990)); the B. subtilis SpoIVC recombinase (Sato, T. et al., J. Bacteriol. 172:1092-1098 (1990)); the Flp recombinase (Schwartz, C. J. et al., J. Molec. Biol. 205:647-658 (1989); Parsons, R. L. et al., J. Biol. Chem. 265:4527-4533 (1990); Golic, K. G. et al., Cell 59:499-509 (1989); Amin, A. A. et al., J. Molec. Biol. 214:55-72 (1990)); the Hin recombinase (Glasgow, A. C. et al., J. Biol. Chem. 264:10072-10082 (1989)); immunoglobulin recombinases (Malynn, B. A. et al., Cell 54:453-460(1988)); and the Cin recombinase (Hafter, P. et al., EMBO J. 7:3991-3996 (i988); Hubner, P. et al., J. Molec. Biol. 205:493-500 (1989)), all herein incorporated by reference. Such alternate systems are discussed by Echols, H. (J. Biol. Chem. 265:14697-14700 (1990)), de Villartay, J. P. (Nature 335:170-174 (1988); Craig, N. L. (Ann. Rev. Genet. 22:77-105 (1988)), Poyart-Salmeron, C. et al. (EMBO J. 8:2425-2433 (1989)), Hunger-Bertling, K. et al. (Molec. Cell. Biochem. 92:107-116 (1990)), and Cregg, J. M. (Molec. Gen. Genet. 219:320-323-(1989)), all herein incorporated by reference.
- Conditions or agents which increase the rate or the extent of priming, primer elongation, or strand displacement, may be used to increase the extent of the amplification obtained with the methods of the present invention. For instance, as indicated above, the addition of topoisomerases, helicases, gyrases or single-stranded nucleic acid binding proteins (such as the gene 32 protein of T4 or the
gene 4 protein of T7) may be used to increase the strand displacement rate of a DNA polym erase, or may allow the use of a DNA polymerase that might not ordinarily give substantial amplification. - It is desirable to provide to the assay mixture an amount of required co-factors such as Mg++, and dATP, dCTP, dGTP, TTP, ATP, CTP, GTP, UTP or other nucleotides in sufficient quantity to support the degree of amplification desired. Nucleotide analogues, etc. (Piccirilli, J. A. et al., Nature 343:33-37 (1990)) can be substituted or added to those specified above, provided that the base pairing, polymerase and strand displacing functions are not adversely affected to the point that the amplification does not proceed to the desired extent.
- II. The Molecules Employed in the Amplification Method
- A. The Nature of the Target Molecule
- The methods of the present invention may be used to amplify any desired target nucleic acid molecule. Such molecules may be either DNA or RNA. The molecule may be homologous to other nucleic acid molecules present in the sample (for example, it may be a fragment of a human chromosome isolated from a human cell biopsy, etc.). Alternatively, the molecule may be heterologous to other nucleic acid molecules present in the sample (for example, it may be a viral, bacterial, or fungal nucleic acid molecule isolated from a sample of human blood, stools, etc.). The methods of the invention are capable of simultaneously amplifying both heterologous and homologous molecules. For example, amplification of a human tissue sample infected with a virus may result in amplification of both viral and human sequences.
- The present methods do not require that the desired target molecule have any particular sequence or length. In particular, the molecules which may be amplified include any naturally occurring procaryotic (for example, pathogenic or non-pathogenic bacteria, Escherichia, Salmonella, Clostridium, Agrobacter, Staphylococcus and Streptomyces, Streptococcus, Rickettsiae, Chlamydia, Mycoplasma, etc.), eucaryotic (for example, protozoans (such as amoebas, etc.), parasites (such as Plasmodium, and Trypanosomes), fungi, yeast, higher plants, lower and higher animals, including mammals and humans) or viral (for example, Herpes viruses, HIV, influenza virus, Epstein-Barr virus, hepatitis virus, polio virus, etc.) or viroid nucleic acid. The nucleic acid molecule can also be any nucleic acid molecule which has been or can be chemically synthesized. Thus, the desired target nucleic acid sequence need not be found in Nature.
- The target nucleic acid molecule which is to be amplified may be in either a double-stranded or single-stranded form. If the nucleic acid is double-stranded at the start of the amplification reaction it may be first treated to render the two strands into a single-stranded, or partially single-stranded, form. Methods are known to render double-stranded nucleic acids into single-stranded, or partially single-stranded, forms, such as heating, or by alkali treatment, or by enzymatic methods (such a by helicase action, etc.), or by binding proteins, etc. General methods for accomplishing this treatment are provided by Maniatis, T., et al. (In:Molecular Cloning, A Laboratory Manual, Cold. Spring Harbor Laboratories, Cold Spring Harbor, N.Y. (1982)), and by Haymes, B. D., et al. (In: Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985)), which references are herein incorporated by reference. Such treatment permits the obtained single-stranded molecules to be amplified using the recombinational-site-containing primer molecules described below. Alternatively, double-stranded target molecules may be ligated into circular or linear double-stranded molecules that contain recombinational sites.
- Single-stranded RNA, double-stranded RNA or mRNA are also capable of being amplified by the method of the invention. For example, the RNA genomes of certain viruses can be converted to DNA by reaction with enzymes such as reverse transcriptase (Maniatis, T. et a.,Molecular Cloning (A Laboratory Manual), Cold Spring Harbor Laboratory, 1982; Noonan, K. F. et al., Nucleic Acids Res. 16:10366 (1988)). The product of the reverse transcriptase reaction may then be amplified according to the invention.
- The complete nucleotide sequence of the desired molecule need not be known in order to employ the methods of the present invention. The present invention requires knowledge only of the sequences that flank the sequence that is to be amplified. The target polynucleotide that is to be amplified may thus be envisioned as consisting of three regions. The first region, corresponding to the 3′ terminus of the desired molecule that is to be amplified is the region to which the single-primer of the present invention hybridizes, or to which double-stranded ligation adaptors are added. Thus, the sequence of this first region must be ascertained in order to construct a complementary primer that would be capable of hybridizing to the desired molecule.
- As used herein, two nucleic acid molecules are said to be able to hybridize to one another if their sequences are complementary and they are thus capable of forming a stable anti-parallel double-stranded nucleic acid structure. Conditions of nucleic acid hybridization suitable for forming such double stranded structures are described by Maniatis, T., et al. (In:Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y. (1982)), and by Haymes, B. D., et al. (In: Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985)). For the purpose of the present invention, the sequences need not exhibit precise complementarity, but need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure. Thus, departures from complete complementarity are permissible, so long as such departures are not sufficient to completely preclude hybridization to form a double-stranded structure.
- The size of the first region of the target molecule is such as to permit a primer molecule to stably hybridize to it. Preferably, therefore, the first region of the desired molecule-will be greater than 10 nucleotides in length, and most preferably, 15 to 50 nucleotides in length. Longer or shorter primers may be used, however. The use of shorter primers may result in the amplification of nucleic acid sequences in addition to that of the desired sequence. The use of longer primers may slow the rate of hybridization. Extension of the primer may be done with reverse transcriptase where the desired molecule is present as RNA. Alternatively, such extension can be accomplished with other DNA polymerases where the desired molecule is DNA. If the first region is not used as a template for a primer, it need not be of a length sufficient to permit stable priming.
- The second region of the desired molecule is located 5′ to the first region, and consists of the central portion of the desired molecule. The second region of the desired molecule may have any sequence, and be of any length. As stated above, the sequence of this region need not be known in order to follow the methods of the present invention. Typically, the second region may extend from a few nucleotides to several kilobases.
- The third region of the desired molecule is located at the 5′ terminus of the desired molecule. The sequence of this region must be known in order to follow the methods of the present invention. Typically, the third region may extend from as few as 3 nucleotides to 10-20. If the third region is not used as a template for a primer, it need not be of a length sufficient to permit stable priming. In a preferred embodiment, however, the third region must be of sufficient length to permit stable hybridization to occur. In this embodiment, the third region is preferably of a length of 15 to 50 nucleotides in length. Longer or shorter primers may be used, however.
- Thus, the extent of sequence information of the desired molecule that is needed to practice the present invention is typically less than that needed to practice PCR methods.
- B. The Nature of the Single Primer
- In its most preferred embodiments, the present invention employs a single primer to achieve the amplification of the desired molecule. This single primer is also referred to herein as an “Amplification Primer,” in order to distinguish it from other primers that optionally may be employed. The single primer molecule is of suitable length to stably hybridize to the first region of the desired molecule. Primer molecules of 10-50 nucleotides are thus suitable. In a most preferred embodiment, the primer molecule will comprise from 3′ terminus to 5′ terminus:
- (1) a first polynucleotide region complementary to the 3′ terminus of the target polynucleotide region;
- (2) a second polynucleotide region containing modified nucleotides (especially methylated nucleotides or (α-thio)phosphorothioate nucleotides, wherein, if the second polynucleotide region were hybridized to a complementary polynucleotide, a double-stranded polynucleotide would thereby be formed that would contain one or more restriction endonuclease cleavage sites that would be recognized by a restriction endonuclease that is substantially incapable of cleaving a strand of a nucleic acid molecule that contains the modified nucleotides; and
- (3) a third polynucleotide region, wherein, if the third polynucleotide region were hybridized to a complementary polynucleotide, a double-stranded polynucleotide would thereby be formed that would contain a recombinational site (especially a lox site);
- The nucleotide sequence of the second polynucleotide region of the Amplification Primer may be selected from any of a wide variety of sequences that, if hybridized to a complementary polynucleotide, would form a double-stranded polynucleotide that would contain one or more restriction endonuclease sites. All that is desired is that the restriction endonuclease(s) that recognizes the contained site(s) be substantially incapable of cleaving a strand of a nucleic acid molecule that contains the modified nucleotides and that the contained site(s) not be present in the target polynucleotide that is to be amplified (i.e., that the second polynucleotide region of the Amplification Primer not be complementary to any portion of the target polynucleotide).
- In a highly preferred sub-embodiment, the single primer will additionally contain a fourth polynucleotide region, the fourth polynucleotide region of the Amplification Primer molecules being located 5′ to the third polynucleotide region of the Amplification Primer molecules, and having a nucleotide sequence complementary thereto, such that the third and fourth polynucleotide regions of the Amplification Primer molecules are hybridized to one another forming a complete or (more preferably) a partial recombinational site.
- Any of a variety of methods can be used to produce the primer molecule. For example, the molecule can be excised from a vector that contains it using suitable enzymes, such as restriction enzymes. Most preferably, however, the primer will be made synthetically, using well-known chemical methods.
- Since the lox site is the most preferred recombinational site of the present invention, the following description illustrates the invention by reference to the lox recombinational site. It will, however, be recognized that any of the above-described recombinational sites may be alternatively employed.
- C. The Adaptor Molecules of the Invention
- The above-described single primer is preferably employed in concert with a target polynucleotide that has been adapted to be a part of a circular double-stranded DNA molecule that comprises: (a) a lox site; (b) the target polynucleotide region; and (c) a hemi-modified restriction site located between the target polynucleotide region and the lox site, wherein one strand of the hemi-modified restriction contains modified nucleotides (especially methylated nucleotides and (α-thio)-phosphorothioate nucleotides), such that a restriction endonuclease that recognizes such restriction site will be incapable of cleaving that strand containing the modified nucleotides, but will cleave that stand lacking modified bases (or vice versa). The target polynucleotide will be present in that strand of the hemi-modified site that is cleaved by the restriction endonuclease.
- Such a double-stranded circular molecule can be obtained in any of a variety of ways (see FIGS. 11 and 12). In one embodiment, a circular double-stranded DNA precursor molecule comprising: (a) a lox site; (b) a target restriction endonuclease cleavage site; and (c) a hemi-modified restriction site located between the target restriction endonuclease cleavage site and the lox site will be employed. The target polynucleotide is introduced (e.g., via target restriction site cleavage and ligation) into such a circular precursor molecule in order to form the desired double-stranded circular molecule. In employing such a circular precursor molecule, the molecule's lox site must be oriented (3′→5′) opposite to the orientation of the single primer (such that if that strand of the desired circular molecule that lacks modified nucleotides were linearized by cleavage at the hemi-modified restriction site, and were hybridized to the single primer, primer extension of the linearized molecule would yield a linear double-stranded molecule having a lox site at each end that would be in direct orientation with respect to one another (see, FIG. 11).
- In an alternative embodiment, such a double-stranded circular molecule is obtained via Cre-mediated recombination of a linear double-stranded DNA molecule that comprises: (a) a first lox site located at a first end of the linear molecule, (b) a second lox site located at a second end of the linear molecule, wherein the first and the second lox sites are directly oriented with respect to one another so as to permit the Cre to mediate the circularization of the linear double-stranded molecules, and to thereby form the double-stranded circular molecule; (c) the target polynucleotide region located internal to the first and second lox sites; and (d) a hemi-modified restriction site located between the target polynucleotide region and one of the lox sites, wherein one strand of the hemi-modified restriction site of each of the linear molecules contains modified nucleotides (especially methylated nucleotides and (α-thio)phosphorothioate nucleotides), such that a restriction endonuclease that recognizes such restriction site will be incapable of cleaving that strand containing the modified nucleotides (see, FIG. 12).
- In a sub-embodiment, such a linear molecule may be obtained by inserting the target polynucleotide into a target restriction endonuclease site of a precursor double-stranded linear nucleic acid molecule that comprises: (a) a first lox site located at a first end of the linear molecule, (b) a second lox site located at a second end of the linear molecule, wherein the first and the second lox sites are directly oriented with respect to one another so as to permit the Cre to mediate the circularization of the linear double-stranded molecules, and to thereby form the double-stranded circular molecule; (c) a target restriction endonuclease cleavage site; and (d) a hemi-modified restriction site located between the target restriction site and one of the lox sites.
- In alternative embodiments, such linear molecules may be obtained using one or more specialized “adaptor molecules.” Such adaptor molecules alter the 3′ and 5′ termini of the target molecule in oder to install the lox sites and hemi-modified restriction site onto the target molecule.
- Such adaptor molecules may be either partially single-stranded, partially double-stranded nucleic acid molecules, completely single-stranded or completely double-stranded molecule. Thus, in one embodiment, the adaptation of the 5′ terminus is accomplished by employing a primer molecule whose 5′ terminus is designed such that it contains the desired adaptation. In a second embodiment, the 5′ terminus of the primer extension product is altered (e.g., via ligation) using a 5′ adaptor molecule. With respect to the alteration of the 3′ terminus of the primer extension product, such alteration can be accomplished using either a single adaptor molecule, or, in an alternate embodiment with a pair of adaptor molecules having similar structure (and resulting in a mixture of primer extension products, some of which have been modified by one of the 3′ adaptor molecules, and some of which have been modified by the other 3′ adaptor molecule). Thus, for example, a linear double-stranded nucleic acid molecule containing the desired sequence may be incubated in the presence of ligase and double-stranded nucleic acid adaptor molecules so as to cause the adaptation of both ends of the linear molecule. Alternatively, such adaptation may be accomplished using primers and a polymerase-mediated primer extension reaction. In a third alternative, a combination of ligation (to adapt one end of the linear nucleic acid molecule containing the desired sequence) and primer extension (to adapt the linear molecule's other end) may be employed.
- The adaptor molecules permit the linear molecule to form either single-stranded or double-stranded circular nucleic acid molecules which may be readily amplified under isothermal conditions.
- 1) Illustrative Adaptor Molecules of the 5′ Terminus
- Any of a variety of adaptor molecules may be used to modify the 5′ terminus of the primer molecule or the primer extension product such that it contains a recombinational site, most preferably a lox site.
- The adaptor molecule of the 5′ terminus can be added to the primer molecule either before or after its template dependent extension. In the most preferred embodiment, a primer molecule is employed that has been modified to contain the 5′ adaptor molecule. Thus, in this embodiment, the primer may be synthesized such that it contains an additional region (including the recombinational site) at its 5′ terminus. If desired, when employing a recombinational site that, like lox exhibits directionality, some of the primer may be synthesized with the lox site in one orientation, and some of the primer synthesized with the lox site in the opposite orientation. Alternatively, 5′ adaptor primer molecules that all have their recombinational site in a single orientation can be used in conjunction with 3′ adaptor molecules that contain their recombinational site in an appropriate orientation.
- Alternatively, however, the 5′ terminus can be modified through the action of a ligase using either single-stranded or, more preferably, double-stranded DNA containing the recombinational site. In one embodiment, such ligation substrates will possess a 5′ terminus (such as a 5′ hydroxyl group) that prevents the ligation of more than one such ligation substrate molecule to the primer extension molecule. Alternatively, the adaptor molecule may be a single-stranded molecule, that exhibits intra-strand hybridization (i.e. a “hairpin” loop). As in the case of the adapted primer molecule discussed above, the use of a recombinational site having directionality will generally require the use of two hairpin loop species having opposite orientations for their recombinational sites. Alternatively, one may ligate a double-stranded molecule having the above-described attributes of the single-stranded 5′ adaptor to one end of the linear double-stranded molecules of the sample. Additional sequences may, if desired, be added 3′ or 5′ of the recombinational site. Examples of suitable 5′ adaptor molecules are shown in FIG. 1.
- 2) Illustrative Adaptor Molecules of the 3′ Terminus
- Any of a variety of different adaptor molecules can be used to alter the 3′ terminus of the primer extension molecule. The choice of which type of adaptor molecule to use will depend upon whether the formation of single-stranded or double-stranded molecules is preferred. Examples of suitable 3′ adaptor molecules are shown in FIGS. 2A and 2B.
- a) Adaptor Molecules for the Formation of Single-Stranded Circular Molecules: Use of Partially Single-Stranded and Partially Double-Stranded 3′ Adaptor Molecules
- In one embodiment, a partially single-stranded and partially double-stranded nucleic acid adaptor molecule is employed to alter the 3′ terminus of the primer extension product as a prelude to the formation of single-stranded circular molecules. A feature of such molecules is that they possess a 3′ protruding region having a predefined sequence. The sequence of this protruding sequence is selected such that 3′-most portion of the region has the same sequence as that of the third region of the desired molecule. In a first preferred sub-embodiment, this protruding terminus is blocked, as by the use or presence of a dideoxynucleotide, etc., such that it is incapable of being extended by a polymerase in a template-directed process.
- The strand of the adaptor molecule that contains the 3′ protruding sequence may be composed of RNA, such that it can be readily degraded by the inclusion of RNAse to the reaction, or by alkali treatment. Methods of forming RNA oligonucleotides are disclosed by Sharmeen, L. et al. (Nucleic Acids Res. 15:6705-6711 (1987)) and by Milligan, J. F., et al., Nucleic Acids Res. 15:8783-8798 (1987)). In another embodiment, the strand of the adaptor molecule that contains this protruding sequence is composed of a nucleic acid that has been biotinylated, such that the strand can be selectively removed from the reaction by addition of agents such as anti-biotin antibodies, avidin, streptavidin, etc.
- A second feature of the adaptor molecules is the presence of a double-stranded region located 5′ to the above-described
protruding 3′ terminus. - In one embodiment, the invention employs a single such 3′ terminus adaptor molecule whose double-stranded region comprises a pair of inverted repeated sequences, preferably separated by a spacer sequence. This aspect of the invention is shown in FIG. 2A (Drawing A), wherein the terms X and X′ are used to designate complementary sequences that comprise the inverted repeated sequence. The spacer sequence is preferably 3-100 nucleotides in length. The length of the spacer is selected such that the inverted repeated sequences are sterically capable of hybridizing to one another. Thus, if the inverted repeated sequences are of sufficient length, the sequences will be capable of hybridizing to one another in the absence of a spacer sequence. In a preferred embodiment, however, the spacer sequence is 10-50 nucleotide long, and preferably not an inverted repeated sequence. In this embodiment, the spacer sequence is adapted to function as a primer binding site (designated “PBS” in the Figures) for the amplification of the desired sequence.
- In an alternate preferred embodiment, the invention employs two different 3′ terminus adaptor molecules. In each of these adaptor molecules, the spacer sequence is composed of a second pair of inverted repeated sequences, such that the structure of the adaptor molecule provides a pair of external inverted repeated sequences that flank a pair of internal inverted repeated sequences. In a preferred embodiment, the sequences of the pair of internal inverted repeated sequences are interrupted by a primer binding site that is preferably 10-50 bases long, and preferably not an inverted repeated sequence. This aspect of the invention is shown in FIG. 2A (Drawing B) and FIG. 2B (Drawing D), where the term “PBS” is used to designate the relative position of the optional primer binding site, the terms Y and Y′ or Q and Q′ are used to designate complementary sequences that comprise the optional internal inverted repeated sequences, and the terms X and X′ are used to designate complementary sequences that comprise the external inverted repeated sequences. In the most preferred sub-embodiment of this embodiment, the sequences of the external and internal repeated sequences are different. The sequences of the two adaptor molecules are selected such that the nucleotide sequence of the external inverted repeat sequence of the first of the two adaptor molecules is different from the external inverted repeated sequence of the second of the two adaptor molecules. The sequences of the external inverted repeats of the first and second adaptor molecules are thus selected such that they are substantially incapable of hybridizing to one another (i.e. the external repeat sequence of the first adaptor molecule is substantially incapable of hybridizing to the external inverted repeat of the second adaptor molecule). The nucleotide sequence of the internal inverted repeated sequences of the two adaptor molecules is preferably the same, or at least sufficiently similar to allow the respective internal repeated sequences of the adaptor molecules to hybridize to one another. If the internal repeated sequences are interrupted by a primer binding site, such sequences may be different, but will preferably be the same.
- As used herein, two sequences are said to be “inverted repeats” of one another if they are complementary to one another. Similarly, an “inverted repeat sequence” is composed of two oligonucleotide or polynucleotide sequences (“arms”) which are complimentary to one another. Thus, a feature of the adaptor molecules is that, although the inverted repeat sequences of the two strands of the double-stranded region of the adaptor molecules are hybridized to one another in the adaptor molecule, they would-be capable of intra-strand hybridization (i.e. “snapping-back” and forming a hairpin loop structure) if the adaptor molecule were denatured or converted to a single-stranded form. The length of the inverted repeated sequences is selected such that intra-strand hybridization would be possible if the adaptor molecule were denatured or converted to a single-stranded form. Thus, the inverted repeated sequences are preferably greater than 10 nucleotides in length, and most preferably, 15 to 50 or more nucleotides in length. Longer or shorter inverted repeated sequences may however be used. The use of shorter inverted repeated sequences may result in a decreased rate of hairpin formation. The use of longer sequences may lead to a destablization of inter-strand hybridization, and thus may be undesirable where such hybridization is desired.
- When defining conditions to be used in any specific embodiment of the present invention, it is desirable to select a primer that cannot prime on itself. To minimize the likelihood of potential interfering reactions, candidate primers should be tested in reactions which address this issue prior to use in the amplification process. One such example is to measure the addition of nucleotides by a polymerase to the 3′ end of the candidate primer in the absence of any target molecule.
- The above-described adaptor molecules can be synthesized using any of a variety of methods. For example, the “inverted repeated sequence-inverted repeated sequence,” “inverted repeated sequence-spacer sequence-inverted repeated sequence” or the “external inverted repeated sequence-internal inverted repeated sequence-internal inverted repeated sequence-external inverted repeated sequence” segment of the adaptor molecules can be obtained by cloning such a sequence, propagating the vector, and then excising the sequence using a restriction endonuclease. The protruding 3′ terminus can be formed using deoxynucleotide terminal transferase and the appropriate nucleotide triphosphates. In following such a method, it would be desirable to block the 3′ terminus of the second strand of the adaptor molecule. Alternatively, the protruding 3′ terminus can be added by ligating a single- or double-stranded molecule to the “inverted repeat-inverted repeat” segment of the adaptor molecule (or any of the above-described variants thereof), and then removing the sequence complementary to the “protruding 3′ sequence” to thereby render that sequence actually protruding.
- In a preferred embodiment, the strands of the adaptor molecule(s) are prepared separately (preferably by primer extension using suitable primers and templates, or by clonal propagation, by transcription, by synthetic means, or by any combination of these methods), and then mixed together under conditions sufficient to permit the molecules to hybridize to one another. This method is particularly suited to the embodiments wherein the strand that contains the protruding 3′ end is RNA or is biotinylated. Those of ordinary skill will readily comprehend alternative methods for forming the adaptor molecules.
- b) Adaptor Molecules for the Formation of Single-Stranded Circular Molecules: Use of Single-Stranded 3′ Adaptor Molecules
- In a second, and preferred, sub-embodiment, the adaptor molecule(s) in the formation of single-stranded circular molecules will be single-stranded DNA (preferably biotinylated) or RNA molecules. Such molecules will have a sequence and structure that are identical to the structure of the that strand of the above-described partially single-stranded and partially double-stranded adaptor molecules which contain the discussed protruding 3′ terminus. In the most preferred embodiment, the 3′ terminus of the molecule is blocked, such that it cannot be extended by a polymerase.
- 3) Adaptor Molecules for the Formation of Double-Stranded Circular Molecules
- The above-described 3′ adaptor molecules are designed to permit the formation of single-stranded circular molecules. In order to form double-stranded circular molecules, a different type of 3′ adaptor molecule is preferably employed.
- In this embodiment of the invention, the 3′ terminus of the primer extension product is modified such that it contains a recombinational site. If a site such as lox is employed, the orientation of the site must be such that upon adaptation, the two lox sites are present in a direct repeat orientation. For such purpose, a partially single-stranded and partially double-stranded adaptor molecule or a single-stranded molecule is employed. The partially single-stranded and partially double-stranded adaptor molecule will have a protruding 3′ terminus that is capable of hybridizing to the primer extension product in the manner described above, and of being extended in a template-dependent manner. The double-stranded region of the molecule, located 5′ to the protruding 3′ terminus, will comprise a recombinational site. Most preferably, the double-stranded region will also contain a region that is substantially incapable of participating in inter-strand hybridization flanked by sequences that are capable of participating in such hybridization. Most preferably, such incapacity is obtained through the use of sequences that are identical, and have the attributes of the primer binding sequence discussed above. Such a molecule is illustrated in FIG. 2B (Drawing C). If a single-stranded 3′ terminus adaptor molecule is employed, the molecule will preferably contain the same structure and sequence as that strand of the above-described partially single-stranded and partially double-stranded adaptor molecule that possess the protruding 3′ terminus. Alternatively, one may ligate a double-stranded molecule having the above-described attributes of the single-stranded 3′ adaptor to one end of the linear double-stranded molecules of the sample.
- D. The Amplification Substrates
- The present invention employs amplification substrate molecules in order to achieve the amplification of the desired molecule.
- Any of a variety of amplification substrates may be employed. In one embodiment, such substrates are either the primer molecule used to form the primer extension product (i.e., a 5′ adaptor primer (either containing or lacking the 5′ recombinational site) or a sequence complementary to that of the optional primer binding site of the 3′ terminus adaptor molecule. Most preferably, the substrate is a primer that contains the 5′ adaptor molecule (including a recombinational site). The above-described single primer is the most preferred amplification substrate.
- III. Illustrative Amplification Methods of the Present Invention
- A. Primer Extension Method
- 1. The First Step of the Method
- In the first step of one embodiment of the amplification methods of the present invention, the nucleic acid molecules of the sample are incubated with the above-described single primer molecule in the presence of DNA polymerase, and requisite nucleotide triphosphates and co-factors. The molecules are incubated under conditions sufficient to permit the primer to hybridize to its target sequence, and to be extended to form a primer extension product. Thus, if the desired sequence is a double-stranded DNA or RNA molecule, the strands are separated as by heat denaturation, or other means. If the desired sequence is a single-stranded DNA or RNA molecule, the denaturation step may be omitted.
- In one sub-embodiment of the invention, as for example when the concentration of the desired molecule is anticipated to be low, the molecules can be denatured and renatured in a cyclical manner so as to permit repeated rounds of primer extension. In this embodiment, the use of thermostable polymerases, such as Taq polymerase is preferred, so that the expense of adding new polymerase can be avoided.
- Most preferably, the conditions of the primer extension will be controlled such that the average length of the extended single primers will be the length separating the beginning of the first region from the end of the third region of the desired molecule. Such controlling of conditions can be accomplished by altering the concentration of DNA polymerase, the duration of the polymerization reaction, or by limiting the concentration of a nucleotide triphosphate such that “stuttering” of the primer extension product occurs when it reaches the desired average length.
- After single primer extension has been completed, the reaction is treated, preferably with heat or RNAse H (if the target molecule was RNA) so as to denature double-stranded nucleic acid molecules and render such molecules single-stranded. If desired, excess primer can be removed from the sample (as by filtration, adsorption, etc.), however, such action is not necessary to the invention.
- 2. The Second Step of the Methods: Adaptation of the 3′ Terminus of the Primer Extension Product
- The second step of this embodiment of the method entails the adaptation of the primer extension product such that it is capable of conversion into a circular molecule. The adaptation of the 3′ terminus may precede or follow the adaptation of the 5′ terminus, depending upon the adaptor molecules selected. Adaptation of the termini may also be accomplished simultaneously. As indicated, the adaptation of the 5′ terminus may be accomplished through the use of modified primers, and may thus be accomplished prior to the primer extension step.
- a) Further Primer Extension
- In a first and preferred sub-embodiment employing either the partially single-stranded/partially double-stranded 3′ adaptor molecule(s) or the single-stranded 3′ adaptor molecule(s), the adaptation of the 3′ terminus of the primer extension product is accomplished through the further template-mediated extension of the primer extension products (FIG. 3A, lines A, B, C). Most preferably, the adaptor molecules used in this embodiment will contain blocked 3′ termini.
- In this embodiment, the primer extension products, which have been rendered single-stranded, are permitted to hybridize to the adaptor molecules. As indicated above, the molecules have regions of homology sufficient to permit the primer extension products to hybridize to the adaptor molecule.
- Regardless of which type of adaptor molecule(s) is employed, the further extension of the primer extension products results in the formation of a partially-double-stranded and partially single stranded molecule. The molecule is characterized in possessing a protruding 5′ terminus whose sequence comprises that of the primer extension product. If the adaptor molecule was partially double-stranded, the further extension of the primer extension product causes the displacement or destruction of the strand that was initially complementary to the template.
- b) Ligation
- In a second subembodiment, to be used for example when the partially single-stranded/partially double-stranded 3′ adaptor molecule(s) of the present invention is employed, the adaptation of the 3′ terminus of the primer extension product is accomplished by the ligation of the primer extension molecule to the 3′ adaptor molecule (FIG. 3B, line D). Because of the complementarity between the sequence of the protruding 3′ terminus of the adaptor molecule and the 5′ terminus of the primer extension molecule, the two molecules can hybridize to one another. Since the primer extension reaction has been controlled so that the average extension product terminates at a length corresponding to the end of the third region of the desired molecule, the average primer extension product will have a 5′ terminus that can hybridize to the adaptor molecule.
- In an alternative embodiment, of the invention, as for example when the concentration of the desired molecule is anticipated to be high, the molecules of the sample need not be denatured and can be directly cleaved into double-stranded molecules and then incubated with double-stranded or “hairpin”-shaped adaptors that contain recombinational sites and the other adaptor attributes described herein, so as to produce double-stranded molecules that contain the desired 3′ and 5′ adaptations.
- When the adaptor molecule is DNA, any DNA ligase may be used to accomplish the ligation of the strands. Significantly, primer extension products that are longer or shorter than the precise length needed to permit the recessed 5′ terminus of the adaptor to abut the 3′ terminus of the primer extension are not amplified by the methods of the invention. They need not be removed from the reaction, and do not interfere with the subsequent desired amplification.
- When the adaptor molecule is a DNA/RNA hybrid (in which the strand having the protruding 3′ terminus is RNA), T4 ligase is employed to ligate the DNA strands together (Lehman, I. R.,Science 186:790-797 (1974); Olivers, B. M. et al., J. Molec. Biol. 26:261 (1968); Kleppe, K. et al., Proc. Natl. Acad. Sci. (U.S.A.) 67:68 (1970);. Fareed, G. C. et al., J. Biol. Chem. 246:925 (1971); Sgaramella, V. et al., Proc. Natl. Acad. Sci. (U.S.A.) 67:1468 (1970)).
- The primer molecules will also have been modified to contain a recombinational site at their 5′ terminus as discussed above. Such modification may be performed prior to or after the primer extension of the first or second steps of the method. If the modification is performed by ligation using a single-stranded molecule, the modification is performed prior to the third step of the process. If the modification is performed by ligation using a double-stranded molecule, the modification is performed after the 5′ terminus of the primer extension product has been rendered double-stranded.
- 3. The Third Step of the Embodiment: Adaptation of the 5′ Terminus of the Primer Extension Product
- Where the 5′ terminus of the above-described primer was not initially modified to contain a DNA sequence that, when present in a double-stranded form comprises a recombinational site, such a sequence or site is added to the molecule produced after modification by the above-described 3′ adaptor molecules.
- a) The Methods Wherein the 3′ Adaptor Molecule Comprises a Recombinational Site
- In the subembodiment wherein the 3′ adaptor molecule comprises a recombinational site, it is important that the orientation of that site be the same as the orientation of the recombinational site that is to adapt, or has adapted, the 5′ terminus of the primer or primer extension product.
- In this embodiment of the methods of the invention, illustrated in FIGS. 4A, 4B,4C and 4D, the single-stranded adaptor molecule (if that 3′ terminus adaptor molecule was used), or the strand of the above-described partially single-stranded and partially double-stranded adaptor Molecule that possesses the protruding 3′ terminus (if that 3′ terminus adaptor molecule was used) is not removed, and is extended by a DNA polymerase to form a double stranded linear DNA molecule having termini that comprise recombinational sites (in direct orientation, if loxp sites). Preferably, the use of a primer binding site in the adaptor molecule will create a “bubble” of single-stranded region located between the recombinational sites.
- Action by a recombinase on the recombinational sites yields a double-stranded circular molecule. If the molecule contains the described primer binding site, then such site will provide a single-stranded region which may be used to initiate the replication of the circular molecule.
- In one embodiment, such replication leads to a theta replicon. In a preferred embodiment, the double-stranded circle is “nicked” in one strand to permit a “rolling circle” replicon to form.
- b) The Methods Wherein the 3′ Adaptor Molecule Comprises an Inverted Repeated Sequence
- In the subembodiment wherein the 3′ adaptor molecule comprises an inverted repeated sequence (FIG. 5), the strand of the adaptor molecule that contained the “protruding 3′ terminus” is separated from the primer extension strand. Any means known in the art may be used to accomplish such separation. Optionally, and preferably, the strand of the adaptor molecule that contained the “protruding 3′ terminus” is removed from the sample. In a less preferred embodiment, the strand of the adaptor molecule that contained the “protruding 3′ terminus” is labelled with biotin. In this subembodiment, the sample is heated to denature double-stranded molecules and treated with a biotin-binding agent (for example, streptavidin) to thereby separate or remove the biotinylated molecule from the primer extension product.
- In the most preferred subembodiment, the strand of the adaptor molecule that contained the “protruding 3′ terminus” is RNA, and is separated or removed from primer extension product through the enzymatic activity of RNAse H, which preferentially. degrades the RNA strand of an RNA/DNA hybrid.
- The reaction conditions are then adjusted, if necessary, to permit DNA polymerization to occur. DNA polymerase is added, if needed, to the reaction, along with nucleotide triphosphates, etc., such that template-dependent extension of the 3′ terminus of the adapted molecules can occur.
- Since the adaptor molecule contains an inverted repeat, such polymerization results in the formation of a hairpin loop structure. In a preferred mode of the invention, the adaptation of the 5′ terminus of the extension product is accomplished after such hairpin loop structures have formed, by providing double-stranded recombinational sites to the reaction, and permitting such sites to ligate to the terminus of the hairpin. This mode of adaptation is preferred, since the ligation of such molecules will occur in a randomized orientation, such that, on average one-half of the molecules will contain recombinational sites that are in one orientation, and one-half of the molecules will contain recombinational sites that are in the opposite orientation.
- Action by a recombinase on the recombinational sites of two adapted hairpin loop molecules having the opposite orientation (i.e. direct repeat) yields a single-stranded circular molecule. If the molecule contains the described primer binding site, then such site will provide a region which may be used to initiate the replication of the circle in a twin origin “rolling circle” replicon manner as described below.
- c) The Methods Wherein the 3′ Adaptor Molecule Comprises a Pair of Nested Inverted Repeated Sequences
- In the subembodiment wherein the 3′ adaptor molecule comprises a pair of nested inverted repeated sequences (FIG. 6), the strand of the adaptor molecule that contained the “protruding 3′ terminus” is separated from the primer extension strand, in the manner described above.
- The reaction conditions are then adjusted, if necessary, to permit DNA hybridization to occur. The random hybridization of the primer extension products will also result in the formation of a double-stranded molecule having different external inverted repeated sequences (i.e. formed from different 3′ adaptor molecules, having different external inverted repeated sequences such as are depicted as X/X′ and Q/Q′). The strands of these molecules will anneal to one another due to hybridization between their respective internal inverted repeated sequences. Because the external inverted repeated sequences of the two strands are not complementary to one another, they will not hybridize to one another. Thus, the external repeated sequences of each strand will be able to participate in intra-strand hybridization.
- After permitting such hybridization, DNA polymerase is added, if needed, to the reaction, along with nucleotide triphosphates, etc., such that template dependent extension of the 3′ terminus of the adapted molecules can occur. The action of DNA polymerase on these molecules will lead to the formation of a “bow-tie” molecule characterized in possessing two hairpin loops that are annealed to one another by virtue of the hybridization between the internal inverted repeated sequences of the molecules.
- The terminus of these molecules is then preferably adapted by providing double-stranded recombinational sites to the reaction, and permitting such sites to ligate to the terminus of the hairpin, in the manner described above. Approximately one-half of all bow-tie molecules will contain recombinational sites in direct repeat.
- Action by a recombinase on the recombinational sites of two adapted hairpin loop molecules having the opposite orientation (i.e. direct repeat) yields a single-stranded circular molecule. If the molecule contains the described primer binding site, then such site will provide a region which may be used to initiate the replication of the circle in a twin-origin “rolling circle” manner as described below.
- 4. The Fourth Step of the Embodiment: Amplification
- Because the above steps produce molecules that contain recombinational sites (e.g. loxp), the addition of a recombinase (preferably Cre) catalyzes a double-strand exchange at the recombinational sites of the molecules.
- For a “bow-tie” molecule having recombinational sites in the same directional orientation, the recombinational action of the recombinase converts the linear molecules into a single strand circular molecule (FIG. 7). Similarly, two hairpin loops having recombinational sites in the same directional orientation can be recombined to form a single strand circular molecule (FIG. 7). These circular molecules are characterized in having two copies of each strand of the desired sequence, four copies of the spacer region (which optionally comprises the described internal inverted repeated sequences), two copies of each of the two external inverted repeated sequences and a single recombinational site (FIG. 7).
- Unless the initially employed primer sequences have been removed or destroyed, these sequences will displace the hybridized strands of the circular molecule. Such displacement may be facilitated by thermally denaturing the molecule, if desired. Such sequences may be used to amplify the desired sequence.
- Alternatively, amplification may be accomplished by providing a primer that is complementary to the optional primer binding site. Since the circular molecule does not contain any sequence complementary to the primer binding site, such primer molecules can readily access the site and initiate amplification without thermal denaturation.
- For single-stranded circular molecules, since the primers can anneal at two sites on the molecule, primer extension yields a twin-origin “rolling circle” replicon (i.e. a rolling circle replicon having two extending strands, as shown in FIG. 8A).
- For the double-stranded circular molecules produced by the above method steps, amplification can be preferably obtained in either of two manners. In one embodiment, in which the addition of topoisomerase or gyrase is desirable, the double-stranded molecule is replicated to form a theta replicon (FIG. 8B). More preferably, one strand of the double-stranded molecule is nicked, such that primer extension results in the displacement of the nicked strand and the formation of a “rolling circle” replicon. Such nicks can be produced by radiation, by chemical adducts (ethidium bromide, etc.), by an endonuclease, or by other means. A preferred method for forming such nicks is by incorporating at least one modified nucleotide (e.g., α5′-[a-thio]triphosphate (Pharmacia) or methylated nucleotide) into one strand of a restriction site (preferably present in the 3′ adaptor molecule). Cleavage at that site by the relevant restriction endonuclease will create a single-strand nick (Walker, G. T. et al.,Proc. Natl. Acad. Sci. (U.S.A.) 89:392-396 (1992)).
- As each strand of any of the above replicons is extended, it provides additional template binding sites for additional primer extension. Thus, the kinetics of amplification are similar to, but faster than, viral burst kinetics.
- The presence of inverted repeated sequences and recombinational sites permits additional hairpin loop structures to form. Since the reaction contains Cre, it will mediate recombination between such additional hairpin loop structures to form additional circular structures, thus increasing the number of amplification foci in the reaction.
- All of the enzymes used in this amplification reaction may be active under the same reaction conditions. Indeed, buffers exist in which all enzymes are near their optimal reaction conditions. Therefore, the amplification process of the present invention can be done in a single reaction volume without any change of conditions such as the replacement of reactants. Thus, though this process has several steps at a molecular level, operationally it may have a single step. Once the reactants are mixed together, one need not add anything or change conditions, e.g. temperature, until the amplification reaction has exhausted one or more components. During this time, the nucleic acid sequence being amplified will have been increased many-fold.
- B. Ligation Extension Method
- In an alternate embodiment, the nucleic acid of the sample is cleaved (either enzymatically, or by physical means, such as shearing, sonication, etc.) into linear double-stranded polynucleotides. The ends of the polynucleotides are adapted (if necessary) so as to permit the polynucleotide to be inserted (most preferably via ligation) into a target restriction endonuclease cleavage site of either a precursor linear double-stranded molecule, or into a precursor circular molecule. In a preferred embodiment of such methods, the ligase will not be thermally stable, or will be otherwise labile, such that after the initial ligation reaction the ligase can be substantially inactivated.
- 1. Forming the Desired Circular Molecule
- a) Precursor Linear Molecule Method
- In this sub-embodiment of the present methods, the target polynucleotide is introduced (via ligation, preferably at a restriction site) into the above-described linear precursor molecule. Such introduction forms a double-stranded DNA molecule that comprises: (a) a first lox site located at a first end of the linear molecule, (b) a second lox site located at a second end of the linear molecule, wherein the first and the second lox sites are directly oriented with respect to one another so as to permit the Cre to mediate the circularization of the linear double-stranded molecules, and to thereby form the double-stranded circular molecule; (c) the target polynucleotide region located internal to the first and second lox sites; and (d) a hemi-modified restriction site located between the target polynucleotide-region and one of the lox sites, wherein one strand of the hemi-modified restriction site of each of the linear molecules contains modified nucleotides (especially methylated nucleotides and (α-thio)phosphorothioate nucleotides), such that a restriction endonuclease that recognizes such restriction site will be incapable of cleaving that strand containing the modified nucleotides.
- In accordance with the present invention, such a molecule is then incubated in the presence of Cre under conditions sufficient to permit circularization of the molecule such that a circular molecule
- b. Precursor Circular Molecule Method
- This subembodiment is similar to the above-described precursor linear molecule method, except that the step of the initial circularization is rendered unnecessary because the molecules are initially circularized.
- Thus, in this sub-embodiment, the target polynucleotide is introduced (via ligation) into the target restriction site of the above-described circular precursor molecule. The resulting circular molecule comprises: (a) a lox site; (b) the target polynucleotide; and (c) a hemi-modified restriction site located between the target restriction endonuclease cleavage site and the lox site.
- 2. Amplification of the Circular Molecule
- This circular molecule is then incubated in the presence of a restriction endonuclease that recognizes the hemi-modified site and causes a single-strand nick or gap having a 3′ hydroxyl terminus to be created.
- A polymerase and nucleotides are added to the reaction (if not already present). Under such conditions, the polymerase will mediate the extension of the created 3′ terminus, and the consequent strand displacement of the 5′ terminus of the cut strand. The nucleotides employed will preferably be unmodified, such that primer extension will recreate the hemi-modified restriction site, which is then cut, generating a
new extendible 3′ terminus. The net effect of such primer extension, strand displacement and nicking reactions is the displacement of a linear single-stranded molecule having a lox site at (or near) its 5′ terminus and a region complimentary to the single primer at its 3′ terminus. - The single primer is added (if not already present in the reaction). The presence of the single primer (and the polymerase and unmodified nucleotides) permits the linear molecule and the single primer to act as templates for one another to recreate the initially formed double-stranded DNA molecule.
- Significantly, the above reactions use a single primer to mediate the amplification of a specific target polynucleotide even if that molecule were initially present in a complex mixture of undesired polynucleotides.
- C. Isolation or Purification of the Amplified Molecules
- This invention may be combined with many other processes in the arts of molecular biology to achieve a specific end. Of particular interest is purifying the target sequence from the other sequences in the nucleic acid sample. This can be accomplished most advantageously by annealing the nucleic acid sample to an oligonucleotide that is complementary to the target and is immobilized on a solid support. A convenient support would be a micro-bead, especially a magnetic micro-bead. After being so bound, the non-target sequences could be washed away, resulting in a complete or a partial purification.
- After an amplification is performed, one may wish to detect any amplification products produced. Any number of techniques known to the art may be adapted to this end without undue experimentation. Particularly advantageous in some situations is the capture of RNAn amplification products by a DNA oligonucleotide complementary to an RNA sequence determined by the target sequence, the oligonucleotide being bound to a solid support such as a magnetic micro-bead. Preferably, this oligonucleotide's sequence does not overlap with that of any oligonucleotide used to purify the target before the amplification. RNA:DNA hybrids thus formed may then be detected by antibodies that bind RNA:DNA heteroduplexes. Detection of the binding of such antibodies can be done by a number of methods well known to the art.
- Alternatively, amplified nucleic acid can be detected by gel electrophoresis, hybridization, or a combination of the two, as is well understood in the art. Since the molecules that are being amplified comprise both strands of the desired sequence, the use of restriction endonucleases can cleave the reaction products into discrete and defined fragments. Those in the art will find that the present invention can be adapted to incorporate many detection schemes.
- Sequences amplified according to the methods of the invention may be purified (for example, by gel electrophoresis, by column chromatography, by affinity chromatography, by hybridization, etc.) and the fractions containing the purified products may be subjected to further amplification in accordance with the methods of the invention.
- D. Production of Recombinant Cells and Non-Human Transgenic Animals
- As stated above, the methods of the present invention provide a means for obtaining a double-stranded linear DNA molecule comprising a lox site at each end, in direct repeat orientation, and a mammalian gene, or a polynucleotide fragment or cDNA transcript thereof between such lox sites. Such DNA molecules can be used as the substrate for the insertion of DNA into non-bacterial cells by, for example, the method of Sauer, B. L., U.S. Pat. No. 4,959,317 (herein incorporated by reference). Hence, the present invention may be employed in concert with the methods of Sauer,. B. L., U.S. Pat. No. 4,959,317, to facilitate the production, and to produce recombinant non-bacterial cells, recombinant mammalian cells, and transgenic animals. The use of the Sauer, B. L. method (U.S. Pat. No. 4,959,317) to produce such cells and animals is well known (see, e.g., Xaio, Y. et al.,Nucl. Acids Res. 25:2985-2991 (1997); Bethke, B. et al., Nucl. Acids Res. 25:2828-2834 (1997); Tarutani, M. et al., Proc. Natl. Acad Sci. (U.S.A.) 94:7400-7405 (1997); Agah, R. et al., J. Clin. Invest. 100:169-179 (1997); Jiang, R. et al., Curr. Biol 7:R321-323 (1997); Akagi, K. et al., Nucl. Acids Res. 25:1766-1773 (1997), all herein incorporated by reference).
- In particular, the methods of the present invention, in concert with such known methods of generating recombinant cells and non-human transgenic animals (such as transgenic rodents) thus permits a non-bacterial cell (e.g., a yeast cell, a mammalian cell (especially a mammalian embryonic stem cell) to be produced by introducing a double-stranded linear DNA molecule comprising a lox site at each end, in direct repeat orientation, and a mammalian gene, or a polynucleotide fragment or cDNA transcript thereof between such lox sites, into a chromosome of such cell, wherein the DNA molecule either contains a hemi-modified restriction site, or was derived from a DNA molecule that contained such a hemi-modified restriction site (as cloning such DNA molecule into a plasmid and permitting in vivo amplification to occur in the absence of modified nucleotides; by employing such DNA molecules in PCR or other in vitro amplification to occur in the absence of modified nucleotides; etc.).
- The present invention includes articles of manufacture, such as “kits.” In one embodiment, such kits will, typically, be specially adapted to contain in close compartmentalization a first container which contains a nucleic acid molecule comprising a recombinational site at its 5′ terminus and a region complementary to the desired polynucleotide at its 3′ terminus, and a second container which contains a nucleic acid molecule comprising a recombinational site at its 5′ terminus and a region having a sequence complementary to the 5′ terminus of the desired polynucleotide at its 3′ terminus, and, optionally, a third containing a recombinase suitable for catalyzing the recombination of the sequence of the first container which. The kit may also, optionally, contain one or more DNA and/or RNA polymerases,ligase, buffers, etc. in amounts sufficient to permit the amplification of a desired nucleic acid molecule. The kit may additionally contain instructional brochures, and the like.
- E. Gene Detection and the Detection of Gene Expression
- The methods and reagents of the present invention may be used to accomplish the detection of genes, gene expression, chromosomal elements (such as telomeres, centromeres, etc.) and polymorphisms, and to facilitate the identification of pathogens and tissue.
- In one embodiment, a sample containing DNA (such as a fixed cell or tissue biopsy) is treated with the reagents of the present invention under conditions sufficient to permit either linear or exponential amplification of target sequences that are unique to a particular pathogen or to a particular tissue. The detection of amplification thus establishes the presence of the pathogen in the sample, or the identity and or location of the particular tissue in the sample. For example, a sample of tissue may be treated in situ (or in solution) with oligonucleotide primer reagents of the present invention whose sequences have been selected to amplify DNA sequences unique to chlamydia. The detection of amplification thus establishes the presence of the pathogen. In a further embodiment, the sample of tissue may be treated in situ (or in solution) with oligonucleotide primer reagents of the present invention whoses sequences have been selected to amplify an antibiotic resistance determinant possibly possessed by a pathogen (for example, chlamydia). Such reagents can be used to determine the susceptibility of the pathogen to particular antibiotics. In a sub-embodiment thereof, oligonucleotide primer reagents of the present invention and the processes of the present invention may be performed to assess the presence of mRNA rather than genomic DNA. For such purposes, initial denaturation of the sample DNA is unnecessary, for either the first or second primer molecules will be designed to hybridize to the single-stranded mRNA of transcribed genes selected such that they will together mediate amplification only if the, for example, gene encoding the antibiotic resistance determinant is being expressed.
- In an alternative embodiment, the primer molecules can be used to assess, and reveal, the presence of cells of a particular tissue in a sample or biopsy. For example, by selecting primer molecules that possess a sequence capable of amplifying insulin-encoding mRNA, the present invention can be used to detect pancreatic cells that express insulin. In like manner, the primers of the present invention can be designed to amplify sequences of any expressed mRNA, and thereby provide a sensitive means of histological evaluation. Likewise, by addressing such primers to amplify mRNA encoding fetal antigens or tissue-specific proteins, the present invention can be used to detect and locate metastasized tumor cells, and to assess the state of differentiation of tumor cells.
- In a further embodiment, the primer molecules of the present invention may be designed such that their sequences will amplify DNA only if the DNA in question contains a particular nucleotide residue at a polymorphic site. In this matter, the reagents and methods of the present invention can be used for polymorphic analysis. For example, either of the primers the present invention can be designed such that their 3′ terminus corresponds to a polymorphic site, such that the 3′ terminus will hybridize to a target DNA sequence only if that sequence possesses a complementary polymorphic-nucleotide. In a sub-embodiment of this embodiment, the primers of the present invention will be designed such that their 3′ termini will each correspond to the same polymorphic site (such that the primers for aligned for hybridization, their 3′ termini would overlap by a single nucleotide corresponding to the polymorphic site).
- Detection of genes and gene expression may be accomplished by any of a variety of means, for example by labeling the amplified product, by hybridization assays (including in situ hybridization), etc.
- F. Quantitative Amplification
- The reagents and methods of the present invention may be adapted to permit the quantitative amplification of DNA and RNA molecules. In the simplest embodiment, such quantitative amplification can be obtained by conducting the isothermal amplification in the presence of limiting, and preferably exhausted, amounts of Amplification Primer, such that amplification will be substantially linear and non exponential.
- In an alternative embodiment, the unique catalysis mediated by site-specific recombinases may be exploited to achieve quantitative amplification. When a site-specific recombinase, such as Cre, is employed to mediate recombination between two recombinational sites (such as two Lox sites) of a linear DNA molecule, the reaction leads to the formation of a circular molecule and to the formation of a Lox oligonucleotide. By performing the amplification in the presence of access Cre, the rate of formation of the Lox oligonucleotide becomes proportional to the concentration of target DNA present in the sample. Accordingly, one may measure the concentration of the target DNA initially present in the sample by determining the concentration of lox oligonucleotide present and the specific activity of the Cre enzyme employed.
- G. DNA and Protein Detection
- The reagents and methods of the present invention may also be used to facilitate the detection of DNA, or protein or other antigens that may be present in a sample. In one embodiment, this may advantageously be accomplished by exploiting the fact that certain site-specific recombinases, such as Cre, become covalently bound to DNA as a consequence of the recombinational reaction. Accordingly, amplified DNA can be bound and detected using anti-Cre antibodies. This feature of the invention permits DNA amplification to be discerned through an immunoassay format (such as ELISA or radioimmunoassay).
- In an alternative embodiment, chimeric antibodies capable of bonding to Cre and to a protein or antigen of interest may be constructed. In the presence of Cre, such antibodies will cause Cre to become bound to the antibody, and will form a reagent that is capable of binding to a protein or antigen of interest, if present in a sample, and mediating site-specific amplification of target DNA in the presence of suitable primers. In one sub-embodiment, the employed primers will be designed with overlapping sequences such that they are capable of hybridizing to one another even the absence of exogenous template. In such a sub-embodiment, the presence of the protein of interest in the sample can thus be detected by DNA amplification mediated by Cre and the employed primers. In an alternative sub-embodiment, the employed primers will not possess overlapping sequences, and additional complementary target template molecule will be provided to the reaction.
- Having now generally described the invention, the same will be more readily understood through reference to the following examples, which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.
- FIG. 9 provides a diagrammatic representation of a first preferred method for achieving the amplification of a desired region of genomic DNA.
- With reference to FIG. 9, a sample of double-stranded genomic DNA is denatured, as by heat, etc., and incubated in the presence of either an Amplification Primer molecule whose 3′ terminus is complementary to a target polynucleotide region whose amplification is desired, or a Target Primer whose 3′ terminus contains a target polynucleotide region (or, equivalently, a region complementary to the complement of a target polynucleotide region whose amplification is desired).
- Most preferably, the Target Primer is added as the initial primer (i.e., prior to the addition of Amplification Primer). The purpose of this primer is to create an initial template for further amplification that is mediated by the Amplification Primer. Thus, the Target Primer may be provided at lower concentration than the Amplification Primer, which should be present in significant excess. By providing the Target Primer before addition of the Amplification Primer, undesired effects caused by primer-primer hybridization can be avoided.
- In the preferred embodiment shown in FIG. 9, the Target Primer comprises two polynucleotide regions: (1) a “target” polynucleotide region present at the 5′ end of the polynucleotide that is to be amplified, and (2) a “proto-lox” polynucleotide region. The “proto-lox” region is located 5′ to the “target” region of the primer.
- In the preferred embodiment shown in FIG. 9, the Amplification Primer comprises three polynucleotide regions: (1) a “target complement” polynucleotide region (i.e., a polynucleotide complementary to a polynucleotide present at the 3′ end of the target polynucleotide that is to be amplified), (2) a polynucleotide region containing modified nucleotides and (3) a “proto-lox” polynucleotide region (i.e., a polynucleotide, which, if hybridized to a complementary polynucleotide would form a double-stranded molecule that would comprise a lox site. The polynucleotide region containing modified nucleotides is located 3′ to the “proto-lox” region. The sequence of the polynucleotide region containing modified nucleotides is selected such that if it were hybridized to a complementary polynucleotide, the resulting double-stranded polynucleotide would comprise one or more restriction endonuclease recognition site(s). The sequence of the polynucleotide region containing modified nucleotides of the primer is preferably further selected such that this restriction endonuclease recognition site is recognized by a restriction endonuclease that is capable of cleaving DNA that lacks such modified nucleotides, but is substantially or completely incapable of cleaving a polynucleotide containing such modified nucleotides. Examples of modified nucleotides include ribonucleotides (where the polynucleotides are DNA), phosphorothioate nucleotides, methylated nucleotides, bromodeoxyuridine, deoxyuridine, etc. Examples of suitable restriction endonucleases and their recognition sequences are described in Sambrook, J., et al. (In:Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y. (1989)), in Walker, G. T. et al. (Proc. Natl. Acad. Sci. (U.S.A.) 89:392-396 (1992)), and in the GibcoBRL/Life Technologies 1993-1994 Catalog and Reference Guide, all of which references are herein incorporated by reference.
- The primer (either Amplification Primer or Target Primer) is incubated with the denatured DNA of the sample under conditions which permit both hybridization and template dependent primer extension to occur. Thus, a polymerase and (non-modified) nucleotides are provided to the reaction. The primer extension reaction is terminated by adjusting the reaction conditions to cause the denaturation of the extended primer from its template molecule.
- As will be appreciated, if the target molecule was present in the initial sample, the extension product of the Amplification Primer molecule will contain a region that is complementary to the target molecule, and thus complementary to the 3′ terminus of the Target Primer (see FIG. 9). As such, it and can hybridize to the Target Primer. If the Target Primer was employed in the initial primer extension reaction, then the resulting extension product will comprise a region that is complementary to the 3′ terminus of the Amplification Primer (see FIG. 9), and can hybridize to the Amplification Primer. A second primer extension reaction is conducted using whichever primer (amplification or Target Primer) was not used in the initial primer extension reaction.
- Thus, the reaction conditions are adjusted to permit hybridization and primer extension to occur. As a consequence of the presence of polymerase and nucleotides, the annealed amplification and Target Primers produce blunt-ended linear molecules in which the desired “target” region is flanked by lox sites. Significantly, the “proto-lox” polynucleotides of the amplification and Target Primers are oriented (with respect to the target complement and target polynucleotide regions) such that the flanking lox sites are in a direct repeated orientation.
- Cre recombinase is added to the reaction. As will be appreciated, Cre may be added at an earlier step in the process if desired. The presence of Cre catalyzes the circularization of the lox sites of the blunt-ended linear molecules produced above. As a result, a double-stranded circular molecule is formed. The double-stranded molecule contains the target polynucleotide, a single lox site, and a restriction endonuclease site in which one strand (i.e., the strand derived from the Amplification Primer) contains modified nucleotides and the other strand (i.e., that derived from the extension of the Target Primer via DNA polymerase) does not contain modified nucleotides.
- A restriction endonuclease that recognizes the restriction endonuclease recognition site of the double-stranded circular molecule is added to the reaction. As discussed above, the restriction endonuclease and the recognition site are selected such that the endonuclease does not cleave DNA containing modified nucleotides. Thus, the introduction of the endonuclease “nicks” (if a single site is present) or “gaps” (if more than one site are present) the non-modified strand of the circular molecule.
- Such “nicking” or “gapping” creates a 3′ terminus which may be extended by the previously added polymerase. Such extension displaces the 5′ terminus of the non-modified strand. As the polymerase extends the 3′ terminus through the region containing the restriction site, a new hemi-modified site is created. This new site is “nicked” or “gapped” by the previously added restriction endonuclease, and thus generates yet another 3′ terminus that may be extended by the polymerase (see, FIG. 9). Since the cleavage that creates this subsequent 3′ terminus occurs behind the initially created 3′ terminus, it does not affect the ability of a polymerase to extend the initially created 3′ terminus. In a like manner, the reactions continue without further intervention: generating a new 3′ terminus, extending that terminus, creating a new hemi-modified restriction site, “nicking” or “gapping that site to create yet another 3′ terminus.
- As each primer extension product is extended, it displaces the prior strand that was hybridized to its template. This strand displacement reaction continues without further intervention, and generates a set of identical linear molecules, all of which contain a “proto-lox” site and the target polynucleotide region.
- At this point in the protocol, a linear isothermal amplification of the target polynucleotide has been accomplished. Since the Amplification Primer (discussed above) has not been removed from the reaction, it will hybridize with the linear amplification product, and thereby provide a substrate for a new primer extension reaction. The consequence of this reaction is the generation of a new double-stranded blunt-ended linear molecule in which a double-stranded target region is flanked by lox sites (see, FIG. 9). This new blunt-ended molecule is identical to that described above.
- Since the reaction still contains Cre recombinase, the linear molecule is converted into the above-described double-stranded circular molecule. Significantly, the newly formed circular molecule contains the same hemi-modified restriction endonuclease recognition site as the initially formed circular molecules. Thus, cleavage of that site results in a “nick” or “gap,” which creates a further amplification nucleus.
- In sum, an exponential isothermal reaction results. This reaction produces double-stranded polynucleotides having the sequence of the desired target molecule.
- Significantly, if the Amplification Primer were provided in limiting amounts, were made of RNA and degraded (as with RNase A, etc.) after the reaction had been initiated, or if it contained other nuclease sensitive bases, or was at least partially biotinylated, it would be possible to exhaust, degrade or remove the Amplification Primer from the reaction after the reaction had initiated. Upon such exhaustion, degradation or removal, the reaction will shift from an exponential amplification reaction that amplifies both strands of the target to a linear reaction that amplifies only the target polynucleotide strand. Such a modification is desirable in instances in which the purification and recovery of only a single strand is desired (e.g., in DNA sequencing, and in probe generation).
- FIG. 10 provides an alternative embodiment of the above-described method. In this alternative embodiment, either or both of the amplification and Target Primers is modified to contain a sequence that causes the 5′ terminus of the primer(s) to partially self-hybridize to the primer, such that the 3′ terminus of the primer is single-stranded. Such self-hybridization acts to minimize or prevent any hybridization between the Amplification Primer and the Target Primer molecules.
- FIGS. 11 and 12 provide diagrammatic representations of alternate preferred methods for achieving the amplification of a desired region of genomic DNA.
- With reference to FIG. 11, an amplification “cassette” is employed. The cassette comprises a linear double-stranded polynucleotide having directly oriented lox sites at its two termini. The lox sites are separated from one another by a double-stranded region that comprises a hemi-modified restriction site, and a target restriction site region that contains one of more restriction sites suitable for receiving the target DNA fragment(s). Most preferably, the target restriction site region will have multiple restriction cleavage sites, such that, by treating the cassette with multiple restriction endonucleases two fragments are produced, one of which contains a lox site and a first partial restriction site, and the other of which contains a second, and preferably different partial partial restriction site, the hemi-modified restriction site, and a lox site. The use of a cassette whose target restriction site region contains two restriction sites having different sequences, and yielding incompatible termini upon cleavage is preferred, since such prevents the religation of the cassette. Incompatible termini are termini that cannot be ligated to one another. Compatible termini are termini that are ligatable.
- Genomic or other target DNA is cleaved using a restriction fragment that produces termini that are compatible with the termini generated from the restriction cleavage of the cassette. The target fragments and the cassette fragments are incubated together in the presence of ligase under conditions sufficient to form a ligation product in which the target fragment has been inserted into the target restriction site region (replacing any DNA present between the original restriction sites).
- The resulting molecule is a double-stranded linear molecule having lox sites at its ends. The molecule is preferably purified away from the restriction enzymes and ligase used above. Alternatively, such enzymes can be inactivated by heat, antibodies, or other means.
- As shown in FIG. 11, Cre, present or now added to the reaction, catalyzes the circularization of the target fragment-bearing cassette. Since the circular molecule bears a hemi-modified restriction site, it comprises a substrate for a restriction enzyme that recognizes this site. As in Example 1, such a restriction endonuclease will cleave only the unmodified strand, and will produce a nick in one strand of the double-stranded circular molecule. The 3′ termini genertated from such cleavage is extended by polymerase, in the presence of all four nucleotide species. Such extension regenerates the restriction site, and leads to the production of a linear single-stranded molecule containing the entire length of one circular strand.
- An Amplification Primer is added to the reaction (it may be provided earlier, if desired). The Amplification Primer is identical to that described in Example 1. As such, the Amplification Primer contains a region complementary to the 3′ terminus of the linear single-stranded molecule produced above. The amplification moleule hybridizes with the linear single-stranded molecule, and, because polymerase and nucleotides are present, mediates the formation of a double-stranded molecule whose structure is essentially identical to that of the target fragment-bearing cassette (differing only in having a partial restriction site at one terminus). The molecule has two directly oriented lox sites, and is thus circularized by Cre to yield a molecule that is identical to the double-standed circular molecule discussed above. This molecule is processed in the manner described above, leading to exponential amplification
- FIG. 12 shows a related embodiment, differing only in employing a precircularized “cassette” molecule.
- Several aspects of the embodiments discussed in Examples 1 and 2 are noteworthy. FIGS. 9-12 show the circularization of a single “full-length” linear molecule into a “unit length” circle. However, the same lox orientations responsible for circularization of nucleic acid molecules can mediate multiple head to tail joining of full-length linear molecules so as to form a “multi-unit length” circle. Significantly, since the lox site is asymmetric, such head to tail joining conserves the both the orientation of lox sites, and the orientation of strands. Thus, when multiple full-length linear double-stranded molecules are joined together, all -of the target strand sequences of the individual full-length linear molecules are present on the same strand of the “multi-unit length” circle; similarly, all of the target complement strand sequences of the individual full-length linear molecules are present on the other strand of the “multi-unit length” circle. Hence, because the modified nucleotides of the respective hemi-modified restriction site will all be present on the same strand of the resulting double-strand “multi-unit length” circle. As a consequence, only one strand of the multi-unit circle would be cleaved by the restriction enzyme, and the other would remain intact. Thus, such a circle will be processed in the same manner as a unit length circle, but will result in the production of multiple copies of the target (or target complement) strand each time the entire circle is replicated. The same unit length amplification product will be produced regardless of the number of full-length linear molecules that have recombined to form a circle.
- This attribute of the present invention is of particular significance since it permits one to amplify target molecules that would otherwise be too small (i.e., too thermodynamically rigid) to circularize readily into unit length circles. Thus, the processes of the invention, without any additional intervention or attention, mediate the head to tail joining of target molecules until a multimer is formed that possesses sufficient thermodynamic flexibility to be capable of circularizing into a circle. If the target molecule is large, the resulting circle can be of unit length; if the target molecule is small, a multi-unit length circle can be formed.
- In embodiments, such as that described in Example 2, in which no Target Primer. is employed, amplification is single-primer mediated. As a consequence, if the method were employed in the absence of Amplification Primer (or if the supply of Amplification Primer became exhausted), the method would mediate a general, linear amplification of one strand of all of the DNA in a sample. Such reaction conditions are useful in applications, such as those encountered in forensic analysis, in which the supply of target material is limited and finite. The method provides a means for amplifying all molecules present, thus increasing target material supply.
- In such single primer embodiments, the Amplification Primer controls both the sequence specificity of the reaction, and the extent of exponential amplification. Thus, whereas the reactions of this Example 2 mediate a linear amplification of all target DNA present in the sample, reactions conducted in the presence of Amplification Primer mediate an exponential amplification of those molecules of the sample containing sequences complementary to the sequence of the target region of the Amplification Primer.
- In any of the methods of Example 1 or 2, multiple Amplification Primers may be employed in lieu of the single Amplification Primer described. The use of multiple Amplification Primers permits one to selectively amplify sub-populations of molecules having desired characteristics. However, this use is particularly valuable with the single primer amplification methods of this Example 2. For example, if such methods are conducted with an Amplification Primer that contains a sequence complementary to a promoter sequence, an exponential amplification of all molecules having such a promoter sequence will occur. If a second Amplification Primer is employed that contains a sequence complementary to a repressor binding site, an exponential amplification of all molecules having both a repressor binding site and a promoter will occur.
- Likewise, in any of the embodiments, such as those of Example 1, in which two primers are employed, the primers may be used to amplify polynucleotides having desired attributes without prior knowledge of their sequences. Thus, for example, by employing an Amplification Primer that is complementary to a promoter or centromere sequence, and a Target Primer that is complementary to a telomere sequence, the methods of the present invention permit amplification of nucleic acid molecules that possess both the promoter (or centromere) sequence and the telomere sequence.
- FIG. 13 provides a diagrammatic representation of a second preferred method for achieving the amplification of a desired region of genomic DNA.
- With reference to FIG. 13, a sample of double-stranded genomic DNA is denatured, as by heat, etc., and incubated in the presence of an Amplification Primer molecule whose 3′ terminus is complementary to a target polynucleotide region whose amplification is desired.
- In the preferred embodiment shown in FIG. 13, the Amplification Primer need not be modified in any respect. It merely needs to be of sufficient length to permit stable hybridization.
- The primer is incubated with the denatured DNA of the sample under conditions which permit both hybridization and template dependent primer extension to occur. Thus, a polymerase and (non-modified) nucleotides are provided to the reaction. The primer extension reaction is terminated by modifying the reaction conditions to cause the denaturation of the extended primer from its template molecule.
- A Target Primer is added to the reaction. Although, in a preferred embodiment, this Target Primer is introduced after the termination of the primer extension reaction, such Target Primer may be introduced at any time before, during or after the introduction of the modified Amplification Primer discussed above. The Target Primer comprises a partially single-stranded-partially double-stranded “loop” structure. It contains a protruding 3′ terminus whose sequence is the same as a sequence present at the 5′ end of the polynucleotide that is to be amplified, such that the protruding 3′ terminus is complementary to the 3′ terminus of the extension product of the Amplification Primer.
- The reaction conditions are adjusted to permit both the ligation of the primer extension product of the Amplification Primer to the recessed 5′ terminus of the Target Primer, and the template dependent extension of the protruding 3′ terminus of the Target Primer. Thus ligase, polymerase and nucleotides are provided. The resulting product comprises a double-stranded, blunt-ended, target molecule having the 5′ terminus of one strand connected to the 3′ terminus of the other via the “loop” structure of the Target Primer (see, FIG. 13).
- A linker molecule is introduced into the reaction. The linker molecule is a blunt-ended, double-stranded linear molecule which comprises a lox site flanked by one or more pairs of restriction endonuclease recognition sites. Preferably, as shown in FIG. 13, the restriction sites are composed of modified nucleotides. Both strands of the restriction site are modified.
- The previously added ligase catalyzes the ligation of the linker molecule to the free 3′/5′ terminus of the previously formed product (FIG. 13) to form a “looped target molecule.” Such ligation can occur in either of two possible orientations (owing to the directionality of the lox site). The orientation of ligation is unimportant to the reaction.
- Two products of such ligation in which the lox site has been ligated in opposite orientations can be recombined via the addition of Cre to form an end-looped structure having two copies of the double-stranded target polynucleotide separated by a single lox site.
- A third primer is introduced which is preferably complementary to a polynucleotide region of the non-base paired “loop” part of the molecule. The previously added polymerase, causes the 3′ terminus of this third primer to be extended around the “loop” and into the polynucleotide region of the target, displacing the hybridized non-template strand. The third primer is optional, and added to facilitate the initiation of the amplification reaction. Its presence is not needed during amplification.
- Extension of the primer past the modified restriction site, creates a hemi-modified restriction site. The introduction into the reaction of a restriction endonuclease that recognizes this site, causes a “nick” or “gap” in the non-modified strand. As in Example 1, once started, these reactions continue without further intervention. Thus, primer extension creates a hemi-modified site, that site is cleaved by a restriction endonuclease thereby creating a new 3′ terminus which is extended to form a new hemi-modified site, thereby restarting the cycle.
- Again, as in Example 1, the cleavage that creates a new 3′ terminus occurs behind a previously created 3′ terminus, and thus does not affect the ability of a polymerase to extend the initially created 3′ terminus. As shown in FIG. 10, the product of such primer extension and cleavage reactions is the same “looped target molecule” as that described above.
- Since the reaction still contains ligase and the linker molecules, such molecules will be ligated together, and the products of such ligation can then circularize via the action of the previously added Cre recombinase. Such circularization generates new amplification foci.
- In sum, the method achieves the exponential amplification of both strands of the target polynucleotide without using modified primers.
- The isothermal nature of the amplification processes described above permits each product of each reaction to procede through the entire set of reactions at its own pace. This capacity, which reflects the isothermal nature of the reactions, is in marked contrast to cyclic reactions such as the polymerase chain reaction, in which all reactants are required to procede in unison to the next step of the reaction. By avoiding such a requirement, the isothermal amplification methods of the present invention provide faster reaction kinetics.
- The ability of the methods of the present invention to mediate DNA amplification is illustrated with respect to a 4 kb fragment of pBR322. The fragment is introduced into a cassette comprising a LOX site and a hemi-methylated restriction site, and is amplified in vitro.
- Construction of the pBR322-LOX Derivative: Method I
- pBR322 is a double-stranded DNA plasmid 4,362 nucleotides long Maniatis, T. et al., In: “Molecular Cloning A Laboratory Manual,” Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1982)). It has a single EcoRI site located at nucleotide 4360, and a single BamHI site located at
nucleotide 375. Accordingly, pBR322 DNA that is restricted with both EcoRI and BamHI yields two fragments whose lengths are 377 and 3,985 nucleotides (the 3,985 nucleotide fragment is referred to as the 4 kb fragment). Because cleavage at the EcoRI site leaves a protruding 5′ AATT end, and cleavage at the BamHI site leaves a protruding 5′ GATC end, a pBR322 fragment restricted with both EcoRI and BamHI cannot be ligated together. The LOX-pBR322 derivative is made as follows: - 1. Isolation of a pBR322 EcoRI-BamHI Fragment
- To isolate the desired pBR322 EcoRI—BamHI fragment, pBR322 is obtained (Life Technologies, Gaithersburg, Md.) and cleaved with both EcoRI and BamHI (Life Technologies, Gaithersburg, Md.) according to the manufacturer's instructions. Linear molecules having a length of approximately 4,000 nucleotides are purified by agarose gel electrophoresis (Sambrook, J. et al., In “Molecular Cloning A Laboratory Manual,” Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989)).
- 2. Construction of an EcoRI-NotI-LOX-BamHI Fragment
- A double-stranded EcoRI-NotI-LOX-BamHI DNA linker molecule is. produced having the sequences SEQ ID NO:1:
5′ aattcgcggc cgcataactt cgtataatgt atgctatacg aagttatg 3′ - and SEQ ID NO:2:
5′ gatccataac ttcgtatagc atacattata cgaagttatg cggccgcg 3′ - These oligonucleotides hybridize to one another as shown below:
EcoRI NotI LOX SITE BamHI 5′ aattc gcggccgc ataacttcgtataatgtatgctatacgaagttat g 3′SEQ ID NO: 1 3′ g cgccggcg tattgaagcatattacatacgatatgcttcaata cctag 5′ SEQ ID NO: 2 - The underlined nucleotides in SEQ ID NO:2. are 5-methylcytosine (however, phosphorothioated residues may be used). The double-stranded DNA linker molecule can be obtained in any of a variety of ways. In one embodiment, it may be formed by mixing equimolar amounts of synthetic oligonucleotides having the sequences SEQ ID NO:1 and SEQ ID NO:2.
- Alternatively, and more preferably, the double-stranded EcoRI-NotI-LOX-BamHI DNA linker molecule can be made by incubating an oligonucleotide primer having the sequence of SEQ ID NO:3:
5′ aattcgcggc cgc 3′ - with a synthetic oligonucleotide having the sequence of SEQ ID NO:2 in the presence of DNA polymerase, dATP, TTP, dCTP and dGTP. As indicated above, the underlining below the nucleotides indicates that the residues are 5-methylcytosine residues. The appropriate termini are obtained from the resulting blunt-ended double-stranded DNA molecule by treating it with EcoRI and BamHI.
- 3. Construction of the pBR322-LOX Derivative
- The desired pBR322-LOX derivative is constructed by incubating the previously isolated 4 kb EcoRI-BamHI pBR322 fragment in the presence of the EcoRI-NotI-LOX-BamHI DNA linker molecule, and DNA ligase. After permitting the ligation reaction to occur, the ligated material is purified by gel electrophoresis, and material migrating at the position of relaxed double-stranded circular DNA is recovered. This material is the desired pBR322-LOX derivative.
- Construction of the pBR322-LOX Derivative: Method II
- The desired pBR322-LOX derivative is alternatively made as follows: pBR322 is obtained (Life Technologies, Gaithersburg, Md.) and cleaved with both EcoRI and BamHI (Life Technologies, Gaithersburg, Md.) according to the manufacturer's instructions. Linear molecules having a length of approximately 4,000 nucleotides are thereby obtained (Sambrook, J. et al., In “Molecular Cloning A Laboratory Manual,” Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989)).
- The restricted DNA is then subjected to a PCR amplification using two PCR primers comprising the sequences, SEQ ID NO:4 and SEQ ID NO:5.
SEQ ID NO: 4: 5′ tatacgaagt tatggatcca taacttcgta tagcatacat tatacgaagt tatgcggccg cgaattcttg aagacgaaag 3′ - As will be recognized, the first PCR primer (SEQ ID NO:4) contains a 13 base long span of nucleotides (nucleotides 1-13) that is connected to a BamHI recognition sequence (14-19). Nucleotides 20-53 are a LOX site. The initial span of nucleotides is complementary to the initial 13 nucleotides of the LOX site, such that a “loop” can form between these regions of the primer. Nucleotides 54-61 are a NotI site. Nucleotides 62-80 comprise the sequence of the EcoRI site of plasmid pBR322 and nucleotides 4359-4347 of pBR322. The underscoring of C residues in the NotI site indicates that at least one of the residues is methylated or phosphorothioated.
SEQ ID NO: 5: 5′ tatacgaagt tatgaattca taacttcgta taatgtatgc tatacgaagt tatggatcct ctacgccgga 3′ - As will be recognized, nucleotides 1-13 of the second PCR primer (SEQ ID NO:5) are complementary to the first 13 nucleotides of the LOX site that is present at nucleotides 20-53. Nucleotides 14-19 are an EcoRI site. Nucleotides 54-70 are the BamHI site of pBR322, and the eleven nucleotides of pBR322 that follow that site.
- The PCR amplification thus yields linear double-stranded molecules having LOX sites on each terminus. The molecule is circularized using Cre.
- The Amplification Primer
- The Amplification Primer is most preferably obtained by nucleotide synthesis. The primer is single-stranded, and has 80 nucleotides comprising the sequence, SEQ ID NO:4:
5′ tatacgaagt tatggatcca taacttcgta tagcatacat tatacgaagt tatgcggccg cgaattcttg aagacgaaag 3′ - As a control, a Target Primer may be synthesized having 70 nucleotides, and comprising the sequence, SEQ ID NO:5:
5′ tatacgaagt tatgaattca taacttcgta taatgtatgc tatacgaagt tatggatcct ctacgccgga 3′ - The Amplification Primer and the Target Primer are oriented with respect to one another so as to comprise primers that may be used in PCR for amplifying the 4 kb pBR322 EcoRI BamHI derivative.
- Cre, NotI and Polymerase
- Cre is obtained from Novogen, Inc. (Madison, Wis.). Alternatively, it may be purified according to the methods of Abremski, K. et al. (J. Molec. Biol. 150:467-486 (1981), herein incorporated by reference). NotI endonuclease, Klenow DNA polymerase, Taq polymerase and plasmids that overproduce Cre are obtained from Life Technologies, Inc., Gaithersburg Md.
- The Amplification Reaction
- Amplification is obtained by incubating either the circular pBR322-LOX derivative produced in Method I, or the linear pBR322-LOX derivative produced in Method II, in the presence of 10 units/ml DNA polymerase (Klenow), 1 unit/ml NotI endonuclease, Amplification Primer and Cre. A typical reaction aliquot (50 μl) contains 50 mM Tris-HCl (pH 7.5), 33 mM NaCl, 1 μg/ml pBR322-LOX derivative, 0.2 μg/ml of Amplification Primer, 50 μg/ml each of dATP, TTP, dCTP, and dGTP, and 2 μg/ml Cre. 2 mM MgCl2 is added in reactions conducted with Taq polymerase. Reactions are incubated at 37-45° C. for 1-2 hours, or longer.
- Analysis of Amplification Reaction
- To analyze the amplification reaction, a series of control experiments are conducted. Each such experiment is conducted in a reaction volume of 50 μl. The Buffer in the experiments is 50 mM Tris-HCl (pH 7.5), 33 mM NaCl, and 50 μg/ml each of dATP, TTP, dCTP, and dGTP. All reactions are incubated for 2 hours either isothermally, or under thermocycling conditions, with 10 μl aliquots removed at 0, 30, 60 and 120 minutes. The Experimental protocol for such experiments is shown below:
Experimental Protocol Experiment Reagent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Buffer + + + + + + + + + + + + + + 2 μg/ml Cre + − + + + + − − + − − − − + 10 Units/ml Polymerase Klenow + + − + + + − − − − − − − − Taq/MgCl2 − − − − − − + + − − − − + + 1 unit/ml Notl + + + + − + − − − − − − + + 0.2 μg/ml + + + − + + + + − − − − + + Amplification Primer 0.2 μg/ml Target − − − − − − + + − − − − + + Primer pBR322- LOX 1 μg/ml + + + + + − − − − + − − − − 10 μg/ml − − − − − − − − + − + − − − 1 μg/ ml 4 kb− − − − − − + + − − − + + + EcoRI-BamHI pBR322 fragment - The results of the above-described experiments are analyzed by get electrophoresis in order to detect amplification of DNA.
Experiment 1 is a Cre-facilitated amplification reaction. Experiments 2-6 explore the effect of deleting Cre, Polymerase, Amplification Primer, NotI and Substrate, respectively, from the amplification reaction. Experiments 7-8 are designed to permit a comparison between Cre-facilitated amplification and PCR under approximately identical conditions. Experiment 7 is an amplification reaction run under isothermal conditions 37-45° C. using Taq polymerase instead of Klenow. Experiment 8 is a PCR protocol performed as described by Sambrook, J. et al. (In “Molecular Cloning A Laboratory Manual,” Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989)). Experiment 9 is a Cre control for demonstrating the capacity of the Cre to mediate recombination. Experiments 10-12 are controls to identify the nature and migration of the DNA substrates. - Experiments 13 and 14 demonstrate the capacity of Cre-mediated amplification to amplify DNA lacking lox sites. Experiments 13 and 14 are performed as follows:
- 1. The 3.9 kb EcoRI-BamHI linear pBR322 fragment (in Buffer) is heat denatured and then cooled to 37-45° C.
- 2. The Target Primer and Taq polymerase are added, and a polymerization reaction is permitted to occur for 20 minutes.
- 3. The reaction is then heated to heat denature any double-stranded DNA present.
- 4. The reaction is cooled to 37-45° C., and Amplification Primer and NotI restriction endonuclease are added. Cre is added to Experiment 14. Reactions 13 and 14. The reaction is then permitted to continue under isothermal conditions for 2 hours.
- Evaluation of Amplification Reaction
- The absolute capacity of Cre-facilitated amplification methods to amplify DNA is demonstrated by a comparison of the results of
Experiments 1, 14 and 10-12. The efficiency of Cre-facilitated amplification relative to PCR is demonstrated by a comparison of the results ofExperiments 1, 14 and 8. - The ability of the methods of the present invention to mediate DNA amplification is further illustrated with respect to the human p53 gene.
- The p53 gene is a human tumor suppressor gene that comprises approximately 20 kilobases, and contains 11 exons (393 codons). The gene is located at chromosome region 17p13.105-p12. Its sequence can be obtained from the GSDB database at accession X54156. Mutations in the p53 gene are the single most common genetic alteration in human cancers. Indeed, of the more than 100,000 additional cases of colon, lung and breast cancer diagnosed each year, more than half have been reported to contain p53 mutations (Levine, A. J.,Canc. Surveys 12:59-79 (1992); herein incorporated by reference). The majority of presently recognized p53 mutations are missense mutations tightly clustered between codons 118 and 309, the DNA binding region of the protein (Renault, B. et al., Cancer Res. 53:2614-2617 (1993); Ziegler, A. et al., Proc. Natl. Acad. Sci. (U.S.A.) 90:4216-4220 (1993)). These mutations generally result in loss of function of the p53 protein. Because of the correlation between mutations in p53 and the incidence of cancer, the p53 gene is thought to be part of the cascade necessary for the development of many tumors, and the p53 gene is believed to play a role in regulating cell growth and apoptosis.
- The diversity and dispersion of mutations in the p53 gene is thus of substantial clinically relevance. Unfortunately, the large size of the p53 gene, and the large number of intervening sequences that it contains, has hampered efforts to identify additional mutations that may be associated with colon, lung or breast cancer as well as mutations that may be predictive of other types of cancer. Because the methods of the present invention are able to amplify entire human genes, they permit. the amplification of the entire p53 gene of a patient in a single reaction.
- The p53 gene of an individual can be amplified by incubating the gene in the presence of a Target Primer which is capable of hybridizing to the 5′ terminus of one strand of the individual's p53 gene, and then in the presence of an Amplification Primer which is capable of hybridizing to the 5′ terminus of the other strand of the individual's p53 gene. Both the Target Primer and the Amplification Primer have 5′ termini that, if hybridized to a complementary polynucleotide, would form a double-stranded polynucleotide that contains a lox site. The Amplification Primer additionally includes a polynucleotide region containing at least one modified nucleotide residues, such that, if this polynucleotide region were hybridized to a complementary polynucleotide, a double-stranded polynucleotide would thereby be formed that would contain one or more restriction endonuclease cleavage sites that would be recognized by a restriction endonuclease but which could not (because of the presence of the modified nucleotide residue(s)) be cleaved. Rather, only that strand of the restriction site that lacked modified nucleotide residues would be cleaved.
- The sequence of a suitable Target Primer is (SEQ ID NO:6):
5′ tatacgaagt tatgaattca taacttcgta taatgtatgc tatacgaagt tatttcccat caagccctag ggctcc 3′ - As will be recognized, nucleotides 1-13 of the Target Primer (SEQ ID NO:6) are complementary to the first 13 nucleotides of the LOX site that is present at nucleotides 20-53. Nucleotides 14-19 are an EcoRI site. Nucleotides 54-76 comprise the sequence of the
nucleotides 1 through 23 of the p53 gene. - The sequence of a suitable Amplification Primer is (SEQ ID NO:7):
5′ tatacgaagt tatggatcca taacttcgta tagcatacat tatacgaagt tatgcggccg cccaccctgt tcccttggaa cccaggta 3′ - As will be recognized, the Amplification Primer (SEQ ID NO:7) contains a 13 base long span of nucleotides (nucleotides 1-13) that is connected to a BamHI recognition sequence (14-19). Nucleotides 20-53 are a LOX site. The initial span of nucleotides is complementary to the initial 13 nucleotides of the LOX site, such that a “loop” can form between these regions of the primer. Nucleotides 54-61 are a NotI site. Nucleotides 62-88 are complementary to nucleotides 20303 through 20277 of the human p53 gene. The underscoring of C residues in the NotI site indicates that at least one of the residues is methylated or phosphorothioated.
- Amplification is achieved by incubating a sample containing the p53 gene of an individual in the presence of the Target Primer and in the presence of Klenow (or Taq) polymerase, and nucleotides. Incubation is conducted under conditions sufficient to permit the Target Primer to hybridize to the p53 template. A typical reaction aliquot (50 μl) contains 50 mM Tris-HCl (pH 7.5), 33 mM NaCl, 50 units/ml DNA polymerase (Klenow), 1 μg/ml sample DNA, 0.2 μg/ml of Target Primer, and 100 μg/ml each of dATP, TTP, dCTP, and dGTP. The polymerization reaction is monitored, and permitted to proceed until full length Target Primer extension product molecules of 20 kb have been obtained.
- The reaction is then treated so as to denature the Target Primer extension product from its p53 template. It is then returned to conditions suitable hot nucleic acid hybridization and primer extension. Cre (2 μg/ml), Amplification Primer (0.2 μg/ml), and 1 unit/ml NotI endonuclease are then added to the reaction. If heat is used as the denaturant, such action will inactivate any non-thermostabile reagents present. Thus, an additional 50 units/ml of Klenow polymerase is also added to the reaction.
- As will be recognized, the 3′ terminus of the Amplification Primer is complementary to the 3′ terminus of the full length Target Primer extension product. It thus hybridizes to that product, and the polymerase mediates both the formation of an Amplification Primer extension product, and the further extension of the Target Primer extension product until a double-stranded linear molecule is formed having lox sites on each end and a hemi-modified NotI recognition site.
- The added Cre converts this linear molecule into a double-stranded circular molecule. The NotI endonuclease cleaves the target strand at the NotI restriction site, thereby generating a free 3′ terminus that initiates target strand synthesis. This synthesis repairs the NotI site and thus permits its repeated cleavage, thereby “shedding” full length target strand molecules. Since the Amplification Primer is still present in the reaction, it hybridizes with these full length target strand molecules, and is extended by the polymerase to form a new double-stranded linear molecule having lox sites on each end and a hemi-modified NotI recognition site. The amplification process then continues as described above.
- Amplification is demonstrated by gel electrophoresis, as described above.
- The ability of the methods of the present invention to circularize a fragment of a human gene is illustrated with respect to a 1.7 kb fragment of the p53 tumor suppressor gene.
- Target Primer 3aLox and Amplification Primer 1794LoxNot were obtained by custom synthesis (Genosys). The sequence of Target Primer 3aLox is shown below as SEQ ID NO:8. Bases complementary to the p53 gene are shown in underline.
SEQ ID NO: 8 ATAACTTCGT ATAATGTATG CTATACGAAG TTATTAATTC TTAAAGCACC TGCACCG - The sequence of Amplification Primer 1794LoxNot is shown below as SEQ ID NO:9. Bases complementary to the p53 gene are shown in underline; the NotI site (containing methylated C nucleotide residues) is shown in lowercase.
SEQ ID NO: 9 ATAACTTCGT ATAGCATACA TTATACGAAG TTATgcggcc gcCCATAACT AAGTAATCCA GAAAA - To characterize the amplification reaction, the reaction was isolated into three “steps:” (1) the production of a double-stranded linear nucleic acid molecule in which a target polynucleotide is flanked by Lox sites (i.e., a lox site is present at each terminus of the linear molecule), and which contains a hemi-modified (NotI) restriction site between the target polynucleotide and one of the Lox sites; (2) the circularization of such a linear molecule by Cre; and (3) the nicking and amplification of such circular molecules by the restriction endonuclease and a polymerase.
- As expected, the 3aLox and 1794LoxNot primers were found to possess significant secondary structure. Purified 1794 LoxNot primer migrated as two bands of approximately equal intensity as judged by agarose gel electrophoresis (PreCast Agarose Gels, FMC). The fastest band migrated at the approximate position of primer 3aLox. These results suggest that the 1794LoxNot primer was capable of stable self-hybridization. The primers were found to inhibit the PCR amplification mediated by BDNF primers in control reactions (PCR Amplification Kit, Gibco/BRL). Each Lox primer alone had an IC50 of approximately 0.2 μM; a synergistic inhibition was observed when both primers were provided (IC50≈=0.02 μM).
- The observed inhibition was sensitive to primer concentration and to Mg concentration. Successful PCR amplification (2 minutes at 55° C. for 35 cycles in 50-100 μl reaction volumes) of a polynucleotide fragment of the p53 gene was obtained using primers 3aLox and 1794 at 1.5-2 mM Mg; amplification was not observed at 1 mM Mg. Amplification was observed at all primer concentrations tested (0.2-0.8 μM). Optimal PCR amplification was observed at 0.2 μM primer-concentration when conducted at 2 mM Mg. Such amplification forms the desired linear, double-stranded polynucleotide containing flanking recombinational sites and a hemi-modified restriction site. The experiment confirmed that primer molecules having extended 5′ portions that are not complementary to any portion of an initial target molecule can serve as primers for in vitro amplification.
- In order to confirm that the amplified linear molecules contained a lox site at each termini, and to confirm that such sites were in proper orientation to one another, the above-described amplified product was incubated in the presence of Cre recombinase.
- Amplified product is purified by glassMax filtration according to the manufacturer's instructions, or by ethanol precipitation. Circularization reactions are performed in 30 μl volumes that contained: 13.5 μl of water, 3 μl of 10×Cre Buffer (50 mM Tris (pH 7.5), 33 mM NaCl, 10 mM MgCl2), 10 mg/ml BSA (0.4 μl of a 75 μg/μl solution), 12.5 μl of the purified amplified product, and (except for control reactions) 1 μl of Cre (Novagen stock solution diluted {fraction (1/10)} in 10×Cre Buffer). Reactions are incubated for 30 minutes at 37° C., and then were stopped by heating to 70° C. for 5 minutes.
- Circularization is determined by treating the reaction products with HinDIII. The amplified linear molecule is expected to have two HinDIII sites, and to thus yield three fragments (of approximately 447, 572 and 771 base pairs). If the reactants had circularized, HinDIII digestion would be expected to produce only two fragments (of approximately 572 and 1184 (=447+771−34 (a lox site eliminated through circularization) base pairs.
- HinDIII digestion is performed as follows: 15 μl of Cre-treated or control reactions are incubated with 2 μl of a HinDIII solution (16 μl water, 2 μl 10×React II buffer (Life Technologies, Inc.), 2 μl HinDIII (Life Technologies, Inc.)). Digestion is stopped after a one hour incubation at 37° C. Digestion products are analyzed by electrophoresis using 0.8% agarose gels. Bands of approximately 550 and 1150 base pairs are observed in the HinDIII-treated, Cre-treated samples, but are not observed in samples incubated without Cre or without HinDIII. The experiment thus confirmed that the amplified linear product contained functional lox termini, and that Cre recombinase could mediate the circularization of the linear reaction products into the desired double-stranded circular molecule having a recombinational site, a hemi-modified restriction site and a polynucleotide fragment of a mammalian gene.
- While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth and as follows in the scope of the appended claims.
-
1 9 1 48 DNA pBR322 1 aattcgcggc cgcataactt cgtataatgt atgctatacg aagttatg 48 2 48 DNA pBR322 modified_base (41)...(41) m5c 2 gatccataac ttcgtatagc atacattata cgaagttatg cggccgcg 48 3 13 DNA pBR322 3 aattcgcggc cgc 13 4 80 DNA pBR322 modified_base (55)...(55) methylated or phosphorthiolated 4 tatacgaagt tatggatcca taacttcgta tagcatacat tatacgaagt tatgcggccg 60 cgaattcttg aagacgaaag 80 5 70 DNA pBR322 5 tatacgaagt tatgaattca taacttcgta taatgtatgc tatacgaagt tatggatcct 60 ctacgccgga 70 6 76 DNA Homo sapiens 6 tatacgaagt tatgaattca taacttcgta taatgtatgc tatacgaagt tatttcccat 60 caagccctag ggctcc 76 7 88 DNA Homo sapiens modified_base (55)...(55) methylated or phosphorylated 7 tatacgaagt tatggatcca taacttcgta tagcatacat tatacgaagt tatgcggccg 60 cccaccctgt tcccttggaa cccaggta 88 8 57 DNA Homo sapiens 8 ataacttcgt ataatgtatg ctatacgaag ttattaattc ttaaagcacc tgcaccg 57 9 65 DNA Homo sapiens modified_base (36)...(36) m5c 9 ataacttcgt atagcataca ttatacgaag ttatgcggcc gcccataact aagtaatcca 60 gaaaa 65
Claims (3)
1-20 (canceled).
21. A composition for amplifying a target polynucleotide region of a nucleic acid molecule, the composition comprising:
(a) a sample comprising a component, or extract thereof, selected from the group consisting of blood, stool, sputum, mucus, serum, urine, saliva, tear, biopsy material, tissue, PAP smear, mole, wart, agricultural product, waste water, drinking water, milk, processed food, and air;
(b) a single-stranded first polynucleotide comprising a polynucleotide region that is complementary in sequence to a target polynucleotide region of a nucleic acid molecule of said sample, wherein said first polynucleotide is circular or is circularizable when hybridized to a polynucleotide comprising said target polynucleotide region;
(c) a second polynucleotide comprising a 3′ terminus hybridized to said single-stranded first polynucleotide and comprising said target polynucleotide region;
(d) a third polynucleotide comprising a polynucleotide region comprising a sequence that is complementary to a region of said second polynucleotide, and whose 3′ terminus is hybridized thereto; and
(e) a polymerase that extends the 3′ termini of said second and third polynucleotides in a template-dependent manner, thereby to provide exponential amplification of said target polynucleotide region.
22. A transgenic animal comprising a circularized nucleic acid molecule produced through the in vitro amplification of an in vitro composition, the composition comprising:
(a) a single-stranded first polynucleotide comprising a polynucleotide region comprising a nucleic acid sequence that is complementary to a target polynucleotide region of a nucleic acid molecule of a human or non-human mammalian gene, and is circular or is circularizable when hybridized to a polynucleotide comprising said target polynucleotide region;
(b) a second polynucleotide comprising a 3′ terminus hybridized to said single-stranded first polynucleotide and comprising said target polynucleotide region;
(c) a third polynucleotide comprising a polynucleotide region that is complementary in sequence to a region of said second polynucleotide, and whose 3′ terminus is hybridized thereto; and
(d) a polymerase that extends the 3′ termini of said second and third polynucleotides in a template-dependent manner, thereby to provide exponential amplification of said target polynucleotide region.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/759,644 US20040191816A1 (en) | 1992-08-04 | 2004-01-16 | In vitro amplification of nucleic acid molecules via circular replicons |
US11/824,035 US7615625B2 (en) | 1992-08-04 | 2007-06-29 | In vitro amplification of nucleic acid molecules via circular replicons |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US92464392A | 1992-08-04 | 1992-08-04 | |
US93394592A | 1992-08-24 | 1992-08-24 | |
PCT/US1993/007309 WO1994003624A1 (en) | 1992-08-04 | 1993-08-04 | Methods for the isothermal amplification of nucleic acid molecules |
US08/383,327 US5591609A (en) | 1992-08-04 | 1995-02-03 | Methods for the isothermal amplification of nucleic acid molecules |
US08/533,852 US5614389A (en) | 1992-08-04 | 1995-09-26 | Methods for the isothermal amplification of nucleic acid molecules |
US08/595,226 US5733733A (en) | 1992-08-04 | 1996-02-01 | Methods for the isothermal amplification of nucleic acid molecules |
US08/906,491 US5834202A (en) | 1992-08-04 | 1997-08-05 | Methods for the isothermal amplification of nucleic acid molecules |
US09/188,214 US6218152B1 (en) | 1992-08-04 | 1998-11-09 | In vitro amplification of nucleic acid molecules via circular replicons |
US09/657,943 US6261808B1 (en) | 1992-08-04 | 2000-09-08 | Amplification of nucleic acid molecules via circular replicons |
US09/899,834 US6448017B1 (en) | 1992-08-04 | 2001-07-09 | In vitro amplification of nucleic acid molecules via circular replicons |
US10/143,862 US6740745B2 (en) | 1992-08-04 | 2002-05-14 | In vitro amplification of nucleic acid molecules via circular replicons |
US10/759,644 US20040191816A1 (en) | 1992-08-04 | 2004-01-16 | In vitro amplification of nucleic acid molecules via circular replicons |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/143,862 Continuation US6740745B2 (en) | 1992-08-04 | 2002-05-14 | In vitro amplification of nucleic acid molecules via circular replicons |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/824,035 Continuation US7615625B2 (en) | 1992-08-04 | 2007-06-29 | In vitro amplification of nucleic acid molecules via circular replicons |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040191816A1 true US20040191816A1 (en) | 2004-09-30 |
Family
ID=27569221
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/657,943 Expired - Fee Related US6261808B1 (en) | 1992-08-04 | 2000-09-08 | Amplification of nucleic acid molecules via circular replicons |
US09/899,834 Expired - Fee Related US6448017B1 (en) | 1992-08-04 | 2001-07-09 | In vitro amplification of nucleic acid molecules via circular replicons |
US10/143,862 Expired - Fee Related US6740745B2 (en) | 1992-08-04 | 2002-05-14 | In vitro amplification of nucleic acid molecules via circular replicons |
US10/759,644 Abandoned US20040191816A1 (en) | 1992-08-04 | 2004-01-16 | In vitro amplification of nucleic acid molecules via circular replicons |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/657,943 Expired - Fee Related US6261808B1 (en) | 1992-08-04 | 2000-09-08 | Amplification of nucleic acid molecules via circular replicons |
US09/899,834 Expired - Fee Related US6448017B1 (en) | 1992-08-04 | 2001-07-09 | In vitro amplification of nucleic acid molecules via circular replicons |
US10/143,862 Expired - Fee Related US6740745B2 (en) | 1992-08-04 | 2002-05-14 | In vitro amplification of nucleic acid molecules via circular replicons |
Country Status (1)
Country | Link |
---|---|
US (4) | US6261808B1 (en) |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994003624A1 (en) * | 1992-08-04 | 1994-02-17 | Auerbach Jeffrey I | Methods for the isothermal amplification of nucleic acid molecules |
US6261808B1 (en) | 1992-08-04 | 2001-07-17 | Replicon, Inc. | Amplification of nucleic acid molecules via circular replicons |
US6593086B2 (en) | 1996-05-20 | 2003-07-15 | Mount Sinai School Of Medicine Of New York University | Nucleic acid amplification methods |
US20070269799A9 (en) * | 1994-06-22 | 2007-11-22 | Zhang David Y | Nucleic acid amplification methods |
US5942391A (en) * | 1994-06-22 | 1999-08-24 | Mount Sinai School Of Medicine | Nucleic acid amplification method: ramification-extension amplification method (RAM) |
US8137911B2 (en) * | 2001-05-22 | 2012-03-20 | Cellscript, Inc. | Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences |
US6942972B2 (en) | 2001-10-24 | 2005-09-13 | Beckman Coulter, Inc. | Efficient synthesis of protein-oligonucleotide conjugates |
AU2003210644A1 (en) * | 2002-01-23 | 2003-09-02 | Arena Pharmaceuticals, Inc. | Non-endogenous versions of human g protein-coupled receptor: fshr |
AU2003294447A1 (en) * | 2002-11-21 | 2004-06-18 | Epicentre Technologies | Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences |
WO2006058159A2 (en) * | 2004-11-23 | 2006-06-01 | The United States Of America As Represented By The Secretary Of Health And Human Services, Nih | Methods and compositions for the ex vivo high-throughput detection of protein/protein interactions |
BRPI0515777A (en) * | 2004-12-11 | 2008-08-05 | Cytogenix Inc | biosynthesis free from high quality nucleic acid cells and uses thereof |
EP1871896B1 (en) * | 2005-04-12 | 2015-06-03 | Olink AB | Circle probes and their use in the identification of biomolecules |
US8080393B2 (en) * | 2005-04-12 | 2011-12-20 | Olink Ab | Methods for production of oligonucleotides |
US20090233291A1 (en) * | 2005-06-06 | 2009-09-17 | 454 Life Sciences Corporation | Paired end sequencing |
DK2463386T3 (en) | 2005-06-15 | 2017-07-31 | Complete Genomics Inc | Nucleic acid analysis using random mixtures of non-overlapping fragments |
US20060292559A1 (en) * | 2005-06-23 | 2006-12-28 | Beckman Coulter, Inc. | Cell-based microarrays, and methods for their preparation and use |
US7960104B2 (en) * | 2005-10-07 | 2011-06-14 | Callida Genomics, Inc. | Self-assembled single molecule arrays and uses thereof |
WO2007133831A2 (en) * | 2006-02-24 | 2007-11-22 | Callida Genomics, Inc. | High throughput genome sequencing on dna arrays |
SG10201405158QA (en) * | 2006-02-24 | 2014-10-30 | Callida Genomics Inc | High throughput genome sequencing on dna arrays |
US7501254B2 (en) * | 2006-07-20 | 2009-03-10 | Ghc Technologies, Inc. | Methods and compositions for amplification and capture of nucleic acid sequences |
WO2008070352A2 (en) * | 2006-10-27 | 2008-06-12 | Complete Genomics, Inc. | Efficient arrays of amplified polynucleotides |
US20090111705A1 (en) * | 2006-11-09 | 2009-04-30 | Complete Genomics, Inc. | Selection of dna adaptor orientation by hybrid capture |
US20090105961A1 (en) * | 2006-11-09 | 2009-04-23 | Complete Genomics, Inc. | Methods of nucleic acid identification in large-scale sequencing |
GB0701253D0 (en) * | 2007-01-23 | 2007-02-28 | Diagnostics For The Real World | Nucleic acid amplification and testing |
US8551704B2 (en) | 2007-02-16 | 2013-10-08 | Pacific Biosciences Of California, Inc. | Controllable strand scission of mini circle DNA |
EP2140033B1 (en) | 2007-03-28 | 2012-10-10 | Signal Diagnostics | System and method for high resolution analysis of nucleic acids to detect sequence variations |
AU2008282862B2 (en) | 2007-07-26 | 2014-07-31 | Pacific Biosciences Of California, Inc. | Molecular redundant sequencing |
AU2008307617B2 (en) * | 2007-09-28 | 2013-05-23 | Pacific Biosciences Of California, Inc. | Error-free amplification of DNA for clonal sequencing |
US7960116B2 (en) * | 2007-09-28 | 2011-06-14 | Pacific Biosciences Of California, Inc. | Nucleic acid sequencing methods and systems |
US7901890B2 (en) * | 2007-11-05 | 2011-03-08 | Complete Genomics, Inc. | Methods and oligonucleotide designs for insertion of multiple adaptors employing selective methylation |
US8518640B2 (en) * | 2007-10-29 | 2013-08-27 | Complete Genomics, Inc. | Nucleic acid sequencing and process |
US8415099B2 (en) | 2007-11-05 | 2013-04-09 | Complete Genomics, Inc. | Efficient base determination in sequencing reactions |
US8617811B2 (en) | 2008-01-28 | 2013-12-31 | Complete Genomics, Inc. | Methods and compositions for efficient base calling in sequencing reactions |
US7897344B2 (en) * | 2007-11-06 | 2011-03-01 | Complete Genomics, Inc. | Methods and oligonucleotide designs for insertion of multiple adaptors into library constructs |
WO2009073629A2 (en) | 2007-11-29 | 2009-06-11 | Complete Genomics, Inc. | Efficient shotgun sequencing methods |
US8592150B2 (en) | 2007-12-05 | 2013-11-26 | Complete Genomics, Inc. | Methods and compositions for long fragment read sequencing |
WO2009094583A1 (en) * | 2008-01-23 | 2009-07-30 | Complete Genomics, Inc. | Methods and compositions for preventing bias in amplification and sequencing reactions |
WO2009120372A2 (en) * | 2008-03-28 | 2009-10-01 | Pacific Biosciences Of California, Inc. | Compositions and methods for nucleic acid sequencing |
US8236499B2 (en) * | 2008-03-28 | 2012-08-07 | Pacific Biosciences Of California, Inc. | Methods and compositions for nucleic acid sample preparation |
US8143030B2 (en) | 2008-09-24 | 2012-03-27 | Pacific Biosciences Of California, Inc. | Intermittent detection during analytical reactions |
US8628940B2 (en) | 2008-09-24 | 2014-01-14 | Pacific Biosciences Of California, Inc. | Intermittent detection during analytical reactions |
US20090247426A1 (en) * | 2008-03-31 | 2009-10-01 | Pacific Biosciences Of California, Inc. | Focused library generation |
US20090270273A1 (en) * | 2008-04-21 | 2009-10-29 | Complete Genomics, Inc. | Array structures for nucleic acid detection |
US8795961B2 (en) * | 2008-09-05 | 2014-08-05 | Pacific Biosciences Of California, Inc. | Preparations, compositions, and methods for nucleic acid sequencing |
US8921046B2 (en) | 2008-09-19 | 2014-12-30 | Pacific Biosciences Of California, Inc. | Nucleic acid sequence analysis |
US8481264B2 (en) | 2008-09-19 | 2013-07-09 | Pacific Biosciences Of California, Inc. | Immobilized nucleic acid complexes for sequence analysis |
US8383369B2 (en) * | 2008-09-24 | 2013-02-26 | Pacific Biosciences Of California, Inc. | Intermittent detection during analytical reactions |
ES2515065T3 (en) | 2008-10-24 | 2014-10-29 | Epicentre Technologies Corporation | Transposon end compositions and methods for modifying nucleic acids |
US9080211B2 (en) | 2008-10-24 | 2015-07-14 | Epicentre Technologies Corporation | Transposon end compositions and methods for modifying nucleic acids |
US10669574B2 (en) | 2008-11-18 | 2020-06-02 | XCR Diagnostics, Inc. | DNA amplification technology |
WO2010144151A2 (en) * | 2009-06-12 | 2010-12-16 | Pacific Biosciences Of California, Inc. | Single-molecule real-time analysis of protein synthesis |
US9524369B2 (en) | 2009-06-15 | 2016-12-20 | Complete Genomics, Inc. | Processing and analysis of complex nucleic acid sequence data |
EP2689028B1 (en) | 2011-03-23 | 2017-08-30 | Pacific Biosciences Of California, Inc. | Isolation of polymerase-nucleic acid complexes and loading onto substrates |
US9347900B2 (en) | 2011-10-14 | 2016-05-24 | Pacific Biosciences Of California, Inc. | Real-time redox sequencing |
EP3222627B1 (en) | 2012-02-15 | 2019-08-07 | Pacific Biosciences of California, Inc. | Polymerase enzyme substrates with protein shield |
WO2015054516A2 (en) | 2013-10-09 | 2015-04-16 | Fluoresentric, Inc. | Multiplex probes |
US10017759B2 (en) | 2014-06-26 | 2018-07-10 | Illumina, Inc. | Library preparation of tagged nucleic acid |
CN114438174A (en) * | 2014-11-11 | 2022-05-06 | 伊鲁米那股份有限公司 | Polynucleotide amplification using CRISPR-CAS system |
US10302972B2 (en) | 2015-01-23 | 2019-05-28 | Pacific Biosciences Of California, Inc. | Waveguide transmission |
US10344336B2 (en) | 2015-06-09 | 2019-07-09 | Life Technologies Corporation | Methods, systems, compositions, kits, apparatus and computer-readable media for molecular tagging |
WO2017197027A1 (en) | 2016-05-11 | 2017-11-16 | Illumina, Inc. | Polynucleotide enrichment and amplification using argonaute systems |
EP4095263A1 (en) | 2017-01-06 | 2022-11-30 | Editas Medicine, Inc. | Methods of assessing nuclease cleavage |
US10914729B2 (en) | 2017-05-22 | 2021-02-09 | The Trustees Of Princeton University | Methods for detecting protein binding sequences and tagging nucleic acids |
US20240287504A1 (en) | 2021-03-09 | 2024-08-29 | Illumina, Inc. | Genomic library preparation and targeted epigenetic assays using cas-grna ribonucleoproteins |
KR20240146111A (en) | 2021-03-09 | 2024-10-07 | 일루미나, 인코포레이티드 | Analyzing expression of protein-coding variants in cells |
CA3223731A1 (en) | 2021-08-11 | 2023-02-16 | Illumina, Inc. | Detection of analytes using targeted epigenetic assays, proximity-induced tagmentation, strand invasion, restriction, or ligation |
Citations (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582788A (en) * | 1982-01-22 | 1986-04-15 | Cetus Corporation | HLA typing method and cDNA probes used therein |
US4673640A (en) * | 1984-04-30 | 1987-06-16 | Biotechnica International, Inc. | Regulated protein production using site-specific recombination |
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683202A (en) * | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683194A (en) * | 1984-05-29 | 1987-07-28 | Cetus Corporation | Method for detection of polymorphic restriction sites and nucleic acid sequences |
US4888274A (en) * | 1985-09-18 | 1989-12-19 | Yale University | RecA nucleoprotein filament and methods |
US4959317A (en) * | 1985-10-07 | 1990-09-25 | E. I. Du Pont De Nemours And Company | Site-specific recombination of DNA in eukaryotic cells |
US4988617A (en) * | 1988-03-25 | 1991-01-29 | California Institute Of Technology | Method of detecting a nucleotide change in nucleic acids |
US5089400A (en) * | 1981-10-03 | 1992-02-18 | Ciba-Geigy Corporation | Polypeptides and process for the production thereof |
US5149777A (en) * | 1988-07-20 | 1992-09-22 | Novo Nordisk A/S | Human insulin analogs and preparations containing them |
US5176995A (en) * | 1985-03-28 | 1993-01-05 | Hoffmann-La Roche Inc. | Detection of viruses by amplification and hybridization |
US5270184A (en) * | 1991-11-19 | 1993-12-14 | Becton, Dickinson And Company | Nucleic acid target generation |
US5354668A (en) * | 1992-08-04 | 1994-10-11 | Auerbach Jeffrey I | Methods for the isothermal amplification of nucleic acid molecules |
US5409818A (en) * | 1988-02-24 | 1995-04-25 | Cangene Corporation | Nucleic acid amplification process |
US5426180A (en) * | 1991-03-27 | 1995-06-20 | Research Corporation Technologies, Inc. | Methods of making single-stranded circular oligonucleotides |
US5455166A (en) * | 1991-01-31 | 1995-10-03 | Becton, Dickinson And Company | Strand displacement amplification |
US5476774A (en) * | 1989-08-21 | 1995-12-19 | Hoffmann-La Roche Inc. | Quantitation of nucleic acids using the polymerase chain reaction |
US5516663A (en) * | 1990-01-26 | 1996-05-14 | Abbott Laboratories | Ligase chain reaction with endonuclease IV correction and contamination control |
US5521065A (en) * | 1984-12-13 | 1996-05-28 | Applied Biosystems, Inc. | Detection of specific sequences in nucleic acids |
US5525462A (en) * | 1991-05-02 | 1996-06-11 | Toyo Boseki Kabushiki Kaisha | Nucleic acid sequence amplification method, detection method, and reagent kit therefor |
US5595891A (en) * | 1990-07-19 | 1997-01-21 | Behringwerke Ag | Method for producing a polynucleotide for use in single primer amplification |
US5612199A (en) * | 1991-10-11 | 1997-03-18 | Behringwerke Ag | Method for producing a polynucleotide for use in single primer amplification |
US5614389A (en) * | 1992-08-04 | 1997-03-25 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
US5648245A (en) * | 1995-05-09 | 1997-07-15 | Carnegie Institution Of Washington | Method for constructing an oligonucleotide concatamer library by rolling circle replication |
US5714320A (en) * | 1993-04-15 | 1998-02-03 | University Of Rochester | Rolling circle synthesis of oligonucleotides and amplification of select randomized circular oligonucleotides |
US5733733A (en) * | 1992-08-04 | 1998-03-31 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
US5834202A (en) * | 1992-08-04 | 1998-11-10 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
US5834252A (en) * | 1995-04-18 | 1998-11-10 | Glaxo Group Limited | End-complementary polymerase reaction |
US5871921A (en) * | 1994-02-16 | 1999-02-16 | Landegren; Ulf | Circularizing nucleic acid probe able to interlock with a target sequence through catenation |
US5874260A (en) * | 1994-10-28 | 1999-02-23 | Bio Merieux | Oligonucleotide which can be used as primer in a method of amplification based on a replication accompanied by strand displacement |
US5876924A (en) * | 1994-06-22 | 1999-03-02 | Mount Sinai School Of Medicine | Nucleic acid amplification method hybridization signal amplification method (HSAM) |
US5888732A (en) * | 1995-06-07 | 1999-03-30 | Life Technologies, Inc. | Recombinational cloning using engineered recombination sites |
US5942391A (en) * | 1994-06-22 | 1999-08-24 | Mount Sinai School Of Medicine | Nucleic acid amplification method: ramification-extension amplification method (RAM) |
US5952201A (en) * | 1994-11-07 | 1999-09-14 | Landegren; Ulf | Method of preparing oligonucleotide probes or primers, vector therefor and use thereof |
US6025139A (en) * | 1995-08-30 | 2000-02-15 | Visible Genetics Inc. | Method for identification of mutations using ligation of multiple oligonucleotide probes |
US6033881A (en) * | 1995-06-13 | 2000-03-07 | Himmler; Gottfried | Method for one step isothermal non-transcription based amplification of nucleic acids |
US6040166A (en) * | 1985-03-28 | 2000-03-21 | Roche Molecular Systems, Inc. | Kits for amplifying and detecting nucleic acid sequences, including a probe |
US6054274A (en) * | 1997-11-12 | 2000-04-25 | Hewlett-Packard Company | Method of amplifying the signal of target nucleic acid sequence analyte |
US6063604A (en) * | 1996-03-18 | 2000-05-16 | Molecular Biology Resources, Inc. | Target nucleic acid sequence amplification |
US6077668A (en) * | 1993-04-15 | 2000-06-20 | University Of Rochester | Highly sensitive multimeric nucleic acid probes |
US6096880A (en) * | 1993-04-15 | 2000-08-01 | University Of Rochester | Circular DNA vectors for synthesis of RNA and DNA |
US6124120A (en) * | 1997-10-08 | 2000-09-26 | Yale University | Multiple displacement amplification |
US6140055A (en) * | 1998-03-05 | 2000-10-31 | Johnson & Johnson Research Pty Limited | Zymogenic nucleic acid detection methods and related kits |
US6143495A (en) * | 1995-11-21 | 2000-11-07 | Yale University | Unimolecular segment amplification and sequencing |
US6150112A (en) * | 1998-09-18 | 2000-11-21 | Yale University | Methods for identifying DNA sequences for use in comparison of DNA samples by their lack of polymorphism using Y shape adaptors |
US6183960B1 (en) * | 1995-11-21 | 2001-02-06 | Yale University | Rolling circle replication reporter systems |
US6207373B1 (en) * | 1998-02-25 | 2001-03-27 | Nanogen, Inc. | Methods for determining nature of repeat units in DNA |
US6221603B1 (en) * | 2000-02-04 | 2001-04-24 | Molecular Dynamics, Inc. | Rolling circle amplification assay for nucleic acid analysis |
US6235502B1 (en) * | 1998-09-18 | 2001-05-22 | Molecular Staging Inc. | Methods for selectively isolating DNA using rolling circle amplification |
US6255082B1 (en) * | 1998-09-15 | 2001-07-03 | Yale University | Artificial long terminal repeat vectors |
US20010007742A1 (en) * | 1996-04-30 | 2001-07-12 | Ulf Landergren | Probing of specific nucleic acids |
US6261808B1 (en) * | 1992-08-04 | 2001-07-17 | Replicon, Inc. | Amplification of nucleic acid molecules via circular replicons |
US6265166B1 (en) * | 1998-04-29 | 2001-07-24 | Trustees Of Boston University | Methods and compositions pertaining to PD-loops |
US6274320B1 (en) * | 1999-09-16 | 2001-08-14 | Curagen Corporation | Method of sequencing a nucleic acid |
US6277607B1 (en) * | 1999-05-24 | 2001-08-21 | Sanjay Tyagi | High specificity primers, amplification methods and kits |
US6284497B1 (en) * | 1998-04-09 | 2001-09-04 | Trustees Of Boston University | Nucleic acid arrays and methods of synthesis |
US6287772B1 (en) * | 1998-04-29 | 2001-09-11 | Boston Probes, Inc. | Methods, kits and compositions for detecting and quantitating target sequences |
US6287824B1 (en) * | 1998-09-15 | 2001-09-11 | Yale University | Molecular cloning using rolling circle amplification |
US6287825B1 (en) * | 1998-09-18 | 2001-09-11 | Molecular Staging Inc. | Methods for reducing the complexity of DNA sequences |
US6291187B1 (en) * | 2000-05-12 | 2001-09-18 | Molecular Staging, Inc. | Poly-primed amplification of nucleic acid sequences |
US6316229B1 (en) * | 1998-07-20 | 2001-11-13 | Yale University | Single molecule analysis target-mediated ligation of bipartite primers |
US6323009B1 (en) * | 2000-06-28 | 2001-11-27 | Molecular Staging, Inc. | Multiply-primed amplification of nucleic acid sequences |
US20020001802A1 (en) * | 2000-02-17 | 2002-01-03 | De Baar Marinus Petrus | Reducing background in hybridization reactions |
US20020006617A1 (en) * | 2000-02-07 | 2002-01-17 | Jian-Bing Fan | Nucleic acid detection methods using universal priming |
US20020012930A1 (en) * | 1999-09-16 | 2002-01-31 | Rothberg Jonathan M. | Method of sequencing a nucleic acid |
US6350580B1 (en) * | 2000-10-11 | 2002-02-26 | Stratagene | Methods for detection of a target nucleic acid using a probe comprising secondary structure |
US6355421B1 (en) * | 1997-10-27 | 2002-03-12 | Boston Probes, Inc. | Methods, kits and compositions pertaining to PNA molecular beacons |
US6361942B1 (en) * | 1998-03-24 | 2002-03-26 | Boston Probes, Inc. | Method, kits and compositions pertaining to detection complexes |
US20020039732A1 (en) * | 2000-03-22 | 2002-04-04 | Bruchez Marcel P. | Loop probe hybridization assay for polynucleotide analysis |
US6368801B1 (en) * | 2000-04-12 | 2002-04-09 | Molecular Staging, Inc. | Detection and amplification of RNA using target-mediated ligation of DNA by RNA ligase |
US6372432B1 (en) * | 1999-09-16 | 2002-04-16 | Exonhit Therapeutics Sa | Methods and composition for the detection of pathologic events |
US6383754B1 (en) * | 1999-08-13 | 2002-05-07 | Yale University | Binary encoded sequence tags |
US20020064779A1 (en) * | 2000-02-18 | 2002-05-30 | Ulf Landegren | Methods and kits for proximity probing |
US6403340B1 (en) * | 1998-10-20 | 2002-06-11 | Tepnel Medical Limited | Template chain reaction |
US6410278B1 (en) * | 1998-11-09 | 2002-06-25 | Eiken Kagaku Kabushiki Kaisha | Process for synthesizing nucleic acid |
US20020090621A1 (en) * | 2000-07-27 | 2002-07-11 | The Australian National University | Combinatorial probes and uses therefor |
US6440706B1 (en) * | 1999-08-02 | 2002-08-27 | Johns Hopkins University | Digital amplification |
US6441152B1 (en) * | 1998-12-08 | 2002-08-27 | Boston Probes, Inc. | Methods, kits and compositions for the identification of nucleic acids electrostatically bound to matrices |
US20020119464A1 (en) * | 2000-12-22 | 2002-08-29 | Mcmillan William A. | Compositions and methods enabling a totally internally controlled amplification reaction |
US20020132264A1 (en) * | 1998-03-05 | 2002-09-19 | Hitachi, Ltd. | Apparatus for analyzing samples using linear probe array |
US20020137036A1 (en) * | 1999-10-29 | 2002-09-26 | Sorge Joseph A. | Methods for detection of a target nucleic acid by capture |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL86724A (en) | 1987-06-19 | 1995-01-24 | Siska Diagnostics Inc | Method and kits for the amplification and detection of nucleic acid sequences |
ATE92538T1 (en) | 1988-01-21 | 1993-08-15 | Genentech Inc | AMPLIFICATION AND DETECTION OF NUCLEIC ACID SEQUENCES. |
CA2012983A1 (en) | 1989-03-27 | 1990-09-27 | Sydney Brenner | Process for nucleic acid detection by binary amplification |
EP0542874A4 (en) | 1990-07-25 | 1994-05-11 | Syngene Inc | Circular extension for generating multiple nucleic acid complements |
FR2721945B1 (en) | 1994-07-04 | 1996-10-18 | David Fabrice | GENE ENHANCEMENT, A METHOD OF ISOTHERMAL GENE AMPLIFICATION AND ITS APPLICATIONS |
US6743605B1 (en) | 1998-06-24 | 2004-06-01 | Enzo Life Sciences, Inc. | Linear amplification of specific nucleic acid sequences |
-
2000
- 2000-09-08 US US09/657,943 patent/US6261808B1/en not_active Expired - Fee Related
-
2001
- 2001-07-09 US US09/899,834 patent/US6448017B1/en not_active Expired - Fee Related
-
2002
- 2002-05-14 US US10/143,862 patent/US6740745B2/en not_active Expired - Fee Related
-
2004
- 2004-01-16 US US10/759,644 patent/US20040191816A1/en not_active Abandoned
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089400A (en) * | 1981-10-03 | 1992-02-18 | Ciba-Geigy Corporation | Polypeptides and process for the production thereof |
US4582788A (en) * | 1982-01-22 | 1986-04-15 | Cetus Corporation | HLA typing method and cDNA probes used therein |
US4673640A (en) * | 1984-04-30 | 1987-06-16 | Biotechnica International, Inc. | Regulated protein production using site-specific recombination |
US4683194A (en) * | 1984-05-29 | 1987-07-28 | Cetus Corporation | Method for detection of polymorphic restriction sites and nucleic acid sequences |
US5521065A (en) * | 1984-12-13 | 1996-05-28 | Applied Biosystems, Inc. | Detection of specific sequences in nucleic acids |
US4683202A (en) * | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US6040166A (en) * | 1985-03-28 | 2000-03-21 | Roche Molecular Systems, Inc. | Kits for amplifying and detecting nucleic acid sequences, including a probe |
US4683202B1 (en) * | 1985-03-28 | 1990-11-27 | Cetus Corp | |
US5176995A (en) * | 1985-03-28 | 1993-01-05 | Hoffmann-La Roche Inc. | Detection of viruses by amplification and hybridization |
US4888274A (en) * | 1985-09-18 | 1989-12-19 | Yale University | RecA nucleoprotein filament and methods |
US4959317A (en) * | 1985-10-07 | 1990-09-25 | E. I. Du Pont De Nemours And Company | Site-specific recombination of DNA in eukaryotic cells |
US4683195B1 (en) * | 1986-01-30 | 1990-11-27 | Cetus Corp | |
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US5409818A (en) * | 1988-02-24 | 1995-04-25 | Cangene Corporation | Nucleic acid amplification process |
US4988617A (en) * | 1988-03-25 | 1991-01-29 | California Institute Of Technology | Method of detecting a nucleotide change in nucleic acids |
US5149777A (en) * | 1988-07-20 | 1992-09-22 | Novo Nordisk A/S | Human insulin analogs and preparations containing them |
US5476774A (en) * | 1989-08-21 | 1995-12-19 | Hoffmann-La Roche Inc. | Quantitation of nucleic acids using the polymerase chain reaction |
US5516663A (en) * | 1990-01-26 | 1996-05-14 | Abbott Laboratories | Ligase chain reaction with endonuclease IV correction and contamination control |
US5595891A (en) * | 1990-07-19 | 1997-01-21 | Behringwerke Ag | Method for producing a polynucleotide for use in single primer amplification |
US5455166A (en) * | 1991-01-31 | 1995-10-03 | Becton, Dickinson And Company | Strand displacement amplification |
US5426180A (en) * | 1991-03-27 | 1995-06-20 | Research Corporation Technologies, Inc. | Methods of making single-stranded circular oligonucleotides |
US5525462A (en) * | 1991-05-02 | 1996-06-11 | Toyo Boseki Kabushiki Kaisha | Nucleic acid sequence amplification method, detection method, and reagent kit therefor |
US5612199A (en) * | 1991-10-11 | 1997-03-18 | Behringwerke Ag | Method for producing a polynucleotide for use in single primer amplification |
US5270184A (en) * | 1991-11-19 | 1993-12-14 | Becton, Dickinson And Company | Nucleic acid target generation |
US5591609A (en) * | 1992-08-04 | 1997-01-07 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
US6261808B1 (en) * | 1992-08-04 | 2001-07-17 | Replicon, Inc. | Amplification of nucleic acid molecules via circular replicons |
US6218152B1 (en) * | 1992-08-04 | 2001-04-17 | Replicon, Inc. | In vitro amplification of nucleic acid molecules via circular replicons |
US6448017B1 (en) * | 1992-08-04 | 2002-09-10 | Replicon, Inc. | In vitro amplification of nucleic acid molecules via circular replicons |
US5733733A (en) * | 1992-08-04 | 1998-03-31 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
US5834202A (en) * | 1992-08-04 | 1998-11-10 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
US5614389A (en) * | 1992-08-04 | 1997-03-25 | Replicon, Inc. | Methods for the isothermal amplification of nucleic acid molecules |
US5354668A (en) * | 1992-08-04 | 1994-10-11 | Auerbach Jeffrey I | Methods for the isothermal amplification of nucleic acid molecules |
US6077668A (en) * | 1993-04-15 | 2000-06-20 | University Of Rochester | Highly sensitive multimeric nucleic acid probes |
US6096880A (en) * | 1993-04-15 | 2000-08-01 | University Of Rochester | Circular DNA vectors for synthesis of RNA and DNA |
US6368802B1 (en) * | 1993-04-15 | 2002-04-09 | University Of Rochester | Circular DNA vectors for synthesis of RNA and DNA |
US5714320A (en) * | 1993-04-15 | 1998-02-03 | University Of Rochester | Rolling circle synthesis of oligonucleotides and amplification of select randomized circular oligonucleotides |
US5871921A (en) * | 1994-02-16 | 1999-02-16 | Landegren; Ulf | Circularizing nucleic acid probe able to interlock with a target sequence through catenation |
US6235472B1 (en) * | 1994-02-16 | 2001-05-22 | Ulf Landegren | Nucleic acid detecting reagent |
US5942391A (en) * | 1994-06-22 | 1999-08-24 | Mount Sinai School Of Medicine | Nucleic acid amplification method: ramification-extension amplification method (RAM) |
US5876924A (en) * | 1994-06-22 | 1999-03-02 | Mount Sinai School Of Medicine | Nucleic acid amplification method hybridization signal amplification method (HSAM) |
US5874260A (en) * | 1994-10-28 | 1999-02-23 | Bio Merieux | Oligonucleotide which can be used as primer in a method of amplification based on a replication accompanied by strand displacement |
US5952201A (en) * | 1994-11-07 | 1999-09-14 | Landegren; Ulf | Method of preparing oligonucleotide probes or primers, vector therefor and use thereof |
US5834252A (en) * | 1995-04-18 | 1998-11-10 | Glaxo Group Limited | End-complementary polymerase reaction |
US5648245A (en) * | 1995-05-09 | 1997-07-15 | Carnegie Institution Of Washington | Method for constructing an oligonucleotide concatamer library by rolling circle replication |
US5888732A (en) * | 1995-06-07 | 1999-03-30 | Life Technologies, Inc. | Recombinational cloning using engineered recombination sites |
US6033881A (en) * | 1995-06-13 | 2000-03-07 | Himmler; Gottfried | Method for one step isothermal non-transcription based amplification of nucleic acids |
US6025139A (en) * | 1995-08-30 | 2000-02-15 | Visible Genetics Inc. | Method for identification of mutations using ligation of multiple oligonucleotide probes |
US6210884B1 (en) * | 1995-11-21 | 2001-04-03 | Yale University | Rolling circle replication reporter systems |
US6183960B1 (en) * | 1995-11-21 | 2001-02-06 | Yale University | Rolling circle replication reporter systems |
US6344329B1 (en) * | 1995-11-21 | 2002-02-05 | Yale University | Rolling circle replication reporter systems |
US6143495A (en) * | 1995-11-21 | 2000-11-07 | Yale University | Unimolecular segment amplification and sequencing |
US6063604A (en) * | 1996-03-18 | 2000-05-16 | Molecular Biology Resources, Inc. | Target nucleic acid sequence amplification |
US20010007742A1 (en) * | 1996-04-30 | 2001-07-12 | Ulf Landergren | Probing of specific nucleic acids |
US20020102592A1 (en) * | 1996-04-30 | 2002-08-01 | Ulf Landegren | Probing of specific nucleic acids |
US6124120A (en) * | 1997-10-08 | 2000-09-26 | Yale University | Multiple displacement amplification |
US6280949B1 (en) * | 1997-10-08 | 2001-08-28 | Yale University | Multiple displacement amplification |
US6355421B1 (en) * | 1997-10-27 | 2002-03-12 | Boston Probes, Inc. | Methods, kits and compositions pertaining to PNA molecular beacons |
US6054274A (en) * | 1997-11-12 | 2000-04-25 | Hewlett-Packard Company | Method of amplifying the signal of target nucleic acid sequence analyte |
US6207373B1 (en) * | 1998-02-25 | 2001-03-27 | Nanogen, Inc. | Methods for determining nature of repeat units in DNA |
US6140055A (en) * | 1998-03-05 | 2000-10-31 | Johnson & Johnson Research Pty Limited | Zymogenic nucleic acid detection methods and related kits |
US20020132264A1 (en) * | 1998-03-05 | 2002-09-19 | Hitachi, Ltd. | Apparatus for analyzing samples using linear probe array |
US6361942B1 (en) * | 1998-03-24 | 2002-03-26 | Boston Probes, Inc. | Method, kits and compositions pertaining to detection complexes |
US6284497B1 (en) * | 1998-04-09 | 2001-09-04 | Trustees Of Boston University | Nucleic acid arrays and methods of synthesis |
US20020076716A1 (en) * | 1998-04-09 | 2002-06-20 | Trustees Of Boston University | Nucleic acid arrays and methods of synthesis |
US6287772B1 (en) * | 1998-04-29 | 2001-09-11 | Boston Probes, Inc. | Methods, kits and compositions for detecting and quantitating target sequences |
US6265166B1 (en) * | 1998-04-29 | 2001-07-24 | Trustees Of Boston University | Methods and compositions pertaining to PD-loops |
US6316229B1 (en) * | 1998-07-20 | 2001-11-13 | Yale University | Single molecule analysis target-mediated ligation of bipartite primers |
US6287824B1 (en) * | 1998-09-15 | 2001-09-11 | Yale University | Molecular cloning using rolling circle amplification |
US6255082B1 (en) * | 1998-09-15 | 2001-07-03 | Yale University | Artificial long terminal repeat vectors |
US20020048761A1 (en) * | 1998-09-15 | 2002-04-25 | Yale University | Molecular cloning using rolling circle amplification |
US6235502B1 (en) * | 1998-09-18 | 2001-05-22 | Molecular Staging Inc. | Methods for selectively isolating DNA using rolling circle amplification |
US20020076704A1 (en) * | 1998-09-18 | 2002-06-20 | Sherman Weissman | Methods for selectively isolating DNA using rolling circle amplification |
US6287825B1 (en) * | 1998-09-18 | 2001-09-11 | Molecular Staging Inc. | Methods for reducing the complexity of DNA sequences |
US6372434B1 (en) * | 1998-09-18 | 2002-04-16 | Molecular Staging, Inc. | Methods for reducing the complexity of DNA sequences |
US20010039039A1 (en) * | 1998-09-18 | 2001-11-08 | Sherman Weissman | Methods for selectively isolating DNA using rolling circle amplification |
US6150112A (en) * | 1998-09-18 | 2000-11-21 | Yale University | Methods for identifying DNA sequences for use in comparison of DNA samples by their lack of polymorphism using Y shape adaptors |
US6403340B1 (en) * | 1998-10-20 | 2002-06-11 | Tepnel Medical Limited | Template chain reaction |
US6410278B1 (en) * | 1998-11-09 | 2002-06-25 | Eiken Kagaku Kabushiki Kaisha | Process for synthesizing nucleic acid |
US6441152B1 (en) * | 1998-12-08 | 2002-08-27 | Boston Probes, Inc. | Methods, kits and compositions for the identification of nucleic acids electrostatically bound to matrices |
US6277607B1 (en) * | 1999-05-24 | 2001-08-21 | Sanjay Tyagi | High specificity primers, amplification methods and kits |
US6365729B1 (en) * | 1999-05-24 | 2002-04-02 | The Public Health Research Institute Of The City Of New York, Inc. | High specificity primers, amplification methods and kits |
US6440706B1 (en) * | 1999-08-02 | 2002-08-27 | Johns Hopkins University | Digital amplification |
US6403319B1 (en) * | 1999-08-13 | 2002-06-11 | Yale University | Analysis of sequence tags with hairpin primers |
US6383754B1 (en) * | 1999-08-13 | 2002-05-07 | Yale University | Binary encoded sequence tags |
US6274320B1 (en) * | 1999-09-16 | 2001-08-14 | Curagen Corporation | Method of sequencing a nucleic acid |
US6372432B1 (en) * | 1999-09-16 | 2002-04-16 | Exonhit Therapeutics Sa | Methods and composition for the detection of pathologic events |
US20020012930A1 (en) * | 1999-09-16 | 2002-01-31 | Rothberg Jonathan M. | Method of sequencing a nucleic acid |
US20020012933A1 (en) * | 1999-09-16 | 2002-01-31 | Curagen Corporation | Method of sequencing a nucleic acid |
US20020137036A1 (en) * | 1999-10-29 | 2002-09-26 | Sorge Joseph A. | Methods for detection of a target nucleic acid by capture |
US6221603B1 (en) * | 2000-02-04 | 2001-04-24 | Molecular Dynamics, Inc. | Rolling circle amplification assay for nucleic acid analysis |
US20020132241A1 (en) * | 2000-02-07 | 2002-09-19 | Jian-Bing Fan | Multiplexed detection of analytes |
US20020006617A1 (en) * | 2000-02-07 | 2002-01-17 | Jian-Bing Fan | Nucleic acid detection methods using universal priming |
US20020001802A1 (en) * | 2000-02-17 | 2002-01-03 | De Baar Marinus Petrus | Reducing background in hybridization reactions |
US20020064779A1 (en) * | 2000-02-18 | 2002-05-30 | Ulf Landegren | Methods and kits for proximity probing |
US20020039732A1 (en) * | 2000-03-22 | 2002-04-04 | Bruchez Marcel P. | Loop probe hybridization assay for polynucleotide analysis |
US6368801B1 (en) * | 2000-04-12 | 2002-04-09 | Molecular Staging, Inc. | Detection and amplification of RNA using target-mediated ligation of DNA by RNA ligase |
US6291187B1 (en) * | 2000-05-12 | 2001-09-18 | Molecular Staging, Inc. | Poly-primed amplification of nucleic acid sequences |
US6323009B1 (en) * | 2000-06-28 | 2001-11-27 | Molecular Staging, Inc. | Multiply-primed amplification of nucleic acid sequences |
US20020090621A1 (en) * | 2000-07-27 | 2002-07-11 | The Australian National University | Combinatorial probes and uses therefor |
US6350580B1 (en) * | 2000-10-11 | 2002-02-26 | Stratagene | Methods for detection of a target nucleic acid using a probe comprising secondary structure |
US20020119464A1 (en) * | 2000-12-22 | 2002-08-29 | Mcmillan William A. | Compositions and methods enabling a totally internally controlled amplification reaction |
Also Published As
Publication number | Publication date |
---|---|
US20030082578A1 (en) | 2003-05-01 |
US6448017B1 (en) | 2002-09-10 |
US6261808B1 (en) | 2001-07-17 |
US6740745B2 (en) | 2004-05-25 |
US20020102575A1 (en) | 2002-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6448017B1 (en) | In vitro amplification of nucleic acid molecules via circular replicons | |
US7615625B2 (en) | In vitro amplification of nucleic acid molecules via circular replicons | |
US6218152B1 (en) | In vitro amplification of nucleic acid molecules via circular replicons | |
EP0807186B1 (en) | Methods for the isothermal amplification of nucleic acid molecules | |
US5733733A (en) | Methods for the isothermal amplification of nucleic acid molecules | |
US5470724A (en) | Boomerang DNA amplification | |
US6498023B1 (en) | Generation of single-strand circular DNA from linear self-annealing segments | |
US5928905A (en) | End-complementary polymerase reaction | |
JP3330946B2 (en) | Method for producing single-stranded DNA molecules | |
US5487993A (en) | Direct cloning of PCR amplified nucleic acids | |
US5512463A (en) | Enzymatic inverse polymerase chain reaction library mutagenesis | |
US5834252A (en) | End-complementary polymerase reaction | |
Lagerström et al. | Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. | |
JP2002525078A (en) | Artificial long terminal repeat | |
WO1996041005A1 (en) | Methods for nucleic acid detection, sequencing, and cloning using exonuclease | |
KR101557975B1 (en) | Method for Amplification Nucleic Acid Using Aelle-Specific Reaction Primers | |
JPWO2002090538A1 (en) | Methods for synthesizing nucleic acids | |
CN117242190A (en) | Amplification of Single-stranded DNA | |
US11667968B2 (en) | Fragmentation of DNA | |
RU2798952C2 (en) | Obtaining a nucleic acid library using electrophoresis | |
US20040248131A1 (en) | Methods for dna mutagenesis and dna cloning | |
WO2023220110A1 (en) | Highly efficient and simple ssper and rrpcr approaches for the accurate site-directed mutagenesis of large plasmids | |
JPH11206381A (en) | Isolation and cloning of nucleic acid molecule utilizing hairpin-type nuleic acid probe molecule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REPLICON, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AUERBACH, JEFFREY I.;REEL/FRAME:014557/0070 Effective date: 20040413 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |