US20040101621A1 - Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media - Google Patents
Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media Download PDFInfo
- Publication number
- US20040101621A1 US20040101621A1 US10/717,246 US71724603A US2004101621A1 US 20040101621 A1 US20040101621 A1 US 20040101621A1 US 71724603 A US71724603 A US 71724603A US 2004101621 A1 US2004101621 A1 US 2004101621A1
- Authority
- US
- United States
- Prior art keywords
- nanoparticles
- hydrophobic
- dispersant
- hydrophilic
- nanoparticle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 130
- 238000000034 method Methods 0.000 title claims description 44
- 239000012736 aqueous medium Substances 0.000 title claims description 13
- 239000002270 dispersing agent Substances 0.000 claims abstract description 80
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 74
- 229920000642 polymer Polymers 0.000 claims description 74
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 239000002904 solvent Substances 0.000 claims description 21
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000004132 cross linking Methods 0.000 claims description 5
- 230000002378 acidificating effect Effects 0.000 claims description 2
- 229910001853 inorganic hydroxide Inorganic materials 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 22
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 18
- 239000011248 coating agent Substances 0.000 abstract description 15
- 238000000576 coating method Methods 0.000 abstract description 15
- 108091034117 Oligonucleotide Proteins 0.000 abstract description 11
- 239000007769 metal material Substances 0.000 abstract description 11
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 abstract description 5
- -1 n-propenyl Chemical group 0.000 description 60
- 239000002159 nanocrystal Substances 0.000 description 55
- 239000002245 particle Substances 0.000 description 46
- 239000004054 semiconductor nanocrystal Substances 0.000 description 46
- 239000011162 core material Substances 0.000 description 37
- 239000000463 material Substances 0.000 description 35
- 239000000178 monomer Substances 0.000 description 34
- 239000000243 solution Substances 0.000 description 27
- 230000027455 binding Effects 0.000 description 23
- 239000000203 mixture Substances 0.000 description 23
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 21
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- 125000000217 alkyl group Chemical group 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 16
- 102000053602 DNA Human genes 0.000 description 16
- 229940024606 amino acid Drugs 0.000 description 15
- 235000001014 amino acid Nutrition 0.000 description 15
- 150000001413 amino acids Chemical class 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 15
- 229920001184 polypeptide Polymers 0.000 description 15
- 239000004094 surface-active agent Substances 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 14
- 102000039446 nucleic acids Human genes 0.000 description 13
- 108020004707 nucleic acids Proteins 0.000 description 13
- 150000007523 nucleic acids Chemical class 0.000 description 13
- 239000011257 shell material Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 125000002947 alkylene group Chemical group 0.000 description 12
- 239000000412 dendrimer Substances 0.000 description 12
- 229920000736 dendritic polymer Polymers 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 125000003118 aryl group Chemical group 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 238000004020 luminiscence type Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 230000005661 hydrophobic surface Effects 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 125000003342 alkenyl group Chemical group 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 239000002096 quantum dot Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 125000000304 alkynyl group Chemical group 0.000 description 6
- 229940009098 aspartate Drugs 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 6
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 5
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 5
- 229910004613 CdTe Inorganic materials 0.000 description 5
- 239000004971 Cross linker Substances 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 238000000502 dialysis Methods 0.000 description 5
- 229920000587 hyperbranched polymer Polymers 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229910002601 GaN Inorganic materials 0.000 description 4
- 229910005540 GaP Inorganic materials 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 229910000673 Indium arsenide Inorganic materials 0.000 description 4
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 239000004695 Polyether sulfone Substances 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- 229910007709 ZnTe Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000031018 biological processes and functions Effects 0.000 description 4
- 150000007942 carboxylates Chemical group 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000000084 colloidal system Substances 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 description 4
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 4
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229920000962 poly(amidoamine) Polymers 0.000 description 4
- 229920006393 polyether sulfone Polymers 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 150000003254 radicals Chemical group 0.000 description 4
- 238000009877 rendering Methods 0.000 description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 4
- 239000008279 sol Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 3
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 229910017680 MgTe Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108091093037 Peptide nucleic acid Proteins 0.000 description 3
- 108020004682 Single-Stranded DNA Proteins 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000004450 alkenylene group Chemical group 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- 239000012062 aqueous buffer Substances 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 238000009295 crossflow filtration Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000011026 diafiltration Methods 0.000 description 3
- YIOJGTBNHQAVBO-UHFFFAOYSA-N dimethyl-bis(prop-2-enyl)azanium Chemical compound C=CC[N+](C)(C)CC=C YIOJGTBNHQAVBO-UHFFFAOYSA-N 0.000 description 3
- 230000005670 electromagnetic radiation Effects 0.000 description 3
- 239000002532 enzyme inhibitor Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 229920001477 hydrophilic polymer Polymers 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 125000005647 linker group Chemical group 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000006862 quantum yield reaction Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical group [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229920000428 triblock copolymer Polymers 0.000 description 3
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 3
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- YJCJVMMDTBEITC-UHFFFAOYSA-N 10-hydroxycapric acid Chemical compound OCCCCCCCCCC(O)=O YJCJVMMDTBEITC-UHFFFAOYSA-N 0.000 description 2
- ZDHCZVWCTKTBRY-UHFFFAOYSA-N 12-hydroxylauric acid Chemical compound OCCCCCCCCCCCC(O)=O ZDHCZVWCTKTBRY-UHFFFAOYSA-N 0.000 description 2
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 2
- UGAGPNKCDRTDHP-UHFFFAOYSA-N 16-hydroxyhexadecanoic acid Chemical compound OCCCCCCCCCCCCCCCC(O)=O UGAGPNKCDRTDHP-UHFFFAOYSA-N 0.000 description 2
- RGMMREBHCYXQMA-UHFFFAOYSA-N 2-hydroxyheptanoic acid Chemical compound CCCCCC(O)C(O)=O RGMMREBHCYXQMA-UHFFFAOYSA-N 0.000 description 2
- 229910015808 BaTe Inorganic materials 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229910004813 CaTe Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229910005542 GaSb Inorganic materials 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910004411 SrTe Inorganic materials 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229960004373 acetylcholine Drugs 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N aldehydo-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229920000547 conjugated polymer Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229940125532 enzyme inhibitor Drugs 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012454 non-polar solvent Substances 0.000 description 2
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 150000008298 phosphoramidates Chemical class 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000656 polylysine Polymers 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- IYKLZBIWFXPUCS-VIFPVBQESA-N (2s)-2-(naphthalen-1-ylamino)propanoic acid Chemical compound C1=CC=C2C(N[C@@H](C)C(O)=O)=CC=CC2=C1 IYKLZBIWFXPUCS-VIFPVBQESA-N 0.000 description 1
- WTKYBFQVZPCGAO-LURJTMIESA-N (2s)-2-(pyridin-3-ylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC1=CC=CN=C1 WTKYBFQVZPCGAO-LURJTMIESA-N 0.000 description 1
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- ZEUIOZPPYUDCRR-YLALLHFRSA-N 1-archaetidyl-1D-myo-inositol 3-phosphate Chemical compound CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC[C@@H](C)CCOC[C@H](OCC[C@H](C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)COP(O)(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OP(O)(O)=O)[C@H]1O ZEUIOZPPYUDCRR-YLALLHFRSA-N 0.000 description 1
- HXVJQEGYAYABRY-UHFFFAOYSA-N 1-ethenyl-4,5-dihydroimidazole Chemical compound C=CN1CCN=C1 HXVJQEGYAYABRY-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- 229940114072 12-hydroxystearic acid Drugs 0.000 description 1
- GVJXGCIPWAVXJP-UHFFFAOYSA-N 2,5-dioxo-1-oxoniopyrrolidine-3-sulfonate Chemical compound ON1C(=O)CC(S(O)(=O)=O)C1=O GVJXGCIPWAVXJP-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- SXQCPXKZTFJHQI-UHFFFAOYSA-N 2-hydroxy-2-methylbut-3-enoic acid Chemical compound C=CC(O)(C)C(O)=O SXQCPXKZTFJHQI-UHFFFAOYSA-N 0.000 description 1
- AFENDNXGAFYKQO-UHFFFAOYSA-N 2-hydroxybutyric acid Chemical compound CCC(O)C(O)=O AFENDNXGAFYKQO-UHFFFAOYSA-N 0.000 description 1
- BWLBGMIXKSTLSX-UHFFFAOYSA-N 2-hydroxyisobutyric acid Chemical compound CC(C)(O)C(O)=O BWLBGMIXKSTLSX-UHFFFAOYSA-N 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-hydroxyoctadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- JRHWHSJDIILJAT-UHFFFAOYSA-N 2-hydroxypentanoic acid Chemical compound CCCC(O)C(O)=O JRHWHSJDIILJAT-UHFFFAOYSA-N 0.000 description 1
- ZKYCLDTVJCJYIB-UHFFFAOYSA-N 2-methylidenedecanamide Chemical compound CCCCCCCCC(=C)C(N)=O ZKYCLDTVJCJYIB-UHFFFAOYSA-N 0.000 description 1
- HFVPDKWVDPEQCO-UHFFFAOYSA-N 2-methylideneoctanamide Chemical compound CCCCCCC(=C)C(N)=O HFVPDKWVDPEQCO-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- 125000004810 2-methylpropylene group Chemical group [H]C([H])([H])C([H])(C([H])([H])[*:2])C([H])([H])[*:1] 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- UFQHFMGRRVQFNA-UHFFFAOYSA-N 3-(dimethylamino)propyl prop-2-enoate Chemical compound CN(C)CCCOC(=O)C=C UFQHFMGRRVQFNA-UHFFFAOYSA-N 0.000 description 1
- BRMWTNUJHUMWMS-UHFFFAOYSA-N 3-Methylhistidine Natural products CN1C=NC(CC(N)C(O)=O)=C1 BRMWTNUJHUMWMS-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- QGXMPHBQJFXJCI-UHFFFAOYSA-N 4-(dimethylamino)butyl prop-2-enoate Chemical compound CN(C)CCCCOC(=O)C=C QGXMPHBQJFXJCI-UHFFFAOYSA-N 0.000 description 1
- LQLJNIMZZWZZLE-UHFFFAOYSA-N 4-(iminomethylideneamino)-n,n-dimethylpentan-1-amine;hydrochloride Chemical compound Cl.N=C=NC(C)CCCN(C)C LQLJNIMZZWZZLE-UHFFFAOYSA-N 0.000 description 1
- NKYAAYKKNSYIIW-XVFCMESISA-N 5-aminoimidazole ribonucleoside Chemical compound NC1=CN=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NKYAAYKKNSYIIW-XVFCMESISA-N 0.000 description 1
- 229940117976 5-hydroxylysine Drugs 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- COCLLEMEIJQBAG-UHFFFAOYSA-N 8-methylnonyl 2-methylprop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C(C)=C COCLLEMEIJQBAG-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 229910017115 AlSb Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229930182476 C-glycoside Natural products 0.000 description 1
- 150000000700 C-glycosides Chemical class 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229910004262 HgTe Inorganic materials 0.000 description 1
- 108091064358 Holliday junction Proteins 0.000 description 1
- 102000039011 Holliday junction Human genes 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- JDHILDINMRGULE-LURJTMIESA-N N(pros)-methyl-L-histidine Chemical compound CN1C=NC=C1C[C@H](N)C(O)=O JDHILDINMRGULE-LURJTMIESA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- JJIHLJJYMXLCOY-BYPYZUCNSA-N N-acetyl-L-serine Chemical compound CC(=O)N[C@@H](CO)C(O)=O JJIHLJJYMXLCOY-BYPYZUCNSA-N 0.000 description 1
- PYUSHNKNPOHWEZ-YFKPBYRVSA-N N-formyl-L-methionine Chemical compound CSCC[C@@H](C(O)=O)NC=O PYUSHNKNPOHWEZ-YFKPBYRVSA-N 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108091061763 Triple-stranded DNA Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 239000006035 Tryptophane Substances 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- NEGKNLJVKTUFJV-UHFFFAOYSA-N [1-(dimethylamino)-2,2-dimethylpropyl] 2-methylprop-2-enoate Chemical compound CN(C)C(C(C)(C)C)OC(=O)C(C)=C NEGKNLJVKTUFJV-UHFFFAOYSA-N 0.000 description 1
- KNUSQTXJWATMLJ-UHFFFAOYSA-N [1-(dimethylamino)-2,2-dimethylpropyl] prop-2-enoate Chemical compound CN(C)C(C(C)(C)C)OC(=O)C=C KNUSQTXJWATMLJ-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- IVHKZGYFKJRXBD-UHFFFAOYSA-N amino carbamate Chemical compound NOC(N)=O IVHKZGYFKJRXBD-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- AXFYFNCPONWUHW-UHFFFAOYSA-N beta-hydroxy-beta-methyl butyric acid Natural products CC(C)(O)CC(O)=O AXFYFNCPONWUHW-UHFFFAOYSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 239000006177 biological buffer Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- GHWVXCQZPNWFRO-UHFFFAOYSA-N butane-2,3-diamine Chemical compound CC(N)C(C)N GHWVXCQZPNWFRO-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229910052800 carbon group element Inorganic materials 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005070 decynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 229920000359 diblock copolymer Polymers 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- IOMDIVZAGXCCAC-UHFFFAOYSA-M diethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](CC)(CC)CC=C IOMDIVZAGXCCAC-UHFFFAOYSA-M 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 108700020302 erbB-2 Genes Proteins 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000028023 exocytosis Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004404 heteroalkyl group Chemical group 0.000 description 1
- 125000004474 heteroalkylene group Chemical group 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000005549 heteroarylene group Chemical group 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- 235000014304 histidine Nutrition 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- GCHPUFAZSONQIV-UHFFFAOYSA-N isovaline Chemical compound CCC(C)(N)C(O)=O GCHPUFAZSONQIV-UHFFFAOYSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 125000002463 lignoceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000010550 living polymerization reaction Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000003863 metallic catalyst Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004370 n-butenyl group Chemical group [H]\C([H])=C(/[H])C([H])([H])C([H])([H])* 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- FSAJWMJJORKPKS-UHFFFAOYSA-N octadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C=C FSAJWMJJORKPKS-UHFFFAOYSA-N 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002805 poly(2,2'-bithiophene-5,5'-diyl) polymer Polymers 0.000 description 1
- 229920000112 poly(2,5-bis(cholestanoxy) phenylene vinylene) Polymers 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000015 polydiacetylene Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000921 polyethylene adipate Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- IGFXRKMLLMBKSA-UHFFFAOYSA-N purine Chemical compound N1=C[N]C2=NC=NC2=C1 IGFXRKMLLMBKSA-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 108091035539 telomere Proteins 0.000 description 1
- 102000055501 telomere Human genes 0.000 description 1
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 description 1
- QBVXKDJEZKEASM-UHFFFAOYSA-M tetraoctylammonium bromide Chemical compound [Br-].CCCCCCCC[N+](CCCCCCCC)(CCCCCCCC)CCCCCCCC QBVXKDJEZKEASM-UHFFFAOYSA-M 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 229940034208 thyroxine Drugs 0.000 description 1
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 235000002374 tyrosine Nutrition 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/588—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2998—Coated including synthetic resin or polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31928—Ester, halide or nitrile of addition polymer
Definitions
- This invention relates generally to surface-modified nanoparticles, and more particularly relates to surface-modified semiconductor and metal nanoparticles having enhanced dispersibility in aqueous media as well as superior colloidal and photophysical stability.
- the invention additionally relates to methods for making and using the novel surface-modified nanoparticles.
- the invention finds utility in a variety of fields, including biology, analytical and combinatorial chemistry, medical diagnostics, and genetic analysis.
- Semiconductor nanocrystals also known as quantum dot particles
- Semiconductor nanocrystals whose radii are smaller than the bulk exciton Bohr radius constitute a class of materials intermediate between molecular and bulk forms of matter. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective band gap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanocrystals shift to the blue (higher energies) as the size of the nanocrystals gets smaller.
- Semiconductor nanocrystals are nanoparticles composed of an inorganic, crystalline semiconductive material and have unique photophysical, photochemical and nonlinear optical properties arising from quantum size effects, and have therefore attracted a great deal of attention for their potential applicability in a variety of contexts, e.g., as detectable labels in biological applications, and as useful materials in the areas of photocatalysis, charge transfer devices, and analytical chemistry.
- semiconductor nanocrystals there is now a fairly substantial body of literature pertaining to methods for manufacturing such nanocrystals. Broadly, these routes may be classified as involving preparation in glasses (see Ekimov et al.
- aqueous preparation including preparation that involve use of inverse micelles, zeolites, Langmuir-Blodgett films, and chelating polymers; see Fendler et al. (1984) J. Chem. Society, Chemical Communications 90:90, and Henglein et al. (1984) Ber. Bunsenges. Phys. Chem. 88:969), and high temperature pyrolysis of organometallic semiconductor precursor materials (Murray et al. (1993) J. Am. Chem. Soc. 115:8706; Katari et al. (1994) J. Phys. Chem. 98:4109).
- the two former methods yield particles that have unacceptably low quantum yields for most applications, a high degree of polydispersity, poor colloidal stability, a high degree of internal defects, and poorly passivated surface trap sites.
- nanocrystals made by the first route are physically confined to a glass matrix and cannot be further processed after synthesis.
- nanoparticles having enhanced dispersibility in aqueous media, wherein the nanoparticles are comprised of an inner core having a hydrophobic surface and an outer layer of a multiply amphipathic dispersant.
- composition composed of a nanoparticle conjugate, i.e., a water-dispersible nanoparticle as above, conjugated to an affinity molecule that serves as the first member of a binding pair.
- a water-dispersible nanoparticle is provided that is comprised of an inner core and an outer layer of a multiply amphipathic dispersant, i.e., a compound having two or more hydrophobic regions and two or more hydrophilic regions.
- the inner core comprises a semiconductive or metallic material, preferably an inorganic semiconductive material that is in a crystalline state.
- the inner core also comprises a hydrophobic passivating layer on the semiconductive or metallic material resulting from solvents and/or surfactants used in nanoparticle manufacture.
- the surface of the inner core is accordingly hydrophobic, and the hydrophobic regions of the dispersant thus have affinity for the core surface and attach thereto, while the hydrophilic regions of the dispersant extend outward from the nanoparticle and provide for dispersibility in water.
- the dispersant is polymeric and has a plurality of both hydrophobic regions and hydrophilic regions, thus enhancing water dispersibility of the nanoparticle as well as the dispersant's affinity for the core surface.
- Particularly preferred dispersants are hyperbranched or dendritic polymers, which, relative to prior methods that involve monomeric dispersants, substantially increase the water dispersibility and colloidal stability of the nanoparticles.
- the nanoparticles are luminescent semiconductive nanocrystals, and include an overcoating “shell” layer between the inner core and the multiply amphipathic outer layer to increase luminescence efficiency.
- the shell material has a higher bandgap energy than the nanocrystal core, and should also have good conduction and valence band offset with respect to the nanocrystal core.
- an “affinity molecule,” i.e., one member of a binding pair may be attached to the outer layer of the surfacemodified molecule, providing a nanoparticle “conjugate” that is useful in detecting the presence or quantity of target molecules that comprise the second member of the binding pair.
- the affinity molecule may be, for example, a protein, an oligonucleotide, an enzyme inhibitor, a polysaccharide, or a small molecule having a molecular weight of less than about 1500 grams/Mol.
- composition is provided that is comprised of the aforementioned nanoparticle conjugate in association with the second member of the binding pair, wherein the association may involve either covalent or noncovalent interaction.
- a monodisperse population of surface-modified nanoparticles comprising a plurality of water-dispersible nanoparticles each having an inner core comprised of a semiconductive or metallic material and, surrounding the inner core, an outer layer comprised of a multiply amphipathic dispersant as described above, wherein the population is characterized in that the nanoparticles are of substantially the same size and shape, i.e., the population exhibits no more than about a 10% rms deviation in the diameter of the inner core, preferably no more than about a 5% rms deviation in the diameter of the inner core.
- the narrow size distribution of a monodisperse population increases the “information density” that is obtainable as a result of the particles' luminescence, i.e., the number of discrete luminescence emissions obtainable for a given nanoparticle composition.
- a method for making the surface-modified nanoparticles described above.
- the method involves (a) admixing (i) an amphipathic dispersant comprised of a polymer having two or more hydrophobic regions and two or more hydrophilic regions, with (ii) a plurality of hydrophobic nanoparticles, in (iii) a nonaqueous solvent, to provide an admixture of dispersant and nanoparticles in solution; (b) subjecting the admixture to conditions effective to cause adsorption of the dispersant by the nanoparticles; and (c) transferring the dispersant-coated nanoparticles prepared in step (b) to an aqueous medium such as water or an aqueous buffer.
- an aqueous medium such as water or an aqueous buffer.
- a dispersant refers to a single dispersant as well as a mixture of two or more dispersants
- a nanoparticle encompasses not only a single nanoparticle but also two or more nanoparticles, and the like.
- amphipathic referring to the dispersants employed herein, is used in its conventional sense to indicate a molecular species having a hydrophobic region and a hydrophilic region.
- the dispersants herein are “multiply amphipathic” in that they contain two or more hydrophobic regions and two or more hydrophilic regions.
- attachment includes covalent binding, adsorption, and physical immobilization.
- association with binding
- binding binding
- bound are identical in meaning to the term “attached.”
- Attachment of the present multiply amphipathic dispersants to the surface of a metallic or semiconductive nanoparticle will generally involve “adsorption,” wherein “adsorption” refers to the noncovalent retention of a molecule by a substrate surface. That is, adsorption occurs as a result of noncovalent interaction between a substrate surface and adsorbing moieties present on the molecule that is adsorbed. Adsorption may occur through hydrogen bonding, van der Waal's forces, polar attraction or electrostatic forces (i.e., through ionic bonding), and in the present case will typically involve the natural affinity of a hydrophobic region of a molecule for a hydrophobic surface.
- nanoparticle refers to a particle, generally a semiconductive or metallic particle, having a diameter in the range of about 1 nm to about 1000 nm, preferably in the range of about 2 nm to about 50 nm, more preferably in the range of about 2 nm to about 20 nm.
- semiconductive, and metallic “nanoparticles” generally include a passivating layer of a water-insoluble organic material that results from the method used to manufacture such nanoparticles.
- surface-modified nanoparticle and “water-dispersible nanoparticle” as used herein refer to the modified nanoparticles of the invention, while the term “nanoparticle,” without qualification, refers to the hydrophobic nanoparticle that serves as the inner core of the surface-modified, water-dispersible nanoparticle.
- semiconductor nanoparticle and “semiconductive nanoparticle” refer to a nanoparticle as defined above that is composed of an inorganic semiconductive material, an alloy or other mixture of inorganic semiconductive materials, an organic semiconductive material, or an inorganic or organic semiconductive core contained within one or more semiconductive overcoat layers.
- metal nanoparticle refers to a nanoparticle as defined above that is composed of a metallic material, an alloy or other mixture of metallic materials, or a metallic core contained within one or more metallic overcoat layers.
- semiconductor nanocrystal “quantum dot” and “Qdot® nanocrystal” are used interchangeably herein to refer to semiconductor nanoparticles composed of an inorganic crystalline material that is luminescent (i.e., they are capable of emitting electromagnetic radiation upon excitation), and include an inner core of one or more first semiconductor materials that is optionally contained within an overcoating or “shell” of a second semiconductor material.
- a semiconductor nanocrystal core surrounded by a semiconductor shell is referred to as a “core/shell” semiconductor nanocrystal.
- the surrounding shell material will preferably have a bandgap energy that is larger than the bandgap energy of the core material and may be chosen to have an atomic spacing close to that of the core substrate.
- Suitable semiconductor materials for the core and/or shell include, but are not limited to, the following: materials comprised of a first element selected from Groups 2 and 12 of the Periodic Table of the Elements and a second element selected from Group 16 (e.g., ZnS, ZnSe, ZnTe, CDs, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, and the like); materials comprised of a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 (GaN, GaP, GaAs, GaSb, InN,
- Luminescence is meant the process of emitting electromagnetic radiation (light) from an object. Luminescence results when a system undergoes a transition from an excited state to a lower energy state with a corresponding release of energy in the form of a photon. These energy states can be electronic, vibrational, rotational, or any combination thereof. The transition responsible for luminescence can be stimulated through the release of energy stored in the system chemically or added to the system from an external source.
- the external source of energy can be of a variety of types including chemical, thermal, electrical, magnetic, electromagnetic, and physical, or any other type of energy source capable of causing a system to be excited into a state higher in energy than the ground state.
- a system can be excited by absorbing a photon of light, by being placed in an electrical field, or through a chemical oxidation-reduction reaction.
- the energy of the photons emitted during luminescence can be in a range from low-energy microwave radiation to high-energy x-ray radiation.
- luminescence refers to photons in the range from UV to IR radiation.
- the term “monodisperse” refers to a population of particles (e.g., a colloidal system) wherein the particles have substantially identical size and shape.
- a “monodisperse” population of particles means that at least about 60% of the particles, preferably about 75% to about 90% of the particles, fall within a specified particle size range.
- a population of monodisperse particles deviates less than 10% rms (root-mean-square) in diameter and preferably less than 5% rms.
- narrow wavelength band or “narrow spectral linewidth” with regard to the electromagnetic radiation emission of the semiconductor nanocrystal is meant a wavelength band of emissions not exceeding about 60 nm, and preferably not exceeding about 30 nm in width, more preferably not exceeding about 20 mm in width, and symmetric about the center. It should be noted that the bandwidths referred to are determined from measurement of the full width of the emissions at half peak height (FWHM), and are appropriate in the range of 200 nm to 2000 nm.
- FWHM half peak height
- a broad wavelength band with regard to the excitation of the semiconductor nanocrystal is meant absorption of radiation having a wavelength equal to, or shorter than, the wavelength of the onset radiation (the onset radiation is understood to be the longest wavelength (lowest energy) radiation capable of being absorbed by the semiconductor nanocrystal).
- the onset radiation is understood to be the longest wavelength (lowest energy) radiation capable of being absorbed by the semiconductor nanocrystal.
- This onset occurs near to, but at slightly higher energy than the “narrow wavelength band” of the emission.
- This is in contrast to the “narrow absorption band” of dye molecules, which occurs near the emission peak on the high energy side, but drops off rapidly away from that wavelength and is often negligible at wavelengths further than 100 m from the emission.
- emission peak refers to the wavelength of light within the characteristic emission spectra exhibited by a particular semiconductor nanocrystal size distribution that demonstrates the highest relative intensity.
- excitation wavelength refers to light having a wavelength lower than the emission peak of the semiconductor nanocrystal used in the first detection reagent.
- a “hydrophobic” compound e.g., a “hydrophobic” monomer
- a “hydrophobic” monomer is one that will transfer from an aqueous phase to an organic phase, specifically from water to an organic, water-immiscible nonpolar solvent with a dielectric constant ⁇ 5, with a partition coefficient of greater than about 50%.
- a “hydrophobic monomer unit” refers to a hydrophobic monomer as it exists within a polymer.
- a “hydrophobic region” refers to a hydrophobic molecular segment, e.g., a molecular segment within a polymer.
- a “hydrophobic region” may be a single hydrophobic monomer unit or two or more hydrophobic monomer units that may be the same or different and may or may not be adjacent.
- a “hydrophilic” compound e.g., a “hydrophilic” monomer
- a “hydrophilic” compound is one that will transfer from an organic phase to an aqueous phase, specifically from an organic, water-immiscible nonpolar solvent with a dielectric constant ⁇ 5 to water, with a partition coefficient of greater than about 50%.
- a “hydrophilic monomer unit” refers to a hydrophilic monomer as it exists in a polymeric segment or polymer.
- a “hydrophilic region” refers to a hydrophilic molecular segment, e.g., a hydrophilic molecular segment within a polymer.
- a “hydrophilic region” may be a single hydrophilic monomer unit or two or more hydrophilic monomer units that may be the same or different and may or may not be adjacent.
- ionizable refers to a group that is electronically neutral at a specific pH, but can be ionized and thus rendered positively or negatively charged at higher or lower pH, respectively.
- alkyl refers to a branched or unbranched saturated hydrocarbon group of 1 to approximately 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl and tetracosyl, as well as cycloalkyl groups such as cyclopentyl and cyclohexyl.
- lower alkyl intends an alkyl group of 1 to 4 carbon atoms, and thus includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and t-butyl.
- alkylene refers to a difunctional saturated branched or unbranched hydrocarbon chain containing from 1 to approximately 24 carbon atoms, typically 1 to approximately 12 carbon atoms, and includes, for example, methylene (—CH 2 —), ethylene (—CH 2 —CH 2 —), propylene (—CH 2 —CH 2 —CH 2 —), 2-methylpropylene (—CH 2 —CH(CH 3 )—CH 2 —), hexylene (—(CH 2 ) 6 —), and the like.
- “Lower alkylene,” as in the lower alkylene linkage of the optional coupling agent herein, refers to an alkylene group of 1 to 4 carbon atoms.
- alkenyl refers to a branched or unbranched hydrocarbon group typically although not necessarily containing 2 to about 24 carbon atoms and at least one double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, octenyl, decenyl, and the like. Generally, although not necessarily, alkenyl groups herein contain 2 to about 12 carbon atoms.
- lower alkenyl intends an alkenyl group of 2 to 4 carbon atoms
- alkenylene refers to a difunctional alkenyl group, in the same way that the term “alkylene” refers to a difunctional alkyl group.
- alkynyl refers to a branched or unbranched hydrocarbon group typically although not necessarily containing 2 to about 24 carbon atoms and at least one triple bond, such as ethynyl, n-propynyl, isopropynyl, n-butynyl, isobutynyl, octynyl, decynyl, and the like. Generally, although again not necessarily, alkynyl groups herein contain 2 to about 12 carbon atoms.
- the term “lower alkynyl” intends an alkynyl group of 2 to 4 carbon atoms, preferably 3 or 4 carbon atoms.
- heteroatom-containing and the prefix “hetero-,” as in “heteroatomcontaining alkyl” and “heteroalkyl,” refer to a molecule or molecular fragment in which one or more carbon atoms is replaced with an atom other carbon, e.g., nitrogen, oxygen, sulfur, phosphorus or silicon.
- alkoxy refers to a substituent —O—R wherein R is alkyl as defined above.
- lower alkoxy refers to such a group wherein R is lower alkyl as defined above, e.g., methoxy, ethoxy and the like.
- aryl refers to an aromatic moiety containing 1 to 3 aromatic rings. For aryl groups containing more than one aromatic ring, the rings may be fused or linked.
- Aryl groups are optionally substituted with one or more inert, nonhydrogen substituents per ring; suitable “inert, nonhydrogen” substituents include, for example, halo, haloalkyl (preferably halo-substituted lower alkyl), alkyl (preferably lower alkyl), alkenyl (preferably lower alkenyl), alkynyl (preferably lower alkynyl), alkoxy (preferably lower alkoxy), alkoxycarbonyl (preferably lower alkoxycarbonyl), carboxy, nitro, cyano and sulfonyl.
- aryl is also intended to include heteroaromatic moieties, i.e., aromatic heterocycles. Generally, although not necessarily, the heteroatoms will be nitrogen, oxygen or sulfur.
- arylene refers to a difunctional aryl moiety in the same way that the term “alkylene” refers to a difunctional alkyl group.
- aralkyl refers to an alkyl group with an aryl substituent
- aralkylene refers to an alkylene group with an aryl substituent
- alkaryl refers to an aryl group that has an alkyl substituent
- alkarylene refers to an arylene group with an alkyl substituent
- halo and “halogen” are used in the conventional sense to refer to a chloro, bromo, fluoro, or iodo substituent.
- haloalkyl refers to an alkyl group in which at least one of the hydrogen atoms in the group has been replaced with a halogen atom.
- peptide refers to oligomers or polymers of any length wherein the constituent monomers are alpha amino acids linked through amide bonds, and encompasses amino acid dimers as well as polypeptides, peptide fragments, peptide analogs, naturally occurring proteins, mutated, variant, or chemically modified proteins, fusion proteins, and the like.
- the amino acids of the peptide molecules may be any of the twenty conventional amino acids, stereoisomers (e.g., D-amino acids) of the conventional amino acids, structural variants of the conventional amino acids, e.g., iso-valine, or non-naturally occurring amino acids such as ⁇ , ⁇ -disubstituted amino acids, N-alkyl amino acids, ⁇ -alanine, naphthylalanine, 3-pyridylalanine, 4-hydroxyproline, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, and nor-leucine.
- stereoisomers e.g., D-amino acids
- structural variants of the conventional amino acids e.g., iso-valine
- non-naturally occurring amino acids such as ⁇ , ⁇ -disubstituted amino acids, N-alkyl amino acids, ⁇ -alanine, naphth
- peptide encompasses peptides with posttranslational modifications such as glycosylations, acetylations, phosphorylations, and the like.
- oligonucleotide is used herein to include a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Thus, the term includes triple-, double- and single-stranded DNA, as well as triple-, double- and single-stranded RNA. It also includes modifications, such as by methylation and/or by capping, and unmodified forms of the oligonucleotide.
- the term includes polydeoxyribonucleotides (containing 2-deoxy-D-ribose), polyribonucleotides (containing D-ribose), any other type of polynucleotide which is an N- or C-glycoside of a purine or pyrimidine base, and other polymers containing normucleotidic backbones, for example, polyamide (e.g., peptide nucleic acids (PNAs)) and polymorpholino (commercially available from the Anti-Virals, Inc., Corvallis, Oregon, as Neugene) polymers, and other synthetic sequencespecific nucleic acid polymers, providing that the polymers contain nucleobases in a configuration that allows for base pairing and base stacking, such as is found in DNA and RNA.
- PNAs peptide nucleic acids
- polynucleotide refers only to the primary structure of the molecule.
- these terms include, for example, 3′-deoxy-2′,5′-DNA, oligodeoxyribonucleotide N3′ P5′ phosphoramidates, 2′-O-alkyl-substituted RNA, double- and single-stranded DNA, as well as double- and single-stranded RNA, DNA:RNA hybrids, and hybrids between PNAs and DNA or RNA, and also include known types of modifications, for example, labels which are known in the art, methylation, “caps,” substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for, example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphorami
- polymer is used herein in its conventional sense to refer to a compound having two or more monomer units, and is intended to include linear and branched polymers, the term “branched polymers” encompassing simple branched structures as well as hyperbranched and dendritic polymers.
- branched polymers encompassing simple branched structures as well as hyperbranched and dendritic polymers.
- monomer is used herein to refer to compounds that are not polymeric. “Polymers” herein may be naturally occurring, chemically modified, or chemically synthesized.
- water-dispersible refers to an essentially unaggregated dispersion of particles, such that discrete particles of approximately 2 nm to 50 nm can be sustained indefinitely at high concentrations (10-20 ⁇ M).
- binding pair refers to first and second molecules that specifically bind to each other. “Specific binding” of the first member of the binding pair to the second member of the binding pair in a sample is evidenced by the binding of the first member to the second member, or vice versa, with greater affinity and specificity than to other components in the sample. The binding between the members of the binding pair is typically noncovalent.
- affinity molecule and “target analyte” are also used herein to refer to the first and second members of a binding pair, respectively.
- Exemplary binding pairs include any haptenic or antigenic compound in combination with a corresponding antibody or binding portion or fragment thereof (e.g., digoxigenin and anti-digoxigenin; mouse immunoglobulin and goat anti-mouse immunoglobulin) and nonimmunological binding pairs (e.g., biotin-avidin, biotin-streptavidin, hormone [e.g., thyroxine and cortisol]-hormone binding protein, receptor-receptor agonist or antagonist (e.g., acetylcholine receptor-acetylcholine or an analog thereof), IgG-protein A, lectin-carbohydrate, enzyme-enzyme cofactor, enzyme-enzyme inhibitor, and complementary polynucleotide pairs capable of forming nucleic acid duplexes), and the like.
- biotin-avidin e.g., digoxigenin and anti-digoxigenin; mouse immunoglobulin and goat anti-mouse immunoglobulin
- a “nanoparticle conjugate” refers to a nanoparticle linked, through an outer layer of an amphipathic dispersant, to a member of a “binding pair” that will selectively bind to a detectable substance present in a sample, e.g., a biological sample.
- the first member of the binding pair linked to the nanoparticle can comprise any molecule, or portion of any molecule, that is capable of being linked to the nanoparticle and that, when so linked, is capable of specifically recognizing the second member of the binding pair.
- the nanoparticles of the invention are nanoparticles with hydrophobic surfaces, the particles having a diameter in the range of about 1 nm to about 1000 nm, preferably in the range of about 2 nm to about 50 nm, more preferably in the range of about 2 nm to about 20 nm.
- the nanoparticles will be comprised of a semiconductive or metallic material, with semiconductive nanoparticles preferred.
- the semiconductive or metallic material typically has a coating of a hydrophobic passivating layer resulting from the use of solvents and/or surfactants during nanoparticle manufacture.
- the hydrophobic surfaces of the nanoparticles have affinity for and thus serve to attach the amphipathic dispersant by virtue of the hydrophobic regions within the dispersant.
- Semiconductive nanoparticles may be composed of an organic semiconductor material or an inorganic semiconductor material.
- Organic semiconductor materials will generally be conjugated polymers. Suitable conjugated polymers include, for example, cis and trans polyacetylenes, polydiacetylenes, polyparaphenylenes, polypyrroles, polythiophenes, polybithiophenes, polyisothianaphthene, polythienylvinylenes, polyphenylenesulfide, polyaniline, polyphenylenevinylenes, and polyphenylenevinylene derivatives, e.g., poly(2-methoxy-5-(2-ethylhexyloxy)-1,4phenylene vinylene (“MEH-PPV”) (see U.S.
- MEH-PPV poly(2-methoxy-5-(2-ethylhexyloxy)-1,4phenylene vinylene
- Inorganic semiconductive nanoparticles are, however, preferred, and are optimally crystalline in nature; such nanoparticles are termed “semiconductor nanocrystals” herein.
- Semiconductor nanocrystals are capable of luminescence, generally fluorescence, when excited by light.
- detection of biological compounds by photoluminescence utilizes fluorescent organic dyes and chemiluminescent compounds.
- the use of semiconductor nanocrystals as luminescent markers, particularly in biological systems, provides advantages over existing fluorescent dyes. Many of these advantages relate to the spectral properties of nanocrystals, e.g., the ability to control the composition and size of nanocrystals enables one to construct nanocrystals with fluorescent emissions at any wavelength in the UV-visible-IR regions.
- semiconductor nanocrystals that emit energy in the visible range include, but are not limited to, CdS, CdSe, CdTe, ZnSe, ZnTe, GaP, and GaAs.
- Semiconductor nanocrystals that emit energy in the near IR range include, but are not limited to, InP, InAs, InSb, PbS, and PbSe.
- semiconductor nanocrystals that emit energy in the blue to near-ultraviolet include, but are not limited to, ZnS and GaN.
- 5-20 discrete emissions (five to twenty different size populations or distributions distinguishable from one another), more preferably 10-15 discrete emissions, are obtained for any particular composition, although one of ordinary skill in the art will realize that fewer than five emissions and more than twenty emissions could be obtained depending on the monodispersity of the semiconductor nanocrystal particle population. If high information density is required, and thus a greater number of distinct emissions, the nanocrystals are preferably substantially monodisperse within the size range given above.
- monodisperse refers to a population of particles (e.g., a colloidal system) in which the particles have substantially identical size and shape. In preferred embodiments for high information density applications, monodisperse particles deviate less than 10% rms in diameter, and preferably less than 5% rms. Monodisperse semiconductor nanocrystals have been described in detail in Murray et al. (1993) J. Am. Chem. Soc. 115:8706, and in Murray, “Synthesis and Characterization of II-VI Quantum Dots and Their Assembly into 3-D Quantum Dot Superlattices,” doctoral dissertation, Massachusetts Institute of Technology (1995).
- the linewidth of the emission may be in the range of 40-60 nm.
- Semiconductor nanocrystals may be made using techniques known in the art. See, e.g., U.S. Pat. Nos. 6,048,616, 5,990,479, 5,690,807, 5,505,928 and 5,262,357, as well as International Patent Publication No. WO 99/26299, published May 27, 1999.
- exemplary materials for use as semiconductor nanocrystals in the biological and chemical assays of the present invention include, but are not limited to, those described above, including Group 2-16, 12-16, 13-15 and 14 semiconductors such as ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, AIS, AIP, AlSb, PbS, PbSe, Ge and Si and ternary and quaternary mixtures thereof.
- Group 2-16, 12-16, 13-15 and 14 semiconductors such as ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, MgS, MgSe, MgTe, CaS, CaS
- the surface of the semiconductor nanocrystal is modified to enhance the efficiency of the emissions, prior to surface modification with the multiply amphipathic dispersant, by adding an overcoating layer or shell to the semiconductor nanocrystal.
- the shell is preferred because at the surface of the semiconductor nanocrystal, surface defects can result in traps for electrons or holes that degrade the electrical and optical properties of the semiconductor nanocrystal.
- An insulating layer at the surface of the semiconductor nanocrystal provides an atomically abrupt jump in the chemical potential at the interface that eliminates energy states that can serve as traps for the electrons and holes. This results in higher efficiency in the luminescent process.
- Suitable materials for the shell include semiconductor materials having a higher bandgap energy than the semiconductor nanocrystal core.
- suitable materials for the shell should have good conduction and valence band offset with respect to the core semiconductor nanocrystal.
- the conduction band is desirably higher and the valence band is desirably lower than those of the core semiconductor nanocrystal.
- a material that has a bandgap energy in the ultraviolet regions may be used.
- Exemplary materials include ZnS, GaN, and magnesium chalcogenides, e.g., MgS, MgSe, and MgTe.
- materials having a bandgap energy in the visible such as CdS or CdSe, may also be used.
- the preparation of a coated semiconductor nanocrystal may be found in, e.g., Dabbousi et al. (1997) J. Phys. Chem. B 101:9463, Hines et al. (1996) J. Phys. Chem. 100: 468-471, Peng et al. (1997) J. Am. Chem. Soc. 119:7019-7029, and Kuno et al. (1997) J. Phys. Chem. 106:9869.
- the nanoparticles of the invention may also be metallic. Such particles are useful, for example, in surface enhanced Raman scattering (SERS), which employs nanometer-size particles onto which Raman active moieties (e.g., a dye or pigment, or a functional group exhibiting a characteristic Raman spectrum) are adsorbed or attached.
- SERS surface enhanced Raman scattering
- Metallic nanoparticles may be comprised of any metal or metallic alloy or composite, although for use in SERS, a SERS active metal is used, e.g., silver, gold, copper, lithium, aluminum, platinum, palladium, or the like.
- the particles can be in a core-shell configuration, e.g., a gold core may be encased in a silver shell; see, e.g., Freeman et al. (1996) J. Phys. Chem. 100:718-724, or the particles may form small aggregates in solution. Kneipp et al. (1998) Applied Spectroscopy 52:1493.
- semiconductive nanoparticles will typically have a water-insoluble organic coating that has affinity for the semiconductive material, the coating comprised of a passivating layer resulting from use of a coordinating solvent such as hexyldecylamine or a trialkyl phosphine or trialkyl phosphine oxide, e.g., trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), or tributylphosphine (TBP).
- a coordinating solvent such as hexyldecylamine or a trialkyl phosphine or trialkyl phosphine oxide, e.g., trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), or tributylphosphine (TBP).
- TOPO trioctylphosphine oxide
- TOP trioctylphosphine
- TBP tributylphos
- Hydrophobic surfactants typically used in the manufacture of metallic nanoparticles and forming a coating thereon include, by way of example, octanethiol, dodecanethiol, dodecylamine, and tetraoctylammonium bromide.
- Metallic inner cores will typically have a surfactant coating that has affinity for the metallic material, the coating similarly deriving from surfactant compounds used in the manufacture of metallic nanoparticles.
- the surfactant coating is comprised of a hydrophobic surfactant.
- the dispersant used to modify the hydrophobic surface of the nanoparticles is a multiply amphipathic dispersant, i.e., a compound having two or more hydrophobic regions and two or more hydrophilic regions.
- the multiply amphipathic dispersant is polymeric, and may be composed of either a linear or branched polymer, whether naturally occurring, chemically modified, or chemically synthesized. Structurally, polymers are classified as either linear or branched wherein the term “branched” generally means that the individual molecular units (i.e., monomer units) of the branches are discrete from the polymer backbone, and may or may not have the same chemical constitution as the polymer backbone.
- the simplest branched polymers are the “comb branched” polymers wherein a linear backbone bears one or more essentially linear pendant side chains.
- This simple form of branching may be regular or irregular (in the latter case, the branches are distributed in non-uniform or random fashion on the polymer backbone).
- regular comb branching is a comb branched polystyrene as described by Altores et al. (1965) J. Polymer Sci., Part A 3:4131-4151, and an example of irregular comb branching is illustrated by the graft copolymers described by Sorenson et al. in Preparative Methods of Polymer Chemistry, 2nd Ed., Interscience Publishers, pp. 213-214 (1968).
- the amphipathic dispersant may also be a branched polymer in the form of a crosslinked or network polymer, i.e., a polymeric structure wherein individual polymer chains or branches are connected through the use of bifunctional compounds; e.g., acrylic acid monomer units bridged or crosslinked with a diamine linker.
- a crosslinked or network polymer i.e., a polymeric structure wherein individual polymer chains or branches are connected through the use of bifunctional compounds; e.g., acrylic acid monomer units bridged or crosslinked with a diamine linker.
- many of the individual branches are not linear in that each branch may itself contain side chains pendant from a linear chain and it is not possible to differentiate between the backbone and the branches.
- each polymer macromolecule (backbone) is cross-linked at two or more sites to other polymer macromolecules.
- the chemical constitution of the cross-linkages may vary from that of the polymer macromolecules.
- the various branches or cross-linkages may be structurally similar (
- amphipathic dispersant may also have other structural configurations, e.g., it may be a star/comb-branched type polymer, as described in U.S. Pat. Nos. 4,599,400 and 4,690,985, or a rod-shaped dendrimer as disclosed in U.S. Pat. No. 4,694,064.
- amphipathic dispersants herein are hyperbranched (containing two or more generations of branching) or dendrimeric.
- dendrimers are regularly branched macromolecules with a branch point at each repeat unit.
- hyperbranched polymers are obtained via a polymerization reaction, while most regular dendrimers are obtained by a series of stepwise coupling and activation steps.
- dendrimers include the polyamidoamine (PAMAM) Starburst® dendrimers of Tomalia et al. (1985) Polym. J. 17:117, the convergent dendrimers of Hawker et al. (1990) J. Am. Chem. Soc.
- the hydrophilic regions represent approximately 30 wt. % to 75 wt. % of the amphipathic dispersant, and are comprised of at least one monomer unit containing an ionizable or polar moiety, preferably an ionizable moiety such as a carboxylic acid, sulfonic acid, phosphonic acid or amine substituent.
- hydrophilic monomer units include, but are not limited to:
- water-soluble ethylenically unsaturated C 3 -C 6 carboxylic acids such as acrylic acid, alkyl acrylic acids (particularly methacrylic acid), itaconic acid, maleic acid, fumaric acid, acrylamidomethyl-propanesulfonic acid, vinyl sulfonic acid, vinyl phosphonic acid, vinyllactic acid, and styrene sulfonic acid;
- allylamine and allylamine salts formed with an inorganic acid e.g., hydrochloric acid
- di-C 1 -C 3 — alkylamino-C 2 -C 6 -alkyl acrylates and methacrylates such dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylaminobutyl acrylate, dimethylaminoneopentyl acrylate and dimethylaminoneopentyl methacrylate;
- olefinically unsaturated nitriles such as acrylonitrile
- diolefinically unsaturated monomers particularly diallylammonium compounds such as dimethyldiallylammonium chloride, dimethyldiallylammonium bromide, diethyldiallylammonium chloride, methyl-t-butyldiallylammonium methosulfate, methyl-npropyldiallylammonium chloride, dimethyldiallylammonium hydrogensulfate, dimethyldiallylammonium dihydrogenphosphate, di-n-butyldiallylammonium bromide, diallylpiperidinium bromide, diallylpyrrolidinium chloride and diallylmorpholinium bromide;
- diallylammonium compounds such as dimethyldiallylammonium chloride, dimethyldiallylammonium bromide, diethyldiallylammonium chloride, methyl-t-butyldiallylammonium methosulfate, methyl-npropyldiallylammonium chloride
- acrylamide and substituted acrylamides such as N-methylolacrylamide and C 1 -C 3 alkyl acrylamides, particularly methacrylamide;
- N-vinylimidazole and N-vinylimidazoline N-vinylimidazoline
- other monomers typically ethylenically unsaturated monomers, preferably vinyl monomers, substituted with at least one hydrophilic functionality such as a carboxylate, a thiocarboxylate, an amide, an imide, a hydrazine, a sulfonate, a sulfoxide, a sulfone, a sulfite, a phosphate, a phosphonate, a phosphonium, an alcohol, a thiol, a nitrate, an amine, an ammonium, or an alkyl ammonium group —[NHR 1 R 2 ] + , wherein R 1 and R 2 are alkyl substituents and the group is associated with a negatively charged anion, e.g., a halogen ion, nitrate, etc.
- hydrophilic functionality such as a carboxylate, a thiocarboxylate, an amide, an imide, a hydra
- the hydrophilic functionality may be directly bound to a carbon atom in the polymer backbone, but will usually be bound through a linkage that provides some degree of spacing between the polymer backbone and the hydrophilic functional group.
- Suitable linkages include, but are not limited to, branched or unbranched alkylene, branched or unbranched alkenylene, branched or unbranched heteroalkylene (typically alkylene containing one or more ether or —NH— linkages) a branched or unbranched heteroalkenylene (again, typically alkenylene containing one or more ether or —NH— linkages), arylene, heteroarylene, alkarylene, aralkylene, and the like.
- the linkage will typically contain 2 to 24, more typically 2 to 12, carbon atoms.
- the hydrophilic regions may also be composed of partially or fully hydrolyzed poly(vinyl alcohol), poly(ethylene glycol), poly(ethylene oxide), highly hydrated poly(alkylene oxides) such as poly(ethylene oxide), cellulosic segments (e.g., comprised of cellulose per se or cellulose derivatives such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, cellulose acetate, and the like), and polysaccharides such as chitosan or dextran.
- poly(vinyl alcohol) poly(ethylene glycol), poly(ethylene oxide), highly hydrated poly(alkylene oxides) such as poly(ethylene oxide)
- cellulosic segments e.g., comprised of cellulose per se or cellulose derivatives such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose,
- the hydrophobic regions represent approximately 25 wt. % to 90 wt. % of the amphipathic dispersant, and are comprised of at least one non-ionizable, nonpolar monomer unit, facilitating noncovalent association with the hydrophobic surface of the nanoparticle.
- monomer units include, but are not limited to:
- acrylates such as methacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, isodecyl methacrylate, lauryl methacrylate, phenyl methacrylate, isopropyl acrylate, isobutyl acrylate and octadecylacrylate,
- alkylenes such as ethylene and propylene
- alkyl acrylamides wherein the alkyl group is larger than lower alkyl particularly alkyl acrylamides wherein the alkyl group has six or more carbon atoms, typically six to twelve carbon atoms, such as hexylacrylamide, octylacrylamide, and the like;
- styrene and hydrophobically derivatized styrenes i.e., styrene substituted with one or more hydrophobic substituents, e.g., C 5 -C 12 hydrocarbyl groups;
- vinyl esters such as vinyl acetate
- vinyl halides such as vinyl chloride.
- the hydrophobic regions may also be composed of polychloroprene, polybutadiene, polysiloxane, polydimethylsiloxane, polyisobutylene or polyurethane blocks, or they may be polycondensates of 2-poly(hydroxyalkanoic acids) such as 2-hydroxypropanoic acid, 2-hydroxybutanoic acid, 2-hydroxyisobutanoic acid, 2-hydroxyheptanoic acid, 10-hydroxydecanoic acid, 12-hydroxydodecanoic acid, 12-hydroxystearic acid, 16-hydroxyhexadecanoic acid, 2-hydroxystearic acid, 2-hydroxyvaleric acid or the corresponding condensates obtained from lactones, condensates of diols and dicarboxylic acids such as polyethylene adipate, or polylactams such as polycaprolactam.
- 2-poly(hydroxyalkanoic acids) such as 2-hydroxypropanoic acid, 2-hydroxybutanoic acid, 2-hydroxyisobutanoic
- any of the aforementioned monomer units and polymer segments can be modified using techniques and reagents routinely used by those of ordinary skill in the art. Such modifications include, for example, routine substitutions, additions of chemical groups such as alkyl groups and alkylene groups, hydroxylations, oxidations, and the like.
- Such branched polymers, composed of hydrophobic segments and hydrophilic segments are typically comprised of (1) a hydrophobic backbone with hydrophilic branches, (2) a hydrophilic backbone with hydrophobic branches, or (3) a backbone that may be either hydrophobic or hydrophilic, and is substituted with both hydrophilic and hydrophobic branches.
- polymers of type (1) can be prepared by any suitable method readily known to those of ordinary skill in the art and/or described in the pertinent texts and literature.
- Polymers of type (1) for example, can be prepared by copolymerization of a hydrophobic monomer with a second monomer that includes suitable reactive groups through which the hydrophilic side chains (branches) can be grafted to the backbone.
- type (1) polymers can be prepared by polymerizing a single hydrophobic monomer with a suitable reactive side group, and a fraction of those reactive side groups can be modified post-polymerization by grafting hydrophilic side chains.
- polymers of type (2) can be prepared by copolymerization of a hydrophilic monomer with a second monomer that includes suitable reactive groups through which the hydrophobic side chains (branches) can be grafted to the backbone.
- type (2) polymers can be prepared by polymerizing a single hydrophilic monomer with a suitable reactive side group, and a fraction of those reactive side groups can be modified post-polymerization by grafting hydrophobic side chains.
- Type (3) polymers can be prepared by first synthesizing a linear polymer having reactive sites throughout the backbone, and then grafting hydrophilic and hydrophobic side chains onto the backbone in a fashion that may or may not be ordered.
- amphipathic dispersants include acrylic acid and methacrylic acid polymers modified to include hydrophobic regions, as well as copolymers of acrylic acid and/or methacrylic acid with hydrophobic comonomers such as alkyl acrylamides.
- examples of such polymers are poly(acrylic acid-co-octylacrylamide), poly(acrylic acid-co-hexylacrylamide), poly(methacrylic acid-co-octylacrylamide), and poly(methacrylic acid-co-hexylacrylamide), with poly(acrylic acid-co-octylacrylamide) most preferred.
- amphipathic dispersant is formed by addition polymerization of ethylenically unsaturated monomers.
- Such polymerization reactions are generally catalyzed using metallic catalysts (e.g., transition metal-based metallocenes, Ziegler-Natta catalysts, Brookhart-type catalysts, etc.) and typically involve contacting the monomer(s), catalyst, and a catalyst activator (e.g., methyl aluminoxane, or “MAO”) at a suitable temperature at reduced, elevated or atmospheric pressure, under an inert atmosphere, for a time effective to produce the desired polymer.
- a catalyst activator e.g., methyl aluminoxane, or “MAO”
- An added solvent may, if desired, be employed, or the monomeric compounds may serve as solvent.
- the reaction may be conducted under solution or slurry conditions, in a suspension, or in the gas phase.
- branched polymers can be prepared using this technique by introducing reactive sites into the polymer backbone during polymerization (e.g., by incorporating some fraction of monomer units having a pendant reactive site), followed by synthesis or grafting of branches at the reactive sites.
- the amphipathic dispersant is comprised of a hydrophilic backbone that has been modified to contain hydrophobic anchoring groups, i.e., hydrophobic side chains that serve to “anchor” the dispersant to the nanoparticle surface.
- hydrophilic polymers containing pendant carboxylic acid groups e.g., as in poly(acrylic acid), [—(CH 2 CH(CO 2 H)] n —
- hydrophilic polymers containing pendant carboxylic acid groups e.g., as in poly(acrylic acid), [—(CH 2 CH(CO 2 H)] n —
- the pendant carboxylic acid groups of poly(acrylic acid) can be activated with a suitable activating agent, e.g., thionyl chloride or a carbodiimide, followed by reaction with a long chain alkylamine, e.g., a C 4 -C 12 alkylamine such as octylamine, and finally with a hydrolyzing agent such as water.
- a suitable activating agent e.g., thionyl chloride or a carbodiimide
- a long chain alkylamine e.g., a C 4 -C 12 alkylamine such as octylamine
- a hydrolyzing agent such as water.
- the resulting polymer is an amphipathic polymer with a hydrophilic backbone (by virtue of the carboxylic acid groups present after partial hydrolysis) and hydrophobic side chains (the long chain alkyl group attached to the backbone through an amide linkage).
- hydrophobically modified hydrophilic polymers are hydrophobically modified peptides, preferably hydrophobically modified synthetic polypeptides.
- the use of synthetic polypeptides allows for control over a number of factors, including the monodispersity of the molecular weight of the hydrophilic backbone, the number and position of modifiable groups on the backbone, and the regularity of the modification, i.e., whether the hydrophobic groups are randomly distributed throughout the polypeptide chain or present in an ordered, “regular” fashion.
- Suitable polypeptides are triblock (A-B-A) copolymers, for example, triblock copolymers of aspartate and norleucine, in which case polynorleucine is preferably the central block “B.”
- A-B-A triblock copolymers of aspartate and norleucine
- polynorleucine is preferably the central block “B.”
- Such a triblock copolymer provides a region rich in hydrophobic side chains.
- the central block “B” can comprise a hydrophilic amino acid, for example, poly(lysine), which can be modified via standard chemistries to include hydrophobic side chains.
- the carboxylate-rich aspartate side chains (A) provide the polar, ionic groups that not only aid in rendering the nanocrystal water dispersible, but provide reactive sites or functionalizable moieties for further chemistry, such as conjugation to affinity molecules.
- polypeptide compositions of the present invention may also be monofunctional in nature, e.g., polylysine or polyaspartate, diblock copolymers (A-B) or triblock copolymers of three different amino acids (A-B-C). These compositions are also not restricted to lysine or aspartate, but may make use of any number of combinations of the known amino acids.
- the hydrophobic regions of a polypeptide are comprised of at least one hydrophobic amino acid and the hydrophilic regions are comprised of at least one hydrophilic amino acid.
- hydrophobic amino acids include, for example, alanine, glycine, valine, leucine, isoleucine, norleucine, proline, phenylalanine, methionine, tryptophane, cysteine, and includes hydrophilic amino acids modified to include hydrophobic side chains, while hydrophilic amino acids include aspartic acid, glutamic acid, lysine, arginine, histidine, asparagine, glutamine, serine, threonine and tyrosine.
- the amphipathic dispersant generally although not necessarily has a molecular weight in the range of approximately 500 to 50,000, preferably in the range of approximately 1000 to 10,000, more preferably in the range of approximately 1000 to 5000.
- the dispersant may be modified so as to contain functionalizable sites useful for covalent or noncovalent attachment to an external molecular moiety.
- the functionalizable sites may be present in addition to the ionizable groups discussed above, or the ionizable groups may themselves serve as functionalizable sites suitable for binding an external molecular moiety.
- Functionalizable sites include, for example, any of the conventional functional groups that are modified using simple, conventional chemical techniques, e.g., amino groups, nitriles, carboxylic acids, esters, acid chlorides, and the like.
- the functionalizable sites are spaced apart from the dispersant structure by an inert linking moiety, e.g., an alkylene or oxyalkylene chain, typically composed of about 2 to 20 carbon atoms, preferably about 4 to 10 carbon atoms, or other linking moieties such as those described above with respect to the spacer linkages that may be present linking hydrophilic functional groups to the polymer backbone.
- Hydrophobic nanoparticles may be rendered water dispersible by surface modification with the amphipathic dispersant. That is, the hydrophobic regions of the dispersant associate with the hydrophobic nanoparticle surface, and the hydrophilic regions are externally facing and provide water dispersibility. Surface modification of the nanoparticles is carried out as follows.
- a solution of the amphipathic dispersant is prepared by admixing the selected amphipathic dispersant with a suitable nonaqueous solvent, preferably a nonpolar, water-immiscible solvent such as n-hexane or chloroform.
- a suitable nonaqueous solvent preferably a nonpolar, water-immiscible solvent such as n-hexane or chloroform.
- Ionizable groups on the dispersant if present, are then converted to salt form by treatment with an appropriate acid or base, which serves as an ionizing agent.
- suitable bases are generally inorganic bases, e.g., ammonium hydroxides or hydroxides of alkali metals (e.g., sodium or potassium) or alkaline earth metals (e.g., magnesium or calcium).
- the hydrophobic nanoparticles are dispersed in the same solvent, either before or after the aforementioned ionization step.
- the nanoparticles are added after ionization, preferably dropwise, to a stirring solution of the ionized dispersant.
- the nanoparticles may be dispersed in the solvent at the outset, and the dispersant added thereto.
- two separate solutions may be prepared and mixed, with one solution containing the dispersant and the other solution containing the nanoparticles, with both solutions preferably containing the same solvent.
- the admixture is preferably stirred for several minutes to ensure complete mixing of the components.
- the admixture of nanoparticles, dispersant and solvent is subjected to conditions effective to result in absorption of the dispersant by the nanoparticles.
- the admixture may be heated or placed under vacuum to remove the solvent, such a drying process resulting in dispersant-coated nanoparticles.
- the conditions may involve changing the polarity of the solvent and/or changing the ionic state of the polymer.
- the dispersant-coated nanoparticles are transferred to an aqueous medium such as water, using solvent exchange (if the dispersant-coated nanoparticles are not previously dried) or addition of water or an aqueous buffer (if the dispersant-coated nanoparticles are previously dried).
- the aqueous buffer if one is used, should be effective to facilitate dispersion of the nanoparticles in the aqueous medium.
- the water dispersion is then filtered to remove any large micellar structures formed by excess dispersant in solution that is not associated with the particles. These materials may then be used in any applications requiring aqueous-based sols of nanocrystals.
- the crosslinker used may be tailored to match the properties of the dispersant coating.
- a diamine could be used to crosslink a dispersant coating containing carboxylic acids.
- crosslinkers that carry charges or other groups capable of stabilizing the dispersed colloids as described herein.
- a diamino carboxylate or sulfonate and a diamino polyethylene glycol crosslinkers are especially useful.
- a similar chemistry would apply for crosslinkers having multiple amine moieties, such as dendrimers, modified dendrimers, and the like.
- the amount of amphipathic dispersant per unit mass of the “inner core” (i.e., per unit mass of the original, unmodified nanoparticle) in the resulting dispersant-coated nanoparticles is proportional to the size and surface area of the nanoparticles.
- the number ratio of the dispersant to the inner core will be in the range of approximately 50:1 to approximately 5000:1.
- the ratio will be closer to 50:1 for smaller nanoparticles, i.e., nanoparticles less than about 5 nm in diameter (e.g., green CdSe quantum dots), and will be closer to 5000:1 for larger nanoparticles, i.e., nanoparticles about 5 nm to 10 nm in diameter (e.g., red CdSe quantum dots).
- the invention additionally relates to conjugates of the present surface-modified semiconductive nanoparticles and compositions comprising those conjugates in association with a target analyte.
- the surface-modified semiconductive nanoparticles of the invention may be conjugated to an affinity molecule that serves as the first member of a binding pair.
- an affinity molecule that serves as the first member of a binding pair.
- it is the amphipathic dispersant on the nanoparticle surface that provides the means for linkage to the affinity molecule.
- ionizable groups present within the hydrophilic regions of the amphipathic dispersant may provide the means for linkage to the affinity molecule, and/or other functional groups present within or introduced into the dispersant molecule may provide the means for linkage to the affinity molecule.
- the linkage will generally be covalent, and suitable linkers are discussed in Section III, above. Suitable methods of conjugating molecules and molecular segments to affinity molecules are described, for example, in Hermanson, Bioconjugate Techniques (Academic Press, NY, 1996).
- Such semiconductive nanoparticle “conjugates,” by virtue of the affinity molecule, can be used to detect the presence and/or quantity of biological and chemical compounds, interactions in biological systems, biological processes, alterations in biological processes, or alterations in the structure of biological compounds. That is, the affinity molecule, when linked to the semiconductive nanoparticle, can interact with a biological target that serves as the second member of the binding pair, in order to detect biological processes or reactions, or to alter biological molecules or processes.
- the interaction of the affinity molecule and the biological target involves specific binding, and can involve covalent, noncovalent, hydrophobic, hydrophilic, electrostatic, van der Waal's, or magnetic interaction.
- the affinity molecule physically interacts with the biological target.
- the affinity molecule associated with the semiconductive nanoparticles can be naturally occurring or chemically synthesized, and can be selected to have a desired physical, chemical, or biological property.
- properties include, but are not limited to, covalent and noncovalent association with proteins, nucleic acids, signaling molecules, prokaryotic or eukaryotic cells, viruses, subcellular organelles and any other biological compounds.
- Other properties of such molecules include, but are not limited to, the ability to affect a biological process (e.g. cell cycle, blood coagulation, cell death, transcription, translation, signal transduction, DNA damage or cleavage, production of radicals, scavenging radicals, etc.), and the ability to alter the structure of a biological compound (e.g. crosslinking, proteolytic cleavage, radical damage, etc
- the nanoparticle conjugate is comprised of a semiconductive nanoparticle that emits light at a tunable wavelength and is associated with a nucleic acid.
- the association can be direct or indirect.
- the nucleic acid can be any ribonucleic acid, deoxyribonucleic acid, dideoxyribonucleic acid, or any derivatives and combinations thereof.
- the nucleic acid can also be oligonucleotides of any length. The oligonucleotides can be single-stranded, double-stranded, triple-stranded or higher order configurations (e.g.
- compositions and methods are detecting and/or quantitating nucleic acids as follows: (a) viral nucleic acids; (b) bacterial nucleic acids; and (c) numerous human sequences of interest, e.g. single nucleotide polymorphisms.
- nanoparticle conjugates can comprise nanocrystals associated with individual nucleotides, deoxynucleotides, dideoxynucleotides or any derivatives and combinations thereof and used in DNA polymerization reactions such as DNA sequencing, reverse transcription of RNA into DNA, and polymerase chain reactions (PCR).
- Nucleotides also include monophosphate, diphosphate and triphosphates and cyclic derivatives such as cyclic adenine monophosphate (cAMP).
- FISH fluorescence in situ hybridization
- nanocrystals are conjugated to oligonucleotides designed to hybridize to a specific sequence in vivo.
- the fluorescent nanocrystal tags are used to visualize the location of the desired DNA sequence in a cell.
- the cellular location of a gene whose DNA sequence is partially or completely known can be determined using FISH. Any DNA or RNA whose sequence is partially or completely known can be visually targeted using FISH.
- FISH fluorescent RNA
- messenger RNA (mRNA) messenger RNA
- DNA telomeres DNA telomeres
- other highly repeated DNA sequences and other non-coding DNA sequencing
- the nanoparticle conjugate may also comprise a surface-modified semiconductive nanoparticle as provided herein in association with a molecule or reagent for detection of biological compounds such as enzymes, enzyme substrates, enzyme inhibitors, cellular organelles, lipids, phospholipids, fatty acids, sterols, cell membranes, molecules involved in signal transduction, receptors and ion channels.
- the conjugate also can be used to detect cell morphology and fluid flow; cell viability, proliferation and function; endocytosis and exocytosis (Betz et al. (1996) Curr. Opin. Neurobiol. 6(3):365-71); and reactive oxygen species (e.g., superoxide, nitric oxide, hydroxyl radicals, oxygen radicals).
- the conjugate can be used to detect hydrophobic or hydrophilic regions of biological systems.
- Conjugates of semiconductive nanocrystals also find utility in numerous other biological and non-biological applications where luminescent markers, particularly fluorescent markers, are typically used. See, for example, Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, Eugene, Oreg. Sixth Ed. 1996; Website, www.probes.com.). Examples of areas in which the luminescent nanoparticle conjugates of the invention are useful include, without limitation, fluorescence immunocytochemistry, fluorescence microscopy, DNA sequence analysis, fluorescence in situ hybridization (FISH), fluorescence resonance energy transfer (FRET), flow cytometry (Fluorescence Activated Cell Sorter; FACS) and diagnostic assays for biological systems.
- FISH fluorescence in situ hybridization
- FRET fluorescence resonance energy transfer
- FACS Fluorescence Activated Cell Sorter
- a modified polyacrylic acid was prepared by diluting 100 g [0.48 mol COONa] of poly(acrylic acid, sodium salt) (obtained from Aldrich, molecular weight 1200) was diluted two-fold in water and acidified in a 1.0 L round bottom flask with 150 ml (1.9 mol) of concentrated HCl. The acidified polymer solution was concentrated to dryness on a rotary evaporator (100 mbar, 80° C.). The dry polymer was evacuated for 12 hours at ⁇ 10 mbar to ensure water removal.
- the product was dissolved into 400 ml ethyl acetate (Aldrich) with gentle heating, and basified with 200 ml di-H 2 O and 100 g N-N-N-N-tetramethylammonium hydroxide pentahydrate (0.55 mo) for 12 hours.
- the aqueous layer was removed and precipitated to a gummy white product with 400 ml of 1.27 M HCl.
- the product was decanted and triturated with 100 ml of di-H 2 O twice more, after which the aqueous washings were back-extracted into 6 ⁇ 100 ml portions of ethyl acetate.
- nanocrystal dispersion With continued stirring the washed nanocrystal dispersion described above was added dropwise to the polymer solution. The dispersion was then stirred for two minutes to ensure complete mixing of the components and thereafter the chloroform was removed in vacuo with low heat to yield a thin film of the particle-polymer complex on the wall of the flask. Twenty milliliters of distilled water were added to the flask and swirled along the walls of the flask to aid in dispersing the particles in the aqueous medium. The dispersion was then allowed to stir overnight at room temperature. At this point the nanocrystals are freely dispersed in the aqueous medium, possess pendant chemical functionalities and may therefore be linked to affinity molecules of interest using methods well known in the art for biolabeling experiments. In addition, the fact that the nanocrystals now have a highly charged surface means they can be readily utilized in polyelectrolyte layering experiments for the formation of thin films and composite materials.
- the purified dispersion was concentrated to 20 milliliters and 10 milliliters of this nanocrystal dispersion were activated with 79 ⁇ moles (15 mg) 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 158 ⁇ moles (34 mg) N-hydroxysulfosuccinimide for 30 minutes at room temperature.
- EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
- 158 ⁇ moles 34 mg
- N-hydroxysulfosuccinimide for 30 minutes at room temperature.
- the particle dispersion was then buffer exchanged to pH 8.0 via diafiltration against 50 mM phosphate buffer, pH 8.0.
- these materials can be stored in any number of biological buffers and used as fluorescent biological labels to detect biotin-labeled analytes of interest.
- streptavidin was used here as an example, the simplicity and generality of the above coupling chemistries can be efficiently extended to forming functional conjugates with any number of biological molecules of interest, such as antibodies, peptides, and oligonucleotides, for example.
- reaction was allowed to proceed for 10 minutes before 1 milliliter of 0.5M borate buffer (pH 8.5) containing 3.94 ⁇ moles of the crosslinking reagent Starburst® (PAMAM) Dendrimer, Generation 0, were added to the reaction mixture.
- the reaction mixture was stirred for 2 hours at room temperature and then transferred to a 50,000 molecular weight cut-off polyethersulfone dialysis bag. Dialysis was performed for 24 hours against 2 changes of 4 liters of water.
- reaction was allowed to proceed for 10 minutes before 1 milliliter of 0.5M borate buffer (pH 8.5) containing 3.94 ⁇ moles of the crosslinking reagent lysine (a diamino carboxylic acid) were added to the reaction mixture.
- the reaction mixture was stirred for 2 hours at room temperature and then transferred to a 50,000 molecular weight cut-off polyethersulfone dialysis bag. Dialysis was performed for 24 hours against 2 changes of 4 liters of water.
- a triblock polypeptide comprised of (Aspartate) 4 -(Norleucine) 8 -(Aspartate) 4 has been used to stabilize hydrophobic nanocrystals in water by the following method: Five milliliters of a 3.5 ⁇ M nanocrystal solution were washed as described in Example 1 and redispersed in 5 milliliters of chloroform.
- nanocrystal dispersion in chloroform was then added dropwise to the stirring polypeptide solution and the entire mixture was allowed to stir for an additional 2 minutes before all the solvent was removed in vacuo with low heat (40 degrees Celsius) to yield a thin film of the particle-polymer complex on the wall of the flask.
- Five milliliters of distilled water were then added to the flask and swirled in order to aid in dispersing the nanocrystals fully in the aqueous medium.
- these polypeptide stabilized nanocrystals can be efficiently purified away from excess polypeptide by dialysis, tangential flow filtration, or various forms of chromatography known to those skilled in the art.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Inorganic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Powder Metallurgy (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Colloid Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 09/841,237, filed Apr. 23, 2001, which claims priority to U.S. Provisional Application No. 60/240,216, filed Oct. 13, 2000. The disclosures of the aforementioned applications are incorporated by reference in their entireties.
- This invention relates generally to surface-modified nanoparticles, and more particularly relates to surface-modified semiconductor and metal nanoparticles having enhanced dispersibility in aqueous media as well as superior colloidal and photophysical stability. The invention additionally relates to methods for making and using the novel surface-modified nanoparticles. The invention finds utility in a variety of fields, including biology, analytical and combinatorial chemistry, medical diagnostics, and genetic analysis.
- Semiconductor nanocrystals (also known as quantum dot particles) whose radii are smaller than the bulk exciton Bohr radius constitute a class of materials intermediate between molecular and bulk forms of matter. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective band gap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanocrystals shift to the blue (higher energies) as the size of the nanocrystals gets smaller.
- Semiconductor nanocrystals are nanoparticles composed of an inorganic, crystalline semiconductive material and have unique photophysical, photochemical and nonlinear optical properties arising from quantum size effects, and have therefore attracted a great deal of attention for their potential applicability in a variety of contexts, e.g., as detectable labels in biological applications, and as useful materials in the areas of photocatalysis, charge transfer devices, and analytical chemistry. As a result of the increasing interest in semiconductor nanocrystals, there is now a fairly substantial body of literature pertaining to methods for manufacturing such nanocrystals. Broadly, these routes may be classified as involving preparation in glasses (see Ekimov et al. (1981)JETP Letters 34:345), aqueous preparation (including preparation that involve use of inverse micelles, zeolites, Langmuir-Blodgett films, and chelating polymers; see Fendler et al. (1984) J. Chem. Society, Chemical Communications 90:90, and Henglein et al. (1984) Ber. Bunsenges. Phys. Chem. 88:969), and high temperature pyrolysis of organometallic semiconductor precursor materials (Murray et al. (1993) J. Am. Chem. Soc. 115:8706; Katari et al. (1994) J. Phys. Chem. 98:4109). The two former methods yield particles that have unacceptably low quantum yields for most applications, a high degree of polydispersity, poor colloidal stability, a high degree of internal defects, and poorly passivated surface trap sites. In addition, nanocrystals made by the first route are physically confined to a glass matrix and cannot be further processed after synthesis.
- To date, only the high temperature pyrolysis of organometallic reagents has yielded semiconductor nanocrystals that are internally defect free, possess high band edge luminescence and no trapped emission, and exhibit near monodispersity. Additionally, this route gives the synthetic chemist a substantial degree of control over the size of the particles prepared. See Murray et al. (1993), supra. One disadvantage of this method, however, is that the particles are sequestered in reverse micelles of coordinated, hydrophobic surfactant molecules. As such, they are only dispersible in organic solvents such as chloroform, dichloromethane, hexane, toluene, and pyridine. This is problematic insofar as many applications that rely on the fluorescence emission of the semiconductor nanocrystals require that the nanocrystals be water soluble or at least water dispersible.
- Although some methods for rendering semiconductor nanocrystals water dispersible have been reported, they are still problematic insofar as the treated semiconductor nanocrystals suffer from significant disadvantages that limit their wide applicability. For example, Spanhel et al. (1987)J. Am. Chem. Soc. 109:5649, discloses a Cd(OH)2-capped CdS sol; however, the photoluminescent properties of the sol were pH dependent. The sol could be prepared only in a very narrow pH range (pH 8-10) and exhibited a narrow fluorescence band only at a pH of greater than 10. Such pH dependency greatly limits the usefulness of the material; in particular, it is not appropriate for use in biological systems.
- Other groups have replaced the organic passivating layer of the semiconductor nanocrystal with water-soluble moieties; however, the resultant derivatized semiconductor nanocrystals are not highly luminescent. Short chain thiols such as 2-mercaptoethanol and 1-thioglycerol have been used as stabilizers in the preparation of water-soluble CdTe nanocrystals. See, Rogach et al. (1996)Ber. Bunsenges. Phys. Chem. 100:1772 and Rajh et al. (1993) J. Phys. Chem. 97:11999. Other more exotic capping compounds have been reported with similar results. See Coffer et al. (1992) Nanotechnology 3:69, which describes the use of deoxyribonucleic acid (DNA) as a capping compound. In all of these systems, the coated semiconductor nanocrystals were not stable and photoluminescent properties degraded with time.
- Thus, to use these high quantum yield materials in applications that require an aqueous medium, one must find a way of changing the polarity of the organic coating, thereby facilitating the transfer of these particles to water. A great deal of work has been conducted on surface exchange reactions that seek to replace the oleophilic hydrocarbon coating on the nanocrystal surface with a range of bifunctional polar molecules wherein one functional group of the capping molecule bears some affinity for the surface of the nanocrystal, while the other functional group, by virtue of its ionizability or high degree of hydration, renders the nanocrystal water soluble. For example, International Patent Publication No. WO 00/17655 to Bawendi et al. describes a method for rendering semiconductor nanocrystals water dispersible wherein monomeric surfactants are used as dispersing agents, with the hydrophobic region of the surfactants promoting association with the nanocrystals, while the hydrophilic region has affinity for an aqueous medium and stabilizes an aqueous suspension of the nanocrystals. International Patent Publication No. WO 00/17656 to Bawendi et al. describes a similar method wherein monomeric compounds of formula HS—(CH2)n—X, wherein n is preferably ≧10 and X is carboxylate or sulfonate, are used in place of the monomeric surfactants.
- Kuno et al. (1997)J. Chem. Phys. 106:9869-9882, Mikulec, “Semiconductor Nanocrystal Colloids: Manganese Doped Cadmium Selenide, (Core)Shell Composites for Biological Labeling, and Highly Fluorescent Cadmium Telluride,” doctoral dissertation, Massachusetts Institute of Technology (September 1999), and International Patent Publication No. WO 00/17656 to Bawendi et al., cited supra, give detailed descriptions of surface exchange reactions designed to improve the water dispersibility of hydrophobic nanocrystals. In general, these references indicate that: exchange of the original hydrophobic surfactant layer on the nanocrystal surface is never quite complete, with retention of only about 10% to about 15% of the surfactant (even after multiple exchange reactions); although never quantitatively displaced, exchange of the original phosphine/phosphine oxide surfactant layer with more polar ligands' results in a substantial decrease in quantum yield that is never entirely regained; once-dispersed in water, the particles have limited colloidal stability; and attempts to carry out further chemistry with these particles, such as linking them to biomolecules through their pendant carboxyl functionalities, is highly irreproducible and dependent on the size of the nanocrystal.
- Thus, there remains a need in the art for a reliable, reproducible method for rendering hydrophobic semiconductor nanocrystals dispersible in aqueous media while preserving the quantum efficiencies of the original particles, maintaining colloidal stability, and avoiding or minimizing any change in particle size distribution. Ideally, such a method would be useful not only with semiconductor nanoparticles, but also with other types of nanoparticles having hydrophobic surfaces, e.g., semiconductive nanoparticles that are not necessarily crystalline and metallic nanoparticles that may or may not be surface-modified.
- It is accordingly a primary object of the invention to address the aforementioned need in the art by providing surface-modified nanoparticles having enhanced dispersibility in aqueous media, wherein the nanoparticles are comprised of an inner core having a hydrophobic surface and an outer layer of a multiply amphipathic dispersant.
- It is still another object of the invention to provide such surface-modified nanoparticles wherein the inner core is composed of a semiconductive or metallic material.
- It is yet another object of the invention to provide such nanoparticles wherein the multiply amphipathic dispersant is a polymer having two or more hydrophobic regions and two or more hydrophilic regions.
- It is a further object of the invention to provide a method for preparing a population of the aforementioned water-dispersible nanoparticles.
- It is still a further object of the invention to provide a composition composed of a nanoparticle conjugate, i.e., a water-dispersible nanoparticle as above, conjugated to an affinity molecule that serves as the first member of a binding pair.
- It is yet a further object of the invention to provide such a composition wherein a second member of the binding pair is associated with the first member through either covalent or noncovalent interaction.
- It is an additional object of the invention to provide a monodisperse population of water-dispersible nanoparticles wherein the population is characterized in that it exhibits no more than about a 10% rms deviation, preferably no more than about a 5% rms deviation, in the diameter of the inner core.
- Additional objects, advantages, and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.
- In one aspect of the invention, then, a water-dispersible nanoparticle is provided that is comprised of an inner core and an outer layer of a multiply amphipathic dispersant, i.e., a compound having two or more hydrophobic regions and two or more hydrophilic regions. The inner core comprises a semiconductive or metallic material, preferably an inorganic semiconductive material that is in a crystalline state. Generally, the inner core also comprises a hydrophobic passivating layer on the semiconductive or metallic material resulting from solvents and/or surfactants used in nanoparticle manufacture. The surface of the inner core is accordingly hydrophobic, and the hydrophobic regions of the dispersant thus have affinity for the core surface and attach thereto, while the hydrophilic regions of the dispersant extend outward from the nanoparticle and provide for dispersibility in water. In a preferred embodiment, the dispersant is polymeric and has a plurality of both hydrophobic regions and hydrophilic regions, thus enhancing water dispersibility of the nanoparticle as well as the dispersant's affinity for the core surface. Particularly preferred dispersants are hyperbranched or dendritic polymers, which, relative to prior methods that involve monomeric dispersants, substantially increase the water dispersibility and colloidal stability of the nanoparticles. In a preferred embodiment, the nanoparticles are luminescent semiconductive nanocrystals, and include an overcoating “shell” layer between the inner core and the multiply amphipathic outer layer to increase luminescence efficiency. The shell material has a higher bandgap energy than the nanocrystal core, and should also have good conduction and valence band offset with respect to the nanocrystal core. Further, an “affinity molecule,” i.e., one member of a binding pair, may be attached to the outer layer of the surfacemodified molecule, providing a nanoparticle “conjugate” that is useful in detecting the presence or quantity of target molecules that comprise the second member of the binding pair. The affinity molecule may be, for example, a protein, an oligonucleotide, an enzyme inhibitor, a polysaccharide, or a small molecule having a molecular weight of less than about 1500 grams/Mol.
- In a related aspect of the invention, then, a composition is provided that is comprised of the aforementioned nanoparticle conjugate in association with the second member of the binding pair, wherein the association may involve either covalent or noncovalent interaction.
- In another aspect of the invention, a monodisperse population of surface-modified nanoparticles is provided, comprising a plurality of water-dispersible nanoparticles each having an inner core comprised of a semiconductive or metallic material and, surrounding the inner core, an outer layer comprised of a multiply amphipathic dispersant as described above, wherein the population is characterized in that the nanoparticles are of substantially the same size and shape, i.e., the population exhibits no more than about a 10% rms deviation in the diameter of the inner core, preferably no more than about a 5% rms deviation in the diameter of the inner core. The narrow size distribution of a monodisperse population increases the “information density” that is obtainable as a result of the particles' luminescence, i.e., the number of discrete luminescence emissions obtainable for a given nanoparticle composition.
- In another aspect of the invention, a method is provided for making the surface-modified nanoparticles described above. The method involves (a) admixing (i) an amphipathic dispersant comprised of a polymer having two or more hydrophobic regions and two or more hydrophilic regions, with (ii) a plurality of hydrophobic nanoparticles, in (iii) a nonaqueous solvent, to provide an admixture of dispersant and nanoparticles in solution; (b) subjecting the admixture to conditions effective to cause adsorption of the dispersant by the nanoparticles; and (c) transferring the dispersant-coated nanoparticles prepared in step (b) to an aqueous medium such as water or an aqueous buffer.
- I. Definitions:
- Before describing the present invention in detail, it is to be understood that unless otherwise indicated this invention is not limited to specific nanoparticle materials, amphipathic dispersants, or manufacturing processes, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
- It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, “a dispersant” refers to a single dispersant as well as a mixture of two or more dispersants, “a nanoparticle” encompasses not only a single nanoparticle but also two or more nanoparticles, and the like.
- In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.
- The term “amphipathic,” referring to the dispersants employed herein, is used in its conventional sense to indicate a molecular species having a hydrophobic region and a hydrophilic region. The dispersants herein are “multiply amphipathic” in that they contain two or more hydrophobic regions and two or more hydrophilic regions.
- The term “attached,” as in, for example, the “attachment” of a dispersant to a nanoparticle surface, includes covalent binding, adsorption, and physical immobilization. The terms “associated with,” “binding” and “bound” are identical in meaning to the term “attached.”
- Attachment of the present multiply amphipathic dispersants to the surface of a metallic or semiconductive nanoparticle will generally involve “adsorption,” wherein “adsorption” refers to the noncovalent retention of a molecule by a substrate surface. That is, adsorption occurs as a result of noncovalent interaction between a substrate surface and adsorbing moieties present on the molecule that is adsorbed. Adsorption may occur through hydrogen bonding, van der Waal's forces, polar attraction or electrostatic forces (i.e., through ionic bonding), and in the present case will typically involve the natural affinity of a hydrophobic region of a molecule for a hydrophobic surface.
- The term “nanoparticle” refers to a particle, generally a semiconductive or metallic particle, having a diameter in the range of about 1 nm to about 1000 nm, preferably in the range of about 2 nm to about 50 nm, more preferably in the range of about 2 nm to about 20 nm. As discussed elsewhere herein, semiconductive, and metallic “nanoparticles” generally include a passivating layer of a water-insoluble organic material that results from the method used to manufacture such nanoparticles. The terms “surface-modified nanoparticle” and “water-dispersible nanoparticle” as used herein refer to the modified nanoparticles of the invention, while the term “nanoparticle,” without qualification, refers to the hydrophobic nanoparticle that serves as the inner core of the surface-modified, water-dispersible nanoparticle.
- The terms “semiconductor nanoparticle” and “semiconductive nanoparticle” refer to a nanoparticle as defined above that is composed of an inorganic semiconductive material, an alloy or other mixture of inorganic semiconductive materials, an organic semiconductive material, or an inorganic or organic semiconductive core contained within one or more semiconductive overcoat layers.
- The term “metallic nanoparticle” refers to a nanoparticle as defined above that is composed of a metallic material, an alloy or other mixture of metallic materials, or a metallic core contained within one or more metallic overcoat layers.
- The terms “semiconductor nanocrystal,” “quantum dot” and “Qdot® nanocrystal” are used interchangeably herein to refer to semiconductor nanoparticles composed of an inorganic crystalline material that is luminescent (i.e., they are capable of emitting electromagnetic radiation upon excitation), and include an inner core of one or more first semiconductor materials that is optionally contained within an overcoating or “shell” of a second semiconductor material. A semiconductor nanocrystal core surrounded by a semiconductor shell is referred to as a “core/shell” semiconductor nanocrystal. The surrounding shell material will preferably have a bandgap energy that is larger than the bandgap energy of the core material and may be chosen to have an atomic spacing close to that of the core substrate. Suitable semiconductor materials for the core and/or shell include, but are not limited to, the following: materials comprised of a first element selected from Groups 2 and 12 of the Periodic Table of the Elements and a second element selected from Group 16 (e.g., ZnS, ZnSe, ZnTe, CDs, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, and the like); materials comprised of a first element selected from Group 13 of the Periodic Table of the Elements and a second element selected from Group 15 (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, and the like); materials comprised of a Group 14 element (Ge, Si, and the like); materials such as PbS, PbSe and the like; and alloys and mixtures thereof. As used herein, all reference to the Periodic Table of the Elements and groups thereof is to the new IUPAC system for numbering element groups, as set forth in the Handbook of Chemistry and Physics, 81st Edition (CRC Press, 2000).
- By “luminescence” is meant the process of emitting electromagnetic radiation (light) from an object. Luminescence results when a system undergoes a transition from an excited state to a lower energy state with a corresponding release of energy in the form of a photon. These energy states can be electronic, vibrational, rotational, or any combination thereof. The transition responsible for luminescence can be stimulated through the release of energy stored in the system chemically or added to the system from an external source. The external source of energy can be of a variety of types including chemical, thermal, electrical, magnetic, electromagnetic, and physical, or any other type of energy source capable of causing a system to be excited into a state higher in energy than the ground state. For example, a system can be excited by absorbing a photon of light, by being placed in an electrical field, or through a chemical oxidation-reduction reaction. The energy of the photons emitted during luminescence can be in a range from low-energy microwave radiation to high-energy x-ray radiation. Typically, luminescence refers to photons in the range from UV to IR radiation.
- The term “monodisperse” refers to a population of particles (e.g., a colloidal system) wherein the particles have substantially identical size and shape. For the purpose of the present invention, a “monodisperse” population of particles means that at least about 60% of the particles, preferably about 75% to about 90% of the particles, fall within a specified particle size range. A population of monodisperse particles deviates less than 10% rms (root-mean-square) in diameter and preferably less than 5% rms.
- The phrase “one or more sizes of nanoparticles” is used synonymously with the phrase “one or more particle size distributions of nanoparticles.” One of ordinary skill in the art will realize that particular sizes of nanoparticles such as semiconductor nanocrystals are actually obtained as particle size distributions.
- By use of the term “narrow wavelength band” or “narrow spectral linewidth” with regard to the electromagnetic radiation emission of the semiconductor nanocrystal is meant a wavelength band of emissions not exceeding about 60 nm, and preferably not exceeding about 30 nm in width, more preferably not exceeding about 20 mm in width, and symmetric about the center. It should be noted that the bandwidths referred to are determined from measurement of the full width of the emissions at half peak height (FWHM), and are appropriate in the range of 200 nm to 2000 nm.
- By use of the term “a broad wavelength band,” with regard to the excitation of the semiconductor nanocrystal is meant absorption of radiation having a wavelength equal to, or shorter than, the wavelength of the onset radiation (the onset radiation is understood to be the longest wavelength (lowest energy) radiation capable of being absorbed by the semiconductor nanocrystal). This onset occurs near to, but at slightly higher energy than the “narrow wavelength band” of the emission. This is in contrast to the “narrow absorption band” of dye molecules, which occurs near the emission peak on the high energy side, but drops off rapidly away from that wavelength and is often negligible at wavelengths further than 100 m from the emission.
- The term “emission peak” refers to the wavelength of light within the characteristic emission spectra exhibited by a particular semiconductor nanocrystal size distribution that demonstrates the highest relative intensity.
- The term “excitation wavelength” refers to light having a wavelength lower than the emission peak of the semiconductor nanocrystal used in the first detection reagent.
- A “hydrophobic” compound (e.g., a “hydrophobic” monomer) is one that will transfer from an aqueous phase to an organic phase, specifically from water to an organic, water-immiscible nonpolar solvent with a dielectric constant ≦5, with a partition coefficient of greater than about 50%. A “hydrophobic monomer unit” refers to a hydrophobic monomer as it exists within a polymer. A “hydrophobic region” refers to a hydrophobic molecular segment, e.g., a molecular segment within a polymer. A “hydrophobic region” may be a single hydrophobic monomer unit or two or more hydrophobic monomer units that may be the same or different and may or may not be adjacent.
- A “hydrophilic” compound (e.g., a “hydrophilic” monomer) is one that will transfer from an organic phase to an aqueous phase, specifically from an organic, water-immiscible nonpolar solvent with a dielectric constant ≦5 to water, with a partition coefficient of greater than about 50%. A “hydrophilic monomer unit” refers to a hydrophilic monomer as it exists in a polymeric segment or polymer. A “hydrophilic region” refers to a hydrophilic molecular segment, e.g., a hydrophilic molecular segment within a polymer. A “hydrophilic region” may be a single hydrophilic monomer unit or two or more hydrophilic monomer units that may be the same or different and may or may not be adjacent.
- The term “ionizable” refers to a group that is electronically neutral at a specific pH, but can be ionized and thus rendered positively or negatively charged at higher or lower pH, respectively.
- The term “alkyl” as used herein refers to a branched or unbranched saturated hydrocarbon group of 1 to approximately 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl and tetracosyl, as well as cycloalkyl groups such as cyclopentyl and cyclohexyl. The term “lower alkyl” intends an alkyl group of 1 to 4 carbon atoms, and thus includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and t-butyl.
- The term “alkylene” as used herein refers to a difunctional saturated branched or unbranched hydrocarbon chain containing from 1 to approximately 24 carbon atoms, typically 1 to approximately 12 carbon atoms, and includes, for example, methylene (—CH2—), ethylene (—CH2—CH2—), propylene (—CH2—CH2—CH2—), 2-methylpropylene (—CH2—CH(CH3)—CH2—), hexylene (—(CH2)6—), and the like. “Lower alkylene,” as in the lower alkylene linkage of the optional coupling agent herein, refers to an alkylene group of 1 to 4 carbon atoms.
- The term “alkenyl” as used herein refers to a branched or unbranched hydrocarbon group typically although not necessarily containing 2 to about 24 carbon atoms and at least one double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, octenyl, decenyl, and the like. Generally, although not necessarily, alkenyl groups herein contain 2 to about 12 carbon atoms. The term “lower alkenyl” intends an alkenyl group of 2 to 4 carbon atoms, and the term “alkenylene” refers to a difunctional alkenyl group, in the same way that the term “alkylene” refers to a difunctional alkyl group.
- The term “alkynyl” as used herein refers to a branched or unbranched hydrocarbon group typically although not necessarily containing 2 to about 24 carbon atoms and at least one triple bond, such as ethynyl, n-propynyl, isopropynyl, n-butynyl, isobutynyl, octynyl, decynyl, and the like. Generally, although again not necessarily, alkynyl groups herein contain 2 to about 12 carbon atoms. The term “lower alkynyl” intends an alkynyl group of 2 to 4 carbon atoms, preferably 3 or 4 carbon atoms.
- The term “heteroatom-containing” and the prefix “hetero-,” as in “heteroatomcontaining alkyl” and “heteroalkyl,” refer to a molecule or molecular fragment in which one or more carbon atoms is replaced with an atom other carbon, e.g., nitrogen, oxygen, sulfur, phosphorus or silicon.
- The term “alkoxy” as used herein refers to a substituent —O—R wherein R is alkyl as defined above. The term “lower alkoxy” refers to such a group wherein R is lower alkyl as defined above, e.g., methoxy, ethoxy and the like. The term “aryl” as used herein, and unless otherwise specified, refers to an aromatic moiety containing 1 to 3 aromatic rings. For aryl groups containing more than one aromatic ring, the rings may be fused or linked. Aryl groups are optionally substituted with one or more inert, nonhydrogen substituents per ring; suitable “inert, nonhydrogen” substituents include, for example, halo, haloalkyl (preferably halo-substituted lower alkyl), alkyl (preferably lower alkyl), alkenyl (preferably lower alkenyl), alkynyl (preferably lower alkynyl), alkoxy (preferably lower alkoxy), alkoxycarbonyl (preferably lower alkoxycarbonyl), carboxy, nitro, cyano and sulfonyl. Unless otherwise indicated, the term “aryl” is also intended to include heteroaromatic moieties, i.e., aromatic heterocycles. Generally, although not necessarily, the heteroatoms will be nitrogen, oxygen or sulfur. The term “arylene” refers to a difunctional aryl moiety in the same way that the term “alkylene” refers to a difunctional alkyl group.
- The term “aralkyl” refers to an alkyl group with an aryl substituent, and the term “aralkylene” refers to an alkylene group with an aryl substituent; the term “alkaryl” refers to an aryl group that has an alkyl substituent, and the term “alkarylene” refers to an arylene group with an alkyl substituent.
- The terms “halo” and “halogen” are used in the conventional sense to refer to a chloro, bromo, fluoro, or iodo substituent. The term “haloalkyl” refers to an alkyl group in which at least one of the hydrogen atoms in the group has been replaced with a halogen atom.
- The term “peptide” refers to oligomers or polymers of any length wherein the constituent monomers are alpha amino acids linked through amide bonds, and encompasses amino acid dimers as well as polypeptides, peptide fragments, peptide analogs, naturally occurring proteins, mutated, variant, or chemically modified proteins, fusion proteins, and the like. The amino acids of the peptide molecules may be any of the twenty conventional amino acids, stereoisomers (e.g., D-amino acids) of the conventional amino acids, structural variants of the conventional amino acids, e.g., iso-valine, or non-naturally occurring amino acids such as α,α-disubstituted amino acids, N-alkyl amino acids, β-alanine, naphthylalanine, 3-pyridylalanine, 4-hydroxyproline, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, and nor-leucine. In addition, the term “peptide” encompasses peptides with posttranslational modifications such as glycosylations, acetylations, phosphorylations, and the like. The term “oligonucleotide” is used herein to include a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Thus, the term includes triple-, double- and single-stranded DNA, as well as triple-, double- and single-stranded RNA. It also includes modifications, such as by methylation and/or by capping, and unmodified forms of the oligonucleotide. More particularly, the term includes polydeoxyribonucleotides (containing 2-deoxy-D-ribose), polyribonucleotides (containing D-ribose), any other type of polynucleotide which is an N- or C-glycoside of a purine or pyrimidine base, and other polymers containing normucleotidic backbones, for example, polyamide (e.g., peptide nucleic acids (PNAs)) and polymorpholino (commercially available from the Anti-Virals, Inc., Corvallis, Oregon, as Neugene) polymers, and other synthetic sequencespecific nucleic acid polymers, providing that the polymers contain nucleobases in a configuration that allows for base pairing and base stacking, such as is found in DNA and RNA. There is no intended distinction in length between the terms “polynucleotide,” “oligonucleotide,” “nucleic acid” and “nucleic acid molecule,” and these terms refer only to the primary structure of the molecule. Thus, these terms include, for example, 3′-deoxy-2′,5′-DNA, oligodeoxyribonucleotide N3′ P5′ phosphoramidates, 2′-O-alkyl-substituted RNA, double- and single-stranded DNA, as well as double- and single-stranded RNA, DNA:RNA hybrids, and hybrids between PNAs and DNA or RNA, and also include known types of modifications, for example, labels which are known in the art, methylation, “caps,” substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for, example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), with negatively charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), and with positively charged linkages (e.g., aminoalklyphosphoramidates, aminoalkylphosphotriesters), those containing pendant moieties, such as, for example, proteins (including nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with modified linkages (e.g., alpha anomeric nucleic acids, etc.), as well as unmodified forms of the polynucleotide or oligonucleotide.
- The term “polymer” is used herein in its conventional sense to refer to a compound having two or more monomer units, and is intended to include linear and branched polymers, the term “branched polymers” encompassing simple branched structures as well as hyperbranched and dendritic polymers. The term “monomer” is used herein to refer to compounds that are not polymeric. “Polymers” herein may be naturally occurring, chemically modified, or chemically synthesized.
- The term “water-dispersible” as used herein refers to an essentially unaggregated dispersion of particles, such that discrete particles of approximately 2 nm to 50 nm can be sustained indefinitely at high concentrations (10-20 μM).
- The term “binding pair” refers to first and second molecules that specifically bind to each other. “Specific binding” of the first member of the binding pair to the second member of the binding pair in a sample is evidenced by the binding of the first member to the second member, or vice versa, with greater affinity and specificity than to other components in the sample. The binding between the members of the binding pair is typically noncovalent. The terms “affinity molecule” and “target analyte” are also used herein to refer to the first and second members of a binding pair, respectively. Exemplary binding pairs include any haptenic or antigenic compound in combination with a corresponding antibody or binding portion or fragment thereof (e.g., digoxigenin and anti-digoxigenin; mouse immunoglobulin and goat anti-mouse immunoglobulin) and nonimmunological binding pairs (e.g., biotin-avidin, biotin-streptavidin, hormone [e.g., thyroxine and cortisol]-hormone binding protein, receptor-receptor agonist or antagonist (e.g., acetylcholine receptor-acetylcholine or an analog thereof), IgG-protein A, lectin-carbohydrate, enzyme-enzyme cofactor, enzyme-enzyme inhibitor, and complementary polynucleotide pairs capable of forming nucleic acid duplexes), and the like.
- A “nanoparticle conjugate” refers to a nanoparticle linked, through an outer layer of an amphipathic dispersant, to a member of a “binding pair” that will selectively bind to a detectable substance present in a sample, e.g., a biological sample. The first member of the binding pair linked to the nanoparticle can comprise any molecule, or portion of any molecule, that is capable of being linked to the nanoparticle and that, when so linked, is capable of specifically recognizing the second member of the binding pair.
- All molecular weights specified herein are number average molecular weights.
- II. The nanoparticles:
- Prior to surface modification with a multiply amphipathic dispersant, the nanoparticles of the invention are nanoparticles with hydrophobic surfaces, the particles having a diameter in the range of about 1 nm to about 1000 nm, preferably in the range of about 2 nm to about 50 nm, more preferably in the range of about 2 nm to about 20 nm. Generally, the nanoparticles will be comprised of a semiconductive or metallic material, with semiconductive nanoparticles preferred. Also, as will be explained in greater detail below, the semiconductive or metallic material typically has a coating of a hydrophobic passivating layer resulting from the use of solvents and/or surfactants during nanoparticle manufacture. The hydrophobic surfaces of the nanoparticles have affinity for and thus serve to attach the amphipathic dispersant by virtue of the hydrophobic regions within the dispersant.
- Semiconductive nanoparticles may be composed of an organic semiconductor material or an inorganic semiconductor material. Organic semiconductor materials will generally be conjugated polymers. Suitable conjugated polymers include, for example, cis and trans polyacetylenes, polydiacetylenes, polyparaphenylenes, polypyrroles, polythiophenes, polybithiophenes, polyisothianaphthene, polythienylvinylenes, polyphenylenesulfide, polyaniline, polyphenylenevinylenes, and polyphenylenevinylene derivatives, e.g., poly(2-methoxy-5-(2-ethylhexyloxy)-1,4phenylene vinylene (“MEH-PPV”) (see U.S. Pat. No. 5,189,136 to Wudl et al.), poly (2,5-bischelostanoxy-1,4-phenylene vinylene) (“BCHA-PPV”) (e.g., as described in International Patent Publication No. WO 98/27136), and poly(2-N,N-dimethylamino phenylene vinylene)(described in U.S. Pat. No. 5,604,292 to Stenger-Smith et al.). Inorganic semiconductive nanoparticles are, however, preferred, and are optimally crystalline in nature; such nanoparticles are termed “semiconductor nanocrystals” herein. Semiconductor nanocrystals are capable of luminescence, generally fluorescence, when excited by light. Currently, detection of biological compounds by photoluminescence utilizes fluorescent organic dyes and chemiluminescent compounds. The use of semiconductor nanocrystals as luminescent markers, particularly in biological systems, provides advantages over existing fluorescent dyes. Many of these advantages relate to the spectral properties of nanocrystals, e.g., the ability to control the composition and size of nanocrystals enables one to construct nanocrystals with fluorescent emissions at any wavelength in the UV-visible-IR regions. With respect to composition, for example, semiconductor nanocrystals that emit energy in the visible range include, but are not limited to, CdS, CdSe, CdTe, ZnSe, ZnTe, GaP, and GaAs. Semiconductor nanocrystals that emit energy in the near IR range include, but are not limited to, InP, InAs, InSb, PbS, and PbSe. Finally, semiconductor nanocrystals that emit energy in the blue to near-ultraviolet include, but are not limited to, ZnS and GaN. For any particular nanocrystal composition, it is also possible to tune the emission to a desired wavelength by controlling particle size distribution. In preferred embodiments, 5-20 discrete emissions (five to twenty different size populations or distributions distinguishable from one another), more preferably 10-15 discrete emissions, are obtained for any particular composition, although one of ordinary skill in the art will realize that fewer than five emissions and more than twenty emissions could be obtained depending on the monodispersity of the semiconductor nanocrystal particle population. If high information density is required, and thus a greater number of distinct emissions, the nanocrystals are preferably substantially monodisperse within the size range given above.
- As explained above, “monodisperse” refers to a population of particles (e.g., a colloidal system) in which the particles have substantially identical size and shape. In preferred embodiments for high information density applications, monodisperse particles deviate less than 10% rms in diameter, and preferably less than 5% rms. Monodisperse semiconductor nanocrystals have been described in detail in Murray et al. (1993)J. Am. Chem. Soc. 115:8706, and in Murray, “Synthesis and Characterization of II-VI Quantum Dots and Their Assembly into 3-D Quantum Dot Superlattices,” doctoral dissertation, Massachusetts Institute of Technology (1995). One of ordinary skill in the art will also realize that the number of discrete emissions that can be distinctly observed for a given composition depends not only upon the monodispersity of the particles, but also on the deconvolution techniques employed. Semiconductor nanocrystals, unlike dye molecules, can be easily modeled as Gaussians and therefore are more easily and more accurately deconvoluted.
- However, for some applications, high information density will not be required and it may be more economically attractive to use more polydisperse particles. Thus, for applications that do not require high information density, the linewidth of the emission may be in the range of 40-60 nm.
- Semiconductor nanocrystals may be made using techniques known in the art. See, e.g., U.S. Pat. Nos. 6,048,616, 5,990,479, 5,690,807, 5,505,928 and 5,262,357, as well as International Patent Publication No. WO 99/26299, published May 27, 1999. In particular, exemplary materials for use as semiconductor nanocrystals in the biological and chemical assays of the present invention include, but are not limited to, those described above, including Group 2-16, 12-16, 13-15 and 14 semiconductors such as ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, AIS, AIP, AlSb, PbS, PbSe, Ge and Si and ternary and quaternary mixtures thereof.
- In a preferred embodiment, the surface of the semiconductor nanocrystal is modified to enhance the efficiency of the emissions, prior to surface modification with the multiply amphipathic dispersant, by adding an overcoating layer or shell to the semiconductor nanocrystal. The shell is preferred because at the surface of the semiconductor nanocrystal, surface defects can result in traps for electrons or holes that degrade the electrical and optical properties of the semiconductor nanocrystal. An insulating layer at the surface of the semiconductor nanocrystal provides an atomically abrupt jump in the chemical potential at the interface that eliminates energy states that can serve as traps for the electrons and holes. This results in higher efficiency in the luminescent process.
- Suitable materials for the shell include semiconductor materials having a higher bandgap energy than the semiconductor nanocrystal core. In addition to having a bandgap energy greater than the semiconductor nanocrystal core, suitable materials for the shell should have good conduction and valence band offset with respect to the core semiconductor nanocrystal. Thus, the conduction band is desirably higher and the valence band is desirably lower than those of the core semiconductor nanocrystal. For semiconductor nanocrystal cores that enit energy in the visible (e.g., CdS, CdSe, CdTe, ZnSe, ZnTe, GaP, GaAs) or near IR (e.g., InP, InAs, InSb, PbS, PbSe), a material that has a bandgap energy in the ultraviolet regions may be used. Exemplary materials include ZnS, GaN, and magnesium chalcogenides, e.g., MgS, MgSe, and MgTe. For a semiconductor nanocrystal core that emits in the near IR, materials having a bandgap energy in the visible, such as CdS or CdSe, may also be used. The preparation of a coated semiconductor nanocrystal may be found in, e.g., Dabbousi et al. (1997)J. Phys. Chem. B 101:9463, Hines et al. (1996) J. Phys. Chem. 100: 468-471, Peng et al. (1997) J. Am. Chem. Soc. 119:7019-7029, and Kuno et al. (1997) J. Phys. Chem. 106:9869.
- The nanoparticles of the invention may also be metallic. Such particles are useful, for example, in surface enhanced Raman scattering (SERS), which employs nanometer-size particles onto which Raman active moieties (e.g., a dye or pigment, or a functional group exhibiting a characteristic Raman spectrum) are adsorbed or attached. Metallic nanoparticles may be comprised of any metal or metallic alloy or composite, although for use in SERS, a SERS active metal is used, e.g., silver, gold, copper, lithium, aluminum, platinum, palladium, or the like. In addition, the particles can be in a core-shell configuration, e.g., a gold core may be encased in a silver shell; see, e.g., Freeman et al. (1996)J. Phys. Chem. 100:718-724, or the particles may form small aggregates in solution. Kneipp et al. (1998) Applied Spectroscopy 52:1493.
- Generally, and as alluded to above, the unmodified nanoparticles—and thus the inner core of the present surface-modified nanoparticles—also comprise a hydrophobic coating on the semiconductive or metallic material resulting from solvents and/or surfactants used in nanoparticle manufacture. For example, semiconductive nanoparticles, as manufactured, will typically have a water-insoluble organic coating that has affinity for the semiconductive material, the coating comprised of a passivating layer resulting from use of a coordinating solvent such as hexyldecylamine or a trialkyl phosphine or trialkyl phosphine oxide, e.g., trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), or tributylphosphine (TBP). Hydrophobic surfactants typically used in the manufacture of metallic nanoparticles and forming a coating thereon include, by way of example, octanethiol, dodecanethiol, dodecylamine, and tetraoctylammonium bromide. Metallic inner cores will typically have a surfactant coating that has affinity for the metallic material, the coating similarly deriving from surfactant compounds used in the manufacture of metallic nanoparticles. The surfactant coating is comprised of a hydrophobic surfactant.
- II. The Dispersant:
- The dispersant used to modify the hydrophobic surface of the nanoparticles is a multiply amphipathic dispersant, i.e., a compound having two or more hydrophobic regions and two or more hydrophilic regions. In a preferred embodiment, the multiply amphipathic dispersant is polymeric, and may be composed of either a linear or branched polymer, whether naturally occurring, chemically modified, or chemically synthesized. Structurally, polymers are classified as either linear or branched wherein the term “branched” generally means that the individual molecular units (i.e., monomer units) of the branches are discrete from the polymer backbone, and may or may not have the same chemical constitution as the polymer backbone.
- As will be appreciated by those of ordinary skill in the art, the simplest branched polymers are the “comb branched” polymers wherein a linear backbone bears one or more essentially linear pendant side chains. This simple form of branching may be regular or irregular (in the latter case, the branches are distributed in non-uniform or random fashion on the polymer backbone). An example of regular comb branching is a comb branched polystyrene as described by Altores et al. (1965)J. Polymer Sci., Part A 3:4131-4151, and an example of irregular comb branching is illustrated by the graft copolymers described by Sorenson et al. in Preparative Methods of Polymer Chemistry, 2nd Ed., Interscience Publishers, pp. 213-214 (1968).
- The amphipathic dispersant may also be a branched polymer in the form of a crosslinked or network polymer, i.e., a polymeric structure wherein individual polymer chains or branches are connected through the use of bifunctional compounds; e.g., acrylic acid monomer units bridged or crosslinked with a diamine linker. In this type of branching, many of the individual branches are not linear in that each branch may itself contain side chains pendant from a linear chain and it is not possible to differentiate between the backbone and the branches. More importantly, in network branching, each polymer macromolecule (backbone) is cross-linked at two or more sites to other polymer macromolecules. Also, the chemical constitution of the cross-linkages may vary from that of the polymer macromolecules. In this cross-linked or network branched polymer, the various branches or cross-linkages may be structurally similar (termed “regularly” cross-linked) or they may be structurally dissimilar (termed “irregularly” cross-linked).
- The amphipathic dispersant may also have other structural configurations, e.g., it may be a star/comb-branched type polymer, as described in U.S. Pat. Nos. 4,599,400 and 4,690,985, or a rod-shaped dendrimer as disclosed in U.S. Pat. No. 4,694,064.
- Particularly preferred amphipathic dispersants herein are hyperbranched (containing two or more generations of branching) or dendrimeric. In contrast to hyperbranched polymers, dendrimers are regularly branched macromolecules with a branch point at each repeat unit. Also, hyperbranched polymers are obtained via a polymerization reaction, while most regular dendrimers are obtained by a series of stepwise coupling and activation steps. Examples of dendrimers include the polyamidoamine (PAMAM) Starburst® dendrimers of Tomalia et al. (1985)Polym. J. 17:117, the convergent dendrimers of Hawker et al. (1990) J. Am. Chem. Soc. 112:7638, and diaminobutane dendrimers, described in Tomalia et al. (1990) Angew. Chem., Int. Ed. Engl. 29:135-175. With both hyperbranched polymers and dendrimers, however, the increased number of hydrophobic and hydrophilic regions amplifies the effect of the dispersant on the nanoparticle core, with respect to both affinity for the nanoparticle surface (i.e., affinity of the hydrophobic regions of the dispersant for the hydrophobic surface of the nanoparticle) and water dispersibility (as a result of the increased number of hydrophilic regions or segments).
- The hydrophilic regions represent approximately 30 wt. % to 75 wt. % of the amphipathic dispersant, and are comprised of at least one monomer unit containing an ionizable or polar moiety, preferably an ionizable moiety such as a carboxylic acid, sulfonic acid, phosphonic acid or amine substituent. Examples of hydrophilic monomer units include, but are not limited to:
- water-soluble ethylenically unsaturated C3-C6 carboxylic acids, such as acrylic acid, alkyl acrylic acids (particularly methacrylic acid), itaconic acid, maleic acid, fumaric acid, acrylamidomethyl-propanesulfonic acid, vinyl sulfonic acid, vinyl phosphonic acid, vinyllactic acid, and styrene sulfonic acid;
- allylamine and allylamine salts formed with an inorganic acid, e.g., hydrochloric acid;
- di-C1-C3— alkylamino-C2-C6-alkyl acrylates and methacrylates such dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylaminobutyl acrylate, dimethylaminoneopentyl acrylate and dimethylaminoneopentyl methacrylate;
- olefinically unsaturated nitriles, such as acrylonitrile;
- diolefinically unsaturated monomers, particularly diallylammonium compounds such as dimethyldiallylammonium chloride, dimethyldiallylammonium bromide, diethyldiallylammonium chloride, methyl-t-butyldiallylammonium methosulfate, methyl-npropyldiallylammonium chloride, dimethyldiallylammonium hydrogensulfate, dimethyldiallylammonium dihydrogenphosphate, di-n-butyldiallylammonium bromide, diallylpiperidinium bromide, diallylpyrrolidinium chloride and diallylmorpholinium bromide;
- N-vinylpyrrolidone;
- N-vinylformamide;
- acrylamide and substituted acrylamides, such as N-methylolacrylamide and C1-C3 alkyl acrylamides, particularly methacrylamide;
- N-vinylimidazole and N-vinylimidazoline; and
- other monomers, typically ethylenically unsaturated monomers, preferably vinyl monomers, substituted with at least one hydrophilic functionality such as a carboxylate, a thiocarboxylate, an amide, an imide, a hydrazine, a sulfonate, a sulfoxide, a sulfone, a sulfite, a phosphate, a phosphonate, a phosphonium, an alcohol, a thiol, a nitrate, an amine, an ammonium, or an alkyl ammonium group —[NHR1R2]+, wherein R1 and R2 are alkyl substituents and the group is associated with a negatively charged anion, e.g., a halogen ion, nitrate, etc. The hydrophilic functionality may be directly bound to a carbon atom in the polymer backbone, but will usually be bound through a linkage that provides some degree of spacing between the polymer backbone and the hydrophilic functional group. Suitable linkages include, but are not limited to, branched or unbranched alkylene, branched or unbranched alkenylene, branched or unbranched heteroalkylene (typically alkylene containing one or more ether or —NH— linkages) a branched or unbranched heteroalkenylene (again, typically alkenylene containing one or more ether or —NH— linkages), arylene, heteroarylene, alkarylene, aralkylene, and the like. The linkage will typically contain 2 to 24, more typically 2 to 12, carbon atoms.
- The hydrophilic regions may also be composed of partially or fully hydrolyzed poly(vinyl alcohol), poly(ethylene glycol), poly(ethylene oxide), highly hydrated poly(alkylene oxides) such as poly(ethylene oxide), cellulosic segments (e.g., comprised of cellulose per se or cellulose derivatives such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, cellulose acetate, and the like), and polysaccharides such as chitosan or dextran.
- The hydrophobic regions represent approximately 25 wt. % to 90 wt. % of the amphipathic dispersant, and are comprised of at least one non-ionizable, nonpolar monomer unit, facilitating noncovalent association with the hydrophobic surface of the nanoparticle. Examples of such monomer units include, but are not limited to:
- acrylates such as methacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, isodecyl methacrylate, lauryl methacrylate, phenyl methacrylate, isopropyl acrylate, isobutyl acrylate and octadecylacrylate,
- alkylenes such as ethylene and propylene;
- C4-C12-alkyl-substituted ethyleneimine;
- alkyl acrylamides wherein the alkyl group is larger than lower alkyl (particularly alkyl acrylamides wherein the alkyl group has six or more carbon atoms, typically six to twelve carbon atoms, such as hexylacrylamide, octylacrylamide, and the like);
- styrene and hydrophobically derivatized styrenes (i.e., styrene substituted with one or more hydrophobic substituents, e.g., C5-C12 hydrocarbyl groups);
- vinyl ether;
- vinyl esters such as vinyl acetate; and
- vinyl halides such as vinyl chloride.
- The hydrophobic regions may also be composed of polychloroprene, polybutadiene, polysiloxane, polydimethylsiloxane, polyisobutylene or polyurethane blocks, or they may be polycondensates of 2-poly(hydroxyalkanoic acids) such as 2-hydroxypropanoic acid, 2-hydroxybutanoic acid, 2-hydroxyisobutanoic acid, 2-hydroxyheptanoic acid, 10-hydroxydecanoic acid, 12-hydroxydodecanoic acid, 12-hydroxystearic acid, 16-hydroxyhexadecanoic acid, 2-hydroxystearic acid, 2-hydroxyvaleric acid or the corresponding condensates obtained from lactones, condensates of diols and dicarboxylic acids such as polyethylene adipate, or polylactams such as polycaprolactam.
- Any of the aforementioned monomer units and polymer segments can be modified using techniques and reagents routinely used by those of ordinary skill in the art. Such modifications include, for example, routine substitutions, additions of chemical groups such as alkyl groups and alkylene groups, hydroxylations, oxidations, and the like. Such branched polymers, composed of hydrophobic segments and hydrophilic segments, are typically comprised of (1) a hydrophobic backbone with hydrophilic branches, (2) a hydrophilic backbone with hydrophobic branches, or (3) a backbone that may be either hydrophobic or hydrophilic, and is substituted with both hydrophilic and hydrophobic branches. Such polymers can be prepared by any suitable method readily known to those of ordinary skill in the art and/or described in the pertinent texts and literature. Polymers of type (1), for example, can be prepared by copolymerization of a hydrophobic monomer with a second monomer that includes suitable reactive groups through which the hydrophilic side chains (branches) can be grafted to the backbone. Alternatively, type (1) polymers can be prepared by polymerizing a single hydrophobic monomer with a suitable reactive side group, and a fraction of those reactive side groups can be modified post-polymerization by grafting hydrophilic side chains. Analogously, polymers of type (2) can be prepared by copolymerization of a hydrophilic monomer with a second monomer that includes suitable reactive groups through which the hydrophobic side chains (branches) can be grafted to the backbone. Alternatively, type (2) polymers can be prepared by polymerizing a single hydrophilic monomer with a suitable reactive side group, and a fraction of those reactive side groups can be modified post-polymerization by grafting hydrophobic side chains. Type (3) polymers can be prepared by first synthesizing a linear polymer having reactive sites throughout the backbone, and then grafting hydrophilic and hydrophobic side chains onto the backbone in a fashion that may or may not be ordered.
- Particularly preferred amphipathic dispersants include acrylic acid and methacrylic acid polymers modified to include hydrophobic regions, as well as copolymers of acrylic acid and/or methacrylic acid with hydrophobic comonomers such as alkyl acrylamides. Examples of such polymers are poly(acrylic acid-co-octylacrylamide), poly(acrylic acid-co-hexylacrylamide), poly(methacrylic acid-co-octylacrylamide), and poly(methacrylic acid-co-hexylacrylamide), with poly(acrylic acid-co-octylacrylamide) most preferred. The specific methodology used to synthesize polymers suitable as the multiply amphipathic dispersant will depend on the particular monomer types that are employed. As will be appreciated by those of ordinary skill in the art, suitable polymerization techniques include step polymerization, radical chain polymerization, emulsion polymerization, ionic chain polymerization, chain copolymerization, ring-opening polymerization, living polymerization, polycondensation reactions, and graft polymerization. In a preferred embodiment, the amphipathic dispersant is formed by addition polymerization of ethylenically unsaturated monomers. Such polymerization reactions are generally catalyzed using metallic catalysts (e.g., transition metal-based metallocenes, Ziegler-Natta catalysts, Brookhart-type catalysts, etc.) and typically involve contacting the monomer(s), catalyst, and a catalyst activator (e.g., methyl aluminoxane, or “MAO”) at a suitable temperature at reduced, elevated or atmospheric pressure, under an inert atmosphere, for a time effective to produce the desired polymer. An added solvent may, if desired, be employed, or the monomeric compounds may serve as solvent. The reaction may be conducted under solution or slurry conditions, in a suspension, or in the gas phase. As alluded to above, branched polymers can be prepared using this technique by introducing reactive sites into the polymer backbone during polymerization (e.g., by incorporating some fraction of monomer units having a pendant reactive site), followed by synthesis or grafting of branches at the reactive sites.
- In a preferred embodiment, the amphipathic dispersant is comprised of a hydrophilic backbone that has been modified to contain hydrophobic anchoring groups, i.e., hydrophobic side chains that serve to “anchor” the dispersant to the nanoparticle surface. For example, hydrophilic polymers containing pendant carboxylic acid groups (e.g., as in poly(acrylic acid), [—(CH2CH(CO2H)]n—) can be readily modified to contain a controlled number of branched or unbranched hydrophobic side chains using methods known in the art. In one such method, the pendant carboxylic acid groups of poly(acrylic acid) can be activated with a suitable activating agent, e.g., thionyl chloride or a carbodiimide, followed by reaction with a long chain alkylamine, e.g., a C4-C12 alkylamine such as octylamine, and finally with a hydrolyzing agent such as water. Depending on the relative quantities of the alkylamine and the hydrolyzing agent, the resulting polymer is an amphipathic polymer with a hydrophilic backbone (by virtue of the carboxylic acid groups present after partial hydrolysis) and hydrophobic side chains (the long chain alkyl group attached to the backbone through an amide linkage).
- Within the aforementioned group of hydrophobically modified hydrophilic polymers are hydrophobically modified peptides, preferably hydrophobically modified synthetic polypeptides. The use of synthetic polypeptides allows for control over a number of factors, including the monodispersity of the molecular weight of the hydrophilic backbone, the number and position of modifiable groups on the backbone, and the regularity of the modification, i.e., whether the hydrophobic groups are randomly distributed throughout the polypeptide chain or present in an ordered, “regular” fashion.
- Suitable polypeptides are triblock (A-B-A) copolymers, for example, triblock copolymers of aspartate and norleucine, in which case polynorleucine is preferably the central block “B.” Such a triblock copolymer provides a region rich in hydrophobic side chains. In one alternative, the central block “B” can comprise a hydrophilic amino acid, for example, poly(lysine), which can be modified via standard chemistries to include hydrophobic side chains. The carboxylate-rich aspartate side chains (A) provide the polar, ionic groups that not only aid in rendering the nanocrystal water dispersible, but provide reactive sites or functionalizable moieties for further chemistry, such as conjugation to affinity molecules.
- The polypeptide compositions of the present invention may also be monofunctional in nature, e.g., polylysine or polyaspartate, diblock copolymers (A-B) or triblock copolymers of three different amino acids (A-B-C). These compositions are also not restricted to lysine or aspartate, but may make use of any number of combinations of the known amino acids. Generally, the hydrophobic regions of a polypeptide are comprised of at least one hydrophobic amino acid and the hydrophilic regions are comprised of at least one hydrophilic amino acid. As will be appreciated by those of ordinary skill in the art, hydrophobic amino acids include, for example, alanine, glycine, valine, leucine, isoleucine, norleucine, proline, phenylalanine, methionine, tryptophane, cysteine, and includes hydrophilic amino acids modified to include hydrophobic side chains, while hydrophilic amino acids include aspartic acid, glutamic acid, lysine, arginine, histidine, asparagine, glutamine, serine, threonine and tyrosine.
- The amphipathic dispersant generally although not necessarily has a molecular weight in the range of approximately 500 to 50,000, preferably in the range of approximately 1000 to 10,000, more preferably in the range of approximately 1000 to 5000. The dispersant may be modified so as to contain functionalizable sites useful for covalent or noncovalent attachment to an external molecular moiety. The functionalizable sites may be present in addition to the ionizable groups discussed above, or the ionizable groups may themselves serve as functionalizable sites suitable for binding an external molecular moiety. Functionalizable sites include, for example, any of the conventional functional groups that are modified using simple, conventional chemical techniques, e.g., amino groups, nitriles, carboxylic acids, esters, acid chlorides, and the like. Preferably, although not necessarily, the functionalizable sites are spaced apart from the dispersant structure by an inert linking moiety, e.g., an alkylene or oxyalkylene chain, typically composed of about 2 to 20 carbon atoms, preferably about 4 to 10 carbon atoms, or other linking moieties such as those described above with respect to the spacer linkages that may be present linking hydrophilic functional groups to the polymer backbone.
- IV. Preparation of the Surface-Modified Nanoparticles:
- Hydrophobic nanoparticles may be rendered water dispersible by surface modification with the amphipathic dispersant. That is, the hydrophobic regions of the dispersant associate with the hydrophobic nanoparticle surface, and the hydrophilic regions are externally facing and provide water dispersibility. Surface modification of the nanoparticles is carried out as follows.
- Initially, a solution of the amphipathic dispersant is prepared by admixing the selected amphipathic dispersant with a suitable nonaqueous solvent, preferably a nonpolar, water-immiscible solvent such as n-hexane or chloroform. Ionizable groups on the dispersant, if present, are then converted to salt form by treatment with an appropriate acid or base, which serves as an ionizing agent. For ionizable acidic groups, suitable bases are generally inorganic bases, e.g., ammonium hydroxides or hydroxides of alkali metals (e.g., sodium or potassium) or alkaline earth metals (e.g., magnesium or calcium). The hydrophobic nanoparticles are dispersed in the same solvent, either before or after the aforementioned ionization step. Typically, however, the nanoparticles are added after ionization, preferably dropwise, to a stirring solution of the ionized dispersant. Alternatively, the nanoparticles may be dispersed in the solvent at the outset, and the dispersant added thereto. As another alternative, two separate solutions may be prepared and mixed, with one solution containing the dispersant and the other solution containing the nanoparticles, with both solutions preferably containing the same solvent. In all cases, after preparation of the nanoparticle-dispersant-solvent admixture, the admixture is preferably stirred for several minutes to ensure complete mixing of the components.
- In the next step of the process, the admixture of nanoparticles, dispersant and solvent is subjected to conditions effective to result in absorption of the dispersant by the nanoparticles. For example, the admixture may be heated or placed under vacuum to remove the solvent, such a drying process resulting in dispersant-coated nanoparticles. Alternatively, the conditions may involve changing the polarity of the solvent and/or changing the ionic state of the polymer.
- Next, the dispersant-coated nanoparticles are transferred to an aqueous medium such as water, using solvent exchange (if the dispersant-coated nanoparticles are not previously dried) or addition of water or an aqueous buffer (if the dispersant-coated nanoparticles are previously dried). The aqueous buffer, if one is used, should be effective to facilitate dispersion of the nanoparticles in the aqueous medium. The water dispersion is then filtered to remove any large micellar structures formed by excess dispersant in solution that is not associated with the particles. These materials may then be used in any applications requiring aqueous-based sols of nanocrystals. Prior to using these particles one may further increase the stability of the amphipathic coating by chemically crosslinking the individual polymer chains of the dispersant coating such that each polymer has a potential multiplicity of chemical bonds to other polymer chains on the particle. One of ordinary skill in the art would recognize that the crosslinker used may be tailored to match the properties of the dispersant coating. For example, a diamine could be used to crosslink a dispersant coating containing carboxylic acids. Of particular utility are crosslinkers that carry charges or other groups capable of stabilizing the dispersed colloids as described herein. A diamino carboxylate or sulfonate and a diamino polyethylene glycol crosslinkers are especially useful. A similar chemistry would apply for crosslinkers having multiple amine moieties, such as dendrimers, modified dendrimers, and the like.
- The amount of amphipathic dispersant per unit mass of the “inner core” (i.e., per unit mass of the original, unmodified nanoparticle) in the resulting dispersant-coated nanoparticles is proportional to the size and surface area of the nanoparticles. Generally, the number ratio of the dispersant to the inner core will be in the range of approximately 50:1 to approximately 5000:1. The ratio will be closer to 50:1 for smaller nanoparticles, i.e., nanoparticles less than about 5 nm in diameter (e.g., green CdSe quantum dots), and will be closer to 5000:1 for larger nanoparticles, i.e., nanoparticles about 5 nm to 10 nm in diameter (e.g., red CdSe quantum dots).
- V. Nanoparticle Conjugates and Associated Compositions:
- The invention additionally relates to conjugates of the present surface-modified semiconductive nanoparticles and compositions comprising those conjugates in association with a target analyte.
- That is, the surface-modified semiconductive nanoparticles of the invention may be conjugated to an affinity molecule that serves as the first member of a binding pair. Generally, although not necessarily, it is the amphipathic dispersant on the nanoparticle surface that provides the means for linkage to the affinity molecule. As noted previously, ionizable groups present within the hydrophilic regions of the amphipathic dispersant may provide the means for linkage to the affinity molecule, and/or other functional groups present within or introduced into the dispersant molecule may provide the means for linkage to the affinity molecule. The linkage will generally be covalent, and suitable linkers are discussed in Section III, above. Suitable methods of conjugating molecules and molecular segments to affinity molecules are described, for example, in Hermanson, Bioconjugate Techniques (Academic Press, NY, 1996).
- Such semiconductive nanoparticle “conjugates,” by virtue of the affinity molecule, can be used to detect the presence and/or quantity of biological and chemical compounds, interactions in biological systems, biological processes, alterations in biological processes, or alterations in the structure of biological compounds. That is, the affinity molecule, when linked to the semiconductive nanoparticle, can interact with a biological target that serves as the second member of the binding pair, in order to detect biological processes or reactions, or to alter biological molecules or processes. Preferably, the interaction of the affinity molecule and the biological target involves specific binding, and can involve covalent, noncovalent, hydrophobic, hydrophilic, electrostatic, van der Waal's, or magnetic interaction. Preferably, the affinity molecule physically interacts with the biological target.
- The affinity molecule associated with the semiconductive nanoparticles can be naturally occurring or chemically synthesized, and can be selected to have a desired physical, chemical, or biological property. Such properties include, but are not limited to, covalent and noncovalent association with proteins, nucleic acids, signaling molecules, prokaryotic or eukaryotic cells, viruses, subcellular organelles and any other biological compounds. Other properties of such molecules include, but are not limited to, the ability to affect a biological process (e.g. cell cycle, blood coagulation, cell death, transcription, translation, signal transduction, DNA damage or cleavage, production of radicals, scavenging radicals, etc.), and the ability to alter the structure of a biological compound (e.g. crosslinking, proteolytic cleavage, radical damage, etc
- In a preferred embodiment, the nanoparticle conjugate is comprised of a semiconductive nanoparticle that emits light at a tunable wavelength and is associated with a nucleic acid. The association can be direct or indirect. The nucleic acid can be any ribonucleic acid, deoxyribonucleic acid, dideoxyribonucleic acid, or any derivatives and combinations thereof. The nucleic acid can also be oligonucleotides of any length. The oligonucleotides can be single-stranded, double-stranded, triple-stranded or higher order configurations (e.g. Holliday junctions, circular single-stranded DNA, circular double-stranded DNA, DNA cubes, (see Seeman (1998)Ann. Rev. Biophys. Biomol. Struct. 27:225-248). Among the preferred uses of the present compositions and methods are detecting and/or quantitating nucleic acids as follows: (a) viral nucleic acids; (b) bacterial nucleic acids; and (c) numerous human sequences of interest, e.g. single nucleotide polymorphisms. Without limiting the scope of the present invention, nanoparticle conjugates can comprise nanocrystals associated with individual nucleotides, deoxynucleotides, dideoxynucleotides or any derivatives and combinations thereof and used in DNA polymerization reactions such as DNA sequencing, reverse transcription of RNA into DNA, and polymerase chain reactions (PCR). Nucleotides also include monophosphate, diphosphate and triphosphates and cyclic derivatives such as cyclic adenine monophosphate (cAMP). Other uses of nanoparticles conjugated to nucleic acids included fluorescence in situ hybridization (FISH). In this preferred embodiment, nanocrystals are conjugated to oligonucleotides designed to hybridize to a specific sequence in vivo. Upon hybridization, the fluorescent nanocrystal tags are used to visualize the location of the desired DNA sequence in a cell. For example, the cellular location of a gene whose DNA sequence is partially or completely known can be determined using FISH. Any DNA or RNA whose sequence is partially or completely known can be visually targeted using FISH. For example without limiting the scope of the present invention, messenger RNA (mRNA), DNA telomeres, other highly repeated DNA sequences, and other non-coding DNA sequencing can be targeted by FISH.
- The nanoparticle conjugate may also comprise a surface-modified semiconductive nanoparticle as provided herein in association with a molecule or reagent for detection of biological compounds such as enzymes, enzyme substrates, enzyme inhibitors, cellular organelles, lipids, phospholipids, fatty acids, sterols, cell membranes, molecules involved in signal transduction, receptors and ion channels. The conjugate also can be used to detect cell morphology and fluid flow; cell viability, proliferation and function; endocytosis and exocytosis (Betz et al. (1996)Curr. Opin. Neurobiol. 6(3):365-71); and reactive oxygen species (e.g., superoxide, nitric oxide, hydroxyl radicals, oxygen radicals). In addition, the conjugate can be used to detect hydrophobic or hydrophilic regions of biological systems.
- Conjugates of semiconductive nanocrystals also find utility in numerous other biological and non-biological applications where luminescent markers, particularly fluorescent markers, are typically used. See, for example, Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, Eugene, Oreg. Sixth Ed. 1996; Website, www.probes.com.). Examples of areas in which the luminescent nanoparticle conjugates of the invention are useful include, without limitation, fluorescence immunocytochemistry, fluorescence microscopy, DNA sequence analysis, fluorescence in situ hybridization (FISH), fluorescence resonance energy transfer (FRET), flow cytometry (Fluorescence Activated Cell Sorter; FACS) and diagnostic assays for biological systems. For further discussion concerning the utility of nanocrystal conjugates in the aforementioned areas, see International Patent Publication No. WO 00/17642 to Bawendi et al.
- It is to be understood that while the invention has been described in conjunction with the preferred specific embodiments thereof, that the foregoing description as well as the examples that follow are intended to illustrate and not limit the scope of the invention. Other aspects, advantages and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains.
- The following examples are intended to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the novel compositions of the invention. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc), but some experimental error and deviation should, of course, be allowed for. Unless indicated otherwise, parts are parts by weight, temperatures are in degrees centigrade, and pressure is at or near atmospheric.
- The practice of the present invention will employ, unless otherwise indicated, conventional techniques of synthetic organic chemistry, biochemistry, molecular biology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis,Molecular Cloning: A Laboratory Manual, Second Edition (1989); Oligonucleotide Synthesis (M. J. Gait, ed., 1984); Nucleic Acid Hybridization (B. D. Haines & SJ. Higgins, eds., 1984); Methods in Enzymology (Academic Press, Inc.); Kirk-Othmer's Encyclopedia of Chemical Technology; and House's Modem Synthetic Reactions. All patents, patent applications, patent publications, journal articles and other references cited herein are incorporated by reference in their entireties.
- Synthesis of Hydrophobically Modified Hydrophilic Polymers:
- A modified polyacrylic acid was prepared by diluting 100 g [0.48 mol COONa] of poly(acrylic acid, sodium salt) (obtained from Aldrich, molecular weight 1200) was diluted two-fold in water and acidified in a 1.0 L round bottom flask with 150 ml (1.9 mol) of concentrated HCl. The acidified polymer solution was concentrated to dryness on a rotary evaporator (100 mbar, 80° C.). The dry polymer was evacuated for 12 hours at <10 mbar to ensure water removal. A stirbar and 47.0 g (0.24 mol) of 1-[3-(dimethyl-amino)-propyl]-ethylcarbodiimide hydrochloride (EDC-Aldrich 98%) were added to the flask, then the flask was sealed and purged with N2, and fit with a balloon. 500 ml of anhydrous N-N,dimethylformamide (Aldrich) was transferred under positive pressure through a cannula to this mixture; and the flask was swirled gently to dissolve the solids. 32 ml (0.19 mol) of octylamine was transferred dropwise under positive pressure through a cannula from a sealed oven-dried graduated cylinder into the stirring polymer/EDC solution, and the stirring continued for 12 hours. This solution was concentrated to <100 ml on a rotary evaporator (30 mbar, 80° C.), and the polymer was precipitated by addition of 200 ml di-H2O to the cooled concentrate, which produced a gummy white material. This material was separated from the supernatant and triturated with 100 ml di-H2O three more times. The product was dissolved into 400 ml ethyl acetate (Aldrich) with gentle heating, and basified with 200 ml di-H2O and 100 g N-N-N-N-tetramethylammonium hydroxide pentahydrate (0.55 mo) for 12 hours. The aqueous layer was removed and precipitated to a gummy white product with 400 ml of 1.27 M HCl. The product was decanted and triturated with 100 ml of di-H2O twice more, after which the aqueous washings were back-extracted into 6×100 ml portions of ethyl acetate. These ethyl acetate solutions were added to the product flask, and concentrated to dryness (100 mbar, 60° C.). The crude polymer was dissolved in 300 ml of methanol and purified in two aliquots over LH-20 (Amersham-Pharmacia-5.5 cm×60 cm column) at a 3 ml/minute flow rate. Fractions were tested by NMR for purity, and the pure fractions were pooled, while the impure fractions were re-purified on the LH-20 column. After pooling all of the pure fractions, the polymer solution was concentrated by rotary evaporation to dryness, and evacuated for 12 hours at <10 mbar. The product was a white powder (25.5 g, 45% of theoretical yield), which showed broad NMR peaks in CD3OD [δ=3.1 b (9.4), 2.3 b (9.7), 1.9 1.7 1.5 1.3 b (63.3) 0.9 bt (11.3)], and clear IR signal for both carboxylic acid (1712 cm−1) and amide groups (1626 cm−1, 1544 cm−1).
- Preparation of Surface-Modified Nanocrystals:
- Twenty milliliters of 3-5 μM (3-5 nmoles) of TOPO/TOP coated CdSe/ZnS nanocrystals (see, Murray et al. (1993)J. Am. Chem. Soc. 115:8706) were precipitated with 20 milliliters of methanol. The flocculate was centrifuged at 3000×g for 3 minutes to form a pellet of the nanocrystals. The supernatant was thereafter removed and 20 milliliters of methanol was again added to the particles. The particles were vortexed to loosely disperse the flocculate throughout the methanol. The flocculate was centrifuged an additional time to form a pellet of the nanocrystals. This precipitation/centrifugation step was repeated an additional time to remove any excess reactants remaining from the nanocrystal synthesis. Twenty milliliters of chloroform were added to the nanocrystal pellet to yield a freely dispersed sol.
- 300 milligrams of hydrophobically modified poly(acrylic acid) was dissolved in 20 ml of chloroform. Tetrabutylammonium hydroxide (1.0 M in methanol) was added to the polymer solution to raise the solution to pH 10 (pH was measured by spotting a small aliquot of the chloroform solution on pH paper, evaporating the solvent and thereafter wetting the pH paper with distilled water). Thereafter the polymer solution was added to 20 ml of chloroform in a 250 ml round bottom flask equipped with a stir bar. The solution was stirred for 1 minute to ensure complete admixture of the polymer solution. With continued stirring the washed nanocrystal dispersion described above was added dropwise to the polymer solution. The dispersion was then stirred for two minutes to ensure complete mixing of the components and thereafter the chloroform was removed in vacuo with low heat to yield a thin film of the particle-polymer complex on the wall of the flask. Twenty milliliters of distilled water were added to the flask and swirled along the walls of the flask to aid in dispersing the particles in the aqueous medium. The dispersion was then allowed to stir overnight at room temperature. At this point the nanocrystals are freely dispersed in the aqueous medium, possess pendant chemical functionalities and may therefore be linked to affinity molecules of interest using methods well known in the art for biolabeling experiments. In addition, the fact that the nanocrystals now have a highly charged surface means they can be readily utilized in polyelectrolyte layering experiments for the formation of thin films and composite materials.
- Preparation of Nanocrystal Conjugates:
- Functional and specific biological labels have been made with materials of the present invention as follows: The polymer-stabilized particles from Example 1 were purified away from excess (non-absorbed) polymer and tetrabutylammonium hydroxide via tangential flow diafiltration using a 100 K polyethersulfone membrane against one liter of distilled water and one liter of 50 mM morpholinoethanesulfonic acid buffer, pH 5.9. The purified dispersion was concentrated to 20 milliliters and 10 milliliters of this nanocrystal dispersion were activated with 79 μmoles (15 mg) 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 158 μmoles (34 mg) N-hydroxysulfosuccinimide for 30 minutes at room temperature. The particle dispersion was then buffer exchanged to pH 8.0 via diafiltration against 50 mM phosphate buffer, pH 8.0. When the particle dispersion reached pH 8.0, streptavidin was added to the particles at a 5:1 protein:particle ratio (175 nmoles, 10.5 mg) and the reaction mixture was incubated overnight at room temperature with stirring. After overnight incubation the conjugated particles were separated from excess, unreacted protein via tangential flow diafiltration using a 100,000 MW polyethersulfone membrane against 2 liters of phosphate buffer, 50 mM, pH 7.0.
- At this point these materials can be stored in any number of biological buffers and used as fluorescent biological labels to detect biotin-labeled analytes of interest. Although streptavidin was used here as an example, the simplicity and generality of the above coupling chemistries can be efficiently extended to forming functional conjugates with any number of biological molecules of interest, such as antibodies, peptides, and oligonucleotides, for example.
- Crosslinking of Polymer Stabilized Nanocrystals with a Dendrimer:
- Ten milliliters of nanocrystals at 3.5 μM, stabilized as described in Example 2, were purified by tangential flow filtration, as described in Example 3, against 1 liter of distilled water to remove excess polymer. The nanocrystals were concentrated to 10 milliliters and the pH of the aqueous dispersion was decreased to pH 6.5 with 50 μl additions of 0.1M HCl. 67 milligrams (315 μmoles) EDC were added to the stirring nanocrystal dispersion. The reaction was allowed to proceed for 10 minutes before 1 milliliter of 0.5M borate buffer (pH 8.5) containing 3.94 μmoles of the crosslinking reagent Starburst® (PAMAM) Dendrimer, Generation 0, were added to the reaction mixture. The reaction mixture was stirred for 2 hours at room temperature and then transferred to a 50,000 molecular weight cut-off polyethersulfone dialysis bag. Dialysis was performed for 24 hours against 2 changes of 4 liters of water.
- Crosslinking of Polymer Stabilized Nanocrystals with a Diamino Crosslinker:
- Ten milliliters of nanocrystals at 3.5 μM, stabilized as described in Example 2, were purified by tangential flow filtration, as described in Example 3, against 1 liter of distilled water to remove excess polymer. The nanocrystals were concentrated to 10 milliliters and the pH of the aqueous dispersion was decreased to pH 6.5 with 50 μl additions of 0.1 M HCl. 67 milligrams (315 μmoles) EDC were added to the stirring nanocrystal dispersion. The reaction was allowed to proceed for 10 minutes before 1 milliliter of 0.5M borate buffer (pH 8.5) containing 3.94 μmoles of the crosslinking reagent lysine (a diamino carboxylic acid) were added to the reaction mixture. The reaction mixture was stirred for 2 hours at room temperature and then transferred to a 50,000 molecular weight cut-off polyethersulfone dialysis bag. Dialysis was performed for 24 hours against 2 changes of 4 liters of water.
- Preparation of Surface Modified Nanocrystals with Polypeptides:
- A triblock polypeptide comprised of (Aspartate)4-(Norleucine)8-(Aspartate)4 has been used to stabilize hydrophobic nanocrystals in water by the following method: Five milliliters of a 3.5 μM nanocrystal solution were washed as described in Example 1 and redispersed in 5 milliliters of chloroform. 75 milligrams of an (Aspartate)4-(Norleucine)8-(Aspartate)4 triblock polypeptide were dissolved in 5 milliliters of a 50:50 mixture of chloroform:methanol and the pH of the polypeptide solution was raised to 10 with aliquots of tetrabutylammonium hydroxide (1.0M in methanol). This polypeptide solution was then added to 5 milliliters of chloroform in a 50 milliliter round bottom flask. The solution was allowed to stir for 1 minute to ensure complete mixing. The washed nanocrystal dispersion in chloroform was then added dropwise to the stirring polypeptide solution and the entire mixture was allowed to stir for an additional 2 minutes before all the solvent was removed in vacuo with low heat (40 degrees Celsius) to yield a thin film of the particle-polymer complex on the wall of the flask. Five milliliters of distilled water were then added to the flask and swirled in order to aid in dispersing the nanocrystals fully in the aqueous medium. As with the nanocrystals stabilized in Example 1, these polypeptide stabilized nanocrystals can be efficiently purified away from excess polypeptide by dialysis, tangential flow filtration, or various forms of chromatography known to those skilled in the art.
Claims (9)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/717,246 US20040101621A1 (en) | 2000-10-13 | 2003-11-18 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US12/013,371 US20080241375A1 (en) | 2000-10-13 | 2008-01-11 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US12/624,283 US8158194B2 (en) | 2000-10-13 | 2009-11-23 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US13/423,055 US8691384B2 (en) | 2000-10-13 | 2012-03-16 | Metallic nanoparticles having enhanced dispersibility in aqueous media comprising a polymer having alkyl acrylamide side chains |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24021600P | 2000-10-13 | 2000-10-13 | |
US09/841,237 US6649138B2 (en) | 2000-10-13 | 2001-04-23 | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US10/717,246 US20040101621A1 (en) | 2000-10-13 | 2003-11-18 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/841,237 Division US6649138B2 (en) | 2000-10-13 | 2001-04-23 | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/013,371 Continuation US20080241375A1 (en) | 2000-10-13 | 2008-01-11 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040101621A1 true US20040101621A1 (en) | 2004-05-27 |
Family
ID=26933249
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/841,237 Expired - Lifetime US6649138B2 (en) | 2000-10-13 | 2001-04-23 | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US10/717,288 Expired - Lifetime US7147917B2 (en) | 2000-10-13 | 2003-11-18 | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US10/716,971 Expired - Lifetime US7108915B2 (en) | 2000-10-13 | 2003-11-18 | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US10/717,246 Abandoned US20040101621A1 (en) | 2000-10-13 | 2003-11-18 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US12/013,371 Abandoned US20080241375A1 (en) | 2000-10-13 | 2008-01-11 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US12/624,283 Expired - Fee Related US8158194B2 (en) | 2000-10-13 | 2009-11-23 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US13/423,055 Expired - Fee Related US8691384B2 (en) | 2000-10-13 | 2012-03-16 | Metallic nanoparticles having enhanced dispersibility in aqueous media comprising a polymer having alkyl acrylamide side chains |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/841,237 Expired - Lifetime US6649138B2 (en) | 2000-10-13 | 2001-04-23 | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US10/717,288 Expired - Lifetime US7147917B2 (en) | 2000-10-13 | 2003-11-18 | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US10/716,971 Expired - Lifetime US7108915B2 (en) | 2000-10-13 | 2003-11-18 | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/013,371 Abandoned US20080241375A1 (en) | 2000-10-13 | 2008-01-11 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US12/624,283 Expired - Fee Related US8158194B2 (en) | 2000-10-13 | 2009-11-23 | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US13/423,055 Expired - Fee Related US8691384B2 (en) | 2000-10-13 | 2012-03-16 | Metallic nanoparticles having enhanced dispersibility in aqueous media comprising a polymer having alkyl acrylamide side chains |
Country Status (6)
Country | Link |
---|---|
US (7) | US6649138B2 (en) |
EP (2) | EP2233202A3 (en) |
JP (2) | JP4638128B2 (en) |
AU (1) | AU2002243207A1 (en) |
CA (1) | CA2424082C (en) |
WO (1) | WO2002055186A2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060090692A1 (en) * | 2004-10-29 | 2006-05-04 | Dominguez Juan E | Generating nano-particles for chemical mechanical planarization |
US20090062470A1 (en) * | 2007-08-31 | 2009-03-05 | Micron Technology, Inc. | Zwitterionic block copolymers and methods |
US20100151443A1 (en) * | 2006-12-19 | 2010-06-17 | Fio Corporation | Microfluid system and method to test for target molecules in a biological sample |
US20100257027A1 (en) * | 2007-07-23 | 2010-10-07 | Fio Corporation | Method and system for collating, storing, analyzing and enabling access to collected and analyzed data associated with biological and environmental test subjects |
US20110053278A1 (en) * | 2007-07-09 | 2011-03-03 | Fio Corporation | Systems and methods for enhancing fluorescent detection of target molecules in a test sample |
US20110081643A1 (en) * | 2007-10-12 | 2011-04-07 | Sebastian Fournier-Bidoz | Flow Focusing Method and System for Forming Concentrated Volumes of Microbeads, and Microbeads Formed Further Thereto |
US20120228565A1 (en) * | 2000-10-13 | 2012-09-13 | Life Technologies Corporation | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US8360321B2 (en) | 2007-04-02 | 2013-01-29 | Fio Corporation | System and method of deconvolving multiplexed fluorescence spectral signals generated by quantum dot optical coding technology |
US8597729B2 (en) | 2007-06-22 | 2013-12-03 | Fio Corporation | Systems and methods for manufacturing quantum dot-doped polymer microbeads |
US8883239B2 (en) | 2013-02-26 | 2014-11-11 | Universidad De Talca | Clarification and selective binding of phenolic compounds from liquid foodstuff or beverages using smart polymers |
US9459200B2 (en) | 2008-08-29 | 2016-10-04 | Fio Corporation | Single-use handheld diagnostic test device, and an associated system and method for testing biological and environmental test samples |
US9792809B2 (en) | 2008-06-25 | 2017-10-17 | Fio Corporation | Bio-threat alert system |
US9805165B2 (en) | 2009-01-13 | 2017-10-31 | Fio Corporation | Handheld diagnostic test device and method for use with an electronic device and a test cartridge in a rapid diagnostic test |
Families Citing this family (456)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7192778B2 (en) * | 1999-10-06 | 2007-03-20 | Natan Michael J | Surface enhanced spectroscopy-active composite nanoparticles |
US8497131B2 (en) * | 1999-10-06 | 2013-07-30 | Becton, Dickinson And Company | Surface enhanced spectroscopy-active composite nanoparticles comprising Raman-active reporter molecules |
WO2002079764A1 (en) * | 2001-01-26 | 2002-10-10 | Nanoplex Technologies, Inc. | Surface-enhanced spectroscopy-active sandwich nanoparticles |
US6734420B2 (en) * | 2000-04-06 | 2004-05-11 | Quantum Dot Corporation | Differentiable spectral bar code methods and systems |
TW572965B (en) * | 2000-08-04 | 2004-01-21 | Sued Chemie Ag | Use of amphiphilic polymers or copolymers for the surface modification of reactive inorganic fillers |
US20050059031A1 (en) | 2000-10-06 | 2005-03-17 | Quantum Dot Corporation | Method for enhancing transport of semiconductor nanocrystals across biological membranes |
JP2002316350A (en) * | 2001-04-19 | 2002-10-29 | Fuji Photo Film Co Ltd | Method and device for manufacturing laminated object |
FR2824563B1 (en) * | 2001-05-10 | 2004-12-03 | Bio Merieux | COMPOSITE PARTICLES, DERIVATIVES, PREPARATION METHOD AND APPLICATIONS |
US6956083B2 (en) * | 2001-05-31 | 2005-10-18 | The Regents Of The University Of California | Single ion conductor cross-linked polymeric networks |
US6710366B1 (en) | 2001-08-02 | 2004-03-23 | Ultradots, Inc. | Nanocomposite materials with engineered properties |
US20030066998A1 (en) * | 2001-08-02 | 2003-04-10 | Lee Howard Wing Hoon | Quantum dots of Group IV semiconductor materials |
US6819845B2 (en) * | 2001-08-02 | 2004-11-16 | Ultradots, Inc. | Optical devices with engineered nonlinear nanocomposite materials |
US6794265B2 (en) * | 2001-08-02 | 2004-09-21 | Ultradots, Inc. | Methods of forming quantum dots of Group IV semiconductor materials |
US6906339B2 (en) * | 2001-09-05 | 2005-06-14 | Rensselaer Polytechnic Institute | Passivated nanoparticles, method of fabrication thereof, and devices incorporating nanoparticles |
JP3701622B2 (en) * | 2002-03-27 | 2005-10-05 | 日立ソフトウエアエンジニアリング株式会社 | Semiconductor nanoparticle fluorescent reagent and fluorescence measuring method |
US7998923B2 (en) * | 2002-05-07 | 2011-08-16 | The Regents Of The University Of California | Bioactivation of particles |
DE10221009B4 (en) | 2002-05-11 | 2016-10-13 | Basf Coatings Gmbh | Coating materials, their use, methods for producing coatings and transparent coatings |
DE10221007B4 (en) | 2002-05-11 | 2016-10-13 | Basf Coatings Gmbh | Aqueous dispersion of inorganic nanoparticles, process for their preparation and their use |
DE10221010A1 (en) | 2002-05-11 | 2003-11-27 | Basf Coatings Ag | Aqueous dispersion of inorganic nanoparticles, process for their preparation and their use |
US7670623B2 (en) * | 2002-05-31 | 2010-03-02 | Materials Modification, Inc. | Hemostatic composition |
JP4005850B2 (en) * | 2002-06-10 | 2007-11-14 | 日立ソフトウエアエンジニアリング株式会社 | Semiconductor nanoparticle manufacturing method |
EP1371696B1 (en) * | 2002-06-14 | 2006-08-09 | Canon Kabushiki Kaisha | Particle composition, recording method, and recording apparatus using the particle composition |
ATE315579T1 (en) * | 2002-06-21 | 2006-02-15 | Applied Nanosystems Bv | METHOD FOR BONDING A COMPOUND TO A SURFACE |
JP3847677B2 (en) * | 2002-07-23 | 2006-11-22 | 日立ソフトウエアエンジニアリング株式会社 | Semiconductor nanoparticle, method for producing the same, and semiconductor nanoparticle fluorescent reagent |
CA2493176C (en) * | 2002-07-25 | 2008-09-02 | Amcol International Corporation | Viscous compositions containing hydrophobic liquids |
US7338711B1 (en) * | 2002-08-12 | 2008-03-04 | Quantum Logic Devices, Inc. | Enhanced nanocomposite combustion accelerant and methods for making the same |
WO2004065362A2 (en) * | 2002-08-16 | 2004-08-05 | University Of Massachusetts | Pyridine and related ligand compounds, functionalized nanoparticulate composites and methods of preparation |
JP2004077389A (en) * | 2002-08-21 | 2004-03-11 | Hitachi Software Eng Co Ltd | Functional fluorescent reagent containing semiconductor nanoparticle |
JP4230741B2 (en) * | 2002-08-30 | 2009-02-25 | 日立ソフトウエアエンジニアリング株式会社 | Purification method of semiconductor nanoparticles |
JP2006517186A (en) * | 2002-09-04 | 2006-07-20 | ボード オブ リージェンツ ユニバーシティ オブ テキサス システム | Bifunctional biomaterial compositions, methods, and uses |
US6949206B2 (en) * | 2002-09-05 | 2005-09-27 | Nanosys, Inc. | Organic species that facilitate charge transfer to or from nanostructures |
US7572393B2 (en) * | 2002-09-05 | 2009-08-11 | Nanosys Inc. | Organic species that facilitate charge transfer to or from nanostructures |
DE10247359A1 (en) * | 2002-10-10 | 2004-04-29 | Basf Coatings Ag | Nanoparticles, processes for modifying their surface, dispersion of the nanoparticles, processes for their production and their use |
US20040101822A1 (en) * | 2002-11-26 | 2004-05-27 | Ulrich Wiesner | Fluorescent silica-based nanoparticles |
JP2004243507A (en) * | 2002-12-19 | 2004-09-02 | Hitachi Software Eng Co Ltd | Semiconductor nanoparticles and method of manufacture |
JP4903555B2 (en) * | 2003-02-20 | 2012-03-28 | ウィルソン−クック・メディカル・インコーポレーテッド | Medical device with adhesive coating and method for manufacturing the same |
WO2005013337A2 (en) * | 2003-03-06 | 2005-02-10 | Rensselaer Polytechnic Institute | Rapid generation of nanoparticles from bulk solids at room temperature |
CN100521239C (en) * | 2003-03-17 | 2009-07-29 | Nxp股份有限公司 | Semiconductor device with isolation layer |
EP1610911B1 (en) * | 2003-03-31 | 2016-05-11 | MAHLE Behr GmbH & Co. KG | Heat exchanger and method for treating the surface of said heat exchanger |
JP4181435B2 (en) * | 2003-03-31 | 2008-11-12 | 日油株式会社 | Polyethylene glycol modified semiconductor fine particles, production method thereof, and biological diagnostic materials |
US7279832B2 (en) * | 2003-04-01 | 2007-10-09 | Innovalight, Inc. | Phosphor materials and illumination devices made therefrom |
US20040252488A1 (en) * | 2003-04-01 | 2004-12-16 | Innovalight | Light-emitting ceiling tile |
JP2004327229A (en) * | 2003-04-24 | 2004-11-18 | Konica Minolta Holdings Inc | Composition for forming conductive pattern, forming method for conductive pattern, and manufacturing method of composition |
WO2005016824A2 (en) * | 2003-05-05 | 2005-02-24 | The Research Foundation Of State University Of Newyork | Synthesis of nanoparticles by an emulsion-gas contacting process |
US20050250094A1 (en) * | 2003-05-30 | 2005-11-10 | Nanosphere, Inc. | Method for detecting analytes based on evanescent illumination and scatter-based detection of nanoparticle probe complexes |
US20070099233A1 (en) * | 2003-06-27 | 2007-05-03 | Stock Jeffrey B | Cross-reference |
EP1649263A2 (en) * | 2003-07-16 | 2006-04-26 | University of Reading | Composite nanoparticles |
US20060177376A1 (en) * | 2003-07-21 | 2006-08-10 | Dendritic Nanotechnologies, Inc. | Stabilized and chemically functionalized nanoparticles |
US20060240573A1 (en) * | 2003-07-29 | 2006-10-26 | Lamdagen, Llc | Optical system including nanostructures for biological or chemical sensing |
JP4418220B2 (en) * | 2003-09-09 | 2010-02-17 | 日立ソフトウエアエンジニアリング株式会社 | Nanoparticles with excellent durability and method for producing the same |
US7219017B2 (en) | 2003-09-11 | 2007-05-15 | Franco Vitaliano | Quantum information processing elements and quantum information processing platforms using such elements |
US7216038B2 (en) | 2003-09-11 | 2007-05-08 | Franco Vitaliano | Quantum information processing elements and quantum information processing platforms using such elements |
US7219018B2 (en) * | 2003-09-11 | 2007-05-15 | Franco Vitaliano | Quantum information processing elements and quantum information processing platforms using such elements |
WO2005034205A2 (en) * | 2003-10-06 | 2005-04-14 | Dow Corning Corporation | Self assembling nanoparticle-polymer hybrids |
AU2004282188B2 (en) * | 2003-10-15 | 2009-12-24 | Board Of Regents, The University Of Texas System | Multifunctional biomaterials as scaffolds for electronic, optical, magnetic, semiconducting, and biotechnological applications |
KR100697511B1 (en) * | 2003-10-21 | 2007-03-20 | 삼성전자주식회사 | Photocurable Semiconductor Nanocrystal, Photocurable Composition for Pattern Formation of Semiconductor Nanocrystal and Method of Patterning Nanocrystal using the same |
WO2005053649A1 (en) * | 2003-11-05 | 2005-06-16 | The Government Of The United States Of America As Represented By The Secretary Of Health And Human Services | Biofunctionalized quantum dots for biological imaging |
CA2545276C (en) * | 2003-11-05 | 2016-05-31 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Carbohydrate antigen-nanoparticle conjugates and uses thereof as antimetastatic agents in treating cancer |
FR2862955B1 (en) * | 2003-12-02 | 2006-03-10 | Commissariat Energie Atomique | INORGANIC NANOCRYSTALS WITH ORGANIC COATING LAYER, PROCESS FOR THEIR PREPARATION, AND MATERIALS THEREOF |
US7695642B2 (en) * | 2003-12-12 | 2010-04-13 | Life Technologies Corporation | Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties |
US7846412B2 (en) * | 2003-12-22 | 2010-12-07 | Emory University | Bioconjugated nanostructures, methods of fabrication thereof, and methods of use thereof |
US7361410B2 (en) * | 2003-12-29 | 2008-04-22 | Intel Corporation | External modification of composite organic inorganic nanoclusters comprising raman active organic compound |
US7799425B2 (en) * | 2004-02-04 | 2010-09-21 | Ebara Corporation | Composite nanoparticles method for producing the same |
US8048477B2 (en) * | 2004-02-19 | 2011-11-01 | Nanosolar, Inc. | Chalcogenide solar cells |
US20060057180A1 (en) * | 2004-02-20 | 2006-03-16 | Ashutosh Chilkoti | Tunable nonfouling surface of oligoethylene glycol |
US20070053845A1 (en) * | 2004-03-02 | 2007-03-08 | Shiladitya Sengupta | Nanocell drug delivery system |
WO2005084710A2 (en) * | 2004-03-02 | 2005-09-15 | Massachusetts Institute Of Technology | Nanocell drug delivery system |
CN1969190A (en) * | 2004-04-20 | 2007-05-23 | 爱默蕾大学 | Multimodality nanostructures, methods of fabrication thereof, and methods of use thereof |
US8128908B2 (en) * | 2004-04-30 | 2012-03-06 | University Of Florida Research Foundation, Inc. | Nanoparticles and their use for multifunctional bioimaging |
US7943396B2 (en) * | 2004-06-22 | 2011-05-17 | The Regents Of The University Of California | Peptide-coated nanoparticles with graded shell compositions |
US7405002B2 (en) | 2004-08-04 | 2008-07-29 | Agency For Science, Technology And Research | Coated water-soluble nanoparticles comprising semiconductor core and silica coating |
WO2006017746A2 (en) * | 2004-08-06 | 2006-02-16 | Heller Adam Ph D | Devices and methods of screening for neoplastic and inflammatory disease |
US7750352B2 (en) | 2004-08-10 | 2010-07-06 | Pinion Technologies, Inc. | Light strips for lighting and backlighting applications |
KR100604976B1 (en) * | 2004-09-03 | 2006-07-28 | 학교법인연세대학교 | Water-Soluble Nanoparticles Stabilized with Multi-Functional Group Ligands |
US7288134B2 (en) * | 2004-09-10 | 2007-10-30 | International Business Machines Corporation | Dumbbell-like nanoparticles and a process of forming the same |
US7534489B2 (en) * | 2004-09-24 | 2009-05-19 | Agency For Science, Technology And Research | Coated composites of magnetic material and quantum dots |
US20060073337A1 (en) * | 2004-10-01 | 2006-04-06 | Krzysztof Nauka | Conductive path made of metallic nanoparticles and conductive organic material |
WO2007011394A2 (en) * | 2004-10-18 | 2007-01-25 | Massachusetts Institute Of Technology | Methods to disperse and exfoliate nanoparticles |
US20060148104A1 (en) * | 2004-10-29 | 2006-07-06 | Massachusetts Institute Of Technology | Detection of ion channel or receptor activity |
FR2877571B1 (en) * | 2004-11-05 | 2007-04-13 | Nanobiotix Sarl | NANOPARTICLES WITH INTRACELLULAR TARGETING ELEMENT, PREPARATION AND USES |
US20060240590A1 (en) * | 2004-11-09 | 2006-10-26 | The Research Foundation Of State University Of New York | Controlled synthesis of nanowires, nanodiscs, and nanostructured materials using liquid crystalline templates |
JP4555055B2 (en) * | 2004-11-12 | 2010-09-29 | 日立ソフトウエアエンジニアリング株式会社 | Semiconductor nanoparticles with high luminescent properties |
US7514725B2 (en) * | 2004-11-30 | 2009-04-07 | Spire Corporation | Nanophotovoltaic devices |
US7524776B2 (en) * | 2004-11-30 | 2009-04-28 | Spire Corporation | Surface-activation of semiconductor nanostructures for biological applications |
JP2008524600A (en) * | 2004-12-16 | 2008-07-10 | インヴィトロジェン コーポレーション | Quantum dot-encoded bead set for multiplex assay calibration and quantification and method of use thereof |
US20060148103A1 (en) * | 2004-12-30 | 2006-07-06 | Yin-Peng Chen | Highly sensitive biological assays |
JP4928775B2 (en) * | 2005-01-06 | 2012-05-09 | 株式会社日立ソリューションズ | Semiconductor nanoparticle surface modification method |
DE602005021449D1 (en) | 2005-01-06 | 2010-07-08 | Hitachi Software Eng | Method for modifying the surface of semiconductor nanoparticles |
US8383014B2 (en) | 2010-06-15 | 2013-02-26 | Cabot Corporation | Metal nanoparticle compositions |
WO2006076606A2 (en) | 2005-01-14 | 2006-07-20 | Cabot Corporation | Optimized multi-layer printing of electronics and displays |
US7824466B2 (en) | 2005-01-14 | 2010-11-02 | Cabot Corporation | Production of metal nanoparticles |
TW200640596A (en) | 2005-01-14 | 2006-12-01 | Cabot Corp | Production of metal nanoparticles |
WO2006076609A2 (en) | 2005-01-14 | 2006-07-20 | Cabot Corporation | Printable electronic features on non-uniform substrate and processes for making same |
EP1851546A4 (en) * | 2005-02-01 | 2009-02-04 | Evident Technologies | Semiconductor nanocrystal complexes and methods of detecting molecular interactions using same |
JP4820981B2 (en) * | 2005-03-03 | 2011-11-24 | 国立大学法人山口大学 | Polymer compound for water-solubilizing nanoparticles and nanoparticles solubilized using the same |
WO2006096835A2 (en) | 2005-03-08 | 2006-09-14 | Molecular Probes, Inc. | Monitoring and manipulating cellular transmembrane potentials using nanostructures |
JP2008533157A (en) * | 2005-03-14 | 2008-08-21 | マサチューセッツ・インスティテュート・オブ・テクノロジー | Nanocells for diagnosis and treatment of diseases and disorders |
GB0505569D0 (en) * | 2005-03-18 | 2005-04-27 | Syngenta Ltd | Formulations |
US7405001B2 (en) | 2005-03-24 | 2008-07-29 | 3M Innovative Properties Company | Surface modified nanoparticle and method of preparing same |
US7172811B2 (en) * | 2005-03-24 | 2007-02-06 | 3M Innovative Properties Company | Methods of preparing polymer nanocomposite having surface modified nanoparticles |
WO2006105102A2 (en) * | 2005-03-28 | 2006-10-05 | The Research Foundation Of State University Of New York | Synthesis of nanostructured materials using liquid crystalline templates |
AU2006229599A1 (en) * | 2005-03-31 | 2006-10-05 | Agency For Science, Technology And Research | CDTE/GSH core-shell quantum dots |
US7897257B2 (en) * | 2005-04-18 | 2011-03-01 | Ge Healthcare Bio-Sciences Ab | Magnetic beads comprising an outer coating of hydrophilic porous polymer and method of making thereof |
ES2609919T3 (en) * | 2005-04-28 | 2017-04-25 | Ventana Medical Systems, Inc. | Enzymes conjugated to antibodies using a heterobifunctional PEG linker |
AU2006239154A1 (en) * | 2005-04-28 | 2006-11-02 | Ventana Medical Systems, Inc | Nanoparticle conjugates |
US8084001B2 (en) * | 2005-05-02 | 2011-12-27 | Cornell Research Foundation, Inc. | Photoluminescent silica-based sensors and methods of use |
JP2008540142A (en) * | 2005-05-04 | 2008-11-20 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Novel water-soluble nanocrystals containing low molecular weight coating reagents and methods for their preparation |
DE102005047807A1 (en) * | 2005-06-04 | 2006-12-07 | Solvay Infra Bad Hönningen GmbH | Modified nanoparticles |
US8845927B2 (en) | 2006-06-02 | 2014-09-30 | Qd Vision, Inc. | Functionalized nanoparticles and method |
US9297092B2 (en) | 2005-06-05 | 2016-03-29 | Qd Vision, Inc. | Compositions, optical component, system including an optical component, devices, and other products |
DE102005026485A1 (en) | 2005-06-09 | 2006-12-14 | Bayer Technology Services Gmbh | Hydrophilic nanoparticles with functional surface groups, their preparation and use |
CN101466847B (en) | 2005-06-15 | 2014-02-19 | 考利达基因组股份有限公司 | Single molecule arrays for genetic and chemical analysis |
WO2006136719A1 (en) * | 2005-06-22 | 2006-12-28 | L'oreal | Make-up compositions for keratinous materials |
WO2007002539A2 (en) * | 2005-06-24 | 2007-01-04 | Applied Nanoworks, Inc. | Nanoparticles and method of making thereof |
US8421231B2 (en) | 2005-07-01 | 2013-04-16 | National University Of Singapore | Electrically conductive composite |
GB0517382D0 (en) | 2005-08-26 | 2005-10-05 | Plasticell Ltd | Cell culture |
US8067506B2 (en) * | 2005-08-30 | 2011-11-29 | Agency For Science, Technology And Research | Water-soluble fluorescent particle comprising entangled fluorescent polymer and amphiphilic molecule |
JP2007079857A (en) * | 2005-09-13 | 2007-03-29 | Canon Inc | Server apparatus, client apparatuses and those control methods, computer program, storage medium |
US7713689B2 (en) * | 2005-09-15 | 2010-05-11 | Duke University | Non-fouling polymeric surface modification and signal amplification method for biomolecular detection |
US20070072309A1 (en) * | 2005-09-29 | 2007-03-29 | General Electric Company | Analytical compositions including nanometer-sized transducers, methods to make thereof, and devices therefrom |
EP2546360A1 (en) | 2005-10-07 | 2013-01-16 | Callida Genomics, Inc. | Self-assembled single molecule arrays and uses thereof |
JP2007101498A (en) * | 2005-10-07 | 2007-04-19 | Fujifilm Corp | Fluorescent probe and fluorescent detection method |
EP2527392B1 (en) * | 2005-10-14 | 2019-03-27 | Vive Crop Protection Inc. | Composite nanoparticles, nanoparticles and methods for producing same |
US7829772B2 (en) * | 2005-10-27 | 2010-11-09 | Clemson University Research Foundation | Fluorescent carbon nanoparticles |
JP2009523406A (en) * | 2005-11-15 | 2009-06-25 | オクソニカ・インコーポレーテッド | SERS-based method for detection of bioagents |
KR101167733B1 (en) * | 2005-11-16 | 2012-07-23 | 삼성전기주식회사 | Dispersant for nanoparticles having surfaces to which capping-ligands are bound, Method for dispersing the nanoparticles using the same and Nanoparticle thin film comprising the same |
WO2007060591A2 (en) * | 2005-11-22 | 2007-05-31 | Koninklijke Philips Electronics N. V. | Luminescent particle and method of detecting a biological entity using a luminescent particle |
US7465497B2 (en) * | 2005-11-23 | 2008-12-16 | General Electric Company | High dielectric constant nanocomposites, methods of manufacture thereof, and articles comprising the same |
CA2631005C (en) * | 2005-11-23 | 2017-02-28 | Ventana Medical Systems, Inc. | Molecular conjugate |
US20090305247A1 (en) * | 2005-11-30 | 2009-12-10 | Zhiqiang Gao | Nanoparticle and methods therefor |
DE602006008254D1 (en) * | 2005-12-06 | 2009-09-17 | Hitachi Software Eng | Method for modifying the surface of semiconductor nanoparticles |
US20090317802A1 (en) * | 2005-12-09 | 2009-12-24 | Bhatia Sangeeta N | Compositions and Methods to Monitor RNA Delivery to Cells |
US8409863B2 (en) | 2005-12-14 | 2013-04-02 | Becton, Dickinson And Company | Nanoparticulate chemical sensors using SERS |
DE102005060302A1 (en) * | 2005-12-16 | 2007-06-28 | Basf Coatings Ag | Aqueous coating material, useful for preparing e.g. thermoplastic and duroplastic materials, comprises an olefin saturated grafted ionically or non-ionically stabilized polyurethane, a surfactant or dispersion agent and an organic solvent |
WO2007102929A2 (en) * | 2005-12-30 | 2007-09-13 | Applera Corporation | Synthesis and use of cross-linked hydrophilic hollow spheres for encapsulating hydrophilic cargo |
US7723100B2 (en) | 2006-01-13 | 2010-05-25 | Becton, Dickinson And Company | Polymer coated SERS nanotag |
US7226752B1 (en) | 2006-01-19 | 2007-06-05 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Methods for detecting an analyte in a sample |
JP2009524834A (en) * | 2006-01-27 | 2009-07-02 | オクソニカ・インコーポレーテッド | Lateral flow immunoassay using an encapsulated detection format |
WO2008057127A2 (en) * | 2006-02-06 | 2008-05-15 | Massachusetts Institute Of Technology | Self-assembly of macromolecules on multilayered polymer surfaces |
CA2571904A1 (en) * | 2006-02-15 | 2007-08-15 | Fio Corporation | System and method of detecting pathogens |
SG170028A1 (en) | 2006-02-24 | 2011-04-29 | Callida Genomics Inc | High throughput genome sequencing on dna arrays |
EP1994180A4 (en) | 2006-02-24 | 2009-11-25 | Callida Genomics Inc | High throughput genome sequencing on dna arrays |
KR100713745B1 (en) * | 2006-02-27 | 2007-05-07 | 연세대학교 산학협력단 | Water-soluble magnetic or metal oxide nanoparticles coated with ligands and preparation method thereof |
US8849087B2 (en) | 2006-03-07 | 2014-09-30 | Qd Vision, Inc. | Compositions, optical component, system including an optical component, devices, and other products |
WO2007120441A2 (en) * | 2006-03-27 | 2007-10-25 | Los Alamos National Security, Llc | Nanophosphors for large area radiation detectors |
WO2007120762A2 (en) * | 2006-04-14 | 2007-10-25 | Cambrios Technologies Corporation | Fluorescent particles bound to multifunctional scaffolds and their uses |
US8858832B2 (en) * | 2006-05-23 | 2014-10-14 | The University Of Akron | Construction of quantum dots via a regioselective dendritic functionalized cellulose template |
KR20070113762A (en) * | 2006-05-26 | 2007-11-29 | 삼성전자주식회사 | Method for forming nanoparticle array using capillarity and nanopartlce array preparaed by the same |
US7625637B2 (en) * | 2006-05-31 | 2009-12-01 | Cabot Corporation | Production of metal nanoparticles from precursors having low reduction potentials |
US9212056B2 (en) | 2006-06-02 | 2015-12-15 | Qd Vision, Inc. | Nanoparticle including multi-functional ligand and method |
US8354160B2 (en) * | 2006-06-23 | 2013-01-15 | 3M Innovative Properties Company | Articles having durable hydrophobic surfaces |
US7696122B2 (en) * | 2006-07-05 | 2010-04-13 | Cabot Corporation | Electrocatalyst inks for fuel cell applications |
US20080245769A1 (en) * | 2006-07-17 | 2008-10-09 | Applied Nanoworks, Inc. | Nanoparticles and method of making thereof |
EP2044402B2 (en) * | 2006-07-24 | 2016-11-30 | Becton Dickinson and Company | Apparatus and method for performing an assay using magnetic particles |
KR101556798B1 (en) | 2006-10-05 | 2015-10-01 | 메사츄세츠 인스티튜트 어브 테크놀로지 | Multifunctional Encoded Particles for High-Throughput Analysis |
KR100830871B1 (en) * | 2006-10-11 | 2008-05-21 | 삼성전기주식회사 | Method for surface modification of nondispersible metal nanoparticles and modified metal nanoparticles for inkjet by the same method |
ES2714528T3 (en) | 2006-10-11 | 2019-05-28 | Agfa Nv | Sets of curable pigmented inkjet inks and methods for preparing such ink sets |
WO2008070318A2 (en) * | 2006-10-23 | 2008-06-12 | Cleveland State University | Nitric oxide sensor |
US7910302B2 (en) | 2006-10-27 | 2011-03-22 | Complete Genomics, Inc. | Efficient arrays of amplified polynucleotides |
KR100768632B1 (en) * | 2006-10-30 | 2007-10-18 | 삼성전자주식회사 | Method for dispersing nanoparticles and method for producing nanoparticles thin film using the same |
ES2761949T3 (en) | 2006-11-01 | 2020-05-21 | Ventana Med Syst Inc | Haptens, hapten conjugates, compositions thereof and method for their preparation and use |
US7754329B2 (en) * | 2006-11-06 | 2010-07-13 | Evident Technologies, Inc. | Water-stable semiconductor nanocrystal complexes and methods of making same |
US20090111706A1 (en) | 2006-11-09 | 2009-04-30 | Complete Genomics, Inc. | Selection of dna adaptor orientation by amplification |
WO2008063658A2 (en) | 2006-11-21 | 2008-05-29 | Qd Vision, Inc. | Semiconductor nanocrystals and compositions and devices including same |
WO2008063652A1 (en) | 2006-11-21 | 2008-05-29 | Qd Vision, Inc. | Blue emitting semiconductor nanocrystals and compositions and devices including same |
WO2008063653A1 (en) | 2006-11-21 | 2008-05-29 | Qd Vision, Inc. | Semiconductor nanocrystals and compositions and devices including same |
KR101207124B1 (en) | 2006-11-24 | 2012-11-30 | 주식회사 엘지화학 | Inorganic nano particle coating solution containing hydrophilic group-modified acrylic resin, and inorganic nano particle film |
US20080213377A1 (en) * | 2006-12-08 | 2008-09-04 | Bhatia Sangeeta N | Delivery of Nanoparticles and/or Agents to Cells |
EP1935434A1 (en) * | 2006-12-19 | 2008-06-25 | Novosom AG | Construction and use of transfection enhancer elements |
EP2109900A1 (en) * | 2007-01-08 | 2009-10-21 | Plextronics, Inc. | Quantum dot photovoltaic device |
US20080193766A1 (en) * | 2007-02-13 | 2008-08-14 | Northern Nanotechnologies | Control of Transport to and from Nanoparticle Surfaces |
KR101434325B1 (en) | 2007-03-05 | 2014-08-27 | 비브 나노, 인코포레이티드 | Control of transport properties to and from nanoparticle surfaces |
US7758961B2 (en) * | 2007-03-22 | 2010-07-20 | Milliken & Company | Functionalized nanoparticles and their use in particle/bulk material systems |
US7682789B2 (en) * | 2007-05-04 | 2010-03-23 | Ventana Medical Systems, Inc. | Method for quantifying biomolecules conjugated to a nanoparticle |
EP3561513A1 (en) | 2007-05-23 | 2019-10-30 | Ventana Medical Systems, Inc. | Polymeric carriers for immunohistochemistry and in situ hybridization |
FR2916660B1 (en) * | 2007-05-28 | 2010-10-15 | Commissariat Energie Atomique | THIN LAYERS OF CONJUGATED POLYMERS CONTAINING INORGANIC NANOPARTICLES AND METHOD FOR THE PRODUCTION THEREOF |
US7816135B2 (en) | 2007-07-05 | 2010-10-19 | Becton, Dickinson And Company | Method of analyzing lymphocytes |
US9446953B2 (en) * | 2007-07-12 | 2016-09-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fabrication of metallic hollow nanoparticles |
KR100949398B1 (en) * | 2007-07-19 | 2010-03-25 | 부산대학교 산학협력단 | Multifunctional microcarrier for water dispersive nanoparticles and encapsulation method for the same |
EP2185598A4 (en) * | 2007-08-23 | 2011-02-09 | Agency Science Tech & Res | Polymerization on particle surface with reverse micelle |
WO2009079061A2 (en) * | 2007-09-25 | 2009-06-25 | The Texas A & M University System | Water-soluble nanoparticles with controlled aggregate sizes |
KR100943839B1 (en) * | 2007-10-31 | 2010-02-24 | 한국과학기술연구원 | Method for the production of bio-imaging nanoparticles with high yield by early introduction of irregular structure |
US9943490B2 (en) * | 2007-11-05 | 2018-04-17 | The Trustees Of Princeton University | Composite flash-precipitated nanoparticles |
US9662389B2 (en) * | 2008-03-31 | 2017-05-30 | Duke University | Functionalized metal-coated energy converting nanoparticles, methods for production thereof and methods for use |
RU2367513C2 (en) | 2007-11-21 | 2009-09-20 | Учреждение Российской Академии Наук Институт Биохимической Физики Им. Н.М. Эмануэля Ран (Ибхф Ран) | Method for preparation of polymer coating on particles surface |
US9551026B2 (en) | 2007-12-03 | 2017-01-24 | Complete Genomincs, Inc. | Method for nucleic acid detection using voltage enhancement |
EP2687365B1 (en) | 2007-12-27 | 2019-02-20 | Lockheed Martin Corporation | Method for fabricating refractory metal carbides |
US7999025B2 (en) * | 2008-01-28 | 2011-08-16 | University Of Utah Research Foundation | Asymmetrically-functionalized nanoparticles organized on one-dimensional chains |
US7785998B2 (en) * | 2008-02-21 | 2010-08-31 | Micron Technology, Inc. | Methods of forming dispersions of nanoparticles, and methods of forming flash memory cells |
US8021517B2 (en) * | 2008-02-28 | 2011-09-20 | Honeywell Asca Inc. | Use of fluorescent nanoparticles to make on-line measurements of cross-web and machine-direction component and property variations in paper and continuous web products |
US8559002B2 (en) * | 2008-03-20 | 2013-10-15 | Drexel University | Method for the formation of SERS substrates |
US9027633B2 (en) * | 2008-03-24 | 2015-05-12 | Auburn University | Nanoparticle-enhanced phase change materials (NEPCM) with improved thermal energy storage |
EP2260081B1 (en) * | 2008-03-25 | 2014-11-26 | Xerox Corporation | Silica encapsulated organic nanopigments and method of making same |
US8796184B2 (en) | 2008-03-28 | 2014-08-05 | Sentilus, Inc. | Detection assay devices and methods of making and using the same |
US9525148B2 (en) | 2008-04-03 | 2016-12-20 | Qd Vision, Inc. | Device including quantum dots |
EP2283342B1 (en) | 2008-04-03 | 2018-07-11 | Samsung Research America, Inc. | Method for preparing a light-emitting device including quantum dots |
US10724903B2 (en) * | 2008-05-23 | 2020-07-28 | Nanyang Technological University | Polymer encapsulated particles as surface enhanced Raman scattering probes |
US7858953B2 (en) * | 2008-05-23 | 2010-12-28 | Honeywell Asca Inc. | Use of fluorescent nanoparticles to measure individual layer thicknesses or composition in multi-layer films and to calibrate secondary measurement devices |
WO2009142763A1 (en) * | 2008-05-23 | 2009-11-26 | Swaminathan Ramesh | Hybrid photovoltaic cell module |
CA2720728C (en) | 2008-06-05 | 2018-04-03 | Ventana Medical Systems, Inc. | Compositions comprising nanomaterials and method for using such compositions for histochemical processes |
CN102119331A (en) | 2008-06-05 | 2011-07-06 | 生命科技公司 | Activation and monitoring of cellular transmembrane potentials |
EP2303771B1 (en) * | 2008-06-30 | 2018-05-30 | Life Technologies Corporation | Methods for isolating and purifying nanoparticles from a complex medium |
US8679543B2 (en) * | 2008-07-02 | 2014-03-25 | Joseph Bartel | Stable indium-containing semiconductor nanocrystals |
PL216549B1 (en) * | 2008-08-19 | 2014-04-30 | Univ Jagielloński | Method of manufacturing of conductive carbon layers on the powder carriers |
US8481270B2 (en) | 2008-08-22 | 2013-07-09 | Ventana Medical Systems, Inc. | Method for chromogenic detection of two or more target molecules in a single sample |
CN101343540B (en) * | 2008-08-28 | 2011-02-16 | 上海交通大学 | Method for preparing quantum point with hyperbranched polymer supermolecule nano-reactor |
WO2010028217A1 (en) * | 2008-09-05 | 2010-03-11 | The Board Of Trustees Of The University Of Illinois | Poly(ethylene glycol) methyl ether carbodiimide coupling reagents for the biological and chemical functionalization of water soluble nanoparticles |
US20110229397A1 (en) * | 2008-10-03 | 2011-09-22 | Life Technologies Corporation | Process and apparatus for continuous flow synthesis of nanocrystals |
US9061903B2 (en) * | 2008-10-03 | 2015-06-23 | Life Technologies Corporation | Sulfonate modified nanocrystals |
US20110226995A1 (en) * | 2008-10-03 | 2011-09-22 | Life Technologies Corporation | Compositions and methods for functionalizing or crosslinking ligands on nanoparticle surfaces |
CN102239109A (en) | 2008-10-03 | 2011-11-09 | 生命科技公司 | Methods for preparation of nanocrystals using a weak electron transfer agent and mismatched shell precursors |
WO2010040032A2 (en) | 2008-10-03 | 2010-04-08 | Life Technologies Corporation | Methods for preparation of znte nanocrystals |
US8512417B2 (en) | 2008-11-14 | 2013-08-20 | Dune Sciences, Inc. | Functionalized nanoparticles and methods of forming and using same |
WO2010062267A1 (en) * | 2008-11-25 | 2010-06-03 | Agency For Science, Technology And Research | Method of forming a rare earth metal doped nanoparticle |
KR101525523B1 (en) * | 2008-12-22 | 2015-06-03 | 삼성전자 주식회사 | Semiconductor Nanocrystal Composite |
KR20110135894A (en) * | 2009-02-26 | 2011-12-20 | 피피티 리서치 , 인코포레이티드 | Corrosion inhibiting compositions |
US11235062B2 (en) * | 2009-03-06 | 2022-02-01 | Metaqor Llc | Dynamic bio-nanoparticle elements |
US11096901B2 (en) | 2009-03-06 | 2021-08-24 | Metaqor Llc | Dynamic bio-nanoparticle platforms |
US8986836B2 (en) * | 2009-03-19 | 2015-03-24 | Ohio University | Microspheres and their methods of preparation |
EP2413901A4 (en) * | 2009-03-30 | 2015-05-06 | Cerulean Pharma Inc | Polymer-agent conjugates, particles, compositions, and related methods of use |
WO2010114768A1 (en) * | 2009-03-30 | 2010-10-07 | Cerulean Pharma Inc. | Polymer-epothilone conjugates, particles, compositions, and related methods of use |
WO2010114770A1 (en) * | 2009-03-30 | 2010-10-07 | Cerulean Pharma Inc. | Polymer-agent conjugates, particles, compositions, and related methods of use |
DE102009017607B4 (en) * | 2009-04-08 | 2011-11-17 | Namos Gmbh | Process for the functionalization of semiconductor nanoparticles with a detection molecule, the semiconductor nanoparticles produced thereby and their use |
GB0914195D0 (en) | 2009-08-13 | 2009-09-16 | Plasticell Ltd | Vessel for culturing cells |
CN102667473B (en) | 2009-10-12 | 2016-06-08 | 文塔纳医疗系统公司 | Multi-modal contrast and bright field background rendering for enhanced pathology determination and multi-analyte detection of tissue |
WO2011050046A1 (en) | 2009-10-20 | 2011-04-28 | Soane Energy, Llc | Proppants for hydraulic fracturing technologies |
GB0918564D0 (en) | 2009-10-22 | 2009-12-09 | Plasticell Ltd | Nested cell encapsulation |
US8378075B2 (en) * | 2009-10-27 | 2013-02-19 | The United States Of America, As Represented By The Secretary Of The Navy | Covalent attachment of peptides and biological molecules to luminescent semiconductor nanocrystals |
EP3483610A1 (en) | 2009-11-09 | 2019-05-15 | University Of Washington Center For Commercialization | Functionalized chromophoric polymer dots and bioconjugates thereof |
US8920681B2 (en) | 2009-12-30 | 2014-12-30 | Korea University Research And Business Foundation | Electrically conductive polymers with enhanced conductivity |
CA2780827A1 (en) | 2009-12-31 | 2011-07-07 | Ventana Medical Systems, Inc. | Methods for producing uniquely specific nucleic acid probes |
EP2531569B1 (en) | 2010-02-02 | 2017-01-25 | Ventana Medical Systems, Inc. | Composition and method for stabilizing fluorescent particles |
USPP22463P3 (en) * | 2010-02-16 | 2012-01-17 | Menachem Bornstein | Gypsophila plant named ‘Pearl Blossom’ |
JP2013520961A (en) | 2010-02-26 | 2013-06-10 | ヴェンタナ メディカル システムズ, インク. | Cytogenetic analysis of metaphase chromosomes |
EP2539355B1 (en) | 2010-02-26 | 2016-10-05 | Ventana Medical Systems, Inc. | In-situ hybridization with polytag probes |
EP3696139A1 (en) | 2010-04-23 | 2020-08-19 | Pixelligent Technologies, LLC | Synthesis, capping and dispersion of nanocrystals |
KR20130096161A (en) | 2010-04-28 | 2013-08-29 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Articles including nanosilica-based primers for polymer coatings and methods |
CN102918093B (en) | 2010-04-28 | 2017-04-12 | 3M创新有限公司 | Silicone-based material |
MX2012013037A (en) | 2010-05-10 | 2013-07-29 | Univ California | Endoribonuclease compositions and methods of use thereof. |
CN106691462B (en) | 2010-05-17 | 2020-11-10 | 申提留斯控股有限公司 | Detection device and related method of use |
CA2802059C (en) | 2010-06-07 | 2020-05-12 | Firefly Bioworks, Inc. | Nucleic acid detection and quantification by post-hybridization labeling and universal encoding |
US20130109019A1 (en) | 2010-07-02 | 2013-05-02 | Adrian E. Murillo | Hapten conjugates for target detection |
WO2012007725A2 (en) | 2010-07-16 | 2012-01-19 | Plasticell Ltd | Method of reprogramming a cell |
US11739366B2 (en) | 2010-07-23 | 2023-08-29 | Astellas Institute For Regenerative Medicine | Methods for detection of rare subpopulations of cells and highly purified compositions of cells |
US20120034603A1 (en) | 2010-08-06 | 2012-02-09 | Tandem Diagnostics, Inc. | Ligation-based detection of genetic variants |
US20130261003A1 (en) | 2010-08-06 | 2013-10-03 | Ariosa Diagnostics, In. | Ligation-based detection of genetic variants |
EP2625135B1 (en) | 2010-10-04 | 2017-08-02 | 3M Innovative Properties Company | Method of modifying dissolution rate of particles by addition of hydrophobic nanoparticles |
KR20130139958A (en) | 2010-10-06 | 2013-12-23 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Anti-reflective articles with nanosilica-based coatings and barrier layer |
WO2012054525A2 (en) | 2010-10-18 | 2012-04-26 | University of Washington Center for Commercialization | Chromophoric polymer dots |
KR101945383B1 (en) | 2010-10-27 | 2019-02-07 | 픽셀리전트 테크놀로지스 엘엘씨 | Synthesis, capping and dispersion of nanocrystals |
CN102557112A (en) * | 2010-12-08 | 2012-07-11 | 江南大学 | Method for preparing nano CdS particles by using switchable surfactant micelle |
CN102531041A (en) * | 2010-12-10 | 2012-07-04 | 江南大学 | Method for preparing nano cadmium dating sulphide (CdS) particles with switching mode surfactant micro-emulsion |
US8695618B2 (en) | 2010-12-22 | 2014-04-15 | Carnegie Mellon University | 3D chemical pattern control in 2D fluidics devices |
US10224398B2 (en) | 2010-12-28 | 2019-03-05 | Life Technologies Corporation | Preparation of nanocrystals with mixtures of organic ligands |
EP3088534B1 (en) | 2010-12-30 | 2018-08-01 | Ventana Medical Systems, Inc. | Enhanced deposition of chromogens utilizing pyrimidine analogs |
US8679858B2 (en) | 2011-01-11 | 2014-03-25 | The Board Of Trustees Of The Leland Stanford Junior University | Lanthanide mass dots: nanoparticle isotope tags |
US10131947B2 (en) | 2011-01-25 | 2018-11-20 | Ariosa Diagnostics, Inc. | Noninvasive detection of fetal aneuploidy in egg donor pregnancies |
US20120190021A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Detection of genetic abnormalities |
WO2012118745A1 (en) | 2011-02-28 | 2012-09-07 | Arnold Oliphant | Assay systems for detection of aneuploidy and sex determination |
US9448231B2 (en) | 2011-02-28 | 2016-09-20 | Ventana Medical Systems, Inc. | Application of quantum dots for nuclear staining |
US9562259B2 (en) | 2011-03-14 | 2017-02-07 | Ventana Medical Systems, Inc. | Method of analyzing chromosomal inversions |
WO2012151111A1 (en) | 2011-05-04 | 2012-11-08 | Htg Molecular Diagnostics, Inc. | Quantitative nuclease protection assay (qnpa) and sequencing (qnps) improvements |
CA2840558C (en) | 2011-07-01 | 2021-05-11 | Htg Molecular Diagnostics, Inc. | Methods of detecting gene fusions using first and second nucleic acid probes |
US20140000891A1 (en) | 2012-06-21 | 2014-01-02 | Self-Suspending Proppant Llc | Self-suspending proppants for hydraulic fracturing |
US9868896B2 (en) | 2011-08-31 | 2018-01-16 | Self-Suspending Proppant Llc | Self-suspending proppants for hydraulic fracturing |
RU2602250C2 (en) | 2011-08-31 | 2016-11-10 | Селф-Саспендинг Проппант Ллс | Self-suspending proppants for hydraulic fracturing |
US9297244B2 (en) | 2011-08-31 | 2016-03-29 | Self-Suspending Proppant Llc | Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer |
EP3604555A1 (en) | 2011-10-14 | 2020-02-05 | President and Fellows of Harvard College | Sequencing by structure assembly |
WO2013057586A1 (en) | 2011-10-19 | 2013-04-25 | Oslo Universitetssykehus Hf | Compositions and methods for producing soluble t - cell receptors |
US9359689B2 (en) | 2011-10-26 | 2016-06-07 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
KR101739576B1 (en) * | 2011-10-28 | 2017-05-25 | 삼성전자주식회사 | Semiconductor nanocrystal-polymer micronized composite, method of preparing the same, and optoelectronic device |
US10837879B2 (en) | 2011-11-02 | 2020-11-17 | Complete Genomics, Inc. | Treatment for stabilizing nucleic acid arrays |
SG10201604896TA (en) | 2011-12-16 | 2016-08-30 | Moderna Therapeutics Inc | Modified nucleoside, nucleotide, and nucleic acid compositions |
ES2675307T3 (en) | 2011-12-22 | 2018-07-10 | Centre Hospitalier Universitaire Vaudois (Chuv) | Selective plasma activation for medical implants and wound healing devices |
KR102086729B1 (en) * | 2011-12-22 | 2020-03-10 | 나노코 테크놀로지스 리미티드 | Surface modified nanoparticles |
WO2013101902A2 (en) | 2011-12-30 | 2013-07-04 | University Of Washington, Through Its Center For Commercialization | Chromophoric polymer dots with narrow-band emission |
WO2013108126A2 (en) | 2012-01-16 | 2013-07-25 | University Of Oslo | Methyltransferases and uses thereof |
CN102585801A (en) * | 2012-01-29 | 2012-07-18 | 上海交通大学 | Preparation method of quantum dot-hyperbranched polyether nanocomposite-nitrogen oxide fluorescent probe |
US10067139B2 (en) * | 2012-02-03 | 2018-09-04 | University Of Washington Through Its Center For Commercialization | Polyelectrolyte-coated polymer dots and related methods |
US20130236986A1 (en) * | 2012-02-20 | 2013-09-12 | Cerulean Pharma Inc. | Methods of separating nucleic acid polymer conjugates |
US20130244909A1 (en) | 2012-03-09 | 2013-09-19 | Firefly Bioworks, Inc. | Methods and apparatus for classification and quantification of multifunctional objects |
CA2868996A1 (en) | 2012-04-02 | 2013-10-10 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
WO2013151666A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides for the production of biologics and proteins associated with human disease |
WO2013166024A1 (en) | 2012-04-30 | 2013-11-07 | Tufts University | Digital quantification of single molecules |
WO2013167387A1 (en) | 2012-05-10 | 2013-11-14 | Ventana Medical Systems, Inc. | Uniquely specific probes for pten, pik3ca, met, top2a, and mdm2 |
ES2928691T3 (en) | 2012-05-21 | 2022-11-22 | Scripps Research Inst | Sample preparation methods |
US9914967B2 (en) | 2012-06-05 | 2018-03-13 | President And Fellows Of Harvard College | Spatial sequencing of nucleic acids using DNA origami probes |
US9488823B2 (en) | 2012-06-07 | 2016-11-08 | Complete Genomics, Inc. | Techniques for scanned illumination |
US9628676B2 (en) | 2012-06-07 | 2017-04-18 | Complete Genomics, Inc. | Imaging systems with movable scan mirrors |
US8476206B1 (en) * | 2012-07-02 | 2013-07-02 | Ajay P. Malshe | Nanoparticle macro-compositions |
EP2872646B1 (en) | 2012-07-12 | 2017-08-30 | Institut National de la Sante et de la Recherche Medicale (INSERM) | Methods for predicting the survival time and treatment responsiveness of a patient suffering from a solid cancer with a signature of at least 7 genes |
PE20142297A1 (en) | 2012-07-20 | 2014-12-19 | Harvard College | CELL-BASED QUALITY CONTROLLED BIOASSAYS FOR NUTRICEUTIC AND MEDICINAL PRODUCTS |
KR20140032811A (en) | 2012-09-07 | 2014-03-17 | 삼성전자주식회사 | Backlight unit and liquid crystal display having the same |
WO2014048942A1 (en) | 2012-09-25 | 2014-04-03 | Ventana Medical Systems, Inc. | Probes for pten, pik3ca, met, and top2a, and method for using the probes |
JP6147860B2 (en) | 2012-09-27 | 2017-06-14 | ロディア オペレーションズRhodia Operations | Method for making silver nanostructures and copolymers useful in the same |
US9476089B2 (en) | 2012-10-18 | 2016-10-25 | President And Fellows Of Harvard College | Methods of making oligonucleotide probes |
WO2014139979A1 (en) | 2013-03-12 | 2014-09-18 | Ventana Medical Systems, Inc. | Quantum dot in situ hybridization |
US10258698B2 (en) | 2013-03-14 | 2019-04-16 | Modernatx, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
WO2014153051A1 (en) | 2013-03-14 | 2014-09-25 | University Of Washington Through Its Center For Commercialization | Polymer dot compositions and related methods |
US9540685B2 (en) | 2013-03-15 | 2017-01-10 | President And Fellows Of Harvard College | Methods of identifying homologous genes using FISH |
GB201306589D0 (en) | 2013-04-11 | 2013-05-29 | Abeterno Ltd | Live cell imaging |
ITRM20130269A1 (en) | 2013-05-07 | 2014-11-08 | Univ Bologna Alma Mater | METHOD FOR THE CONTROL OF QUANTUM DOTS SOLUBILITY |
EP3004847B1 (en) | 2013-06-03 | 2019-04-10 | Ventana Medical Systems, Inc. | Fluorescence imaging system for tissue detection |
US9925478B2 (en) * | 2013-06-28 | 2018-03-27 | University Of South Carolina | Purification of nanocrystals by gel permeation chromatography and the effect of excess ligands on shell growth and ligand exchange |
US20160175254A1 (en) * | 2013-08-07 | 2016-06-23 | University Of Zululand | The synthesis of core-shell metal-semiconductor nanomaterials |
EP3041934A1 (en) | 2013-09-03 | 2016-07-13 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
EP3041938A1 (en) | 2013-09-03 | 2016-07-13 | Moderna Therapeutics, Inc. | Circular polynucleotides |
WO2015036405A1 (en) | 2013-09-10 | 2015-03-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing and treating basal cell carcinoma |
WO2015051214A1 (en) | 2013-10-03 | 2015-04-09 | Moderna Therapeutics, Inc. | Polynucleotides encoding low density lipoprotein receptor |
WO2015069787A1 (en) | 2013-11-05 | 2015-05-14 | Htg Molecular Diagnostics, Inc. | Methods for detecting nucleic acids |
EP3617322A1 (en) | 2014-02-24 | 2020-03-04 | Ventana Medical Systems, Inc. | Automated rna detection using labeled 2 -o-methyl rna oligonucleotide probes and signal amplification systems |
US9932521B2 (en) | 2014-03-05 | 2018-04-03 | Self-Suspending Proppant, Llc | Calcium ion tolerant self-suspending proppants |
EP3148713A4 (en) * | 2014-05-27 | 2018-01-17 | Artificial Cell Technologies, Inc. | Automated layer by layer construction of multilayer coated cores by tff |
EP3152577B1 (en) | 2014-06-06 | 2018-07-18 | Ventana Medical Systems, Inc. | Significance of intratumoral her2 heterogeneity in breast cancer and uses therefor |
WO2016011226A1 (en) | 2014-07-16 | 2016-01-21 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
JP6806668B2 (en) | 2014-08-19 | 2021-01-06 | プレジデント アンド フェローズ オブ ハーバード カレッジ | RNA-induced system for probing and mapping nucleic acids |
CN104181141B (en) * | 2014-08-30 | 2016-08-24 | 西安电子科技大学 | Luminescent material composite sample room data analysing method based on genetic algorithm |
EP3913066A1 (en) | 2014-09-09 | 2021-11-24 | Igenomx International Genomics Corporation | Compositions for rapid nucleic acid library preparation |
EP3198276B1 (en) | 2014-09-24 | 2023-09-20 | Exscientia GmbH | Monolayer of pbmcs or bone-marrow cells and uses thereof |
EP3009147A1 (en) | 2014-10-16 | 2016-04-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for treating resistant glioblastoma |
JP6482828B2 (en) * | 2014-11-17 | 2019-03-13 | 国立大学法人 筑波大学 | Dispersant for inorganic nanomaterials |
ES2770055T3 (en) | 2014-11-21 | 2020-06-30 | Nanostring Technologies Inc | Sequencing without enzyme or amplification |
US20180010194A1 (en) | 2015-01-12 | 2018-01-11 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods for the Diagnosis of Pancreatic Cancer |
DK3254110T3 (en) | 2015-02-03 | 2020-05-18 | Ventana Med Syst Inc | Histochemical test to assess programmed death ligand 1 expression (pd-l1) |
CN104749147B (en) * | 2015-03-09 | 2017-07-04 | 西安电子科技大学 | A kind of method for optimizing analysis luminescent material performance and component |
CA2977000A1 (en) | 2015-03-16 | 2016-09-22 | Ventana Medical Systems, Inc. | Materials and methods for detecting androgen receptor splice variants and uses thereof |
EP3283522A1 (en) | 2015-04-17 | 2018-02-21 | Spring Bioscience Corporation | Antibodies, compositions, and immunohistochemistry methods for detecting c4.4a |
WO2016189065A1 (en) | 2015-05-26 | 2016-12-01 | Ventana Medical Systems, Inc. | Method and system for assessing stain quality for in-situ hybridization and immunohistochemistry |
JP6962914B2 (en) | 2015-07-20 | 2021-11-05 | センティルス ホールディングカンパニー エルエルシーSentilus Holdco, Llc | Chips, detectors, and how they are manufactured and used |
US11458205B2 (en) | 2015-08-04 | 2022-10-04 | Duke University | Genetically encoded intrinsically disordered stealth polymers for delivery and methods of using same |
WO2017029391A1 (en) | 2015-08-20 | 2017-02-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New method for treating cancer |
WO2017055320A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of cytotoxic lymphocytes in a tissue sample |
WO2017055322A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of neutrophils in a tissue sample |
WO2017055319A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of b cells in a tissue sample |
WO2017055325A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of nk cells in a tissue sample |
WO2017055327A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of endothelial cells in a tissue sample |
WO2017055326A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of myeloid dendritic cells in a tissue sample |
WO2017055321A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of fibroblasts in a tissue sample |
WO2017055324A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of cells of monocytic origin in a tissue sample |
JP6784485B2 (en) * | 2015-09-30 | 2020-11-11 | ニチハ株式会社 | Manufacturing method of building materials |
WO2017060397A1 (en) | 2015-10-09 | 2017-04-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of subjects suffering from melanoma metastases |
WO2017067944A1 (en) | 2015-10-19 | 2017-04-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of subjects suffering from triple negative breast cancer |
CN108449995B (en) | 2015-11-06 | 2022-02-01 | 文塔纳医疗系统公司 | Representative diagnosis |
ES2761266T3 (en) | 2015-11-10 | 2020-05-19 | Inst Nat Sante Rech Med | Methods for predicting the survival time of patients with decompensated alcoholic cirrhosis |
US11752213B2 (en) | 2015-12-21 | 2023-09-12 | Duke University | Surfaces having reduced non-specific binding and antigenicity |
DK3394093T3 (en) | 2015-12-23 | 2022-04-19 | Modernatx Inc | PROCEDURES FOR USING OX40 LIGAND CODING POLYNUCLEOTIDES |
EP3400023A1 (en) | 2016-01-10 | 2018-11-14 | ModernaTX, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
US10760135B2 (en) | 2016-01-13 | 2020-09-01 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods for predicting pancreatic cancer treatment response |
WO2017182834A1 (en) | 2016-04-19 | 2017-10-26 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New method for treating resistant glioblastoma |
AU2017268257B2 (en) | 2016-05-16 | 2023-09-07 | Bruker Spatial Biology, Inc. | Methods for detecting target nucleic acids in a sample |
EP3463452A1 (en) | 2016-05-24 | 2019-04-10 | Institut National de la Sante et de la Recherche Medicale (INSERM) | Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd) |
WO2017210476A1 (en) | 2016-06-01 | 2017-12-07 | Duke University | Nonfouling biosensors |
US11060147B2 (en) | 2016-06-14 | 2021-07-13 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods for predicting acute severe colitis treatment response |
WO2018011107A1 (en) | 2016-07-11 | 2018-01-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of er-alpha 46 in methods and kits for assessing the status of breast cancer |
WO2018011166A2 (en) | 2016-07-12 | 2018-01-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of myeloid dendritic cells in a tissue sample |
WO2018046736A1 (en) | 2016-09-12 | 2018-03-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from cancer |
WO2018046738A1 (en) | 2016-09-12 | 2018-03-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from cancer |
WO2018054960A1 (en) | 2016-09-21 | 2018-03-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting and treating resistance to chemotherapy in npm-alk(+) alcl |
US20200016177A1 (en) | 2016-09-22 | 2020-01-16 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods and pharmaceutical compositions for reprograming immune environment in a subject in need thereof |
US11155584B2 (en) | 2016-09-23 | 2021-10-26 | Duke University | Unstructured non-repetitive polypeptides having LCST behavior |
EP3541958A1 (en) | 2016-11-15 | 2019-09-25 | Ventana Medical Systems, Inc. | Compositions and methods for prognosing and treating colorectal cancer |
CA3043489A1 (en) | 2016-11-21 | 2018-05-24 | Nanostring Technologies, Inc. | Chemical compositions and methods of using same |
WO2018104891A1 (en) * | 2016-12-09 | 2018-06-14 | Sabic Global Technologies B.V. | Quantum dot film and applications thereof |
JP2020514701A (en) | 2016-12-19 | 2020-05-21 | ヴェンタナ メディカル システムズ, インク. | Method and system for quantitative immunohistochemistry |
WO2018122249A1 (en) | 2016-12-28 | 2018-07-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from a microsatellite stable colorectal cancer |
WO2018122245A1 (en) | 2016-12-28 | 2018-07-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting the survival time of patients suffering from cms3 colorectal cancer |
US11648200B2 (en) | 2017-01-12 | 2023-05-16 | Duke University | Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature triggered hierarchical self-assembly |
WO2018136201A1 (en) * | 2017-01-20 | 2018-07-26 | National Technology & Engineering Solutions Of Sandia, Llc (Ntess) | Self-assembled nanoparticle film for nanostructure-initiator mass spectrometry (nims) |
WO2018146239A1 (en) | 2017-02-10 | 2018-08-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Biomarker for outcome in aml patients |
EP3367098A1 (en) | 2017-02-24 | 2018-08-29 | CeMM - Forschungszentrum für Molekulare Medizin GmbH | Methods for determining interaction between biological cells |
WO2018162404A1 (en) | 2017-03-06 | 2018-09-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Biomarker for outcome in aml patients |
WO2018172540A1 (en) | 2017-03-24 | 2018-09-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method to predict the progression of alzheimer's disease |
US11230736B2 (en) | 2017-03-29 | 2022-01-25 | Inserm (Institut National De La Santé De La Recherche Médicale) | Methods for assessing pregnancy outcome |
WO2018189215A1 (en) | 2017-04-12 | 2018-10-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for predicting the survival time of a patient suffering from hepatocellular carcinoma |
US11554097B2 (en) | 2017-05-15 | 2023-01-17 | Duke University | Recombinant production of hybrid lipid-biopolymer materials that self-assemble and encapsulate agents |
EP3625246A1 (en) | 2017-05-18 | 2020-03-25 | ModernaTX, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
AU2018276056A1 (en) * | 2017-05-30 | 2020-01-16 | Ellume Limited | Nanoparticle aggregates |
KR20200015932A (en) | 2017-06-07 | 2020-02-13 | 리제너론 파마슈티칼스 인코포레이티드 | Compositions and Methods for Enzyme Internalization |
WO2019006374A1 (en) | 2017-06-30 | 2019-01-03 | Duke University | Order and disorder as a design principle for stimuli-responsive biopolymer networks |
WO2019038219A1 (en) | 2017-08-21 | 2019-02-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New prognostic method of pancreatic cancer |
WO2019043138A1 (en) | 2017-09-01 | 2019-03-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for predicting the outcome of a cancer |
US11579147B2 (en) | 2017-09-25 | 2023-02-14 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of VNN1 as a biomarker and a therapeutic target in sarcomas |
CN111295588A (en) | 2017-10-31 | 2020-06-16 | 分子医学研究中心责任有限公司 | Method for determining the selectivity of a test compound |
CN111656179B (en) | 2017-11-13 | 2023-11-03 | 豪夫迈·罗氏有限公司 | Device for sample analysis using epitope electrophoresis |
WO2019104070A1 (en) | 2017-11-21 | 2019-05-31 | Nanostring Technologies, Inc. | O-nitrobenzyl photocleavable bifunctional linker |
JP2021512899A (en) | 2018-02-07 | 2021-05-20 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | Methods and Compositions for Therapeutic Protein Delivery |
WO2019207030A1 (en) | 2018-04-26 | 2019-10-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer |
SG11202011274YA (en) | 2018-05-14 | 2020-12-30 | Nanostring Technologies Inc | Chemical compositions and methods of using same |
EP3797296B1 (en) | 2018-05-21 | 2024-09-04 | Genentech, Inc. | Her2 heterogeneity as a biomarker in cancer |
WO2019229489A1 (en) | 2018-05-31 | 2019-12-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of mir-146a-5p and mir-186 as biomarkers of osteoarthritis |
TWI848953B (en) | 2018-06-09 | 2024-07-21 | 德商百靈佳殷格翰國際股份有限公司 | Multi-specific binding proteins for cancer treatment |
WO2020028806A1 (en) | 2018-08-02 | 2020-02-06 | Duke University | Dual agonist fusion proteins |
CN109401731B (en) * | 2018-09-28 | 2020-07-17 | 中国矿业大学 | Amphiphilic polymer-loaded nanofluid and preparation method thereof |
WO2020106655A1 (en) | 2018-11-21 | 2020-05-28 | Self-Suspending Proppant Llc | Salt-tolerant self-suspending proppants made without extrusion |
MX2021008121A (en) | 2019-01-03 | 2021-12-10 | Inst Nat Sante Rech Med | Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer. |
US20220119516A1 (en) | 2019-01-16 | 2022-04-21 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Variants of erythroferrone and their use |
WO2020161342A1 (en) | 2019-02-08 | 2020-08-13 | Curevac Ag | Coding rna administered into the suprachoroidal space in the treatment of ophtalmic diseases |
WO2020165370A1 (en) | 2019-02-13 | 2020-08-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for selecting a cancer treatment in a subject suffering from cancer |
WO2020182932A1 (en) | 2019-03-13 | 2020-09-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New gene signatures for predicting survival time in patients suffering from renal cell carcinoma |
WO2020212586A1 (en) | 2019-04-18 | 2020-10-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the treatment and prognosis of cancer |
WO2020216832A1 (en) | 2019-04-24 | 2020-10-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for predicting the response of antipsychotic drugs |
US20220325268A1 (en) | 2019-05-14 | 2022-10-13 | Roche Sequencing Solutions, Inc | Devices and methods for sample analysis |
WO2020229521A1 (en) | 2019-05-14 | 2020-11-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for inhibiting or reducing bacterial biofilms on a surface |
WO2021001539A1 (en) | 2019-07-04 | 2021-01-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New strategy to detect and treat eosinophilic fasciitis |
US11512314B2 (en) | 2019-07-12 | 2022-11-29 | Duke University | Amphiphilic polynucleotides |
WO2021044012A1 (en) | 2019-09-05 | 2021-03-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method of treatment and pronostic of acute myeloid leukemia |
WO2021063968A1 (en) | 2019-09-30 | 2021-04-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method and composition for diagnosing chronic obstructive pulmonary disease |
MX2022004657A (en) | 2019-10-18 | 2022-07-21 | Univ Leland Stanford Junior | Clinical- and industrial-scale intact-tissue sequencing. |
EP4110823A1 (en) | 2020-02-26 | 2023-01-04 | A2 Biotherapeutics, Inc. | Polypeptides targeting mage-a3 peptide-mhc complexes and methods of use thereof |
US20230113705A1 (en) | 2020-02-28 | 2023-04-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing, prognosing and managing treatment of breast cancer |
EP4121768A1 (en) | 2020-03-20 | 2023-01-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for predicting the survival time of a patient suffering from a cancer |
US20230218608A1 (en) | 2020-06-18 | 2023-07-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New strategy for treating pancreatic cancer |
WO2022018163A1 (en) | 2020-07-22 | 2022-01-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for predicting survival time in patients suffering from cancer |
EP4172194A1 (en) | 2020-07-31 | 2023-05-03 | CureVac SE | Nucleic acid encoded antibody mixtures |
WO2022060967A1 (en) | 2020-09-16 | 2022-03-24 | Nanostring Technologies, Inc. | Chemical compositions and methods of using the same |
CA3195696A1 (en) | 2020-09-17 | 2022-03-24 | Restore Vision Inc. | Composition for treating or preventing diseases, disorders, or conditions associated with endoplasmic reticulum stress or all-trans-retinal, protecting retinal thickness, or suppressing reduction in retinal thickness or progress of reduction in retinal thickness |
US12071667B2 (en) | 2020-11-04 | 2024-08-27 | 10X Genomics, Inc. | Sequence analysis using meta-stable nucleic acid molecules |
WO2022135753A1 (en) | 2020-12-21 | 2022-06-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for prognosis the humoral response of a subject prior to vaccination |
US12060603B2 (en) | 2021-01-19 | 2024-08-13 | 10X Genomics, Inc. | Methods for internally controlled in situ assays using padlock probes |
WO2022207566A1 (en) | 2021-03-29 | 2022-10-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New method to evaluate pancreatic cancer prognosis |
US20240158861A1 (en) | 2021-04-23 | 2024-05-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cell senescence accumulation related disease |
US20220380838A1 (en) | 2021-06-01 | 2022-12-01 | 10X Genomics, Inc. | Methods and compositions for analyte detection and probe resolution |
US20230084407A1 (en) | 2021-06-02 | 2023-03-16 | 10X Genomics, Inc. | Sample analysis using asymmetric circularizable probes |
WO2023288225A1 (en) | 2021-07-13 | 2023-01-19 | 10X Genomics, Inc. | Methods for preparing polymerized matrix with controllable thickness |
CA3224093A1 (en) | 2021-07-30 | 2023-02-02 | Jorge Ivan Hernandez Neuta | Methods and compositions for synchronizing reactions in situ |
US20230057571A1 (en) | 2021-08-03 | 2023-02-23 | 10X Genomics, Inc. | Nucleic acid concatemers and methods for stabilizing and/or compacting the same |
CN117858958A (en) | 2021-08-16 | 2024-04-09 | 10X基因组学有限公司 | Probes comprising segmented barcode regions and methods of use |
US20230242974A1 (en) | 2021-12-27 | 2023-08-03 | 10X Genomics, Inc. | Methods and compositions for rolling circle amplification |
WO2023133579A1 (en) | 2022-01-10 | 2023-07-13 | Regeneron Pharmaceuticals, Inc. | Bbb-targeted gaa delivered as gene therapy treats cns and muscle in pompe disease model mice |
WO2023141588A1 (en) | 2022-01-21 | 2023-07-27 | 10X Genomics, Inc. | Multiple readout signals for analyzing a sample |
WO2023144303A1 (en) | 2022-01-31 | 2023-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Cd38 as a biomarker and biotarget in t-cell lymphomas |
WO2023152133A1 (en) | 2022-02-08 | 2023-08-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for diagnosing colorectal cancer |
US20240254537A1 (en) | 2022-02-23 | 2024-08-01 | Insitro, Inc. | Pooled optical screening and transcriptional measurements of cells comprising barcoded genetic perturbations |
WO2023181158A1 (en) * | 2022-03-23 | 2023-09-28 | ソニーグループ株式会社 | Structure and manufacturing method of structure |
WO2023192616A1 (en) | 2022-04-01 | 2023-10-05 | 10X Genomics, Inc. | Compositions and methods for targeted masking of autofluorescence |
WO2023215612A1 (en) | 2022-05-06 | 2023-11-09 | 10X Genomics, Inc. | Analysis of antigen and antigen receptor interactions |
WO2023215603A1 (en) | 2022-05-06 | 2023-11-09 | 10X Genomics, Inc. | Methods and compositions for in situ analysis of v(d)j sequences |
WO2023220603A1 (en) | 2022-05-09 | 2023-11-16 | Regeneron Pharmaceuticals, Inc. | Vectors and methods for in vivo antibody production |
WO2023220300A1 (en) | 2022-05-11 | 2023-11-16 | 10X Genomics, Inc. | Compositions and methods for in situ sequencing |
WO2023245190A1 (en) | 2022-06-17 | 2023-12-21 | 10X Genomics, Inc. | Catalytic de-crosslinking of samples for in situ analysis |
WO2024026474A1 (en) | 2022-07-29 | 2024-02-01 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle |
US20240101978A1 (en) | 2022-08-12 | 2024-03-28 | 10X Genomics, Inc. | Puma1 polymerases and uses thereof |
US12116626B2 (en) | 2022-08-16 | 2024-10-15 | 10X Genomics, Inc. | AP50 polymerases and uses thereof |
WO2024061930A1 (en) | 2022-09-22 | 2024-03-28 | Institut National de la Santé et de la Recherche Médicale | New method to treat and diagnose peripheral t-cell lymphoma (ptcl) |
US20240191297A1 (en) | 2022-10-14 | 2024-06-13 | 10X Genomics, Inc. | Methods, compositions, and systems for assessing biological sample quality |
WO2024098002A1 (en) | 2022-11-04 | 2024-05-10 | Regeneron Pharmaceuticals, Inc. | Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle |
US20240167081A1 (en) | 2022-11-08 | 2024-05-23 | 10X Genomics,Inc. | Immobilization methods and compositions for in situ detection |
WO2024107765A2 (en) | 2022-11-14 | 2024-05-23 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes |
WO2024105137A1 (en) | 2022-11-15 | 2024-05-23 | Eth Zurich | Air-dried cell monolayers and methods of preparing the same |
US20240158852A1 (en) | 2022-11-16 | 2024-05-16 | 10X Genomics, Inc. | Methods and compositions for assessing performance of in situ assays |
WO2024130203A1 (en) | 2022-12-16 | 2024-06-20 | 10X Genomics, Inc. | Methods and compositions for assessing performance |
US20240263219A1 (en) | 2023-01-06 | 2024-08-08 | 10X Genomics, Inc. | Methods and compositions for in situ analysis of variant sequences |
US20240263220A1 (en) | 2023-02-03 | 2024-08-08 | 10X Genomics, Inc. | In situ analysis of variant sequences in biological samples |
WO2024182540A2 (en) | 2023-02-28 | 2024-09-06 | Regeneron Pharmaceuticals, Inc. | T cell activators and methods of use thereof |
WO2024196764A2 (en) | 2023-03-17 | 2024-09-26 | Nanostring Technologies, Inc. | Assay for recombinase accessible chromatin and related compositions and methods |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US633110A (en) * | 1898-12-06 | 1899-09-19 | Fred H Bagg | Detachable awning for windows or doors. |
US4138381A (en) * | 1975-04-14 | 1979-02-06 | E. I. Du Pont De Nemours And Company | Polymeric thickeners, processes for their preparation and uses thereof |
US4504618A (en) * | 1982-07-12 | 1985-03-12 | Dulux Australia Ltd. | Aqueous dispersions |
US4715986A (en) * | 1984-03-30 | 1987-12-29 | Th. Goldschmidt Ag | Particles, modified at their surface by hydrophilic and hydrophobic groups |
US5110505A (en) * | 1989-02-24 | 1992-05-05 | E. I. Du Pont De Nemours And Company | Small-particle semiconductors in rigid matrices |
US5162445A (en) * | 1988-05-27 | 1992-11-10 | Exxon Chemical Patents Inc. | Para-alkylstyrene/isoolefin copolymers and functionalized copolymers thereof |
US5221334A (en) * | 1990-04-11 | 1993-06-22 | E. I. Du Pont De Nemours And Company | Aqueous pigmented inks for ink jet printers |
US5587446A (en) * | 1994-11-08 | 1996-12-24 | Cornell Research Foundation, Inc. | Hyperbranched polymers from AB monomers |
US5874701A (en) * | 1992-10-11 | 1999-02-23 | Toto Co., Ltd. | Photocatalytic air treatment process under room light |
US5990479A (en) * | 1997-11-25 | 1999-11-23 | Regents Of The University Of California | Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes |
US6007845A (en) * | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US6048616A (en) * | 1993-04-21 | 2000-04-11 | Philips Electronics N.A. Corp. | Encapsulated quantum sized doped semiconductor particles and method of manufacturing same |
US6150459A (en) * | 1998-04-13 | 2000-11-21 | Massachusetts Institute Of Technology | Comb polymers for regulating cell surface interactions |
US6162456A (en) * | 1992-09-24 | 2000-12-19 | Ortho-Mcneil Pharmaceutical, Inc. | Adhesive transdermal drug delivery matrix of a physical blend of hydrophilic and hydrophobic polymers |
US6319426B1 (en) * | 1998-09-18 | 2001-11-20 | Massachusetts Institute Of Technology | Water-soluble fluorescent semiconductor nanocrystals |
US6322901B1 (en) * | 1997-11-13 | 2001-11-27 | Massachusetts Institute Of Technology | Highly luminescent color-selective nano-crystalline materials |
US6326144B1 (en) * | 1998-09-18 | 2001-12-04 | Massachusetts Institute Of Technology | Biological applications of quantum dots |
US6342625B1 (en) * | 1994-11-11 | 2002-01-29 | Rwe-Dea Aktiengesellschaft Fuer Mineraloel Und Chemie | Amphiphilic compounds with at least two hydrophilic and at least two hydrophobic groups based on amides |
US6468808B1 (en) * | 1998-09-24 | 2002-10-22 | Advanced Research And Technology Institute, Inc. | Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and method of use |
US6602497B1 (en) * | 1997-11-07 | 2003-08-05 | Rutgers, The State University | Strictly alternating poly(alkylene oxide ether) copolymers |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3115532A1 (en) * | 1980-04-17 | 1982-01-28 | Canon K.K., Tokyo | INK-JET RECORDING METHOD AND RECORDING INK FOR RECORDING ON AN IMAGE RECEIVER |
US4504518A (en) * | 1982-09-24 | 1985-03-12 | Energy Conversion Devices, Inc. | Method of making amorphous semiconductor alloys and devices using microwave energy |
US4599400A (en) | 1984-12-18 | 1986-07-08 | The Dow Chemical Company | Star/comb-branched polyamide |
US4694064A (en) | 1986-02-28 | 1987-09-15 | The Dow Chemical Company | Rod-shaped dendrimer |
US5189136A (en) | 1990-12-12 | 1993-02-23 | The Regents Of The University Of California | Conducting polymer formed of poly(2-methoxy,5-(2'-ethyl-hexyloxy)-p-phenylenevinylene) |
US5262357A (en) | 1991-11-22 | 1993-11-16 | The Regents Of The University Of California | Low temperature thin films formed from nanocrystal precursors |
US5505928A (en) | 1991-11-22 | 1996-04-09 | The Regents Of University Of California | Preparation of III-V semiconductor nanocrystals |
JPH05320276A (en) * | 1992-05-20 | 1993-12-03 | Nippon Paint Co Ltd | Method for microencapsulating hydrophobic powder by using amphipathic graft polymer |
JPH05320726A (en) | 1992-05-26 | 1993-12-03 | Sumitomo Metal Ind Ltd | Device for preventing clogging with fine coal injection pipe into blast furnace |
US5604292A (en) | 1994-05-31 | 1997-02-18 | The Untied States Of America As Represented By The Secretary Of The Navy | Polymers with electrical and non-linear optical properties |
US5690807A (en) | 1995-08-03 | 1997-11-25 | Massachusetts Institute Of Technology | Method for producing semiconductor particles |
CN1138592C (en) * | 1995-12-29 | 2004-02-18 | 诺沃挪第克公司 | Particles having a polymeric shell and their production |
US6433039B1 (en) * | 1996-05-20 | 2002-08-13 | Xerox Corporation | Ink jet printing with inks containing comb polymer dispersants |
JP2967112B2 (en) * | 1996-09-05 | 1999-10-25 | 工業技術院長 | Organic thin film manufacturing method |
DE19652261A1 (en) | 1996-12-16 | 1998-06-18 | Hoechst Ag | Aryl-substituted poly (p-arylenevinylenes), process for their preparation and their use in electroluminescent devices |
NZ501791A (en) | 1997-06-14 | 2001-09-28 | Secr Defence | Method for coating fabric, paper or other surface using pulsed plasma polymerisation |
ES2226191T3 (en) | 1997-11-07 | 2005-03-16 | Rutgers, The State University | COPOLYMERS OF POLY (AQUYLENE OXIDE) STRICTLY ALTERNATING. |
US6501091B1 (en) | 1998-04-01 | 2002-12-31 | Massachusetts Institute Of Technology | Quantum dot white and colored light emitting diodes |
EP1116036B1 (en) | 1998-09-18 | 2004-08-11 | Massachusetts Institute Of Technology | Water-soluble fluorescent semiconductor nanocrystals |
US6426513B1 (en) | 1998-09-18 | 2002-07-30 | Massachusetts Institute Of Technology | Water-soluble thiol-capped nanocrystals |
US6306610B1 (en) * | 1998-09-18 | 2001-10-23 | Massachusetts Institute Of Technology | Biological applications of quantum dots |
US6114038A (en) * | 1998-11-10 | 2000-09-05 | Biocrystal Ltd. | Functionalized nanocrystals and their use in detection systems |
US6333110B1 (en) * | 1998-11-10 | 2001-12-25 | Bio-Pixels Ltd. | Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging |
US6649138B2 (en) | 2000-10-13 | 2003-11-18 | Quantum Dot Corporation | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US6716949B2 (en) * | 2001-09-20 | 2004-04-06 | Hewlett-Packard Development Company, L.P. | Amphipathic polymer particles and methods of manufacturing the same |
-
2001
- 2001-04-23 US US09/841,237 patent/US6649138B2/en not_active Expired - Lifetime
- 2001-10-12 AU AU2002243207A patent/AU2002243207A1/en not_active Abandoned
- 2001-10-12 EP EP20100153821 patent/EP2233202A3/en not_active Withdrawn
- 2001-10-12 CA CA 2424082 patent/CA2424082C/en not_active Expired - Lifetime
- 2001-10-12 WO PCT/US2001/042699 patent/WO2002055186A2/en active Application Filing
- 2001-10-12 JP JP2002555911A patent/JP4638128B2/en not_active Expired - Lifetime
- 2001-10-12 EP EP01989086.2A patent/EP1326704B1/en not_active Expired - Lifetime
-
2003
- 2003-11-18 US US10/717,288 patent/US7147917B2/en not_active Expired - Lifetime
- 2003-11-18 US US10/716,971 patent/US7108915B2/en not_active Expired - Lifetime
- 2003-11-18 US US10/717,246 patent/US20040101621A1/en not_active Abandoned
-
2008
- 2008-01-11 US US12/013,371 patent/US20080241375A1/en not_active Abandoned
-
2009
- 2009-11-23 US US12/624,283 patent/US8158194B2/en not_active Expired - Fee Related
-
2010
- 2010-08-30 JP JP2010192562A patent/JP2011073136A/en active Pending
-
2012
- 2012-03-16 US US13/423,055 patent/US8691384B2/en not_active Expired - Fee Related
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US633110A (en) * | 1898-12-06 | 1899-09-19 | Fred H Bagg | Detachable awning for windows or doors. |
US4138381A (en) * | 1975-04-14 | 1979-02-06 | E. I. Du Pont De Nemours And Company | Polymeric thickeners, processes for their preparation and uses thereof |
US4504618A (en) * | 1982-07-12 | 1985-03-12 | Dulux Australia Ltd. | Aqueous dispersions |
US4715986A (en) * | 1984-03-30 | 1987-12-29 | Th. Goldschmidt Ag | Particles, modified at their surface by hydrophilic and hydrophobic groups |
US5162445A (en) * | 1988-05-27 | 1992-11-10 | Exxon Chemical Patents Inc. | Para-alkylstyrene/isoolefin copolymers and functionalized copolymers thereof |
US5110505A (en) * | 1989-02-24 | 1992-05-05 | E. I. Du Pont De Nemours And Company | Small-particle semiconductors in rigid matrices |
US5221334A (en) * | 1990-04-11 | 1993-06-22 | E. I. Du Pont De Nemours And Company | Aqueous pigmented inks for ink jet printers |
US6162456A (en) * | 1992-09-24 | 2000-12-19 | Ortho-Mcneil Pharmaceutical, Inc. | Adhesive transdermal drug delivery matrix of a physical blend of hydrophilic and hydrophobic polymers |
US5874701A (en) * | 1992-10-11 | 1999-02-23 | Toto Co., Ltd. | Photocatalytic air treatment process under room light |
US6048616A (en) * | 1993-04-21 | 2000-04-11 | Philips Electronics N.A. Corp. | Encapsulated quantum sized doped semiconductor particles and method of manufacturing same |
US6007845A (en) * | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US5587446A (en) * | 1994-11-08 | 1996-12-24 | Cornell Research Foundation, Inc. | Hyperbranched polymers from AB monomers |
US6342625B1 (en) * | 1994-11-11 | 2002-01-29 | Rwe-Dea Aktiengesellschaft Fuer Mineraloel Und Chemie | Amphiphilic compounds with at least two hydrophilic and at least two hydrophobic groups based on amides |
US6602497B1 (en) * | 1997-11-07 | 2003-08-05 | Rutgers, The State University | Strictly alternating poly(alkylene oxide ether) copolymers |
US6322901B1 (en) * | 1997-11-13 | 2001-11-27 | Massachusetts Institute Of Technology | Highly luminescent color-selective nano-crystalline materials |
US5990479A (en) * | 1997-11-25 | 1999-11-23 | Regents Of The University Of California | Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes |
US6150459A (en) * | 1998-04-13 | 2000-11-21 | Massachusetts Institute Of Technology | Comb polymers for regulating cell surface interactions |
US6319426B1 (en) * | 1998-09-18 | 2001-11-20 | Massachusetts Institute Of Technology | Water-soluble fluorescent semiconductor nanocrystals |
US6326144B1 (en) * | 1998-09-18 | 2001-12-04 | Massachusetts Institute Of Technology | Biological applications of quantum dots |
US6444143B2 (en) * | 1998-09-18 | 2002-09-03 | Massachusetts Institute Of Technology | Water-soluble fluorescent nanocrystals |
US6468808B1 (en) * | 1998-09-24 | 2002-10-22 | Advanced Research And Technology Institute, Inc. | Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and method of use |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120228565A1 (en) * | 2000-10-13 | 2012-09-13 | Life Technologies Corporation | Method for preparing surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
US8691384B2 (en) * | 2000-10-13 | 2014-04-08 | Life Technologies Corporation | Metallic nanoparticles having enhanced dispersibility in aqueous media comprising a polymer having alkyl acrylamide side chains |
US20060090692A1 (en) * | 2004-10-29 | 2006-05-04 | Dominguez Juan E | Generating nano-particles for chemical mechanical planarization |
US9360476B2 (en) | 2006-12-19 | 2016-06-07 | Fio Corporation | Microfluidic system and method to test for target molecules in a biological sample |
US20100151443A1 (en) * | 2006-12-19 | 2010-06-17 | Fio Corporation | Microfluid system and method to test for target molecules in a biological sample |
US8360321B2 (en) | 2007-04-02 | 2013-01-29 | Fio Corporation | System and method of deconvolving multiplexed fluorescence spectral signals generated by quantum dot optical coding technology |
US8597729B2 (en) | 2007-06-22 | 2013-12-03 | Fio Corporation | Systems and methods for manufacturing quantum dot-doped polymer microbeads |
US20110053278A1 (en) * | 2007-07-09 | 2011-03-03 | Fio Corporation | Systems and methods for enhancing fluorescent detection of target molecules in a test sample |
US8551786B2 (en) | 2007-07-09 | 2013-10-08 | Fio Corporation | Systems and methods for enhancing fluorescent detection of target molecules in a test sample |
US20100257027A1 (en) * | 2007-07-23 | 2010-10-07 | Fio Corporation | Method and system for collating, storing, analyzing and enabling access to collected and analyzed data associated with biological and environmental test subjects |
US20100204402A1 (en) * | 2007-08-31 | 2010-08-12 | Micron Technology, Inc. | Zwitterionic Block Copolymers And Methods |
US20090062470A1 (en) * | 2007-08-31 | 2009-03-05 | Micron Technology, Inc. | Zwitterionic block copolymers and methods |
US7910660B2 (en) | 2007-08-31 | 2011-03-22 | Micron Technology, Inc. | Zwitterionic block copolymers and methods |
US8022147B2 (en) | 2007-08-31 | 2011-09-20 | Micron Technology, Inc. | Zwitterionic block copolymers and methods |
US20110144275A1 (en) * | 2007-08-31 | 2011-06-16 | Micron Technology, Inc. | Zwitterionic Block Copolymers and Methods |
US7732533B2 (en) * | 2007-08-31 | 2010-06-08 | Micron Technology, Inc. | Zwitterionic block copolymers and methods |
US8236899B2 (en) | 2007-08-31 | 2012-08-07 | Micron Technology, Inc. | Zwitterionic block copolymers and methods |
US8551763B2 (en) | 2007-10-12 | 2013-10-08 | Fio Corporation | Flow focusing method and system for forming concentrated volumes of microbeads, and microbeads formed further thereto |
US20110081643A1 (en) * | 2007-10-12 | 2011-04-07 | Sebastian Fournier-Bidoz | Flow Focusing Method and System for Forming Concentrated Volumes of Microbeads, and Microbeads Formed Further Thereto |
US9695482B2 (en) | 2007-10-12 | 2017-07-04 | Fio Coporation | Flow focusing method and system for forming concentrated volumes of microbeads, and microbeads formed further thereto |
US9792809B2 (en) | 2008-06-25 | 2017-10-17 | Fio Corporation | Bio-threat alert system |
US9459200B2 (en) | 2008-08-29 | 2016-10-04 | Fio Corporation | Single-use handheld diagnostic test device, and an associated system and method for testing biological and environmental test samples |
US9945837B2 (en) | 2008-08-29 | 2018-04-17 | Fio Corporation | Single-use handheld diagnostic test device, and an associated system and method for testing biological and environmental test samples |
US9805165B2 (en) | 2009-01-13 | 2017-10-31 | Fio Corporation | Handheld diagnostic test device and method for use with an electronic device and a test cartridge in a rapid diagnostic test |
US11385219B2 (en) | 2009-01-13 | 2022-07-12 | Fio Corporation | Handheld diagnostic test device and method for use with an electronic device and a test cartridge in a rapid diagnostic test |
WO2014132176A3 (en) * | 2013-02-26 | 2014-11-20 | Fundación Fraunhofer Chile Research | Clarification and selective binding of phenolic compounds from liquid foodstuff or beverages using smart polymers |
US8883239B2 (en) | 2013-02-26 | 2014-11-11 | Universidad De Talca | Clarification and selective binding of phenolic compounds from liquid foodstuff or beverages using smart polymers |
Also Published As
Publication number | Publication date |
---|---|
EP1326704B1 (en) | 2015-11-18 |
JP2004517712A (en) | 2004-06-17 |
US8158194B2 (en) | 2012-04-17 |
WO2002055186A3 (en) | 2003-03-20 |
US7108915B2 (en) | 2006-09-19 |
JP4638128B2 (en) | 2011-02-23 |
EP2233202A3 (en) | 2012-07-04 |
US20040101465A1 (en) | 2004-05-27 |
US7147917B2 (en) | 2006-12-12 |
US20100068380A1 (en) | 2010-03-18 |
US6649138B2 (en) | 2003-11-18 |
US20080241375A1 (en) | 2008-10-02 |
US20020045045A1 (en) | 2002-04-18 |
EP1326704A2 (en) | 2003-07-16 |
US20120228565A1 (en) | 2012-09-13 |
EP2233202A2 (en) | 2010-09-29 |
US20050003187A1 (en) | 2005-01-06 |
CA2424082A1 (en) | 2002-07-18 |
AU2002243207A1 (en) | 2002-07-24 |
US8691384B2 (en) | 2014-04-08 |
CA2424082C (en) | 2007-04-03 |
JP2011073136A (en) | 2011-04-14 |
WO2002055186A2 (en) | 2002-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8691384B2 (en) | Metallic nanoparticles having enhanced dispersibility in aqueous media comprising a polymer having alkyl acrylamide side chains | |
Karakoti et al. | Surface functionalization of quantum dots for biological applications | |
Costa-Fernández et al. | The use of luminescent quantum dots for optical sensing | |
Li et al. | Fluorescence properties of gold nanorods and their application for DNA biosensing | |
Meiser et al. | Biofunctionalization of fluorescent rare‐earth‐doped lanthanum phosphate colloidal nanoparticles | |
CN109233810B (en) | Chromophoric polymer dots | |
Tuncel et al. | Conjugated polymer nanoparticles | |
Li et al. | Aqueous synthesis of CdTe nanocrystals: progresses and perspectives | |
EP1490691B1 (en) | Luminescent, spheroid, non-autofluorescent silica gel particles having variable emission intensities and frequencies | |
US20060014315A1 (en) | Stable, water-soluble quantum dot, method of preparation and conjugates thereof | |
US20090098663A1 (en) | Novel water-soluble nanocrystals comprising a polymeric coating reagent, and methods of preparing the same | |
US20060216759A1 (en) | Functionalized fluorescent nanocrystals, and methods for their preparation and use | |
Murcia et al. | Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings | |
Wang et al. | Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach | |
Zhang et al. | A multifunctional polypeptide via ugi reaction for compact and biocompatible quantum dots with efficient bioconjugation | |
Giri et al. | Preparation of water soluble L-arginine capped CdSe/ZnS QDs and their interaction with synthetic DNA: Picosecond-resolved FRET study | |
Shi et al. | Preparation of CdS nanocrystals within supramolecular self-assembled nanoreactors and their phase transfer behavior | |
Hou et al. | Temperature-modulated photoluminescence of quantum dots | |
KR20110122320A (en) | Fret-based nano-sensor system and detection method using the same | |
Qiu et al. | Detection of DNA based on fluorescence resonance energy transfer of polyelectrolyte-protected CdTe quantum dots as energy donors | |
Wang et al. | A robust ligand exchange approach for preparing hydrophilic, biocompatible photoluminescent quantum dots | |
Sperling | Surface modification and functionalization of colloidal nanoparticles | |
Ghosh et al. | Surface charge tunability and size dependent luminescence anisotropy of aqueous synthesized ZnS/dendrimer nanocomposites | |
Chi et al. | Anatomy and growth characteristics of conjugated polyelectrolyte/DNA aggregates | |
Brijitta et al. | A confocal laser scanning microscopic study on thermoresponsive binary microgel dispersions incorporated with CdTe quantum dots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCHRODER VENTURES INTERNATIONAL LIFE SCIENCES FUND Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 Owner name: INSTITUTIONAL VENTURE MANAGEMENT VII, L.P., CALIFO Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 Owner name: SV NOMINEES LIMITED ON BEHALF OF SCHRODER VENTURES Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 Owner name: ABINGWORTH BIOVENTURES IIA LP, UNITED KINGDOM Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 Owner name: FRAZIER HEALTHCARE III, L.P., WASHINGTON Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 Owner name: INSTITUTIONAL VENTURE PARTNERS VII, L.P., CALIFORN Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 Owner name: BB BIOVENTURES L.P., CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 Owner name: MPM ASSET MANAGEMENT INVESTORS 2000 A LLC, CALIFOR Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 Owner name: MPM BIOVENTURES PARALLEL FUND, L.P., CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 Owner name: FRAZIER AFFILIATES III, L.P., WASHINGTON Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:015687/0106 Effective date: 20050207 |
|
AS | Assignment |
Owner name: INVITROGEN CORP.,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:016862/0372 Effective date: 20051104 Owner name: INVITROGEN CORP., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUANTUM DOT CORPORATION;REEL/FRAME:016862/0372 Effective date: 20051104 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |