US20040174209A1 - Switched-capacitor low-pass filter and semiconductor pressure sensor apparatus incorporating the filter - Google Patents
Switched-capacitor low-pass filter and semiconductor pressure sensor apparatus incorporating the filter Download PDFInfo
- Publication number
- US20040174209A1 US20040174209A1 US10/791,790 US79179004A US2004174209A1 US 20040174209 A1 US20040174209 A1 US 20040174209A1 US 79179004 A US79179004 A US 79179004A US 2004174209 A1 US2004174209 A1 US 2004174209A1
- Authority
- US
- United States
- Prior art keywords
- capacitor
- pass filter
- low
- switching elements
- capacitors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/02—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
- G01L9/04—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/02—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
- G01L9/06—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H19/00—Networks using time-varying elements, e.g. N-path filters
- H03H19/004—Switched capacitor networks
Definitions
- the present invention relates to a low-pass filter formed of a switched capacitor circuit, and to a semiconductor pressure sensor apparatus which utilizes such a low-pass filter.
- semiconductor pressure sensor apparatus Due to their advantages of being small in size and having high performance, various types of semiconductor pressure sensor apparatus are utilized in applications such as for pressure detection within the air intake pipes or exhaust pipes of vehicle engines, or in non-vehicle applications such as in gas meters, etc. Since a semiconductor pressure sensor has excellent response characteristics, they are suitable for use in detecting rapid changes in pressure. However, the high speed of response of a semiconductor pressure sensor is a disadvantage in applications in which it is required to detect average changes in pressure, with high-frequency components of the pressure changes being excluded. In such a case, in which it is required to extract low-frequency components of the pressure changes, it is necessary to use a low-pass filter to remove the high-frequency components from a detection signal that is obtained from a semiconductor pressure sensor.
- FIG. 7 is a circuit diagram of an example of a prior art type of semiconductor pressure sensor apparatus.
- a detection signal that is generated by a semiconductor pressure sensor 1 is amplified by a differential amplifier 2 , and the resultant output signal is transferred through a low-pass filter 3 , to thereby obtain an output signal voltage that contains only low-frequency components of the pressure changes that are detected by the semiconductor pressure sensor 1 .
- the semiconductor pressure sensor 1 can for example be formed of a diaphragm constituted by a plate of silicon having a region that is made relatively thin, with piezoresistive elements G1 ⁇ G4 (i.e., elements which exhibit a change in resistance when subjected to distortion) formed on a surface of the diaphragm.
- piezoresistive elements G1 ⁇ G4 i.e., elements which exhibit a change in resistance when subjected to distortion
- the piezoresistive elements G1 ⁇ G4 are connected in a bridge configuration, so that when pressure is applied to the diaphragm then for example a potential Vp1 that appears between the mutual connection points of the piezoresistive elements G2 and G3 may be increased, while a potential Vp2 that appears between the mutual connection points of the piezoresistive elements G1 and G4 may be decreased.
- Vp1, Vp2 that appear between the mutual connection points are amplified by the differential amplifier 2 , to obtain an output signal having an instantaneous value of voltage designated as Vo, whose value is proportional to the voltage difference (Vp1 ⁇ Vp2). Since that output signal contains high-frequency components, it is passed through the low-pass filter 3 to obtain an output signal that contains only low-frequency components, and whose instantaneous voltage value is designated as Vout.
- switches which perform capacitor switching are implemented as FETs (field effect transistors), each controlled by a control voltage signal applied to a gate electrode, and with the ON/OFF conditions of the switch corresponding to conducting/non-conducting conditions, respectively, between the drain and source electrodes of the FET.
- FETs field effect transistors
- the low-pass filter 3 is configured as a switched capacitor circuit that is formed in an integrated circuit.
- the capacitor switching is performed by switches S 11 , S 12 , S 13 , S 24 , S 25 , S 26 which are respective analog switches (where the term “analog switch” is used herein to signify a switching element constituted by a semiconductor switch device such as a MOS FET) controlled by control signals that are constituted by first and second clock signals ⁇ 1, ⁇ 2 shown in the timing diagram of FIG. 8, and are generated by a clock pulse signal generating circuit 30 .
- FIG. 8 illustrates the phase relationships of the two-phase clock signals ⁇ 1, ⁇ 2 when each of these has a frequency of 150 kHz.
- Each of the set of switches S 11 , S 12 , S 13 is set in the ON (i.e., conducting) state when the first clock signal ⁇ 1 is at the active level (assumed to be the high level, in the example of FIG. 8), while each of the set of switches S 24 , S 25 , S 26 is set in the conducting state when the second signal ⁇ 2 is at the active level.
- FIGS. 5A to 5 D respectively illustrate successive conditions attained by the low-pass filter 3 (when formed as the switched capacitor circuit shown in FIG. 7) during four successive time intervals within a clock period, designated as Phase 1, Phase 2, Phase 3 and Phase 4.
- leakage current is used here to refer to a total amount of leakage current flow, which is determined by such factors as the finite amount of resistance that exists between the drain and source electrodes of a FET constituting an analog switch, when in the OFF state, and also by the leakage current that flows in the PN junction that exists between the region below the drain and source electrodes and the substrate, etc.
- the leakage current magnitude increases in accordance with increases in operating temperature. Referring again to the timing diagram of FIG. 8, since the cut-off frequency fc is 100 Hz, and the duration of a Phase 2 interval is 1.7 microseconds and so is extremely short, the effects of leakage current during that interval can in practice be ignored.
- the present invention is applicable to a low-pass filter that is configured as a switched capacitor circuit, and is used to detect variations in voltage of an input signal, such as a detection signal from a pressure sensor or an amplified detection signal from a pressure sensor.
- a switched capacitor circuit includes first and second capacitors that are fixedly connected in series, and an operational amplifier having a third capacitor fixedly connected between its output terminal and a non-inverting input terminal. The input signal to the low-pass filter is applied between an input terminal of the filter and the non-inverting input terminal of the operational amplifier.
- the switched capacitor circuit also includes first and second sets of switching elements operable for establishing a plurality of respectively different connection conditions between the first, second and third capacitors and the input terminal of the low-pass filter, and switching control means for selectively setting all of the first plurality of switching elements in a conducting state and in a non-conducting state and for selectively setting all of the second plurality of switching elements in a conducting state and in a non-conducting state, to establish the different connection conditions in a predetermined sequence.
- the switching control means periodically controls the switching elements to sequentially establish:
- a basic feature of the present invention is that of providing such a low-pass filter, in which the switching control means is configured to establish as short a duration as possible for the second time interval (Phase 2), within a range of durations whereby none of the first set of switching elements can enter the conducting status concurrently with any of the second set of switching elements.
- the maximum possible duration for the second time interval will increase in accordance with increased operating temperature of the low-pass filter, due to leakage of charge to or from the capacitors because of leakage currents of the switching elements that are connected to each side of each capacitor. Such leakage currents increase in accordance with increasing temperature.
- the “shortest possible duration” is preferably established as the shortest duration whereby none of the first set of switching elements can enter the conducting status concurrently with any of the second set of switching elements when the low-pass filter is functioning at a predetermined maximum operating temperature.
- the shortest possible duration for the second time interval may be established based on the maximum amount of error that is permissible in the DC gain of the low-pass filter.
- the amount of that error varies substantially in proportion to the amount of change in charge voltage that occurs in the aforementioned second capacitor during the second time interval.
- the shortest possible duration for the aforementioned second time interval can be established as “a duration for the second time interval whereby the amount of charge in the second capacitor during that time interval does not change by more than 3%”.
- the invention provides a semiconductor pressure sensor apparatus comprising
- a semiconductor substrate having a region thereof formed to be thinner than surrounding regions to thereby constitute a diaphragm
- a first pair of piezoresistive elements mounted on the diaphragm, each adapted to exhibit an increase in resistance when pressure is applied to the diaphragm,
- a second pair of piezoresistive elements mounted on the diaphragm, each adapted to exhibit a decrease in resistance when pressure is applied to the diaphragm, the piezoresistive elements being connected as an electrical bridge circuit, having a first connection point that connects a first one of the first pair of piezoresistive elements to a first one of the second pair of piezoresistive elements, a second connection point that connects a second one of the first pair of piezoresistive elements to a second one of the second pair of piezoresistive elements, a third connection point that connects the first one of the first pair of piezoresistive elements to the second one of the second pair of piezoresistive elements, and a fourth connection point that connects the second one of the first pair of piezoresistive elements to the first one of the second pair of piezoresistive elements,
- a differential amplifier for amplifying a voltage difference between the second and third connection points
- an amplified output signal produced from the differential amplifier is supplied to the low-pass filter, for thereby detecting variations in pressure applied to the diaphragm.
- FIG. 1 shows the electrical configuration of an embodiment of a semiconductor pressure sensor apparatus
- FIG. 2 is a timing diagram for illustrating timing relationships between two-phase clock signals that are utilized in a switched capacitor type of low-pass filter circuit in the embodiment of FIG. 1;
- FIGS. 3A, 3B show the configuration of a pressure sensor element which may be used with the above embodiment
- FIG. 4 is a circuit diagram of an example of a circuit for generating the two-phase clock signals that are used in the above embodiment
- FIGS. 5A to 5 D are circuit diagrams which illustrate successive switching conditions that are attained by a switched capacitor type of low-pass filter circuit
- FIG. 6 is an equivalent circuit diagram of a switched capacitor type of low-pass filter circuit
- FIG. 7 shows the electrical configuration of an example of a prior art type of semiconductor pressure sensor apparatus
- FIG. 8 is a timing diagram for describing the operation of a switched capacitor type of low-pass filter in the prior art example of FIG. 7.
- FIG. 1 is a circuit diagram showing an embodiment of a semiconductor pressure sensor apparatus which incorporates a low-pass filter 3 , implemented as a switched capacitor circuit.
- Components in FIG. 1 corresponding to components of the prior art example of FIG. 7 described above are designated by identical reference numerals to those of FIG. 7. It can thus be understood that the respective configurations of the semiconductor pressure sensor 1 , the differential amplifier 2 and the low-pass filter 3 may be similar to those of the prior art example of FIG. 7.
- a clock pulse signal generating circuit 40 of this embodiment is configured to operate in a different manner from the prior art example, as described in the following.
- FIG. 3A is a plan view of a semiconductor pressure sensor 1 which is used in the embodiment of FIG. 1, while FIG. 3B is a cross-sectional view in elevation of the semiconductor pressure sensor 1 , taken along the line A-A in FIG. 3A.
- FIG. 2 is a timing diagram showing timing relationships between two-phase clock signals ⁇ 1, ⁇ 2 of this embodiment, generated by the clock pulse signal generating circuit 40 , which controls the switches of the low-pass filter 3 in the embodiment of FIG. 1.
- the semiconductor pressure sensor 1 includes a semiconductor substrate 4 , having an N-type layer 4 b formed by epitaxial growth on a P-type silicon substrate 4 a.
- the substrate 4 a has a central region that is shaped to be thinner than the peripheral region of that substrate, and that central region in conjunction with the N-type epitaxial layer 4 b constitutes a thin diaphragm 5 .
- the piezoresistive elements G1 ⁇ G4 are disposed on a surface of the diaphragm 5 .
- the diaphragm 5 and the piezoresistive elements G1 ⁇ G4 become distorted, the resistance of each of the piezoresistive elements G1, G2 becomes increased while the resistance of each of the piezoresistive elements G3, G4 becomes decreased.
- the piezoresistive elements G1 ⁇ G4 are connected in a bridge circuit as shown in FIG. 1, in which the piezoresistive elements G1 ⁇ G4 are indicated as respective variable resistors.
- a current source 6 supplies a fixed value of current Ia that flows into the mutual connection point of the piezoresistive elements G1, G3, with that current then flowing to ground potential through the mutual connection point of the piezoresistive elements G2, G4.
- Vp1 in FIG. 1 an amount of voltage increase (designated as Vp1 in FIG. 1) will be assumed to be produced at the mutual connection point of the piezoresistive elements G2, G3, with an amount of voltage decrease (designated as Vp2 in FIG. 1) being produced at the mutual connection point of the piezoresistive elements G1, G4.
- the voltage difference (Vp1 ⁇ Vp2) varies in substantially direct proportion to variations in the pressure that is applied to the diaphragm 5 .
- the voltage difference (Vp1 ⁇ Vp2) is amplified by the differential amplifier 2 , to obtain the output signal having the voltage value Vo as shown in FIG. 1.
- the differential amplifier 2 is formed of a pair of operational amplifiers OP 2 , OP 3 and four resistors R 3 , R 4 , R 5 , R 6 .
- the potentials Vp1, Vp2 which are developed by the semiconductor pressure sensor 1 as described above are applied to the non-inverting input terminals of the operational amplifiers OP 2 , OP 3 respectively.
- the resistors R 3 , R 4 , R 5 , R 6 are connected in series between the output terminal of the operational amplifier OP 2 and a mutual connection node NVref that is held at a potential which is higher than ground potential by a reference voltage value Vref.
- the resistor R 3 is connected between the output terminal and the non-inverting input terminal of the operational amplifier OP 2
- the resistor R 5 is connected between the output terminal and the non-inverting input terminal of the operational amplifier OP 3 .
- One end of the resistor R 6 is connected to the mutual connection node NVref.
- the voltage that appears between the output terminal of the operational amplifier OP 2 and the mutual connection node NVref is proportional to the output voltage value from the differential amplifier 2 .
- the output voltage Vo is equal to 2(Vp1 ⁇ Vp2).
- the output voltage Vo from the differential amplifier 2 is supplied to the low-pass filter 3 , which is constituted by a switched capacitor circuit having the configuration described above referring to the prior art example of FIG. 7. That is to say, the low-pass filter 3 is formed of an operational amplifier OP 1 , first, second and third capacitors C1, C2, C3, a set of first, second and third analog switches S 11 , S 12 , S 13 each of which is set in the conducting state when the first clock signal ⁇ 1 of the two-phase clock signals ⁇ 1, ⁇ 2 is at the active level, and a set of fourth, fifth and sixth analog switches S 24 , S 25 , S 26 S 13 each of which is set in the conducting state when the second clock signal ⁇ 2 is at the active level.
- the low-pass filter 3 is formed of an operational amplifier OP 1 , first, second and third capacitors C1, C2, C3, a set of first, second and third analog switches S 11 , S 12 , S 13 each of which is set in the conducting state when the first clock signal ⁇
- the operational amplifier OP 1 is supplied with power from a single power supply voltage Vd. For that reason, the non-inverting input terminal of the operational amplifier OP 1 is connected to the aforementioned mutual connection node NVref, which is held at the reference voltage Vref.
- the value of Vref can be approximately half of the supply voltage Vd. However it would be equally possible to supply the operational amplifier OP 1 with power from a pair of positive and negative power supply voltages, in which case the reference voltage Vref could be the ground potential.
- This embodiment essentially differs from the prior art example of FIG. 7 described above with respect to the timing relationships between the first and second clock signals ⁇ 1, ⁇ 2 that are generated by the clock pulse signal generating circuit 40 .
- the time interval which elapses between a falling edge of a pulse of the first clock signal ⁇ 1 i.e., a transition of that clock signal from the active to the inactive level, whereby each analog switch that is controlled by that clock signal is changed from the conducting to the non-conducting state
- the rising edge of the succeeding pulse of the second clock signal ⁇ 2 i.e., a transition of that clock signal from the inactive to the active level, whereby each analog switch that is controlled by that clock signal is set in the conducting state
- the connection condition of the low-pass filter 3 is as shown in FIG. 5A.
- the capacitor C1 is charged to the input voltage Vo while conversely the capacitor C2 is discharged to 0 V, and the charge in the capacitor C3 does not change.
- Phase 2 As shown in FIG. 5B all of the switches S 11 , S 12 , S 13 , S 24 , S 25 , S 26 are in the non-conducting state so that the charge in each of the capacitors C1, C2, C3 does not change. Thus, during Phase 2, (assuming that no charge is lost due to leakage current) the charges of the capacitors will remain unchanged from the condition at the end of Phase 1.
- the output voltage Vo from the low-pass filter 3 changes by an amount that is equal to the amount of change in the voltage to which the capacitor C3 is charged.
- Phase 4 the condition becomes as shown in FIG. 5D, in which all of the analog switches are in the non-conducting state, in the same way as during Phase 3, so that the charge in each capacitor is held unchanged from that which existed at the end of Phase 3.
- the circuit configuration of the low-pass filter 3 and the operation of that circuit based on the two-phase clock signals ⁇ 1, ⁇ 2 is essentially identical to that of the prior art example described hereinabove.
- the phase relationship between the two-phase clock signals ⁇ 1, ⁇ 2 differs from that of the prior art example, shown in the timing diagram of FIG. 8, i.e., with the phase relationships relationship between the two-phase clock signals ⁇ 1, ⁇ 2 for this embodiment being as shown in the timing diagram of FIG. 2.
- the required cut-off frequency for the low-pass filter 3 is extremely low, e.g., 1 Hz, then as described above, in order to be able to utilize capacitors which are of sufficiently small capacitance value to be formed on a semiconductor integrated circuit, it becomes necessary to lower the frequency of the basic clock signal to approximately 1.5 kHz as described hereinabove.
- the duration of the Phase 2 interval would be 170 microseconds, which is substantially long.
- the amounts of charge held in the capacitors C1, C2 would be strongly affected by leakage current flow which occurs in the analog switches that are connected to these capacitors.
- the above embodiment of the present invention having the clock signal timing relationships shown in FIG. 2 differs from the prior art example in that the duration of the Phase 2 interval is made extremely short. Hence, satisfactory operation can be achieved with a cut-off frequency as low as 1 Hz, when the frequency of the two-phase clock signals ⁇ 1, ⁇ 2 is lowered to 1.5 kHz. It becomes possible to use small capacitance values for the capacitors of the low-pass filter, including C3.
- the duration of the Phase 2 interval should be made as short as possible, within a range of values whereby none of the analog switches that are controlled by the clock signal ⁇ 1 will be in the conducting state (i.e., ON state) concurrently with any of the analog switches that are controlled by the clock signal ⁇ 2.
- the duration of the Phase 2 interval should be made as short as possible while ensuring that the above condition is satisfied (i.e, whereby there must be no overlap between conduction intervals of the analog switches that are controlled by the clock signal ⁇ 1 and conduction intervals of the analog switches that are controlled by the clock signal ⁇ 2) when the low-pass filter 3 is used at up to a predetermined maximum value of operating temperature. It can thereby be ensured that the operation of the low-pass filter 3 will not be affected by temperature-dependent increases in leakage currents of the analog switches.
- the duration of the Phase 2 interval should be within the range of 0.6 to 2 microseconds.
- An alternative method of determining a suitable minimum duration for the Phase 2 interval is as follows. If there is significant loss of charge from the capacitors C1, C2 during each Phase 2 interval, then an error will arise in the value of DC gain of the low-pass filter 3 , with respect to a target value of DC gain. That is to say, the magnitude of that gain error is substantially entirely determined by the rate of charge leakage from the capacitors C1, C2 during each Phase 2 interval, due to leakage current in the analog switches.
- a maximum value for that error in the DC gain can be predetermined, e.g., expressed as a proportion of the target value of DC gain, such as 3%.
- the duration of the Phase 2 interval is made such that the proportion of charge reduction (of capacitor C1, for example) that occurs during each Phase 2 interval is equal to the predetermined maximum allowable amount of error in the DC gain of the low-pass filter 3 with respect to the target value (e.g., an error of 3%), then satisfactory operation can be achieved.
- the amount of leakage of charge from the capacitor C1 during each Phase 2 interval can be measured directly, or can be obtained by measuring the levels of leakage current of the analog switches.
- the two-phase clock signals ⁇ 1, ⁇ 2 are generated by the clock pulse signal generating circuit 40 , whose internal circuit configuration can be as shown in the example of FIG. 4.
- a basic clock signal generating circuit 7 produces the basic clock signal at a frequency of 6 kHz, which is inputted to a 2-bit binary counter 8 .
- the output from the 2 0 stage of the binary counter 8 is inputted to an inverter Q 1 and to one input of a 2-input AND gate Q 3 , with the output from the inverter Q 1 being supplied to one input of a 2-input AND gate Q 2 , while the output from the 2 1 stage of the binary counter 8 is supplied to the other input of the AND gate Q 2 and to the other input of the AND gate Q 2 .
- the output produced from the AND gate Q 2 consists of a train of pulses at a frequency of 1.5 kHz, i.e., with each pulse occuring when the binary counter 8 attains a count of 2. That pulse train is used as the clock signal ⁇ 1 of the circuit of FIG. 1.
- the output from the 2-input AND gate Q 3 also consists of a train of pulses each generated when the binary counter 8 attains a count of 3. These pulses are delayed by being transferred through a delay circuit 9 that produces a delay of approximately 1 ⁇ s, with the output from the delay circuit 9 constituting the clock signal ⁇ 2 of the circuit of FIG. 1, i.e., which also has a frequency of 1.5 kHz.
- the low-pass filter since the operation of the low-pass filter is unaffected by leakage current which flows in the analog switches, it becomes possible to implement a switched capacitor type of low-pass filter that can have an extremely low value of cut-off frequency, and which can be configured with capacitor values which are sufficiently small that the capacitors can readily be formed within a semiconductor integrated circuit.
- Such a low-pass filter can be used to detect extremely low-frequency components of voltage variations, when the voltage variations include high-frequency components superimposed on the low-frequency components.
- the invention thus enables a semiconductor pressure sensor apparatus to be realized which can detect extremely low-frequency components of pressure variations, and which utilizes a switched capacitor type of low-pass filter that is formed in an integrated circuit.
- the low-pass filter of the present invention has been described in the above only with application to a sensor signal produced from a pressure sensor, it will be understood that such a low-pass filter is equally applicable to various other applications in which it is necessary to achieve a very low value of filter cut-off frequency for a low-pass filter whose components are formed entirely within a semiconductor integrated circuit.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Filters That Use Time-Delay Elements (AREA)
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
- Networks Using Active Elements (AREA)
Abstract
Description
- 1. Field of Technology
- The present invention relates to a low-pass filter formed of a switched capacitor circuit, and to a semiconductor pressure sensor apparatus which utilizes such a low-pass filter.
- 2. Description of Prior Art
- Due to their advantages of being small in size and having high performance, various types of semiconductor pressure sensor apparatus are utilized in applications such as for pressure detection within the air intake pipes or exhaust pipes of vehicle engines, or in non-vehicle applications such as in gas meters, etc. Since a semiconductor pressure sensor has excellent response characteristics, they are suitable for use in detecting rapid changes in pressure. However, the high speed of response of a semiconductor pressure sensor is a disadvantage in applications in which it is required to detect average changes in pressure, with high-frequency components of the pressure changes being excluded. In such a case, in which it is required to extract low-frequency components of the pressure changes, it is necessary to use a low-pass filter to remove the high-frequency components from a detection signal that is obtained from a semiconductor pressure sensor.
- FIG. 7 is a circuit diagram of an example of a prior art type of semiconductor pressure sensor apparatus. With this apparatus, a detection signal that is generated by a
semiconductor pressure sensor 1 is amplified by adifferential amplifier 2, and the resultant output signal is transferred through a low-pass filter 3, to thereby obtain an output signal voltage that contains only low-frequency components of the pressure changes that are detected by thesemiconductor pressure sensor 1. - The
semiconductor pressure sensor 1 can for example be formed of a diaphragm constituted by a plate of silicon having a region that is made relatively thin, with piezoresistive elements G1˜G4 (i.e., elements which exhibit a change in resistance when subjected to distortion) formed on a surface of the diaphragm. When pressure is applied to the diaphragm, causing shape distortion to occur, the respective resistance values of the piezoresistive elements G1˜G4 are altered. The piezoresistive elements G1˜G4 are connected in a bridge configuration, so that when pressure is applied to the diaphragm then for example a potential Vp1 that appears between the mutual connection points of the piezoresistive elements G2 and G3 may be increased, while a potential Vp2 that appears between the mutual connection points of the piezoresistive elements G1 and G4 may be decreased. - The potentials Vp1, Vp2 that appear between the mutual connection points are amplified by the
differential amplifier 2, to obtain an output signal having an instantaneous value of voltage designated as Vo, whose value is proportional to the voltage difference (Vp1−Vp2). Since that output signal contains high-frequency components, it is passed through the low-pass filter 3 to obtain an output signal that contains only low-frequency components, and whose instantaneous voltage value is designated as Vout. - In the following it will be assumed that switches which perform capacitor switching are implemented as FETs (field effect transistors), each controlled by a control voltage signal applied to a gate electrode, and with the ON/OFF conditions of the switch corresponding to conducting/non-conducting conditions, respectively, between the drain and source electrodes of the FET.
- Usually, the low-
pass filter 3 is configured as a switched capacitor circuit that is formed in an integrated circuit. The capacitor switching is performed by switches S11, S12, S13, S24, S25, S26 which are respective analog switches (where the term “analog switch” is used herein to signify a switching element constituted by a semiconductor switch device such as a MOS FET) controlled by control signals that are constituted by first and second clock signals φ1, φ2 shown in the timing diagram of FIG. 8, and are generated by a clock pulsesignal generating circuit 30. FIG. 8 illustrates the phase relationships of the two-phase clock signals φ1, φ2 when each of these has a frequency of 150 kHz. Each of the set of switches S11, S12, S13 is set in the ON (i.e., conducting) state when the first clock signal φ1 is at the active level (assumed to be the high level, in the example of FIG. 8), while each of the set of switches S24, S25, S26 is set in the conducting state when the second signal φ2 is at the active level. - When the analog switches S11˜S13 and S24˜S26 are controlled as described above by the two-phase clock signals φ1, φ2 with the timing relationships shown in FIG. 8, the equivalent circuit of the operation becomes as shown in FIG. 6, i.e., with the circuit functioning as a low-pass filter. The values of the resistors R1, R2 and the cut-off frequency fc of that equivalent circuit are obtained (designating the frequency of each of the two-phase clock signals φ1, φ2 as fs, the respective capacitance values of the capacitors C1, C2 C3 as c1, c2, c3 and the resistance value of the resistors R1, R2 as r1, r2 respectively) from the following equations:
- r1=1/(fs·c1) (1)
- r2=1/(fs·c2) (2)
- fc=1/(2π·r2·c3)=fs·c2/(2π·c3) (3)
- With a usual type of semiconductor pressure sensor apparatus, the cut-off frequency fc is generally required to be approximately 100˜400 Hz. If for example the cut-off frequency is 100 Hz, then the values c2=0.25 pf, c3=60 pf, fs=150 kHz, can be used. Such capacitance and frequency values can readily be obtained by using devices that are formed in an integrated circuit.
- However considering the case in which a substantially lower value of cut-off frequency is required, e.g., 1 Hz, then if the values for the frequency fs of the two-phase clock signals φ1, φ2 and for the capacitor C2 are made the same as in the above numeric example, the value of capacitor C3 must be multiplied by 100, i.e., to be made 6,000 pf. In practice, it is not possible to realize such a large value of capacitance by a capacitor that is formed in a semiconductor integrated circuit.
- Thus, since it would not be practicable to substantially reduce the value of capacitor C2 below approximately 0.25 pf, it would be necessary to lower the frequency fs of the two-phase clock signals φ1, φ2 by a factor of 1:100, i.e., to approximately 1.5 kHz, in order to achieve a value of cut-off frequency as low as 1 Hz with such a prior art type of low-pass filter.
- The phase relationship between the two-phase clock signals φ1, φ2 during one clock period, in the case of a prior art type of apparatus in which the frequency of each of the two-phase clock signals φ1, φ2 is 150 kHz will be considered referring again to the timing diagram of FIG. 8, and to FIGS. 5A to5D. FIGS. 5A to 5D respectively illustrate successive conditions attained by the low-pass filter 3 (when formed as the switched capacitor circuit shown in FIG. 7) during four successive time intervals within a clock period, designated as
Phase 1,Phase 2,Phase 3 andPhase 4. - Firstly as shown in FIG. 5A, during
Phase 1, the capacitor C1 becomes charged to the input voltage Vo, while conversely the capacitor C2 is discharged, to reach a charge of zero. The charge in the capacitor C3 is left unchanged. - Next, considering
Phase 2, as shown in FIG. 5B all of the switches S11, S12, S13, S24, S25, S26 are in the OFF (i.e., open) state, so that the charge in each of the capacitors C1, C2, C3 is left unchanged. Thus, duringPhase 2, the respective voltages developed across the capacitors are left unchanged from those which existed at the end ofPhase 1. - Next, considering
Phase 3, as shown in FIG. 5C the capacitors C2 and C3 become connected in parallel, and the capacitor C1 becomes connected between the inverting input terminal and the non-inverting input terminal of the operational amplifier OP1. Since the inverting input terminal and the non-inverting input terminal of the operational amplifier OP1 are held at the same potential the capacitor C1 becomes discharged. The resultant discharge current flow acts to charge each of the capacitors C2, C3. The capacitor C2 becomes finally charged to the output signal voltage Vout that is being produced from the operational amplifier OP1 at that point in time. The amount of charging current which flows into the capacitor C3 is equal to the amount of discharge current which flows from the capacitor C1, with the charge voltage of the capacitor C3 changing accordingly. Since the voltage to which the capacitor C3 becomes charged is necessarily identical to the output voltage Vout from the operational amplifier OP1, the amount of change of that output voltage Vout is equal to the amount of change in the voltage to which the capacitor C3 is charged. - Next, considering
Phase 4, as shown in FIG. 5D all of the switches S11, S12, S13, S24, S25, S26 are in the OFF state, in the same way as for the condition duringPhase 3. Thus, each of the capacitors C1, C2, C3 is left in the same condition of charge as that which existed at the end ofPhase 3. - However a problem arises with respect to a change in the charge voltages of the capacitors C1, C2 during the
Phase 2 interval. Immediately after the start ofPhase 2, the amount of charge in the capacitor C1 is Vo.C1, while amount of charge in the capacitor C2 is zero. Since the amount of area that is available on the substrate of a semiconductor integrated circuit is extremely small, each capacitor can only have a maximum value that is very small. In addition as can be understood from equation (3) above, the value of capacitor c2 should be as small as possible, to achieve a low value of cut-off frequency for the low-pass filter, e.g., 0.25 pF. When the amount of capacitance is extremely small, then when analog switches that are respectively connected between the terminals of a capacitor and ground potential are set in the OFF state, even a tiny amount of leakage current that flows in these analog switches will have a substantial effect upon the voltage to which the capacitor is charged. - The term “leakage current” is used here to refer to a total amount of leakage current flow, which is determined by such factors as the finite amount of resistance that exists between the drain and source electrodes of a FET constituting an analog switch, when in the OFF state, and also by the leakage current that flows in the PN junction that exists between the region below the drain and source electrodes and the substrate, etc. The leakage current magnitude increases in accordance with increases in operating temperature. Referring again to the timing diagram of FIG. 8, since the cut-off frequency fc is 100 Hz, and the duration of a
Phase 2 interval is 1.7 microseconds and so is extremely short, the effects of leakage current during that interval can in practice be ignored. However if the capacitor values were to be left unchanged, and the cut-off frequency fc were to be lowered to 1 Hz, then it would be necessary to lower the frequency fs of the two-phase clock signals φ1, φ2 to become 1.5 kHz as described above. If that is done, then the duration of aPhase 2 interval becomes multiplied by a factor of 100, i.e., to become 170 microseconds. In that case, with all of the switches S11, S12, S13, S24, S25, S26 in the OFF state during such a long-duration Phase 2 interval, the amount of charge in the capacitors C1, C2 will change substantially during that interval, due to leakage current flow in the switches that are connected on each side of each of these capacitors. - As a result the problem arises that an error will arise in the gain of the low-
pass filter 3 in the low-frequency range and in the actual cut-off frequency of the low-pass filter (i.e., by comparison with the cut-off frequency that is derived from equation (3)). - It is an objective of the present invention to overcome the problems of the prior art set out above, by providing a low-pass filter that is configured as a switched capacitor circuit, whereby even when the frequency of the two-phase clock signals φ1, φ2 is made substantially lower than has been the practice in the prior art, in order to achieve a very low value of cut-off frequency for the filter (for example, approximately 1 Hz) and the values of capacitors used in the switched capacitor circuit are made sufficiently small to enable the capacitors to be readily manufactured within a semiconductor integrated circuit, the operation of the low-pass filter will be substantially unaffected by leakage currents which flow in switching elements of the switched capacitor circuit.
- Basically, the present invention is applicable to a low-pass filter that is configured as a switched capacitor circuit, and is used to detect variations in voltage of an input signal, such as a detection signal from a pressure sensor or an amplified detection signal from a pressure sensor. Such a switched capacitor circuit includes first and second capacitors that are fixedly connected in series, and an operational amplifier having a third capacitor fixedly connected between its output terminal and a non-inverting input terminal. The input signal to the low-pass filter is applied between an input terminal of the filter and the non-inverting input terminal of the operational amplifier. The switched capacitor circuit also includes first and second sets of switching elements operable for establishing a plurality of respectively different connection conditions between the first, second and third capacitors and the input terminal of the low-pass filter, and switching control means for selectively setting all of the first plurality of switching elements in a conducting state and in a non-conducting state and for selectively setting all of the second plurality of switching elements in a conducting state and in a non-conducting state, to establish the different connection conditions in a predetermined sequence. Specifically, the switching control means periodically controls the switching elements to sequentially establish:
- (a) during a first time interval (Phase 1), a condition in which the first capacitor is charged to the voltage of the input signal, while the second capacitor is discharged to zero and the charge of the third capacitor is left unchanged,
- (b) during a second time interval (Phase 2), a condition in which no charging or discharging of the capacitors occurs,
- (c) during a third time interval (Phase 3), a condition in which the second and third capacitors are connected in parallel between the output terminal and inverting input terminal of the operational amplifier and are each charged from the first capacitor, while the first capacitor is discharged to zero, with a corresponding change in the voltage across the third capacitor and a resultant change in output voltage from the operational amplifier, and
- (d) during a fourth time interval (Phase 4), a condition in which no charging or discharging of the capacitors occurs.
- A basic feature of the present invention is that of providing such a low-pass filter, in which the switching control means is configured to establish as short a duration as possible for the second time interval (Phase 2), within a range of durations whereby none of the first set of switching elements can enter the conducting status concurrently with any of the second set of switching elements.
- Since in general the switching elements are implemented as semiconductor devices (e.g., MOS FET transistors), the maximum possible duration for the second time interval will increase in accordance with increased operating temperature of the low-pass filter, due to leakage of charge to or from the capacitors because of leakage currents of the switching elements that are connected to each side of each capacitor. Such leakage currents increase in accordance with increasing temperature. Hence, the “shortest possible duration” is preferably established as the shortest duration whereby none of the first set of switching elements can enter the conducting status concurrently with any of the second set of switching elements when the low-pass filter is functioning at a predetermined maximum operating temperature.
- In addition, the shortest possible duration for the second time interval may be established based on the maximum amount of error that is permissible in the DC gain of the low-pass filter. The amount of that error varies substantially in proportion to the amount of change in charge voltage that occurs in the aforementioned second capacitor during the second time interval. Thus for example if the maximum amount of error that is permissible in the DC gain of the low-pass filter is 3%, then the shortest possible duration for the aforementioned second time interval can be established as “a duration for the second time interval whereby the amount of charge in the second capacitor during that time interval does not change by more than 3%”.
- It is a further objective to provide a semiconductor pressure sensor apparatus that utilizes such a low-pass filter. To achieve that objective, the invention provides a semiconductor pressure sensor apparatus comprising
- a semiconductor substrate having a region thereof formed to be thinner than surrounding regions to thereby constitute a diaphragm,
- a first pair of piezoresistive elements mounted on the diaphragm, each adapted to exhibit an increase in resistance when pressure is applied to the diaphragm,
- a second pair of piezoresistive elements mounted on the diaphragm, each adapted to exhibit a decrease in resistance when pressure is applied to the diaphragm, the piezoresistive elements being connected as an electrical bridge circuit, having a first connection point that connects a first one of the first pair of piezoresistive elements to a first one of the second pair of piezoresistive elements, a second connection point that connects a second one of the first pair of piezoresistive elements to a second one of the second pair of piezoresistive elements, a third connection point that connects the first one of the first pair of piezoresistive elements to the second one of the second pair of piezoresistive elements, and a fourth connection point that connects the second one of the first pair of piezoresistive elements to the first one of the second pair of piezoresistive elements,
- a source of an electric current that is passed between the first and second connection points,
- a differential amplifier for amplifying a voltage difference between the second and third connection points, and
- a low-pass filter according to the present invention.
- Specifically, an amplified output signal produced from the differential amplifier is supplied to the low-pass filter, for thereby detecting variations in pressure applied to the diaphragm.
- FIG. 1 shows the electrical configuration of an embodiment of a semiconductor pressure sensor apparatus;
- FIG. 2 is a timing diagram for illustrating timing relationships between two-phase clock signals that are utilized in a switched capacitor type of low-pass filter circuit in the embodiment of FIG. 1;
- FIGS. 3A, 3B show the configuration of a pressure sensor element which may be used with the above embodiment;
- FIG. 4 is a circuit diagram of an example of a circuit for generating the two-phase clock signals that are used in the above embodiment;
- FIGS. 5A to5D are circuit diagrams which illustrate successive switching conditions that are attained by a switched capacitor type of low-pass filter circuit;
- FIG. 6 is an equivalent circuit diagram of a switched capacitor type of low-pass filter circuit;
- FIG. 7 shows the electrical configuration of an example of a prior art type of semiconductor pressure sensor apparatus; and
- FIG. 8 is a timing diagram for describing the operation of a switched capacitor type of low-pass filter in the prior art example of FIG. 7.
- FIG. 1 is a circuit diagram showing an embodiment of a semiconductor pressure sensor apparatus which incorporates a low-
pass filter 3, implemented as a switched capacitor circuit. Components in FIG. 1 corresponding to components of the prior art example of FIG. 7 described above are designated by identical reference numerals to those of FIG. 7. It can thus be understood that the respective configurations of thesemiconductor pressure sensor 1, thedifferential amplifier 2 and the low-pass filter 3 may be similar to those of the prior art example of FIG. 7. However a clock pulsesignal generating circuit 40 of this embodiment is configured to operate in a different manner from the prior art example, as described in the following. - FIG. 3A is a plan view of a
semiconductor pressure sensor 1 which is used in the embodiment of FIG. 1, while FIG. 3B is a cross-sectional view in elevation of thesemiconductor pressure sensor 1, taken along the line A-A in FIG. 3A. - FIG. 2 is a timing diagram showing timing relationships between two-phase clock signals φ1, φ2 of this embodiment, generated by the clock pulse
signal generating circuit 40, which controls the switches of the low-pass filter 3 in the embodiment of FIG. 1. - Referring to FIGS. 3A, 3B, the
semiconductor pressure sensor 1 includes asemiconductor substrate 4, having an N-type layer 4 b formed by epitaxial growth on a P-type silicon substrate 4 a. Thesubstrate 4 a has a central region that is shaped to be thinner than the peripheral region of that substrate, and that central region in conjunction with the N-type epitaxial layer 4 b constitutes athin diaphragm 5. - The piezoresistive elements G1˜G4, each formed by diffusion of P-type impurities, are disposed on a surface of the
diaphragm 5. When pressure is applied to thediaphragm 5, thediaphragm 5 and the piezoresistive elements G1˜G4 become distorted, the resistance of each of the piezoresistive elements G1, G2 becomes increased while the resistance of each of the piezoresistive elements G3, G4 becomes decreased. The piezoresistive elements G1˜G4 are connected in a bridge circuit as shown in FIG. 1, in which the piezoresistive elements G1˜G4 are indicated as respective variable resistors. - A current source6 supplies a fixed value of current Ia that flows into the mutual connection point of the piezoresistive elements G1, G3, with that current then flowing to ground potential through the mutual connection point of the piezoresistive elements G2, G4. When pressure is applied to the
diaphragm 5, with such a circuit configuration, an amount of voltage increase (designated as Vp1 in FIG. 1) will be assumed to be produced at the mutual connection point of the piezoresistive elements G2, G3, with an amount of voltage decrease (designated as Vp2 in FIG. 1) being produced at the mutual connection point of the piezoresistive elements G1, G4. The voltage difference (Vp1−Vp2) varies in substantially direct proportion to variations in the pressure that is applied to thediaphragm 5. - The voltage difference (Vp1−Vp2) is amplified by the
differential amplifier 2, to obtain the output signal having the voltage value Vo as shown in FIG. 1. - Various configurations may be used for the
differential amplifier 2. With the specific circuit configuration shown in FIG. 1, thedifferential amplifier 2 is formed of a pair of operational amplifiers OP2, OP3 and four resistors R3, R4, R5, R6. The potentials Vp1, Vp2 which are developed by thesemiconductor pressure sensor 1 as described above are applied to the non-inverting input terminals of the operational amplifiers OP2, OP3 respectively. The resistors R3, R4, R5, R6 are connected in series between the output terminal of the operational amplifier OP2 and a mutual connection node NVref that is held at a potential which is higher than ground potential by a reference voltage value Vref. The resistor R3 is connected between the output terminal and the non-inverting input terminal of the operational amplifier OP2, while the resistor R5 is connected between the output terminal and the non-inverting input terminal of the operational amplifier OP3. - One end of the resistor R6 is connected to the mutual connection node NVref. The voltage that appears between the output terminal of the operational amplifier OP2 and the mutual connection node NVref is proportional to the output voltage value from the
differential amplifier 2. Specifically, assuming that all of the resistors R3, R4, R5, R6 have the same value, the output voltage Vo is equal to 2(Vp1−Vp2). - The output voltage Vo from the
differential amplifier 2 is supplied to the low-pass filter 3, which is constituted by a switched capacitor circuit having the configuration described above referring to the prior art example of FIG. 7. That is to say, the low-pass filter 3 is formed of an operational amplifier OP1, first, second and third capacitors C1, C2, C3, a set of first, second and third analog switches S11, S12, S13 each of which is set in the conducting state when the first clock signal φ1 of the two-phase clock signals φ1, φ2 is at the active level, and a set of fourth, fifth and sixth analog switches S24, S25, S26 S13 each of which is set in the conducting state when the second clock signal φ2 is at the active level. - With this embodiment, the operational amplifier OP1 is supplied with power from a single power supply voltage Vd. For that reason, the non-inverting input terminal of the operational amplifier OP1 is connected to the aforementioned mutual connection node NVref, which is held at the reference voltage Vref. The value of Vref can be approximately half of the supply voltage Vd. However it would be equally possible to supply the operational amplifier OP1 with power from a pair of positive and negative power supply voltages, in which case the reference voltage Vref could be the ground potential.
- This embodiment essentially differs from the prior art example of FIG. 7 described above with respect to the timing relationships between the first and second clock signals φ1, φ2 that are generated by the clock pulse
signal generating circuit 40. Specifically, with this embodiment, the time interval which elapses between a falling edge of a pulse of the first clock signal φ1 (i.e., a transition of that clock signal from the active to the inactive level, whereby each analog switch that is controlled by that clock signal is changed from the conducting to the non-conducting state) and the rising edge of the succeeding pulse of the second clock signal φ2 (i.e., a transition of that clock signal from the inactive to the active level, whereby each analog switch that is controlled by that clock signal is set in the conducting state) is made as short as possible, insofar as it can be ensured that analog switches controlled by the first clock signal φ1 cannot enter the conducting state concurrently with any analog switches controlled by the second clock signal φ2. - During the first time interval,
Phase 1, in which the first clock signal φ1 is at the active level and the second clock signal φ2 is at the inactive level, the connection condition of the low-pass filter 3 is as shown in FIG. 5A. The capacitor C1 is charged to the input voltage Vo while conversely the capacitor C2 is discharged to 0 V, and the charge in the capacitor C3 does not change. - During the second time interval,
Phase 2, as shown in FIG. 5B all of the switches S11, S12, S13, S24, S25, S26 are in the non-conducting state so that the charge in each of the capacitors C1, C2, C3 does not change. Thus, duringPhase 2, (assuming that no charge is lost due to leakage current) the charges of the capacitors will remain unchanged from the condition at the end ofPhase 1. - During the third time interval,
Phase 3, since the first clock signal φ1 is at the inactive level and the second clock signal φ2 is at the active level, then the connection condition is as shown in FIG. 5C, with the capacitors C2 and C3 connected in parallel. The capacitor C1 is thereby connected between the inverting input terminal and the non-inverting input terminal of the operational amplifier OP1. Since these terminals are at the same potential, the capacitor C1 becomes discharged, and the resultant discharge current serves to charge each of the capacitors C2, C3. As discharge current from the capacitor C1 flows into the capacitor C2 as a charging current, a charging current also flows from the output terminal of the operational amplifier OP1, so that the capacitors C2 and c3 become charged to the same voltage. - Thus in the same way as described for the prior art example of FIG. 7, the output voltage Vo from the low-
pass filter 3 changes by an amount that is equal to the amount of change in the voltage to which the capacitor C3 is charged. - Finally in the fourth time interval,
Phase 4, the condition becomes as shown in FIG. 5D, in which all of the analog switches are in the non-conducting state, in the same way as duringPhase 3, so that the charge in each capacitor is held unchanged from that which existed at the end ofPhase 3. - It can thus be understood that with this embodiment, the circuit configuration of the low-
pass filter 3 and the operation of that circuit based on the two-phase clock signals φ1, φ2 is essentially identical to that of the prior art example described hereinabove. However with this embodiment, the phase relationship between the two-phase clock signals φ1, φ2 differs from that of the prior art example, shown in the timing diagram of FIG. 8, i.e., with the phase relationships relationship between the two-phase clock signals φ1, φ2 for this embodiment being as shown in the timing diagram of FIG. 2. - Assuming that the required cut-off frequency for the low-
pass filter 3 is extremely low, e.g., 1 Hz, then as described above, in order to be able to utilize capacitors which are of sufficiently small capacitance value to be formed on a semiconductor integrated circuit, it becomes necessary to lower the frequency of the basic clock signal to approximately 1.5 kHz as described hereinabove. In that case, with the prior art type of switched capacitor low-pass filter, the duration of thePhase 2 interval would be 170 microseconds, which is substantially long. Thus, the amounts of charge held in the capacitors C1, C2 would be strongly affected by leakage current flow which occurs in the analog switches that are connected to these capacitors. As a result, as described hereinabove, it would not be possible to correctly obtain the required gain in the low-frequency range, or the value of cut-off frequency that is expressed by equation (3) above, for the low-pass filter 3. - However the above embodiment of the present invention having the clock signal timing relationships shown in FIG. 2 differs from the prior art example in that the duration of the
Phase 2 interval is made extremely short. Hence, satisfactory operation can be achieved with a cut-off frequency as low as 1 Hz, when the frequency of the two-phase clock signals φ1, φ2 is lowered to 1.5 kHz. It becomes possible to use small capacitance values for the capacitors of the low-pass filter, including C3. - Specifically, the duration of the
Phase 2 interval should be made as short as possible, within a range of values whereby none of the analog switches that are controlled by the clock signal φ1 will be in the conducting state (i.e., ON state) concurrently with any of the analog switches that are controlled by the clock signal φ2. - In particular, since the leakage current of switching elements such as MOS field-effect transistors increases with temperature, the duration of the
Phase 2 interval should be made as short as possible while ensuring that the above condition is satisfied (i.e, whereby there must be no overlap between conduction intervals of the analog switches that are controlled by the clock signal φ1 and conduction intervals of the analog switches that are controlled by the clock signal φ2) when the low-pass filter 3 is used at up to a predetermined maximum value of operating temperature. It can thereby be ensured that the operation of the low-pass filter 3 will not be affected by temperature-dependent increases in leakage currents of the analog switches. - Preferably, when high-speed MOS FETs are used as the analog switches, the duration of the
Phase 2 interval should be within the range of 0.6 to 2 microseconds. - An alternative method of determining a suitable minimum duration for the
Phase 2 interval is as follows. If there is significant loss of charge from the capacitors C1, C2 during eachPhase 2 interval, then an error will arise in the value of DC gain of the low-pass filter 3, with respect to a target value of DC gain. That is to say, the magnitude of that gain error is substantially entirely determined by the rate of charge leakage from the capacitors C1, C2 during eachPhase 2 interval, due to leakage current in the analog switches. A maximum value for that error in the DC gain can be predetermined, e.g., expressed as a proportion of the target value of DC gain, such as 3%. If the duration of thePhase 2 interval is made such that the proportion of charge reduction (of capacitor C1, for example) that occurs during eachPhase 2 interval is equal to the predetermined maximum allowable amount of error in the DC gain of the low-pass filter 3 with respect to the target value (e.g., an error of 3%), then satisfactory operation can be achieved. - The amount of leakage of charge from the capacitor C1 during each
Phase 2 interval can be measured directly, or can be obtained by measuring the levels of leakage current of the analog switches. - With such a short duration of the
Phase 2 interval, it can be ensured that the charge on the capacitors C1, C2 during eachPhase 2 interval will be left unchanged from the condition at the end of the precedingPhase 1 interval, i.e., the charge condition will not be affected by flows of leakage current in the analog switches that are connected to these capacitors, and so will be left unchanged until the start of the succeedingPhase 3 interval. Hence, the aforementioned problems of the prior art with respect to errors in the gain of the filter in the low-frequency range and in the value of cut-off frequency attained, can be overcome. It thus becomes possible to realize a low-pass filter which can have an extremely low value of cut-off frequency, such as 1 Hz, by using a switched capacitor type of circuit in which the capacitors are of sufficiently small value to be readily formed in an integrated circuit. - With this embodiment, the two-phase clock signals φ1, φ2 are generated by the clock pulse
signal generating circuit 40, whose internal circuit configuration can be as shown in the example of FIG. 4. With this circuit, a basic clock signal generating circuit 7 produces the basic clock signal at a frequency of 6 kHz, which is inputted to a 2-bitbinary counter 8. The output from the 20 stage of thebinary counter 8 is inputted to an inverter Q1 and to one input of a 2-input AND gate Q3, with the output from the inverter Q1 being supplied to one input of a 2-input AND gate Q2, while the output from the 21 stage of thebinary counter 8 is supplied to the other input of the AND gate Q2 and to the other input of the AND gate Q2. The output produced from the AND gate Q2 consists of a train of pulses at a frequency of 1.5 kHz, i.e., with each pulse occuring when thebinary counter 8 attains a count of 2. That pulse train is used as the clock signal φ1 of the circuit of FIG. 1. - The output from the 2-input AND gate Q3 also consists of a train of pulses each generated when the
binary counter 8 attains a count of 3. These pulses are delayed by being transferred through adelay circuit 9 that produces a delay of approximately 1 μs, with the output from thedelay circuit 9 constituting the clock signal φ2 of the circuit of FIG. 1, i.e., which also has a frequency of 1.5 kHz. - Thus by appropriately determining the delay amount produced by the
delay circuit 9, the phase relationships between the two-phase clock signals φ1, φ2 are as shown in the timing diagram of FIG. 2, with an extremely short interval of approximately 1 μs between the end of a pulse of the clock signal φ1 and the start of the succeeding pulse of the clock signal φ2. - It can thus be understood from the above that with the present invention, since the operation of the low-pass filter is unaffected by leakage current which flows in the analog switches, it becomes possible to implement a switched capacitor type of low-pass filter that can have an extremely low value of cut-off frequency, and which can be configured with capacitor values which are sufficiently small that the capacitors can readily be formed within a semiconductor integrated circuit. Such a low-pass filter can be used to detect extremely low-frequency components of voltage variations, when the voltage variations include high-frequency components superimposed on the low-frequency components.
- The invention thus enables a semiconductor pressure sensor apparatus to be realized which can detect extremely low-frequency components of pressure variations, and which utilizes a switched capacitor type of low-pass filter that is formed in an integrated circuit.
- Furthermore although the low-pass filter of the present invention has been described in the above only with application to a sensor signal produced from a pressure sensor, it will be understood that such a low-pass filter is equally applicable to various other applications in which it is necessary to achieve a very low value of filter cut-off frequency for a low-pass filter whose components are formed entirely within a semiconductor integrated circuit.
Claims (7)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003059879 | 2003-03-06 | ||
JP2003-59879 | 2003-03-06 | ||
JP2003429828A JP2004289802A (en) | 2003-03-06 | 2003-12-25 | Low-pass filter and semiconductor pressure sensor device using the same |
JP2003-429828 | 2003-12-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040174209A1 true US20040174209A1 (en) | 2004-09-09 |
US7049883B2 US7049883B2 (en) | 2006-05-23 |
Family
ID=32871238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/791,790 Expired - Lifetime US7049883B2 (en) | 2003-03-06 | 2004-03-04 | Switched-capacitor low-pass filter and semiconductor pressure sensor apparatus incorporating the filter |
Country Status (4)
Country | Link |
---|---|
US (1) | US7049883B2 (en) |
JP (1) | JP2004289802A (en) |
DE (1) | DE102004010356B4 (en) |
FR (1) | FR2852166B1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060091933A1 (en) * | 2004-10-28 | 2006-05-04 | Denso Corporation | Analog switch having a minimized external flow of leakage current and switched capacitor filter incorporating the analog switch |
EP1798838A2 (en) * | 2005-12-19 | 2007-06-20 | O2Micro, Inc. | Low pass filter |
US20070144247A1 (en) * | 2005-12-23 | 2007-06-28 | Seesink Peter H | Multiple function stable sensor circuitry |
US20080007977A1 (en) * | 2006-07-07 | 2008-01-10 | Johan Piper | Switch mode power supply systems |
US20080007982A1 (en) * | 2006-07-07 | 2008-01-10 | Johan Piper | Switch mode power supply systems |
US7391242B1 (en) * | 2007-04-07 | 2008-06-24 | Ball Newton E | Sawtooth waveform generator |
US20080150626A1 (en) * | 2006-12-21 | 2008-06-26 | Northrop Grumman Systems Corporation | Time variant filter with reduced settling time |
EP2403142A2 (en) * | 2010-06-22 | 2012-01-04 | O2 Micro, Inc. | Signal monitoring systems |
US9436337B2 (en) * | 2014-12-15 | 2016-09-06 | Synaptics Incorporated | Switched capacitance techniques for input sensing |
US9643826B2 (en) | 2014-09-18 | 2017-05-09 | Komatsu Ltd. | Forklift and method for controlling forklift |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1254512B1 (en) * | 2000-01-21 | 2008-09-17 | Infineon Technologies AG | Amplifier or filter circuit in switched capacitor circuit logic and method for amplifying or filtering signals |
JP2007078397A (en) * | 2005-09-12 | 2007-03-29 | Mitsubishi Electric Corp | Semiconductor pressure sensor |
JP5056507B2 (en) * | 2008-03-14 | 2012-10-24 | 株式会社デンソー | Low-pass filter and semiconductor pressure sensor device |
JP5630088B2 (en) * | 2010-06-16 | 2014-11-26 | ミツミ電機株式会社 | Piezoresistive pressure sensor |
JP6341119B2 (en) * | 2015-03-03 | 2018-06-13 | 株式会社デンソー | Sensor drive device |
JP6484157B2 (en) * | 2015-10-16 | 2019-03-13 | シチズンファインデバイス株式会社 | In-cylinder pressure detector |
US10473015B2 (en) | 2017-10-09 | 2019-11-12 | Tenneco Automotive Operating Company Inc. | Pressure sensing systems and methods |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5245344A (en) * | 1991-01-15 | 1993-09-14 | Crystal Semiconductor | High order switched-capacitor filter with dac input |
US6031249A (en) * | 1996-07-11 | 2000-02-29 | Semiconductor Energy Laboratory Co., Ltd. | CMOS semiconductor device having boron doped channel |
US6399177B1 (en) * | 1999-06-03 | 2002-06-04 | The Penn State Research Foundation | Deposited thin film void-column network materials |
US20020070440A1 (en) * | 2000-12-12 | 2002-06-13 | Fujitsu Limited | Semiconductor device manufacturing method having a step of applying a copper foil on a substrate as a part of a wiring connecting an electrode pad to a mounting terminal |
US20020187312A1 (en) * | 2000-05-30 | 2002-12-12 | The Penn State Research Foundation | Matrix-free desorption ionization mass spectrometry using tailored morphology layer devices |
US20040194510A1 (en) * | 2001-02-28 | 2004-10-07 | Konica Corporation | Molding die for optical element, optical element and master die |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0772699B2 (en) * | 1985-11-14 | 1995-08-02 | 行男 小河 | Multifunctional sensor-device |
JPS63188510A (en) * | 1987-01-30 | 1988-08-04 | Nissan Motor Co Ltd | Active suspension |
JPH0744428B2 (en) | 1987-03-09 | 1995-05-15 | 健蔵 渡辺 | Switched capacitor circuit |
JPS63299406A (en) * | 1987-05-29 | 1988-12-06 | Asahi Kasei Micro Syst Kk | Switched capacitor filter |
US4964406A (en) * | 1989-05-19 | 1990-10-23 | Ventritex, Inc. | Implantable cardiac defibrillator employing a switched capacitor stage having a non-50/50 duty cycle |
JPH0927731A (en) | 1995-07-11 | 1997-01-28 | Nippondenso Co Ltd | Switched capacitor multiplier |
JPH0961189A (en) * | 1995-08-28 | 1997-03-07 | Matsushita Electric Works Ltd | Detector circuit for sensor |
JPH09199994A (en) | 1996-01-11 | 1997-07-31 | Toshiba Corp | Switched capacitor filter |
US6191648B1 (en) * | 1999-04-19 | 2001-02-20 | National Semiconductor Corporation | Switched-capacitor cosine filter circuit |
JP2001165797A (en) * | 1999-12-07 | 2001-06-22 | Denso Corp | Semiconductor pressure sensor device |
JP2002039888A (en) * | 2000-07-26 | 2002-02-06 | Denso Corp | Method of setting position of gage resistance of semiconductor pressure sensor |
US6573785B1 (en) * | 2002-01-03 | 2003-06-03 | Intel Corporation | Method, apparatus, and system for common mode feedback circuit using switched capacitors |
-
2003
- 2003-12-25 JP JP2003429828A patent/JP2004289802A/en active Pending
-
2004
- 2004-03-03 DE DE102004010356.9A patent/DE102004010356B4/en not_active Expired - Fee Related
- 2004-03-04 US US10/791,790 patent/US7049883B2/en not_active Expired - Lifetime
- 2004-03-05 FR FR0402364A patent/FR2852166B1/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5245344A (en) * | 1991-01-15 | 1993-09-14 | Crystal Semiconductor | High order switched-capacitor filter with dac input |
US6031249A (en) * | 1996-07-11 | 2000-02-29 | Semiconductor Energy Laboratory Co., Ltd. | CMOS semiconductor device having boron doped channel |
US6399177B1 (en) * | 1999-06-03 | 2002-06-04 | The Penn State Research Foundation | Deposited thin film void-column network materials |
US20020187312A1 (en) * | 2000-05-30 | 2002-12-12 | The Penn State Research Foundation | Matrix-free desorption ionization mass spectrometry using tailored morphology layer devices |
US20020070440A1 (en) * | 2000-12-12 | 2002-06-13 | Fujitsu Limited | Semiconductor device manufacturing method having a step of applying a copper foil on a substrate as a part of a wiring connecting an electrode pad to a mounting terminal |
US20030207574A1 (en) * | 2000-12-12 | 2003-11-06 | Fujitsu Limited | Semiconductor device manufacturing method having a step of applying a copper foil on a substrate as a part of a wiring connecting an electrode pad to a mounting terminal |
US20040194510A1 (en) * | 2001-02-28 | 2004-10-07 | Konica Corporation | Molding die for optical element, optical element and master die |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7385439B2 (en) | 2004-10-28 | 2008-06-10 | Denso Corporation | Analog switch having a minimized external flow of leakage current and switched capacitor filter incorporating the analog switch |
US20060091933A1 (en) * | 2004-10-28 | 2006-05-04 | Denso Corporation | Analog switch having a minimized external flow of leakage current and switched capacitor filter incorporating the analog switch |
EP1798838A2 (en) * | 2005-12-19 | 2007-06-20 | O2Micro, Inc. | Low pass filter |
WO2007106193A3 (en) * | 2005-12-23 | 2008-04-24 | Kavlico Corp | Multiple function stable sensor circuitry |
US20070144247A1 (en) * | 2005-12-23 | 2007-06-28 | Seesink Peter H | Multiple function stable sensor circuitry |
WO2007106193A2 (en) * | 2005-12-23 | 2007-09-20 | Kavlico Corporation | Multiple function stable sensor circuitry |
US20080007982A1 (en) * | 2006-07-07 | 2008-01-10 | Johan Piper | Switch mode power supply systems |
US7525823B2 (en) | 2006-07-07 | 2009-04-28 | Cambridge Semiconductor Limited | Switch mode power supply systems |
WO2008004009A3 (en) * | 2006-07-07 | 2008-03-27 | Cambridge Semiconductor Ltd | Switch mode power supply systems |
WO2008004009A2 (en) * | 2006-07-07 | 2008-01-10 | Cambridge Semiconductor Limited | Switch mode power supply systems |
US20080007977A1 (en) * | 2006-07-07 | 2008-01-10 | Johan Piper | Switch mode power supply systems |
US20080137380A1 (en) * | 2006-07-07 | 2008-06-12 | Cambridge Semiconductor Limited | Switch mode power supply systems |
US7583519B2 (en) | 2006-07-07 | 2009-09-01 | Cambridge Semiconductor Limited | Switch mode power supply systems |
US7342812B2 (en) | 2006-07-07 | 2008-03-11 | Cambridge Semiconductor Limited | Switch mode power supply systems |
US20080150626A1 (en) * | 2006-12-21 | 2008-06-26 | Northrop Grumman Systems Corporation | Time variant filter with reduced settling time |
US7391242B1 (en) * | 2007-04-07 | 2008-06-24 | Ball Newton E | Sawtooth waveform generator |
EP2403142A2 (en) * | 2010-06-22 | 2012-01-04 | O2 Micro, Inc. | Signal monitoring systems |
EP2403142A3 (en) * | 2010-06-22 | 2015-04-22 | O2 Micro, Inc. | Signal monitoring systems |
EP2998755A1 (en) * | 2010-06-22 | 2016-03-23 | O2Micro Inc. | Signal monitoring systems |
US9643826B2 (en) | 2014-09-18 | 2017-05-09 | Komatsu Ltd. | Forklift and method for controlling forklift |
US9436337B2 (en) * | 2014-12-15 | 2016-09-06 | Synaptics Incorporated | Switched capacitance techniques for input sensing |
Also Published As
Publication number | Publication date |
---|---|
DE102004010356A1 (en) | 2004-10-14 |
US7049883B2 (en) | 2006-05-23 |
JP2004289802A (en) | 2004-10-14 |
FR2852166A1 (en) | 2004-09-10 |
DE102004010356B4 (en) | 2014-03-27 |
FR2852166B1 (en) | 2006-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7049883B2 (en) | Switched-capacitor low-pass filter and semiconductor pressure sensor apparatus incorporating the filter | |
EP0722626B1 (en) | Signal conditioning apparatus and method exhibiting accurate input impedance and gain characteristics over common mode range and operational environments | |
JPH11248755A (en) | Stacked voltage measuring apparatus | |
US7385439B2 (en) | Analog switch having a minimized external flow of leakage current and switched capacitor filter incorporating the analog switch | |
TW201838328A (en) | Differential amplification device | |
JP4859902B2 (en) | Hold circuit | |
TW200532212A (en) | Current/charge-voltage converter | |
CN211554117U (en) | Current sampling circuit for inductive load driving circuit | |
JPH11248756A (en) | Flying capacitor circuit | |
JPS636908A (en) | Constant current source circuit | |
JP5056507B2 (en) | Low-pass filter and semiconductor pressure sensor device | |
JP4705724B2 (en) | Auto zero correction circuit | |
JPH07321557A (en) | High frequency signal level detection circuit and high frequency signal level detection method | |
JPH0993086A (en) | Switched capacitor circuit and signal processing circuit using the same | |
CN111122946A (en) | Current sampling circuit for inductive load driving circuit | |
JP2513190B2 (en) | Charge coupled device | |
JPH05281266A (en) | Sampling circuit | |
JPS5950560A (en) | Charge transfer device | |
JP5120080B2 (en) | Analog switches and switched capacitor filters | |
JPS5838943B2 (en) | Denka Kenshiyutsu Sochi | |
JPH0252424B2 (en) | ||
JPS6327114A (en) | Switch control circuit | |
JPS58182918A (en) | Voltage dividing circuit | |
JPS6388864A (en) | Charge coupled device | |
JP2000304631A (en) | Physical quantity detecting circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DENSO CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAKINO, TAKANORI;AOYAMA, SEIKI;REEL/FRAME:015048/0267 Effective date: 20040224 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |