US20030112896A1 - Multi-channel communications transceiver - Google Patents
Multi-channel communications transceiver Download PDFInfo
- Publication number
- US20030112896A1 US20030112896A1 US10/167,158 US16715802A US2003112896A1 US 20030112896 A1 US20030112896 A1 US 20030112896A1 US 16715802 A US16715802 A US 16715802A US 2003112896 A1 US2003112896 A1 US 2003112896A1
- Authority
- US
- United States
- Prior art keywords
- signal
- baseband
- transmitter
- signals
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004891 communication Methods 0.000 title description 37
- 230000005540 biological transmission Effects 0.000 claims abstract description 118
- 238000011084 recovery Methods 0.000 claims description 44
- 238000012937 correction Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 23
- 230000003044 adaptive effect Effects 0.000 claims description 22
- 238000012546 transfer Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 description 45
- 239000002609 medium Substances 0.000 description 33
- 238000010586 diagram Methods 0.000 description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 16
- 239000010949 copper Substances 0.000 description 16
- 230000004044 response Effects 0.000 description 16
- 238000013507 mapping Methods 0.000 description 15
- 230000003287 optical effect Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 230000007704 transition Effects 0.000 description 8
- 230000006978 adaptation Effects 0.000 description 7
- 230000001934 delay Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- PORQOHRXAJJKGK-UHFFFAOYSA-N 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone Chemical compound CCCCCCCCN1SC(Cl)=C(Cl)C1=O PORQOHRXAJJKGK-UHFFFAOYSA-N 0.000 description 4
- 238000013016 damping Methods 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005316 response function Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004399 eye closure Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000006163 transport media Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
Definitions
- the present invention is related to high-speed communications of data in a communication system and, in particular, to high data rate transmission of data between components in a communication system.
- NRZ non-return to zero
- SERDES serializer/deserializer
- FIG. 1A shows a block diagram of a backplane environment 100 .
- Components 101 - 1 through 101 -Q are coupled to transmit and receive data through input/output (I/O) ports 102 - 1 through 102 -Q, respectively, to backplane 110 .
- I/O input/output
- components 101 - 1 through 101 -Q are SERDES devices.
- FIG. 1B shows a block diagram of a conventional transmitter portion of one of SERDES devices 101 - 1 through 101 -Q on I/O ports 102 - 1 through 102 -Q, respectively.
- Parallel data is received in a bit encoder 105 .
- Bit encoder 105 encodes the parallel data, for example by adding redundancy in the input data, to ensure a minimum rate of data transitions in the output data stream. Typical encoding schemes include rate 8/10 (8 bit input to 10 bit output) encoding.
- the parallel data is serialized in parallel to serial converter 106 .
- Output driver 107 then receives the serialized data from parallel to serial converter 106 and outputs, usually, a differential voltage signal for transmission over backplane 110 .
- phase locked loop (PLL) 114 that provides the necessary clock signals for encoder 105 and parallel-to-serial converter 106 .
- the input signal to PLL 114 is a reference clock signal from a system PLL 103 .
- FIG. 1C shows a conventional receiver 108 of one of SERDES devices 101 - 1 through 101 -Q on I/O ports 102 - 1 through 102 -Q, respectively, of FIG. 1A.
- Input driver 109 receives differential voltage signal from backplane 110 and outputs the analog data signal to clock and data recovery circuit 113 .
- Data recovery 113 can, in some systems, perform equalization, recover the timing and output a serial bit stream of data to serial-to-parallel converter 111 .
- the serial data is input to bit decoder 112 which converts the parallel data to parallel decoded data.
- Clock and data recovery circuit 113 also outputs the necessary clock signals to serial-to-parallel converter 111 and bit decoder 112 .
- a conventional SERDES system 100 can enable serial data communication at data rates as high as 2.5 Gbps to 3.125 Gbps over a pair of FR4 copper traces in a copper backplane communication system.
- One of the biggest problems with existing SERDES systems 100 is that they are very bandwidth inefficient, i.e., they require 3.125 GHz of bandwidth to transmit and receive2.5 Gbps of data over a single pair of copper wires. Therefore, it is very difficult to increase the data rates across backplane bus 110 .
- SERDES system 100 requires the implementation of a high clock rate (3.125 GHz for 2.5 Gbps data rates) phase locked loop (PLL) 114 implemented to transmit data and recover high clock rates in data recovery 113 .
- PLL phase locked loop
- the timing window within which receiver 108 needs to determine whether the received symbol in data recovery 110 is a 1 or a 0 is about 320 ps for the higher data rate systems. This timing window creates extremely stringent requirements on the design of data recovery 113 and PLL 114 , as they must have very low peak-to-peak jitter.
- ISI intersymbol interference
- equalization must be performed on the received signal in data recovery 113 .
- equalization is very difficult to perform, if not impossible due to the high baud rate.
- a more commonly utilized technique for combating ISI is known as “pre-emphasis”, or pre-equalization, performed in bit encoder 105 and output driver 107 during transmission.
- pre-emphasis or pre-equalization, performed in bit encoder 105 and output driver 107 during transmission.
- the amplitude of the low-frequencies in the transmitted signal is attenuated to compensate for the higher attenuation of the high frequency component by the transmission medium of bus 110 .
- pre-emphasis reduces the overall noise tolerance of transmission over backplane 110 of backplane communication system 100 due to the loss of signal-to-noise ratio (SNR).
- SNR signal-to-noise ratio
- a data transmission system that allows very high data transmission rates over a data bus that utilizes the signal attenuation properties of the copper based backplane interconnect system.
- this transmission scheme does not result in increased intersymbol interference at the receiver despite transmitting data at a very high speed.
- the data transmission system includes a transmitter system and a receiver system coupled through a transmission medium.
- the transmitter system receives parallel data having N bits and separates the N bits into (K+1) subsets for transmission into the base band and K frequency separated channels on the transmission medium.
- the receiver system receives the data from the base band and the K frequency separated channels from the transmission medium and recovers the N parallel bits of data.
- the N parallel bits are separated into (K+1) subsets of bits, the (K+1) subsets of bits are encoded into (K+1) symbols, K of which are up-converted to a carrier frequency appropriate to that channel.
- the summed output signal resulting from the summation of the K up-converted channels and the baseband channel is transmitted over the transmission medium.
- Transmitted data in each of the (K+1) channels can suffer from inter-symbol interference (ISI) as well as cross-channel interference due to harmonic generation in up-conversion and down-conversion processes in the transmitter and receiver.
- ISI inter-symbol interference
- cross-channel interference due to harmonic generation in up-conversion and down-conversion processes in the transmitter and receiver.
- a receiver which corrects for cross-channel interference as well as for inter-symbol interference is presented.
- the transmitter system includes (K+1) separate transmitters.
- Each of the (K+1) transmitters receives a subset of the N-bits and maps the subset of bits onto a symbol set.
- K of the transmitters modulate the symbols with a carrier signal at a frequency separated from that of others of the (K+1) transmitters.
- the summed signals from each of the (K+1) separate transmitters is transmitted over the transmission medium.
- the transmission medium can be any medium, including optical, infrared, wireless, twisted copper pair, or copper based backplane interconnect channel.
- each of the (K+1) transmitters receives a subset of the N data bits, encodes the subset, maps the encoded subset onto a symbol set appropriate for that transmitter.
- K of the transmitters for example, up-convert its analog symbol stream to a carrier frequency assigned to that transmitter.
- the remaining transmitter transmits into the base band.
- the output signal from each of the transmitters is then transmitted through the transmission medium to a receiver system having a receiver for recovering the data stream transmitted on each of the carrier frequencies.
- each of the K up-converting transmitters receives the subset of bits and encodes them with a trellis encoder.
- One of the transmitters maps its subset of bits into a pulsed amplitude modulation (PAM) symbol set and the remaining K up-converting transmitters each maps its subset onto a quadrature-amplitude modulated (QAM) symbol set.
- the symbols output from the QAM mapping are processed through a digital-to-analog converter before being up-converted to a carrier frequency to produce the output signal from the transmitter.
- the PAM transmitters can utilize a digital-to-analog converter to create the PAM symbol output voltage levels. Any combination of encoding and symbol mapping schemes can be utilized in the (K+1) transmitters.
- a PAM channel and one or more QAM channels can be utilized such that there is no cross-channel interference between the QAM channels and the PAM channel.
- a single QAM channel combined with a PAM channel can be utilized.
- Each of the output signals from the (K+1) transmitters are summed for transmission in (K+1) separate transmission channels on the transmission medium.
- the receiver receives the summed signals, with data transmitted at (K+1) separate channels.
- the receiver down-converts the summed signals by the frequency of each of the (K) separate non-baseband channels to recover the symbols transmitted in each of the (K+1) separate channels.
- the baseband receiver can include a low-pass filter to separate the baseband channel from the higher frequency channels on the transmission medium. The subsets of digital data can then be recovered from the recovered symbols.
- the receiver system receives the combined signal, separates the signal by carrier frequency, and recovers the bits from each carrier frequency.
- the signal received from the transmission medium is received into (K+1) parallel receivers.
- Each of the (K+1) receivers separates out the signal centered around the carrier frequency allocated to that channel by the transmitter or the baseband signal, equalizes the signal, and decodes the signal to retrieve the subset of the N bits assigned to that corresponding transmitter modulator.
- a complex cross-channel correction algorithm can also be implemented.
- the cross-channel correction involves adjusting each of the signals of each of the channels by some portions of the signals from the other channels in order to eliminate the interference.
- the parameters of the cross-channel correction can be adaptively chosen to optimize receiver performance. In some embodiments, no cross-channel interference occurs between the baseband channel and the K high frequency channels and therefore no cross-channel correction is needed between the baseband channel and the K high frequency channels.
- Data transmission according to the present invention can utilize any combination of symbol mappings.
- a baseband transmitter utilizing 4, 8, 16 or 32-PAM symbol mapping can be combined with one or more up-converting transmitters with 16, 32, 64, 128 or 256 QAM symbol mappers, for example.
- an encoder can be used to encode any of the subset of bits, for example the most-significant bit before the bits are mapped onto a symbol set.
- a 10 Gbps transceiver can utilize uncoded (no error correction coded) 16-PAM with baud rate of 1.25 GHz in combination with uncoded 16 QAM with baud rate 1.25 GHz.
- 4/5 trellis encoded 32-QAM can be combined with uncoded 16-PAM.
- uncoded 8-PAM can be combined with five (5) 6/7 trellis encoded 128-QAM to form a 10 Gbps transmission system.
- Many other examples can be utilized.
- the output signals from each of the up-converting transmitters transmitting into the K high frequency channels are summed and the sum signal filtered with a high-pass filter to eliminate any baseband component before the output signal from the baseband transmitter is added.
- the baseband transmitter can include a low-pass filter to eliminate any higher frequency component of the baseband transmitter's output signal which can interfere with the signals from the up-converting transmitters.
- a transmission system in accordance with the present invention can include a plurality of receivers and a cross-channel interference canceller coupled to each of the receivers for receiving signals from the high frequency channels.
- Each of the plurality of receivers receives signals from one of a plurality of transmission bands.
- One receiver receives signals from the base band channel and the remaining receive signals from higher frequency channels.
- At least one of the plurality of receivers that receives signals from a higher frequency channel includes a down converter that converts an input signal from the one of the plurality of transmission bands to a base band.
- a filter coupled to receive signals from the down converter can substantially filter out signals not in the base band after down-conversion.
- an analog-to-digital converter coupled to receive signals from the filter and generate digitized signals and an equalizer coupled to receive the digitized signals can be included.
- a trellis decoder coupled to receive signals from the equalizer and generate recreated data, the recreated data being substantially the same data transmitted by a corresponding transmitter.
- a cross-channel interference canceller can be coupled to receive output signals from each of the equalizers and to provide signals to a digital filter or the trellis decoder.
- the receiver that receives signals from the base band channel includes a low pass filter to filter out signals at high frequencies (e.g., the remaining channels), an analog to digital converter, an equalizer, and a data recovery circuit.
- the equalizer can have adaptively chosen equalization parameters.
- FIGS. 1A, 1B and 1 C show block diagrams for a conventional system of transmitting data over a backplane.
- FIG. 2A shows a block diagram of a transmission system according to the present invention.
- FIG. 2B shows a block diagram of a transmitter according to the present invention.
- FIG. 2C shows a block diagram of a receiver according to the present invention.
- FIG. 3 shows a graph of attenuation versus transmission band on the transmission medium according to the present invention.
- FIG. 4 shows a block diagram of an embodiment of a transmission modulator according to the present invention.
- FIG. 5A shows a block diagram of an embodiment of a receiver according to the present invention.
- FIG. 5B shows a block diagram of a down-conversion module of a receiver as shown in FIG. 5A.
- FIG. 5C shows an embodiment of a block diagram of an analog filter of a receiver as shown in FIG. 5A.
- FIG. 5D shows an embodiment of a digital filter of a receiver as shown in FIG. 5A.
- FIG. 5E shows an embodiment of a second digital filter of a receiver as shown in FIG. 5A.
- FIG. 5F shows an embodiment of a cross-channel interference canceller of the receiver shown in FIG. 5A in accordance with the present invention.
- FIG. 6A shows a schematic diagram of a trellis encoder according to the present invention.
- FIG. 6B shows a schematic diagram of a symbol mapper according to the present invention.
- FIG. 6C shows a schematic diagram of a 128 QAM constellation.
- FIG. 6D shows filtering of the output signal from a digital to analog converter according to the present invention.
- FIG. 6E shows raised square root cosine filter response.
- FIG. 7 shows a block diagram of an embodiment of a tracking and error-recovery circuit of the receiver shown in FIG. 5A.
- FIGS. 8A and 8B show a block diagram of an embodiment of an automatic gain control circuit of a receiver demodulator according to the present invention.
- FIG. 9 shows a block diagram of a transceiver chip according to the present invention.
- FIGS. 10A, 10B and 10 C illustrate an embodiment of a trellis decoder.
- FIG. 11 shows an embodiment of a baseband transmitter according to the present invention.
- FIG. 12A shows an embodiment of a baseband receiver according to the present invention.
- FIGS. 12B through 12C show embodiments of components of the embodiment of the baseband receiver shown in FIG. 12A.
- FIG. 2A shows a block diagram of a transmission system 200 according to the present invention.
- System 200 includes any number of components 201 - 1 through 201 -P, with component 201 -p representing an arbitrary one of components 201 - 1 through 201 -P, coupled through a transmission medium 250 .
- Transmission medium 250 may couple component 201 -p to all of the components 201 - 1 through 201 -P or may couple component 201 -p to selected ones of components 201 - 1 through 201 -P.
- components 201 - 1 through 201 -P are coupled through FR4 copper traces.
- System 200 can represent any backplane system, any chassis-to-chassis digital communication system, or any chip-to-chip interconnect with components 201 - 1 through 201 -P representing individual cards, cabinets, or chips, respectively.
- Transmission channel 250 can represent any transmission channel, including optical channels, wireless channels, or metallic conductor channels such as copper wire or FR4 copper traces. Typically, transmission channel 250 attenuates higher frequency signals more than lower frequency signals. As a result, intersymbol interference problems are greater for high data rate transmissions than for low data rate transmissions. In addition, cross-talk from neighboring signals increases with transmission frequency.
- Components 201 - 1 through 201 -P include transmitter systems 210 - 1 through 210 -P, respectively, and receiver systems 220 - 1 through 220 -P, respectively.
- one of transmitter systems 210 - 1 through 210 -P from one of components 201 - 1 through 201 -P is in communication with one of receiver systems 220 - 1 through 220 -P from a different one of components 201 - 1 through 201 -P.
- timing for all of components 201 - 1 through 201 -P can be provided by a phase-locked-loop (PLL) 203 synchronized to a transmit source clock signal.
- PLL 203 provides a reference clock signal and each of components 201 - 1 through 201 -P can include any number of phase locked loops to provide internal timing signals.
- the transmission distance through transmission channel 250 i.e. the physical separation between components 201 - 1 through 201 -P
- the physical separation between components 201 - 1 though 201 -P can be much less (for example a few millimeters or a few centimeters).
- separations between components 201 - 1 through 201 -P as high as about 100 meters can be realized.
- transmission channel 250 can be multiple twisted copper pair carrying differential signals between components 201 - 1 through 201 -P.
- components 201 - 1 through 201 -P can share wires so that fewer wires can be utilized. In some embodiments, however, dedicated twisted copper pair can be coupled between at least some of components 201 - 1 through 201 -P.
- transmission medium 250 can be an optical medium, wireless medium, or data bus medium.
- FIG. 2B shows a block diagram of an embodiment of transmitter system 210 -p an arbitrary one of transmitter systems 210 - 1 through 210 -P.
- Transmitter system 210 -p receives an N-bit parallel data signal at a bit allocation block 211 .
- Bit allocation block 211 also receives the reference clock signal from PLL 203 .
- Bit allocation block 211 segregates the N input bits into K+1 individual channels such that there are n 1 through n K bits input to transmitters 212 - 1 through 212 -K, respectively, and n 0 bits input to baseband transmitter 217 .
- Transmitter 217 and transmitters 212 - 1 through 212 -K transmit into (K+1) channels.
- each of the N bits is assigned to one of the K+1 individual channels so that the sum of n 0 through n K is the total number of bits N.
- Each of transmitters 212 - 1 through 212 -K encodes the digital data input to it and outputs a signal modulated at a different carrier frequency. Therefore, the n k digital data bits input to transmitter 212 -k, an arbitrary one of transmitters 212 - 1 through 212 -K, is output as an analog signal in a kth transmission channel at a carrier frequency f k . Additionally, baseband transmitter 217 transmits into the baseband channel.
- FIG. 3 shows schematically the transport function for a typical transmission channel 250 (FIG. 2A), H(f).
- Transmitters 212 - 1 through 212 -K transmit analog data at carrier frequencies centered about frequencies f 1 through f K , respectively. Therefore, transmitters 212 - 1 through 212 -K transmit into transmission channels 301 - 1 through 301 -K, respectively.
- Transmitter 217 transmits into transmission channel 301 - 0 , which is centered at 0 frequency.
- the width of each of transmission channels 301 - 0 through 301 -K can be the same.
- the width of the bands of each of transmission channels 301 - 0 through 301 -K can be narrow enough so that there is little to no overlap between adjacent ones of transmission channels 301 - 0 through 301 -K.
- lower frequency channels can be bit-loaded to carry a higher number of bits per baud interval than the number of bits per baud interval that can be carried at higher carrier frequencies.
- the analog output signal from each of transmitters 212 - 1 through 212 -K, y 1 (t) through y K (t), then represents the transmission signal in each of channels 301 - 1 through 301 -K, respectively.
- Signals y 1 (t) through y K (t), then, are input to summer 213 and the summed analog signal output from summer 213 can be input to a high pass filter 215 .
- the output signal from high pass filter 215 is input to summer 216 where it is summed with the baseband signal y 0 (t) from baseband transmitter 217 .
- High pass filter 215 prevents transmitters 212 - 1 through 212 -K from transmitting signals into the baseband channel and reduces or eliminates the need to consider cross-channel interference between signals produced by baseband transmitter 217 and those generated by transmitters 212 - 1 through 212 -K.
- the output signal from summer 216 , z(t), is input to an output driver 214 .
- output driver 214 generates a differential transmit signal corresponding to signal z(t) for transmission over transmission medium 250 .
- Output driver 214 if transmission medium 250 is an optical medium, can also be an optical driver modulating the intensity of an optical signal in response to the signal z(t).
- FIG. 2C shows an embodiment of a receiver system 220 -p which can be an arbitrary one of receiver systems 220 - 1 through 220 -P of FIG. 2A.
- Receiver system 220 -p can receive a differential receive signal, which originated from one of transmitter systems 210 - 1 through 210 -P (typically not transmitter 210 -p), into an input buffer 224 .
- an optical signal can be received at input buffer 224 , in which case input buffer 224 includes an optical detector.
- the output signal from input buffer 224 , Z(t) is closely related to the output signal z(t) of summer 213 . However, the signal Z(t) shows the effects of transmission through transmission medium 250 on z(t), including intersymbol interference (ISI).
- ISI intersymbol interference
- the signal Z(t) is input to each of receivers 222 - 1 through 222 -K and into baseband receiver 223 .
- Receivers 222 - 1 through 222 -K demodulate the signals from each of the transmission channels 301 - 1 through 301 -K, respectively, and recovers the bit stream from each of carrier frequencies f 1 through f K , respectively.
- Baseband receiver 223 recovers the bit stream which has been transmitted into the baseband channel.
- Receiver system 220 -p also receives the reference clock signal from PLL 203 , which can be used to generate internal timing signals. Furthermore, receiver system 220 -p outputs a receive clock signal with the N-bit output signal from bit parsing 221 .
- demodulators (receivers) 222 - 1 through 222 -K are coupled so that cross-channel interference can be cancelled.
- filter 215 of transmitter 210 -p is not present or does not completely remove the baseband from the output signal of adder 213 , then cross-channel interference in the baseband channel also will need to be considered.
- multiple harmonics of each signal may be generated from each of transmitters 212 - 1 through 212 -K.
- transmitters 212 - 1 through 212 -K transmit at carrier frequencies f 1 through f K equal to f 0 , 2f 0 . . . Kf 0 , respectively.
- the baseband transmitter 213 transmits at the baseband frequency, e.g. transmitter 213 transmits with no carrier.
- the signal transmitted at carrier frequency f 1 will also be transmitted in the base band and at frequencies 2f 1 , 3f 1 . . .
- the signal transmitted at carrier frequency f 2 will also be transmitted in the base band and at 2f 2 , 3f 2 , . . . Therefore, any time any of the bandwidth of any harmonics of the channels overlap with other channels or the other channel's harmonics, significant cross-channel symbol interference can occur due to harmonics in the mixers of transmitters 212 - 1 through 212 -K.
- channel 1 transmitting at f 0 will also transmit at 0, 2f 0 , 3f 0 , .
- the down converters also create harmonics, which means that some of the transmission of the third channel will be down-converted into the first channel, for example. Therefore, further cross-channel interference can be generated in the down-conversion process of receivers 221 - 1 through 222 -K.
- Embodiments of the present invention correct for the cross-channel symbol interference as well as the inter-symbol interference. Note that it is well known that if the duty cycle of the harmonic wave that is being mixed with an input signal is 50%, only odd harmonics will be generated. Even harmonics require higher or lower duty cycles.
- N-bits of high-speed parallel digital data per time period is input to bit allocation 211 of transmitter system 210 -p along with a reference clock signal.
- Data is transmitted at a transmit clock rate of CK 1 , which can be determined by an internal phase-locked-loop from the reference clock signal.
- Each of these input signals of N-bits can change at the rate of a transmit clock signal CK 1 .
- the transmit clock signal CK 1 can be less than or equal to ⁇ GHz/N, where ⁇ represents the total desired bit rate for transmission of data from transmitter system 210 -p over transmission medium 250 .
- the resultant maximum aggregate input data rate then, equals ⁇ Gbps.
- each of transmitters 217 and 212 - 1 through 212 -K operate at the same baud rate B k .
- the center frequency of transmitter 212 -k (corresponding to channel k), or one of its harmonics, is substantially the same as harmonics of the center frequencies of other ones of transmitters 212 - 1 through 212 -K.
- one skilled in the art will recognize that in other embodiments of the invention one or both of these conditions may not be satisfied.
- each of the K+1 sub-channels 301 - 0 through 301 -K can have the same baud rate B.
- the baud rate B k of one sub-channel 301 -k which is an arbitrary one of sub-channels 301 - 0 through 301 -K, can differ from the baud rate of other sub-channels.
- bit-loading can be accomplished by choosing symbol sets which carry a larger number of bits of data for transmission channels at lower frequencies and symbol sets which carry a lower number of bits of data for transmission channels at higher frequencies (i.e., n k is higher for lower frequencies).
- the signal-to-noise ratio of the lower carrier frequency channels is substantially greater than the signal-to-noise ratio available on the higher sub-channels because the signal attenuation on the copper trace increases with frequency and because the channel noise resulting from alien signal cross-talk increases with frequency.
- These properties of the copper interconnect channel can be exploited to “load” the bits/baud of the K sub-channels so that the overall throughput of the interconnect system is maximized.
- digital communication signaling schemes modulation+coding
- FIG. 4 shows an embodiment of transmitter 212 -k, an arbitrary one of transmitters 212 - 1 through 212 -K.
- Transmitter 212 -k receives n k bits per baud interval, 1/B k , for transmission into sub-channel 301 -k.
- the n k bits are received in scrambler 401 .
- Scrambler 401 scrambles the n k bits and outputs a scrambled signal of n k bits, which “whitens” the data.
- encoder 402 can be a trellis encoder for the purpose of providing error correction capabilities.
- Trellis coding allows for redundancy in data transmission without increase of baud rate, or channel bandwidth. Trellis coding is further discussed in, for example, Bernard Sklar, Digital Communications, Fundamentals and Applications (Prentice-Hall, Inc.,1988), G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part I. Introduction,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 5-11, and G.
- encoder 402 can be a trellis encoder which adds one additional bit, in other words encoder 402 can be a rate n k /n k +1 encoder, see, e.g., G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part I. Introduction,” IEEE Communications Magazine, vol. 25, no. 2, Februray 1987, pp. 5-11, and G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part II. State of the Art,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 12-21.
- additional bits can be added to insure a minimum rate of transitions so that timing recovery can be efficiently accomplished at receiver 220 -p.
- FIG. 6A shows an embodiment of encoder 402 .
- Encoder 402 of FIG. 6A is an n k /n k +1 trellis encoder.
- Encoder 402 of FIG. 6A performs a rate 1 ⁇ 2 convolutional coding on the most-significant-bit (MSB) of the n k bit input signal.
- the MSB is input to delay 601 .
- the output signal from delay 601 is input to delay 602 .
- the MSB and the output signal from delay 602 are input to XOR adder 603 .
- the output from XOR adder 603 provides a coded bit.
- the MSB, the output signal from delay 601 , and the output signal from delay 602 are XORed in adder 604 to provide another coded bit.
- the two coded bits are joined with the remaining n k ⁇ 1 bits to form a n k +1 bit output signal.
- Delays 601 and 602 are each clocked at the symbol baud rate B.
- symbol mapper 403 can include any symbol mapping scheme for mapping the parallel bit signal from encoder 402 onto symbol values for transmission.
- a trellis encoder in conjunction with a QAM mapper can provide a trellis encoded QAM modulation for sub-channel 301 -k.
- FIG. 6B shows an embodiment of symbol mapper 403 .
- Symbol mapper 403 receives the n k +1 data bits from encoder 402 and generates a symbol, which can include an in-phase component I k and a quadrature component Q k .
- symbol mapper 403 includes a look-up table 605 which maps the n k +1 input bits to the complex output symbol represented by I k and Q k .
- Table I shows an example symbol look-up table for conversion of a 7-bit data signal into a 128-symbol QAM scheme.
- Table entries are in decimal format with the in-phase values along the bottom row and the quadrature values represented along the last column. From Table I, a decimal value of 96, for example, results in an I value of ⁇ 1 and a Q value of ⁇ 1.
- encoder 402 could be a 16 state, rate 2/3 encoder, encoding the 2 most significant bits (MSBs) of the n k bit input signal. In general, any pair of bits could be chosen for encoding in this example.
- the values x 3 and z 3 are the most significant bits (MSBs) of the state.
- the transition from the old state to the next state can define the 3 bit output of the encoder as shown in table II.
- the encoded 3-bits corresponding to that transition in this example is listed as the encoded value.
- the encoded output bits from encoder 402 are input to mapper 403 .
- the 3 bit output of encoder 402 can be the 3 MSBs and the 4 uncoded bits can be the least significant bits (LSBs).
- LSBs least significant bits
- a 16 symbol QAM scheme can be utilized.
- 4 bits with no encoding (or 3 bits in an 3/4 encoding scheme) can be directly mapped onto 16 QAM symbols.
- 4 bits can be encoded (with a 4/5 encoding scheme) into a 32 QAM symbol set. In general, any size symbol set can be utilized.
- the QAM mapping can be segregated into groups of four as is shown in FIG. 6C.
- n k +1 is 7 (referred to as 6/7 encoding).
- the two control bits from encoder 402 are arranged so that in groups of four symbols, the two control bits determine placement in the group.
- Control bits 00 and 11 and control bits 01 and 10 are in opposite comers of the groupings of four. This leads to a 6 dB gain in decoding at the receiver using this mapping scheme. Furthermore, the remaining five bits determine the actual grouping of four.
- the output signal from symbol mapper 403 can be a complex signal represented by in-phase signal I k (n) and a quadrature signal Q k (n), where n represents the nth clock cycle of the clock signal CK 1 , whose frequency equals the baud rate B k .
- signals I k (n) and Q k (n) are digital signals representing the values of the symbols they represent.
- a QAM mapper onto a constellation with 128 symbols can be utilized. An embodiment of a 128-symbol QAM constellation is shown in Table I.
- QAM symbol sets include 16 QAM symbol sets (16-QAM) and 4/5 encoded 32-QAM symbol sets (4/5 encoded 32 QAM).
- DACs 406 and 407 operate at the same clock rate as symbol mapper 403 . In some embodiments, therefore, DACs 406 and 407 are clocked at the symbol rate, which is the transmission clock frequency B k .
- the analog output signals from DACs 406 and 407 can be input to low-pass filters 408 and 409 , respectively.
- Low pass filters 408 and 409 are analog filters that pass the symbols represented by I k (t) and Q k (t) in the base band while rejecting the multiple frequency range reflections of the base band signal.
- FIG. 6D shows a schematic diagram of the ideal requirements for filters 408 and 409 .
- the filter function h(f) cuts off to include all of the base band signal while rejecting all of the higher frequency reflections of the base band signal created by DACs 406 and 407 .
- T k is the symbol period
- W(f) is a weighting function
- H RRC (f) is a target overall response
- ⁇ is the time delay on the target response.
- the cost function is minimized with respect to the parameters of the filter (e.g., coefficients b 2 , b 1 , b 0 , and a 4 through a 0 ) and the time delay ⁇ .
- FIG. 6E shows an example of a target overall response function H RRC (f), which is a square-root raised cosine function.
- the function H RRC (f) can be determined by a parameter ⁇ k along with the baud rate frequency 1/T k (which is the baud rate B k for transmitter 212 -k).
- the parameter ⁇ k is the excess bandwidth of the target function H RRC (f).
- ⁇ k can be set to 0.
- ⁇ k can be set to 0.6.
- the weight function W(f) can be chosen such that the stop band rejection of H TX (s) is less than about ⁇ 50 dB. Initially, W(f) can be chosen to be unity in the pass band frequency 0 ⁇ f ⁇ (1+ ⁇ k )/2T k and zero in the stop band frequency f>(1+ ⁇ k )/2T k , where ⁇ k is the excess bandwidth factor of the kth channel. The minimization of the cost function of Equation 3 can be continued further by increasing W(f) in the stop band until the rejection of analog filters 408 and 409 is less than ⁇ 50 dB.
- the overall impulse response of the transmit signal is a convolution of the impulse response of DACs 406 and 407 and the impulse response of transmit analog filters 408 and 409 , i.e.
- h k f (t) is the response of the filter and h k DAC (t) is the response of DACs 406 and 407 .
- the DAC response h k DAC (t) is a sinc function in the frequency domain and a rectangular pulse in the time domain.
- the overall response is a convolution of filters 408 and 409 with the response of DACs 406 and 407 .
- the overall filter response can be close to the target response H RRC (f) when h k TX (t) is determined with the cost function of Equation 3.
- the output signals from low-pass filters 408 and 409 are then up-converted to a center frequency f k to generate the output signal of y k (t), the kth channel signal.
- the output signal from low-pass filter 408 , I k LPF (t), is multiplied by cos(2 ⁇ f k t) in multiplier 410 .
- the output signal from low-pass filter 409 , Q k LPF (t) is multiplied by sin(2 ⁇ f k t) in multiplier 411 .
- the signal sin(2 ⁇ f k t) can be generated by PLL 414 based on the reference clock signal and the signal cos(2 ⁇ f k t) can be generated by a ⁇ /2 phase shifter 413 .
- mixers 410 and 411 are typically not ideal mixers and the harmonic sine wave input to mixer 410 , and the resulting cosine wave input to mixer 411 , often varies from a sine wave, signals having harmonics of the frequency f k are also produced. Often, the harmonic signals input to mixers 410 and 411 may more closely resemble square-wave signals than harmonic sine wave signals. Even if the “sine wave input” is a true sine wave, the most commonly utilized mixers, such as Gilbert Cells, may act as a band-limited switch, resulting in a harmonic signal with alternating positive and negative voltages with frequency the same as the “sine wave input” signal.
- the output signals from filters 408 and 409 are still multiplied by signals that more closely resemble square waves than sine waves.
- signals having frequency 2f k , 3f k , . . . are also produced, as well as signals in the base band (0f k ).
- the amplitude of these signals may be attenuated with higher harmonics, they are non-negligible in the output signal.
- even harmonics i.e., 0f k , 2f k , 4f k . . .
- FIG. 11 shows an embodiment of baseband transmitter 217 .
- Transmitter 217 may include a scrambler 1104 and encoder 1105 .
- Scrambler 1104 can be similar to that described as scrambler 401 described above and functions to whiten the data. In some embodiments, scrambler 1104 may utilize a different function for scrambling the incoming bits than that described above as scrambler 401 .
- Encoder 1105 can be similar to that described as encoder 402 above and encodes the n 0 bits input to transmitter 217 to n 0 +l bits. The output signal from encoder 1105 is then input to symbol mapper 1101 . Symbol mapper 1101 converts the n 0 +l parallel bits into a symbol for transmission.
- symbol mapper 1101 can be a PAM encoder.
- the PAM symbol set can be of any size.
- Encoder 1105 can provide 3/4 encoding or no encoding.
- the output signal from symbol mapper 1101 is input to digital-to-analog converter 1102 which converts the symbol set determined by symbol mapper 1101 into the corresponding output voltages.
- the analog output signal from DAC 1102 is prefiltered through filter 1103 .
- filter 1103 may prepare the output signal for transmission through medium 250 (see FIG. 2A) so that the signal received by a receiver is corrected for distortions caused by the channel. For example, if the baseband channel of transmission medium 250 is known to have a transfer function of (1+D(z)), then filter 1103 may execute a transfer function equal to 1/(1+D(z)) in order to cancel the transfer function of transmission medium 250 .
- the output signal from filter 1103 can be input to low-pass filter 1106 . Filter 1106 removes the higher frequency content, which may interfere with transmissions on the higher frequency channels.
- the output signal from filter 1106 is the base band signal y 0 (t).
- y 0 the base band signal
- ⁇ 0 is 2 ⁇ f 0 and where I k LPF (t) and Q k LPF (t) are 0 for all k>K.
- the signal on channel one is replicated into all of higher K channels, the baseband, and into harmonic frequencies beyond the base band and the K channels.
- Filter 215 can remove the contribution to the baseband channel from transmitters 212 - 1 through 212 -K.
- the signal on channel two for example, is also transmitted on channels 4 , 6 , 8 , . . . , and the baseband.
- the signal on channel 3 is transmitted on channels 6 , 9 , 12 , . . . and the base band.
- the signal on channel k will be mixed into channels 2 k, 3 k, . . . and the baseband.
- the attenuation of the signals with higher harmonics in some systems can be such that the signal from channel k is non negligible for a large number of harmonics, potentially up to the bandwidth of the process, which can be 30-40 GHz.
- a high pass filter 215 receives the signal from summer 213 .
- High pass filter 215 can, for example, be a first-order high-pass filter with 3 dB attenuation at f 1 /2.
- Filter 215 removes the DC harmonics, i.e. the baseband transmissions, from the transmitter. In embodiments with a separate baseband transmission, then, cross-channel coupling into the baseband is minimized or eliminated. Further, removing the baseband harmonics from the transmitted signals simplifies cross-channel cancellation at receiver 220 -p.
- B k and ⁇ k can be the same for all channels and the center frequencies of channels 301 - 1 through 301 -K, frequencies f 1 through f K , respectively, can be chosen by
- center frequencies can be chosen, for example:
- the parameter ⁇ k is the excess bandwidth factor.
- the bandwidth of the k-th channel, then , is (1+ ⁇ k )B k .
- the center frequencies of channels 301 - 1 through 301 -K can be any separated set of frequencies which substantially separate (i.e., minimizing overlap between channels) in frequency the transmission bands of transmission channels 301 - 1 through 301 -K.
- the frequencies f 1 through f K are chosen as multiplies of a single frequency f 0 which can fulfill equations 10 and/or 11 and results in the harmonic mixing of channels as shown in Equation 8 and 9.
- DACs 406 and 407 of the embodiment of transmitter 212 -k shown in FIG. 4 may be moved to receive the output of summer 412 . Further, in some embodiments DACs 406 and 407 can be replaced by a single DAC to receive the output of summer 213 . However, such DACs should have very high sampling rates. One advantage of utilizing high-sampling rate DACs is that ideal mixing could take place and the number of harmonics that need to be cancelled can be greatly reduced or even eliminated.
- embodiments of transmitter 210 -p capable of 10 Gbps transmission can be formed.
- Channels 301 - 1 through 301 - 7 can be 6/7 trellis encoded 128 QAM with the baud rate on each channel B k being 1.25 GHz/6 or about 208.333 Msymbols/sec.
- Channel 301 - 0 the baseband channel
- n k 6; 1 ⁇ k ⁇ 7 and encoder 402 is a 6/7 rate trellis encoder.
- channels 301 - 1 thorugh 301 - 7 can be transmitted at frequencies 2f 0 , 3f 0 , 4f 0 , 5f 0 , 6f 0 , 7f 0 and 8f 0 , respectively, where f 0 can be example, 1.5*B k or 312.5 MHz.
- Channel 301 - 1 can be, for example, 16 QAM with no error correction coding (i.e., uncoded 16-QAM) with baud rate B 1 of 1.25 GHz and
- Channel 301 - 0 can be, for example, 16-PAM with no error correction coding (i.e., uncoded 16-PAM) with baud rate B 0 at 1.25 GHz.
- the baud rate for both the PAM channel and the QAM channel is then 1.25 Gsps.
- the throughput is 5 Gbps each for a total transmission rate of 10 Gbps.
- the center frequency of the QAM channel can be f 1 ⁇ (1.5)*1.25 GHz or above about 1.8 GHz.
- the center frequency of channel 301 - 1 can be f 1 ⁇ (1.5)*1.25 GHz or above about 1.8 GHz.
- channels 301 - 0 through 301 - 5 can be utilized.
- Channels 301 - 1 thorugh 301 - 5 can be 6/7 trellis encoded 128-QAM with baud rate B k of 1.25 GHz/6 or 208 MHz.
- the center frequencies of channels 301 - 1 through 301 - 5 can be 4f 0 , 5f 0 , 6f 0 , 7f 0 , and 8f 0 , respectively, with f 0 being about 312.5 MHz.
- DACs 406 and 407 of each of transmitters 212 - 1 through 212 -K can each be 4 bit DACs.
- a schematic diagram of an embodiment of trellis encoder 402 and an embodiment of the resultant 128-QAM constellation mapping are shown in FIGS. 6A, 6B, and 6 C, respectively.
- An example of a 128 symbol QAM mapping table is shown as Table I.
- the above described trellis encoder 402 in this embodiment, provides an asymptotic coding gain of about 6 dB over uncoded 128-QAM modulation with the same data rate, see, e.g., G.
- FIG. 5A shows an example of one of receiver systems 220 -p where receiver system 220 -p is an arbitrary one of receiver systems 220 - 1 through 220 -P of system 200 .
- Receiver system 220 -p includes receivers 221 - 1 through 221 -K and baseband receiver 223 to form a (K+1)-channel receiver.
- the output signals from receiver input buffer 224 , Z(t) is received in each of receivers 222 - 1 through 222 -K and 223 .
- the signal Z(t) then, is the transmitted signal z(t) after transmission through medium 250 .
- FIG. 1 the output signals from receiver input buffer 224 , Z(t)
- the attenuation of signals at each of the K carrier frequencies after transmission through medium 250 can be different. Additionally, the signal Z(t) suffers from inter-symbol interference caused by the dispersive effects of medium 250 .
- the dispersive effects cause the signals received within a particular timing cycle to be mixed with those signals at that carrier frequency received at previous timing cycles. Therefore, in addition to cross-channel interference effects caused by the harmonic generation in mixers of the transmitter (an arbitrary one of which being designated transmitter 210 -p), but also the signals for each channel are temporally mixed through dispersion effects in medium 250 .
- Signal Z(t) is then received into each of receivers 222 - 1 through 222 -K.
- receiver 222 -k an arbitrary one of receivers 222 - 1 through 222 -K, for example, receives the signal Z(t) into down converter 560 -k which, in the embodiment shown in FIG. 5A, down converts the channel transmitted at frequency f k back into the baseband and recovers in-phase and quadrature components Z k I and Z k Q , respectively.
- FIG. 5A shows an embodiment of down-converter 560 -k.
- Signal Z(t) is received in multipliers 501 -k and 502 -k where it is down-converted to baseband to obtain an in-phase component Z k I (t) and a quadrature component Z k Q (t).
- Multiplier 501 -k multiplies signal Z(t) with cos(2 ⁇ circumflex over (f) ⁇ k t) and multiplier 502 -k multiplies signal Z(t) with sin(2 ⁇ circumflex over (f) ⁇ k t), where ⁇ circumflex over (f) ⁇ k can be the locally generated estimate of the carrier center frequency f k from the corresponding transmitter.
- the clock signals within component 201 -p an arbitrary one of components 201 - 1 through 201 -P, which are generated based on the reference signal from PLL 230 as shown in FIG. 2A, will have the same frequencies. However, the frequencies between differing ones of components 201 - 1 through 201 -P can be slightly different. Therefore, ⁇ f k ⁇ denotes the set of frequencies at the transmitter and ⁇ circumflex over (f) ⁇ k ⁇ denotes the set of frequencies at the receiver.
- component 201 -p is a slave component where the frequencies ⁇ circumflex over (f) ⁇ k ⁇ can be adjusted to match those of the component that includes the transmitter, which is also one of components 201 - 1 through 201 -P.
- component 201 -p is a master component, in which case the transmitter of the component communicating with component 201 -p adjusts frequencies ⁇ f k ⁇ to match those of ⁇ circumflex over (f) ⁇ k ⁇ .
- Arbitration in any given communication link between receiver 220 -p of component 201 -p and a transmitter in one of the other of components 201 - 1 through 201 -P can be accomplished in several ways.
- priority may be set between pairs of components 201 - 1 through 201 -P so that the master/slave relationship between those pairs is pre-determined.
- an overall system control chooses at the start of each communication which component is master and which is slave.
- the two components may negotiate, for example by each randomly choosing one of the k channels on which to transmit and designating the one that transmits on the lowest numbered channel as master. In any event, in any transmission either the transmitter adjusts ⁇ f k ⁇ or the receiver adjusts ⁇ circumflex over (f) ⁇ k ⁇ depending on which has been designated master and which slave upon start of the communications
- PLL 523 generates the clock signals for each of receivers 222 - 1 through 222 -K and receiver 223 and, in particular, generates the sin(2 ⁇ circumflex over (f) ⁇ k t) signal for receiver 222 -k.
- the cos(2 ⁇ circumflex over (f) ⁇ k t) signal can be generated by ⁇ /2 phase shifter 524 -k.
- PLL 523 generates the sampling clock signal utilized in analog to digital converters (ADCs) 506 -k and 507 -k as well as other timing signals utilized in receivers 222 - 1 through 222 -K and receiver 223 .
- PLL 523 also generates an RX CLK signal for output with the n k bit output signal from receiver 222 -k.
- Down converters 560 - 1 through 560 -K also generate harmonics for very much the same reasons that harmonics are generated in transmitters 212 - 1 through 212 -K. Therefore, down converter 560 -k will down-convert into the base band signals from signals having center frequencies 0, ⁇ circumflex over (f) ⁇ k , 2 ⁇ circumflex over (f) ⁇ k , 3 ⁇ circumflex over (f) ⁇ k , . . .
- the down conversion process for down converter 560 - 1 will result in the output signals Z 1 I and Z 1 Q including interference contributions from the received signals from all of the other channels.
- the output signals Z 2 I and Z 2 Q include contributions from channels with frequencies 0, 2 ⁇ circumflex over (f) ⁇ 0 , 4 ⁇ circumflex over (f) ⁇ 0 , 6 ⁇ circumflex over (f) ⁇ 0 . . . and those channels with harmonics at these frequencies.
- each of the channels also include the cross-channel interference generated by the transmitter mixers and the dispersive interference created by the channel. If the baseband component of the harmonics is not filtered in filter 215 (FIG. 2B) out between the transmit and receive mixers, then every channel could put a copy of its transmit signal onto the baseband and every channel will receive the baseband signal at the receive side.
- PLL 523 can be a free-running loop generating clock signals for receiver 222 -k based on a reference clock signal.
- transmitter 212 -k of transmitter and demodulator 222 -k of the receiver system 220 -p because they are part of different ones of components 201 - 1 through 201 -P, are at different clock signals. This means that the digital PLLs for timing recovery and carrier recovery correct both phase and frequency offsets between the transmitter clock signals and receiver clock signals.
- a transmitter/receiver pair (i.e., transmitter 210 -p and receiver 220 -p of component 201 -p) can operate with the same PLL and therefore will operate with the same clock signals.
- the signals Z k I and Z k Q output from down converter 560 -k suffer the effects of cross-channel interference resulting from harmonic generation in the transmitter mixers, the effects of cross-channel interference resulting from harmonic generation in the receiver mixers, and the effects of temporal, intersymbol interference, resulting from dispersion in the transport media.
- the transmitter and receiver clocks can be different.
- ⁇ circumflex over (f) ⁇ 1 through ⁇ circumflex over (f) ⁇ K of the receiver will correspond to frequencies (f 0 + ⁇ ) through K(f 0 + ⁇ ), where ⁇ represents the frequency shift between PLL 523 of receiver 220 -p and the PLL of the transmitter component.
- the transmitter mixers then cause cross-channel interference by mixing the signals transmitted at frequency f k into 2f k , 3f k . . . (2kf 0 , 3kf 0 . . . in one example).
- the receiver mixers cause cross-channel interference by down-converting the signals received at ⁇ circumflex over (f) ⁇ k , 2 ⁇ circumflex over (f) ⁇ k , 3 ⁇ circumflex over (f) ⁇ k . . . to the baseband. If the frequencies ⁇ circumflex over (f) ⁇ 0 is f 0 + ⁇ , then the harmonics will be down-converted to a baseband shifted in frequency by k ⁇ , 2k ⁇ , 3k ⁇ , . . . , respectively.
- receiver 220 -p includes a frequency shift 563 which supplies a reference clock signal to PLL 523 .
- the reference clock signal supplied to PLL 523 can be frequency shifted so that ⁇ becomes 0.
- the frequency supplied to PLL 523 by frequency shift 563 can be digitally created and the input parameters to frequency shift 563 can be adaptively chosen to match the receiver frequency with the transmitter frequency. Embodiments of frequency adjustments in frequency shift 563 and PLL 523 are further discussed below.
- the output signals from down-converter 560 -k, Z k I and Z k Q are input to analog filter 561 - 2 .
- An embodiment of analog filter 561 - 2 is shown in FIG. 5C.
- the signals Z k I and Z k Q are input to offset corrections 530 -k and 531 -k, respectively.
- DC offset corrections 530 -k and 531 -k provide a DC offset for each of the outputs Z k I and Z k Q from down-converter 560 -k to correct for any leakage onto signal Z(t) from the sine and cosine signals provided by PLL 523 , plus any DC offset in filters 504 -k and 505 -k and ADCs 506 -k and 507 -k. Leakage onto Z(t) can, in some cases, provide a significant DC signal component of the output signals Z k I and Z k Q from down-converter 560 -k. In some embodiments, offsets 530 -k and 531 -k can offset by the same amount.
- different offset values, DCOI and DCOQ in FIG. 5C can be provided for each of the output signals Z k I and Z k Q from down-converter 560 -k.
- the DC offset values can be adaptively chosen in blocks 543 -k and 544 -k. In some embodiments, after an initial start-up procedure, the DC offset values are fixed.
- the DC offsets, DCOI and DCOQ inputs to offsets 530 -k and 531 -k, respectively can be generated by providing a low frequency integration of the output signal from analog-to-digital converters (ADCs) 506 -k and 507 -k (FIG. 5A).
- ADCs analog-to-digital converters
- FIG. 5C for example, low-frequency integrator 543 -k receives the output signal from of ADC 506 -k, R k I , and provides the DCOI input signal to offset 530 -k; integrator 544 -k receives the output signal from ADC 507 -k, R k Q , and provides the DCOQ input signal to offset 531 -k.
- integrators 544 -k and 543 -k provide signals that set the average output signal of each of ADCs 506 -k and 507 -k to zero.
- integrators 543 -k and 544 -k hold the offset values DCOI and DCOQ, respectively, constant after a set period time of integration when receiver 222 -k is first started.
- Low-pass filters 504 -k and 505 -k are analog filters that filter out signals not associated with the baseband signal (i.e., signals from the remaining bands of transmitter 210 -p) for the kth transmission band.
- Low pass filters 504 -k and 505 -k do not remove the interference caused by harmonic generation in transmit and receive mixers involved in the up-conversion and down-conversion process.
- the parameters b 2 , b 1 , b 0 , and a 4 through a 0 can be found by minimizing the cost function ⁇ 0 ⁇ ⁇ ⁇ H RX ⁇ ( s ) - H RRC ⁇ ( f ) ⁇ ⁇ - j ⁇ ⁇ 2 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ f ⁇ ⁇ ⁇ ⁇ 2 ⁇ W ⁇ ( f ) ⁇ ⁇ f . ( 13 )
- the cost function is minimized with respect to the parameters of the filter and the time delay ⁇ .
- the weighting function W(f) can be chosen such that the stop band rejection of H RX (s) is less than ⁇ 50 dB.
- the function H RRC (f) is the square root raised cosine function shown in FIG. 6E. As shown in FIG. 6E, the function H RRC (f) is characterized by a parameter ⁇ k and baud frequency 1/T k .
- the parameter ⁇ k is the excess bandwidth of the target function H RRC (f). In some embodiments, ⁇ k can be 0. In some embodiments, ⁇ k can be 0.6. In general, the parameter ⁇ k can be any value, with smaller values providing better filtering but larger values being easier to implement.
- filters 504 -k and 505 -k can be determined by minimizing the function ⁇ 0 ⁇ ⁇ ⁇ H DAC ⁇ ( f ) ⁇ H TX ⁇ ( s ) ⁇ H RX ⁇ ( s ) - H RC ⁇ ( f ) ⁇ ⁇ - j ⁇ ⁇ 2 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ f ⁇ ⁇ ⁇ ⁇ 2 ⁇ W ⁇ ( f ) ⁇ ⁇ f , ( 14 )
- Equation 14 includes the effects of the transmit digital to analog converters 406 and 407 (FIG. 4) as well as the analog transmit filters 408 and 409 (FIG. 4) to set the overall response of filters 408 and 409 , filters 504 -k and 505 -k, and transmitter digital to analog converters 406 and 407 to the target response function H RC (f).
- H TX (f) and H RX (f) can be the same.
- the output signals from low-pass filters 504 -k and 505 -k can, in some embodiments, be amplified in variable gain amplifiers 521 -k and 522 -k, respectively.
- the gains g k 1(I) and g k 1(Q) of amplifiers 521 -k and 522 -k, respectively are set such that the dynamic range of analog-to-digital converters 506 -k and 507 -k, respectively, is filled.
- the output signals from amplifiers 521 -k and 522 -k, then, are
- g k 1(I) and g k 1(Q) represents the gain of amplifiers 521 -k and 522 -k, respectively.
- the gains of amplifiers 521 -k and 522 -k can be set in an automatic gain control circuit (AGC) 520 -k.
- AGC automatic gain control circuit
- FIGS. 8A and 8B An embodiment of automatic gain circuit 520 -k where g k 1(I) and g k 1(Q) are set equal to one another is shown in FIGS. 8A and 8B.
- amplifiers 521 -k and 522 -k can be before or incorporated within filters 504 -k and 505 -k, respectively.
- the signals output from analog filter 561 -k, signals r k I (t) and r k Q (t), are input to analog-to-digital converters (ADC) 506 -k and 507 -k, respectively, which forms digitized signals R k I (t) and R k Q (t) corresponding with the analog signals r k I (t) and r k Q (t), respectively.
- ADCs 506 -k and 507 -k operate at a sampling rate that is the same as the transmission symbol rate, e.g. the QAM symbol rate.
- ADCs 506 -k and 507 -k can operate at higher rates, for example twice the QAM symbol rate.
- the timing clock signal SCLK, as well as the sine and cosine functions of Equation 15, is determined by PLL 523 .
- ADCs 506 -k and 507 -k can be 8-bit ADCs. However, for 128 QAM operation, anything more than 7 bits can be utilized.
- the gain of amplifiers 521 -k and 522 -k of analog filters 560 -k can be set by automatic gain control circuit (AGC) 520 -k (see FIG. 5C).
- Gain control circuit 520 -k can receive the digital output signals from ADCs 506 -k and 507 -k, R k I (n) and R k Q (n), respectively, and determines the gain g 1 k (n+1) for each of amplifiers 521 -k and 522 -k (i.e., in this embodiment g 1(I) k (n) and g 1(Q) k (n) are equal).
- FIGS. 8A and 8B show some embodiments of AGC 520 -k.
- AGC 520 -k shown in FIG. 8A includes an AGC phase detector 801 and an integrator 802 .
- Phase detector 801 estimates whether or not the mean-squared-power of signals R k I (t) and R k Q (t) are at a pre-determined threshold value and, if not, provides a correction signal to adjust the amplitudes of signals r k I(t) and r k Q (t).
- the output signal from phase detector 801 can be given by
- G th is the mean squared power of the signals input to ADCs 506 -k and 507 -k once AGC 520 -k converges.
- the output signal from phase detector 801 , p k g (n), is then input to integrator 802 .
- Integrator 802 digitally adjusts the gain g k according to
- ⁇ g determines the rate of adaptation of the AGC algorithm.
- the constant ⁇ g can be chosen to be a negative power of 2 for ease of implementation.
- phase detector 520 -k shown in FIG. 8B includes two phase detectors 803 and 804 which calculate the mean squared powers of R k I (n) and R k Q (n) separately and compare them with thresholds G th I and G th Q , respectively.
- the output signals from phase detectors 803 and 804 can be given by
- g k 1 ⁇ I ( n +1) g k 1 ⁇ I ( n )+ ⁇ g I p k g ⁇ I ( n ),
- ⁇ g I and ⁇ g Q determine the rate of adaptation of the AGC algorithm as in Equation 17 above.
- AGC 520 -k can include a peak detection algorithm so that the gain values g k 1(I) and g k 1(Q) are determined from the peak values of R k I and R k Q , respectively. Again, the peak values of R k I and R k Q can be compared with threshold values and the gain values g k 1(I) and g k 1(Q) adjusted accordingly.
- the output signals from ADCs 506 -k and 507 -k, R k I and R k Q , respectively, are input to a first digital filter 562 -k.
- An embodiment of first digital filter 562 -k is shown in FIG. 5D.
- the in-phase and quadrature data paths may suffer from small differences in phase and small differences in gain. Therefore, in some embodiments a phase and amplitude correction is included in digital filter 562 -k. In order to correct the phase and amplitude between the in-phase and quadrature data paths, one of the values R k I (n) and R k Q (n) is assumed to be of the correct phase and amplitude.
- R k I (n) is assumed to be correct and R k Q (n) is corrected.
- the phase error can be corrected by using the approximation for small ⁇ k c where sin ⁇ k c is approximately ⁇ k c , and cos ⁇ k c is approximately one.
- This correction can be implemented by subtracting in summer 536 -k the value ⁇ k c R k I (n) calculated in multiplier 535 -k to R k Q (n).
- the amplitude of R k Q (n) can be corrected by adding a small portion ⁇ k c of R k Q (n), calculated in multiplier 533 -k, in summer 536 -k.
- an arithmetic offset can be implemented by subtracting the value OFFSET 1 I in summer 534 -k to R k I (n) and subtracting the value OFFSET 1 Q in summer 536 -k.
- the offset values OFFSET 1 I and OFFSET 1 Q can be adaptively chosen in tracking and recovery block 517 -k by integrating the output signals from summer 534 -k and summer 536 -k, F k I (n) and F k Q (n), respectively, in a low frequency integration.
- the offsets implemented in summer 534 -k and 536 -k offset the dc offset not corrected in analog filter 561 -k, e.g. by offsets 530 -k and 531 -k, for example, as well as arithmetic errors in summers 534 -k, 536 -k and multipliers 535 -k and 533 -k.
- the parameters OFFSET 1,k I , OFFSET 1,k Q , ⁇ k c and ⁇ k c vary for each cycle n. Additionally, the parameters can be different for each of the k receivers 222 - 1 through 222 -k.
- phase rotation circuit 512 -k rotates signals F k I (n) and F k Q (n) according to the output of a carrier phase and frequency offset correction circuit, which depends on the difference between ⁇ circumflex over (f) ⁇ k and f k , and the relative phase of the transmit mixers (multipliers 410 and 411 ) and the receive mixers (multipliers 501 -k and 502 -k) and transmission channel 250 (FIG. 2A).
- the rotation angle ⁇ k I (n) is computed in carrier tracking and timing recovery block 517 .
- the resultant output signals of carrier phase rotation circuit 512 , D k I (n) and D k Q (n) can be given by:
- the output signals from rotation circuit 512 -k, D k I (n) and D k Q (n), are then input to a complex adaptive equalizer 513 -k to counter the intersymbol interference caused by frequency dependent channel attenuation, and the reflections due to connectors and vias that exist in communication system 200 (which can be a backplane communication system, an inter-cabinet communication system, or a chip-to-chip communication system) and both transmit and receive low pass filters, e.g. filters 408 and 409 of FIG. 4 and filters 504 -k and 505 -k of FIG. 5C.
- communication system 200 which can be a backplane communication system, an inter-cabinet communication system, or a chip-to-chip communication system
- equalizer 513 can have any number of taps.
- Complex Equalizer 513 -k can be either a linear equalizer (i.e., having a feed-forward section only) or a decision feed-back equalizer (i.e., having a feed-forward and a feedback portion).
- the coefficients of the equalizer transfer function are complex-valued and can be adaptive.
- the complex equalizer coefficients that operate on signals D k I and D k Q are the same, but in other embodiments the complex equalizer coefficients are allowed to be different for D k I and D k Q .
- the feed-forward portion of an adaptive equalizer (either a linear equalizer or decision feed-back equalizer) can be preceded by a non-adaptive all-pole filter with transfer function 1/A(z).
- the coefficients of A(z) which can be found by a minimum mean squared error technique, can be real-valued, for example
- complex adaptive equalizer 513 -k includes adaptively chosen parameters.
- complex adaptive equalizer 513 -k can be a decision feedback equalizer (DFE) or a linear equalizer. See, e.g., Edward A. Lee, and David G. Messerschmitt, Digital Communication, pp. 371-402 (Kluwer Academic Publishers, 1988).
- DFE decision feedback equalizer
- linear equalizer e.g., Edward A. Lee, and David G. Messerschmitt, Digital Communication, pp. 371-402 (Kluwer Academic Publishers, 1988).
- equalizer coefficients C k x,I (j,n), C k y,I (j,n), C k x,Q (j,n) and C k y,Q (j,n) can be updated according to the least mean squares (LMS) algorithm as described in Bernard Sklar, Digital Communications, Fundamentals and Applications (Prentice-Hall, Inc.,1988), for example.
- LMS least mean squares
- equalizer coefficients C k x,I (j,n) and C k x,Q (j,n) are the same and equalizer coefficients C k y,Q (j,n) and C k y,Q (j,n) are the same.
- the center coefficients of the feed-forward part of equalizer 513 -k, C k x,I ( 0 ,n), C k y,I ( 0 ,n), C k x,Q ( 0 ,n) and C k y,Q ( 0 ,n) can each be fixed at 1 and 0, respectively, to avoid interaction with the adaptation of gain coefficients g k 2(I) and g k 2(Q) used in amplifiers 537 -k and 538 -k of a second digital filter 563 -k and the carrier phase correction performed in phase rotator 512 -k.
- the coefficients C k x,I ( ⁇ 1,n), C k y,I ( ⁇ 1,n), C k x,Q ( ⁇ 1,n) and C k y,Q ( ⁇ 1,n) can be fixed at constant values to avoid interaction with the adaptation of the phase parameter ⁇ k by tracking and timing recovery 517 -k.
- the parameters C k x,I ( ⁇ 1,n) and C k x,Q ( ⁇ 1,n) can be ⁇ 1 ⁇ 4- ⁇ fraction (1/16) ⁇ , which is ⁇ 0.3125
- the parameters C k y,I ( ⁇ 1,n) and C k y,Q ( ⁇ 1,n) can be ⁇ fraction (1/64) ⁇ , which is ⁇ 0.015625.
- one set of parameters for example C k x,I ( ⁇ 1,n) and C k x,Q ( ⁇ 1,n), are fixed while the other set of parameters, for example C k y,I ( ⁇ 1,n) and C k y,Q ( ⁇ 1,n), can be adaptively chosen.
- C k x,I ( ⁇ 1,n) and C k y,I ( ⁇ 1,n) are fixed and the timing recover loop of adaptive parameters 517 - 2 for determining the phase parameter ⁇ k utilizes errors e k I only (see FIG. 7). In that way, adaptively choosing parameters in the Q channel do not interact with the timing loop.
- the opposite can be utilized (i.e., C k x,Q ( ⁇ 1,n) and C k y,Q ( ⁇ 1,n) are fixed and the timing loop determines the phase parameter ⁇ k from error parameter e k Q ).
- cross-channel interference filter 570 removes the effects of cross-channel interference.
- Cross-channel interference can result, for example, from harmonic generation in the transmitter and receiver mixers, as has been previously discussed.
- equalization for intersymbol interference can be performed in digital filter 562 -k.
- cross-channel interference filter 570 may be placed before equalizer 513 -k (in other words, equalizer 513 -k may be placed in digital filter 563 - 2 instead of digital filter 562 - 2 ).
- the output signals from digital filter 562 - 2 , E k I (n) and E k Q (n), for each of receivers 222 - 1 through 222 -K are input to cross-channel interference filter 570 .
- An embodiment of cross-channel interference canceller 570 is shown in FIG. 5F.
- Each of the complex values E 1 through E K is input to a summer 571 - 1 through 571 -K, respectively, where contributions from all of the other channels are removed.
- the output signals from summers 571 - 1 through 571 -K, H 1 through H K , respectively, are the output signals from cross-channel interference filter 570 .
- the complex value H k (n) is H k 1 (n)+iH k Q (n), representing the in-phase and quadrature output signals.
- the signal E k is also input to blocks 572 -k, 1 through 572 -k,k ⁇ 1 and blocks 572 -k,k+1 to 572 -k,K.
- Block 572 -k,l an arbitrary one of blocks 572 - 1 , 2 through 572 -K, K ⁇ 1, performs a transfer function Q k,l which determines the amount of signal E k which should be removed from E l to form H l .
- delays 573 - 1 through 573 -K delay signals E 1 through E K for a set number of cycles N to center the cancellations in time.
- Z ⁇ 1 represents a once cycle delay.
- the transfer functions Q k,l can have any number of taps and, in general, can be given by
- the coefficients ⁇ k,l 0 through ⁇ k,l M can be adaptively chosen in cross-channel adaptive parameter block 571 as shown in FIG. 5A in order to optimize the performance of receiver system 220 -p.
- M is chosen to be 5.
- Cross-channel adaptive parameter block 571 is further discussed below.
- cross channel interference canceller 570 the cross channel interference is subtracted from the output signals from digital filters 562 - 1 through 562 -K as indicated by Equation 26.
- An embodiment of second digital filter 563 -k is shown in FIG. 5E.
- Equation 28 The parameters ⁇ k,l m of Equation 28 can be adaptively chosen. In the adaptation algorithm, the real and imaginary parts of ⁇ k,l m can be adjusted separately. The adaptive adjustments of parameters ⁇ k,l m is further discussed below.
- the signals H k I and H k Q can be input to AGC controlled amplifiers 537 -k and 538 -k, respectively.
- the gains of amplifiers 537 -k and 538 -k, g k 2(I) and g k 2(Q) , respectively, are set such that the output signals from amplifiers 537 -k and 538 -k yield appropriate levels for the symbol set.
- the gain values g k 2(I) and g k 2(Q) are set in tracking and timing recovery 517 -k and can be determined in much the same fashion as in AGC 520 -k of FIG. 5C.
- the gain values g k 2(I) and g k 2(Q) are determined based on the sign of the determined symbol from decision unit 516 -k and the error signal.
- Quadrature correction 540 -k corrects for the phase error between the in-phase and quadrature mixers at the transmitter.
- the angle ⁇ k (2) (n) of the phase error can be adaptively chosen in tracking and timing recovery 517 .
- the value ⁇ k (2) (n) can be changed very slowly and can be almost constant.
- arithmetic offsets OFFSET 2 I and OFFSET 2 Q can be subtracted in summers 541 -k and 542 -k, respectively.
- the values of OFFSET 2 I and OFFSET 2 Q can be adaptively chosen in tracking and timing recovery 517 -k.
- the OFFSET 2 I and OFFSET 2 Q can be set by integrating the output signals of summers 541 -k and 542 -k, G k I (n) and G k Q (n), respectively.
- OFFSET 2k I and OFFSET 2 Q can be set such that the error at decision unit 516 -k is zero. In that embodiment, data dependent jitter can be reduced.
- tracking and timing recovery 517 -k integrates the error values between the output samples from decision unit 516 -k and the output signals G k I (n) and G k Q (n) to minimize the error values.
- FIG. 7 shows an embodiment of Tracking and Timing Recovery 517 -k.
- Tracking and timing recovery 517 -k inputs decision values â k I (n) and â k Q (n), which are decisions of the symbol values based on the signals G k I (n) and G k Q (n) in decision unit 516 -k, and error values e k I (n) and e k Q (n) based on the decided values â k I (n) and â k Q (n) and the values G k I (n) and G k Q (n).
- the error values e k I (n) and e k Q (n) are the differences between the decided values â k I (n) and â k Q (n) and the values G k I (n) and G k Q (n).
- the coefficients of equalizer 513 -k of first digital filter 562 -k are computed in coefficient update 702 -k.
- Equalizer 513 -k of FIG. 5D are updated in tracking and timing recovery block 517 -k.
- ⁇ is the constant that determines the rate of adaptation of the coefficients
- j indicates the tap of the coefficient
- e k I (n) and e k Q (n) are estimated error values.
- the constant ⁇ is chosen to control the rate of adaptation, and, in some embodiments, is in the range of 2 ⁇ 8 to 2 ⁇ 14 .
- the coefficient ⁇ can be different for the update equation for C k x and the update equation for C k y .
- the estimated error values which are computed by decision block 516 -k, can be computed according to:
- G k I (n) and G k Q (n) are corrected values of E k I (n) and E k Q (n), respectively, and ⁇ â k I (n),â k Q (n) ⁇ is the decision set based on the sample set ⁇ G k I (n),G k Q (n) ⁇ , and represents the closest QAM symbol in Euclidean distance to the sample set.
- ⁇ â k I (n),â k Q (n) ⁇ is the decision set based on the sample set ⁇ G k I (n),G k Q (n) ⁇ , and represents the closest QAM symbol in Euclidean distance to the sample set.
- a decision set ⁇ â k I (n),â k Q (n) ⁇ can be computed based on sample set ⁇ G k I (n),G k Q (n) ⁇ in decision unit 516 -k and the results received into tracking and timing recovery circuit 517 where the estimated error values of Equation 30 and the resulting coefficient updates of Equation 30 are computed.
- FIG. 7 shows a block diagram of equalizer coefficient update, carrier tracking and timing recovery block 517 -k.
- Block 517 -k includes coefficient update block 702 -k. Errors e k I (n) and e k Q (n) are computed in decision block 516 -k according to Equation 30.
- Coefficient update 702 -k receives errors e k I (n) and e k Q (n) signals D k I (n) and D k Q (n) from phase rotator circuit 512 -k shown in FIG. 5D and calculates updated equalizer coefficients for complex adaptive equalizer 513 -k shown in FIG. 5D according to Equation 30.
- Tracking and timing recovery circuit 517 -k can also include a carrier recovery loop for controlling carrier phase rotation circuit 512 -k shown in FIG. 5D and a timing recovery loop for controlling the phase of sampling clock signal SCLK from PLL 523 .
- the timing recovery loop for determining ⁇ k (n+1) in tracking and timing recovery 517 can be implemented as a 2 nd order digital phase locked loop as shown in FIG. 7.
- Equation 32 which can be simpler to implement than Equation 32.
- the phase correction ⁇ k is calculated from e k I only or from e k Q only, as discussed above, then the terms containing e k Q or the terms containing e k I , respectively, are dropped from Equations 32 and 33.
- ⁇ ⁇ and ⁇ ⁇ are the loop filter coefficients that determine the timing recovery loop bandwidth and damping factor.
- a loop bandwidth equal to 1% of baud rate, and damping factor equal to 1 can be implemented.
- the loop bandwidth and damping factors can depend not only on loop filter coefficients, but also on phase detector slope, and the digital integrator gain.
- I k ⁇ ( n ) I k ⁇ ( n ⁇ 1)+ ⁇ ⁇ p k ⁇ ( n ⁇ 1). (35)
- phase correction ⁇ k (n) is then received by PLL 523 , as described above.
- the carrier phase recovery loop which computes the parameter ⁇ utilized in phase rotation 512 -k can also be implemented as a 2 nd order digital phase locked loop as shown in FIG. 7.
- Phase detector 704 -k receives decision values ⁇ â k I (n),â k Q (n) ⁇ and error signals ⁇ e k I (n),e k Q (n) ⁇ from decision unit 516 -k, and produces an estimate of the phase error.
- I k ⁇ ( n ) I k ⁇ ( n ⁇ 1)+ ⁇ ⁇ p k ⁇ ( n ⁇ 1). (40)
- the parameter ⁇ k c (n+1) can be calculated by phase detector 720 -k and integrator 722 -k as described in Equation 21.
- the parameter ⁇ k c (n+1) input into multiplier 533 -k shown in FIG. 5D can be calculated by blocks 723 and integration block 724 according to Equation 20.
- the offset values OFFSET 1 I and OFFSET 1 Q input to summers 534 -k and 536 -k, respectively, of the embodiment of digital filter 562 -k shown in FIG. 5D can be determined by integrating the signals F k I (n) and F k Q (n), respectively.
- the offset values OFFSET 2 I and OFFSET 2 Q input to sununers 541 -k and 542 -k, respectively, of digital filter 563 -k shown in FIG. 5E can be calculated by integrating the signals G k I (n) and G k Q (n), respectively.
- the embodiment of adaptive parameter block 517 -k shown in FIG. 7 calculates OFFSET 2 I and OFFSET 2 Q by integrating the error signals e k I (n) and e k Q (n), respectively.
- the coefficient ⁇ k (2) to quadrature correction 540 -k of FIG. 5E can be calculated by phase detector 729 -k and integrator 731 -k.
- phase detector 732 -k calculates the quantities
- g k 2 ⁇ I ( n+ 1) g k 2 ⁇ I ( n )+ ⁇ g p k g2 ⁇ I
- g k 2 ⁇ Q ( n+ 1) g k 2 ⁇ Q ( n )+ ⁇ g p k g2 ⁇ Q , (45)
- ⁇ g determines how fast the gain values respond to changes.
- cross-channel adaptive parameter block 571 adaptively adjusts the parameters of cross-channel interference canceller 570 , all of the ⁇ k,I i parameters of Equations 26 and 27.
- all of complex parameters ⁇ k,I j can be set to 0.
- Each of complex parameters ⁇ k,I j can then be updated according to
- ⁇ k,l m,x ( n+ 1) ⁇ k,l m,x ( n ) ⁇ k,l m,x ( e 1 I ( n ) E k I ( n ⁇ m )+ e 1 Q ( n ) E k Q ( n ⁇ m ), (b 46 )
- ⁇ k,l m,y ( n+ 1) ⁇ k,l m,y ( n ) ⁇ k,l m,y ( e 1 Q ( n ) E k I ( n ⁇ m ) ⁇ e 1 I ( n ) E k Q ( n ⁇ m ), (47)
- ⁇ k,1 m ⁇ k,1 m,x +i ⁇ k,1 m,y , (48)
- ⁇ k,l m ⁇ k,1 m,x +i ⁇ k,1 m,y is the complex update coefficient for parameter ⁇ k,1 m and controls how fast parameter ⁇ k,1 m can change, in similar fashion as has been described with other update equations above.
- all of the parameters ⁇ k,l m,x and ⁇ k,l m,y each have values on the order of 10 ⁇ 3 to 10 ⁇ 5 .
- frequency shift 563 generates a reference signal input to PLL 523 such that the frequency of component 201 -p with receiver system 220 -p, ⁇ circumflex over (f) ⁇ 1 through ⁇ circumflex over (f) ⁇ K , matches the frequency of the corresponding component 201 -q with transmitter system 210 -q, f 1 through f K , where component 201 -q is transmitting data to component 201 -p.
- frequency shift 563 shifts the frequency of a reference clock such that the frequency shift ⁇ is zero.
- frequency shift 563 can receive input from any or all loop filters 706 -k (FIG. 7) and adjusts the frequency shift such that ⁇ k (1) through ⁇ k (K) remain a constant, for example 0 or any other angle. In some embodiments, frequency shift 563 receives the output signals from any or all loop filters 705 -k.
- the output signals from digital filter 563 -k, equalized samples ⁇ G k I (n),G k Q (n) ⁇ , are input to trellis decoder 514 -k.
- Trellis decoding can be performed using the Viterbi algorithm, see, e.g., G. Ungerboeck., “Channel Coding with Multilevel/Phase Signals,” IEEE Transactions on Information Theory, vol. IT-28, January 1982, pp. 55-67, G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part I. Introduction,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 5-11, G.
- trellis decoder 514 converts from the QAM symbol set back to parallel bits.
- the output signal from trellis decoder 514 which now contains n k parallel bits, is input to descrambler 515 -k.
- Descrambler 515 -k of receiver demodulator 222 -k operates to reverse the scrambling operation of scrambler 401 of transmitter modulator 212 -k.
- the output signals from each of demodulators 222 - 1 through 222 -K are recombined into an N-bit parallel signal in bit parsing 221 . Additionally, the RX clock signal is output from bit parsing 221 .
- FIG. 10 shows an example embodiment of trellis decoder 514 according to the present invention.
- Trellis decoder 514 of FIG. 10A includes a slicer 1001 , a branch metric 1002 , an add-compare-select (ACS) block 1003 , a normalization and saturation block 1004 , a trace back 1005 , and a trellis decision block 1006 .
- the output signal from trellis decoder 514 is the received bits, which are substantially as transmitted by transmitter 210 -p.
- Slicer 1001 receives the output signals G k I (n) and G k Q (n) from offset blocks 541 and 542 , respectively.
- FIG. 10B shows an embodiment of slicer 1001 .
- the value G k I (n) is received in x and y slicers 1010 and 1011 , respectively.
- Slicer 1010 slices G k I (n) to a first set of symbol values while slicer 1011 slices G k I (n) to a second set of slicer values.
- x-slicer 1010 can slice to the symbol values ⁇ 11, ⁇ 7, ⁇ 3, 1, 5, and 9 and y-slicer 1011 can slice to the symbol values ⁇ 9, ⁇ 5, ⁇ 1, 3, 7, 11.
- the number of bits can be reduced by mapping the decided symbols from slicers 1010 and 1011 using table 1016 and 1021 , respectively.
- the output signal from tables 1016 and 1021 are i x and i y , indicating decisions based on the input value G k I (n).
- the errors ⁇ i x and ⁇ i y are also calculated.
- the output signals from slicers 1010 and 1011 are subtracted from the input signal G k I (n) in summers 1015 and 1020 , respectively.
- the output signals from slicers 1010 and 1011 are input to blocks 1014 and 1019 , respectively, before subtraction in summers 1015 and 1020 .
- Blocks 1014 and 1019 represent shifts.
- the input signals to slicers 1010 and 1011 are 8-bit signed numbers. The value 8 slices to a perfect 1. Similarly, the value ⁇ 56 slices to a perfect ⁇ 7. So if the input signal is a ⁇ 56 it would be sliced to ⁇ 7. To calculate the error, we need to multiply the ⁇ 7 by 8 before it is subtracted from the incoming signal. Multiplying by 8 is the same as a shift to the left by 3.
- the absolute values of the output signals from summers 1015 and 1020 are then taken by blocks 1017 and 1022 , respectively.
- the output signal from ABS blocks 1017 and 1022 can be mapped into a set of values requiring a smaller number of bits by tables 1018 and 1023 , as in Table II above, respectively, to generate ⁇ i x and ⁇ i y , respectively.
- the output signals corresponding to the quadrature data path, q x , q y , ⁇ q x and ⁇ q y are generated by substantially identical procedure by slicers 1012 , 1013 , summers 1025 , 1030 , and blocks 1024 , 1026 , 1027 , 1028 , 1029 , 1031 , 1032 and 1033 .
- Branch metric 1002 receives the error signals from slicer 1001 and calculates the signals ⁇ a, ⁇ b, ⁇ c, and ⁇ d.
- the branch metric values ⁇ a, ⁇ b, ⁇ c, and ⁇ d indicate the path metric errors.
- the path metric errors ⁇ a, ⁇ b, ⁇ c, and ⁇ d can be calculated as
- Add-Compare Select 1003 receives the path metrics ⁇ a, ⁇ b, ⁇ c, and ⁇ d along with state metric values s 0 , s 1 , s 2 and s 3 , which are calculated in normalization and saturation block 1004 .
- the output values of ACS 1003 include path metrics p 0 , p 1 , p 2 and p 3 along with choice indicators c 0 , c 1 , c 2 and c 3 .
- the path metrics p 0 , p 1 , p 2 and p 3 can be given by
- the choice indicators c 0 , c 1 , c 2 and c 3 indicate which of the values was chosen in each of the minimization in Equation 43.
- Normalization and saturation 1004 receives the path metrics p 0 , p 1 , p 2 and p 3 and calculates the state metrics s 0 , s 1 , s 2 and s 3 . In some embodiments, if the path metrics are above a threshold value, the threshold value is subtracted from each of the path metrics. In some embodiments, the smallest path metric can be subtracted from each of the path metrics p 0 , p 1 , p 2 and p 3 . Normalization and Saturation block 1004 also ensures that path metrics p 0 , p 1 , p 2 and p 3 are limited to a maximum value.
- p 0 , p 1 , p 2 and p 3 are a four-bit number (range 0-15)
- p 0 , p 1 , p 2 and p 3 are a four-bit number (range 0-15)
- the corresponding path metric is limited to the maximum value of 15.
- the state metrics for the next baud period, s 0 , s 1 , s 2 , and s 3 are set to the path metrics p 0 , p 1 , p 2 and p 3 .
- Traceback 1005 receives and stores the choice indicators c 0 , c 1 , c 2 and c 3 as well as the decided values from slicer 1001 in that baud period, i x , i y , q x , and q y .
- the choice indicators c 0 , c 1 , c 2 and c 3 indicate the previous state values. As shown in the state transition diagram of FIG. 10C, which indicates state transitions between the encoded bits, for each of the states 0-3, there are only two possible previous states 0-3. For example, if the current state is 1, the previous state was either 0 or 2.
- a traceback depth of 6 is utilized.
- mapping tables 1016 , 1021 , 1026 and 1031 reducing the number of bits required to store i x , i y , q x , and q y , (for example a total of 8 in 128 QAM systems) and the low number of bits required to store choice indicators c 0 , c 1 , c 2 and c 3 , a low number of bits is needed. For example, in some embodiments a total of 12 bits is utilized.
- the most recently stored memory locations are utilized first with the first choice being the state with the lowest state metric.
- the algorithm then traces back through the stored choice indications c 0 , c 1 , c 2 and c 3 to the end of the traceback memory (in some embodiments, the sixth state) and arrives at state S.
- the MSB of the output is the LSB of the state, S.
- the final state S and the choice indicator c s will determine which pair of symbols were transmitted (I x /I y , Q x /Q y ).
- FIG. 9 shows a transceiver chip 900 according to the present invention.
- Transceiver chip 900 includes transmitter 210 -p and receiver 220 -p formed on a single semiconductor chip.
- transceiver chip 900 is formed in silicon using CMOS technology.
- Transceiver chip 900 can receive N bits into transmitter 210 -p and output N bits from receiver 220 -p.
- different pins may be utilized for input bits and output bits, as shown in FIG. 9.
- transmitter 210 -p and receiver 220 -p share the same N pins.
- Transmitter 900 receives a reference clock signal and outputs a receive clock signal from receiver 220 -p.
- transceiver 220 includes output pins for transmitting and receiving differential signals.
- transmitter 210 -p and receiver 220 -p share the same output pins and in some embodiments transmitter 210 -p and receiver 220 -p are coupled to separate output pins.
- transceiver chip 900 may be coupled to an optical driver for optical transmission.
- FIG. 12A shows an embodiment of baseband receiver 223 .
- Baseband transmitter 217 and baseband receiver 223 may, for example, form a PAM transceiver.
- the signal from medium 250 (see FIG. 2A) is received by analog processing 1201 .
- Analog processing 1201 can include a low-pass filter in order to separate the baseband signal from those signals transported with carrier frequencies, such as those transmitted by transmitters 212 - 1 through 212 -K.
- Filter 1201 can further include some analog correction of the signals, including anti-aliasing filters, base-line wander filters, or other filters.
- FIG. 12B shows an embodiment of analog processing 1201 .
- the input signal Z(t) is received by a low pass filter 1210 .
- the parameters of low pass filter 1210 can be fixed, however in some embodiments the filter can be adjusted dynamically, for example, by adaptive parameter control 1207 of FIG. 12A.
- the output signal from filter 1210 is input to amplifier 1211 .
- the gain of amplifier 1211 , g A can be given by
- g A ( n+ 1) g A ( n )+ ⁇ A ( P A ⁇ Th ⁇ P ) (51)
- ⁇ A is a multiplier which controls convergence of the gain
- P A ⁇ TH is a threshold value on peak power
- P is the mean squared power S 2 , where S is the digitized signal from ADC 1202 .
- Amplifier 1211 then, arranges that the range of ADC 1202 is filled.
- the output signal from amplifier 1211 can be input to offset 1212 .
- the offset value OFFSET A can be arranged by adaptive parameter control 1207 such that the average output signal S from ADC 1202 is zero.
- the offset value OFFSET A for example, can be given by
- ⁇ OFF is again the multiplicative factor that controls convergence and S is the signal output from ADC converter 1202 .
- ADC 1202 The output signal from analog processing 1201 is input to ADC 1202 where it is digitized.
- ADC 1202 can have any number of bits of resolution. At least a four bit ADC, for example, can be utilized in a 16-PAM system.
- ADC 1202 can be clocked from a clock signal generated by receiver 120 -p in general, for example in PLL 523 as shown in FIG. 5A.
- adaptive parameter control 1207 can generate a phase signal which can add a phase to the timing of ADC 1202 .
- the phase signal Ph can be given by the same technique as described with the calculation of phase performed by phase detector 703 -k, loop filter 705 -k, and integrator 707 -k, shown in FIG. 7, for the in-phase signal.
- the output signal from ADC 1202 , S can be input to a digital filter 1203 . Further filtering and shaping of the signal can occur in digital filter 1203 .
- Filter 1203 can be, for example, a digital base-line wander filter, a digital automatic gain control circuit, an echo or next canceller, or any other filter.
- digital filter 1203 can be part of cross channel interference filter 570 (shown in FIG. 5A).
- the output signal from digital filter 1203 is input to equalizer 1204 .
- Equalizer 1204 equalizes the signal for intersymbol interference.
- Equalizer 1203 can include a feed-forward section, a feed-back section, or a combination of feed-forward and feed-back sections.
- FIG. 12C shows an embodiment of equalizer 1204 with a combination of a feed-forward section 1215 and feed-back section 1216 .
- feed-forward section 1215 and feed-back section 1216 can include any number of taps.
- Each of the equalization parameters C 0 through C M of feed-forward section 1215 and B 1 through B N of feed-back section 1216 can be adaptively chosen in adaptive parameter control 1207 similarly to the methods previously discussed above.
- the output signal from equalizer 1204 can then be input to data recovery 1205 .
- Data recovery 1205 recovers the digital signal from the signals.
- data recovery 1205 is a PAM slicer.
- data recovery 1205 can also include an error correction decoder such as a trellis decoder, a Reed-Solomon decoder or other decoder.
- the output signal from data recovery 1205 is then input to descrambler 1206 so that the transmitted parallel bits are recovered.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
- The present disclosure is a continuation-in-part of U.S. application Ser. No. 10/071,771 to Sreen A. Raghavan, Thulasinath G. Manickam, Peter J. Sallaway, and Gerard E. Taylor, which is a continuation-in-part of U.S. application Ser. No. 09/965,242 to Sreen Raghavan, Thulasinath G. Manickam, and Peter J. Sallaway, filed Sep. 26, 2001, which is a continuation-in-part of U.S. application Ser. No. 09/904,432, by Sreen Raghavan, filed on Jul. 11, 2001, assigned to the same entity as is the present application, each of which are herein incorporated by reference in its entirety.
- 1. Field of the Invention
- The present invention is related to high-speed communications of data in a communication system and, in particular, to high data rate transmission of data between components in a communication system.
- 2. Discussion of Related Art
- Many conventional systems for transmitting data between components within a cabinet or between cabinets of components utilize copper or optical backplanes for transmission of digital data. For example, high data rate transceiver systems are utilized in many backplane environments, including optical switching devices, router systems, switches, chip-to-chip communications and storage area networking switches. Other environments that utilize high speed communication between components include inter-cabinet communications and chip-to-chip communications. Typical separations of components in such systems is between about 0.1 and about 10 meters.
- Existing techniques utilized in such environments typically use non-return to zero (NRZ) modulation to send and receive information over high-speed backplanes or for high data rate chip-to-chip interconnects. Typically, the transceiver for sending high-speed data over a backplane is called a serializer/deserializer, or SERDES, device.
- FIG. 1A shows a block diagram of a
backplane environment 100. Components 101-1 through 101-Q are coupled to transmit and receive data through input/output (I/O) ports 102-1 through 102-Q, respectively, tobackplane 110. Conventionally, components 101-1 through 101-Q are SERDES devices. - FIG. 1B shows a block diagram of a conventional transmitter portion of one of SERDES devices101-1 through 101-Q on I/O ports 102-1 through 102-Q, respectively. Parallel data is received in a
bit encoder 105.Bit encoder 105 encodes the parallel data, for example by adding redundancy in the input data, to ensure a minimum rate of data transitions in the output data stream. Typical encoding schemes includerate 8/10 (8 bit input to 10 bit output) encoding. The parallel data is serialized in parallel toserial converter 106. Output driver 107 then receives the serialized data from parallel toserial converter 106 and outputs, usually, a differential voltage signal for transmission overbackplane 110. In addition, there is typically a phase locked loop (PLL) 114 that provides the necessary clock signals forencoder 105 and parallel-to-serial converter 106. The input signal to PLL 114 is a reference clock signal from asystem PLL 103. - FIG. 1C shows a conventional receiver108 of one of SERDES devices 101-1 through 101-Q on I/O ports 102-1 through 102-Q, respectively, of FIG. 1A.
Input driver 109 receives differential voltage signal frombackplane 110 and outputs the analog data signal to clock and data recovery circuit 113. Data recovery 113 can, in some systems, perform equalization, recover the timing and output a serial bit stream of data to serial-to-parallel converter 111. The serial data is input tobit decoder 112 which converts the parallel data to parallel decoded data. Clock and data recovery circuit 113 also outputs the necessary clock signals to serial-to-parallel converter 111 andbit decoder 112. - A
conventional SERDES system 100 can enable serial data communication at data rates as high as 2.5 Gbps to 3.125 Gbps over a pair of FR4 copper traces in a copper backplane communication system. One of the biggest problems with existingSERDES systems 100 is that they are very bandwidth inefficient, i.e., they require 3.125 GHz of bandwidth to transmit and receive2.5 Gbps of data over a single pair of copper wires. Therefore, it is very difficult to increase the data rates acrossbackplane bus 110. Additionally, SERDESsystem 100 requires the implementation of a high clock rate (3.125 GHz for 2.5 Gbps data rates) phase locked loop (PLL) 114 implemented to transmit data and recover high clock rates in data recovery 113. The timing window within which receiver 108 needs to determine whether the received symbol indata recovery 110 is a 1 or a 0 is about 320 ps for the higher data rate systems. This timing window creates extremely stringent requirements on the design of data recovery 113 and PLL 114, as they must have very low peak-to-peak jitter. -
Conventional SERDES system 100 also suffers from other problems, including eye closure due to intersymbol interference (ISI) from the dispersion introduced bybackplane 110. The ISI is a direct result of the fact that the copper traces ofbackplane 110 attenuate higher frequency components in the transmitted signals more than the lower frequency components in the transmitted signal. Therefore, the higher the data rate the more ISI suffered by the transmitted data. In addition, electrical connectors and electrical connections (e.g., vias and other components) used in SERDESdevice 100 cause reflections, which also cause ISI. - To overcome these problems, equalization must be performed on the received signal in data recovery113. However, in existing very high data-rate communication systems, equalization is very difficult to perform, if not impossible due to the high baud rate. A more commonly utilized technique for combating ISI is known as “pre-emphasis”, or pre-equalization, performed in
bit encoder 105 and output driver 107 during transmission. In some conventional systems, the amplitude of the low-frequencies in the transmitted signal is attenuated to compensate for the higher attenuation of the high frequency component by the transmission medium ofbus 110. While this makes the receiver more robust to ISI, pre-emphasis reduces the overall noise tolerance of transmission overbackplane 110 ofbackplane communication system 100 due to the loss of signal-to-noise ratio (SNR). At higher data rates, conventional systems quickly become intractable due to the increased demands. - Therefore, there is a need for a more robust system for transmitting data between components on a backplane or data bus at very high speeds.
- In accordance with the present invention, a data transmission system is presented that allows very high data transmission rates over a data bus that utilizes the signal attenuation properties of the copper based backplane interconnect system. In addition, this transmission scheme does not result in increased intersymbol interference at the receiver despite transmitting data at a very high speed. The data transmission system includes a transmitter system and a receiver system coupled through a transmission medium. The transmitter system receives parallel data having N bits and separates the N bits into (K+1) subsets for transmission into the base band and K frequency separated channels on the transmission medium. The receiver system receives the data from the base band and the K frequency separated channels from the transmission medium and recovers the N parallel bits of data. In some embodiments, the N parallel bits are separated into (K+1) subsets of bits, the (K+1) subsets of bits are encoded into (K+1) symbols, K of which are up-converted to a carrier frequency appropriate to that channel. The summed output signal resulting from the summation of the K up-converted channels and the baseband channel is transmitted over the transmission medium.
- Transmitted data in each of the (K+1) channels can suffer from inter-symbol interference (ISI) as well as cross-channel interference due to harmonic generation in up-conversion and down-conversion processes in the transmitter and receiver. In accordance with the present invention, a receiver which corrects for cross-channel interference as well as for inter-symbol interference is presented.
- In some embodiments, the transmitter system includes (K+1) separate transmitters. Each of the (K+1) transmitters receives a subset of the N-bits and maps the subset of bits onto a symbol set. K of the transmitters modulate the symbols with a carrier signal at a frequency separated from that of others of the (K+1) transmitters. The summed signals from each of the (K+1) separate transmitters is transmitted over the transmission medium. The transmission medium can be any medium, including optical, infrared, wireless, twisted copper pair, or copper based backplane interconnect channel.
- In some embodiments, each of the (K+1) transmitters receives a subset of the N data bits, encodes the subset, maps the encoded subset onto a symbol set appropriate for that transmitter. K of the transmitters, for example, up-convert its analog symbol stream to a carrier frequency assigned to that transmitter. The remaining transmitter transmits into the base band. The output signal from each of the transmitters is then transmitted through the transmission medium to a receiver system having a receiver for recovering the data stream transmitted on each of the carrier frequencies.
- For example, in some embodiments each of the K up-converting transmitters receives the subset of bits and encodes them with a trellis encoder. One of the transmitters maps its subset of bits into a pulsed amplitude modulation (PAM) symbol set and the remaining K up-converting transmitters each maps its subset onto a quadrature-amplitude modulated (QAM) symbol set. In some embodiments, the symbols output from the QAM mapping are processed through a digital-to-analog converter before being up-converted to a carrier frequency to produce the output signal from the transmitter. The PAM transmitters can utilize a digital-to-analog converter to create the PAM symbol output voltage levels. Any combination of encoding and symbol mapping schemes can be utilized in the (K+1) transmitters.
- In some embodiments, a PAM channel and one or more QAM channels can be utilized such that there is no cross-channel interference between the QAM channels and the PAM channel. In some embodiments, a single QAM channel combined with a PAM channel can be utilized.
- Each of the output signals from the (K+1) transmitters are summed for transmission in (K+1) separate transmission channels on the transmission medium. The receiver receives the summed signals, with data transmitted at (K+1) separate channels. In some embodiments, the receiver down-converts the summed signals by the frequency of each of the (K) separate non-baseband channels to recover the symbols transmitted in each of the (K+1) separate channels. The baseband receiver can include a low-pass filter to separate the baseband channel from the higher frequency channels on the transmission medium. The subsets of digital data can then be recovered from the recovered symbols.
- The receiver system receives the combined signal, separates the signal by carrier frequency, and recovers the bits from each carrier frequency. In some embodiments, the signal received from the transmission medium is received into (K+1) parallel receivers. Each of the (K+1) receivers separates out the signal centered around the carrier frequency allocated to that channel by the transmitter or the baseband signal, equalizes the signal, and decodes the signal to retrieve the subset of the N bits assigned to that corresponding transmitter modulator.
- As a result, parallel streams of serial data bits are separated into separate subsets which are transmitted on different frequency bands to form separate channels on the transmission medium. Therefore, the data rate and the symbol rate transmitted in each of the separate channels can be much lower than the overall data transmission rate. The lower data rate and symbol rate in each channel provides for simpler receiver processing with many fewer problems (e.g., speed of components utilized for equalization and data recovery) than the high data rate transmissions. In addition, because the symbol rates are lower, the amount of receiver equalization needed on each of the (K+1) channels can be smaller, and can be implemented with simpler equalization structures. Because of the lower symbol rates, receiver signals can be processed with complex, optimal algorithms.
- A complex cross-channel correction algorithm according to the present invention can also be implemented. The cross-channel correction involves adjusting each of the signals of each of the channels by some portions of the signals from the other channels in order to eliminate the interference. The parameters of the cross-channel correction can be adaptively chosen to optimize receiver performance. In some embodiments, no cross-channel interference occurs between the baseband channel and the K high frequency channels and therefore no cross-channel correction is needed between the baseband channel and the K high frequency channels.
- Data transmission according to the present invention can utilize any combination of symbol mappings. For example, in some embodiments a baseband transmitter utilizing 4, 8, 16 or 32-PAM symbol mapping can be combined with one or more up-converting transmitters with 16, 32, 64, 128 or 256 QAM symbol mappers, for example. In some embodiments, an encoder can be used to encode any of the subset of bits, for example the most-significant bit before the bits are mapped onto a symbol set. For example, a 10 Gbps transceiver can utilize uncoded (no error correction coded) 16-PAM with baud rate of 1.25 GHz in combination with uncoded 16 QAM with baud rate 1.25 GHz. In another example, 4/5 trellis encoded 32-QAM can be combined with uncoded 16-PAM. In yet another example, uncoded 8-PAM can be combined with five (5) 6/7 trellis encoded 128-QAM to form a 10 Gbps transmission system. Many other examples can be utilized.
- In some embodiments, the output signals from each of the up-converting transmitters transmitting into the K high frequency channels are summed and the sum signal filtered with a high-pass filter to eliminate any baseband component before the output signal from the baseband transmitter is added. Further, the baseband transmitter can include a low-pass filter to eliminate any higher frequency component of the baseband transmitter's output signal which can interfere with the signals from the up-converting transmitters.
- A transmission system in accordance with the present invention can include a plurality of receivers and a cross-channel interference canceller coupled to each of the receivers for receiving signals from the high frequency channels. Each of the plurality of receivers receives signals from one of a plurality of transmission bands. One receiver receives signals from the base band channel and the remaining receive signals from higher frequency channels.
- In some embodiments, at least one of the plurality of receivers that receives signals from a higher frequency channel includes a down converter that converts an input signal from the one of the plurality of transmission bands to a base band. A filter coupled to receive signals from the down converter can substantially filter out signals not in the base band after down-conversion. Further, an analog-to-digital converter coupled to receive signals from the filter and generate digitized signals and an equalizer coupled to receive the digitized signals can be included. In some embodiments, a trellis decoder coupled to receive signals from the equalizer and generate recreated data, the recreated data being substantially the same data transmitted by a corresponding transmitter. In some embodiments, a cross-channel interference canceller can be coupled to receive output signals from each of the equalizers and to provide signals to a digital filter or the trellis decoder.
- In some embodiments, the receiver that receives signals from the base band channel includes a low pass filter to filter out signals at high frequencies (e.g., the remaining channels), an analog to digital converter, an equalizer, and a data recovery circuit. In some embodiments, the equalizer can have adaptively chosen equalization parameters.
- These and other embodiments are further discussed below with respect to the following figures.
- FIGS. 1A, 1B and1C show block diagrams for a conventional system of transmitting data over a backplane.
- FIG. 2A shows a block diagram of a transmission system according to the present invention.
- FIG. 2B shows a block diagram of a transmitter according to the present invention.
- FIG. 2C shows a block diagram of a receiver according to the present invention.
- FIG. 3 shows a graph of attenuation versus transmission band on the transmission medium according to the present invention.
- FIG. 4 shows a block diagram of an embodiment of a transmission modulator according to the present invention.
- FIG. 5A shows a block diagram of an embodiment of a receiver according to the present invention.
- FIG. 5B shows a block diagram of a down-conversion module of a receiver as shown in FIG. 5A.
- FIG. 5C shows an embodiment of a block diagram of an analog filter of a receiver as shown in FIG. 5A.
- FIG. 5D shows an embodiment of a digital filter of a receiver as shown in FIG. 5A.
- FIG. 5E shows an embodiment of a second digital filter of a receiver as shown in FIG. 5A.
- FIG. 5F shows an embodiment of a cross-channel interference canceller of the receiver shown in FIG. 5A in accordance with the present invention.
- FIG. 6A shows a schematic diagram of a trellis encoder according to the present invention.
- FIG. 6B shows a schematic diagram of a symbol mapper according to the present invention.
- FIG. 6C shows a schematic diagram of a 128 QAM constellation.
- FIG. 6D shows filtering of the output signal from a digital to analog converter according to the present invention.
- FIG. 6E shows raised square root cosine filter response.
- FIG. 7 shows a block diagram of an embodiment of a tracking and error-recovery circuit of the receiver shown in FIG. 5A.
- FIGS. 8A and 8B show a block diagram of an embodiment of an automatic gain control circuit of a receiver demodulator according to the present invention.
- FIG. 9 shows a block diagram of a transceiver chip according to the present invention.
- FIGS. 10A, 10B and10C illustrate an embodiment of a trellis decoder.
- FIG. 11 shows an embodiment of a baseband transmitter according to the present invention.
- FIG. 12A shows an embodiment of a baseband receiver according to the present invention.
- FIGS. 12B through 12C show embodiments of components of the embodiment of the baseband receiver shown in FIG. 12A.
- In the figures, elements designated with the same identifications on separate figures are considered to have the same or similar functions.
- FIG. 2A shows a block diagram of a
transmission system 200 according to the present invention.System 200 includes any number of components 201-1 through 201-P, with component 201-p representing an arbitrary one of components 201-1 through 201-P, coupled through atransmission medium 250.Transmission medium 250 may couple component 201-p to all of the components 201-1 through 201-P or may couple component 201-p to selected ones of components 201-1 through 201-P. In some embodiments, components 201-1 through 201-P are coupled through FR4 copper traces. -
System 200 can represent any backplane system, any chassis-to-chassis digital communication system, or any chip-to-chip interconnect with components 201-1 through 201-P representing individual cards, cabinets, or chips, respectively. -
Transmission channel 250 can represent any transmission channel, including optical channels, wireless channels, or metallic conductor channels such as copper wire or FR4 copper traces. Typically,transmission channel 250 attenuates higher frequency signals more than lower frequency signals. As a result, intersymbol interference problems are greater for high data rate transmissions than for low data rate transmissions. In addition, cross-talk from neighboring signals increases with transmission frequency. - Components201-1 through 201-P include transmitter systems 210-1 through 210-P, respectively, and receiver systems 220-1 through 220-P, respectively. In operation, one of transmitter systems 210-1 through 210-P from one of components 201-1 through 201-P is in communication with one of receiver systems 220-1 through 220-P from a different one of components 201-1 through 201-P. Further, in some embodiments, timing for all of components 201-1 through 201-P can be provided by a phase-locked-loop (PLL) 203 synchronized to a transmit source clock signal. In some embodiments,
PLL 203 provides a reference clock signal and each of components 201-1 through 201-P can include any number of phase locked loops to provide internal timing signals. - In some systems, for example backplane systems or cabinet interconnects, the transmission distance through
transmission channel 250, i.e. the physical separation between components 201-1 through 201-P, can be as low as 1 to 1.5 meters. In some chip-to-chip environments, the physical separation between components 201-1 though 201-P can be much less (for example a few millimeters or a few centimeters). In some embodiments of the present invention, separations between components 201-1 through 201-P as high as about 100 meters can be realized. Furthermore, in someembodiments transmission channel 250 can be multiple twisted copper pair carrying differential signals between components 201-1 through 201-P. In some embodiments, components 201-1 through 201-P can share wires so that fewer wires can be utilized. In some embodiments, however, dedicated twisted copper pair can be coupled between at least some of components 201-1 through 201-P. Further,transmission medium 250 can be an optical medium, wireless medium, or data bus medium. - FIG. 2B shows a block diagram of an embodiment of transmitter system210-p an arbitrary one of transmitter systems 210-1 through 210-P. Transmitter system 210-p receives an N-bit parallel data signal at a
bit allocation block 211.Bit allocation block 211 also receives the reference clock signal fromPLL 203.Bit allocation block 211 segregates the N input bits into K+1 individual channels such that there are n1 through nK bits input to transmitters 212-1 through 212-K, respectively, and n0 bits input tobaseband transmitter 217.Transmitter 217 and transmitters 212-1 through 212-K transmit into (K+1) channels. In some embodiments, each of the N bits is assigned to one of the K+1 individual channels so that the sum of n0 through nK is the total number of bits N. In some embodiments,bit allocation block 211 may include error pre-coding, redundancy, or other overall encoding such that the number of bits output, i.e. - is greater than N.
- Each of transmitters212-1 through 212-K encodes the digital data input to it and outputs a signal modulated at a different carrier frequency. Therefore, the nk digital data bits input to transmitter 212-k, an arbitrary one of transmitters 212-1 through 212-K, is output as an analog signal in a kth transmission channel at a carrier frequency fk. Additionally,
baseband transmitter 217 transmits into the baseband channel. - FIG. 3 shows schematically the transport function for a typical transmission channel250 (FIG. 2A), H(f). As is shown, the attenuation at higher frequencies is greater than the attenuation at lower frequencies. Transmitters 212-1 through 212-K transmit analog data at carrier frequencies centered about frequencies f1 through fK, respectively. Therefore, transmitters 212-1 through 212-K transmit into transmission channels 301-1 through 301-K, respectively.
Transmitter 217 transmits into transmission channel 301-0, which is centered at 0 frequency. In some embodiments, the width of each of transmission channels 301-0 through 301-K can be the same. The width of the bands of each of transmission channels 301-0 through 301-K can be narrow enough so that there is little to no overlap between adjacent ones of transmission channels 301-0 through 301-K. In some embodiments, since the attenuation for the lower frequency channels is much smaller than the attenuation for the higher frequency channels, lower frequency channels can be bit-loaded to carry a higher number of bits per baud interval than the number of bits per baud interval that can be carried at higher carrier frequencies. - As shown in FIG. 2B, the analog output signal from each of transmitters212-1 through 212-K, y1(t) through yK(t), then represents the transmission signal in each of channels 301-1 through 301-K, respectively. Signals y1(t) through yK(t), then, are input to
summer 213 and the summed analog signal output fromsummer 213 can be input to ahigh pass filter 215. The output signal fromhigh pass filter 215 is input tosummer 216 where it is summed with the baseband signal y0(t) frombaseband transmitter 217.High pass filter 215 prevents transmitters 212-1 through 212-K from transmitting signals into the baseband channel and reduces or eliminates the need to consider cross-channel interference between signals produced bybaseband transmitter 217 and those generated by transmitters 212-1 through 212-K. - The output signal from
summer 216, z(t), is input to anoutput driver 214. In some embodiments,output driver 214 generates a differential transmit signal corresponding to signal z(t) for transmission overtransmission medium 250.Output driver 214, iftransmission medium 250 is an optical medium, can also be an optical driver modulating the intensity of an optical signal in response to the signal z(t). - FIG. 2C shows an embodiment of a receiver system220-p which can be an arbitrary one of receiver systems 220-1 through 220-P of FIG. 2A. Receiver system 220-p can receive a differential receive signal, which originated from one of transmitter systems 210-1 through 210-P (typically not transmitter 210-p), into an
input buffer 224. In some embodiments, an optical signal can be received atinput buffer 224, in whichcase input buffer 224 includes an optical detector. The output signal frominput buffer 224, Z(t), is closely related to the output signal z(t) ofsummer 213. However, the signal Z(t) shows the effects of transmission throughtransmission medium 250 on z(t), including intersymbol interference (ISI). - The signal Z(t) is input to each of receivers222-1 through 222-K and into
baseband receiver 223. Receivers 222-1 through 222-K demodulate the signals from each of the transmission channels 301-1 through 301-K, respectively, and recovers the bit stream from each of carrier frequencies f1 through fK, respectively.Baseband receiver 223 recovers the bit stream which has been transmitted into the baseband channel. The output signals from each of receivers 222-1 through 222-K, then, include n1 through nK parallel bits, respectively, and the output signal frombaseband receiver 223 include n0 parallel bits. The output signals are input to bit parsing 221 where the transmitted signal having N parallel bits is reconstructed. Receiver system 220-p also receives the reference clock signal fromPLL 203, which can be used to generate internal timing signals. Furthermore, receiver system 220-p outputs a receive clock signal with the N-bit output signal from bit parsing 221. - Further, demodulators (receivers)222-1 through 222-K are coupled so that cross-channel interference can be cancelled. In embodiments where
filter 215 of transmitter 210-p is not present or does not completely remove the baseband from the output signal ofadder 213, then cross-channel interference in the baseband channel also will need to be considered. As discussed further below, due to the mixers in the up-conversion process, multiple harmonics of each signal may be generated from each of transmitters 212-1 through 212-K. For example, in some embodiments transmitters 212-1 through 212-K transmit at carrier frequencies f1 through fK equal to f0, 2f0 . . . Kf0, respectively. Thebaseband transmitter 213 transmits at the baseband frequency,e.g. transmitter 213 transmits with no carrier. - Due to the harmonics in the mixer, the signal transmitted at carrier frequency f1 will also be transmitted in the base band and at frequencies 2f1, 3f1 . . . Additionally, the signal transmitted at carrier frequency f2 will also be transmitted in the base band and at 2f2, 3f2, . . . Therefore, any time any of the bandwidth of any harmonics of the channels overlap with other channels or the other channel's harmonics, significant cross-channel symbol interference can occur due to harmonics in the mixers of transmitters 212-1 through 212-K. For example, in the case where the carrier frequencies are multiples of f0,
channel 1 transmitting at f0 will also transmit at 0, 2f0, 3f0, . . . , i.e. into each of the other channels. Additionally, the down converters also create harmonics, which means that some of the transmission of the third channel will be down-converted into the first channel, for example. Therefore, further cross-channel interference can be generated in the down-conversion process of receivers 221-1 through 222-K. Embodiments of the present invention correct for the cross-channel symbol interference as well as the inter-symbol interference. Note that it is well known that if the duty cycle of the harmonic wave that is being mixed with an input signal is 50%, only odd harmonics will be generated. Even harmonics require higher or lower duty cycles. - In some embodiments, N-bits of high-speed parallel digital data per time period is input to
bit allocation 211 of transmitter system 210-p along with a reference clock signal. Data is transmitted at a transmit clock rate of CK1, which can be determined by an internal phase-locked-loop from the reference clock signal. Each of these input signals of N-bits can change at the rate of a transmit clock signal CK1. The transmit clock signal CK1 can be less than or equal to ηGHz/N, where η represents the total desired bit rate for transmission of data from transmitter system 210-p overtransmission medium 250. The resultant maximum aggregate input data rate, then, equals ηGbps. The ηGbps of aggregate input data is then split into K+1 sub-channels 301-0 through 301-K (see FIG. 3) which are generated bytransmitters 217 and 212-1 through 212-K, respectively, such that: - where nk is the number of bits transmitted through the kth transmission band, centered about frequency fk for k equal to 1 or greater and the base band for k=0, with a symbol baud rate on the kth sub-channel being equal to Bk.
- In some embodiments of the invention, each of
transmitters 217 and 212-1 through 212-K operate at the same baud rate Bk. Furthermore, the center frequency of transmitter 212-k (corresponding to channel k), or one of its harmonics, is substantially the same as harmonics of the center frequencies of other ones of transmitters 212-1 through 212-K. One skilled in the art will recognize that in other embodiments of the invention one or both of these conditions may not be satisfied. - In some embodiments of the invention, each of the K+1 sub-channels301-0 through 301-K can have the same baud rate B. In general, the baud rate Bk of one sub-channel 301-k, which is an arbitrary one of sub-channels 301-0 through 301-K, can differ from the baud rate of other sub-channels. Additionally, bit-loading can be accomplished by choosing symbol sets which carry a larger number of bits of data for transmission channels at lower frequencies and symbol sets which carry a lower number of bits of data for transmission channels at higher frequencies (i.e., nk is higher for lower frequencies).
- In the case of a copper backplane interconnect channel of trace length l<2 meters, for example, the signal-to-noise ratio of the lower carrier frequency channels is substantially greater than the signal-to-noise ratio available on the higher sub-channels because the signal attenuation on the copper trace increases with frequency and because the channel noise resulting from alien signal cross-talk increases with frequency. These properties of the copper interconnect channel can be exploited to “load” the bits/baud of the K sub-channels so that the overall throughput of the interconnect system is maximized. For example, digital communication signaling schemes (modulation+coding), see, e.g. Bernard Sklar, Digital Communications, Fundamentals and Applications (Prentice-Hall, Inc., 1988), can be utilized that provide higher bit density per baud interval over channels occupying the lower region of the frequency spectrum, and that result in lower bit density over channels that occupy higher frequencies. This “bit-loading” is especially important when the data rates over copper interconnect channel need to be increased, for example to a rate in excess of 10 Gbps per differential copper pair.
- FIG. 4 shows an embodiment of transmitter212-k, an arbitrary one of transmitters 212-1 through 212-K. Transmitter 212-k receives nk bits per baud interval, 1/Bk, for transmission into sub-channel 301-k. The nk bits are received in
scrambler 401.Scrambler 401 scrambles the nk bits and outputs a scrambled signal of nk bits, which “whitens” the data. - The output signal of nk parallel bits is then input to
encoder 402. Although any encoding scheme can be utilized,encoder 402 can be a trellis encoder for the purpose of providing error correction capabilities. Trellis coding allows for redundancy in data transmission without increase of baud rate, or channel bandwidth. Trellis coding is further discussed in, for example, Bernard Sklar, Digital Communications, Fundamentals and Applications (Prentice-Hall, Inc.,1988), G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part I. Introduction,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 5-11, and G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part II. State of the Art,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 12-21. Other encoding schemes include block coding schemes such as Reed-Solomon encoders, and BCH encoders, see, e.g., G. C. Clark, Jr., and J. B. Cain., Error Correction Coding for Digital Communications (Plenum Press, New York, 1981), however they result in an increase of channel bandwidth usage. Typically, the signal output fromencoder 402 includes more bits than nk, nk+1e. In some embodiments,encoder 402 can be a trellis encoder which adds one additional bit, in other words encoder 402 can be a rate nk/nk+1 encoder, see, e.g., G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part I. Introduction,” IEEE Communications Magazine, vol. 25, no. 2, Februray 1987, pp. 5-11, and G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part II. State of the Art,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 12-21. In some embodiments, additional bits can be added to insure a minimum rate of transitions so that timing recovery can be efficiently accomplished at receiver 220-p. - FIG. 6A shows an embodiment of
encoder 402.Encoder 402 of FIG. 6A is an nk/nk+1 trellis encoder.Encoder 402 of FIG. 6A performs a rate ½ convolutional coding on the most-significant-bit (MSB) of the nk bit input signal. The MSB is input to delay 601. The output signal fromdelay 601 is input to delay 602. The MSB and the output signal fromdelay 602 are input to XOR adder 603. The output from XOR adder 603 provides a coded bit. The MSB, the output signal fromdelay 601, and the output signal fromdelay 602 are XORed in adder 604 to provide another coded bit. The two coded bits are joined with the remaining nk−1 bits to form a nk+1 bit output signal.Delays encoder 402 can be utilized with embodiments of this invention. - In transmitter212-k of FIG. 4, the output signal from
encoder 402 is input tosymbol mapper 403.Symbol mapper 403 can include any symbol mapping scheme for mapping the parallel bit signal fromencoder 402 onto symbol values for transmission. In some embodiments,symbol mapper 403 is a QAM mapper which maps the (nk+le) bits fromencoder 402 onto a symbol set with at least 2(n k +le) symbols. As shown in FIG. 6A, le=1 in the output signal fromencoder 402. A trellis encoder in conjunction with a QAM mapper can provide a trellis encoded QAM modulation for sub-channel 301-k. - FIG. 6B shows an embodiment of
symbol mapper 403.Symbol mapper 403 receives the nk+1 data bits fromencoder 402 and generates a symbol, which can include an in-phase component Ik and a quadrature component Qk. In some embodiments,symbol mapper 403 includes a look-up table 605 which maps the nk+1 input bits to the complex output symbol represented by Ik and Qk. - Table I shows an example symbol look-up table for conversion of a 7-bit data signal into a 128-symbol QAM scheme. Table entries are in decimal format with the in-phase values along the bottom row and the quadrature values represented along the last column. From Table I, a decimal value of 96, for example, results in an I value of −1 and a Q value of −1.
- In some embodiments,
encoder 402 could be a 16 state,rate 2/3 encoder, encoding the 2 most significant bits (MSBs) of the nk bit input signal. In general, any pair of bits could be chosen for encoding in this example. This 16 state encoder could determine its future state from the current state and the 2 incoming bits. If the old state is 4 bits, x=[x3 x2 x1 x0 ] and the incoming bits are [y1 y0], the next state could be 4 bits, z=[z3 z2 z1 z0]=[x1 x0 y1 y0]. The values x3 and z3 are the most significant bits (MSBs) of the state. The transition from the old state to the next state can define the 3 bit output of the encoder as shown in table II. In table II, the notation ab, means that the transition from old_state=a to next_state=b. The encoded 3-bits corresponding to that transition in this example is listed as the encoded value. - The encoded output bits from
encoder 402 are input tomapper 403. In an example where nk=6 and le=1, 7 bits fromencoder 402 are input tomapper 403. Ifencoder 402 is the 16 state,rate 2/3 encoder discussed above, the 3 bit output ofencoder 402 can be the 3 MSBs and the 4 uncoded bits can be the least significant bits (LSBs). An example ofmapper 403 can be found in table III. - In some embodiments, a 16 symbol QAM scheme can be utilized. In those embodiments, 4 bits with no encoding (or 3 bits in an 3/4 encoding scheme) can be directly mapped onto 16 QAM symbols. In some embodiments, 4 bits can be encoded (with a 4/5 encoding scheme) into a 32 QAM symbol set. In general, any size symbol set can be utilized.
- In some embodiments, the QAM mapping can be segregated into groups of four as is shown in FIG. 6C. In some embodiments, with a 128 QAM system, then nk+1 is 7 (referred to as 6/7 encoding). The two control bits from
encoder 402 are arranged so that in groups of four symbols, the two control bits determine placement in the group.Control bits 00 and 11 andcontrol bits - The output signal from
symbol mapper 403 can be a complex signal represented by in-phase signal Ik(n) and a quadrature signal Qk(n), where n represents the nth clock cycle of the clock signal CK1, whose frequency equals the baud rate Bk. Each of signals Ik(n) and Qk(n) are digital signals representing the values of the symbols they represent. In some embodiments, a QAM mapper onto a constellation with 128 symbols can be utilized. An embodiment of a 128-symbol QAM constellation is shown in Table I. Other constellations and mappings are well known to those skilled in the art, see, e.g., Bernard Sklar, Digital Communications, Fundamentals and Applications (Prentice-Hall, Inc., 1988) and E. A. Lee and D. G. Messerschmitt, Digital Communications (Kluwer Academic Publishers, 1988). The number of distinct combinations of Ik(n) and Qk(n), then, represents the number of symbols in the symbol set of the QAM mapping and their values represent the constellation of the QAM mapping. Further examples of QAM symbol sets include 16 QAM symbol sets (16-QAM) and 4/5 encoded 32-QAM symbol sets (4/5 encoded 32 QAM). - The signals from
symbol mapper 403, Ik(n) and Qk(n), are input to digital-to-analog converters (DACs) 406 and 407, respectively.DACs symbol mapper 403. In some embodiments, therefore,DACs - The analog output signals from
DACs pass filters filters DACs -
-
-
- where Tk is the symbol period, W(f) is a weighting function, HRRC(f) is a target overall response and τ is the time delay on the target response. The cost function is minimized with respect to the parameters of the filter (e.g., coefficients b2, b1, b0, and a4 through a0) and the time delay τ. FIG. 6E shows an example of a target overall response function HRRC(f), which is a square-root raised cosine function. The function HRRC(f) can be determined by a parameter αk along with the
baud rate frequency 1/Tk (which is the baud rate Bk for transmitter 212-k). The parameter αk is the excess bandwidth of the target function HRRC(f). In some embodiments, αk can be set to 0. In some embodiments of the invention, αk can be set to 0.6. - The weight function W(f) can be chosen such that the stop band rejection of HTX(s) is less than about −50 dB. Initially, W(f) can be chosen to be unity in the
pass band frequency 0<f<(1+γk)/2Tk and zero in the stop band frequency f>(1+γk)/2Tk, where γk is the excess bandwidth factor of the kth channel. The minimization of the cost function ofEquation 3 can be continued further by increasing W(f) in the stop band until the rejection ofanalog filters - In some embodiments, the overall impulse response of the transmit signal is a convolution of the impulse response of
DACs analog filters - h k Tx(t)=h k f(t){circle over (x)}h k DAC(t), (5)
- where hk f(t) is the response of the filter and hk DAC (t) is the response of
DACs Equation 5, the overall response is a convolution offilters DACs Equation 3. - The output signals from low-
pass filters pass filter 408, Ik LPF(t), is multiplied by cos(2πfkt) inmultiplier 410. The output signal from low-pass filter 409, Qk LPF(t), is multiplied by sin(2πfkt) inmultiplier 411. The signal sin(2πfkt) can be generated by PLL 414 based on the reference clock signal and the signal cos(2πfkt) can be generated by a π/2 phase shifter 413. - However, since
mixers mixer 410, and the resulting cosine wave input tomixer 411, often varies from a sine wave, signals having harmonics of the frequency fk are also produced. Often, the harmonic signals input tomixers filters -
- where ξk n and ζk n is the contribution of the nth harmonic to yk(t). If the duty cycle of the harmonic input signals to
mixers - FIG. 11 shows an embodiment of
baseband transmitter 217.Transmitter 217 may include ascrambler 1104 andencoder 1105.Scrambler 1104 can be similar to that described asscrambler 401 described above and functions to whiten the data. In some embodiments,scrambler 1104 may utilize a different function for scrambling the incoming bits than that described above asscrambler 401. Encoder 1105 can be similar to that described asencoder 402 above and encodes the n0 bits input totransmitter 217 to n0+l bits. The output signal fromencoder 1105 is then input tosymbol mapper 1101.Symbol mapper 1101 converts the n0+l parallel bits into a symbol for transmission. In some embodiments,symbol mapper 1101 can be a PAM encoder. The PAM symbol set can be of any size. In some embodiments, for example, a 16 level symbol set (16-PAM) can be utilized to represent n0+l=4 parallel bits. Encoder 1105 can provide 3/4 encoding or no encoding. The output signal fromsymbol mapper 1101 is input to digital-to-analog converter 1102 which converts the symbol set determined bysymbol mapper 1101 into the corresponding output voltages. - In some embodiments, the analog output signal from
DAC 1102 is prefiltered throughfilter 1103. In some embodiments,filter 1103 may prepare the output signal for transmission through medium 250 (see FIG. 2A) so that the signal received by a receiver is corrected for distortions caused by the channel. For example, if the baseband channel oftransmission medium 250 is known to have a transfer function of (1+D(z)), then filter 1103 may execute a transfer function equal to 1/(1+D(z)) in order to cancel the transfer function oftransmission medium 250. The output signal fromfilter 1103 can be input to low-pass filter 1106.Filter 1106 removes the higher frequency content, which may interfere with transmissions on the higher frequency channels. The output signal fromfilter 1106 is the base band signal y0(t). With a combination oflow pass filter 1106 andhigh pass filter 215 coupled tosummer 213, cross-channel interference between the base band channel, channel 301-0, and higher frequency channels 301-1 through 301-K can be minimized or eliminated. -
-
- where ω0 is 2πf0 and where Ik LPF (t) and Qk LPF (t) are 0 for all k>K.
- As shown in
Equation 8, the signal on channel one is replicated into all of higher K channels, the baseband, and into harmonic frequencies beyond the base band and the K channels.Filter 215 can remove the contribution to the baseband channel from transmitters 212-1 through 212-K. The signal on channel two, for example, is also transmitted onchannels channel 3 is transmitted onchannels - In some embodiments of the invention, a high pass filter215 (see FIG. 2B) receives the signal from
summer 213.High pass filter 215 can, for example, be a first-order high-pass filter with 3 dB attenuation at f1/2.Filter 215 removes the DC harmonics, i.e. the baseband transmissions, from the transmitter. In embodiments with a separate baseband transmission, then, cross-channel coupling into the baseband is minimized or eliminated. Further, removing the baseband harmonics from the transmitted signals simplifies cross-channel cancellation at receiver 220-p. In embodiments wherehigh pass filter 215 exists, the baseband contribution from each of transmitters 212-1 through 212-K, -
- In some embodiments, Bk and γk can be the same for all channels and the center frequencies of channels 301-1 through 301-K, frequencies f1 through fK, respectively, can be chosen by
- f k =B k k(1+γk);1≦k≦K. (10)
- In some embodiments, other center frequencies can be chosen, for example:
- f 1≧0.5B k(1+γk)
- (f k −f k−1)≧B k(1+γk);k≧2. (11)
- The parameter γk is the excess bandwidth factor. The bandwidth of the k-th channel, then , is (1+γk)Bk. In general, the center frequencies of channels 301-1 through 301-K can be any separated set of frequencies which substantially separate (i.e., minimizing overlap between channels) in frequency the transmission bands of transmission channels 301-1 through 301-K.
- In many embodiments, however, the frequencies f1 through fK are chosen as multiplies of a single frequency f0 which can fulfill
equations 10 and/or 11 and results in the harmonic mixing of channels as shown inEquation - In some embodiments of the invention,
DACs summer 412. Further, in someembodiments DACs summer 213. However, such DACs should have very high sampling rates. One advantage of utilizing high-sampling rate DACs is that ideal mixing could take place and the number of harmonics that need to be cancelled can be greatly reduced or even eliminated. - As an example, then, embodiments of transmitter210-p capable of 10 Gbps transmission can be formed. In that case, η=10, i.e., an overall throughput of 10 Gbps from the transmitter to the receiver. Some embodiments, for example, can have (K+1)=8 channels 301-0 through 301-7. Channels 301-1 through 301-7 can be 6/7 trellis encoded 128 QAM with the baud rate on each channel Bk being 1.25 GHz/6 or about 208.333 Msymbols/sec. Channel 301-0, the baseband channel, can be PAM-8 with no error correction coding (i.e., uncoded PAM-8) with baud rate B0 being 416.667 Msymbols/sec. In other words, nk=6; 1≦k≦7 and
encoder 402 is a 6/7 rate trellis encoder. In this example, channels 301-1 thorugh 301-7 can be transmitted at frequencies 2f0, 3f0, 4f0, 5f0, 6f0, 7f0 and 8f0, respectively, where f0 can be example, 1.5*Bk or 312.5 MHz. - In another example embodiment, 10 Gbps (η=10) can utilize (K+1)=2 channels301-0 and 301-1. Channel 301-1 can be, for example, 16 QAM with no error correction coding (i.e., uncoded 16-QAM) with baud rate B1 of 1.25 GHz and Channel 301-0 can be, for example, 16-PAM with no error correction coding (i.e., uncoded 16-PAM) with baud rate B0 at 1.25 GHz. The baud rate for both the PAM channel and the QAM channel is then 1.25 Gsps. The throughput is 5 Gbps each for a total transmission rate of 10 Gbps. With an excess bandwidth of the channels of about 50%, the center frequency of the QAM channel can be f1≧(1.5)*1.25 GHz or above about 1.8 GHz.
- In another example embodiment, 10 Gbps can utilize (K+1)=2 channels301-0 and 301-1 as above with channel 301-1 being a 4/5 trellis encoded 32 QAM with a baud rate B, of 1.25 GHz with channel 301-0 being uncoded 16-PAM with baud rate B0 1.25 GHz. Again, the center frequency of channel 301-1 can be f1≧(1.5)*1.25 GHz or above about 1.8 GHz.
- In yet another example, (K+1)=6 channels, channels301-0 through 301-5, can be utilized. Channels 301-1 thorugh 301-5 can be 6/7 trellis encoded 128-QAM with baud rate Bk of 1.25 GHz/6 or 208 MHz. Channel 301-0, the baseband channel, can be 3/4 encoded 16 PAM or uncoded 8-PAM with baud rate B0=1.25 GHz. The center frequencies of channels 301-1 through 301-5 can be 4f0, 5f0, 6f0, 7f0, and 8f0, respectively, with f0 being about 312.5 MHz.
- In some embodiments,
DACs trellis encoder 402 and an embodiment of the resultant 128-QAM constellation mapping are shown in FIGS. 6A, 6B, and 6C, respectively. An example of a 128 symbol QAM mapping table is shown as Table I. The above describedtrellis encoder 402, in this embodiment, provides an asymptotic coding gain of about 6 dB over uncoded 128-QAM modulation with the same data rate, see, e.g., G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part I. Introduction,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 5-11, and G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part II. State of the Art,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 12-21. - FIG. 5A shows an example of one of receiver systems220-p where receiver system 220-p is an arbitrary one of receiver systems 220-1 through 220-P of
system 200. Receiver system 220-p includes receivers 221-1 through 221-K andbaseband receiver 223 to form a (K+1)-channel receiver. As shown in FIG. 2C, the output signals fromreceiver input buffer 224, Z(t), is received in each of receivers 222-1 through 222-K and 223. The signal Z(t), then, is the transmitted signal z(t) after transmission throughmedium 250. As shown in FIG. 3, the attenuation of signals at each of the K carrier frequencies after transmission throughmedium 250 can be different. Additionally, the signal Z(t) suffers from inter-symbol interference caused by the dispersive effects ofmedium 250. The dispersive effects cause the signals received within a particular timing cycle to be mixed with those signals at that carrier frequency received at previous timing cycles. Therefore, in addition to cross-channel interference effects caused by the harmonic generation in mixers of the transmitter (an arbitrary one of which being designated transmitter 210-p), but also the signals for each channel are temporally mixed through dispersion effects inmedium 250. - Signal Z(t) is then received into each of receivers222-1 through 222-K. As shown in FIG. 5A, receiver 222-k, an arbitrary one of receivers 222-1 through 222-K, for example, receives the signal Z(t) into down converter 560-k which, in the embodiment shown in FIG. 5A, down converts the channel transmitted at frequency fk back into the baseband and recovers in-phase and quadrature components Zk I and Zk Q, respectively.
- FIG. 5A shows an embodiment of down-converter560-k. Signal Z(t) is received in multipliers 501-k and 502-k where it is down-converted to baseband to obtain an in-phase component Zk I (t) and a quadrature component Zk Q (t). Multiplier 501-k multiplies signal Z(t) with cos(2π{circumflex over (f)}kt) and multiplier 502-k multiplies signal Z(t) with sin(2π{circumflex over (f)}kt), where {circumflex over (f)}k can be the locally generated estimate of the carrier center frequency fk from the corresponding transmitter. The clock signals within component 201-p an arbitrary one of components 201-1 through 201-P, which are generated based on the reference signal from
PLL 230 as shown in FIG. 2A, will have the same frequencies. However, the frequencies between differing ones of components 201-1 through 201-P can be slightly different. Therefore, {fk} denotes the set of frequencies at the transmitter and {{circumflex over (f)}k} denotes the set of frequencies at the receiver. - In some embodiments, component201-p is a slave component where the frequencies {{circumflex over (f)}k} can be adjusted to match those of the component that includes the transmitter, which is also one of components 201-1 through 201-P. In some embodiments, component 201-p is a master component, in which case the transmitter of the component communicating with component 201-p adjusts frequencies {fk} to match those of {{circumflex over (f)}k}. Arbitration in any given communication link between receiver 220-p of component 201-p and a transmitter in one of the other of components 201-1 through 201-P can be accomplished in several ways. In some embodiments, priority may be set between pairs of components 201-1 through 201-P so that the master/slave relationship between those pairs is pre-determined. In some embodiments, an overall system control chooses at the start of each communication which component is master and which is slave. In some embodiments, the two components may negotiate, for example by each randomly choosing one of the k channels on which to transmit and designating the one that transmits on the lowest numbered channel as master. In any event, in any transmission either the transmitter adjusts {fk} or the receiver adjusts {{circumflex over (f)}k} depending on which has been designated master and which slave upon start of the communications
- As shown in FIG. 5A, PLL523 generates the clock signals for each of receivers 222-1 through 222-K and
receiver 223 and, in particular, generates the sin(2π{circumflex over (f)}kt) signal for receiver 222-k. The cos(2π{circumflex over (f)}kt) signal can be generated by π/2 phase shifter 524-k. PLL 523 generates the sampling clock signal utilized in analog to digital converters (ADCs) 506-k and 507-k as well as other timing signals utilized in receivers 222-1 through 222-K andreceiver 223. PLL 523 also generates an RX CLK signal for output with the nk bit output signal from receiver 222-k. - Down converters560-1 through 560-K also generate harmonics for very much the same reasons that harmonics are generated in transmitters 212-1 through 212-K. Therefore, down converter 560-k will down-convert into the base band signals from signals having
center frequencies 0, {circumflex over (f)}k, 2 {circumflex over (f)}k, 3 {circumflex over (f)}k, . . . For example, if {circumflex over (f)}1 through {circumflex over (f)}K correspond to frequencies {circumflex over (f)}0 through K {circumflex over (f)}0, then the down conversion process for down converter 560-1 will result in the output signals Z1 I and Z1 Q including interference contributions from the received signals from all of the other channels. Additionally, the output signals Z2 I and Z2 Q include contributions from channels withfrequencies 0, 2 {circumflex over (f)}0, 4 {circumflex over (f)}0, 6 {circumflex over (f)}0 . . . and those channels with harmonics at these frequencies. For example, if a channel has a center frequency at 3f0 and transmits a second harmonic at 6f0, then the receiver will bring signals at 6 {circumflex over (f)}0 back to the baseband by the third harmonic of the mixer for the channel at 2 {circumflex over (f)}0. Therefore, signals from channel k=3 need to be cancelled from signals transmitted on channel k=2. Each of the channels also include the cross-channel interference generated by the transmitter mixers and the dispersive interference created by the channel. If the baseband component of the harmonics is not filtered in filter 215 (FIG. 2B) out between the transmit and receive mixers, then every channel could put a copy of its transmit signal onto the baseband and every channel will receive the baseband signal at the receive side. - PLL523 can be a free-running loop generating clock signals for receiver 222-k based on a reference clock signal. In some embodiments transmitter 212-k of transmitter and demodulator 222-k of the receiver system 220-p because they are part of different ones of components 201-1 through 201-P, are at different clock signals. This means that the digital PLLs for timing recovery and carrier recovery correct both phase and frequency offsets between the transmitter clock signals and receiver clock signals. Within one of components 201-1 through 201-P, a transmitter/receiver pair (i.e., transmitter 210-p and receiver 220-p of component 201-p) can operate with the same PLL and therefore will operate with the same clock signals. Components 201-i and 201-j, where i and j refer to different ones of components 201-1 through 201-P, in general may operate at different clock signal frequencies.
- Therefore, in some embodiments the signals Zk I and Zk Q output from down converter 560-k suffer the effects of cross-channel interference resulting from harmonic generation in the transmitter mixers, the effects of cross-channel interference resulting from harmonic generation in the receiver mixers, and the effects of temporal, intersymbol interference, resulting from dispersion in the transport media. As an additional complicating factor, in some embodiments the transmitter and receiver clocks can be different. Therefore, as an example, in embodiments where f1 through fK of the transmitter correspond to frequencies f0 through Kf0, respectively, then {circumflex over (f)}1 through {circumflex over (f)}K of the receiver will correspond to frequencies (f0+Δ) through K(f0+Δ), where Δ represents the frequency shift between PLL 523 of receiver 220-p and the PLL of the transmitter component. The transmitter mixers then cause cross-channel interference by mixing the signals transmitted at frequency fk into 2fk, 3fk . . . (2kf0, 3kf0 . . . in one example). The receiver mixers cause cross-channel interference by down-converting the signals received at {circumflex over (f)}k, 2 {circumflex over (f)}k, 3 {circumflex over (f)}k . . . to the baseband. If the frequencies {circumflex over (f)}0 is f0+Δ, then the harmonics will be down-converted to a baseband shifted in frequency by kΔ, 2kΔ, 3kΔ, . . . , respectively.
- In some embodiments of the invention, receiver220-p includes a
frequency shift 563 which supplies a reference clock signal to PLL 523. The reference clock signal supplied to PLL 523 can be frequency shifted so that Δ becomes 0. The frequency supplied to PLL 523 byfrequency shift 563 can be digitally created and the input parameters tofrequency shift 563 can be adaptively chosen to match the receiver frequency with the transmitter frequency. Embodiments of frequency adjustments infrequency shift 563 and PLL 523 are further discussed below. - As shown in FIG. 5A, the output signals from down-converter560-k, Zk I and Zk Q, are input to analog filter 561-2. An embodiment of analog filter 561-2 is shown in FIG. 5C. The signals Zk I and Zk Q are input to offset corrections 530-k and 531-k, respectively. DC offset corrections 530-k and 531-k provide a DC offset for each of the outputs Zk I and Zk Q from down-converter 560-k to correct for any leakage onto signal Z(t) from the sine and cosine signals provided by PLL 523, plus any DC offset in filters 504-k and 505-k and ADCs 506-k and 507-k. Leakage onto Z(t) can, in some cases, provide a significant DC signal component of the output signals Zk I and Zk Q from down-converter 560-k. In some embodiments, offsets 530-k and 531-k can offset by the same amount. In some embodiments, different offset values, DCOI and DCOQ in FIG. 5C, can be provided for each of the output signals Zk I and Zk Q from down-converter 560-k. The DC offset values can be adaptively chosen in blocks 543-k and 544-k. In some embodiments, after an initial start-up procedure, the DC offset values are fixed.
- In some embodiments, the DC offsets, DCOI and DCOQ inputs to offsets530-k and 531-k, respectively, can be generated by providing a low frequency integration of the output signal from analog-to-digital converters (ADCs) 506-k and 507-k (FIG. 5A). In FIG. 5C, for example, low-frequency integrator 543-k receives the output signal from of ADC 506-k, Rk I, and provides the DCOI input signal to offset 530-k; integrator 544-k receives the output signal from ADC 507-k, Rk Q, and provides the DCOQ input signal to offset 531-k. The low frequency integration of integrators 544-k and 543-k provides signals that set the average output signal of each of ADCs 506-k and 507-k to zero. In some embodiments of the invention, integrators 543-k and 544-k hold the offset values DCOI and DCOQ, respectively, constant after a set period time of integration when receiver 222-k is first started.
- The output signals Zk I and Zk Q from down-converter 560-k, or from offsets 530-k and 531-k in embodiments with offsets, can be input to low-pass filters 504-k and 505-k. Low-pass filters 504-k and 505-k are analog filters that filter out signals not associated with the baseband signal (i.e., signals from the remaining bands of transmitter 210-p) for the kth transmission band. Low pass filters 504-k and 505-k, however, do not remove the interference caused by harmonic generation in transmit and receive mixers involved in the up-conversion and down-conversion process.
-
-
- The cost function is minimized with respect to the parameters of the filter and the time delay τ. Again in Equation 13, the weighting function W(f) can be chosen such that the stop band rejection of HRX(s) is less than −50 dB. Furthermore, the function HRRC(f) is the square root raised cosine function shown in FIG. 6E. As shown in FIG. 6E, the function HRRC(f) is characterized by a parameter αk and
baud frequency 1/Tk. The parameter αk is the excess bandwidth of the target function HRRC(f). In some embodiments, αk can be 0. In some embodiments, αk can be 0.6. In general, the parameter αk can be any value, with smaller values providing better filtering but larger values being easier to implement. The parameter Tk is related to the baud rate, Tk=1/Bk. -
- where the function HRC(f) is a square-root raised cosine function. The function HRC(f) is characterized by the parameters αk and 1/Tk. Equation 14 includes the effects of the transmit digital to
analog converters 406 and 407 (FIG. 4) as well as the analog transmitfilters 408 and 409 (FIG. 4) to set the overall response offilters analog converters - The output signals from low-pass filters504-k and 505-k can, in some embodiments, be amplified in variable gain amplifiers 521-k and 522-k, respectively. In some embodiments, the gains gk 1(I) and gk 1(Q) of amplifiers 521-k and 522-k, respectively, are set such that the dynamic range of analog-to-digital converters 506-k and 507-k, respectively, is filled. The output signals from amplifiers 521-k and 522-k, then, are
- r k I(t)=LPF[Z(t)cos(2π{circumflex over (f)} k t)]g k 1(I)
- r k Q(t)=LPF[Z(t)sin(2π{circumflex over (f)} k t)]g k 1(Q), (15)
- where gk 1(I) and gk 1(Q) represents the gain of amplifiers 521-k and 522-k, respectively. The gains of amplifiers 521-k and 522-k can be set in an automatic gain control circuit (AGC) 520-k. An embodiment of automatic gain circuit 520-k where gk 1(I) and gk 1(Q) are set equal to one another is shown in FIGS. 8A and 8B. In some embodiments, amplifiers 521-k and 522-k can be before or incorporated within filters 504-k and 505-k, respectively.
- As shown in FIG. 5A, the signals output from analog filter561-k, signals rk I(t) and rk Q(t), are input to analog-to-digital converters (ADC) 506-k and 507-k, respectively, which forms digitized signals Rk I(t) and Rk Q(t) corresponding with the analog signals rk I(t) and rk Q(t), respectively. In some embodiments, ADCs 506-k and 507-k operate at a sampling rate that is the same as the transmission symbol rate, e.g. the QAM symbol rate. In some embodiments, ADCs 506-k and 507-k can operate at higher rates, for example twice the QAM symbol rate. The timing clock signal SCLK, as well as the sine and cosine functions of
Equation 15, is determined by PLL 523. In outputs with η=10, K=8, and nk=6, as described above, ADCs 506-k and 507-k can operate at a rate of about 208 Msymbols/sec or, in embodiments with K=16, about 104 Msymbols/sec. In some embodiments, ADCs 506-k and 507-k can be 8-bit ADCs. However, for 128 QAM operation, anything more than 7 bits can be utilized. - In some embodiments, the gain of amplifiers521-k and 522-k of analog filters 560-k can be set by automatic gain control circuit (AGC) 520-k (see FIG. 5C). Gain control circuit 520-k can receive the digital output signals from ADCs 506-k and 507-k, Rk I(n) and Rk Q(n), respectively, and determines the gain g1 k(n+1) for each of amplifiers 521-k and 522-k (i.e., in this embodiment g1(I) k(n) and g1(Q) k(n) are equal). FIGS. 8A and 8B show some embodiments of AGC 520-k. The embodiment of AGC 520-k shown in FIG. 8A includes an AGC phase detector 801 and an
integrator 802. Phase detector 801 estimates whether or not the mean-squared-power of signals Rk I(t) and Rk Q(t) are at a pre-determined threshold value and, if not, provides a correction signal to adjust the amplitudes of signals rk I(t) and rk Q(t). The output signal from phase detector 801 can be given by - p k g(n)=[G th−(R k I(n)2 +R k Q(n)2)], (16)
- where Gth is the mean squared power of the signals input to ADCs 506-k and 507-k once AGC 520-k converges. The output signal from phase detector 801, pk g(n), is then input to
integrator 802.Integrator 802 digitally adjusts the gain gk according to - g k 1(n+1)=g k 1(n)+αg p k g(n), (17)
- where αg determines the rate of adaptation of the AGC algorithm. The constant αg can be chosen to be a negative power of 2 for ease of implementation.
- The embodiment of phase detector520-k shown in FIG. 8B includes two
phase detectors phase detectors - p k g−I(n)=[G th I−(R k I(n)2)]
- p k g−Q(n)=[G th Q−(R k Q(n)2)], (18)
- respectively. The output signals from
detectors - g k 1−I(n+1)=g k 1−I(n)+αg I p k g−I(n),
- and
- g k 1−Q(n+1)=g k 1−Q(n)+αg Q p k g−Q(n), (19)
- where αg I and αg Q determine the rate of adaptation of the AGC algorithm as in Equation 17 above.
- In some embodiments AGC520-k can include a peak detection algorithm so that the gain values gk 1(I) and gk 1(Q) are determined from the peak values of Rk I and Rk Q, respectively. Again, the peak values of Rk I and Rk Q can be compared with threshold values and the gain values gk 1(I) and gk 1(Q) adjusted accordingly.
-
-
- Additionally, an arithmetic offset can be implemented by subtracting the value OFFSET1 I in summer 534-k to Rk I(n) and subtracting the value OFFSET1 Q in summer 536-k. The offset values OFFSET1 I and OFFSET1 Q can be adaptively chosen in tracking and recovery block 517-k by integrating the output signals from summer 534-k and summer 536-k, Fk I(n) and Fk Q(n), respectively, in a low frequency integration. The offsets implemented in summer 534-k and 536-k offset the dc offset not corrected in analog filter 561-k, e.g. by offsets 530-k and 531-k, for example, as well as arithmetic errors in summers 534-k, 536-k and multipliers 535-k and 533-k.
- The output signals from summers534-k and 536-k, then, can be given by
- F k I(n)=R k I(n)−OFFSET1,k I,
- and
- F k Q(n)=(1+ηk c)R k Q(n)−θk c R k I(n)−OFFSET1,k Q. (22)
- In some embodiments, the parameters OFFSET1,k I, OFFSET1,k Q, ηk c and θk c vary for each cycle n. Additionally, the parameters can be different for each of the k receivers 222-1 through 222-k.
- The output signals from summers534-k and 536-k, Fk I(n) and Fk Q(n), respectively, are then input to a phase rotation circuit 512-k. Phase rotation 512-k rotates signals Fk I(n) and Fk Q(n) according to the output of a carrier phase and frequency offset correction circuit, which depends on the difference between {circumflex over (f)}k and fk, and the relative phase of the transmit mixers (
multipliers 410 and 411) and the receive mixers (multipliers 501-k and 502-k) and transmission channel 250 (FIG. 2A). The rotation angle θ^ k I(n) is computed in carrier tracking and timing recovery block 517. The resultant output signals of carrierphase rotation circuit 512, Dk I(n) and Dk Q(n), can be given by: - D k I(n)=F k I(n)cos({circumflex over (θ)}k I(n))+F k Q(n)sin(θ^ k I(n))
- D k Q(n)=F k Q(n)cos({circumflex over (θ)}k I(n))−F k I(n)sin(θ^ k I(n)). (23)
- The output signals from rotation circuit512-k, Dk I(n) and Dk Q(n), are then input to a complex adaptive equalizer 513-k to counter the intersymbol interference caused by frequency dependent channel attenuation, and the reflections due to connectors and vias that exist in communication system 200 (which can be a backplane communication system, an inter-cabinet communication system, or a chip-to-chip communication system) and both transmit and receive low pass filters, e.g. filters 408 and 409 of FIG. 4 and filters 504-k and 505-k of FIG. 5C.
- It should be noted that because of the frequency division multiplexing of data signals, as is accomplished in transmitter system210-p and receiver system 220-p, the amount of equalization needed in any one of channels 301-0 through 301-K is minimal. In some embodiments, such as the 16-channel, 6 bit per channel, 10 Gbps example, only about 1-2 dB of transmission channel magnitude distortion needs to be equalized. In 8 channel embodiments, 3-4 dB of distortion needs to be equalized. In other words, the number of taps required in a transport function for equalizer 513-k can be minimal (e.g., 1-4 complex taps) in some embodiments of the present invention, which can simplify receiver 220-p considerably. In some embodiments of the invention,
equalizer 513 can have any number of taps. - Complex Equalizer513-k can be either a linear equalizer (i.e., having a feed-forward section only) or a decision feed-back equalizer (i.e., having a feed-forward and a feedback portion). The coefficients of the equalizer transfer function are complex-valued and can be adaptive. In some embodiments, the complex equalizer coefficients that operate on signals Dk I and Dk Q are the same, but in other embodiments the complex equalizer coefficients are allowed to be different for Dk I and Dk Q.
- Additionally, the feed-forward portion of an adaptive equalizer (either a linear equalizer or decision feed-back equalizer) can be preceded by a non-adaptive all-pole filter with
transfer function 1/A(z). In some embodiments, the coefficients of A(z), which can be found by a minimum mean squared error technique, can be real-valued, for example - A(Z)=1.0+0.75Z −1+0.0625Z −2+0.0234375Z −3+0.09375Z −4, (24)
-
- The resulting transfer function H(z)=1/A(z) can be implemented in a linear equalizer or a decision feedback equalizer. In some embodiments, however, complex adaptive equalizer513-k includes adaptively chosen parameters.
-
- where j refers to the tap Z31 j. The complex adaptive equalizer coefficients Ck x,I(j,n), Ck y,I(j,n), Ck x,Q(j,n) and Ck y,Q (j,n) can be updated according to the least mean squares (LMS) algorithm as described in Bernard Sklar, Digital Communications, Fundamentals and Applications (Prentice-Hall, Inc.,1988), for example. In some embodiments, equalizer coefficients Ck x,I(j,n) and Ck x,Q(j,n) are the same and equalizer coefficients Ck y,Q(j,n) and Ck y,Q(j,n) are the same.
- In some embodiments of the invention, the center coefficients of the feed-forward part of equalizer513-k, Ck x,I(0,n), Ck y,I(0,n), Ck x,Q(0,n) and Ck y,Q(0,n) can each be fixed at 1 and 0, respectively, to avoid interaction with the adaptation of gain coefficients gk 2(I) and gk 2(Q) used in amplifiers 537-k and 538-k of a second digital filter 563-k and the carrier phase correction performed in phase rotator 512-k. Additionally, in some embodiments the coefficients Ck x,I(−1,n), Ck y,I(−1,n), Ck x,Q(−1,n) and Ck y,Q(−1,n) can be fixed at constant values to avoid interaction with the adaptation of the phase parameter τ^ k by tracking and timing recovery 517-k. For example, the parameters Ck x,I(−1,n) and Ck x,Q(−1,n) can be −¼-{fraction (1/16)}, which is −0.3125, and the parameters Ck y,I(−1,n) and Ck y,Q(−1,n) can be −{fraction (1/64)}, which is −0.015625. In some embodiments, one set of parameters, for example Ck x,I(−1,n) and Ck x,Q(−1,n), are fixed while the other set of parameters, for example Ck y,I(−1,n) and Ck y,Q(−1,n), can be adaptively chosen.
- In some embodiments of the invention, for example, Ck x,I(−1,n) and Ck y,I(−1,n) are fixed and the timing recover loop of adaptive parameters 517-2 for determining the phase parameter τ^ k utilizes errors ek I only (see FIG. 7). In that way, adaptively choosing parameters in the Q channel do not interact with the timing loop. In some embodiments, the opposite can be utilized (i.e., Ck x,Q(−1,n) and Ck y,Q(−1,n) are fixed and the timing loop determines the phase parameter τ^ k from error parameter ek Q).
- The output signals from each of digital filters562-1 through 562-K, signals E1 I(n) and E1 Q(n) through EK I(n) and EK Q(n), respectively, are input to cross-channel interference filter 570. Cross-channel interference canceller 570 removes the effects of cross-channel interference. Cross-channel interference can result, for example, from harmonic generation in the transmitter and receiver mixers, as has been previously discussed. As described in the embodiment of digital filter 562-k shown in FIG. 5D, equalization for intersymbol interference can be performed in digital filter 562-k. In some embodiments of the invention, cross-channel interference filter 570 may be placed before equalizer 513-k (in other words, equalizer 513-k may be placed in digital filter 563-2 instead of digital filter 562-2).
- The output signals from digital filter562-2, Ek I(n) and Ek Q(n), for each of receivers 222-1 through 222-K are input to cross-channel interference filter 570. An embodiment of cross-channel interference canceller 570 is shown in FIG. 5F. For convenience of discussion, the input signals Ek I(n) and Ek Q(n) are combined into a complex value Ek(n)=Ek I(n)+iEk Q(n) (where i is {square root}{square root over (−1)}). Each of the complex values E1 through EK is input to a summer 571-1 through 571-K, respectively, where contributions from all of the other channels are removed. The output signals from summers 571-1 through 571-K, H1 through HK, respectively, are the output signals from cross-channel interference filter 570. Again, the complex value Hk(n) is Hk 1(n)+iHk Q(n), representing the in-phase and quadrature output signals.
-
- where Z−1 represents a once cycle delay. The transfer functions Qk,l can have any number of taps and, in general, can be given by
- Q k,l=σk,l 0+σk,l 1 Z −1+σk,l 2 Z −2+ . . . +σk,l M Z −M. (28)
- In general, each of the functions Qk,l can have a different number of taps M and N can be different for each channel In some embodiments, the number of taps M for each function Qk,l can be the same. In some embodiments, delays can be added in order to match the timing between all of the channels. Further, in general delays 573-1 through 573-K can delay signals E1 through EK by a different number of cycles. In some embodiments, where each of functions Qk,l includes M delays, each of delays 573-1 through 573-K includes N=M/2 delays where N is rounded to the nearest integer.
- The coefficients σk,l 0 through σk,l M can be adaptively chosen in cross-channel
adaptive parameter block 571 as shown in FIG. 5A in order to optimize the performance of receiver system 220-p. In some embodiments, M is chosen to be 5. In some embodiments, transfer function Qk,l may be constants, M=0. Cross-channeladaptive parameter block 571 is further discussed below. - Therefore, in cross channel interference canceller570 the cross channel interference is subtracted from the output signals from digital filters 562-1 through 562-K as indicated by Equation 26. The output signals from cross-channel interference canceller 570 for an arbitrary one of receivers 222-k, Hk I and Hk Q, can be input to a second digital filter 563-k. An embodiment of second digital filter 563-k is shown in FIG. 5E.
- The parameters σk,l m of Equation 28 can be adaptively chosen. In the adaptation algorithm, the real and imaginary parts of σk,l m can be adjusted separately. The adaptive adjustments of parameters σk,l m is further discussed below.
- As shown in FIG. 5E, the signals Hk I and Hk Q can be input to AGC controlled amplifiers 537-k and 538-k, respectively. The gains of amplifiers 537-k and 538-k, gk 2(I) and gk 2(Q), respectively, are set such that the output signals from amplifiers 537-k and 538-k yield appropriate levels for the symbol set. The gain values gk 2(I) and gk 2(Q) are set in tracking and timing recovery 517-k and can be determined in much the same fashion as in AGC 520-k of FIG. 5C. In the embodiment shown in FIG. 7, the gain values gk 2(I) and gk 2(Q) are determined based on the sign of the determined symbol from decision unit 516-k and the error signal. These calculations are discussed further below.
- The output signals from amplifiers537-k and 538-k can be input to quadrature correction 540-k. Quadrature correction 540-k corrects for the phase error between the in-phase and quadrature mixers at the transmitter. The angle θ^ k (2)(n) of the phase error can be adaptively chosen in tracking and timing recovery 517. The value θ^ k (2)(n) can be changed very slowly and can be almost constant.
- Additionally, arithmetic offsets OFFSET2 I and OFFSET2 Q can be subtracted in summers 541-k and 542-k, respectively. The values of OFFSET2 I and OFFSET2 Q can be adaptively chosen in tracking and timing recovery 517-k. In some embodiments, the OFFSET2 I and OFFSET2 Q can be set by integrating the output signals of summers 541-k and 542-k, Gk I(n) and Gk Q(n), respectively. Alternatively, as shown in FIG. 7, OFFSET2k I and OFFSET2 Q can be set such that the error at decision unit 516-k is zero. In that embodiment, data dependent jitter can be reduced. In some embodiments, tracking and timing recovery 517-k integrates the error values between the output samples from decision unit 516-k and the output signals Gk I(n) and Gk Q(n) to minimize the error values.
- The output signals Gk I(n) and Gk Q(n), then, are given by
- G k I(n)=g k 2−I E k I(n)−OFFSET2 I
- G k Q(n)=g k 2−Q E k Q(n)−g k 2−I E k I(n)θ^ k (2)−OFFSET2 Q. (29)
- FIG. 7 shows an embodiment of Tracking and Timing Recovery517-k. Tracking and timing recovery 517-k inputs decision values âk I(n) and âk Q(n), which are decisions of the symbol values based on the signals Gk I(n) and Gk Q(n) in decision unit 516-k, and error values ek I(n) and ek Q(n) based on the decided values âk I(n) and âk Q(n) and the values Gk I(n) and Gk Q(n). In some embodiments, the error values ek I(n) and ek Q(n) are the differences between the decided values âk I(n) and âk Q(n) and the values Gk I(n) and Gk Q(n). The coefficients of equalizer 513-k of first digital filter 562-k are computed in coefficient update 702-k.
-
- where μ is the constant that determines the rate of adaptation of the coefficients, j indicates the tap of the coefficient, and ek I(n) and ek Q(n) are estimated error values. The constant μ is chosen to control the rate of adaptation, and, in some embodiments, is in the range of 2−8 to 2−14. In some embodiments, the coefficient μ can be different for the update equation for Ck x and the update equation for Ck y. The estimated error values, which are computed by decision block 516-k, can be computed according to:
- e k I(n)=G k I(n)−âk I(n)
- and
- e k Q(n)=G k Q(n)−âk Q(n), (31)
- where Gk I(n) and Gk Q(n) are corrected values of Ek I(n) and Ek Q(n), respectively, and {âk I(n),âk Q(n)} is the decision set based on the sample set {Gk I(n),Gk Q(n)}, and represents the closest QAM symbol in Euclidean distance to the sample set. See, e.g., Edward A. Lee, and David G. Messerschmitt, Digital Communication, pp. 371-402 (Kluwer Academic Publishers, 1988). A decision set {âk I(n),âk Q(n)} can be computed based on sample set {Gk I(n),Gk Q(n)} in decision unit 516-k and the results received into tracking and timing recovery circuit 517 where the estimated error values of Equation 30 and the resulting coefficient updates of Equation 30 are computed.
- FIG. 7 shows a block diagram of equalizer coefficient update, carrier tracking and timing recovery block517-k. Block 517-k includes coefficient update block 702-k. Errors ek I(n) and ek Q(n) are computed in decision block 516-k according to Equation 30. Coefficient update 702-k receives errors ek I(n) and ek Q(n) signals Dk I(n) and Dk Q(n) from phase rotator circuit 512-k shown in FIG. 5D and calculates updated equalizer coefficients for complex adaptive equalizer 513-k shown in FIG. 5D according to Equation 30.
- Tracking and timing recovery circuit517-k can also include a carrier recovery loop for controlling carrier phase rotation circuit 512-k shown in FIG. 5D and a timing recovery loop for controlling the phase of sampling clock signal SCLK from PLL 523. In some embodiments, the timing recovery loop for determining τk(n+1) in tracking and timing recovery 517 can be implemented as a 2nd order digital phase locked loop as shown in FIG. 7.
-
-
- which can be simpler to implement than Equation 32. In embodiments where the phase correction τ^k is calculated from ek I only or from ek Q only, as discussed above, then the terms containing ek Q or the terms containing ek I, respectively, are dropped from Equations 32 and 33.
-
- where ατ and βτ are the loop filter coefficients that determine the timing recovery loop bandwidth and damping factor. In some embodiments, a loop bandwidth equal to 1% of baud rate, and damping factor equal to 1 can be implemented. The loop bandwidth and damping factors can depend not only on loop filter coefficients, but also on phase detector slope, and the digital integrator gain. Thus, the output signal Lk τ(n) from loop filter 705-k is given by
- L k τ(n)=ατ p k τ(n)+I k τ(n),
- where
- I k τ(n)=I k τ(n−1)+βτ p k τ(n−1). (35)
- The output signal from loop filter705-k, Lk τ(n), is then input to a digitally implemented integrator 707-k, the output of which is the phase correction τ{circumflex over (0 )}k(n) given by
- {circumflex over (τ)}k(n+1)={circumflex over (τ)}k(n)+L k τ(n). (36)
- The phase correction τ^k(n) is then received by PLL 523, as described above.
-
-
- where αθ and βθ are the loop filter coefficients that determine the carrier tracking loop bandwidth and the damping factor. Thus, the output signal from loop filter 706-k is given by
- L k θ(n)=αθ p k θ(n)+I k θ(n)
- where
- I k θ(n)=I k θ(n−1)+βθ p k θ(n−1). (40)
- The output signal from loop filter706-k is then input to a digitally implemented integrator 708-k. The output signal from
integrator 708, θ^ k(n+1), is then given by - {circumflex over (θ)}k(n+1)={circumflex over (θ)}k(n)+L k θ(n). (41)
- The carrier tracking loop output signal θ^k((n), output from integrator 708-k, is then input to phase rotation circuit 512-k of FIG. 5D.
- Further, as shown in FIG. 7, the parameter θk c(n+1) can be calculated by phase detector 720-k and integrator 722-k as described in
Equation 21. As described above, the parameter ηk c(n+1) input into multiplier 533-k shown in FIG. 5D can be calculated byblocks 723 andintegration block 724 according toEquation 20. - As shown in Blocks725-k and 726-k, the offset values OFFSET1 I and OFFSET1 Q input to summers 534-k and 536-k, respectively, of the embodiment of digital filter 562-k shown in FIG. 5D can be determined by integrating the signals Fk I(n) and Fk Q(n), respectively. Similarly, the offset values OFFSET2 I and OFFSET2 Q input to sununers 541-k and 542-k, respectively, of digital filter 563-k shown in FIG. 5E can be calculated by integrating the signals Gk I(n) and Gk Q(n), respectively. The embodiment of adaptive parameter block 517-k shown in FIG. 7 calculates OFFSET2 I and OFFSET2 Q by integrating the error signals ek I(n) and ek Q(n), respectively.
-
- The output signal from integrator731 -k, then, can be given by
- θk (2)(n+1)=θk (2)(n)+αθ P k θ2 (43)
- The gains gk 2−1 and gk 2−Q can be calculated by phase detector 732 and integrator 734. In some embodiments, phase detector 732-k calculates the quantities
- and
- p k g2−I(n)=−e k I(n)sign(âk I(n))
- and
- p k g2−Q(n)=−e k Q)(n)sign(âk Q(n)). (44)
- The output signals from integrator734-k, then, can be given by
- g k 2−I(n+1)=g k 2−I(n)+αg p k g2−I
- and
- g k 2−Q(n+1)=g k 2−Q(n)+αg p k g2−Q, (45)
- where αg determines how fast the gain values respond to changes.
- As show in FIG. 5A, cross-channel
adaptive parameter block 571 adaptively adjusts the parameters of cross-channel interference canceller 570, all of the σk,I i parameters of Equations 26 and 27. In an embodiment where the cross-channel transfer functions Qk,l is a 5 tap function and K=8, there are 5*K*(K−1)=280 individual complex parameters σk,I i to adjust in Equations 27 and 28. - In some embodiments, cross-channel
adaptive parameter block 571 receives the complex input values E1 through EK, where Ek, an arbitrary one of them, is given by Ek=Ek I+iEk Q (see FIG. 5F), and error signals {ek(n)=ek I(n)+iek Q(n)} from decision unit 516-k of each of receivers 222-1 through 222-K. On start-up of receiver system 220-p, all of complex parameters σk,I j can be set to 0. Each of complex parameters σk,I j can then be updated according to - σk,l m,x(n+1)=σk,l m,x(n)−νk,l m,x(e 1 I(n)E k I(n−m)+e 1 Q(n)E k Q(n−m), (b 46)
- and
- σk,l m,y(n+1)=σk,l m,y(n)−νk,l m,y(e 1 Q(n)E k I(n−m)−e 1 I(n)E k Q(n−m), (47)
- where
- σk,1 m=σk,1 m,x +iσ k,1 m,y, (48)
- where νk,l m=νk,1 m,x+iνk,1 m,y is the complex update coefficient for parameter σk,1 m and controls how fast parameter σk,1 m can change, in similar fashion as has been described with other update equations above. In some embodiments, all of the parameters νk,l m,x and νk,l m,y each have values on the order of 10−3 to 10−5.
- In some embodiments,
frequency shift 563 generates a reference signal input to PLL 523 such that the frequency of component 201-p with receiver system 220-p, {circumflex over (f)}1 through {circumflex over (f)}K, matches the frequency of the corresponding component 201-q with transmitter system 210-q, f1 through fK, where component 201-q is transmitting data to component 201-p. In embodiments where f1 through fK correspond to frequencies f0 through Kf0, respectively, thenfrequency shift 563 shifts the frequency of a reference clock such that the frequency shift Δ is zero. The frequencies {circumflex over (f)}1 through {circumflex over (f)}K, then, are also frequencies f0 through Kf0. In some embodiments,frequency shift 563 can receive input from any or all loop filters 706-k (FIG. 7) and adjusts the frequency shift such that θ^ k (1) through θ^ k (K) remain a constant, for example 0 or any other angle. In some embodiments,frequency shift 563 receives the output signals from any or all loop filters 705-k. - As shown in FIG. 5A, the output signals from digital filter563-k, equalized samples {Gk I(n),Gk Q(n)}, are input to trellis decoder 514-k. Trellis decoding can be performed using the Viterbi algorithm, see, e.g., G. Ungerboeck., “Channel Coding with Multilevel/Phase Signals,” IEEE Transactions on Information Theory, vol. IT-28, January 1982, pp. 55-67, G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part I. Introduction,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 5-11, G. Ungerboeck., “Trellis Coding Modulation with Redundant Signal Sets, Part II. State of the Art,” IEEE Communications Magazine, vol. 25, no. 2, February 1987, pp. 12-21, or G. C. Clark, Jr., and J. B. Cain, Error Correction Coding for Digital Communications, pp.253-264(Plenum Press, New York, 1981). Additionally,
trellis decoder 514 converts from the QAM symbol set back to parallel bits. The output signal fromtrellis decoder 514, which now contains nk parallel bits, is input to descrambler 515-k. Descrambler 515-k of receiver demodulator 222-k operates to reverse the scrambling operation ofscrambler 401 of transmitter modulator 212-k. - As is shown in FIG. 2C, the output signals from each of demodulators222-1 through 222-K are recombined into an N-bit parallel signal in bit parsing 221. Additionally, the RX clock signal is output from bit parsing 221.
- FIG. 10 shows an example embodiment of
trellis decoder 514 according to the present invention.Trellis decoder 514 of FIG. 10A includes aslicer 1001, abranch metric 1002, an add-compare-select (ACS)block 1003, a normalization andsaturation block 1004, a trace back 1005, and atrellis decision block 1006. The output signal fromtrellis decoder 514 is the received bits, which are substantially as transmitted by transmitter 210-p. -
Slicer 1001 receives the output signals Gk I(n) and Gk Q(n) from offsetblocks slicer 1001. The value Gk I(n) is received in x andy slicers Slicer 1010 slices Gk I(n) to a first set of symbol values whileslicer 1011 slices Gk I(n) to a second set of slicer values. For example, in a 128 QAM system as shown in Table I, x-slicer 1010 can slice to the symbol values −11, −7, −3, 1, 5, and 9 and y-slicer 1011 can slice to the symbol values −9, −5, −1, 3, 7, 11. In some embodiments, the number of bits can be reduced by mapping the decided symbols fromslicers TABLE II INPUT 0-8 9,10 11,12,13 >14 OUTPUT 0 1 2 3 - The errors δix and δiy are also calculated. The output signals from
slicers summers 1015 and 1020, respectively. In some embodiments, the output signals fromslicers blocks 1014 and 1019, respectively, before subtraction insummers 1015 and 1020.Blocks 1014 and 1019 represent shifts. In some embodiments, the input signals toslicers value 8 slices to a perfect 1. Similarly, the value −56 slices to aperfect − 7. So if the input signal is a −56 it would be sliced to −7. To calculate the error, we need to multiply the −7 by 8 before it is subtracted from the incoming signal. Multiplying by 8 is the same as a shift to the left by 3. - The absolute values of the output signals from
summers 1015 and 1020 are then taken by blocks 1017 and 1022, respectively. The output signal from ABS blocks 1017 and 1022 can be mapped into a set of values requiring a smaller number of bits by tables 1018 and 1023, as in Table II above, respectively, to generate δix and δiy, respectively. - The output signals corresponding to the quadrature data path, qx, qy, δqx and δqy are generated by substantially identical procedure by slicers 1012, 1013,
summers -
Branch metric 1002 receives the error signals fromslicer 1001 and calculates the signals δa, δb, δc, and δd. The branch metric values δa, δb, δc, and δd indicate the path metric errors. In some embodiments, the path metric errors δa, δb, δc, and δd can be calculated as - δa=δi x +δq x,
- δb=δi y +δq x,
- δc=δi x +δq y,
- δd=δi y +δq y, (49)
- Add-Compare
Select 1003 receives the path metrics δa, δb, δc, and δd along with state metric values s0, s1, s2 and s3, which are calculated in normalization andsaturation block 1004. In some embodiments, the output values ofACS 1003 include path metrics p0, p1, p2 and p3 along with choice indicators c0, c1, c2 and c3. The path metrics p0, p1, p2 and p3 can be given by - p 0=MIN(s 0 +δa, s 2 +δd),
- p 1=MIN(s 0 +δd, s 2 +δa),
- p 2=MIN(s 1 +δb, s 3 +δc),
- and
- p 3=MIN(s 1 +δc, s 3 +δb), (50)
- The choice indicators c0, c1, c2 and c3 indicate which of the values was chosen in each of the minimization in
Equation 43. - Normalization and
saturation 1004 receives the path metrics p0, p1, p2 and p3 and calculates the state metrics s0, s1, s2 and s3. In some embodiments, if the path metrics are above a threshold value, the threshold value is subtracted from each of the path metrics. In some embodiments, the smallest path metric can be subtracted from each of the path metrics p0, p1, p2 and p3. Normalization andSaturation block 1004 also ensures that path metrics p0, p1, p2 and p3 are limited to a maximum value. For example, in an embodiment where p0, p1, p2 and p3 are a four-bit number (range 0-15), if p0, p1, p2 and p3 is greater than 15, then the corresponding path metric is limited to the maximum value of 15. Then, the state metrics for the next baud period, s0, s1, s2, and s3, are set to the path metrics p0, p1, p2 and p3. -
Traceback 1005 receives and stores the choice indicators c0, c1, c2 and c3 as well as the decided values fromslicer 1001 in that baud period, ix, iy, qx, and qy. The choice indicators c0, c1, c2 and c3 indicate the previous state values. As shown in the state transition diagram of FIG. 10C, which indicates state transitions between the encoded bits, for each of the states 0-3, there are only two possible previous states 0-3. For example, if the current state is 1, the previous state was either 0 or 2. Although any traceback depth can be utilized intraceback 1005, in some embodiments a traceback depth of 6 is utilized. With the use of mapping tables 1016, 1021, 1026 and 1031 reducing the number of bits required to store ix, iy, qx, and qy, (for example a total of 8 in 128 QAM systems) and the low number of bits required to store choice indicators c0, c1, c2 and c3, a low number of bits is needed. For example, in some embodiments a total of 12 bits is utilized. - For calculating the trellis output from trace back1005, the most recently stored memory locations are utilized first with the first choice being the state with the lowest state metric. The algorithm then traces back through the stored choice indications c0, c1, c2 and c3 to the end of the traceback memory (in some embodiments, the sixth state) and arrives at state S. In the example trellis discussed above, the MSB of the output is the LSB of the state, S. The final state S and the choice indicator cs will determine which pair of symbols were transmitted (Ix/Iy, Qx/Qy). By reading the values of these symbols from the traceback memory, a look-up in, for example, Table I will result in a read value. The five least significant bits of the read value from the look-up table, e.g. Table I, becomes the five least significant bits of the output signal. The most significant bit was determined earlier and supplies the most significant bit (MSB).
- If the example 16 state encoder described earlier is used, then a standard 16 state trellis decoder using the Viterbi algorithm can be utilized in the decoding. The 2/3 bit encoding is illustrated in Table II for the most significant bits and a look-up table for a 7 bit data mapper is illustrated in Table III.
- FIG. 9 shows a
transceiver chip 900 according to the present invention.Transceiver chip 900 includes transmitter 210-p and receiver 220-p formed on a single semiconductor chip. In some embodiments,transceiver chip 900 is formed in silicon using CMOS technology.Transceiver chip 900 can receive N bits into transmitter 210-p and output N bits from receiver 220-p. In some embodiments, different pins may be utilized for input bits and output bits, as shown in FIG. 9. In some embodiments, transmitter 210-p and receiver 220-p share the same N pins.Transmitter 900 receives a reference clock signal and outputs a receive clock signal from receiver 220-p. Further,transceiver 220 includes output pins for transmitting and receiving differential signals. In some embodiments, transmitter 210-p and receiver 220-p share the same output pins and in some embodiments transmitter 210-p and receiver 220-p are coupled to separate output pins. In some embodiments,transceiver chip 900 may be coupled to an optical driver for optical transmission. - Although the digital algorithms described in this disclosure are presented as digital circuitry elements, one skilled in the art will recognize that these algorithms can also be performed by one or more digital processors executing software code to perform the same functions.
- FIG. 12A shows an embodiment of
baseband receiver 223.Baseband transmitter 217 andbaseband receiver 223 may, for example, form a PAM transceiver. The signal from medium 250 (see FIG. 2A) is received byanalog processing 1201.Analog processing 1201, for example, can include a low-pass filter in order to separate the baseband signal from those signals transported with carrier frequencies, such as those transmitted by transmitters 212-1 through 212-K. Filter 1201 can further include some analog correction of the signals, including anti-aliasing filters, base-line wander filters, or other filters. - FIG. 12B shows an embodiment of
analog processing 1201. The input signal Z(t) is received by alow pass filter 1210. The parameters oflow pass filter 1210 can be fixed, however in some embodiments the filter can be adjusted dynamically, for example, byadaptive parameter control 1207 of FIG. 12A. The output signal fromfilter 1210 is input to amplifier 1211. In some embodiments, the gain of amplifier 1211, gA, can be given by - g A(n+1)=g A(n)+αA(P A−Th −P) (51)
- where αA is a multiplier which controls convergence of the gain, PA−TH is a threshold value on peak power, and P is the mean squared power S2, where S is the digitized signal from
ADC 1202. Amplifier 1211, then, arranges that the range ofADC 1202 is filled. - The output signal from amplifier1211 can be input to offset 1212. The offset value OFFSETA can be arranged by
adaptive parameter control 1207 such that the average output signal S fromADC 1202 is zero. The offset value OFFSETA, for example, can be given by - OFFSETA(n+1)=OFFSETA(n)−αOFF S, (52)
- where αOFF is again the multiplicative factor that controls convergence and S is the signal output from
ADC converter 1202. - The output signal from
analog processing 1201 is input toADC 1202 where it is digitized.ADC 1202 can have any number of bits of resolution. At least a four bit ADC, for example, can be utilized in a 16-PAM system.ADC 1202 can be clocked from a clock signal generated by receiver 120-p in general, for example in PLL 523 as shown in FIG. 5A. In some embodiments,adaptive parameter control 1207 can generate a phase signal which can add a phase to the timing ofADC 1202. In those embodiments, the phase signal Ph can be given by the same technique as described with the calculation of phase performed by phase detector 703-k, loop filter 705-k, and integrator 707-k, shown in FIG. 7, for the in-phase signal. - The output signal from
ADC 1202, S, can be input to adigital filter 1203. Further filtering and shaping of the signal can occur indigital filter 1203.Filter 1203 can be, for example, a digital base-line wander filter, a digital automatic gain control circuit, an echo or next canceller, or any other filter. For example, if necessary,digital filter 1203 can be part of cross channel interference filter 570 (shown in FIG. 5A). The output signal fromdigital filter 1203 is input toequalizer 1204. -
Equalizer 1204 equalizes the signal for intersymbol interference.Equalizer 1203 can include a feed-forward section, a feed-back section, or a combination of feed-forward and feed-back sections. FIG. 12C shows an embodiment ofequalizer 1204 with a combination of a feed-forward section 1215 and feed-backsection 1216. Each of feed-forward section 1215 and feed-backsection 1216 can include any number of taps. Each of the equalization parameters C0 through CM of feed-forward section 1215 and B1 through BN of feed-backsection 1216 can be adaptively chosen inadaptive parameter control 1207 similarly to the methods previously discussed above. - The output signal from
equalizer 1204 can then be input todata recovery 1205.Data recovery 1205 recovers the digital signal from the signals. In some embodiments,data recovery 1205 is a PAM slicer. In some embodiments,data recovery 1205 can also include an error correction decoder such as a trellis decoder, a Reed-Solomon decoder or other decoder. The output signal fromdata recovery 1205 is then input to descrambler 1206 so that the transmitted parallel bits are recovered. - The embodiments of the invention described above are exemplary only and are not intended to be limiting. One skilled in the art will recognize various modifications to the embodiments disclosed that are intended to be within the scope and spirit of the present disclosure. As such, the invention is limited only by the following claims.
TABLE I 47 111 43 107 59 123 63 127 11 15 79 11 75 27 91 31 95 9 42 106 45 109 41 105 57 121 61 125 58 122 7 10 74 13 77 9 73 25 89 29 93 26 90 5 46 110 44 108 40 104 56 120 60 124 62 126 3 14 78 12 76 8 72 24 88 28 92 30 94 1 38 102 36 100 32 96 48 112 52 116 54 118 −1 6 70 4 68 0 64 16 80 20 84 22 86 −3 34 98 37 101 33 97 49 113 53 117 50 114 −5 2 66 5 69 1 65 17 81 21 85 18 82 −7 39 103 35 99 51 115 55 119 −9 7 71 3 67 19 83 23 87 −11 −11 −9 −7 −5 −3 −1 1 3 5 7 9 11 I/Q -
TABLE II State Transition Encoded value 0=>0 0 3=>14 4=>1 7=>12 8=>2 11=>15 12=>3 15=>3 0=>1 1 3=>12 4=>3 7=>13 8=>0 11=>14 12=>2 15=>15 0=>2 6 3=>15 4=>0 7=>14 8=>3 11=>13 12=>1 15=>12 0=>3 7 3=>13 4=>2 7=>15 8=>1 11=>12 12=>0 15=>14 1=>6 2 2=>8 5=>5 6=>10 9=>7 10=>9 13=>4 14=>11 1=>5 3 2=>10 5=>7 6=>9 9=>4 10=>11 13=>6 14=>8 1=>7 4 2=>9 5=>4 6=>11 9=>6 10=>8 13=>5 14=>10 1=>4 5 2=>11 5=>6 6=>8 9=>5 10=>10 13=>7 14=>9 -
TABLE III 24 88 3 67 29 93 0 64 11 56 120 35 99 61 125 32 96 9 20 84 2 66 25 89 7 71 30 94 12 76 7 52 116 34 98 57 121 39 103 62 126 44 108 5 1 65 21 85 6 70 26 90 11 75 31 95 3 33 97 53 117 38 102 58 122 43 107 63 127 1 17 81 5 69 22 86 10 74 27 91 15 79 −1 49 113 37 101 54 118 42 106 59 123 47 111 −3 4 68 18 82 9 73 23 87 14 78 28 92 −5 36 100 50 114 41 105 55 119 46 110 60 124 −7 8 72 19 83 13 77 16 80 −9 40 104 51 115 45 109 48 112 −11 −11 −9 −7 −5 −3 −1 1 3 5 7 9 11 I/Q
Claims (50)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/167,158 US20030112896A1 (en) | 2001-07-11 | 2002-06-10 | Multi-channel communications transceiver |
PCT/US2002/022339 WO2003007564A2 (en) | 2001-07-11 | 2002-07-08 | Multi-channel communications transreceiver |
CN02817774.6A CN1596520A (en) | 2001-07-11 | 2002-07-08 | Multi-channel communications transceiver |
TW091115102A TWI238628B (en) | 2001-07-11 | 2002-07-08 | Multi-channel communications transceiver and method |
AU2002318330A AU2002318330A1 (en) | 2001-07-11 | 2002-07-08 | Multi-channel communications transreceiver |
EP02748158A EP1407572A2 (en) | 2001-07-11 | 2002-07-08 | Multi-channel communications transceiver |
US10/310,255 US7403752B2 (en) | 2001-07-11 | 2002-12-04 | Multi-channel communications transceiver |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/904,432 US7295623B2 (en) | 2001-07-11 | 2001-07-11 | High-speed communications transceiver |
US09/965,242 US7590168B2 (en) | 2001-07-11 | 2001-09-26 | Low complexity high-speed communications transceiver |
US10/071,771 US7236757B2 (en) | 2001-07-11 | 2002-02-06 | High-speed multi-channel communications transceiver with inter-channel interference filter |
US10/167,158 US20030112896A1 (en) | 2001-07-11 | 2002-06-10 | Multi-channel communications transceiver |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/071,771 Continuation-In-Part US7236757B2 (en) | 2001-07-11 | 2002-02-06 | High-speed multi-channel communications transceiver with inter-channel interference filter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/310,255 Continuation-In-Part US7403752B2 (en) | 2001-07-11 | 2002-12-04 | Multi-channel communications transceiver |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030112896A1 true US20030112896A1 (en) | 2003-06-19 |
Family
ID=27490937
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/167,158 Abandoned US20030112896A1 (en) | 2001-07-11 | 2002-06-10 | Multi-channel communications transceiver |
US10/310,255 Expired - Fee Related US7403752B2 (en) | 2001-07-11 | 2002-12-04 | Multi-channel communications transceiver |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/310,255 Expired - Fee Related US7403752B2 (en) | 2001-07-11 | 2002-12-04 | Multi-channel communications transceiver |
Country Status (5)
Country | Link |
---|---|
US (2) | US20030112896A1 (en) |
EP (1) | EP1407572A2 (en) |
CN (1) | CN1596520A (en) |
TW (1) | TWI238628B (en) |
WO (1) | WO2003007564A2 (en) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060133538A1 (en) * | 2004-12-22 | 2006-06-22 | Stojanovic Vladimir M | Adjustable dual-band link |
US20060133523A1 (en) * | 2004-12-22 | 2006-06-22 | Stojanovic Vladimir M | Multi-tone system with oversampled precoders |
US20070104490A1 (en) * | 2005-11-07 | 2007-05-10 | Ali Ghiasi | Method and system for optimum channel equalization from a SerDes to an optical module |
US20070223605A1 (en) * | 2006-03-07 | 2007-09-27 | Interdigital Technology Corporation | Method and apparatus for correcting sampler clock frequency offset in ofdm mimo systems |
US7277477B1 (en) * | 2002-06-21 | 2007-10-02 | Cisco Technology, Inc. | Zero overhead back channel for adaptive transmit filter updates in SerDes transceivers |
US20090022250A1 (en) * | 2007-07-16 | 2009-01-22 | Agere Systems Inc. | Conditionally Input Saturated Viterbi Detector |
US20090110101A1 (en) * | 2002-09-25 | 2009-04-30 | Panasonic Corporation | Communication apparatus |
US20110080211A1 (en) * | 2008-11-20 | 2011-04-07 | Shaohua Yang | Systems and Methods for Noise Reduced Data Detection |
US20110164669A1 (en) * | 2010-01-05 | 2011-07-07 | Lsi Corporation | Systems and Methods for Determining Noise Components in a Signal Set |
US8161351B2 (en) | 2010-03-30 | 2012-04-17 | Lsi Corporation | Systems and methods for efficient data storage |
US8208213B2 (en) | 2010-06-02 | 2012-06-26 | Lsi Corporation | Systems and methods for hybrid algorithm gain adaptation |
US8295001B2 (en) | 2010-09-21 | 2012-10-23 | Lsi Corporation | Systems and methods for low latency noise cancellation |
US8359522B2 (en) | 2007-05-01 | 2013-01-22 | Texas A&M University System | Low density parity check decoder for regular LDPC codes |
US8381071B1 (en) | 2010-05-21 | 2013-02-19 | Lsi Corporation | Systems and methods for decoder sharing between data sets |
US8381074B1 (en) | 2010-05-21 | 2013-02-19 | Lsi Corporation | Systems and methods for utilizing a centralized queue based data processing circuit |
US8385014B2 (en) | 2010-10-11 | 2013-02-26 | Lsi Corporation | Systems and methods for identifying potential media failure |
US8413020B2 (en) | 2009-08-12 | 2013-04-02 | Lsi Corporation | Systems and methods for retimed virtual data processing |
US8418019B2 (en) | 2010-04-19 | 2013-04-09 | Lsi Corporation | Systems and methods for dynamic scaling in a data decoding system |
US8443249B2 (en) | 2010-04-26 | 2013-05-14 | Lsi Corporation | Systems and methods for low density parity check data encoding |
US8443250B2 (en) | 2010-10-11 | 2013-05-14 | Lsi Corporation | Systems and methods for error correction using irregular low density parity check codes |
US8443271B1 (en) | 2011-10-28 | 2013-05-14 | Lsi Corporation | Systems and methods for dual process data decoding |
US8446683B2 (en) | 2011-02-22 | 2013-05-21 | Lsi Corporation | Systems and methods for data pre-coding calibration |
US8468418B2 (en) | 2008-05-02 | 2013-06-18 | Lsi Corporation | Systems and methods for queue based data detection and decoding |
US8479086B2 (en) | 2011-10-03 | 2013-07-02 | Lsi Corporation | Systems and methods for efficient parameter modification |
US8499231B2 (en) | 2011-06-24 | 2013-07-30 | Lsi Corporation | Systems and methods for reduced format non-binary decoding |
US8509321B2 (en) | 2004-12-23 | 2013-08-13 | Rambus Inc. | Simultaneous bi-directional link |
US8527831B2 (en) | 2010-04-26 | 2013-09-03 | Lsi Corporation | Systems and methods for low density parity check data decoding |
US8527858B2 (en) | 2011-10-28 | 2013-09-03 | Lsi Corporation | Systems and methods for selective decode algorithm modification |
US8531320B2 (en) | 2011-11-14 | 2013-09-10 | Lsi Corporation | Systems and methods for memory efficient data decoding |
US8539328B2 (en) | 2011-08-19 | 2013-09-17 | Lsi Corporation | Systems and methods for noise injection driven parameter selection |
US8560929B2 (en) | 2011-06-24 | 2013-10-15 | Lsi Corporation | Systems and methods for non-binary decoding |
US8560930B2 (en) | 2010-10-11 | 2013-10-15 | Lsi Corporation | Systems and methods for multi-level quasi-cyclic low density parity check codes |
US8566379B2 (en) | 2010-11-17 | 2013-10-22 | Lsi Corporation | Systems and methods for self tuning target adaptation |
US8566665B2 (en) | 2011-06-24 | 2013-10-22 | Lsi Corporation | Systems and methods for error correction using low density parity check codes using multiple layer check equations |
US8578241B2 (en) | 2011-10-10 | 2013-11-05 | Lsi Corporation | Systems and methods for parity sharing data processing |
US8611033B2 (en) | 2011-04-15 | 2013-12-17 | Lsi Corporation | Systems and methods for selective decoder input data processing |
US8661071B2 (en) | 2010-10-11 | 2014-02-25 | Lsi Corporation | Systems and methods for partially conditioned noise predictive equalization |
US8661324B2 (en) | 2011-09-08 | 2014-02-25 | Lsi Corporation | Systems and methods for non-binary decoding biasing control |
US8667039B2 (en) | 2010-11-17 | 2014-03-04 | Lsi Corporation | Systems and methods for variance dependent normalization for branch metric calculation |
US8670955B2 (en) | 2011-04-15 | 2014-03-11 | Lsi Corporation | Systems and methods for reliability assisted noise predictive filtering |
US8681439B2 (en) | 2010-09-13 | 2014-03-25 | Lsi Corporation | Systems and methods for handling sector gaps in inter-track interference compensation |
US8681441B2 (en) | 2011-09-08 | 2014-03-25 | Lsi Corporation | Systems and methods for generating predictable degradation bias |
US8683309B2 (en) | 2011-10-28 | 2014-03-25 | Lsi Corporation | Systems and methods for ambiguity based decode algorithm modification |
US8689062B2 (en) | 2011-10-03 | 2014-04-01 | Lsi Corporation | Systems and methods for parameter selection using reliability information |
US8693120B2 (en) | 2011-03-17 | 2014-04-08 | Lsi Corporation | Systems and methods for sample averaging in data processing |
US8699167B2 (en) | 2011-02-16 | 2014-04-15 | Lsi Corporation | Systems and methods for data detection using distance based tuning |
US8751913B2 (en) | 2011-11-14 | 2014-06-10 | Lsi Corporation | Systems and methods for reduced power multi-layer data decoding |
US8750447B2 (en) | 2010-11-02 | 2014-06-10 | Lsi Corporation | Systems and methods for variable thresholding in a pattern detector |
US8767333B2 (en) | 2011-09-22 | 2014-07-01 | Lsi Corporation | Systems and methods for pattern dependent target adaptation |
US8810940B2 (en) | 2011-02-07 | 2014-08-19 | Lsi Corporation | Systems and methods for off track error recovery |
US8819527B2 (en) | 2011-07-19 | 2014-08-26 | Lsi Corporation | Systems and methods for mitigating stubborn errors in a data processing system |
US8830613B2 (en) | 2011-07-19 | 2014-09-09 | Lsi Corporation | Storage media inter-track interference cancellation |
US8850276B2 (en) | 2011-09-22 | 2014-09-30 | Lsi Corporation | Systems and methods for efficient data shuffling in a data processing system |
US8854753B2 (en) | 2011-03-17 | 2014-10-07 | Lsi Corporation | Systems and methods for auto scaling in a data processing system |
US8854754B2 (en) | 2011-08-19 | 2014-10-07 | Lsi Corporation | Systems and methods for local iteration adjustment |
US8862960B2 (en) | 2011-10-10 | 2014-10-14 | Lsi Corporation | Systems and methods for parity shared data encoding |
US8879182B2 (en) | 2011-07-19 | 2014-11-04 | Lsi Corporation | Storage media inter-track interference cancellation |
US8887034B2 (en) | 2011-04-15 | 2014-11-11 | Lsi Corporation | Systems and methods for short media defect detection |
US9026572B2 (en) | 2011-08-29 | 2015-05-05 | Lsi Corporation | Systems and methods for anti-causal noise predictive filtering in a data channel |
US9219469B2 (en) | 2010-09-21 | 2015-12-22 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Systems and methods for filter constraint estimation |
US9343082B2 (en) | 2010-03-30 | 2016-05-17 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Systems and methods for detecting head contact |
US10677927B2 (en) * | 2014-07-09 | 2020-06-09 | Qinetiq Limited | Interference mitigation for a receiver |
CN113890652A (en) * | 2020-07-03 | 2022-01-04 | 摩尔斯微私人有限公司 | System and method for managing communication sub-channels in a wireless communication device |
US11431432B2 (en) * | 2003-06-10 | 2022-08-30 | Alexander Soto | System and method for performing high-speed communications over fiber optical networks |
TWI790960B (en) * | 2022-04-18 | 2023-01-21 | 國立中山大學 | Real number sine/cosine wave basis function transforming circuit |
US12143122B2 (en) | 2023-06-26 | 2024-11-12 | The Texas A&M University System | Low density parity check decoder |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7236757B2 (en) | 2001-07-11 | 2007-06-26 | Vativ Technologies, Inc. | High-speed multi-channel communications transceiver with inter-channel interference filter |
US7295623B2 (en) | 2001-07-11 | 2007-11-13 | Vativ Technologies, Inc. | High-speed communications transceiver |
US20030112896A1 (en) | 2001-07-11 | 2003-06-19 | Raghavan Sreen A. | Multi-channel communications transceiver |
US20030081569A1 (en) * | 2001-10-25 | 2003-05-01 | Nokia Corporation | Method and apparatus providing call admission that favors mullti-slot mobile stations at cell edges |
US7339982B2 (en) * | 2003-05-13 | 2008-03-04 | Agilent Technologies, Inc. | Modular, jitter-tolerant data acquisition and processing systems |
US7388904B2 (en) | 2003-06-03 | 2008-06-17 | Vativ Technologies, Inc. | Near-end, far-end and echo cancellers in a multi-channel transceiver system |
US20080198909A1 (en) * | 2003-09-08 | 2008-08-21 | Michail Konstantinos Tsatsanis | Efficient multiple input multiple output signal processing method and apparatus |
TWI246056B (en) * | 2003-10-27 | 2005-12-21 | Ali Corp | Method of setting a transfer function of an adaptive filter |
US7389113B2 (en) * | 2003-12-02 | 2008-06-17 | Intel Corporation | Roaming apparatus, systems, and methods with a plurality of receivers coupled to a first frequency reference to communicate with a first station and selectively coupling one receiver to a second frequency reference to communicate with a second station |
JP4230953B2 (en) * | 2004-03-31 | 2009-02-25 | 株式会社ケンウッド | Baseband signal generation apparatus, baseband signal generation method, and program |
WO2006008565A1 (en) * | 2004-06-18 | 2006-01-26 | Nokia Corporation | Frequency domain equalization of frequency-selective mimo channels |
US7623797B2 (en) * | 2004-07-14 | 2009-11-24 | Fundacion Tarpuy | Compensating impairments of optical channel using adaptive equalization |
US7599390B2 (en) * | 2004-07-21 | 2009-10-06 | Rambus Inc. | Approximate bit-loading for data transmission over frequency-selective channels |
US7782852B2 (en) * | 2005-10-11 | 2010-08-24 | Teranetics, Inc. | Multiple modulation rate 10Gbase-T transmission |
DE102005053723A1 (en) | 2005-11-10 | 2007-05-24 | Rohde & Schwarz Gmbh & Co. Kg | Signal conditioning circuit with common oscillator |
US7782573B2 (en) * | 2005-11-17 | 2010-08-24 | University Of Connecticut | Trellis-based feedback reduction for multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) with rate-limited feedback |
US7864694B1 (en) * | 2006-03-16 | 2011-01-04 | National Semiconductor Corporation | System and method for providing a link quality monitor for a 100Mb ethernet physical layer device |
DE112007001045B4 (en) | 2006-04-26 | 2019-05-16 | Intersil Americas LLC | Method and system for reducing radiation emissions from a communication channel |
US20080019703A1 (en) * | 2006-07-21 | 2008-01-24 | Bbn Technologies Corp. | Optical Transmitter Using Nyquist Pulse Shaping |
US7668239B2 (en) * | 2006-09-19 | 2010-02-23 | Lsi Corporation | System and method for transmit timing precompensation for a serial transmission communication channel |
TWI342144B (en) | 2007-06-04 | 2011-05-11 | Realtek Semiconductor Corp | Method for determining target type of control signals in multi-channel system |
US8396433B2 (en) * | 2007-12-10 | 2013-03-12 | Nec Corporation | Radio communication apparatus and DC offset adjustment method |
US8724829B2 (en) | 2008-10-24 | 2014-05-13 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for coherence detection |
US8036617B2 (en) * | 2008-12-15 | 2011-10-11 | Litepoint Corporation | Radio frequency (RF) signal generator and method for providing test signals for testing multiple RF signal receivers |
US8532200B1 (en) * | 2009-08-28 | 2013-09-10 | Marvell International Ltd. | System and method for side band communication in SERDES transmission/receive channels |
FR2962275B1 (en) * | 2010-07-02 | 2012-07-20 | Tekcem | RECEIVER FOR MULTIVOYAL TRANSMISSION CHIP-A-CHIP NEAR FIELD |
US8625722B2 (en) * | 2010-07-30 | 2014-01-07 | Sensus Usa Inc. | GFSK receiver architecture and methodology |
CN102098055B (en) * | 2010-12-28 | 2014-05-21 | 上海磁浮交通发展有限公司 | Data baud rate adaptive digital-analogue conversion device |
CN102244924B (en) * | 2011-07-01 | 2014-11-19 | 京信通信系统(中国)有限公司 | Automatic power gain control protection device |
CN103001905B (en) * | 2011-09-13 | 2016-03-30 | 联芯科技有限公司 | The generation method of PRACH baseband signal and device |
CN102594753A (en) * | 2012-03-09 | 2012-07-18 | 上海交通大学 | Digital-analog hybrid demodulator and demodulation method |
US20140014839A1 (en) * | 2012-07-11 | 2014-01-16 | Tom Chang | Sensor design based on light sensing |
IN2014DN08024A (en) * | 2012-07-19 | 2015-05-01 | Thomson Licensing | |
KR102517583B1 (en) * | 2015-06-26 | 2023-04-03 | 칸도우 랩스 에스에이 | High speed communications system |
TWI569624B (en) * | 2015-08-18 | 2017-02-01 | 國立高雄應用科技大學 | Multi-channel, wdm, pam optical transceiver manufacturing method and device thereof |
US10139438B2 (en) * | 2016-08-25 | 2018-11-27 | Intel Corporation | Apparatus and method for calibrating high speed serial receiver analog front end and phase detector |
US10256916B2 (en) | 2016-12-29 | 2019-04-09 | Booz Allen Hamilton Inc. | M-ARY frequency presence modulation communication system and method |
US10353194B2 (en) | 2016-12-29 | 2019-07-16 | Booz Allen Hamilton Inc. | M-ary frequency presence modulation communication system and method |
US10284180B2 (en) * | 2017-06-09 | 2019-05-07 | Nxp B.V. | Circuits for correction of signals susceptible to baseline wander |
CN110059041B (en) * | 2019-03-22 | 2021-09-28 | 上海交通大学 | Transmission system |
US10897264B2 (en) | 2019-06-24 | 2021-01-19 | Booz Allen Hamilton Inc. | Data receiver for communication system |
CN111082846B (en) * | 2019-11-14 | 2022-03-11 | 天津融汇微电子技术有限公司 | SERDES-based one-to-four repeater using method |
CN112988641A (en) * | 2019-12-13 | 2021-06-18 | 杭州中天微系统有限公司 | Universal asynchronous receiving and transmitting transmitter and processor containing same |
US11764822B2 (en) | 2020-08-06 | 2023-09-19 | Analog Devices, Inc. | Radio transceiver control interface |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020039052A1 (en) * | 2000-10-02 | 2002-04-04 | Straub A. Michael | Quadrature oscillator with phase error correction |
US20020086651A1 (en) * | 2001-01-02 | 2002-07-04 | Prentice John S. | Precision automatic gain control circuit |
US20030017809A1 (en) * | 2001-01-12 | 2003-01-23 | Garlepp Eric R. | Apparatus and method for front-end circuitry in radio-frequency apparatus |
US20030054782A1 (en) * | 1999-09-08 | 2003-03-20 | Skyworks Solutions, Inc. | Multi-band receiver having multi-slot capability |
US20040091028A1 (en) * | 2002-06-25 | 2004-05-13 | Aronson Lewis B. | Transceiver module and integrated circuit with dual eye openers and equalizer |
US20040106380A1 (en) * | 2002-09-03 | 2004-06-03 | Iason Vassiliou | Direct-conversion transceiver enabling digital calibration |
US20040121753A1 (en) * | 2002-04-22 | 2004-06-24 | Cognio, Inc. | Multiple-Input Multiple-Output Radio Transceiver |
US20040137941A1 (en) * | 1999-11-15 | 2004-07-15 | Renesas Technology Corp. | Mobile communication apparatus |
US20040162023A1 (en) * | 2003-02-07 | 2004-08-19 | Thomas Cho | Reconfigurable analog baseband for a single-chip dual-mode transceiver |
US6804497B2 (en) * | 2001-01-12 | 2004-10-12 | Silicon Laboratories, Inc. | Partitioned radio-frequency apparatus and associated methods |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2301978A1 (en) | 1975-02-21 | 1976-09-17 | Ibm France | RECURRING EQUALIZER WITH DECISION DIRECTED BY THE PHASE VALUE OF THE SIGNAL RECEIVED |
US4455649A (en) | 1982-01-15 | 1984-06-19 | International Business Machines Corporation | Method and apparatus for efficient statistical multiplexing of voice and data signals |
US4599732A (en) | 1984-04-17 | 1986-07-08 | Harris Corporation | Technique for acquiring timing and frequency synchronization for modem utilizing known (non-data) symbols as part of their normal transmitted data format |
JPS619039A (en) | 1984-06-25 | 1986-01-16 | Sony Corp | Multi-channel access radio system |
US4710922A (en) | 1985-12-18 | 1987-12-01 | Advanced Micro Devices, Inc. | Apparatus and associated methods for converting serial data pattern signals transmitted or suitable for transmission over a high speed synchronous serial transmission media, to parallel pattern output signals |
JPH0787447B2 (en) | 1985-12-18 | 1995-09-20 | アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド | System utilizing synchronous serial transmission medium |
US4995031A (en) | 1989-06-19 | 1991-02-19 | Northern Telecom Limited | Equalizer for ISDN-U interface |
JPH0575651A (en) | 1991-09-13 | 1993-03-26 | Nec Corp | Packet transmission system |
US5604768A (en) | 1992-01-09 | 1997-02-18 | Cellnet Data Systems, Inc. | Frequency synchronized bidirectional radio system |
JP2686392B2 (en) * | 1992-01-27 | 1997-12-08 | 富士通株式会社 | Modem |
WO1993025019A1 (en) | 1992-06-01 | 1993-12-09 | Fujitsu Limited | Compensator for interference between cross polarizations and cross polarization interference eliminator using the compensator |
US5285474A (en) | 1992-06-12 | 1994-02-08 | The Board Of Trustees Of The Leland Stanford, Junior University | Method for equalizing a multicarrier signal in a multicarrier communication system |
US5548801A (en) * | 1993-02-10 | 1996-08-20 | Kokusai Denshin Denwa Kabushiki Kaisha | System for determining and registering location of mobile terminal for communication system with non-geosynchronous satellites |
US5535228A (en) | 1993-02-19 | 1996-07-09 | Motorola, Inc. | Device and method for achieving rotational invariance in a multi-level trellis coding system |
CN2161025Y (en) | 1993-05-26 | 1994-04-06 | 李吉绍 | Two-wire remote transmission apparatus |
JP3337795B2 (en) | 1993-12-10 | 2002-10-21 | 富士通株式会社 | Relay device |
US5838732A (en) | 1994-10-31 | 1998-11-17 | Airnet Communications Corp. | Reducing peak-to-average variance of a composite transmitted signal generated by a digital combiner via carrier phase offset |
CA2136567C (en) | 1994-11-24 | 2001-01-30 | John Charles Maycock | Apparatus and method for remote monitoring of video signals |
US5930231A (en) | 1995-06-30 | 1999-07-27 | Scientific-Atlanta, Inc. | Block spectrum receiver for a broadband communications system |
US5796783A (en) * | 1995-10-31 | 1998-08-18 | Andre Alain Tabourian | Digital transmission system |
US5835487A (en) * | 1995-12-08 | 1998-11-10 | Worldspace International Network, Inc. | Satellite direct radio broadcast system |
JPH09200165A (en) * | 1996-01-18 | 1997-07-31 | Daihen Corp | Channel separation filter, psk demodulator and psk receiver |
US5732333A (en) | 1996-02-14 | 1998-03-24 | Glenayre Electronics, Inc. | Linear transmitter using predistortion |
US5781617A (en) | 1996-03-29 | 1998-07-14 | Netspeed, Inc. | Communication server apparatus using frequency multiplexing and method |
US5822368A (en) | 1996-04-04 | 1998-10-13 | Lucent Technologies Inc. | Developing a channel impulse response by using distortion |
US5838740A (en) | 1996-04-17 | 1998-11-17 | Motorola, Inc. | Crosspole interference canceling receiver for signals with unrelated baud rates |
US5715280A (en) | 1996-06-20 | 1998-02-03 | Aware, Inc. | Method for partially modulating and demodulating data in a multi-carrier transmission system |
EP0922345B1 (en) | 1996-09-02 | 2002-11-20 | STMicroelectronics N.V. | Improvements in, or relating to, multi-carrier transmission systems |
US6160820A (en) | 1996-09-02 | 2000-12-12 | Telia Ab | Multi-carrier transmission systems |
US6163563A (en) * | 1996-12-31 | 2000-12-19 | Lucent Technologies Inc. | Digital communication system for high-speed complex correlation |
US5838268A (en) | 1997-03-14 | 1998-11-17 | Orckit Communications Ltd. | Apparatus and methods for modulation and demodulation of data |
DE19716323A1 (en) * | 1997-04-18 | 1998-10-22 | Alsthom Cge Alcatel | Modulation device for modulating digital signals |
FI972346A (en) | 1997-06-02 | 1998-12-03 | Nokia Telecommunications Oy | Method and apparatus for making transmission connection |
US6252900B1 (en) | 1997-06-30 | 2001-06-26 | Integrated Telecom Express, Inc. | Forward compatible and expandable high speed communications system and method of operation |
US6044112A (en) | 1997-07-03 | 2000-03-28 | Hitachi America, Ltd. | Methods and apparatus for correcting amplitude and phase imbalances in demodulators |
US6128114A (en) | 1997-09-03 | 2000-10-03 | Mci Communications Corporation | Method of and system for transmitting data |
US6005893A (en) | 1997-09-23 | 1999-12-21 | Telefonaktiebolaget Lm Ericsson | Reduced complexity bit allocation to subchannels in a multi-carrier, high speed data transmission system |
US5991311A (en) | 1997-10-25 | 1999-11-23 | Centillium Technology | Time-multiplexed transmission on digital-subscriber lines synchronized to existing TCM-ISDN for reduced cross-talk |
SE512623C2 (en) | 1997-11-03 | 2000-04-10 | Ericsson Telefon Ab L M | Procedure and device in a telecommunications problem |
US6292559B1 (en) | 1997-12-19 | 2001-09-18 | Rice University | Spectral optimization and joint signaling techniques with upstream/downstream separation for communication in the presence of crosstalk |
US6144696A (en) | 1997-12-31 | 2000-11-07 | At&T Corp. | Spread spectrum bit allocation algorithm |
US6529303B1 (en) | 1998-03-05 | 2003-03-04 | Kestrel Solutions, Inc. | Optical communications networks utilizing frequency division multiplexing |
US6452945B1 (en) | 1998-03-05 | 2002-09-17 | Kestrel Solutions, Inc. | Electrical add-drop multiplexing for optical communications networks utilizing frequency division multiplexing |
JP3191767B2 (en) | 1998-04-10 | 2001-07-23 | 三菱電機株式会社 | Digital communication device |
JP3237827B2 (en) | 1998-04-22 | 2001-12-10 | 日本電気株式会社 | Wireless data communication terminal |
US6269129B1 (en) | 1998-04-24 | 2001-07-31 | Lsi Logic Corporation | 64/256 quadrature amplitude modulation trellis coded modulation decoder |
US6351293B1 (en) | 1998-05-18 | 2002-02-26 | Sarnoff Corporation | Decision directed phase detector |
JPH11331300A (en) | 1998-05-19 | 1999-11-30 | Nec Corp | Demodulator |
US6496540B1 (en) | 1998-07-22 | 2002-12-17 | International Business Machines Corporation | Transformation of parallel interface into coded format with preservation of baud-rate |
ATE297623T1 (en) | 1998-10-30 | 2005-06-15 | Broadcom Corp | INTERNET GIGABIT ETHERNET TRANSMITTER ARCHITECTURE |
US6647071B2 (en) | 1998-11-06 | 2003-11-11 | Texas Instruments Incorporated | Method and apparatus for equalization and tracking of coded digital communications signals |
US20020110206A1 (en) | 1998-11-12 | 2002-08-15 | Neal Becker | Combined interference cancellation with FEC decoding for high spectral efficiency satellite communications |
KR20010111266A (en) | 1999-02-23 | 2001-12-17 | 추후제출 | Apparatus and method of tone allocation in digital subscriber line systems |
CA2299821C (en) * | 1999-03-04 | 2004-08-10 | Nippon Telegraph And Telephone Corporation | Variable transmission rate digital modem with multi-rate filter bank |
JP3859909B2 (en) | 1999-08-20 | 2006-12-20 | 富士通株式会社 | Cross polarization interference canceller and bit shift method for cross polarization interference cancel |
US6275544B1 (en) | 1999-11-03 | 2001-08-14 | Fantasma Network, Inc. | Baseband receiver apparatus and method |
US6678319B1 (en) * | 2000-01-11 | 2004-01-13 | Canon Kabushiki Kaisha | Digital signal processing for high-speed communications |
US7003044B2 (en) | 2000-02-01 | 2006-02-21 | Sasken Communication Technologies Ltd. | Method for allocating bits and power in multi-carrier communication system |
US6831954B1 (en) | 2000-02-01 | 2004-12-14 | Nokia Corporation | Apparatus, and associated method, for compensating for distortion introduced upon a send signal by an amplifier |
US6970448B1 (en) | 2000-06-21 | 2005-11-29 | Pulse-Link, Inc. | Wireless TDMA system and method for network communications |
US6462679B1 (en) | 2000-07-19 | 2002-10-08 | Vdv Media Technologies, Inc. | Method and apparatus for modulating a signal |
US6441683B1 (en) | 2000-08-16 | 2002-08-27 | Advanced Micro Devices, Inc | Device and method for recovering frequency redundant data in a network communications receiver |
US6975685B1 (en) | 2000-10-24 | 2005-12-13 | Agere Systems Inc. | Apparatus and method for multi-channel communications system |
US6807234B2 (en) | 2000-12-19 | 2004-10-19 | Intel Corporation | Method and apparatus for constellation mapping and bitloading in multi-carrier transceivers, such as DMT-based DSL transceivers |
WO2002054648A2 (en) | 2000-12-30 | 2002-07-11 | Vitesse Semiconductor Corporation | Data de-skew method and system |
US6748011B2 (en) | 2001-01-09 | 2004-06-08 | Qualcomm, Incorporated | Efficient multicarrier filter |
US7039125B2 (en) | 2001-03-12 | 2006-05-02 | Analog Devices, Inc. | Equalized SNR power back-off |
DE10122830A1 (en) | 2001-05-11 | 2002-11-14 | Philips Corp Intellectual Pty | Down converter has two stages controlled by separate in phase and quadrature signals |
US7295623B2 (en) | 2001-07-11 | 2007-11-13 | Vativ Technologies, Inc. | High-speed communications transceiver |
US20030112896A1 (en) | 2001-07-11 | 2003-06-19 | Raghavan Sreen A. | Multi-channel communications transceiver |
US7236757B2 (en) | 2001-07-11 | 2007-06-26 | Vativ Technologies, Inc. | High-speed multi-channel communications transceiver with inter-channel interference filter |
US6724331B1 (en) | 2001-11-27 | 2004-04-20 | Ellipsis Digital Systems, Inc. | Adaptive digital spectral compensation and calibration of analog components and transceiver chains |
US7079528B2 (en) | 2001-12-13 | 2006-07-18 | International Business Machines Corporation | Data communication method |
US7136430B2 (en) | 2003-03-31 | 2006-11-14 | Nortel Networks Limited | Digital receiver and method |
US7388904B2 (en) | 2003-06-03 | 2008-06-17 | Vativ Technologies, Inc. | Near-end, far-end and echo cancellers in a multi-channel transceiver system |
-
2002
- 2002-06-10 US US10/167,158 patent/US20030112896A1/en not_active Abandoned
- 2002-07-08 EP EP02748158A patent/EP1407572A2/en not_active Withdrawn
- 2002-07-08 CN CN02817774.6A patent/CN1596520A/en active Pending
- 2002-07-08 WO PCT/US2002/022339 patent/WO2003007564A2/en not_active Application Discontinuation
- 2002-07-08 TW TW091115102A patent/TWI238628B/en not_active IP Right Cessation
- 2002-12-04 US US10/310,255 patent/US7403752B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030054782A1 (en) * | 1999-09-08 | 2003-03-20 | Skyworks Solutions, Inc. | Multi-band receiver having multi-slot capability |
US20040137941A1 (en) * | 1999-11-15 | 2004-07-15 | Renesas Technology Corp. | Mobile communication apparatus |
US20020039052A1 (en) * | 2000-10-02 | 2002-04-04 | Straub A. Michael | Quadrature oscillator with phase error correction |
US20020086651A1 (en) * | 2001-01-02 | 2002-07-04 | Prentice John S. | Precision automatic gain control circuit |
US20030017809A1 (en) * | 2001-01-12 | 2003-01-23 | Garlepp Eric R. | Apparatus and method for front-end circuitry in radio-frequency apparatus |
US6804497B2 (en) * | 2001-01-12 | 2004-10-12 | Silicon Laboratories, Inc. | Partitioned radio-frequency apparatus and associated methods |
US20040121753A1 (en) * | 2002-04-22 | 2004-06-24 | Cognio, Inc. | Multiple-Input Multiple-Output Radio Transceiver |
US20040091028A1 (en) * | 2002-06-25 | 2004-05-13 | Aronson Lewis B. | Transceiver module and integrated circuit with dual eye openers and equalizer |
US20040106380A1 (en) * | 2002-09-03 | 2004-06-03 | Iason Vassiliou | Direct-conversion transceiver enabling digital calibration |
US20040162023A1 (en) * | 2003-02-07 | 2004-08-19 | Thomas Cho | Reconfigurable analog baseband for a single-chip dual-mode transceiver |
Cited By (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7277477B1 (en) * | 2002-06-21 | 2007-10-02 | Cisco Technology, Inc. | Zero overhead back channel for adaptive transmit filter updates in SerDes transceivers |
US8693885B2 (en) | 2002-07-22 | 2014-04-08 | Broadcom Corporation | Method and system for optimum channel equalization from a SerDes to an optical module |
US20100221017A1 (en) * | 2002-07-22 | 2010-09-02 | Ali Ghiasi | Method and System for Optimum Channel Equalization From a SERDES to an Optical Module |
US20090110101A1 (en) * | 2002-09-25 | 2009-04-30 | Panasonic Corporation | Communication apparatus |
US8189698B2 (en) * | 2002-09-25 | 2012-05-29 | Panasonic Corporation | Communication apparatus |
US11641247B2 (en) | 2003-06-10 | 2023-05-02 | Alexander Soto | System and method for performing high-speed communications over fiber optical networks |
US11431432B2 (en) * | 2003-06-10 | 2022-08-30 | Alexander Soto | System and method for performing high-speed communications over fiber optical networks |
US20100020898A1 (en) * | 2004-12-22 | 2010-01-28 | Stojanovic Vladimir M | Adjustable Dual-Band Link |
US20060133538A1 (en) * | 2004-12-22 | 2006-06-22 | Stojanovic Vladimir M | Adjustable dual-band link |
US20090067537A1 (en) * | 2004-12-22 | 2009-03-12 | Stojanovic Vladimir M | Adjustable Dual-Band Link |
US7450629B2 (en) | 2004-12-22 | 2008-11-11 | Rambus, Inc. | Adjustable dual-band link |
US7599422B2 (en) | 2004-12-22 | 2009-10-06 | Rambus Inc. | Adjustable dual-band link |
US20080137783A1 (en) * | 2004-12-22 | 2008-06-12 | Stojanovic Vladimir M | Adjustable Dual-Band Link |
US20060133523A1 (en) * | 2004-12-22 | 2006-06-22 | Stojanovic Vladimir M | Multi-tone system with oversampled precoders |
US7349484B2 (en) | 2004-12-22 | 2008-03-25 | Rambus Inc. | Adjustable dual-band link |
US7817743B2 (en) | 2004-12-22 | 2010-10-19 | Rambus Inc. | Multi-tone system with oversampled precoders |
US8139675B2 (en) | 2004-12-22 | 2012-03-20 | Rambus Inc. | Multi-tone system with oversampled precoders |
US7907676B2 (en) | 2004-12-22 | 2011-03-15 | Rambus Inc. | Adjustable dual-band link |
US20110150051A1 (en) * | 2004-12-22 | 2011-06-23 | Stojanovic Vladimir M | Multi-Tone System with Oversampled Precoders |
US8509321B2 (en) | 2004-12-23 | 2013-08-13 | Rambus Inc. | Simultaneous bi-directional link |
US20070104490A1 (en) * | 2005-11-07 | 2007-05-10 | Ali Ghiasi | Method and system for optimum channel equalization from a SerDes to an optical module |
US7676158B2 (en) * | 2005-11-07 | 2010-03-09 | Broadcom Corporation | Method and system for optimum channel equalization from a SerDes to an optical module |
US8019036B2 (en) * | 2006-03-07 | 2011-09-13 | Interdigital Technology Corporation | Method and apparatus for correcting sampler clock frequency offset in OFDM MIMO systems |
US20070223605A1 (en) * | 2006-03-07 | 2007-09-27 | Interdigital Technology Corporation | Method and apparatus for correcting sampler clock frequency offset in ofdm mimo systems |
US10951235B2 (en) | 2007-05-01 | 2021-03-16 | The Texas A&M University System | Low density parity check decoder |
US8656250B2 (en) | 2007-05-01 | 2014-02-18 | Texas A&M University System | Low density parity check decoder for regular LDPC codes |
US8359522B2 (en) | 2007-05-01 | 2013-01-22 | Texas A&M University System | Low density parity check decoder for regular LDPC codes |
US9112530B2 (en) | 2007-05-01 | 2015-08-18 | The Texas A&M University System | Low density parity check decoder |
US8555140B2 (en) | 2007-05-01 | 2013-10-08 | The Texas A&M University System | Low density parity check decoder for irregular LDPC codes |
US10141950B2 (en) | 2007-05-01 | 2018-11-27 | The Texas A&M University System | Low density parity check decoder |
US8418023B2 (en) | 2007-05-01 | 2013-04-09 | The Texas A&M University System | Low density parity check decoder for irregular LDPC codes |
US10615823B2 (en) | 2007-05-01 | 2020-04-07 | The Texas A&M University System | Low density parity check decoder |
US11368168B2 (en) | 2007-05-01 | 2022-06-21 | The Texas A&M University System | Low density parity check decoder |
US11728828B2 (en) | 2007-05-01 | 2023-08-15 | The Texas A&M University System | Low density parity check decoder |
US20090022250A1 (en) * | 2007-07-16 | 2009-01-22 | Agere Systems Inc. | Conditionally Input Saturated Viterbi Detector |
US7876862B2 (en) * | 2007-07-16 | 2011-01-25 | Agere Systems Inc. | Conditionally input saturated Viterbi detector |
US8468418B2 (en) | 2008-05-02 | 2013-06-18 | Lsi Corporation | Systems and methods for queue based data detection and decoding |
US20110080211A1 (en) * | 2008-11-20 | 2011-04-07 | Shaohua Yang | Systems and Methods for Noise Reduced Data Detection |
US8413020B2 (en) | 2009-08-12 | 2013-04-02 | Lsi Corporation | Systems and methods for retimed virtual data processing |
US20110164669A1 (en) * | 2010-01-05 | 2011-07-07 | Lsi Corporation | Systems and Methods for Determining Noise Components in a Signal Set |
US8743936B2 (en) | 2010-01-05 | 2014-06-03 | Lsi Corporation | Systems and methods for determining noise components in a signal set |
US8161351B2 (en) | 2010-03-30 | 2012-04-17 | Lsi Corporation | Systems and methods for efficient data storage |
US9343082B2 (en) | 2010-03-30 | 2016-05-17 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Systems and methods for detecting head contact |
US8418019B2 (en) | 2010-04-19 | 2013-04-09 | Lsi Corporation | Systems and methods for dynamic scaling in a data decoding system |
US8443249B2 (en) | 2010-04-26 | 2013-05-14 | Lsi Corporation | Systems and methods for low density parity check data encoding |
US8527831B2 (en) | 2010-04-26 | 2013-09-03 | Lsi Corporation | Systems and methods for low density parity check data decoding |
US8381074B1 (en) | 2010-05-21 | 2013-02-19 | Lsi Corporation | Systems and methods for utilizing a centralized queue based data processing circuit |
US8381071B1 (en) | 2010-05-21 | 2013-02-19 | Lsi Corporation | Systems and methods for decoder sharing between data sets |
US8208213B2 (en) | 2010-06-02 | 2012-06-26 | Lsi Corporation | Systems and methods for hybrid algorithm gain adaptation |
US8804260B2 (en) | 2010-09-13 | 2014-08-12 | Lsi Corporation | Systems and methods for inter-track interference compensation |
US8773794B2 (en) | 2010-09-13 | 2014-07-08 | Lsi Corporation | Systems and methods for block-wise inter-track interference compensation |
US8681439B2 (en) | 2010-09-13 | 2014-03-25 | Lsi Corporation | Systems and methods for handling sector gaps in inter-track interference compensation |
US8295001B2 (en) | 2010-09-21 | 2012-10-23 | Lsi Corporation | Systems and methods for low latency noise cancellation |
US9219469B2 (en) | 2010-09-21 | 2015-12-22 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Systems and methods for filter constraint estimation |
US8661071B2 (en) | 2010-10-11 | 2014-02-25 | Lsi Corporation | Systems and methods for partially conditioned noise predictive equalization |
US8560930B2 (en) | 2010-10-11 | 2013-10-15 | Lsi Corporation | Systems and methods for multi-level quasi-cyclic low density parity check codes |
US8385014B2 (en) | 2010-10-11 | 2013-02-26 | Lsi Corporation | Systems and methods for identifying potential media failure |
US8443250B2 (en) | 2010-10-11 | 2013-05-14 | Lsi Corporation | Systems and methods for error correction using irregular low density parity check codes |
US8750447B2 (en) | 2010-11-02 | 2014-06-10 | Lsi Corporation | Systems and methods for variable thresholding in a pattern detector |
US8566379B2 (en) | 2010-11-17 | 2013-10-22 | Lsi Corporation | Systems and methods for self tuning target adaptation |
US8667039B2 (en) | 2010-11-17 | 2014-03-04 | Lsi Corporation | Systems and methods for variance dependent normalization for branch metric calculation |
US8810940B2 (en) | 2011-02-07 | 2014-08-19 | Lsi Corporation | Systems and methods for off track error recovery |
US8699167B2 (en) | 2011-02-16 | 2014-04-15 | Lsi Corporation | Systems and methods for data detection using distance based tuning |
US8446683B2 (en) | 2011-02-22 | 2013-05-21 | Lsi Corporation | Systems and methods for data pre-coding calibration |
US8693120B2 (en) | 2011-03-17 | 2014-04-08 | Lsi Corporation | Systems and methods for sample averaging in data processing |
US8854753B2 (en) | 2011-03-17 | 2014-10-07 | Lsi Corporation | Systems and methods for auto scaling in a data processing system |
US8611033B2 (en) | 2011-04-15 | 2013-12-17 | Lsi Corporation | Systems and methods for selective decoder input data processing |
US8887034B2 (en) | 2011-04-15 | 2014-11-11 | Lsi Corporation | Systems and methods for short media defect detection |
US8670955B2 (en) | 2011-04-15 | 2014-03-11 | Lsi Corporation | Systems and methods for reliability assisted noise predictive filtering |
US8560929B2 (en) | 2011-06-24 | 2013-10-15 | Lsi Corporation | Systems and methods for non-binary decoding |
US8566665B2 (en) | 2011-06-24 | 2013-10-22 | Lsi Corporation | Systems and methods for error correction using low density parity check codes using multiple layer check equations |
US8499231B2 (en) | 2011-06-24 | 2013-07-30 | Lsi Corporation | Systems and methods for reduced format non-binary decoding |
US8879182B2 (en) | 2011-07-19 | 2014-11-04 | Lsi Corporation | Storage media inter-track interference cancellation |
US8819527B2 (en) | 2011-07-19 | 2014-08-26 | Lsi Corporation | Systems and methods for mitigating stubborn errors in a data processing system |
US8830613B2 (en) | 2011-07-19 | 2014-09-09 | Lsi Corporation | Storage media inter-track interference cancellation |
US8539328B2 (en) | 2011-08-19 | 2013-09-17 | Lsi Corporation | Systems and methods for noise injection driven parameter selection |
US8854754B2 (en) | 2011-08-19 | 2014-10-07 | Lsi Corporation | Systems and methods for local iteration adjustment |
US9026572B2 (en) | 2011-08-29 | 2015-05-05 | Lsi Corporation | Systems and methods for anti-causal noise predictive filtering in a data channel |
US8661324B2 (en) | 2011-09-08 | 2014-02-25 | Lsi Corporation | Systems and methods for non-binary decoding biasing control |
US8681441B2 (en) | 2011-09-08 | 2014-03-25 | Lsi Corporation | Systems and methods for generating predictable degradation bias |
US8850276B2 (en) | 2011-09-22 | 2014-09-30 | Lsi Corporation | Systems and methods for efficient data shuffling in a data processing system |
US8767333B2 (en) | 2011-09-22 | 2014-07-01 | Lsi Corporation | Systems and methods for pattern dependent target adaptation |
US8689062B2 (en) | 2011-10-03 | 2014-04-01 | Lsi Corporation | Systems and methods for parameter selection using reliability information |
US8479086B2 (en) | 2011-10-03 | 2013-07-02 | Lsi Corporation | Systems and methods for efficient parameter modification |
US8862960B2 (en) | 2011-10-10 | 2014-10-14 | Lsi Corporation | Systems and methods for parity shared data encoding |
US8578241B2 (en) | 2011-10-10 | 2013-11-05 | Lsi Corporation | Systems and methods for parity sharing data processing |
US8527858B2 (en) | 2011-10-28 | 2013-09-03 | Lsi Corporation | Systems and methods for selective decode algorithm modification |
US8683309B2 (en) | 2011-10-28 | 2014-03-25 | Lsi Corporation | Systems and methods for ambiguity based decode algorithm modification |
US8443271B1 (en) | 2011-10-28 | 2013-05-14 | Lsi Corporation | Systems and methods for dual process data decoding |
US8531320B2 (en) | 2011-11-14 | 2013-09-10 | Lsi Corporation | Systems and methods for memory efficient data decoding |
US8751913B2 (en) | 2011-11-14 | 2014-06-10 | Lsi Corporation | Systems and methods for reduced power multi-layer data decoding |
US10677927B2 (en) * | 2014-07-09 | 2020-06-09 | Qinetiq Limited | Interference mitigation for a receiver |
CN113890652A (en) * | 2020-07-03 | 2022-01-04 | 摩尔斯微私人有限公司 | System and method for managing communication sub-channels in a wireless communication device |
TWI790960B (en) * | 2022-04-18 | 2023-01-21 | 國立中山大學 | Real number sine/cosine wave basis function transforming circuit |
US20230333235A1 (en) * | 2022-04-18 | 2023-10-19 | National Sun Yat-Sen University | Real number sine/cosine wave basis function transform circuit |
US12143122B2 (en) | 2023-06-26 | 2024-11-12 | The Texas A&M University System | Low density parity check decoder |
Also Published As
Publication number | Publication date |
---|---|
US7403752B2 (en) | 2008-07-22 |
EP1407572A2 (en) | 2004-04-14 |
US20030134607A1 (en) | 2003-07-17 |
TWI238628B (en) | 2005-08-21 |
WO2003007564A2 (en) | 2003-01-23 |
CN1596520A (en) | 2005-03-16 |
WO2003007564A3 (en) | 2003-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7403752B2 (en) | Multi-channel communications transceiver | |
US7236757B2 (en) | High-speed multi-channel communications transceiver with inter-channel interference filter | |
US7590168B2 (en) | Low complexity high-speed communications transceiver | |
US7388904B2 (en) | Near-end, far-end and echo cancellers in a multi-channel transceiver system | |
US7532676B2 (en) | Single sideband and quadrature multiplexed continuous phase modulation | |
US6411657B1 (en) | DSL transmitter with digital filtering using a Tomlinson-Harashima precoder | |
US8873968B2 (en) | Optical field receiver, optical multilevel signal receiver, and optical transmission system | |
US8130854B2 (en) | Nonlinear precoding method for a digital broadcast channel | |
US6952444B1 (en) | Blind DFE and phase correction | |
US7248890B1 (en) | Channel power balancing in a multi-channel transceiver system | |
JPH10271051A (en) | Transmitter-receiver with two-way equalization | |
US20040096022A1 (en) | Combining precoding with spectral shaping | |
US7733966B2 (en) | System and method for space diversified linear block interleaving | |
US6879639B1 (en) | Data transceiver with filtering and precoding | |
WO2001071996A2 (en) | Block-iterative decision feedback equalizer with error-conrol coding | |
JPH06500914A (en) | Apparatus and method for adjusting signal points, equalizer gains, etc. | |
US6680985B1 (en) | Adaptive quadrature amplitude modulation decoding system | |
US6278741B1 (en) | Timing recovery circuit in QAM modems | |
Clark et al. | Data transmission at 19.2 kbit/s over telephone circuits | |
Guenach et al. | Performance analysis of pre-equalized multilevel partial response modulation for high-speed electrical interconnects | |
US12074733B2 (en) | Method and apparatus for phase-aided adaptive modulation | |
KR0156194B1 (en) | Transmitting and receiving apparatus of digital data | |
Reddy | Voice-band modem: A device to transmit data over telephone networks: Advanced ideas which made high data rates possible | |
CA2260839A1 (en) | Blind acquisition of digital communication signals | |
Jiang et al. | Inter-signal interference cancellation filter for four-element single sideband modulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VATIV TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAGHAVAN, SREEN A.;MANICKAM, THULASINATH G.;SALLAWAY, PETER J.;AND OTHERS;REEL/FRAME:014274/0508 Effective date: 20030708 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ENTROPIC COMMUNICATIONS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VATIV TECHNOLOGIES, INC.;REEL/FRAME:020845/0905 Effective date: 20080403 Owner name: ENTROPIC COMMUNICATIONS, INC.,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VATIV TECHNOLOGIES, INC.;REEL/FRAME:020845/0905 Effective date: 20080403 |
|
AS | Assignment |
Owner name: MAXLINEAR COMMUNICATIONS LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ENTROPIC COMMUNICATONS LLC;REEL/FRAME:055776/0482 Effective date: 20180213 |
|
AS | Assignment |
Owner name: MAXLINEAR COMMUNICATIONS LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MUFG UNION BANK, N.A.;REEL/FRAME:055779/0001 Effective date: 20210331 Owner name: MAXLINEAR, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MUFG UNION BANK, N.A.;REEL/FRAME:055779/0001 Effective date: 20210331 |
|
AS | Assignment |
Owner name: ENTROPIC COMMUNICATIONS, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAXLINEAR COMMUNICATIONS LLC;REEL/FRAME:055899/0291 Effective date: 20210331 |