US20030027858A1 - Emulsion vehicle for poorly soluble drugs - Google Patents

Emulsion vehicle for poorly soluble drugs Download PDF

Info

Publication number
US20030027858A1
US20030027858A1 US10/151,064 US15106402A US2003027858A1 US 20030027858 A1 US20030027858 A1 US 20030027858A1 US 15106402 A US15106402 A US 15106402A US 2003027858 A1 US2003027858 A1 US 2003027858A1
Authority
US
United States
Prior art keywords
tocopherol
composition
emulsion
paclitaxel
tpgs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/151,064
Inventor
Karel Lambert
Panayiotis Constantinides
Steven Quay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achieve Life Sciences Inc
Original Assignee
Sonus Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonus Pharmaceuticals Inc filed Critical Sonus Pharmaceuticals Inc
Priority to US10/151,064 priority Critical patent/US20030027858A1/en
Assigned to SONUS PHARMACEUTICALS, INC. reassignment SONUS PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QUAY, STEVEN C., LAMBERT, KAREL J., CONSTANTINIDES, PANAYIOTIS P.
Publication of US20030027858A1 publication Critical patent/US20030027858A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/797Lipid particle
    • Y10S977/798Lipid particle having internalized material
    • Y10S977/799Containing biological material
    • Y10S977/801Drug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery
    • Y10S977/907Liposome
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/915Therapeutic or pharmaceutical composition

Definitions

  • a few examples of therapeutic substances in these categories are ibuprofen, diazepam, griseofulvin, cyclosporin, cortisone, proleukin, etoposide and paclitaxel.
  • Kagkadis, K A et al. (1996) PDA J Pharm Sci Tech 50(5):317-323; Dardel, O. 1976. Anaesth Scand 20:221-24. Sweetana, S and M J U Akers. (1996) PDA J Pharm Sci Tech 50(5):330-342.
  • chemotherapeutic or anti-cancer agents are particularly problematic.
  • Low solubility anti-cancer agents are difficult to solubilize and supply at therapeutically useful levels.
  • water-soluble anti-cancer agents are generally taken up by both cancer and non-cancer cells thereby exhibiting non-specificity.
  • the chemotherapeutic must be present throughout the affected tissue(s) at high concentration for a sustained period of time so that it may be taken up by the cancer cells, but not at so high a concentration that normal cells are injured beyond repair.
  • water soluble molecules can be administered in this way, but only by slow, continuous infusion and monitoring, aspects which entail great difficulty, expense and inconvenience.
  • a more effective method of administering a cancer therapeutic is in the form of a dispersion of oil in which the drug is dissolved.
  • These oily particles are made electrically neutral and coated in such a way that they do not interact with plasma proteins and are not trapped by the reticuloendothelial system (RES), instead remaining intact in the tissue or blood for hours, days or even weeks. In most cases, it is desirable if the particles also distribute themselves into the surrounding lymph nodes which are injected at the site of a cancer.
  • RES reticuloendothelial system
  • oils typically used for pharmaceutical emulsions include saponifiable oils from the family of triglycerides, for example, soybean oil, sesame seed oil, cottonseed oil, safflower oil and the like. Hansrani, P K et al., (1983) J Parenter Sci Technol 37:145-150.
  • One or more surfactants are used to stabilize the emulsion, and excipients are added to render the emulsion more biocompatible, stable and less toxic.
  • Lecithin from egg yolks or soybeans is a commonly used surfactant. Sterile manufacturing can be accomplished by absolute sterilization of all the components before manufacture, followed by absolutely aseptic technique in all stages of manufacture. However, improved ease of manufacture and assurance of sterility is obtained by terminal sterilization following sanitary manufacture, either by heat or by filtration. Unfortunately, not all emulsions are suitable for heat or filtration treatments.
  • Stability has been shown to be influenced by the size and homogeneity of the emulsion.
  • the preferred emulsion consists of a suspension of sub-micron particles, with a mean size of no greater than 200 nanometers.
  • a stable dispersion in this size range is not easily achieved, but has the benefit that it is expected to circulate longer in the bloodstream. Further, less of the stable dispersion is phagocytized non-specifically by the reticuloendothelial system. As a result the drug is more likely to reach its therapeutic target.
  • a preferred drug emulsion will be designed to be actively taken up by the target cell or organ, and is targeted away from the RES.
  • vitamin E in emulsions
  • vitamin E in small quantities for example, less than 1%, R T Lyons. Pharm Res 13(9): S-226, (1996) “Formulation development of an injectable oil-in-water emulsion containing the lipophilic antioxidants K-tocopherol and P-carotene”] is used as an anti-oxidant in emulsions
  • the first primitive, injectable vitamin E emulsions per se were made by Hidiroglou for dietary supplementation in sheep and for research on the pharmacokinetics of vitamin E and its derivatives. Hidiroglou M and Karpinski K. (1988) Brit J Nutrit 59:509-518.
  • mice an injectable form of vitamin E was prepared by Kato and coworkers. Kato Y., et al. (1993) Chem Pharm Bull 41(3):599-604. Micellar solutions were formulated with Tween 80, Brij 58 and HCO-60. Isopropanol was used as a co-solvent, and was then removed by vacuum evaporation; the residual oil glass was then taken up in water with vortexing as a micellar suspension. An emulsion was also prepared by dissolving vitamin E with soy phosphatidycholine (lecithin) and soybean oil. Water was added and the emulsion prepared with sonication.
  • soy phosphatidycholine lecithin
  • E-Ferol a vitamin E emulsion was introduced for vitamin E supplementation and therapy in neonates.
  • the surfactant mixture used in E-Ferol to emulsify 25 mg/mL vitamin E consisted of 9% Tween 80 and 1% Tween 20. These surfactants seem ultimately to have been responsible for the unfortunate deaths. This experience illustrates the need for improved formulations and the importance of selecting suitable biocompatible surfactants and carefully monitoring their levels in parenteral emulsions and.
  • An alternative means of solubilizing low solubility compounds is direct solubilization in a non-aqueous milieu, for example alcohol (such as ethanol) dimethylsulfoxide or triacetin.
  • alcohol such as ethanol
  • An example in PCT application WO 95/11039 describes the use of vitamin E and the vitamin E derivative TPGS in combination with ethanol and the immuno-suppressant molecule cyclosporin.
  • Alcohol-containing solutions can be administered with care, but are typically given by intravenous drip to avoid the pain, vascular irritation and toxicity associated with bolus injection of these solutions.
  • the ideal emulsion vehicle would be inexpensive, non-irritating or even nutritive and palliative in itself, terminally sterilizable by either heat or filtration, stable for at least 1 year under controlled storage conditions, accommodate a wide variety of water insoluble and poorly soluble drugs and be substantially ethanol-free.
  • a vehicle which will stabilize, and carry in the form of an emulsion, drugs which are poorly soluble in lipids and in water.
  • the present invention is directed to pharmaceutical compositions including: ⁇ -tocopherol, a surfactant or mixtures of surfactants, with and without an aqueous phase, and a therapeutic agent wherein the composition is in the form of an emulsion, micellar solution or a self-emulsifying drug delivery system.
  • the solution is substantially ethanol-free.
  • compositions can be stabilized by the addition of various amphiphilic molecules, including anionic, nonionic, cationic, and zwitterionic surfactants.
  • these molecules are PEGylated surfactants and optimally PEGylated ⁇ -tocopherol.
  • amphiphilic molecules further include surfactants such as ascorbyl-6 palmitate; stearylamine; sucrose fatty acid esters, various vitamin E derivatives and fluorine-containing surfactants, such as the Zonyl brand series and a polyoxypropylene-polyoxyethylene glycol nonionic block copolymer.
  • surfactants such as ascorbyl-6 palmitate; stearylamine; sucrose fatty acid esters, various vitamin E derivatives and fluorine-containing surfactants, such as the Zonyl brand series and a polyoxypropylene-polyoxyethylene glycol nonionic block copolymer.
  • the therapeutic agent of the emulsion may be a chemotherapeutic agent preferably a taxoid analog and most preferably, paclitaxel.
  • the emulsions of the invention can comprise an aqueous medium when in the form of an emulsion or micellar solution.
  • This medium can contain various additives to assist in stabilizing the emulsion or in rendering the formulation biocompatible.
  • the pharmaceutical compositions of the invention are typically formed by dissolving a therapeutic agent in ethanol to form a therapeutic agent solution.
  • ⁇ -tocopherol is then added to the therapeutic agent solution to form an ⁇ -tocopherol and therapeutic agent solution.
  • the ethanol is removed to form a substantially ethanol-free ⁇ -tocopherol and therapeutic agent solution.
  • the substantially ethanol free ⁇ -tocopherol and therapeutic agent solution is blended with and without an aqueous phase incorporating a surfactant to form a pre-emulsion.
  • the pre-emulsion is then homogenized to form a fine emulsion.
  • the pre-emulsion is typically encapsulated in a gelatin capsule.
  • FIG. 1A shows the particle size of a paclitaxel emulsion (QWA) at 7° C. over time;
  • FIG. 1B shows the particle size of a paclitaxel emulsion (QWA) at 25° C. over time;
  • FIG. 2 is an HPLC chromatogram showing the integrity of a paclitaxel in an emulsion as described in Example 5;
  • FIG. 3A shows the paclitaxel concentration of a paclitaxel emulsion (QWA) at 4° C. over time;
  • FIG. 3B shows the paclitaxel concentration of a paclitaxel emulsion (QWA) at 25° C. over time
  • FIG. 4 shows the percentage of paclitaxel released over time from three different emulsions.
  • the symbol • represents the percentage of paclitaxel released over time from an emulsion commercially available from Bristol Myers Squibb.
  • the symbol ⁇ represents the percentage of paclitaxel released over time from an emulsion of this invention containing 6 mg/ml paclitaxel (QWA) as described in Example 6.
  • the symbol ⁇ represents the percentage of paclitaxel released over time from an emulsion of this invention (QWB) containing 7 mg/ml paclitaxel as described in Example 7.
  • ⁇ -tocopherol also known as vitamin E, is an organic molecule with the following chemical structure (Scheme I):
  • ⁇ -tocopherol and its derivatives are useful as a therapeutic agents.
  • Surfactants Surface active group of amphiphilic molecules which are manufactured by chemical processes or purified from natural sources or processes. These can be anionic, cationic, nonionic, and zwitterionic. Typical surfactants are described in Emulsions: Theory and Practice, Paul Becher, Robert E. Krieger Publishing, Malabar, Fla., 1965; Pharmaceutical Dosage Forms: Dispersed Systems Vol. I, Martin M. Rigear, Surfactants and U.S. Pat. No. 5,595,723 which is assigned to the assignee of this invention, Sonus Pharmaceuticals. All of these references are hereby incorporated by reference.
  • TPGS TPGS or PEGylated vitamin E is a vitamin E derivative in which polyethylene glycol subunits are attached by a succinic acid diester at the ring hydroxyl of the vitamin E molecule.
  • vitamin E TPGS Various chemical derivatives of vitamin E TPGS including ester and ether linkages of various chemical moieties are included within the definition of vitamin E TPGS.
  • Polyethylene glycol is a hydrophilic, polymerized form of ethylene glycol, consisting of repeating units of the chemical structure—(CH 2 —CH 2 —O—).
  • AUC is the area under the plasma concentration-time, commonly used in pharmacokinetics to quantitate the percentage of drug absorption and elimination. A high AUC generally indicates that the drug will successfully reach the target tissue or organ.
  • Poloxamers or Pluronics are synthetic block copolymers of ethylene oxide and propylene oxide having the general structure:
  • a and b are commercially available from BASF Performance Chemicals (Parsippany, N.J.) under the trade name Pluronic and which consist of the group of surfactants designated by the CTFA name of Poloxamer 108, 188, 217, 237, 238, 288, 338, 407, 101, 105, 122, 123, 124, 181, 182, 183, 184, 212, 231, 282, 331, 401, 402, 185, 215, 234, 235, 284, 333, 334, 335, and 403.
  • Pluronic the trade name of a and b are 12/20, 79/28, 64/37, 141/44 and 101/56, respectively.
  • Solutol HS-15 is a polyethylene glycol 660 hydroxystearate manufactured by BASF (Parsippany, N.J.). Apart from free polyethylene glycol and its monoesters, di-esters are also detectable. According to the manufacturer, a typical lot of Solutol HS-15 contains approximately 30% free polyethylene glycol and 70% polyethylene glycol esters.
  • surfactants include ascorbyl-6 palmitate (Roche Vitamins, Nutley N.J.), stearylamine, and sucrose fatty acid esters (Mitsubishi Chemicals).
  • Custom surfactants include those compounds with polar water-loving heads and hydrophobic tails, such as a vitamin E derivative comprising a peptide bonded polyglutamate attached to the ring hydroxyl and pegylated phytosterol.
  • Hydrophile-lipophile balance An empirical formula used to index surfactants. Its value varies from 1-45 and in the case of non-ionic surfactants from about 1-20. In general for lipophilic surfactants the HLB is less than 10 and for hydrophilic ones the HLB is greater than 10.
  • Biocompatible Capable of performing functions within or upon a living organism in an acceptable manner, without undue toxicity or physiological or pharmacological effects.
  • Substantially ethanol-free A composition having an ethanol concentration less than about 1.0% (w/v) ethanol.
  • Emulsion A colloidal dispersion of two immiscible liquids in the form of droplets, whose diameter, in general, are between 0.1 and 3.0 microns and which is typically optically opaque, unless the dispersed and continuous phases are refractive index matched.
  • Such systems possess a finite stability, generally defined by the application or relevant reference system, which may be enhanced by the addition of amphiphilic molecules or viscosity enhancers.
  • Microemulsion A thermodynamically stable isotropically clear dispersion of two immiscible liquids, such as oil and water, stabilized by an interfacial film of surfactant molecules.
  • the microemulsion has a mean droplet diameter of less than 200 nm, in general between 10-50 nm.
  • mixtures of oil(s) and non-ionic surfactant(s) form clear and isotropic solutions that are known as self-emulsifying drug delivery systems (SEDDS) and have successfully been used to improve lipophilic drug dissolution and oral absorption
  • SEDDS self-emulsifying drug delivery systems
  • Aqueous Medium A water-containing liquid which can contain pharmaceutically acceptable additives such as acidifying, alkalizing, buffering, chelating, complexing and solubilizing agents, antioxidants and antimicrobial preservatives, humectants, suspending and/or viscosity modifying agents, tonicity and wetting or other biocompatible materials.
  • pharmaceutically acceptable additives such as acidifying, alkalizing, buffering, chelating, complexing and solubilizing agents, antioxidants and antimicrobial preservatives, humectants, suspending and/or viscosity modifying agents, tonicity and wetting or other biocompatible materials.
  • Therapeutic Agent Any compound natural of synthetic which has a biological activity, is soluble in the oil phase and has an octanol-buffer partition coefficient (Log P) of at least 2 to ensure that the therapeutic agent is preferentially dissolved in the oil phase rather than the aqueous phase.
  • This includes peptides, non-peptides and nucleotides. Lipid conjugates/prodrugs of water soluble molecules are within the scope of therapeutic agent.
  • Chemotherapeutic Any natural or synthetic molecule which is effective against one or more forms of cancer, and particularly those molecules which are slightly or completely lipophilic or which can be modified to be lipophilic. This definition includes molecules which by their mechanism of action are cytotoxic (anti-cancer agents), those which stimulate the immune system (immune stimulators) and modulators of angiogenesis. The outcome in either case is the slowing of the growth of cancer cells.
  • Taxol paclitaxel
  • Taxoids paclitaxel
  • taxines paclitaxel
  • Taxanes The structure of paclitaxel is shown in the figure below (Scheme III).
  • taxoids include various modifications and attachments to the basic ring structure (taxoid nucleus) as may be shown to be efficacious for reducing cancer cell growth and to partition into the oil (lipid phase) and which can be constructed by organic chemical techniques known to those skilled in the art.
  • the structure of the taxoid nucleus is shown in Scheme IV.
  • Chemotherapeutics include podophyllotoxins and their derivatives and analogues.
  • the core ring structure of these molecules is shown in the following figure (Scheme V):
  • camptothecins Another important class of chemotherapeutics useful in this invention are camptothecins, the basic ring structure of which is shown in the following figure, but includes any derivatives and modifications to this basic structure which retain efficacy and preserve the lipophilic character of the molecule shown below (Scheme VI).
  • chemotherapeutics useful in this invention are the lipophilic anthracyclines, the basic ring structure of which is shown in the following figure (Scheme VII):
  • Suitable lipophilic modifications of Scheme VII include substitutions at the ring hydroxyl group or sugar amino group.
  • chemotherapeutics are compounds which are lipophilic or can be made lipophilic by molecular chemosynthetic modifications well known to those skilled in the art, for example by combinatorial chemistry and by molecular modelling, and are drawn from the following list: Taxotere, Amonafide Illudin S, 6-hydroxymethylacylfulvene Bryostatin 1, 26-succinylbryostatin 1, Palmitoyl Rhizoxin, DUP 941, Mitomycin B, Mitomycin C, Penclomedine.
  • Interferon ⁇ 2b Interferon ⁇ 2b, angiogenesis inhibitor compounds, Cisplatin hydrophobic complexes such as 2-hydrazino-4,5-dihydro-1H-imidazole with platinum chloride and 5-hydrazino-3,4-dihydro-2H-pyrrole with platinum chloride, vitamin A, vitamin E and its derivatives, particularly tocopherol succinate.
  • Cisplatin hydrophobic complexes such as 2-hydrazino-4,5-dihydro-1H-imidazole with platinum chloride and 5-hydrazino-3,4-dihydro-2H-pyrrole with platinum chloride, vitamin A, vitamin E and its derivatives, particularly tocopherol succinate.
  • Other compounds useful in the invention include: 1,3-bis(2-chloroethyl)-1-nitrosurea (“carmustine” or “BCNU”), 5-fluorouracil, doxorubicin (“adriamycin”), epirubicin, aclarubicin, Bisantrene (bis(2-imidazolen-2-ylhydrazone)-9,10-anthracenedicarboxaldehyde, mitoxantrone, methotrexate, edatrexate, muramyl tripeptide, muramyl dipeptide, lipopolysaccharides, 9-b-d-arabinofuranosyladenine (“vidarabine”) and its 2-fluoro derivative, resveratrol, retinoic acid and retinol, Carotenoids, and tamoxifen.
  • BCNU 1,3-bis(2-chloroethyl)-1-nitrosurea
  • doxorubicin doxorubicin
  • Palmitoyl Rhizoxin DUP 941, Mitomycin B, Mitomycin C, Penclomedine, Interferon ⁇ 2b, Decarbazine, Lonidamine, Piroxantrone, Anthrapyrazoles, Etoposide, Camptothecin, 9-aminocamptothecin, 9-nitrocamptothecin, camptothecin-11 (“Irinotecan’), Topotecan, Bleomycin, the Vinca alkaloids and their analogs [Vincristine, Vinorelbine, Vindesine, Vintripol, Vinxaltine, Ancitabine], 6-aminochrysene, and navelbine.
  • the present invention is directed to pharmaceutical compositions in the form of emulsions, micellar solutions or self-emulsifying drug delivery systems which are substantially free of ethanol solvent.
  • the therapeutic agents of the compositions of this invention can initially be solublized in ethanol. However, the ethanol is removed in order to form a substantially ethanol-free composition.
  • the ethanol concentration is less than 1% (w/v), preferably less than 0.5%, and most preferably less than 0.3%.
  • the therapeutic agents can also be solubilized in methanol, propanol, chloroform, isopropanol, butanol and pentanol. These solvents are also removed prior to use.
  • compositions of the invention contain ⁇ -tocopherol as a carrier for therapeutic drugs, which can be administered to animals or humans via intravascular, oral, intramuscular, cutaneous and subcutaneous routes.
  • the emulsions can be given by any of the following routes, among others: intraabdominal, intraarterial, intraarticular, intracapsular, intracervical, intracranial, intraductal, intradural, intralesional, intralocular, intralumbar, intramural, intraocular, intraoperative, intraparietal, intraperitoneal, intrapleural, intrapulmonary, intraspinal, intrathoracic, intratracheal, intratympanic, intrauterine, and intraventricular.
  • the emulsions of the present invention can be nebulized using suitable aerosol propellants which are known in the art for pulmonary delivery of lipophilic compounds.
  • the invention is directed to the use of ⁇ -tocopherol as the hydrophobic dispersed phase of emulsions containing water insoluble, poorly water soluble therapeutic agents, water soluble therapeutic agents which have been modified to be less water soluble or mixtures thereof.
  • ⁇ -tocopherol is not a typical lipid oil. It has a higher polarity than most lipid oils, particularly triglycerides, and is not saponifiable. It has practically no solubility in water.
  • the invention is a an ⁇ -tocopherol emulsion in the form of a self-emulsifying system where the system is to be used for the oral administration of water insoluble (or poorly water soluble or water soluble agents modified to be less water soluble or mixtures thereof) drugs where that is desired.
  • an oil phase with surfactant and drug or drug mixture is encapsulated into a soft or hard gelatin capsule.
  • Suitable solidification agents with melting points in the range of 40 to 60° C. such as high molecular weight polyethylene glycols (MW>1000) and glycerides such as those available under the trade name Gellucires (Gattefose Corp.
  • the invention comprises microemulsions containing ⁇ -tocopherol.
  • Microemulsions refer to a sub-class of emulsions where the emulsion suspension is essentially clear and indefinitely stable by virtue of the extremely small size of the oil/drug microaggregates dispersed therein.
  • PEGylated vitamin E is used as a primary surfactant in emulsions of vitamin E.
  • PEGylated vitamin E is utilized as a primary surfactant, a stabilizer and also as a supplementary solvent in emulsions of vitamin E.
  • Polyethylene glycol (PEG) is also useful as a secondary solvent in the emulsions of this invention.
  • the ⁇ -tocopherol concentration of the emulsions of this invention can be from about 2 to about 10% w/v.
  • the ratio of ⁇ -tocopherol to TPGS is optimally from about 1:1 to about 10:1 (w/w).
  • the emulsions of the invention may further include surfactants such as ascorbyl-6 palmitate; stearylamine; sucrose fatty acid esters and various vitamin E derivatives comprising ⁇ -tocopherol nicotinate, tocopherol phosphate, and nonionic, synthetic surfactant mixtures, containing a fluorine-containing surfactant, such as the Zonyl brand series and a polyoxypropylene-polyoxyethylene glycol nonionic block copolymer.
  • surfactants such as ascorbyl-6 palmitate; stearylamine; sucrose fatty acid esters and various vitamin E derivatives comprising ⁇ -tocopherol nicotinate, tocopherol phosphate, and nonionic, synthetic surfactant mixtures, containing a fluorine-containing surfactant, such as the Zonyl brand series and a polyoxypropylene-polyoxyethylene glycol nonionic block copolymer.
  • the emulsions of the invention can comprise an aqueous medium.
  • the aqueous phase has an osmolality of approximately 300 mOsm and may include potassium or sodium chloride sorbitol, mannitol, polyethylene glycol, propylene glycol albumin, polypep and mixtures thereof.
  • This medium can also contain various additives to assist in stabilizing the emulsion or in rendering the formulation biocompatible.
  • Acceptable additives include acidifying agents, alkalizing agents, antimicrobial preservatives, antioxidants, buffering agents, chelating agents, suspending and/or viscosity-increasing agents, and tonicity agents.
  • agents to control the pH, tonicity, and increase viscosity are included.
  • a tonicity of at least 250 mOsm is achieved with an agent which also increases viscosity, such as sorbitol or sucrose.
  • the emulsions of the invention for intravenous injection have a particle size of 10 to 500 nm, preferably 10 to 200 nm and most preferably 10 to 100 nm.
  • the spleen and liver will eliminate particles greater than 500 mn in size through the RES.
  • a preferred form of the invention includes paclitaxel, a very water-insoluble cytotoxin used in the treatment of uterine cancer and other carcinomas.
  • An emulsion composition of the present invention comprises a solution of vitamin E containing paclitaxel at a concentration of up to 20 mg/mL, four times that currently available by prescription, and a biocompatible surfactant such that the emulsion microdroplets are less than 0.2 microns and are terminally sterilizable by filtration.
  • a further embodiment of the invention is a method of treating carcinomas comprising the parenteral administration of a bolus dose of paclitaxel in vitamin E emulsion with and without PEGylated vitamin E by intravenous injection once daily or every second day over a therapeutic course of several weeks.
  • Such method can be used for the treatment of carcinomas of the breast, lung, skin and uterus.
  • ⁇ -Tocopherol was obtained from Sigma Chemical Company (St Louis Mo.) in the form of a synthetic dl- ⁇ -tocopherol of 95% purity prepared from phytol. The oil was amber in color and very viscous. Paclitaxel was purchased from Hauser Chemical Research (Boulder Colo.), and was 99.9% purity by HPLC. Paclitaxel 200 mg. was dissolved in 6 mL of dry absolute ethanol (Spectrum Chemical Manufacturing Corp, Gardenia Calif.) and added to 1 gm ⁇ -tocopherol. The ethanol was then removed by vacuum at 42° C. until the residue was brought to constant weight. Independent studies showed that the ethanol content was less than 0.3% (w/v).
  • the resultant solution was clear, amber and very viscous, with a nominal concentration of 200 mg/gm (w/w) paclitaxel in ⁇ -tocopherol.
  • Higher concentrations of Paclitaxel up to 400 mg/gm, w/w can be solubilized in ⁇ -tocopherol.
  • a solution consisting of ascorbic acid 20 mM was buffered to pH 6.8 with triethanolamine as the free base to from 2 ⁇ buffer.
  • 50 mL of the 2 ⁇ buffer was placed in a Waring blender.
  • 0.5 gm of ascorbyl-6-palmitate (Roche Vitamins and Fine Chemicals, Nutley N.J.), an anionic surfactant, was added and the solution blended at high speed for 2 min at 40° C. under argon.
  • the ⁇ -tocopherol containing paclitaxel was then added into the blender with the surfactant and buffer. Mixing was continued under argon until a coarse, milky, pre-emulsion was obtained, approximately after 1 min at 40° C. Water for injection was then added, bringing the final volume to 100 mL.
  • the pre-emulsion was transferred to the feed vessel of a Microfluidizer Model 110Y (Microfluidics Inc, Newton Mass.). The unit was immersed in a bath to maintain a process temperature of approximately 60° C. during homogenization, and was flushed with argon before use. After priming, the emulsion was passed through the homogenizer in continuous re-cycle for 10 minutes at a pressure gradient of about 18 kpsi across the interaction head. The flow rate was about 300 mL/min, indicating that about 25 passes through the homogenizer resulted.
  • the resultant paclitaxel emulsion in an ⁇ -tocopherol vehicle was bottled in amber vials under argon and stored with refrigeration at 7° C. and 25° C. Samples were taken at discrete time intervals for particle sizing and chemical analysis.
  • a ternary phase diagram was constructed for ⁇ -tocopherol, PEGylated vitamin E (TPGS, vitamin-E polyoxyethyleneglycol-1000-succinate, obtained from Eastman Chemical Co., Kingsport Tenn.), and water.
  • TPGS PEGylated vitamin E
  • ⁇ -tocopherol PEGylated vitamin E
  • Mixtures were miscible at all concentrations. Water was then added to each mixture in such a way that the final water concentration was increased stepwise from zero to 97.5%.
  • observations were made of the phase behavior of the mixture. As appropriate, mixing was performed by vortexing and sonication, and the mixture was heated or centrifuged to assess its phase composition.
  • a broad area of biphasic o/w emulsions suitable for parenteral administration was found at water concentrations above 80%.
  • the emulsions formed were milky white, free flowing liquids that contained disperse ⁇ -tocopherol microparticles stabilized by non-ionic surfactant.
  • microemulsions potentially suitable as drug carriers were observed at TPGS to oil ratios above about 1:1.
  • a broad area containing transparent gels (reverse emulsions) was noted. Separating the two areas (high and low water content) is an area composed of opaque, soap-like liquid crystals.
  • Phase diagrams of ⁇ -tocopherol with surfactant combinations for example TPGS with a nonionic, anionic or cationic co-surfactant (for example glutamyl stearate, ascorbyl palmitate or Pluronic F-68), or drug can be prepared in a similar manner.
  • a nonionic, anionic or cationic co-surfactant for example glutamyl stearate, ascorbyl palmitate or Pluronic F-68
  • a formulation of the following composition was prepared: Paclitaxel 1.0 gm % ⁇ -tocopherol 3.0 gm % TPGS 2.0 gm % Ascorbyl-6-Palmitate 0.25 gm % Sorbitol 5.0 gm % Triethanolamine to pH 6.8 Water qs to 100 mL
  • the method of preparation was as follows: synthetic ⁇ -tocopherol (Roche Vitamins, Nutley N.J.), paclitaxel (Hauser, Boulder Colo.), ascorbyl 6-palmitate (Aldrich Chemical Co, Milwaukee Wis.) and TPGS were dissolved in 10 volumes of anhydrous undenatured, ethanol (Spectrum Quality Products, Gardenia Calif.) with heating to 40-45° C. The ethanol was then drawn off with vacuum until no more than 0.3% remained by weight.
  • the pre-mixture at 40-45° C. was homogenized in an Avestin C5 homogenizer (Avestin, Ottawa Canada) at 26 Kpsi for 12 minutes at 44° C.
  • the resultant mixture contained microparticles of ⁇ -tocopherol with a mean size of about 200 nm. Further pH adjustment was made with an alkaline 1 M solution of triethanolamine (Spectrum Quality Products).
  • TPGS In order to avoid gelation of the TPGS during the early stage of emulsification, all operations were performed above 40° C. and care was taken to avoid exposure of the solutions to cold air by covering all vessels containing the mixture. Secondly, less than 2% TPGS should generally be dissolved in ⁇ -tocopherol oil before pre-emulsification, the balance of the TPGS being first dissolved in the aqueous buffer before the pre-emulsion is prepared. The solution gels at concentrations of TPGS higher than 2%.
  • Example 4 After emulsification, the formulation of Example 4 was analyzed for paclitaxel on a Phenosphere CN column (5 microns, 150 ⁇ 4.6 mm).
  • the mobile phase consisted of a methanol/water gradient, with a flow rate of 1.0 mL/min.
  • a UV detector set at 230 nm was used to detect and quantitate paclitaxel.
  • a single peak was detected (FIG. 2), which had a retention time and mass spectrogram consistent with native reference paclitaxel obtained from Hauser Chemical (Boulder Colo.).
  • paclitaxel 10 mg/ml for intravenous drug delivery having the following composition, was prepared as described in Example 4.
  • Paclitaxel 1.0 gm % ⁇ -tocopherol 3.0 gm % TPGS 1.5 gm % Ascorbyl-6-Palmitate 0.25 gm % Sorbitol 4.0 gm % Triethanolamine to pH 6.8 Water qs to 100 mL
  • a second emulsion of paclitaxel 10 mg/ml for intravenous drug delivery having the following composition, was prepared as described in Example 4.
  • Solutol HS-15 is a product of BASF Corp, Mount Olive N.J.
  • a third emulsion formulation of paclitaxel 10 mg/ml was prepared as follows using Poloxamer 407 (BASF Corp, Parsippany N.J.) as a co-surfactant.
  • Paclitaxel 1.0 gm % ⁇ -tocopherol 6.0 gm % TPGS 3.0 gm %
  • Poloxamer 407 1.0 gm % Sorbitol 4.0 gm % Triethanolamine to pH 6.8 Water for injection qs to 100 mL
  • 1.0 gm Poloxamer 407 and 1.0 gm paclitaxel were dissolved in 6.0 gm ⁇ -tocopherol with ethanol 10 volumes and gentle heating. The ethanol was then removed under vacuum. Separately, an aqueous buffer was prepared by dissolving 3.0 gm TPGS and 4.0 gm sorbitol in a final volume of 90 mL water for injection. Both oil and water solutions were warmed to 45° C. and mixed with sonication to make a pre-emulsion. A vacuum was used to remove excess air from the pre-emulsion before homogenization.
  • An additional emulsion of paclitaxel was prepared as described in Example 8 but incorporating 5 instead of 10 mg/ml of the drug.
  • the composition of this emulsion is as follows: Paclitaxel 0.5 gm % ⁇ -tocopherol 6.0 gm % TPGS 3.0 gm % Poloxamer 407 1.0 gm % Sorbitol 4.0 gm % Triethanolamine to pH 6.8 Water for injection qs to 100 mL
  • a fifth emulsion of ⁇ -tocopherol for intravenous administration of paclitaxel was prepared as follows: Paclitaxel 0.5 gm % ⁇ -tocopherol 6.0 gm % TPGS 3.0 gm % Poloxamer 407 1.5 gm % Polyethyleneglycol 200 0.7 gm % Sorbitol 4.0 gm % Triethanolamine to pH 6.8 Water for injection qs to 100 mL
  • Synthetic ⁇ -tocopherol USP-FCC obtained from Roche Vitamins (Nutley, N.J.) was used in this formation.
  • Polyethyleneglycol 200 (PEG-200) was obtained from Sigma Chemical Co.
  • mice [0112] We observed good solubility of paclitaxel in TPGS, about 100 mg drug per 1.0 gm of TPGS.
  • Micellar solutions of TPGS containing paclitaxel were prepared as follows. A stock solution of paclitaxel in TPGS was made up by dissolving 90 mg paclitaxel in 1.0 gm TPGS at 45° C. with ethanol, which was then removed under vacuum. Serial dilutions were then prepared by diluting the paclitaxel stock with additional TPGS to obtain paclitaxel in TPGS at concentrations of 0.1, 1, 5, 10, 25, 50, 75 and 90 mg/mL.
  • micellar solutions in water were obtained corresponding to final paclitaxel concentrations of 0.01, 0.1, 0.5, 1.0, 2.5, 5.0, 7.5 and 9.0 mg/mL.
  • a Nicomp Model 370 laser particle sizer (Particle Sizing Systems, Santa Barbara Calif.) was used to examine the solutions. Particle sizes on the order of 10 nm were obtained, consistent with the presence of micelles of TPGS and paclitaxel.
  • micellar solutions When adjusted to the proper tonicity and pH, micellar solutions have utility for slow IV drip administration of paclitaxel to cancer patients, although the AUC is expected to be low.
  • TPGS in ⁇ -tocopherol emulsions
  • TPGS has its own affinity for paclitaxel, probably by virtue of the ⁇ -tocopherol that makes up the hydrophobic portion of its molecular structure.
  • interfacial tension of TPGS in water with ⁇ -tocopherol is about 10 dynes/cm, sufficient to emulsify free ⁇ -tocopherol, especially when used with a co-surfactant.
  • polyoxyethylated surfactants such as TPGS
  • TPGS polyoxyethylated surfactants
  • TPGS polyoxyethylated surfactants
  • micellar solutions When adjusted to the proper tonicity and pH, micellar solutions have utility for slow IV drip administration of paclitaxel to cancer patients, although the AUC is expected to be low.
  • a variety of other pegylated surfactants for example Triton X-100, PEG 25 propylene glycol stearate, Brij 35 (Sigma Chemical Co), Myrj 45, 52 and 100, Tween 80 (Spectrum Quality Products), PEG 25 glyceryl trioleate (Goldschmidt Chemical Corp, Hopewell Va.), have utility in emulsifying ⁇ -tocopherol.
  • ⁇ -tocopherol paclitaxel emulsions with TPGS There are several possible explanations for the unexpected improvement of the ⁇ -tocopherol paclitaxel emulsions with TPGS.
  • the drug has good solubility in TPGS, up to about 100 mg/mL. Most likely it is the strength of the affinity of paclitaxel benzyl side chains with the planar structure of the ⁇ -tocopherol phenolic ring in the TPGS molecule that stabilizes the complex of drug and carrier.
  • succinate linker between the ⁇ -tocopherol and PEG tail is a novel feature of this molecule that distinguishes its structure from other PEGylated surfactants tested.
  • ⁇ -tocopherol emulsion was prepared using Poloxamer 407 (BASF) as the primary surfactant.
  • BASF Poloxamer 407
  • the white milky pre-mixture was homogenized with continuous recycling for 10 minutes at 25 Kpsi in a C5 homogenizer (Avestin, Ottawa Canada) with a feed temperature of 45° C. and a chiller loop for the product out set at 15° C.
  • a fine, sterile filterable emulsion of ⁇ -tocopherol microparticles resulted.
  • this formulation was made with paclitaxel, precipitation of the paclitaxel was noted following overnight storage in the refringerator, again underlying the superior utility of TPGS as the principle surfactant.
  • Maltrin M100 (Grain Processing Corporation, Muscatine Iowa) was added as a 2 ⁇ stock in water to the emulsion of Example 14. Aliquots were then frozen in a shell freezer and lyophilized under vacuum. On reconstitution with water, a fine emulsion was recovered.
  • Lyophilized formulations have utility where the indefinite shelf life of a lyophilized preparation is preferred. Lyophilizable formulations containing other saccharides, such as mannitol, albumin or PolyPep from Sigma Chemicals, St. Louis, Mo. can also be prepared.
  • One of the desired characteristics of a drug delivery vehicle is to provide sustained release of the incorporated drug, a characteristic quite often correlated with improved pharmacokinetics and efficacy.
  • long-circulating emulsions of paclitaxel can improve the delivery of the drug to cancer sites in the body.
  • the emulsions of the present invention do provide sustained release of paclitaxel when compared to the only FDA-approved formulation of paclitaxel at this time [Taxol®, Bristol Myers Squibb(BMS), Princeton N.J.].
  • Emulsions were prepared having paclitaxel concentrations of 6 mg/mL (QWA) and 7 mg/mL (QWB).
  • Taxol contains 6 mg/ml of paclitaxel dissolved in ethanol:cremophore EL 1:1 (v/v).
  • PBS phosphate-buffered saline
  • Example 6 The paclitaxel emulsion of Example 6 was also evaluated for efficacy against staged B16 melanoma tumors in nude mice and the data is shown in Table 2.
  • BMS Taxol was used as a reference formulation. Tumor cells were administered subcutaneously and therapy started by a tail vein injection at day 4 post-tumor administration at the indicated dosing schedule. Efficacy was expressed as percent increase in life-span (% ILS).
  • ⁇ -tocopherol 2.0 gm and Tagat TO Goldschmidt Chemical Corp, Hopewell Va. 800 mg were dissolved together. About 80 mg of the oily mixture was transferred to a test tube and water was then added. With gentle hand mixing, there was immediate development of a rich milky emulsion, consistent with “self-emulsifying systems” proposed as drug delivery systems, in which surfactant-oil mixtures spontaneously form an emulsion upon exposure to aqueous media.
  • Paclitaxel 50 mg/ml was prepared in ⁇ -tocopherol by the method described in Example 1. Tagat TO 20% (w/w) was added. The resultant mixture was clear, viscous and amber in color. A 100 mg quantity of the oily mixture was transferred to a test tube. On addition of 1 mL of water, with vortex mixing, a fine emulsion resulted.
  • Paclitaxel 50 mg/ml was prepared in ⁇ -tocopherol by the method described in Example 1. After removal of the ethanol under vacuum, 20% TPGS and 10% polyoxyethyleneglycol 200 (Sigma Chemical Co) were added by weight. A demonstration of the self-emulsification ability of this system was then performed by adding 20 mL of deionized water to 100 mg of the oily mixture at 37° C. Upon gentle mixing, a white, thin emulsion formed, consisting of fine emulsion particles demonstrated with the Malvern Mastersizer (Malvern Instruments, Worcester Mass.) to have a mean size of 2 microns, and a cumulative distribution 90% of which was less than 10 microns.
  • Malvern Mastersizer Malvern Mastersizer
  • Etoposide 4 mg (Sigma Chemical Co) was dissolved in the following surfactant-oil mixture: Etoposide 4 mg ⁇ -tocopherol 300 mg TPGS 50 mg Poloxamer 407 50 mg
  • a pre-emulsion was formed by adding 4.5 mL of water containing 4% sorbitol and 100 mg TPGS at 45° C. with sonication.
  • the particle size was further reduced by processing in an Emulsiflex 1000 (Avestin, Ottawa Canada).
  • the body of the Emulsiflex 1000 was fitted with a pair of 5 mL syringes and the entire apparatus heated to 45° C. before use.
  • the 5 mL of emulsion was then passed through it by hand approximately 10 times. A free flowing, practical emulsion of etoposide in an ⁇ -tocopherol vehicle resulted.
  • solubilized form of etopside in ⁇ -tocopherol can also be used as an oral dosage form by adaption of the methods of the preceding examples.
  • Ibuprofen is a pain-killer, and may be administered by injection when required if there is danger that the drug will irritate the stomach.
  • the following solution of ibuprofen in ⁇ -tocopherol may be emulsified for intravenous administration.
  • Ibuprofen (Sigma Chemicals), 12 mg. crystalline, dissolved without solvent in ⁇ -tocopherol, 120 mg, by gentle heating.
  • the resultant 10% solution of ibuprofen in vitamin E can be emulsified by the method s described in Examples 4, 6, 7, 8 or 22.
  • griseofulvin 12 mg
  • ⁇ -tocopherol was then added, 180 mg, and the ethanol was removed with gentle heating under vacuum.
  • the resultant solution of griseofulvin in ⁇ -tocopherol is clear and can be emulsified by the methods described in Examples 4, 6, 7, 8 or 22.
  • Vitamin E succinate has been suggested as a therapeutic for the treatment of lymphomas and leukemias and for the chemoprevention of cancer.
  • the following is a composition and method for the emulsification of vitamin E succinate in ⁇ -tocopherol.
  • Sucrose ester S1170 is a product of Mitsubishi Kagaku Foods Corp, Tokyo Japan.
  • Vitamin E succinate, as the free acid was obtained as a whitish powder from ICN Biomedicals, Aurora, Ohio.
  • Emulsions incorporating other surfactants such as pluronics, and TPGS along with ⁇ -tocopherol and ⁇ -tocopherol succinate can be prepared in a similar manner with and without a therapeutic agent.
  • ⁇ -Tocopherol 8 gm and vitamin E succinate 0.8 gm were dissolved together in ethanol in a round bottom flask. After removal of the solvent, 100 mL of an aqueous buffer was added. The alkaline buffer consisting of 2% glycerol, 10 mM triethanolamine, and 0.5 gm % sucrose ester S1170. After mixing for 2 min, the pre-emulsion was transferred to an Avestin Model C-5 homogenizer and homogenization was continued for about 12 minutes at a process feed temperature of 58° C. The pressure differential across the interaction head was 25 to 26 kpsi. During homogenization, pH was carefully monitored, and adjusted as required to pH 7.0. Care was taken to exclude oxygen during the process. A fine white emulsion resulted.
  • Levels of ⁇ -tocopherol in commerically available esters: tocopherol-acetate, -succinate, -nicotinate, -phosphate and TPGS were either provided by the vendor or determined by HPLC.
  • the concentration of free ⁇ -tocopherol in these solutions is less than 1.0%, generally less than 0.5%.
  • Resveratrol is a cancer chemopreventative first discovered as an extract of grape skins. It has been proposed as a dietary supplement.
  • Resveratrol was obtained from Sigma Chemical Co. While it dissolved poorly in ethanol, upon addition of 10 mg resveratrol, 100 mg of ⁇ -tocopherol, 100 mg TPGS and ethanol, a clear solution formed rapidly. Upon removal of the ethanol, a clear amber oil remained.
  • the oily solution of resveratrol can be formulated as a self-emulsifying system for oral delivery by the various methods of the preceding examples.
  • Muramyl dipeptides are derived from mycobacteria and are potent immunostimulants representative of the class of muramyl peptides, mycolic acid and lipopolysaccharides. They have use, for example, in the treatment of cancer, by stimulating the immune system to target and remove the cancer. More recently, muroctasin, a synthetic analog, has been proposed to reduce non-specific side effects of the bacterial wall extracts.
  • N-acetylmuramyl-6-O-steroyl-1-alanyl-d-isoglutamine was purchased from Sigma Chemical Co. and 10 mg was dissolved in 100 mg ⁇ -tocopherol and 80 mg TPGS. Ethanol was used as a co-solvent to aid in dissolution of the dipeptide, but was removed by evaporation under vacuum, leaving a clear solution in ⁇ -tocopherol and surfactant.
  • This oil solution of the drug can be emulsified for parenteral administration by the various methods of the preceding examples.
  • paclitaxel was dissolved in a ⁇ -tocopherol and TPGS with ethanol, which was then removed under vacuum. By dry weight, residual ethanol was less than 3 mg (0.3% w/w). Fresh anhydrous ethanol 0.125 gm was then added back to the formulation. After mixing the suitability of the formulation for oral administration, as in a gelatin capsule, was simulated by the following experiment. An aliquot of 100 mg of the free-flowing oil was added to 20 mL of water at 37° C. and mixed gently with a vortex mixer. A fine emulsion resulted. But after twenty minutes, microscopy revealed the growth on large numbers of crystals in rosettes, characteristic of paclitaxel precipitation.
  • paclitaxel was dissolved in ⁇ -tocopherol and TPGS with ethanol, which was then removed under vacuum. By dry weight, residual ethanol was less than 2 mg (0.5% w/w). Fresh anhydrous ethanol 0.100 gm and n-butanol 0.500 gm was then added back to the formulation. A clear oil resulted.
  • the injection concentrate was tested for biocompatibility in administration by standard pharmaceutical practice of admixture and saline. About 200 mg of the oil was dropped into 20 mL of saline and mixed. Large flakes of insoluble material developed immediately and the greatest amount of material formed dense deposits on the walls of the test tube.
  • Lecithin is not in this class, although it could be used as a co-surfactant.
  • typical o/w emulsions of triglycerides are made with surfactants of HLB between 7 and 12, demonstrating that ⁇ -tocopherol emulsions are a unique class by virtue of the polarity and extreme hydrophobicity of the ⁇ -tocopherol, factors that also favor the solubility of lipophilic and slightly polar lipophilic drugs in ⁇ -tocopherol. See Emulsions: Theory and Practice, 2nd Ed. p.248 (1985).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

An emulsion of α-tocopherol, stabilized by biocompatible surfactants, as a vehicle or carrier for therapeutic drugs, which is substantially ethanol free and which can be administered to animals or humans various routes is disclosed. Also included in the emulsion is PEGylated vitamin E. PEGylated α-tocopherol includes polyethylene glycol subunits attached by a succinic acid diester at the ring hydroxyl of vitamin E and serves as a primary surfactant, stabilizer and a secondary solvent in emulsions of α-tocopherol.

Description

    RELATED APPLICATIONS
  • This application is a non-provisional application based on U.S. Provisional Application No. 60/034,188 filed Jan. 7, 1997 and U.S. Provisional Application No. 60/048,840 filed Jun. 6, 1997.[0001]
  • BACKGROUND OF THE INVENTION
  • Hundreds of medically useful compounds are discovered each year, but clinical use of these drugs is possible only if a drug delivery vehicle is developed to transport them to their therapeutic target in the human body. This problem is particularly critical for drugs requiring intravenous injection in order to reach their therapeutic target or dosage but which are water insoluble or poorly water soluble. For such hydrophobic compounds, direct injection may be impossible or highly dangerous, and can result in hemolysis, phlebitis, hypersensitivity, organ failure and/or death. Such compounds are termed by pharmacists “lipophilic”, “hydrophobic”, or in their most difficult form, “amphiphobic”. [0002]
  • A few examples of therapeutic substances in these categories are ibuprofen, diazepam, griseofulvin, cyclosporin, cortisone, proleukin, etoposide and paclitaxel. Kagkadis, K A et al. (1996) PDA J Pharm Sci Tech 50(5):317-323; Dardel, O. 1976. Anaesth Scand 20:221-24. Sweetana, S and M J U Akers. (1996) PDA J Pharm Sci Tech 50(5):330-342. [0003]
  • Administration of chemotherapeutic or anti-cancer agents is particularly problematic. Low solubility anti-cancer agents are difficult to solubilize and supply at therapeutically useful levels. On the other hand, water-soluble anti-cancer agents are generally taken up by both cancer and non-cancer cells thereby exhibiting non-specificity. [0004]
  • Efforts to improve water-solubility and comfort of administration of such agents have not solved, and may have worsened, the two fundamental problems of cancer chemotherapy: 1) non-specific toxicity and 2) rapid clearance form the bloodstream by non-specific mechanisms. In the case of cytotoxins, which form the majority of currently available chemotherapies, these two problems are clearly related. Whenever the therapeutic is taken up by noncancerous cells, a diminished amount of the drug remains available to treat the cancer, and more importantly, the normal cell ingesting the drug is killed. [0005]
  • To be effective in treating cancer, the chemotherapeutic must be present throughout the affected tissue(s) at high concentration for a sustained period of time so that it may be taken up by the cancer cells, but not at so high a concentration that normal cells are injured beyond repair. Obviously, water soluble molecules can be administered in this way, but only by slow, continuous infusion and monitoring, aspects which entail great difficulty, expense and inconvenience. [0006]
  • A more effective method of administering a cancer therapeutic, particularly a cytotoxin, is in the form of a dispersion of oil in which the drug is dissolved. These oily particles are made electrically neutral and coated in such a way that they do not interact with plasma proteins and are not trapped by the reticuloendothelial system (RES), instead remaining intact in the tissue or blood for hours, days or even weeks. In most cases, it is desirable if the particles also distribute themselves into the surrounding lymph nodes which are injected at the site of a cancer. Nakamoto, Y et al. (1975) Chem Pharm Bull 23(10):2232-2238. Takahashi, T et al. (1977) Tohoku J Exp Med 123:235-246. In many cases direct injection into blood is the route of choice for administration. Even more preferable, following intravenous injection, the blood-borne particles may be preferentially captured and ingested by the cancer cells themselves. An added advantage of a particulate emulsion for the delivery of a chemotherapeutic is the widespread property of surfactants used in emulsions to overcome multidrug resistance. [0007]
  • For drugs that cannot be formulated as an aqueous solution, emulsions have typically been most cost-effective and gentle to administer, although there have been serious problems with making them sterile and endotoxin free so that they may be administered by intravenous injection. The oils typically used for pharmaceutical emulsions include saponifiable oils from the family of triglycerides, for example, soybean oil, sesame seed oil, cottonseed oil, safflower oil and the like. Hansrani, P K et al., (1983) J Parenter Sci Technol 37:145-150. One or more surfactants are used to stabilize the emulsion, and excipients are added to render the emulsion more biocompatible, stable and less toxic. Lecithin from egg yolks or soybeans is a commonly used surfactant. Sterile manufacturing can be accomplished by absolute sterilization of all the components before manufacture, followed by absolutely aseptic technique in all stages of manufacture. However, improved ease of manufacture and assurance of sterility is obtained by terminal sterilization following sanitary manufacture, either by heat or by filtration. Unfortunately, not all emulsions are suitable for heat or filtration treatments. [0008]
  • Stability has been shown to be influenced by the size and homogeneity of the emulsion. The preferred emulsion consists of a suspension of sub-micron particles, with a mean size of no greater than 200 nanometers. A stable dispersion in this size range is not easily achieved, but has the benefit that it is expected to circulate longer in the bloodstream. Further, less of the stable dispersion is phagocytized non-specifically by the reticuloendothelial system. As a result the drug is more likely to reach its therapeutic target. Thus, a preferred drug emulsion will be designed to be actively taken up by the target cell or organ, and is targeted away from the RES. [0009]
  • The use of vitamin E in emulsions is known. In addition to the hundreds of examples where vitamin E in small quantities [for example, less than 1%, R T Lyons. Pharm Res 13(9): S-226, (1996) “Formulation development of an injectable oil-in-water emulsion containing the lipophilic antioxidants K-tocopherol and P-carotene”] is used as an anti-oxidant in emulsions, the first primitive, injectable vitamin E emulsions per se were made by Hidiroglou for dietary supplementation in sheep and for research on the pharmacokinetics of vitamin E and its derivatives. Hidiroglou M and Karpinski K. (1988) Brit J Nutrit 59:509-518. [0010]
  • For mice, an injectable form of vitamin E was prepared by Kato and coworkers. Kato Y., et al. (1993) Chem Pharm Bull 41(3):599-604. Micellar solutions were formulated with Tween 80, Brij 58 and HCO-60. Isopropanol was used as a co-solvent, and was then removed by vacuum evaporation; the residual oil glass was then taken up in water with vortexing as a micellar suspension. An emulsion was also prepared by dissolving vitamin E with soy phosphatidycholine (lecithin) and soybean oil. Water was added and the emulsion prepared with sonication. [0011]
  • In 1983, E-Ferol, a vitamin E emulsion was introduced for vitamin E supplementation and therapy in neonates. Alade S L et al. (1986) Pediatrics 77(4):593-597. Within a few months over 30 babies had died as a result of receiving the product, and the product was promptly withdrawn by FDA order. The surfactant mixture used in E-Ferol to emulsify 25 mg/mL vitamin E consisted of 9% [0012] Tween 80 and 1% Tween 20. These surfactants seem ultimately to have been responsible for the unfortunate deaths. This experience illustrates the need for improved formulations and the importance of selecting suitable biocompatible surfactants and carefully monitoring their levels in parenteral emulsions and.
  • An alternative means of solubilizing low solubility compounds is direct solubilization in a non-aqueous milieu, for example alcohol (such as ethanol) dimethylsulfoxide or triacetin. An example in PCT application WO 95/11039 describes the use of vitamin E and the vitamin E derivative TPGS in combination with ethanol and the immuno-suppressant molecule cyclosporin. Alcohol-containing solutions can be administered with care, but are typically given by intravenous drip to avoid the pain, vascular irritation and toxicity associated with bolus injection of these solutions. [0013]
  • Problems with pharmaceutical formulations in non-aqueous solvents and solubilizers such as alcohol (ethanol, isopropanol, benzyl alcohol, etc.) relate to the ability of these solvents to extract toxic substances, for example plasticizers, from their containers. The current commercial formulation for the anti-cancer drug paclitaxel, for example, consists of a mixture of hydroxylated castor oil and ethanol, and rapidly extracts plasticizers such as di-(2-ethylhexyl)-phthalate from commonly used intravenous infusion tubing and bags. Adverse reactions to the plasticizers have been reported, such as respiratory distress, necessitating the use of special infusion systems at extra expense and time. Waugh, et al. (1991) Am J Hosp Pharmacists 48:1520. [0014]
  • In light of these problems, it can be seen that the ideal emulsion vehicle would be inexpensive, non-irritating or even nutritive and palliative in itself, terminally sterilizable by either heat or filtration, stable for at least 1 year under controlled storage conditions, accommodate a wide variety of water insoluble and poorly soluble drugs and be substantially ethanol-free. In addition to those drugs which are lipophilic and dissolve in oils, also needed is a vehicle which will stabilize, and carry in the form of an emulsion, drugs which are poorly soluble in lipids and in water. [0015]
  • SUMMARY OF THE INVENTION
  • In order to meet these needs, the present invention is directed to pharmaceutical compositions including: α-tocopherol, a surfactant or mixtures of surfactants, with and without an aqueous phase, and a therapeutic agent wherein the composition is in the form of an emulsion, micellar solution or a self-emulsifying drug delivery system. In a preferred form, the solution is substantially ethanol-free. [0016]
  • The pharmaceutical compositions can be stabilized by the addition of various amphiphilic molecules, including anionic, nonionic, cationic, and zwitterionic surfactants. Preferably, these molecules are PEGylated surfactants and optimally PEGylated α-tocopherol. [0017]
  • The amphiphilic molecules further include surfactants such as ascorbyl-6 palmitate; stearylamine; sucrose fatty acid esters, various vitamin E derivatives and fluorine-containing surfactants, such as the Zonyl brand series and a polyoxypropylene-polyoxyethylene glycol nonionic block copolymer. [0018]
  • The therapeutic agent of the emulsion may be a chemotherapeutic agent preferably a taxoid analog and most preferably, paclitaxel. [0019]
  • The emulsions of the invention can comprise an aqueous medium when in the form of an emulsion or micellar solution. This medium can contain various additives to assist in stabilizing the emulsion or in rendering the formulation biocompatible. [0020]
  • The pharmaceutical compositions of the invention are typically formed by dissolving a therapeutic agent in ethanol to form a therapeutic agent solution. α-tocopherol is then added to the therapeutic agent solution to form an α-tocopherol and therapeutic agent solution. Next, the ethanol is removed to form a substantially ethanol-free α-tocopherol and therapeutic agent solution. The substantially ethanol free α-tocopherol and therapeutic agent solution is blended with and without an aqueous phase incorporating a surfactant to form a pre-emulsion. For IV delivery the pre-emulsion is then homogenized to form a fine emulsion. For oral delivery, the pre-emulsion is typically encapsulated in a gelatin capsule. [0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be better understood by reference to the figures, in which: [0022]
  • FIG. 1A shows the particle size of a paclitaxel emulsion (QWA) at 7° C. over time; [0023]
  • FIG. 1B shows the particle size of a paclitaxel emulsion (QWA) at 25° C. over time; [0024]
  • FIG. 2 is an HPLC chromatogram showing the integrity of a paclitaxel in an emulsion as described in Example 5; [0025]
  • FIG. 3A shows the paclitaxel concentration of a paclitaxel emulsion (QWA) at 4° C. over time; [0026]
  • FIG. 3B shows the paclitaxel concentration of a paclitaxel emulsion (QWA) at 25° C. over time; and [0027]
  • FIG. 4 shows the percentage of paclitaxel released over time from three different emulsions. The symbol • represents the percentage of paclitaxel released over time from an emulsion commercially available from Bristol Myers Squibb. The symbol ▴ represents the percentage of paclitaxel released over time from an emulsion of this invention containing 6 mg/ml paclitaxel (QWA) as described in Example 6. The symbol ⋄ represents the percentage of paclitaxel released over time from an emulsion of this invention (QWB) containing 7 mg/ml paclitaxel as described in Example 7.[0028]
  • DETAILED DESCRIPTION OF THE INVENTION
  • To ensure a complete understanding of the invention the following definitions are provided: [0029]
  • α-tocopherol: α-tocopherol, also known as vitamin E, is an organic molecule with the following chemical structure (Scheme I): [0030]
    Figure US20030027858A1-20030206-C00001
  • In addition to its use as a primary solvent, α-tocopherol and its derivatives are useful as a therapeutic agents. [0031]
  • Surfactants: Surface active group of amphiphilic molecules which are manufactured by chemical processes or purified from natural sources or processes. These can be anionic, cationic, nonionic, and zwitterionic. Typical surfactants are described in Emulsions: Theory and Practice, Paul Becher, Robert E. Krieger Publishing, Malabar, Fla., 1965; Pharmaceutical Dosage Forms: Dispersed Systems Vol. I, Martin M. Rigear, Surfactants and U.S. Pat. No. 5,595,723 which is assigned to the assignee of this invention, Sonus Pharmaceuticals. All of these references are hereby incorporated by reference. [0032]
  • TPGS: TPGS or PEGylated vitamin E is a vitamin E derivative in which polyethylene glycol subunits are attached by a succinic acid diester at the ring hydroxyl of the vitamin E molecule. TPGS stands for D-α-[0033] tocopherol polyethyleneglycol 1000 succinate (MW=530). TPGS is a non-ionic surfactant (HLB=16-18) with the structure of Scheme II:
    Figure US20030027858A1-20030206-C00002
  • Various chemical derivatives of vitamin E TPGS including ester and ether linkages of various chemical moieties are included within the definition of vitamin E TPGS. [0034]
  • Polyethylene glycol: Polyethylene glycol (PEG) is a hydrophilic, polymerized form of ethylene glycol, consisting of repeating units of the chemical structure—(CH[0035] 2—CH2—O—).
  • AUC: AUC is the area under the plasma concentration-time, commonly used in pharmacokinetics to quantitate the percentage of drug absorption and elimination. A high AUC generally indicates that the drug will successfully reach the target tissue or organ. [0036]
  • Poloxamers or Pluronics: are synthetic block copolymers of ethylene oxide and propylene oxide having the general structure:[0037]
  • OH(OCH2CH2)a(OCH2CH2CH2)b(OCH2CH2)aH
  • The following variants based on the values of a and b are commercially available from BASF Performance Chemicals (Parsippany, N.J.) under the trade name Pluronic and which consist of the group of surfactants designated by the CTFA name of Poloxamer 108, 188, 217, 237, 238, 288, 338, 407, 101, 105, 122, 123, 124, 181, 182, 183, 184, 212, 231, 282, 331, 401, 402, 185, 215, 234, 235, 284, 333, 334, 335, and 403. For the most commonly used poloxamers 124, 188, 237, 338 and 407 the values of a and b are 12/20, 79/28, 64/37, 141/44 and 101/56, respectively. [0038]
  • Solutol HS-15: is a polyethylene glycol 660 hydroxystearate manufactured by BASF (Parsippany, N.J.). Apart from free polyethylene glycol and its monoesters, di-esters are also detectable. According to the manufacturer, a typical lot of Solutol HS-15 contains approximately 30% free polyethylene glycol and 70% polyethylene glycol esters. [0039]
  • Other surfactants: Other surfactants useful in the invention include ascorbyl-6 palmitate (Roche Vitamins, Nutley N.J.), stearylamine, and sucrose fatty acid esters (Mitsubishi Chemicals). Custom surfactants include those compounds with polar water-loving heads and hydrophobic tails, such as a vitamin E derivative comprising a peptide bonded polyglutamate attached to the ring hydroxyl and pegylated phytosterol. [0040]
  • Hydrophile-lipophile balance: An empirical formula used to index surfactants. Its value varies from 1-45 and in the case of non-ionic surfactants from about 1-20. In general for lipophilic surfactants the HLB is less than 10 and for hydrophilic ones the HLB is greater than 10. [0041]
  • Biocompatible: Capable of performing functions within or upon a living organism in an acceptable manner, without undue toxicity or physiological or pharmacological effects. [0042]
  • Substantially ethanol-free: A composition having an ethanol concentration less than about 1.0% (w/v) ethanol. [0043]
  • Emulsion: A colloidal dispersion of two immiscible liquids in the form of droplets, whose diameter, in general, are between 0.1 and 3.0 microns and which is typically optically opaque, unless the dispersed and continuous phases are refractive index matched. Such systems possess a finite stability, generally defined by the application or relevant reference system, which may be enhanced by the addition of amphiphilic molecules or viscosity enhancers. [0044]
  • Microemulsion: A thermodynamically stable isotropically clear dispersion of two immiscible liquids, such as oil and water, stabilized by an interfacial film of surfactant molecules. The microemulsion has a mean droplet diameter of less than 200 nm, in general between 10-50 nm. In the absence of water, mixtures of oil(s) and non-ionic surfactant(s) form clear and isotropic solutions that are known as self-emulsifying drug delivery systems (SEDDS) and have successfully been used to improve lipophilic drug dissolution and oral absorption [0045]
  • Aqueous Medium: A water-containing liquid which can contain pharmaceutically acceptable additives such as acidifying, alkalizing, buffering, chelating, complexing and solubilizing agents, antioxidants and antimicrobial preservatives, humectants, suspending and/or viscosity modifying agents, tonicity and wetting or other biocompatible materials. [0046]
  • Therapeutic Agent: Any compound natural of synthetic which has a biological activity, is soluble in the oil phase and has an octanol-buffer partition coefficient (Log P) of at least 2 to ensure that the therapeutic agent is preferentially dissolved in the oil phase rather than the aqueous phase. This includes peptides, non-peptides and nucleotides. Lipid conjugates/prodrugs of water soluble molecules are within the scope of therapeutic agent. [0047]
  • Chemotherapeutic: Any natural or synthetic molecule which is effective against one or more forms of cancer, and particularly those molecules which are slightly or completely lipophilic or which can be modified to be lipophilic. This definition includes molecules which by their mechanism of action are cytotoxic (anti-cancer agents), those which stimulate the immune system (immune stimulators) and modulators of angiogenesis. The outcome in either case is the slowing of the growth of cancer cells. [0048]
  • Chemotherapeutics include Taxol (paclitaxel) and related molecules collectively termed taxoids, taxines or taxanes. The structure of paclitaxel is shown in the figure below (Scheme III). [0049]
    Figure US20030027858A1-20030206-C00003
  • Included within the definition of “taxoids” are various modifications and attachments to the basic ring structure (taxoid nucleus) as may be shown to be efficacious for reducing cancer cell growth and to partition into the oil (lipid phase) and which can be constructed by organic chemical techniques known to those skilled in the art. The structure of the taxoid nucleus is shown in Scheme IV. [0050]
    Figure US20030027858A1-20030206-C00004
  • Chemotherapeutics include podophyllotoxins and their derivatives and analogues. The core ring structure of these molecules is shown in the following figure (Scheme V): [0051]
    Figure US20030027858A1-20030206-C00005
  • Another important class of chemotherapeutics useful in this invention are camptothecins, the basic ring structure of which is shown in the following figure, but includes any derivatives and modifications to this basic structure which retain efficacy and preserve the lipophilic character of the molecule shown below (Scheme VI). [0052]
    Figure US20030027858A1-20030206-C00006
  • Another preferred class of chemotherapeutics useful in this invention are the lipophilic anthracyclines, the basic ring structure of which is shown in the following figure (Scheme VII): [0053]
    Figure US20030027858A1-20030206-C00007
  • Suitable lipophilic modifications of Scheme VII include substitutions at the ring hydroxyl group or sugar amino group. [0054]
  • Another important class of chemotherapeutics are compounds which are lipophilic or can be made lipophilic by molecular chemosynthetic modifications well known to those skilled in the art, for example by combinatorial chemistry and by molecular modelling, and are drawn from the following list: Taxotere, Amonafide Illudin S, 6-[0055] hydroxymethylacylfulvene Bryostatin 1, 26-succinylbryostatin 1, Palmitoyl Rhizoxin, DUP 941, Mitomycin B, Mitomycin C, Penclomedine. Interferon α2b, angiogenesis inhibitor compounds, Cisplatin hydrophobic complexes such as 2-hydrazino-4,5-dihydro-1H-imidazole with platinum chloride and 5-hydrazino-3,4-dihydro-2H-pyrrole with platinum chloride, vitamin A, vitamin E and its derivatives, particularly tocopherol succinate.
  • Other compounds useful in the invention include: 1,3-bis(2-chloroethyl)-1-nitrosurea (“carmustine” or “BCNU”), 5-fluorouracil, doxorubicin (“adriamycin”), epirubicin, aclarubicin, Bisantrene (bis(2-imidazolen-2-ylhydrazone)-9,10-anthracenedicarboxaldehyde, mitoxantrone, methotrexate, edatrexate, muramyl tripeptide, muramyl dipeptide, lipopolysaccharides, 9-b-d-arabinofuranosyladenine (“vidarabine”) and its 2-fluoro derivative, resveratrol, retinoic acid and retinol, Carotenoids, and tamoxifen. [0056]
  • Other compounds useful in the application of this invention include: Palmitoyl Rhizoxin, DUP 941, Mitomycin B, Mitomycin C, Penclomedine, Interferon α2b, Decarbazine, Lonidamine, Piroxantrone, Anthrapyrazoles, Etoposide, Camptothecin, 9-aminocamptothecin, 9-nitrocamptothecin, camptothecin-11 (“Irinotecan’), Topotecan, Bleomycin, the Vinca alkaloids and their analogs [Vincristine, Vinorelbine, Vindesine, Vintripol, Vinxaltine, Ancitabine], 6-aminochrysene, and navelbine. [0057]
  • Other compounds useful in the application of the invention are mimetics of taxol, eleutherobins, sarcodictyins, discodermolides and epothiolones. [0058]
  • Taking into account these definitions, the present invention is directed to pharmaceutical compositions in the form of emulsions, micellar solutions or self-emulsifying drug delivery systems which are substantially free of ethanol solvent. [0059]
  • The therapeutic agents of the compositions of this invention can initially be solublized in ethanol. However, the ethanol is removed in order to form a substantially ethanol-free composition. The ethanol concentration is less than 1% (w/v), preferably less than 0.5%, and most preferably less than 0.3%. The therapeutic agents can also be solubilized in methanol, propanol, chloroform, isopropanol, butanol and pentanol. These solvents are also removed prior to use. [0060]
  • The compositions of the invention contain α-tocopherol as a carrier for therapeutic drugs, which can be administered to animals or humans via intravascular, oral, intramuscular, cutaneous and subcutaneous routes. Specifically, the emulsions can be given by any of the following routes, among others: intraabdominal, intraarterial, intraarticular, intracapsular, intracervical, intracranial, intraductal, intradural, intralesional, intralocular, intralumbar, intramural, intraocular, intraoperative, intraparietal, intraperitoneal, intrapleural, intrapulmonary, intraspinal, intrathoracic, intratracheal, intratympanic, intrauterine, and intraventricular. The emulsions of the present invention can be nebulized using suitable aerosol propellants which are known in the art for pulmonary delivery of lipophilic compounds. [0061]
  • In its first aspect, the invention is directed to the use of α-tocopherol as the hydrophobic dispersed phase of emulsions containing water insoluble, poorly water soluble therapeutic agents, water soluble therapeutic agents which have been modified to be less water soluble or mixtures thereof. Also called vitamin E, α-tocopherol is not a typical lipid oil. It has a higher polarity than most lipid oils, particularly triglycerides, and is not saponifiable. It has practically no solubility in water. [0062]
  • In the second aspect, the invention is a an α-tocopherol emulsion in the form of a self-emulsifying system where the system is to be used for the oral administration of water insoluble (or poorly water soluble or water soluble agents modified to be less water soluble or mixtures thereof) drugs where that is desired. In this embodiment, an oil phase with surfactant and drug or drug mixture is encapsulated into a soft or hard gelatin capsule. Suitable solidification agents with melting points in the range of 40 to 60° C. such as high molecular weight polyethylene glycols (MW>1000) and glycerides such as those available under the trade name Gellucires (Gattefose Corp. Saint Priest, France) can be added to allow filling of the formulation into a hard gelatin capsule at high temperature. Semi-solid formulations are formed upon room temperature equilbration. Upon dissolution of the gelatin in the stomach and duodenum, the oil is released and forms a fine emulsion with a mean droplet diameter of between 2-5 microns spontaneously. The emulsion is then taken up by the microvilli of the intestine and released into the bloodstream. [0063]
  • In a third aspect, the invention comprises microemulsions containing α-tocopherol. Microemulsions refer to a sub-class of emulsions where the emulsion suspension is essentially clear and indefinitely stable by virtue of the extremely small size of the oil/drug microaggregates dispersed therein. [0064]
  • In a fourth aspect of the invention, PEGylated vitamin E (TPGS) is used as a primary surfactant in emulsions of vitamin E. PEGylated vitamin E is utilized as a primary surfactant, a stabilizer and also as a supplementary solvent in emulsions of vitamin E. Polyethylene glycol (PEG) is also useful as a secondary solvent in the emulsions of this invention. [0065]
  • The α-tocopherol concentration of the emulsions of this invention can be from about 2 to about 10% w/v. The ratio of α-tocopherol to TPGS is optimally from about 1:1 to about 10:1 (w/w). [0066]
  • The emulsions of the invention may further include surfactants such as ascorbyl-6 palmitate; stearylamine; sucrose fatty acid esters and various vitamin E derivatives comprising α-tocopherol nicotinate, tocopherol phosphate, and nonionic, synthetic surfactant mixtures, containing a fluorine-containing surfactant, such as the Zonyl brand series and a polyoxypropylene-polyoxyethylene glycol nonionic block copolymer. [0067]
  • The emulsions of the invention can comprise an aqueous medium. The aqueous phase has an osmolality of approximately 300 mOsm and may include potassium or sodium chloride sorbitol, mannitol, polyethylene glycol, propylene glycol albumin, polypep and mixtures thereof. This medium can also contain various additives to assist in stabilizing the emulsion or in rendering the formulation biocompatible. Acceptable additives include acidifying agents, alkalizing agents, antimicrobial preservatives, antioxidants, buffering agents, chelating agents, suspending and/or viscosity-increasing agents, and tonicity agents. Preferably, agents to control the pH, tonicity, and increase viscosity are included. Optimally, a tonicity of at least 250 mOsm is achieved with an agent which also increases viscosity, such as sorbitol or sucrose. [0068]
  • The emulsions of the invention for intravenous injection have a particle size of 10 to 500 nm, preferably 10 to 200 nm and most preferably 10 to 100 nm. For intravenous emulsions, the spleen and liver will eliminate particles greater than 500 mn in size through the RES. [0069]
  • A preferred form of the invention includes paclitaxel, a very water-insoluble cytotoxin used in the treatment of uterine cancer and other carcinomas. An emulsion composition of the present invention comprises a solution of vitamin E containing paclitaxel at a concentration of up to 20 mg/mL, four times that currently available by prescription, and a biocompatible surfactant such that the emulsion microdroplets are less than 0.2 microns and are terminally sterilizable by filtration. [0070]
  • A further embodiment of the invention is a method of treating carcinomas comprising the parenteral administration of a bolus dose of paclitaxel in vitamin E emulsion with and without PEGylated vitamin E by intravenous injection once daily or every second day over a therapeutic course of several weeks. Such method can be used for the treatment of carcinomas of the breast, lung, skin and uterus. [0071]
  • The general principles of the present invention may be more fully appreciated by reference to the following non-limiting examples. [0072]
  • EXAMPLES Example 1
  • Dissolution of Paclitaxel in α-Tocopherol [0073]
  • α-Tocopherol was obtained from Sigma Chemical Company (St Louis Mo.) in the form of a synthetic dl-α-tocopherol of 95% purity prepared from phytol. The oil was amber in color and very viscous. Paclitaxel was purchased from Hauser Chemical Research (Boulder Colo.), and was 99.9% purity by HPLC. [0074] Paclitaxel 200 mg. was dissolved in 6 mL of dry absolute ethanol (Spectrum Chemical Manufacturing Corp, Gardenia Calif.) and added to 1 gm α-tocopherol. The ethanol was then removed by vacuum at 42° C. until the residue was brought to constant weight. Independent studies showed that the ethanol content was less than 0.3% (w/v).
  • The resultant solution was clear, amber and very viscous, with a nominal concentration of 200 mg/gm (w/w) paclitaxel in α-tocopherol. Higher concentrations of Paclitaxel (up to 400 mg/gm, w/w) can be solubilized in α-tocopherol. [0075]
  • Example 2
  • Anionic Surfactant Used to Prepare α-Tocopherol Emulsions [0076]
  • [0077] Paclitaxel 2 gm in 10 gm of α-tocopherol, prepared as described in Example 1, was emulsified with ascorbyl palmitate as the triethanolamine salt by the following method. A solution consisting of ascorbic acid 20 mM was buffered to pH 6.8 with triethanolamine as the free base to from 2×buffer. 50 mL of the 2×buffer was placed in a Waring blender. 0.5 gm of ascorbyl-6-palmitate (Roche Vitamins and Fine Chemicals, Nutley N.J.), an anionic surfactant, was added and the solution blended at high speed for 2 min at 40° C. under argon. The α-tocopherol containing paclitaxel was then added into the blender with the surfactant and buffer. Mixing was continued under argon until a coarse, milky, pre-emulsion was obtained, approximately after 1 min at 40° C. Water for injection was then added, bringing the final volume to 100 mL.
  • The pre-emulsion was transferred to the feed vessel of a Microfluidizer Model 110Y (Microfluidics Inc, Newton Mass.). The unit was immersed in a bath to maintain a process temperature of approximately 60° C. during homogenization, and was flushed with argon before use. After priming, the emulsion was passed through the homogenizer in continuous re-cycle for 10 minutes at a pressure gradient of about 18 kpsi across the interaction head. The flow rate was about 300 mL/min, indicating that about 25 passes through the homogenizer resulted. [0078]
  • The resultant paclitaxel emulsion in an α-tocopherol vehicle was bottled in amber vials under argon and stored with refrigeration at 7° C. and 25° C. Samples were taken at discrete time intervals for particle sizing and chemical analysis. [0079]
  • Data taken with a Nicomp Model 370 Submicron Particle Sizer (Particle Sizing Systems Inc, Santa Barbara Calif.) showed that the emulsion had a mean particle diameter of 280 nm. [0080]
  • Example 3
  • Use of PEGylated Vitamin E (TPGS) [0081]
  • A ternary phase diagram was constructed for α-tocopherol, PEGylated vitamin E (TPGS, vitamin-E polyoxyethyleneglycol-1000-succinate, obtained from Eastman Chemical Co., Kingsport Tenn.), and water. TPGS was first melted at 42° C. and mixed gravimetrically with α-tocopherol at various proportions from 1 to 100% TPGS, the balance being α-tocopherol. Mixtures were miscible at all concentrations. Water was then added to each mixture in such a way that the final water concentration was increased stepwise from zero to 97.5%. At each step, observations were made of the phase behavior of the mixture. As appropriate, mixing was performed by vortexing and sonication, and the mixture was heated or centrifuged to assess its phase composition. [0082]
  • A broad area of biphasic o/w emulsions suitable for parenteral administration was found at water concentrations above 80%. The emulsions formed were milky white, free flowing liquids that contained disperse α-tocopherol microparticles stabilized by non-ionic surfactant. Also in this area, microemulsions potentially suitable as drug carriers were observed at TPGS to oil ratios above about 1:1. At lower water content, a broad area containing transparent gels (reverse emulsions) was noted. Separating the two areas (high and low water content) is an area composed of opaque, soap-like liquid crystals. [0083]
  • Phase diagrams of α-tocopherol with surfactant combinations, for example TPGS with a nonionic, anionic or cationic co-surfactant (for example glutamyl stearate, ascorbyl palmitate or Pluronic F-68), or drug can be prepared in a similar manner. [0084]
  • Example 4
  • α-Tocopherol Emulsion for Intravenous Delivery of Paclitaxel [0085]
  • A formulation of the following composition was prepared: [0086]
    Paclitaxel 1.0 gm %
    α-tocopherol 3.0 gm %
    TPGS 2.0 gm %
    Ascorbyl-6-Palmitate 0.25 gm %
    Sorbitol 5.0 gm %
    Triethanolamine to pH 6.8
    Water qs to 100 mL
  • The method of preparation was as follows: synthetic α-tocopherol (Roche Vitamins, Nutley N.J.), paclitaxel (Hauser, Boulder Colo.), ascorbyl 6-palmitate (Aldrich Chemical Co, Milwaukee Wis.) and TPGS were dissolved in 10 volumes of anhydrous undenatured, ethanol (Spectrum Quality Products, Gardenia Calif.) with heating to 40-45° C. The ethanol was then drawn off with vacuum until no more than 0.3% remained by weight. [0087]
  • Pre-warmed aqueous solution containing a biocompatible osmolyte and buffer were added with gentle mixing and a white milk formed immediately. This mixture was further improved by gentle rotation for 10 minutes with continuous warming at 40-45° C. This pre-mixture at about pH 7 was then further emulsified as described below. [0088]
  • The pre-mixture at 40-45° C. was homogenized in an Avestin C5 homogenizer (Avestin, Ottawa Canada) at 26 Kpsi for 12 minutes at 44° C. The resultant mixture contained microparticles of α-tocopherol with a mean size of about 200 nm. Further pH adjustment was made with an alkaline 1 M solution of triethanolamine (Spectrum Quality Products). [0089]
  • In order to avoid gelation of the TPGS during the early stage of emulsification, all operations were performed above 40° C. and care was taken to avoid exposure of the solutions to cold air by covering all vessels containing the mixture. Secondly, less than 2% TPGS should generally be dissolved in α-tocopherol oil before pre-emulsification, the balance of the TPGS being first dissolved in the aqueous buffer before the pre-emulsion is prepared. The solution gels at concentrations of TPGS higher than 2%. [0090]
  • Physical stability of the emulsion was then examined by placing multiple vials on storage at 4° C. and 25° C. Over several months, vials were periodically withdrawn for particle sizing. Mean particle size, as determined with the Nicomp Model 370 (Particle Sizing Systems, Santa Barbara Calif.), is shown for the two storage temperatures in FIG. 1. The particle size distribution was bi-modal. [0091]
  • Example 5
  • Chemical Stability of Paclitaxel in an α-Tocopherol Emulsion [0092]
  • After emulsification, the formulation of Example 4 was analyzed for paclitaxel on a Phenosphere CN column (5 microns, 150×4.6 mm). The mobile phase consisted of a methanol/water gradient, with a flow rate of 1.0 mL/min. A UV detector set at 230 nm was used to detect and quantitate paclitaxel. A single peak was detected (FIG. 2), which had a retention time and mass spectrogram consistent with native reference paclitaxel obtained from Hauser Chemical (Boulder Colo.). [0093]
  • Chemical stability of the emulsion of example 4 was examined by HPLC during storage. The data of FIG. 3 demonstrate that paclitaxel remains stable in the emulsion for periods of at least 3 months, independent of the storage temperature. Taken together, the data of FIGS. 2 and 3 demonstrate successful retention of drug potency and emulsion stability when stored at 4° C. for a period of at least 3 months. [0094]
  • Example 6
  • Paclitaxel Emulsion Formulation QWA [0095]
  • An emulsion of [0096] paclitaxel 10 mg/ml for intravenous drug delivery, having the following composition, was prepared as described in Example 4.
    Paclitaxel 1.0 gm %
    α-tocopherol 3.0 gm %
    TPGS 1.5 gm %
    Ascorbyl-6-Palmitate 0.25 gm %
    Sorbitol 4.0 gm %
    Triethanolamine to pH 6.8
    Water qs to 100 mL
  • Example 7
  • Paclitaxel Emulsion Formulation QWB [0097]
  • A second emulsion of [0098] paclitaxel 10 mg/ml for intravenous drug delivery, having the following composition, was prepared as described in Example 4.
    Paclitaxel 1.0 gm %
    α-tocopherol 3.0 gm %
    TPGS 1.5 gm %
    Solutol HS-15 1.0 gm %
    Sorbitol 4.0 gm %
    Triethanolamine to pH 6.8
    Water qs to 100 mL
  • Solutol HS-15 is a product of BASF Corp, Mount Olive N.J. [0099]
  • Example 8
  • 10 mg/mL Paclitaxel Emulsion Formulation QWC [0100]
  • A third emulsion formulation of [0101] paclitaxel 10 mg/ml was prepared as follows using Poloxamer 407 (BASF Corp, Parsippany N.J.) as a co-surfactant.
    Paclitaxel 1.0 gm %
    α-tocopherol 6.0 gm %
    TPGS 3.0 gm %
    Poloxamer 407 1.0 gm %
    Sorbitol 4.0 gm %
    Triethanolamine to pH 6.8
    Water for injection qs to 100 mL
  • In this example, 1.0 gm Poloxamer 407 and 1.0 gm paclitaxel were dissolved in 6.0 gm α-tocopherol with [0102] ethanol 10 volumes and gentle heating. The ethanol was then removed under vacuum. Separately, an aqueous buffer was prepared by dissolving 3.0 gm TPGS and 4.0 gm sorbitol in a final volume of 90 mL water for injection. Both oil and water solutions were warmed to 45° C. and mixed with sonication to make a pre-emulsion. A vacuum was used to remove excess air from the pre-emulsion before homogenization.
  • Homogenization was performed in an Avestin C5 as already described. The pressure differential across the homogenization valve was 25 kpsi and the temperature of the feed was 42-45° C. A chiller was used to ensure that the product exiting the homogenizer did not exceed a temperature of 50° C. Flow rates of 50 mL/min were obtained during homogenization. After about 20 passes in a recycling mode, the emulsion became more translucent. Homogenization was continued for 20 min. Samples were collected and sealed in vials as described before. A fine α-tocopherol emulsion for intravenous delivery of paclitaxel was obtained. The mean particle diameter of the emulsion was 77 nm. Following 0.22μ sterile filtration through a 0.22 micron Durapore filter (Millipore Corp, Bedford Mass.), the emulsion was filled in vials and stored at 4° C. until used for intravenous injection. [0103]
  • Example 9
  • 5 mg/mL Paclitaxel Emulsion Formulation QWC [0104]
  • An additional emulsion of paclitaxel was prepared as described in Example 8 but incorporating 5 instead of 10 mg/ml of the drug. The composition of this emulsion is as follows: [0105]
    Paclitaxel 0.5 gm %
    α-tocopherol 6.0 gm %
    TPGS 3.0 gm %
    Poloxamer 407 1.0 gm %
    Sorbitol 4.0 gm %
    Triethanolamine to pH 6.8
    Water for injection qs to 100 mL
  • Following homogenization as described in example 8, a somewhat translucent emulsion of α-tocopherol and paclitaxel with a mean particle diameter of 52 nm was obtained. Following sterile filtration through a 0.22 micron Durapore filter (Millipore Corp, Bedford Mass.), the emulsion was filled in vials and stored at 4° C. until used for intravenous injection. Drug losses on filtration were less than 1%. [0106]
  • Example 10
  • Paclitaxel Emulsion Formulation QWD [0107]
  • A fifth emulsion of α-tocopherol for intravenous administration of paclitaxel was prepared as follows: [0108]
    Paclitaxel 0.5 gm %
    α-tocopherol 6.0 gm %
    TPGS 3.0 gm %
    Poloxamer 407 1.5 gm %
    Polyethyleneglycol
    200 0.7 gm %
    Sorbitol 4.0 gm %
    Triethanolamine to pH 6.8
    Water for injection qs to 100 mL
  • Synthetic α-tocopherol USP-FCC obtained from Roche Vitamins (Nutley, N.J.) was used in this formation. Polyethyleneglycol 200 (PEG-200) was obtained from Sigma Chemical Co. [0109]
  • Following homogenization, a somewhat translucent emulsion with a mean particle diameter of 60 nm was obtained. Following 0.22μ sterile filtration through a 0.22 micron Durapore filter (Millipore Corp, Bedford Mass.), the emulsion was filled in vials and stored at 4° C. until used for intravenous injection. Drug losses on filtration were less than 1%. [0110]
  • Example 11
  • Dissolution of Paclitaxel in TPGS and Preparation of Micellar Solutions [0111]
  • We observed good solubility of paclitaxel in TPGS, about 100 mg drug per 1.0 gm of TPGS. Micellar solutions of TPGS containing paclitaxel were prepared as follows. A stock solution of paclitaxel in TPGS was made up by dissolving 90 mg paclitaxel in 1.0 gm TPGS at 45° C. with ethanol, which was then removed under vacuum. Serial dilutions were then prepared by diluting the paclitaxel stock with additional TPGS to obtain paclitaxel in TPGS at concentrations of 0.1, 1, 5, 10, 25, 50, 75 and 90 mg/mL. Using fresh test tubes, 100 mg of each paclitaxel concentration in TPGS was dissolved in 0.9 mL water. All test tubes were mixed by vortex and by sonication at 45° C. Clear micellar solutions in water were obtained corresponding to final paclitaxel concentrations of 0.01, 0.1, 0.5, 1.0, 2.5, 5.0, 7.5 and 9.0 mg/mL. [0112]
  • A Nicomp Model 370 laser particle sizer (Particle Sizing Systems, Santa Barbara Calif.) was used to examine the solutions. Particle sizes on the order of 10 nm were obtained, consistent with the presence of micelles of TPGS and paclitaxel. [0113]
  • Micellar solutions of paclitaxel in TPGS containing up to 2.5 mg/mL paclitaxel were stable for at least 24 hr whereas those at 5.0, 7.5 and 9.0 mg/mL were unstable and drug crystals formed rapidly and irreversibly. These observations imply that paclitaxel remains solubilized only in the presence of an α-tocopherol-rich domain within the emulsion particles. Thus, an optimum ratio of α-tocopherol to TPGS is needed in order to produce emulsions in which higher concentrations of paclitaxel can be stabilized. [0114]
  • When adjusted to the proper tonicity and pH, micellar solutions have utility for slow IV drip administration of paclitaxel to cancer patients, although the AUC is expected to be low. [0115]
  • The utility of TPGS in α-tocopherol emulsions is a synergy of several desirable characteristics. First, it has its own affinity for paclitaxel, probably by virtue of the α-tocopherol that makes up the hydrophobic portion of its molecular structure. Secondly, interfacial tension of TPGS in water with α-tocopherol is about 10 dynes/cm, sufficient to emulsify free α-tocopherol, especially when used with a co-surfactant. Third, polyoxyethylated surfactants such as TPGS, have well established, superior properties as a “stealth coat” for injectable particles, by dramatically reducing trapping of the particles in the liver and spleen, as is well known in the art. But the unexpected and unique finding with TPGS as a surfactant for α-tocopherol emulsions, was the finding of all three desirable characteristics in a single molecule. An additional advantage of TPGS is the fact that it forms stable self-emulsifying systems in mixtures with oils and solvents such as propylene glycol and polyethylene glycol, suggesting a synergy when used with α-tocopherol for oral drug delivery. [0116]
  • When adjusted to the proper tonicity and pH, micellar solutions have utility for slow IV drip administration of paclitaxel to cancer patients, although the AUC is expected to be low. [0117]
  • Example 12
  • 20 mg/mL Paclitaxel Emulsion Formulation [0118]
  • A coarse, emulsion containing 20 mg/mL paclitaxel in α-tocopherol was obtained with 5% α-tocopherol and 5% TPGS by the methods described in Example 4, simply by increasing the concentrations. No effort was made to test higher concentrations simply because no further increase is necessary for clinically useful intravenous emulsions. [0119]
  • Example 13
  • Use of other PEG Surfactants in α-Tocopherol Emulsions [0120]
  • A variety of other pegylated surfactants, for example Triton X-100, PEG 25 propylene glycol stearate, Brij 35 (Sigma Chemical Co), [0121] Myrj 45, 52 and 100, Tween 80 (Spectrum Quality Products), PEG 25 glyceryl trioleate (Goldschmidt Chemical Corp, Hopewell Va.), have utility in emulsifying α-tocopherol.
  • However, experiments with other pegylated surfactants failed to convincingly stabilize paclitaxel in an α-tocopherol emulsion. To demonstrate the unique utility of TPGS, three emulsions were prepared as described in Example 9, but [0122] Tween 80 and Myrj 52 were substituted for TPGS as the primary surfactant in separate emulsions. These two surfactants were chosen because Tween 80 and Myrj 52 have HLB values essentially equivalent to TPGS and make reasonably good emulsions of α-tocopherol. However, when 5 mg/mL paclitaxel was included in the formulation, drug crystallization was noted very rapidly after preparation of the pre-emulsion, and the processed emulsions of Tween 80 and Myrj 52 were characterized as coarse, containing rod-shaped particles up to several microns in length, consistent with crystals of paclitaxel. Unlike the TPGS emulsion, which passed readily through a 0.22 micron filter with less than 1% loss of drug, the Tween and Myrj emulsions were unfilterable because of the presence of this crystalline drug material.
  • There are several possible explanations for the unexpected improvement of the α-tocopherol paclitaxel emulsions with TPGS. The drug has good solubility in TPGS, up to about 100 mg/mL. Most likely it is the strength of the affinity of paclitaxel benzyl side chains with the planar structure of the α-tocopherol phenolic ring in the TPGS molecule that stabilizes the complex of drug and carrier. In addition the succinate linker between the α-tocopherol and PEG tail is a novel feature of this molecule that distinguishes its structure from other PEGylated surfactants tested. [0123]
  • Example 14
  • Poloxamer-based α-Tocopherol Emulsion [0124]
    α-tocopherol 6.0 gm %
    Poloxamer 407 2.5 gm %
    Ascorbyl Palmitate 0.3 gm %
    Sorbitol 6.0 gm %
    Triethanolamine to pH 7.4
    Water qs to 100 mL
  • An α-tocopherol emulsion was prepared using Poloxamer 407 (BASF) as the primary surfactant. The white milky pre-mixture was homogenized with continuous recycling for 10 minutes at 25 Kpsi in a C5 homogenizer (Avestin, Ottawa Canada) with a feed temperature of 45° C. and a chiller loop for the product out set at 15° C. A fine, sterile filterable emulsion of α-tocopherol microparticles resulted. However, when this formulation was made with paclitaxel, precipitation of the paclitaxel was noted following overnight storage in the refringerator, again underlying the superior utility of TPGS as the principle surfactant. [0125]
  • Example 15
  • Lyophilized Emulsion Formulation [0126]
  • Maltrin M100 (Grain Processing Corporation, Muscatine Iowa) was added as a 2×stock in water to the emulsion of Example 14. Aliquots were then frozen in a shell freezer and lyophilized under vacuum. On reconstitution with water, a fine emulsion was recovered. [0127]
  • Lyophilized formulations have utility where the indefinite shelf life of a lyophilized preparation is preferred. Lyophilizable formulations containing other saccharides, such as mannitol, albumin or PolyPep from Sigma Chemicals, St. Louis, Mo. can also be prepared. [0128]
  • Example 16
  • In vitro Release of Paclitaxel from α-Tocopherol Emulsions [0129]
  • One of the desired characteristics of a drug delivery vehicle is to provide sustained release of the incorporated drug, a characteristic quite often correlated with improved pharmacokinetics and efficacy. In particular, long-circulating emulsions of paclitaxel can improve the delivery of the drug to cancer sites in the body. We have surprisingly found that the emulsions of the present invention do provide sustained release of paclitaxel when compared to the only FDA-approved formulation of paclitaxel at this time [Taxol®, Bristol Myers Squibb(BMS), Princeton N.J.]. Emulsions were prepared having paclitaxel concentrations of 6 mg/mL (QWA) and 7 mg/mL (QWB). For comparison, Taxol contains 6 mg/ml of paclitaxel dissolved in ethanol:cremophore EL 1:1 (v/v). In vitro release of paclitaxel from the different formulations into a solution of phosphate-buffered saline (PBS) at 37° C. was monitored using a dialysis membrane that is freely permeable to paclitaxel (MW cut-off of 10 kilodaltons). Quantification of the drug in pre- and post-dialysis samples was performed by HPLC. Drug release profiles in terms of both percent release and concentration of paclitaxel released over time were generated. As can be seen from the data in FIG. 4, less than 5% of paclitaxel was dialyzed from the emulsions over 24 hr, whereas about 12% was recovered outside the dialysis bag from the marketed BMS formulation. This indicates that drug release from the emulsion was significantly slowed relative to the commercially available solution. [0130]
  • Example 17
  • Biocompatibility of α-Tocopherol Emulsions Containing Paclitaxel [0131]
  • An acute single-dose toxicity study was performed. Mice 20-25 gm each were purchased and acclimatized in an approved animal facility. Groups of mice (n=3) received doses of the formulation containing from 30 to 90 mg/kg paclitaxel in the α-tocopherol emulsion prepared as described in Example 6. All injections were given intravenously by tailvein bolus. [0132]
  • Although all injections were given by bolus IV push, no deaths or immediate toxicity were observed at any dose, even at 90 mg/kg. The results for body weight are shown in Table 1. Weight loss was 17% in the highest group but all groups, even at 90 mg/kg, recovered or gained body weight over a period of 10 days post injection. [0133]
  • A vehicle toxicity study was also done. Animals receiving drug-free emulsion grew rapidly, and gained slightly more weight than animals receiving saline or not injected. This was attributed to the vitamin and calorie content of the formulation. [0134]
  • We observed a maximal tolerable dose (MTD) for paclitaxel of greater than 90 mg/kg (Table 1), with no adverse reactions noted. This is more than double the best literature values reported, in which deaths were observed at much smaller doses. Taxol, the FDA-approved BMS formulation, causes death in mice at bolus intravenous doses of 10 mg/kg, a finding repeated in our hands. In the rat, BMS Taxol was uniformly fatal at all dilutions and dose regimes we tested. In contrast, the composition of Example 6 was well tolerated in rats, and is even improved over Taxotere, a less toxic paclitaxel analogue commercially marketed by Rhone-Poulenc Rorer. [0135]
  • One possible explanation for the high drug tolerance is that the emulsion is behaving as a slow-release depot for the drug as suggested from the in vitro release data in Example 16. [0136]
    TABLE 1
    Average Body Weight Change of Mice Treated with Paclitaxel Emulsion
    Treatment Number of BW Change (gm)
    (dose, mg/kg) Animals Day 2 Day 7
    Saline 4 1.0 3.4
    Vehicle 4 1.2 3.5
    Paclitaxel Emulsion 2 −1.0 2.2
    (QWA)
    (36.3)
    Paclitaxel Emulsion 4 −1.8 1.7
    (QWA)
    (54.4)
    Paclitaxel Emulsion 4 −1.5 1.6
    (QWA)
    (72.6)
    Paclitaxel Emulsion 1 −1.6
    (QWA)
    (90.7)
  • Example 18
  • Efficacy Evaluation of Paclitaxel Emulsion [0137]
  • The paclitaxel emulsion of Example 6 was also evaluated for efficacy against staged B16 melanoma tumors in nude mice and the data is shown in Table 2. Once again, the marketed product BMS Taxol was used as a reference formulation. Tumor cells were administered subcutaneously and therapy started by a tail vein injection at day 4 post-tumor administration at the indicated dosing schedule. Efficacy was expressed as percent increase in life-span (% ILS). [0138]
  • The following conclusions can be drawn from the data in Table 2: a) an increased life span of about 10% was obtained by administration of BMS Taxol at 10 mg/kg Q2D×4, b) %ILS values improved to 30-50% by administration of the α-tocopherol emulsion of paclitaxel at 30, 40 or 50 mg/kg Q2D×4, dose levels made possible by the higher MTD, c) a nice dose response was observed when the emulsion was administered at 30, 50 and 70 mg/kg Q4D×3, with about 80% ILS being observed at 70 mg/kg and, d) even at 90 mg/kg dosed only once at day 4, there was about 36% ILS. These data clearly illustrate the potential of the emulsions of the present invention to substantially improve the efficacy of paclitaxel. [0139]
  • Example 19
  • Efficacy Evaluation of Paclitaxel Emulsions [0140]
  • The emulsions of examples 6, 7 and 8 (QWA, QWB and QWC respectively) were compared for efficacy against B16 melanoma in mice; BMS taxol was again used as a reference formulation. Methods essentially identical to those of Example 18 were used. The data from this study is summarized in Table 3. Efficacy was expressed as: a) percent tumor growth inhibition (% T/C, where T and C stand for treated and control animals, respectively); b) tumor growth delay value (T-C), and c) log cell kill which is defined as the ratio of the T-C value over 3.32×tumor doubling time. The latter parameter for this particular tumor model was calculated to be 1.75 days. As can be seen from the results in Table 3, all measures of efficacy: tumor growth inhibition, tumor growth delay value and log cell kill demonstrate superior efficacy of α-tocopherol emulsions as a drug delivery vehicle over BMS Taxol, particularly when the emulsions were dosed every four days at 70 mg/kg. As explained in Example 16, this increased efficacy is likely a result of improved drug biocompatibility and/or sustained release. [0141]
    TABLE 2
    Survival of Mice with B16 Tumors Treated
    with QWA and BMS Taxol
    Mean Survival % ILSb
    Time, Days (vs vehicle)
    (Mean ± (Mean ±
    Treatment Group & Schedule S.E.Ma) S.E.M)
    Vehicle Control (Days 4, 8, 12) 13.2 ± 0.9
    Saline Control (Days 4, 8, 12) 15.8 ± 1.2 19.7 ± 8.6
    BMS Taxol (10 mg/kg) 16.4 ± 0.7 24.2 ± 5.4
    (Days 4, 6, 8, 10)
    QWA (30 mg/kg) (Days 4, 6, 8) 19.2 ± 1.4 45.4 ± 10.3
    QWA (40 mg/kg) (Days 4, 6, 8) 21.3 ± 1.4 61.4 ± 10.3
    QWA (50 mg/kg) (Days 4, 6, 8) 18.8 ± 0.7 42.4 ± 5.7
    QWA (30 mg/kg) (Days 4, 8, 12) 15.3 ± 0.8 15.9 ± 6.4
    QWA (50 mg/kg) (Days 4, 8, 12) 20.7 ± 1.3 56.8 ± 9.5
    QWA (70 mg/kg) (Days 4, 8, 12) 24.2 ± 0.9 83.3 ± 6.4
    QWA (90 mg/kg) (Day 4 only) 18.0 ± 0.6 36.4 ± 4.4
  • [0142]
    TABLE 3
    Comparison of 3 paclitaxel emulsions and
    BMS taxol against early-stage B16 melanoma
    Total Median tumor Median tumor wt.
    Dosage Dosing Schedule Dose wt. on day 15 on day 18 mg % T/C T-C Log cell
    Test Article mg/kg/day (days) (mg/kg) (mg) (range) Day 15 (days) kill total
    Control
     0 4, 6, 8, 10  0 836 2139 
    BMS Taxol 20 4, 6, 8, 10 80 383 1217  46 2 0.34
    QWA 20 4, 6, 8, 10 80 381 1197  46 2 0.34
    QWA 40 4, 6, 8, 10 160  104 306 12 7 1.2 
    QWA 70 4, 8, 12, 16, 20 350   15  11 −2
    QWB 20 4, 6, 8, 10 80 197 653 24 5 0.86
    QWB 30 4, 6, 8, 10 120  139 449 17 5 0.86
    QWB 40 Toxic
    QWC
    20 4, 6, 8, 10 80 319 848 34 3 0.52
    QWC 40 4, 6, 8, 10 160   53 194  6 8 1.4 
    QWC 70 4, 8, 12, 16, 20 350   33  66  4 >15  >2.6 
  • Example 20
  • Self-emulsification of an α-Tocopherol/Tagat TO Mixture [0143]
  • α-tocopherol 2.0 gm and Tagat TO (Goldschmidt Chemical Corp, Hopewell Va.) 800 mg were dissolved together. About 80 mg of the oily mixture was transferred to a test tube and water was then added. With gentle hand mixing, there was immediate development of a rich milky emulsion, consistent with “self-emulsifying systems” proposed as drug delivery systems, in which surfactant-oil mixtures spontaneously form an emulsion upon exposure to aqueous media. [0144]
  • Example 21
  • Self-emulsifying Formulation Containing Paclitaxel [0145]
  • [0146] Paclitaxel 50 mg/ml was prepared in α-tocopherol by the method described in Example 1. Tagat TO 20% (w/w) was added. The resultant mixture was clear, viscous and amber in color. A 100 mg quantity of the oily mixture was transferred to a test tube. On addition of 1 mL of water, with vortex mixing, a fine emulsion resulted.
  • Example 22
  • Self-emulsifying Formulation of Paclitaxel [0147]
  • [0148] Paclitaxel 50 mg/ml was prepared in α-tocopherol by the method described in Example 1. After removal of the ethanol under vacuum, 20% TPGS and 10% polyoxyethyleneglycol 200 (Sigma Chemical Co) were added by weight. A demonstration of the self-emulsification ability of this system was then performed by adding 20 mL of deionized water to 100 mg of the oily mixture at 37° C. Upon gentle mixing, a white, thin emulsion formed, consisting of fine emulsion particles demonstrated with the Malvern Mastersizer (Malvern Instruments, Worcester Mass.) to have a mean size of 2 microns, and a cumulative distribution 90% of which was less than 10 microns.
  • Example 23
  • Etoposide Emulsion Formulation in α-Tocopherol [0149]
  • Etoposide 4 mg (Sigma Chemical Co) was dissolved in the following surfactant-oil mixture: [0150]
    Etoposide 4 mg
    α-tocopherol 300 mg
    TPGS
    50 mg
    Poloxamer 407 50 mg
  • Ethanol and gentle warming was used to form a clear amber solution of drug in oil. The ethanol was then removed under vacuum. [0151]
  • A pre-emulsion was formed by adding 4.5 mL of water containing 4% sorbitol and 100 mg TPGS at 45° C. with sonication. The particle size was further reduced by processing in an Emulsiflex 1000 (Avestin, Ottawa Canada). The body of the [0152] Emulsiflex 1000 was fitted with a pair of 5 mL syringes and the entire apparatus heated to 45° C. before use. The 5 mL of emulsion was then passed through it by hand approximately 10 times. A free flowing, practical emulsion of etoposide in an α-tocopherol vehicle resulted.
  • We note that the solubilized form of etopside in α-tocopherol can also be used as an oral dosage form by adaption of the methods of the preceding examples. [0153]
  • Example 24
  • Dissolution of Ibuprofen or Griseofulvin in α-Tocopherol [0154]
  • Ibuprofen is a pain-killer, and may be administered by injection when required if there is danger that the drug will irritate the stomach. The following solution of ibuprofen in α-tocopherol may be emulsified for intravenous administration. [0155]
  • Ibuprofen (Sigma Chemicals), 12 mg. crystalline, dissolved without solvent in α-tocopherol, 120 mg, by gentle heating. The resultant 10% solution of ibuprofen in vitamin E can be emulsified by the method s described in Examples 4, 6, 7, 8 or 22. [0156]
  • An antifungal compound, griseofulvin, 12 mg, was first dissolved in 3 mL of anhydrous ethanol; α-tocopherol was then added, 180 mg, and the ethanol was removed with gentle heating under vacuum. The resultant solution of griseofulvin in α-tocopherol is clear and can be emulsified by the methods described in Examples 4, 6, 7, 8 or 22. [0157]
  • Example 25
  • Vitamin E Succinate Emulsion Formulation [0158]
  • Vitamin E succinate has been suggested as a therapeutic for the treatment of lymphomas and leukemias and for the chemoprevention of cancer. The following is a composition and method for the emulsification of vitamin E succinate in α-tocopherol. Sucrose ester S1170 is a product of Mitsubishi Kagaku Foods Corp, Tokyo Japan. Vitamin E succinate, as the free acid, was obtained as a whitish powder from ICN Biomedicals, Aurora, Ohio. Emulsions incorporating other surfactants such as pluronics, and TPGS along with α-tocopherol and α-tocopherol succinate can be prepared in a similar manner with and without a therapeutic agent. [0159]
  • α-[0160] Tocopherol 8 gm and vitamin E succinate 0.8 gm were dissolved together in ethanol in a round bottom flask. After removal of the solvent, 100 mL of an aqueous buffer was added. The alkaline buffer consisting of 2% glycerol, 10 mM triethanolamine, and 0.5 gm % sucrose ester S1170. After mixing for 2 min, the pre-emulsion was transferred to an Avestin Model C-5 homogenizer and homogenization was continued for about 12 minutes at a process feed temperature of 58° C. The pressure differential across the interaction head was 25 to 26 kpsi. During homogenization, pH was carefully monitored, and adjusted as required to pH 7.0. Care was taken to exclude oxygen during the process. A fine white emulsion resulted.
  • Example 26
  • α-Tocopherol Levels in Esters [0161]
  • Levels of α-tocopherol in commerically available esters: tocopherol-acetate, -succinate, -nicotinate, -phosphate and TPGS were either provided by the vendor or determined by HPLC. The concentration of free α-tocopherol in these solutions is less than 1.0%, generally less than 0.5%. [0162]
  • Example 27
  • Resveratrol Emulsion Formulation [0163]
  • Resveratrol is a cancer chemopreventative first discovered as an extract of grape skins. It has been proposed as a dietary supplement. [0164]
  • Resveratrol was obtained from Sigma Chemical Co. While it dissolved poorly in ethanol, upon addition of 10 mg resveratrol, 100 mg of α-tocopherol, 100 mg TPGS and ethanol, a clear solution formed rapidly. Upon removal of the ethanol, a clear amber oil remained. [0165]
  • The oily solution of resveratrol can be formulated as a self-emulsifying system for oral delivery by the various methods of the preceding examples. [0166]
  • Example 28
  • Muramyl Dipeptide Formulation [0167]
  • Muramyl dipeptides are derived from mycobacteria and are potent immunostimulants representative of the class of muramyl peptides, mycolic acid and lipopolysaccharides. They have use, for example, in the treatment of cancer, by stimulating the immune system to target and remove the cancer. More recently, muroctasin, a synthetic analog, has been proposed to reduce non-specific side effects of the bacterial wall extracts. [0168]
  • N-acetylmuramyl-6-O-steroyl-1-alanyl-d-isoglutamine was purchased from Sigma Chemical Co. and 10 mg was dissolved in 100 mg α-tocopherol and 80 mg TPGS. Ethanol was used as a co-solvent to aid in dissolution of the dipeptide, but was removed by evaporation under vacuum, leaving a clear solution in α-tocopherol and surfactant. [0169]
  • This oil solution of the drug can be emulsified for parenteral administration by the various methods of the preceding examples. [0170]
  • Example 29
  • Alcohol-containing Emulsion [0171]
  • In attempting to adapt the teachings of PCT WO 95/11039 to the oral administration of paclitaxel, the following formulation was made. [0172]
    Paclitaxel 0.125 gm
    α-tocopherol 0.325 gm
    TPGS 0.425 gm
    Ethanol 0.125 gm
  • As before, paclitaxel was dissolved in a α-tocopherol and TPGS with ethanol, which was then removed under vacuum. By dry weight, residual ethanol was less than 3 mg (0.3% w/w). Fresh anhydrous ethanol 0.125 gm was then added back to the formulation. After mixing the suitability of the formulation for oral administration, as in a gelatin capsule, was simulated by the following experiment. An aliquot of 100 mg of the free-flowing oil was added to 20 mL of water at 37° C. and mixed gently with a vortex mixer. A fine emulsion resulted. But after twenty minutes, microscopy revealed the growth on large numbers of crystals in rosettes, characteristic of paclitaxel precipitation. It was concluded that this formulation was not suitable for oral administration of paclitaxel because large amounts of the drug would be in the form of crystals on entry into the duodenum, where it would be prevented from uptake because of its physical form. We speculate that the excess of ethanol, in combination with the high ratio of TPGS to α-tocopherol, is responsible for the observed crystallization of the drug from this formulation. [0173]
  • Example 30
  • Alcohol-containing α-Tocopherol Emulsion [0174]
  • In attempting to adapt the teachings of PCT WO 95/11039 to the intravenous administration of paclitaxel, the following formulation was made: [0175]
    Paclitaxel 0.050 gm
    α-tocopherol 0.100 gm
    Lecithin 0.200 gm
    Ethanol 0.100 gm
    Butanol 0.500 gm
  • As before, paclitaxel was dissolved in α-tocopherol and TPGS with ethanol, which was then removed under vacuum. By dry weight, residual ethanol was less than 2 mg (0.5% w/w). Fresh anhydrous ethanol 0.100 gm and n-butanol 0.500 gm was then added back to the formulation. A clear oil resulted. The injection concentrate was tested for biocompatibility in administration by standard pharmaceutical practice of admixture and saline. About 200 mg of the oil was dropped into 20 mL of saline and mixed. Large flakes of insoluble material developed immediately and the greatest amount of material formed dense deposits on the walls of the test tube. The mixture was clearly unsuitable for parenteral administration by any route, and we speculate that this is so regardless of the identity of the drug contained in the formulation. By trial and error we have learned that lecithin is a poor choice as surfactant for α-tocopherol by virtue of its low HLB (around 4). Other successful examples described here for fine emulsions suitable for parenteral administration were all made with high HLB surfactants. These surfactants include TPGS (HLB around 17), Poloxamer 407 (HLB about 22) and Tagat TO (HLB about 14.0). In general, we found that α-tocopherol emulsification is best performed with principal surfactants of HLB>10, preferably greater than 12. Lecithin is not in this class, although it could be used as a co-surfactant. In comparison, typical o/w emulsions of triglycerides are made with surfactants of HLB between 7 and 12, demonstrating that α-tocopherol emulsions are a unique class by virtue of the polarity and extreme hydrophobicity of the α-tocopherol, factors that also favor the solubility of lipophilic and slightly polar lipophilic drugs in α-tocopherol. See [0176] Emulsions: Theory and Practice, 2nd Ed. p.248 (1985).

Claims (24)

We claim:
1. A pharmaceutical composition, comprising:
α-tocopherol,
one or more surfactants,
an aqueous phase, and
a therapeutic agent
wherein said composition is in the form of an emulsion or micellar solution.
2. The composition of claim 1 wherein said surfactant is an α-tocopherol derivative.
3. The composition of claim 2 wherein said vitamin E derivative is an ester or an ether of α-tocopherol and polyethylene glycol.
4. The composition of claim 2 wherein said vitamin E derivative is TPGS.
5. The composition of claim 4 wherein the ratio of α-tocopherol to TPGS is from about 1:1 to about 10:1 w/w.
6. The composition of claim 5 further including a second surfactant wherein said second surfactant has an HLB of at least 10.
7. The composition of claim 6 wherein said second surfactant is selected from the group consisting of anionic, cationic, nonionic and zwitterionic surfactants.
8. The composition of claim 7 wherein said second surfactant is selected from the group consisting of poloxypropylene-polyoxyethylene glycol nonionic block poplymers, ascorbyl-6-palmitate, stearylamine and sucrose fatty esters.
9. The composition of claim 8 wherein said second surfactant is ascorbyl-6-palmitate.
10. The composition of claim 8 wherein said second surfactant has a structure:
OH(OCH2CH2)a(OCH2CH2CH2)b(OCH2CH2)aH
wherein a is 101 and b is 56.
11. The composition of claim 1 wherein said therapeutic agent is a chemotherapeutic agent.
12. The composition of claim 11 wherein said chemotherapeutic is a taxoid molecule.
13. The composition of claim 12 wherein said taxoid molecule is paclitaxel.
14. The composition of claim 1 wherein the particle size of said emulsion is 10 to 500 nm.
15. A pharmaceutical composition, comprising:
α-tocopherol,
one or more surfactants, and
a therapeutic agent
wherein said composition is in the form of a self-emulsifying drug delivery system and wherein said composition is substantially ethanol free.
16. The composition of claim 15 wherein said therapeutic agent is a chemotherapeutic agent.
17. The composition of claim 6 wherein said chemotherapeutic agent is a taxoid molecule.
18. The composition of claim 7 wherein said taxoid molecule is paclitaxel.
19. The composition of claim 15 wherein said surfactant is a vitamin E derivative.
20. The composition of claim 19 wherein said vitamin E derivative is an ester or an ether of vitamin E and polyethylene glycol.
21. The composition of claim 19 wherein said vitamin E derivative is TPGS.
22. The composition of claim 21 wherein the ratio of α-tocopherol to TPGS is from about 1:1 to about 10:1 w/w.
23. The composition of claim 15 wherein the particle size of said self-emulsifying drug delivery system is from about 10 to about 500 nm.
24. A method of making an emulsion, comprising:
a) dissolving a therapeutic agent in ethanol to form a therapeutic agent solution;
b) adding α-tocopherol to said therapeutic agent solution to form an α-tocopherol therapeutic agent solution;
c) removing said ethanol from said α-tocopherol therapeutic agent solution to reduce the ethanol concentration to less than 0.3% therein;
d) blending said substantially ethanol-free therapeutic agent solution with a surfactant to form a pre-emulsion; and
e) homogenizing said pre-emulsion to form an emulsion.
US10/151,064 1997-01-07 2002-05-17 Emulsion vehicle for poorly soluble drugs Abandoned US20030027858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/151,064 US20030027858A1 (en) 1997-01-07 2002-05-17 Emulsion vehicle for poorly soluble drugs

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US3418897P 1997-01-07 1997-01-07
US4884097P 1997-06-06 1997-06-06
US09/003,173 US6458373B1 (en) 1997-01-07 1998-01-05 Emulsion vehicle for poorly soluble drugs
US10/151,064 US20030027858A1 (en) 1997-01-07 2002-05-17 Emulsion vehicle for poorly soluble drugs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/003,173 Continuation US6458373B1 (en) 1997-01-07 1998-01-05 Emulsion vehicle for poorly soluble drugs

Publications (1)

Publication Number Publication Date
US20030027858A1 true US20030027858A1 (en) 2003-02-06

Family

ID=27357338

Family Applications (10)

Application Number Title Priority Date Filing Date
US09/003,173 Expired - Lifetime US6458373B1 (en) 1997-01-07 1998-01-05 Emulsion vehicle for poorly soluble drugs
US09/317,499 Expired - Fee Related US6660286B1 (en) 1997-01-07 1999-05-24 Emulsion vehicle for poorly soluble drugs
US09/361,935 Expired - Fee Related US6667048B1 (en) 1997-01-07 1999-07-27 Emulsion vehicle for poorly soluble drugs
US10/151,064 Abandoned US20030027858A1 (en) 1997-01-07 2002-05-17 Emulsion vehicle for poorly soluble drugs
US10/151,079 Expired - Lifetime US6982282B2 (en) 1997-01-07 2002-05-17 Emulsion vehicle for poorly soluble drugs
US10/187,055 Abandoned US20030109575A1 (en) 1997-01-07 2002-06-28 Emulsion vehicle for poorly soluble drugs
US10/299,649 Abandoned US20030170279A1 (en) 1997-01-07 2002-11-19 Emulsion vehicle for poorly soluble drugs
US10/299,626 Abandoned US20030147959A1 (en) 1997-01-07 2002-11-19 Emulsion vehicle for poorly soluble drugs
US10/833,619 Abandoned US20040202712A1 (en) 1997-01-07 2004-04-28 Emulsion vehicle for poorly soluble drugs
US11/067,217 Abandoned US20050142189A1 (en) 1997-01-07 2005-02-25 Emulsion vehicle for poorly soluble drugs

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/003,173 Expired - Lifetime US6458373B1 (en) 1997-01-07 1998-01-05 Emulsion vehicle for poorly soluble drugs
US09/317,499 Expired - Fee Related US6660286B1 (en) 1997-01-07 1999-05-24 Emulsion vehicle for poorly soluble drugs
US09/361,935 Expired - Fee Related US6667048B1 (en) 1997-01-07 1999-07-27 Emulsion vehicle for poorly soluble drugs

Family Applications After (6)

Application Number Title Priority Date Filing Date
US10/151,079 Expired - Lifetime US6982282B2 (en) 1997-01-07 2002-05-17 Emulsion vehicle for poorly soluble drugs
US10/187,055 Abandoned US20030109575A1 (en) 1997-01-07 2002-06-28 Emulsion vehicle for poorly soluble drugs
US10/299,649 Abandoned US20030170279A1 (en) 1997-01-07 2002-11-19 Emulsion vehicle for poorly soluble drugs
US10/299,626 Abandoned US20030147959A1 (en) 1997-01-07 2002-11-19 Emulsion vehicle for poorly soluble drugs
US10/833,619 Abandoned US20040202712A1 (en) 1997-01-07 2004-04-28 Emulsion vehicle for poorly soluble drugs
US11/067,217 Abandoned US20050142189A1 (en) 1997-01-07 2005-02-25 Emulsion vehicle for poorly soluble drugs

Country Status (15)

Country Link
US (10) US6458373B1 (en)
EP (1) EP0981328B1 (en)
JP (2) JP2001508445A (en)
KR (1) KR100612528B1 (en)
AR (1) AR011518A1 (en)
AT (1) ATE356611T1 (en)
CA (1) CA2276730C (en)
DE (1) DE69837328T2 (en)
DK (1) DK0981328T3 (en)
ES (1) ES2285753T3 (en)
IL (1) IL130737A0 (en)
IN (1) IN183539B (en)
PT (1) PT981328E (en)
TW (2) TW200425913A (en)
WO (1) WO1998030205A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030109575A1 (en) * 1997-01-07 2003-06-12 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US20030191093A1 (en) * 2001-12-03 2003-10-09 Novacea, Inc. Pharmaceutical compositions comprising active vitamin D compounds
WO2004082625A2 (en) * 2003-03-18 2004-09-30 Advanced Medical Optics, Inc. Self-emulsifying compositions, methods of use and preparation
US20040228882A1 (en) * 2003-05-16 2004-11-18 Dongming Qiu Process for forming an emulsion using microchannel process technology
US20040234566A1 (en) * 2003-05-16 2004-11-25 Dongming Qiu Process for forming an emulsion using microchannel process technology
US20050020546A1 (en) * 2003-06-11 2005-01-27 Novacea, Inc. Pharmaceutical compositions comprising active vitamin D compounds
US20050026877A1 (en) * 2002-12-03 2005-02-03 Novacea, Inc. Pharmaceutical compositions comprising active vitamin D compounds
US20050196370A1 (en) * 2003-03-18 2005-09-08 Zhi-Jian Yu Stable ophthalmic oil-in-water emulsions with sodium hyaluronate for alleviating dry eye
US20060073080A1 (en) * 2004-10-01 2006-04-06 Tonkovich Anna L Multiphase mixing process using microchannel process technology
US20060120213A1 (en) * 2004-11-17 2006-06-08 Tonkovich Anna L Emulsion process using microchannel process technology
US20060189586A1 (en) * 2003-06-11 2006-08-24 Cleland Jeffrey L Pharmaceutical compositions comprising active vitamin D compounds
US20060251685A1 (en) * 2003-03-18 2006-11-09 Zhi-Jian Yu Stable ophthalmic oil-in-water emulsions with Omega-3 fatty acids for alleviating dry eye
WO2007124409A2 (en) 2006-04-20 2007-11-01 Velocys, Inc. Process for treating and/or forming a non-newtonian fluid using microchannel process technology
US20080319048A1 (en) * 2007-06-22 2008-12-25 Scidose Llc Solubilized formulation of docetaxel without tween 80
US7772274B1 (en) 2009-10-19 2010-08-10 Scidose, Llc Docetaxel formulations with lipoic acid
US20110038899A1 (en) * 2008-03-28 2011-02-17 Garry Thomas Gwozdz Pharmaceutical Solutions and Method for Solublilizing Therapeutic Agents
US20110092579A1 (en) * 2009-10-19 2011-04-21 Scidose Llc Solubilized formulation of docetaxel
US20110092580A1 (en) * 2009-10-19 2011-04-21 Scidose Llc Docetaxel formulations with lipoic acid and/or dihydrolipoic acid
TWI396697B (en) * 2005-08-30 2013-05-21 Lanxess Deutschland Gmbh Use of catalysts for the degradation of nitrile rubber by metathesis
US8912228B2 (en) 2009-10-19 2014-12-16 Scidose Llc Docetaxel formulations with lipoic acid
WO2017119936A1 (en) * 2016-01-08 2017-07-13 Abon Pharmaceuticals, Llc Long acting injectable formulations
WO2022066600A1 (en) * 2020-09-22 2022-03-31 Micronization Technologies And Therapeutics Group Llc Nebulizer and nebulized anti-virals

Families Citing this family (337)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439686A (en) * 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US6245805B1 (en) * 1995-10-26 2001-06-12 Baker Norton Pharmaceuticals, Inc. Method, compositions and kits for increasing the oral bioavailability of pharmaceutical agents
US6964946B1 (en) * 1995-10-26 2005-11-15 Baker Norton Pharmaceuticals, Inc. Oral pharmaceutical compositions containing taxanes and methods of treatment employing the same
US20070092563A1 (en) * 1996-10-01 2007-04-26 Abraxis Bioscience, Inc. Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US6727280B2 (en) 1997-01-07 2004-04-27 Sonus Pharmaceuticals, Inc. Method for treating colorectal carcinoma using a taxane/tocopherol formulation
US20030087954A1 (en) * 1997-01-07 2003-05-08 Sonus Pharmaceuticals, Inc. Method of treating bladder carcinoma using a Taxane/Tocopherol formulation
US20030105156A1 (en) * 1997-01-07 2003-06-05 Nagesh Palepu Method for administration of a taxane/tocopherol formulation to enhance taxane therapeutic utility
US8853260B2 (en) 1997-06-27 2014-10-07 Abraxis Bioscience, Llc Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
GB9715759D0 (en) * 1997-07-26 1997-10-01 Danbiosyst Uk New emulsion formulations
IL131217A0 (en) * 1998-03-10 2001-01-28 Napro Biotherapeutics Inc Novel methods and compositions for delivery of taxanes
US20030059465A1 (en) * 1998-05-11 2003-03-27 Unger Evan C. Stabilized nanoparticle formulations of camptotheca derivatives
US7030155B2 (en) * 1998-06-05 2006-04-18 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US6241969B1 (en) * 1998-06-26 2001-06-05 Elan Corporation Plc Aqueous compositions containing corticosteroids for nasal and pulmonary delivery
US6174547B1 (en) * 1999-07-14 2001-01-16 Alza Corporation Dosage form comprising liquid formulation
US8293277B2 (en) * 1998-10-01 2012-10-23 Alkermes Pharma Ireland Limited Controlled-release nanoparticulate compositions
EP1117384A1 (en) * 1998-10-01 2001-07-25 Elan Pharma International Limited Controlled release nanoparticulate compositions
US20040013613A1 (en) * 2001-05-18 2004-01-22 Jain Rajeev A Rapidly disintegrating solid oral dosage form
US8236352B2 (en) 1998-10-01 2012-08-07 Alkermes Pharma Ireland Limited Glipizide compositions
US7521068B2 (en) * 1998-11-12 2009-04-21 Elan Pharma International Ltd. Dry powder aerosols of nanoparticulate drugs
US6428814B1 (en) * 1999-10-08 2002-08-06 Elan Pharma International Ltd. Bioadhesive nanoparticulate compositions having cationic surface stabilizers
US7459283B2 (en) 2002-02-04 2008-12-02 Elan Pharma International Limited Nanoparticulate compositions having lysozyme as a surface stabilizer
US6071952A (en) * 1998-12-02 2000-06-06 Mylan Pharmaceuticals, Inc. Stabilized injectable pharmaceutical compositions containing taxoid anti-neoplastic agents
WO2000033862A1 (en) * 1998-12-11 2000-06-15 Pharmasolutions, Inc. Self-emulsifying compositions for drugs poorly soluble in water
US6632443B2 (en) 2000-02-23 2003-10-14 National Research Council Of Canada Water-soluble compositions of bioactive lipophilic compounds
EP1169033A2 (en) * 1999-04-02 2002-01-09 Washington State University Research Foundation Enhanced tissue and subcellular delivery of vitamin e compounds
US6045826A (en) 1999-04-02 2000-04-04 National Research Council Of Canada Water-soluble compositions of bioactive lipophilic compounds
US20080070981A1 (en) 2000-02-23 2008-03-20 Henryk Borowy-Borowski Water-soluble compositions of bioactive lipophilic compounds
ES2206225T3 (en) * 1999-04-13 2004-05-16 Leo Pharma A/S PHARMACEUTICAL COMPOSITION SOLUBILIZED FOR PARENTERAL ADMINISTRATION.
KR100754352B1 (en) * 1999-05-24 2007-08-31 소너스파머슈티칼즈인코포레이티드 The method of preparing emulsion vehicle for poorly soluble drugs
BR0010794A (en) * 1999-05-24 2002-06-04 Sonus Pharma Inc Emulsion-vehicle for drugs with poor solubility
EP1479382A1 (en) * 1999-06-18 2004-11-24 IVAX Research, Inc. Oral pharmaceutical compositions containing taxanes and methods for treatment employing the same
US20090104273A1 (en) * 1999-06-22 2009-04-23 Elan Pharma International Ltd. Novel nifedipine compositions
US6982281B1 (en) 2000-11-17 2006-01-03 Lipocine Inc Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs
US20030236236A1 (en) * 1999-06-30 2003-12-25 Feng-Jing Chen Pharmaceutical compositions and dosage forms for administration of hydrophobic drugs
CA2385989A1 (en) * 1999-09-27 2001-04-05 Andrew Nienstedt Compositions of tocol-soluble therapeutics
US6136846A (en) * 1999-10-25 2000-10-24 Supergen, Inc. Formulation for paclitaxel
US6828346B2 (en) * 1999-10-25 2004-12-07 Supergen, Inc. Methods for administration of paclitaxel
FR2803203B1 (en) * 1999-12-31 2002-05-10 Fournier Ind & Sante NEW GALENIC FORMULATIONS OF FENOFIBRATE
US20040009229A1 (en) * 2000-01-05 2004-01-15 Unger Evan Charles Stabilized nanoparticle formulations of camptotheca derivatives
EP1251858B1 (en) * 2000-01-20 2005-06-08 Supratek Pharma Inc. Podophyllotoxin compositions
US6589968B2 (en) 2001-02-13 2003-07-08 Kosan Biosciences, Inc. Epothilone compounds and methods for making and using the same
US8618085B2 (en) * 2000-04-28 2013-12-31 Koasn Biosciences Incorporated Therapeutic formulations of desoxyepothilones
US20040156872A1 (en) * 2000-05-18 2004-08-12 Elan Pharma International Ltd. Novel nimesulide compositions
GB0016876D0 (en) * 2000-07-11 2000-08-30 Astrazeneca Ab Novel formulation
US20020119198A1 (en) * 2000-07-24 2002-08-29 Ping Gao Self-emulsifying drug delivery systems for extremely water-insoluble, lipophilic drugs
US7198795B2 (en) 2000-09-21 2007-04-03 Elan Pharma International Ltd. In vitro methods for evaluating the in vivo effectiveness of dosage forms of microparticulate of nanoparticulate active agent compositions
AU2001293177A1 (en) * 2000-09-27 2002-04-08 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
AUPR549901A0 (en) 2001-06-06 2001-07-12 Vital Health Sciences Pty Ltd Topical formulation containing tocopheryl phosphates
CN1262274C (en) * 2000-11-14 2006-07-05 生命健康科学有限公司 Complexes of phosphate derivatives
EP1343492B1 (en) * 2000-11-22 2006-02-01 Rxkinetix, Inc. Treatment of mucositis
WO2002043765A2 (en) * 2000-11-28 2002-06-06 Transform Pharmaceuticals, Inc. Pharmaceutical formulations comprising paclitaxel, derivatives, and pharmaceutically acceptable salts thereof
ATE365536T1 (en) * 2000-11-29 2007-07-15 Lyotropic Therapeutics Inc SOLVENT SYSTEMS FOR PHARMACEUTICAL PRODUCTS
DE60136648D1 (en) * 2000-12-05 2009-01-02 Los Angeles Childrens Hospital PHARMACEUTICAL COMPOSITIONS OF FENRETINIDE WITH INCREASED BIOAVAILABILITY AND METHOD FOR THEIR USE
IN188917B (en) * 2000-12-07 2002-11-23 Bharat Surums & Vaccines Ltd
US20030072807A1 (en) * 2000-12-22 2003-04-17 Wong Joseph Chung-Tak Solid particulate antifungal compositions for pharmaceutical use
US9700866B2 (en) 2000-12-22 2017-07-11 Baxter International Inc. Surfactant systems for delivery of organic compounds
US20040022862A1 (en) * 2000-12-22 2004-02-05 Kipp James E. Method for preparing small particles
US7193084B2 (en) * 2000-12-22 2007-03-20 Baxter International Inc. Polymorphic form of itraconazole
US8067032B2 (en) * 2000-12-22 2011-11-29 Baxter International Inc. Method for preparing submicron particles of antineoplastic agents
US6977085B2 (en) * 2000-12-22 2005-12-20 Baxter International Inc. Method for preparing submicron suspensions with polymorph control
US20030096013A1 (en) * 2000-12-22 2003-05-22 Jane Werling Preparation of submicron sized particles with polymorph control
US20050048126A1 (en) 2000-12-22 2005-03-03 Barrett Rabinow Formulation to render an antimicrobial drug potent against organisms normally considered to be resistant to the drug
US7115565B2 (en) * 2001-01-18 2006-10-03 Pharmacia & Upjohn Company Chemotherapeutic microemulsion compositions of paclitaxel with improved oral bioavailability
US6893859B2 (en) 2001-02-13 2005-05-17 Kosan Biosciences, Inc. Epothilone derivatives and methods for making and using the same
JP4745608B2 (en) 2001-07-27 2011-08-10 バイタル ヘルス サイエンシズ プロプライアタリー リミティド Skin treatment using phosphoric acid derivatives of electron transfer agents
AUPR684801A0 (en) * 2001-08-06 2001-08-30 Vital Health Sciences Pty Ltd Supplement therapy
US20030099674A1 (en) * 2001-08-11 2003-05-29 Chen Andrew X. Lyophilized injectable formulations containing paclitaxel or other taxoid drugs
US20030054042A1 (en) * 2001-09-14 2003-03-20 Elaine Liversidge Stabilization of chemical compounds using nanoparticulate formulations
WO2003026611A2 (en) 2001-09-26 2003-04-03 Baxter International Inc. Preparation of submicron sized nanoparticles via dispersion and solvent or liquid phase removal
US6858227B1 (en) 2001-11-21 2005-02-22 Sonus Pharmaceuticals, Inc. Vitamin E conjugates
US20040092428A1 (en) * 2001-11-27 2004-05-13 Hongming Chen Oral pharmaceuticals formulation comprising paclitaxel, derivatives and methods of administration thereof
WO2003057128A2 (en) * 2001-12-11 2003-07-17 Dor Biopharma, Inc. Lipid particles and suspensions and uses thereof
ATE487456T1 (en) * 2001-12-13 2010-11-15 Vital Health Sciences Pty Ltd TRANSDERMAL TRANSPORT OF COMPOUNDS
US6683194B2 (en) * 2002-02-05 2004-01-27 Sonus Pharmaceuticals, Inc. Tocopherol derivatives
US20050260259A1 (en) * 2004-04-23 2005-11-24 Bolotin Elijah M Compositions for treatment with glucagon-like peptide, and methods of making and using the same
US7138105B2 (en) * 2002-02-27 2006-11-21 Pharmain Compositions for delivery of therapeutics and other materials, and methods of making and using the same
US7635463B2 (en) * 2002-02-27 2009-12-22 Pharmain Corporation Compositions for delivery of therapeutics and other materials
EP1340497A1 (en) * 2002-03-01 2003-09-03 Novagali Sas Self emulsifying drug delivery systems for poorly soluble drugs
EP1480636B1 (en) * 2002-03-01 2007-04-18 Novagali Pharma SA Self emulsifying drug delivery systems for taxoids
US6825229B2 (en) 2002-03-07 2004-11-30 Blanchette Rockefeller Neurosciences Institute Methods for Alzheimer's Disease treatment and cognitive enhancement
US20050065205A1 (en) * 2002-03-07 2005-03-24 Daniel Alkon Methods for Alzheimer's disease treatment and cognitive enhance
US20080004332A1 (en) * 2002-03-07 2008-01-03 Alkon Daniel L Methods for alzheimer's disease treatment and cognitive enhancement
ATE343376T1 (en) * 2002-03-20 2006-11-15 Elan Pharma Int Ltd NANOPARTICLE COMPOSITIONS OF ANGIOGENESIS INHIBITORS
US20040105889A1 (en) * 2002-12-03 2004-06-03 Elan Pharma International Limited Low viscosity liquid dosage forms
US7101576B2 (en) 2002-04-12 2006-09-05 Elan Pharma International Limited Nanoparticulate megestrol formulations
CN100341589C (en) 2002-05-24 2007-10-10 血管技术国际股份公司 Compositions and methods for coating medical implants
FR2840614B1 (en) * 2002-06-07 2004-08-27 Flamel Tech Sa POLYAMINOACIDS FUNCTIONALIZED BY ALPHA-TOCOPHEROL AND THEIR PARTICULARLY THERAPEUTIC APPLICATIONS
WO2004006959A1 (en) * 2002-07-16 2004-01-22 Elan Pharma International, Ltd Liquid dosage compositions of stable nanoparticulate active agents
ATE385795T1 (en) 2002-07-30 2008-03-15 Wyeth Corp PARENTERAL FORMULATIONS CONTAINING A RAPAMYCIN HYDROXYESTER
AU2002950713A0 (en) 2002-08-09 2002-09-12 Vital Health Sciences Pty Ltd Carrier
US7718189B2 (en) 2002-10-29 2010-05-18 Transave, Inc. Sustained release of antiinfectives
DK1562941T3 (en) 2002-11-07 2010-04-19 Kosan Biosciences Inc Trans-9,10-dehydroepothilone C and D, analogs thereof and methods of preparation thereof
KR100507771B1 (en) * 2002-11-08 2005-08-17 한미약품 주식회사 A composition for oral administration of water-insoluble anti-cold drug and a preparation method thereof
CA2509365C (en) 2002-12-09 2012-08-07 American Bioscience, Inc. Compositions and methods of delivery of pharmacological agents
US20040115287A1 (en) * 2002-12-17 2004-06-17 Lipocine, Inc. Hydrophobic active agent compositions and methods
KR100502821B1 (en) 2002-12-26 2005-07-22 이호영 Low temperature formation method for emitter tip including copper oxide nanowire or copper nanowire and display device or light source having emitter tip manufactured by using the same method
TWI369997B (en) * 2003-02-14 2012-08-11 Childrens Hosp & Res Ct Oak Lipophilic drug delivery vehicle and methods of use thereof
WO2004091506A2 (en) * 2003-04-10 2004-10-28 Ivax Research, Inc. Taxane-based compositions and methods of use
US7691838B2 (en) 2003-05-30 2010-04-06 Kosan Biosciences Incorporated Method for treating diseases using HSP90-inhibiting agents in combination with antimitotics
EP1498120A1 (en) * 2003-07-18 2005-01-19 Aventis Pharma S.A. Semi-solid formulations for the oral administration of taxoids
DE602004014624D1 (en) * 2003-08-29 2008-08-07 Yissum Res Dev Co SELF-NANO-EMULGATING OILY FORMULATION FOR THE ADMINISTRATION OF HEAVY WATER-SOLUBLE MEDICAMENTS
EP1510206A1 (en) * 2003-08-29 2005-03-02 Novagali Pharma SA Self-nanoemulsifying oily formulation for the administration of poorly water-soluble drugs
US20050107465A1 (en) * 2003-10-01 2005-05-19 Papas Andreas M. Composition for treating inflammatory bowel disease
US20050074445A1 (en) * 2003-10-01 2005-04-07 Papas Andreas M. Alpha-tocopherol treatment for cystic fibrosis
US7311901B2 (en) * 2003-10-10 2007-12-25 Samyang Corporation Amphiphilic block copolymer and polymeric composition comprising the same for drug delivery
CN100471886C (en) * 2003-10-10 2009-03-25 株式会社三养社 Amphiphilic block copolymer and polymeric composition comprising the same for drug delivery
JP4235226B2 (en) * 2003-10-10 2009-03-11 サムヤン コーポレイション Amphiphilic block copolymer and polymer composition for drug delivery comprising the same
DE10347994A1 (en) * 2003-10-15 2005-06-16 Pari GmbH Spezialisten für effektive Inhalation Aqueous aerosol preparation
US20080045559A1 (en) * 2003-10-29 2008-02-21 Sonus Pharmaceuticals, Inc. Tocopherol-modified therapeutic drug compounds
WO2005042539A1 (en) * 2003-10-29 2005-05-12 Sonus Pharmaceuticals, Inc. Tocopherol-modified therapeutic drug compounds
US20050096365A1 (en) * 2003-11-03 2005-05-05 David Fikstad Pharmaceutical compositions with synchronized solubilizer release
US20060003002A1 (en) * 2003-11-03 2006-01-05 Lipocine, Inc. Pharmaceutical compositions with synchronized solubilizer release
TWI350183B (en) * 2003-12-31 2011-10-11 Ind Tech Res Inst A liposome and a preparation method
US20050158329A1 (en) * 2004-01-21 2005-07-21 Ghosh Swapan K. Novel phytol derived immunoadjuvants and their use in vaccine formulations
NZ549567A (en) * 2004-03-03 2009-10-30 Vital Health Sciences Pty Ltd Formulations comprising a tocopheryl phosphate tertiary amine alkaloid complex
US20050209315A1 (en) * 2004-03-20 2005-09-22 Papas Andreas M Bioavailable nutritional supplement and method of treatment of malabsorption
US7989490B2 (en) * 2004-06-02 2011-08-02 Cordis Corporation Injectable formulations of taxanes for cad treatment
US8003122B2 (en) * 2004-03-31 2011-08-23 Cordis Corporation Device for local and/or regional delivery employing liquid formulations of therapeutic agents
US20050220866A1 (en) * 2004-04-02 2005-10-06 Dr. Reddy's Laboratories Limited Novel capsule formulations of etoposide for oral use
KR20050099311A (en) * 2004-04-09 2005-10-13 에이엔에이치 케어연구소(주) Composition for injection comprising anticancer drug
US20050226932A1 (en) * 2004-04-09 2005-10-13 Samyang Corporation Pharmaceutical formulations for itraconazole
TW201206425A (en) 2004-05-18 2012-02-16 Brni Neurosciences Inst Treatment of depressive disorders
KR100582604B1 (en) 2004-06-16 2006-05-23 보람제약주식회사 IBUPROFEN and DEXIBUPROFEN MICRO EMULSION COMPOSITION AND LIQUID MEDICINE and SOFT CAPSULE DRUG THEREOF
WO2006015120A2 (en) * 2004-07-28 2006-02-09 Sd Pharmaceuticals, Inc. Stable injectable composition of alpha tocopheryl succinate, analogues and salts thereof
RU2377019C2 (en) * 2004-08-03 2009-12-27 Вайтал Хэлф Сайнсис Пти Лтд Carrier vehicle for enteral application
KR100623013B1 (en) * 2004-09-04 2006-09-19 김영대 Nano-emulsion, the use thereof, and preparing method thereof
US8557861B2 (en) * 2004-09-28 2013-10-15 Mast Therapeutics, Inc. Low oil emulsion compositions for delivering taxoids and other insoluble drugs
US20060165769A1 (en) * 2004-09-30 2006-07-27 Hyatt John A Pharmaceutical formulations containing vitamin E TPGS molecules that solubilize lipophilic drugs without significant efflux inhibition, and use of such formulations
US20080038316A1 (en) * 2004-10-01 2008-02-14 Wong Vernon G Conveniently implantable sustained release drug compositions
US20060088558A1 (en) * 2004-10-26 2006-04-27 Robert Jandzinski Vitamin E TPGS fluid concentrate comprising a low percentage of water
GT200500310A (en) * 2004-11-19 2006-06-19 ORGANIC COMPOUNDS
US20060147518A1 (en) * 2004-12-30 2006-07-06 Pierre Fabre Medicament Stable solid dispersion of a derivative of vinca alkaloid and process for manufacturing it
JP4877899B2 (en) * 2005-01-25 2012-02-15 学校法人近畿大学 Drug sustained release spherical fine particles and method for producing the same
US20090239827A1 (en) * 2005-03-03 2009-09-24 Esra Ogru Compounds having lipid lowering properties
US20060222716A1 (en) * 2005-04-01 2006-10-05 Joseph Schwarz Colloidal solid lipid vehicle for pharmaceutical use
WO2006110862A2 (en) * 2005-04-12 2006-10-19 Wisconsin Alumni Research Foundation Micelle composition of polymer and passenger drug
US20060240051A1 (en) * 2005-04-26 2006-10-26 Singleton Andy H Eutectic blends containing a water soluble vitamin derivative
KR20080000682A (en) 2005-04-29 2008-01-02 코산 바이오사이언시즈, 인코포레이티드 Method of treating multiple myeloma using 17-aag or 17-ag or a prodrug of either
ES2390353T3 (en) * 2005-06-13 2012-11-12 Dainippon Sumitomo Pharma Co., Ltd. Dissolution Preparation
US9168216B2 (en) * 2005-06-17 2015-10-27 Vital Health Sciences Pty. Ltd. Carrier comprising one or more di and/or mono-(electron transfer agent) phosphate derivatives or complexes thereof
KR20130122630A (en) 2005-07-29 2013-11-07 블랜체트 록펠러 뉴로사이언시즈 인스티튜트 Use of a pkc activator, alone or combined with a pkc inhibitor to enhance long term memory
KR20080033383A (en) * 2005-08-12 2008-04-16 아스트라제네카 아베 Process
WO2007035311A2 (en) * 2005-09-16 2007-03-29 University Of Massachusetts Lowell Anti-oxidant synergy formulation nanoemulsions to treat cancer
CN101346128B (en) * 2005-10-25 2013-10-02 雅培制药有限公司 Formulation comprising drug of low water solubility and method of use thereof
US20070104778A1 (en) * 2005-11-07 2007-05-10 Hongxia Zeng Controlled-release emulsion compositions
KR101415329B1 (en) 2005-11-28 2014-07-04 마리누스 파마슈티컬스 Ganaxolone formulations and methods for the making and use thereof
PT1965787E (en) * 2005-11-30 2013-07-05 Endo Pharmaceuticals Inc Treatment of xerostomia with a sulfur-containing antioxidant
US9486408B2 (en) 2005-12-01 2016-11-08 University Of Massachusetts Lowell Botulinum nanoemulsions
JP5324223B2 (en) 2005-12-08 2013-10-23 トランセイブ, インク. Lipid-based compositions of anti-infectives for treating pulmonary infections and uses thereof
AU2006330610B2 (en) 2005-12-19 2012-08-16 Pharmain Corporation Hydrophobic core carrier compositions for delivery of therapeutic agents, methods of making and using the same
TWI376239B (en) * 2006-02-01 2012-11-11 Andrew Xian Chen Vitamin e succinate stabilized pharmaceutical compositions, methods for the preparation and the use thereof
CN101011355B (en) * 2006-02-01 2013-01-02 陈献 Vitamin e succinate stabilized pharmaceutical compositions, methods for the preparation and the use thereof
AU2007224940B2 (en) * 2006-03-10 2013-08-29 Pivot Europe Pharmaceuticals Ag Method for solubilizing, dispersing, and stabilizing materials, products manufactured according to said method, and use thereof
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
KR100917809B1 (en) 2006-05-22 2009-09-18 에스케이케미칼주식회사 Stable Pharmaceutical Composition containing Docetaxel
US20080090897A1 (en) 2006-08-11 2008-04-17 The Johns Hopkins University Compositions and methods for neuroprotectin
EP2529621B1 (en) 2006-09-22 2016-10-05 Pharmacyclics LLC Inhibitors of bruton's tyrosine kinase
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8414526B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids
US8414910B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8998846B2 (en) 2006-11-20 2015-04-07 Lutonix, Inc. Drug releasing coatings for balloon catheters
EP2092941A3 (en) * 2006-11-20 2009-11-18 Lutonix, Inc. Drug releasing coatings for medical devices
US9700704B2 (en) 2006-11-20 2017-07-11 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8414525B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US20080276935A1 (en) 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
US20080175887A1 (en) 2006-11-20 2008-07-24 Lixiao Wang Treatment of Asthma and Chronic Obstructive Pulmonary Disease With Anti-proliferate and Anti-inflammatory Drugs
US9737640B2 (en) 2006-11-20 2017-08-22 Lutonix, Inc. Drug releasing coatings for medical devices
US8425459B2 (en) 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
JP2010510988A (en) 2006-11-28 2010-04-08 マリナス ファーマシューティカルズ Nanoparticle formulation, method for producing the same and use thereof
SG177184A1 (en) 2006-12-01 2012-01-30 Anterios Inc Amphiphilic entity nanoparticles
WO2008088037A1 (en) * 2007-01-18 2008-07-24 National University Corporation Chiba University Finely particulate medicinal preparation
US9974832B2 (en) * 2007-02-09 2018-05-22 Cognitive Research Enterprises, Inc. Therapeutic effects of bryostatins, bryologs, and other related substances on head trauma-induced memory impairment and brain injury
CN101605533B (en) * 2007-02-09 2012-04-18 阿斯利康(瑞典)有限公司 Method for preparing stable dispersion of solid amorphous submicron particles in aqueous medium
CN101244053B (en) * 2007-02-16 2010-12-08 石药集团中奇制药技术(石家庄)有限公司 Novel dispersed system with docetaxel as main component
WO2008106571A2 (en) * 2007-02-28 2008-09-04 Abbott Laboratories Sustained release parenteral formulations of buprenorphine
WO2008137717A1 (en) 2007-05-04 2008-11-13 Transave, Inc. Compositions of multicationic drugs for reducing interactions with polyanionic biomolecules and methods and uses thereof
US9119783B2 (en) 2007-05-07 2015-09-01 Insmed Incorporated Method of treating pulmonary disorders with liposomal amikacin formulations
US9114081B2 (en) 2007-05-07 2015-08-25 Insmed Incorporated Methods of treating pulmonary disorders with liposomal amikacin formulations
US9333214B2 (en) 2007-05-07 2016-05-10 Insmed Incorporated Method for treating pulmonary disorders with liposomal amikacin formulations
US8426467B2 (en) 2007-05-22 2013-04-23 Baxter International Inc. Colored esmolol concentrate
US8722736B2 (en) 2007-05-22 2014-05-13 Baxter International Inc. Multi-dose concentrate esmolol with benzyl alcohol
US7960336B2 (en) 2007-08-03 2011-06-14 Pharmain Corporation Composition for long-acting peptide analogs
US8563527B2 (en) 2007-08-20 2013-10-22 Pharmain Corporation Oligonucleotide core carrier compositions for delivery of nucleic acid-containing therapeutic agents, methods of making and using the same
WO2009035818A1 (en) 2007-09-10 2009-03-19 Calcimedica, Inc. Compounds that modulate intracellular calcium
WO2009048929A1 (en) 2007-10-08 2009-04-16 Lux Biosciences, Inc. Ophthalmic compositions comprising calcineurin inhibitors or mtor inhibitors
US20090130198A1 (en) 2007-11-21 2009-05-21 Innopharmax Inc. Pharmaceutical composition with enhanced bioavailability
BRPI0821514B8 (en) * 2007-12-24 2021-05-25 Sun Pharma Advanced Res Co Ltd nanodispersion
US20090176892A1 (en) * 2008-01-09 2009-07-09 Pharmain Corporation Soluble Hydrophobic Core Carrier Compositions for Delivery of Therapeutic Agents, Methods of Making and Using the Same
CN101519404B (en) 2008-02-29 2016-01-20 唐莉 15 ring thiophene ketone derivatives and preparation method thereof and application
DE102008015366A1 (en) * 2008-03-20 2009-09-24 Merck Patent Gmbh Lyophilised nanoemulsion
CA2718231C (en) 2008-03-20 2013-02-05 Virun, Inc. Emulsions including a peg-derivative of tocopherol
CN103190631B (en) * 2008-03-20 2016-01-20 维尔恩公司 Non-aqueous pre-emulsion composition and preparation comprise the method for the beverage of phytosterol
US8420110B2 (en) * 2008-03-31 2013-04-16 Cordis Corporation Drug coated expandable devices
US8409601B2 (en) * 2008-03-31 2013-04-02 Cordis Corporation Rapamycin coated expandable devices
US8603531B2 (en) 2008-06-02 2013-12-10 Cedars-Sinai Medical Center Nanometer-sized prodrugs of NSAIDs
US8268796B2 (en) 2008-06-27 2012-09-18 Children's Hospital & Research Center At Oakland Lipophilic nucleic acid delivery vehicle and methods of use thereof
WO2010009075A1 (en) * 2008-07-14 2010-01-21 The University Of North Carolina At Chapel Hill Methods and compositions comprising crystalline nanoparticles of hydrophobic compounds
FR2933871B1 (en) * 2008-07-18 2012-12-14 Yvery FORMULATION FOR IMPROVING THE BIOAVAILABILITY OF A HYDROPHOBIC MOLECULE
CN102256969A (en) 2008-08-27 2011-11-23 钙医学公司 Compounds that modulate intracellular calcium
WO2010024898A2 (en) 2008-08-29 2010-03-04 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
US9676744B2 (en) 2008-09-19 2017-06-13 Purdue Research Foundation Long-chain carboxychromanols and analogs for use as anti-inflammatory agents
WO2010033687A1 (en) * 2008-09-19 2010-03-25 Purdue Research Foundation Long-chain carboxychromanols and analogs for use as anti-inflammatory agents
US8165658B2 (en) * 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US20140105822A1 (en) * 2008-11-24 2014-04-17 Cedars-Sinai Medical Center Nanospheres comprising tocopherol, an amphiphilic spacer and a therapeutic or imaging agent
US20100158905A1 (en) 2008-12-19 2010-06-24 Nuon Therapeutics, Inc. Combination therapy of arthritis with tranilast
US11304960B2 (en) 2009-01-08 2022-04-19 Chandrashekar Giliyar Steroidal compositions
JP5339980B2 (en) * 2009-03-23 2013-11-13 富士フイルム株式会社 Dispersion composition and method for producing dispersion composition
CA2764635C (en) * 2009-06-09 2018-05-22 Lux Biosciences, Inc. Topical drug delivery systems for ophthalmic use
KR20120050414A (en) 2009-06-19 2012-05-18 썬 파마 어드밴스트 리서치 컴패니 리미티드 Nanodispersion of a drug and process for its preparation
CA2775747A1 (en) * 2009-10-07 2011-04-14 Sanford Burnham Medical Research Institute Methods and compositions related to clot-binding lipid compounds
US7718662B1 (en) 2009-10-12 2010-05-18 Pharmacyclics, Inc. Pyrazolo-pyrimidine inhibitors of bruton's tyrosine kinase
US8476310B2 (en) 2009-10-19 2013-07-02 Scidose Llc Docetaxel formulations with lipoic acid
CN102101863B (en) 2009-12-17 2014-10-15 唐莉 Novel epoxy thiazone compounds and preparation method and application thereof
US20110166214A1 (en) 2010-01-07 2011-07-07 Innopharma, Llc Methods and compositions for delivery of taxanes in stable oil-in-water emulsions
US10071030B2 (en) 2010-02-05 2018-09-11 Phosphagenics Limited Carrier comprising non-neutralised tocopheryl phosphate
TWI438009B (en) * 2010-02-19 2014-05-21 Teikoku Pharma Usa Inc Taxane pro-emulsion formulations and methods making and using the same
EP2563164B1 (en) * 2010-03-23 2016-06-29 Virun, Inc. Nanoemulsion including sucrose fatty acid ester
MX2012010935A (en) * 2010-03-26 2012-12-10 Onconova Therapeutics Inc Improved stable aqueous formulation of (e)-4-carboxystyryl-4-chlo robenzyl sulfone.
TWI507193B (en) 2010-03-30 2015-11-11 Phosphagenics Ltd Transdermal delivery patch
US20130030237A1 (en) 2010-04-15 2013-01-31 Charles Theuer Potentiation of anti-cancer activity through combination therapy with ber pathway inhibitors
WO2011133520A1 (en) 2010-04-19 2011-10-27 Synta Pharmaceuticals Corp. Cancer therapy using a combination of a hsp90 inhibitory compounds and a egfr inhibitor
US8754219B2 (en) 2010-04-27 2014-06-17 Calcimedica, Inc. Compounds that modulate intracellular calcium
PL2563776T3 (en) 2010-04-27 2017-01-31 Calcimedica Inc Compounds that modulate intracellular calcium
BR112012028037A2 (en) 2010-05-03 2016-08-02 Teikoku Pharma Usa Inc non-aqueous taxane liquid proemulsion formulation, methods for administering a taxane to a patient and for manufacturing a taxane proemulsion formulation, taxane emulsion composition, and kit
EP2568999B1 (en) 2010-05-11 2018-07-11 Mallinckrodt Ard Ip Limited Acth for treatment of amyotrophic lateral sclerosis
WO2011146801A1 (en) * 2010-05-20 2011-11-24 Synta Pharmaceuticals Corp. Formulation and dosing of hsp90 inhibitory compounds
KR101580714B1 (en) 2010-06-03 2016-01-04 파마싸이클릭스 엘엘씨 The use of inhibitors of bruton's tyrosine kinase (btk)
US8741373B2 (en) 2010-06-21 2014-06-03 Virun, Inc. Compositions containing non-polar compounds
US9079891B2 (en) 2010-08-27 2015-07-14 Calcimedica, Inc. Compounds that modulate intracellular calcium
US8796416B1 (en) 2010-10-25 2014-08-05 Questcor Pharmaceuticals, Inc ACTH prophylactic treatment of renal disorders
US9504664B2 (en) 2010-10-29 2016-11-29 Infirst Healthcare Limited Compositions and methods for treating severe pain
US10695432B2 (en) 2010-10-29 2020-06-30 Infirst Healthcare Limited Solid solution compositions and use in severe pain
US9744132B2 (en) 2010-10-29 2017-08-29 Infirst Healthcare Limited Solid solution compositions and use in chronic inflammation
US10695431B2 (en) 2010-10-29 2020-06-30 Infirst Healthcare Limited Solid solution compositions and use in cardiovascular disease
US9271950B2 (en) 2010-10-29 2016-03-01 Infirst Healthcare Limited Compositions for treating chronic inflammation and inflammatory diseases
US9737500B2 (en) 2010-10-29 2017-08-22 Infirst Healthcare Limited Compositions and methods for treating severe pain
US8895537B2 (en) 2010-10-29 2014-11-25 Infirst Healthcare Ltd. Compositions and methods for treating cardiovascular diseases
US9308213B2 (en) 2010-10-29 2016-04-12 Infirst Healthcare Limited Solid solution compositions and use in chronic inflammation
US11730709B2 (en) 2010-10-29 2023-08-22 Infirst Healthcare Limited Compositions and methods for treating severe pain
US11224659B2 (en) 2010-10-29 2022-01-18 Infirst Healthcare Limited Solid solution compositions and use in severe pain
US11202831B2 (en) 2010-10-29 2021-12-21 Infirst Healthcare Limited Solid solution compositions and use in cardiovascular disease
RU2603833C2 (en) * 2010-11-08 2016-11-27 Кадила Фармасьютикалз Лимитед Pharmaceutical composition of taxoids
US9358241B2 (en) 2010-11-30 2016-06-07 Lipocine Inc. High-strength testosterone undecanoate compositions
US20180153904A1 (en) 2010-11-30 2018-06-07 Lipocine Inc. High-strength testosterone undecanoate compositions
US9034858B2 (en) 2010-11-30 2015-05-19 Lipocine Inc. High-strength testosterone undecanoate compositions
US20120148675A1 (en) 2010-12-10 2012-06-14 Basawaraj Chickmath Testosterone undecanoate compositions
BR112013019734A2 (en) * 2011-02-04 2016-10-25 Biocopea Ltd compositions and methods for treating chronic inflammation and inflammatory diseases
EP2685992A4 (en) 2011-03-15 2014-09-10 Phosphagenics Ltd Amino-quinolines as kinase inhibitors
CA2853799A1 (en) 2011-11-02 2013-05-10 Synta Pharmaceuticals Corp. Cancer therapy using a combination of hsp90 inhibitors with topoisomerase i inhibitors
JP2014534228A (en) 2011-11-02 2014-12-18 シンタ ファーマシューティカルズ コーポレーション Combination therapy of platinum-containing agents and HSP90 inhibitors
US9717678B2 (en) * 2011-11-06 2017-08-01 Murty Pharmaceuticals, Inc. Delivery systems for improving oral bioavailability of Fenobam, its hydrates, and salts
AU2012339679A1 (en) 2011-11-14 2014-06-12 Synta Pharmaceuticals Corp. Combination therapy of Hsp90 inhibitors with BRAF inhibitors
US8377946B1 (en) 2011-12-30 2013-02-19 Pharmacyclics, Inc. Pyrazolo[3,4-d]pyrimidine and pyrrolo[2,3-d]pyrimidine compounds as kinase inhibitors
SG11201404640YA (en) 2012-02-10 2014-09-26 Virun Inc Beverage compositions containing non-polar compounds
US20130226550A1 (en) * 2012-02-23 2013-08-29 Hassan Benameur Systems and methods for modeling compound formulations
EP4331675A3 (en) 2012-05-21 2024-05-29 Insmed Incorporated Systems for treating pulmonary infections
AR091858A1 (en) 2012-07-25 2015-03-04 Sova Pharmaceuticals Inc CISTATIONIN-g-LIASA INHIBITORS (CSE)
AR091857A1 (en) 2012-07-25 2015-03-04 Sova Pharmaceuticals Inc CISTATIONIN-g-LIASA INHIBITORS (CSE)
JO3685B1 (en) 2012-10-01 2020-08-27 Teikoku Pharma Usa Inc Non-aqueous taxane nanodispersion formulations and methods of using the same
US9512116B2 (en) 2012-10-12 2016-12-06 Calcimedica, Inc. Compounds that modulate intracellular calcium
AU2013352259B2 (en) 2012-11-29 2018-06-14 Insmed Incorporated Stabilized vancomycin formulations
AU2013361217B2 (en) * 2012-12-21 2018-09-20 National Health Research Institutes Mesoporous silica nanoparticles for oil absorption
JP6122646B2 (en) * 2013-01-23 2017-04-26 昭和電工株式会社 Topical skin preparation
EP2968475A2 (en) 2013-03-14 2016-01-20 Questcor Pharmaceuticals, Inc. Acth for treatment of acute respiratory distress syndrome
US9351517B2 (en) 2013-03-15 2016-05-31 Virun, Inc. Formulations of water-soluble derivatives of vitamin E and compositions containing same
US20140314672A1 (en) * 2013-04-06 2014-10-23 Igdrasol, Inc. Nanoparticle therapeutic agents, their formulations, and methods of their use
US9585417B2 (en) * 2013-06-20 2017-03-07 Vitasome Labs, Inc. Dietary supplement compositions with enhanced delivery matrix, and methods of making the same
US11044923B2 (en) 2013-06-20 2021-06-29 Vitasome Labs, Inc. Gummies containing formulations with enhanced delivery matrix, and methods of making same
US10299492B2 (en) * 2013-06-20 2019-05-28 James John YIANNIOS Dietary supplement compositions with enhanced delivery matrix, gummies, chocolates, atomizers and powders containing same, and methods of making same
US9693574B2 (en) 2013-08-08 2017-07-04 Virun, Inc. Compositions containing water-soluble derivatives of vitamin E mixtures and modified food starch
US9896403B2 (en) * 2014-08-22 2018-02-20 Ironstone Separations, Inc. Solubilization of pterostilbene and resveratrol in aqueous beverages
WO2015054283A1 (en) 2013-10-08 2015-04-16 Calcimedica, Inc. Compounds that modulate intracellular calcium
US9382246B2 (en) 2013-12-05 2016-07-05 Pharmacyclics Llc Inhibitors of Bruton's tyrosine kinase
BR112016026699B1 (en) 2014-05-15 2022-09-13 Insmed Incorporated USE OF A PHARMACEUTICAL COMPOSITION OF AMICACIN OR A PHARMACEUTICALLY ACCEPTABLE SALT THEREOF
WO2016033556A1 (en) 2014-08-28 2016-03-03 Lipocine Inc. BIOAVAILABLE SOLID STATE (17-β)-HYDROXY-4-ANDROSTEN-3-ONE ESTERS
US20170246187A1 (en) 2014-08-28 2017-08-31 Lipocine Inc. (17-ß)-3-OXOANDROST-4-EN-17-YL TRIDECANOATE COMPOSITIONS AND METHODS OF THEIR PREPARATION AND USE
US9839644B2 (en) 2014-09-09 2017-12-12 ARKAY Therapeutics, LLC Formulations and methods for treatment of metabolic syndrome
US10016363B2 (en) 2014-09-18 2018-07-10 Virun, Inc. Pre-spray emulsions and powders containing non-polar compounds
US9861611B2 (en) 2014-09-18 2018-01-09 Virun, Inc. Formulations of water-soluble derivatives of vitamin E and soft gel compositions, concentrates and powders containing same
MY182652A (en) * 2014-11-25 2021-01-27 Kl Kepong Oleomas Sdn Bhd Formulation for effective tocotrienol delivery
US9359316B1 (en) 2014-11-25 2016-06-07 Concentric Analgesics, Inc. Prodrugs of phenolic TRPV1 agonists
US10227333B2 (en) 2015-02-11 2019-03-12 Curtana Pharmaceuticals, Inc. Inhibition of OLIG2 activity
EP3261631A4 (en) 2015-02-27 2019-03-06 Curtana Pharmaceuticals, Inc. Inhibition of olig2 activity
WO2016138505A1 (en) 2015-02-27 2016-09-01 Ebbu, LLC Compositions comprising combinations of purified cannabinoids, with at least one flavonoid, terpene, or mineral
CN107636252A (en) * 2015-03-23 2018-01-26 哈佛大学校长及研究员协会 For injecting the composition and method of high concentration and/or high viscosity activator solution
CN108135904A (en) 2015-08-31 2018-06-08 药品循环有限责任公司 For treating the combination of the BTK inhibitor of Huppert's disease
TWI715636B (en) 2015-09-30 2021-01-11 香港商慧源香港創新有限公司 Oral taxane compositions and methods
WO2017074957A1 (en) 2015-10-26 2017-05-04 MAX BioPharma, Inc. Oxysterols and hedgehog signaling
US9637514B1 (en) 2015-10-26 2017-05-02 MAX BioPharma, Inc. Oxysterols and hedgehog signaling
ES2981002T3 (en) 2015-12-09 2024-10-04 Avecho Biotechnology Ltd Pharmaceutical formulation
US10851123B2 (en) 2016-02-23 2020-12-01 Concentric Analgesics, Inc. Prodrugs of phenolic TRPV1 agonists
CN116509869A (en) 2016-04-04 2023-08-01 希诺皮亚生物科学公司 Treatment of extrapyramidal syndrome with trapidil
CA3024556A1 (en) 2016-05-12 2017-11-16 The Regents Of The University Of Michigan Ash1l inhibitors and methods of treatment therewith
CN109562281B (en) 2016-05-25 2021-12-17 同心镇痛药物公司 Prodrugs of phenolic TRPV1 agonists for use in combination with local anesthetics and vasoconstrictors for improving local anesthesia
WO2017205769A1 (en) 2016-05-27 2017-11-30 Pharmacyclics Llc Inhibitors of interleukin-1 receptor-associated kinase
WO2017205766A1 (en) 2016-05-27 2017-11-30 Pharmacyclics Llc Inhibitors of interleukin-1 receptor-associated kinase
WO2017205762A1 (en) 2016-05-27 2017-11-30 Pharmacyclics Llc Inhibitors of interleukin-1 receptor-associated kinase
JP7028860B2 (en) 2016-08-26 2022-03-02 カーテナ ファーマシューティカルズ,インク. Inhibition of OLIG2 activity
EP3503875A4 (en) * 2016-08-29 2020-06-24 Canopy Growth Corporation Water soluble compositions comprising purified cannabinoids
CN110198703A (en) 2016-11-21 2019-09-03 艾里奥治疗公司 The transdermal delivery of big reagent
JP2020503269A (en) 2016-11-28 2020-01-30 リポカイン インコーポレーテッド Oral testosterone undecanoate therapy
EP3558903B1 (en) 2016-12-21 2024-07-03 Avecho Biotechnology Limited Process for phosphorylating a complex alcohol
US11141398B2 (en) 2017-01-08 2021-10-12 The United States Government As Represented By The Department Of Veterans Affairs Methods for decreasing injuries associated with intraoperative hypotension
US20190224275A1 (en) 2017-05-12 2019-07-25 Aurinia Pharmaceuticals Inc. Protocol for treatment of lupus nephritis
EP3706735A1 (en) 2017-11-06 2020-09-16 Snap Bio, Inc. Pim kinase inhibitor compositions, methods, and uses thereof
JP2021502388A (en) 2017-11-10 2021-01-28 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン ASH1L inhibitor and treatment method using it
WO2019113469A1 (en) 2017-12-07 2019-06-13 The Regents Of The University Of Michigan Nsd family inhibitors and methods of treatment therewith
EP3508562A1 (en) * 2018-01-05 2019-07-10 Castrol Limited Micellar emulsions
US11685722B2 (en) 2018-02-28 2023-06-27 Curtana Pharmaceuticals, Inc. Inhibition of Olig2 activity
EP3773505A4 (en) 2018-03-30 2021-12-22 Insmed Incorporated Methods for continuous manufacture of liposomal drug products
HRP20231367T1 (en) 2018-04-30 2024-02-16 Cedars-Sinai Medical Center Methods and systems for selection and treatment of patients with inflammatory diseases
WO2019227043A1 (en) * 2018-05-25 2019-11-28 Resq Pharma, Inc. Pre-filled syringe kit
WO2019236957A1 (en) 2018-06-07 2019-12-12 The Regents Of The University Of Michigan Prc1 inhibitors and methods of treatment therewith
CA3107433A1 (en) 2018-07-27 2020-01-30 Concentric Analgesics, Inc. Pegylated prodrugs of phenolic trpv1 agonists
WO2020046466A1 (en) 2018-08-29 2020-03-05 Myos Rens Technology, Inc. Methods for alleviating, inhibiting or reversing muscle disuse atrophy in mammals
US20220040201A1 (en) * 2018-09-25 2022-02-10 Tolmar International, Ltd. Liquid polymer delivery system for extended administration of drugs
US20200108102A1 (en) 2018-10-03 2020-04-09 Myos Rens Technology Inc. Spray dried follistatin product
US10925904B2 (en) 2018-11-06 2021-02-23 Myos Rens Technology, Inc. Methods and compositions for improving skeletal muscle protein fractional synthetic rate
WO2020135920A1 (en) * 2018-12-28 2020-07-02 Université Libre de Bruxelles Kit for inhaled chemotherapy, and treatment of lung cancer with said kit
EP3906026A4 (en) 2018-12-31 2022-10-19 Biomea Fusion, LLC Irreversible inhibitors of menin-mll interaction
WO2020160113A1 (en) 2019-02-01 2020-08-06 Myos Rens Technology Inc. Egg yolk powder for improving quality of life and increasing activity in aging and chronically ill mammals
KR20220009373A (en) 2019-03-15 2022-01-24 유니사이시브 테라퓨틱스 인코포레이티드 nicorandyl derivatives
WO2020232125A1 (en) 2019-05-14 2020-11-19 Prometheus Biosciences, Inc. Tl1a patient selection methods, systems, and devices
JP2022537807A (en) 2019-06-21 2022-08-30 エンテレクソ バイオセラピューティクス インク. Platforms, compositions and methods for therapeutic delivery
US20210315902A1 (en) * 2020-03-25 2021-10-14 Forge Therapeutics, Inc. Lpxc inhibitor, formulations, and uses thereof
WO2021195260A1 (en) 2020-03-25 2021-09-30 Forge Therapeutics, Inc. Lpxc inhibitor and methods of making
EP4161492A1 (en) * 2020-06-05 2023-04-12 University Of Cyprus Therapeutic nanocarrier system and methods of use
CA3185209A1 (en) 2020-07-10 2021-01-27 Alyssa WINKLER Gas41 inhibitors and methods of use thereof
EP4263542A1 (en) 2020-12-16 2023-10-25 Biomea Fusion, Inc. Fused pyrimidine compounds as inhibitors of menin-mll interaction
JP2024531170A (en) 2021-08-11 2024-08-29 バイオメア フュージョン,インコーポレイテッド Covalent inhibitors of menin-mll interaction for diabetes mellitus
WO2023027966A1 (en) 2021-08-24 2023-03-02 Biomea Fusion, Inc. Pyrazine compounds as irreversible inhibitors of flt3
WO2023039240A1 (en) 2021-09-13 2023-03-16 Biomea Fusion, Inc. IRREVERSIBLE INHIBITORS OF KRas
WO2023086341A1 (en) 2021-11-09 2023-05-19 Biomea Fusion, Inc. Inhibitors of kras
WO2023119230A1 (en) 2021-12-22 2023-06-29 L'oreal Coagulation pathway and nicotinamide-adenine dinucleotide pathway modulating compositions and methods of their use
WO2023129667A1 (en) 2021-12-30 2023-07-06 Biomea Fusion, Inc. Pyrazine compounds as inhibitors of flt3
WO2023235618A1 (en) 2022-06-03 2023-12-07 Biomea Fusion, Inc. Fused pyrimidine compounds as inhibitors of menin
WO2024086613A2 (en) 2022-10-19 2024-04-25 Myos Corp. Myogenic compounds

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439432A (en) * 1982-03-22 1984-03-27 Peat Raymond F Treatment of progesterone deficiency and related conditions with a stable composition of progesterone and tocopherols
US4551332A (en) * 1981-08-05 1985-11-05 Theodore Stillman Vitamin E compositions and methods
US4578391A (en) * 1982-01-20 1986-03-25 Yamanouchi Pharmaceutical Co., Ltd. Oily compositions of antitumor drugs
US4784845A (en) * 1985-09-16 1988-11-15 American Cyanamid Company Emulsion compostions for the parenteral administration of sparingly water soluble ionizable hydrophobic drugs
US4797285A (en) * 1985-12-06 1989-01-10 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Lipsome/anthraquinone drug composition and method
US4898735A (en) * 1985-12-06 1990-02-06 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Liposome/doxorubicin composition and method
US4960814A (en) * 1988-06-13 1990-10-02 Eastman Kodak Company Water-dispersible polymeric compositions
US4997852A (en) * 1987-08-26 1991-03-05 Ohio State University Research Foundation Method and composition for achieving cancer chemopreventive and chemotherapeutic activity
US5002767A (en) * 1985-05-02 1991-03-26 Laboratories Natura Medica Therapeutic composition containing alpha-linolenic acid and a compound capable of promoting the passage of the acid through the cell membrane, plant extract comprising the acid and the compound, and process for the preparation of the extract
US5041278A (en) * 1985-10-15 1991-08-20 The Liposome Company, Inc. Alpha tocopherol-based vesicles
US5114957A (en) * 1990-05-08 1992-05-19 Biodor U.S. Holding Tocopherol-based antiviral agents and method of using same
US5387579A (en) * 1990-01-31 1995-02-07 Lvmh Recherche Use of α-tocopherol phosphate or a derivative thereof for preparing cosmetic, dermatological or pharmaceutical compositions, and compositions thereby obtained
US5391337A (en) * 1991-06-24 1995-02-21 Ford Motor Company Method for making evaporative casting patterns
US5391377A (en) * 1990-10-19 1995-02-21 Cortecs Limited Biphasic release formations for lipophilic acids
US5403858A (en) * 1991-07-08 1995-04-04 Rhone-Poulenc Rorer, S.A. New compositions containing taxane derivatives
US5407683A (en) * 1990-06-01 1995-04-18 Research Corporation Technologies, Inc. Pharmaceutical solutions and emulsions containing taxol
US5415869A (en) * 1993-11-12 1995-05-16 The Research Foundation Of State University Of New York Taxol formulation
US5478860A (en) * 1993-06-04 1995-12-26 Inex Pharmaceuticals Corp. Stable microemulsions for hydrophobic compound delivery
US5504102A (en) * 1993-09-29 1996-04-02 Bristol-Myers Squibb Company Stabilized pharmaceutical composition and stabilizing solvent
US5532002A (en) * 1989-08-17 1996-07-02 Cortecs Limited Gelatin pharmaceutical formulations
US5534499A (en) * 1994-05-19 1996-07-09 The University Of British Columbia Lipophilic drug derivatives for use in liposomes
US5573781A (en) * 1993-12-29 1996-11-12 Matrix Pharmaceutical, Inc. Methods and compositions for the treatment of a host with a cellular proliferative disease
US5583105A (en) * 1994-11-21 1996-12-10 Biogal Gyogyszerguar Rt Oral pharmaceutical preparation
US5614549A (en) * 1992-08-21 1997-03-25 Enzon, Inc. High molecular weight polymer-based prodrugs
US5616330A (en) * 1994-07-19 1997-04-01 Hemagen/Pfc Stable oil-in-water emulsions incorporating a taxine (taxol) and method of making same
US5621001A (en) * 1992-08-03 1997-04-15 Bristol-Myers Squibb Company Methods for administration of taxol
US5626869A (en) * 1992-03-27 1997-05-06 Pharmacia & Upjohn Ab Pharmaceutical composition containing a defined lipid system
US5648506A (en) * 1992-06-04 1997-07-15 Vivorx, Inc. Water-soluble polymeric carriers for drug delivery
US5653998A (en) * 1994-09-12 1997-08-05 Bayer Aktiengesellschaft Injectable liposomal pharmaceutical preparations
US5681846A (en) * 1995-03-17 1997-10-28 Board Of Regents, The University Of Texas System Extended stability formulations for paclitaxel
US5683715A (en) * 1993-05-17 1997-11-04 The Liposome Company, Inc. Taxane-containing phosphatidylcholine liposomes
US5726181A (en) * 1995-06-05 1998-03-10 Bionumerik Pharmaceuticals, Inc. Formulations and compositions of poorly water soluble camptothecin derivatives
US5733888A (en) * 1992-11-27 1998-03-31 Napro Biotherapeutics, Inc. Injectable composition
US5733526A (en) * 1995-12-14 1998-03-31 Alliance Pharmaceutical Corp. Hydrocarbon oil/fluorochemical preparations and methods of use
US5863715A (en) * 1995-01-12 1999-01-26 The Governors Of The University Of Alberta Methods for bulk cryopreservation encapsulated islets
US5877205A (en) * 1996-06-28 1999-03-02 Board Of Regents, The University Of Texas System Parenteral paclitaxel in a stable non-toxic formulation
US6096331A (en) * 1993-02-22 2000-08-01 Vivorx Pharmaceuticals, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US6136846A (en) * 1999-10-25 2000-10-24 Supergen, Inc. Formulation for paclitaxel
US6146659A (en) * 1998-07-01 2000-11-14 Neopharm, Inc. Method of administering liposomal encapsulated taxane
US20030109575A1 (en) * 1997-01-07 2003-06-12 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7711916A (en) 1977-10-29 1979-05-02 Akzo Nv PROCESS FOR PREPARING HIGHLY CONCENTRATED PHARMACEUTICAL PREPARATIONS OF STEROIDS.
CA1338702C (en) 1987-03-05 1996-11-12 Lawrence D. Mayer High drug:lipid formulations of liposomal- antineoplastic agents
FI883337A (en) 1987-07-16 1989-01-17 Bristol Myers Co ICKE-VATTENLOESNINGAR AV DOXORUBICINHYDROKLORIN.
AU620048B2 (en) 1987-09-03 1992-02-13 University Of Georgia Research Foundation, Inc., The Ocular cyclosporin composition
WO1989003689A1 (en) 1987-10-19 1989-05-05 The Liposome Company, Inc. Tocopherol-based pharmaceutical systems
FR2641832B1 (en) * 1989-01-13 1991-04-12 Melchior Jean COUPLING FOR TRANSMISSION OF ALTERNATE COUPLES
US5169846A (en) 1989-10-12 1992-12-08 Crooks Michael J Non-aqueous micellar solutions of anthelmintic benzimidazoles, closantel, or phenothiazine, and insect growth regulators
AU653325B2 (en) 1990-02-12 1994-09-29 Lucky Limited A composition durably releasing bioactive polypeptides
ES2097145T3 (en) 1990-03-28 1997-04-01 Noven Pharma METHOD AND DEVICE FOR THE RELEASE OF DRUGS IN THE SKIN.
US5179122A (en) 1991-02-11 1993-01-12 Eastman Kodak Company Nutritional supplement containing vitamin e
US6150398A (en) * 1991-05-08 2000-11-21 The United States Of America As Represented By The Department Of Health And Human Services Methods for the treatment of cancer
EP0546951A1 (en) 1991-12-13 1993-06-16 The Liposome Company, Inc. Combination of liposome encapsulated antineoplastic agents, such as doxorubicin with colony stimulating factors
US6153193A (en) 1993-04-28 2000-11-28 Supratek Pharma Inc. Compositions for targeting biological agents
GB9224502D0 (en) 1992-11-23 1993-01-13 New Roger R C Method of preparing a lipid-containing formulation
CA2157383A1 (en) 1993-03-03 1994-09-15 Shinichi Fukuyama Optical isomerization inhibitor
CA2092271C (en) * 1993-03-09 2009-10-13 Eddie Reed Use of g-csf for treating taxol side-effects
DE4322826A1 (en) 1993-07-08 1995-01-12 Galenik Labor Freiburg Gmbh Pharmaceutical preparation
US5468769A (en) * 1993-07-15 1995-11-21 Abbott Laboratories Paclitaxel derivatives
WO1995011039A1 (en) 1993-10-22 1995-04-27 Hexal Pharma Gmbh PHARMACEUTICAL COMPOSITION CONTAINING CYCLOSPORINE A AND α-TOCOPHEROL
US5731334A (en) * 1994-01-11 1998-03-24 The Scripps Research Institute Method for treating cancer using taxoid onium salt prodrugs
PL178397B1 (en) 1994-02-04 2000-04-28 Scotia Lipidteknik Ab Oil-in-water type emulsion
WO1995024892A1 (en) 1994-03-14 1995-09-21 Abbott Laboratories Aerosol drug formulations containing vitamin e
DE69535127T2 (en) 1994-03-18 2007-02-15 Supernus Pharmaceuticals, Inc. EMULSIFIED DRUG DISPENSING SYSTEMS
GB9409778D0 (en) 1994-05-16 1994-07-06 Dumex Ltd As Compositions
JP4107680B2 (en) 1994-11-18 2008-06-25 アフィオス・コーポレーション Method for producing liposomes containing a hydrophobic drug
GB9424908D0 (en) 1994-12-09 1995-02-08 Cortecs Ltd Anti-Oxidant Compositions
GB9424901D0 (en) 1994-12-09 1995-02-08 Cortecs Ltd Sequestration Agents
GB9424902D0 (en) 1994-12-09 1995-02-08 Cortecs Ltd Solubilisation Aids
KR100239799B1 (en) 1995-01-21 2000-02-01 손경식 Cyclosporin a solid micelle dispersion for oral administration, the preparation method thereof and its solid dosage form
US5616342A (en) 1995-04-11 1997-04-01 Pdt, Inc. Emulsioin suitable for administering a poorly water-soluble photosensitizing compound and use thereof
JPH11504028A (en) 1995-04-24 1999-04-06 イースム リサーチ ディベロップメント カンパニー オブ ザ ヒーブル ユニバーシティ オブ エルサレム Self-emulsifying compounds that create oil / water emulsions
WO1996033987A1 (en) 1995-04-26 1996-10-31 Henkel Corporation Method of producing a tocopherol product
BR9608040B1 (en) * 1995-04-28 2010-02-23 pentacyclic taxoid compound.
EP0825849A1 (en) * 1995-05-19 1998-03-04 Abbott Laboratories Self-emulsifying formulations of lipophilic drugs
GB9514878D0 (en) 1995-07-20 1995-09-20 Danbiosyst Uk Vitamin E as a solubilizer for drugs contained in lipid vehicles
US5504220A (en) 1995-08-17 1996-04-02 Eastman Chemical Company Preparation of α-tocopherol
SE9503143D0 (en) 1995-09-12 1995-09-12 Astra Ab New preparation
KR0180334B1 (en) 1995-09-21 1999-03-20 김윤 Drug messenger using el-2l-2 micelle and method for sealing drug to it
US6120794A (en) 1995-09-26 2000-09-19 University Of Pittsburgh Emulsion and micellar formulations for the delivery of biologically active substances to cells
WO1997013528A1 (en) 1995-10-12 1997-04-17 Gs Development Ab A pharmaceutical composition for administration of an active substance to or through a skin or mucosal surface
US5965750A (en) 1995-10-17 1999-10-12 Showa Denko K.K. High- purity tocopherol phosphates, process for the preparation thereof, methods for analysis thereof, and cosmetics
NZ280689A (en) 1995-12-15 1997-08-22 Bernard Charles Sherma Sherman Pharmaceutical composition comprising a cyclosporipharmaceutical composition comprising a cyclosporin; a tocol, tocopherol or tocotrienol; and propylen; a tocol, tocopherol or tocotrienol; and propylene carbonate or polyethylene glycol ne carbonate or polyethylene glycol
DE19547986C1 (en) 1995-12-21 1997-07-10 Henkel Kgaa O / W microemulsions
EP0882036A1 (en) 1996-01-29 1998-12-09 Basf Aktiengesellschaft Method of producing dl-alpha-tocopherol or dl-alpha-tocopheryl acetate
WO1997029773A1 (en) 1996-02-13 1997-08-21 The Nisshin Oil Mills, Ltd. Vaccine-containing emulsion and vaccine-containing powder for oral administration and process for producing the same
US6245349B1 (en) 1996-02-23 2001-06-12 éLAN CORPORATION PLC Drug delivery compositions suitable for intravenous injection
EP1683520B1 (en) 1996-03-12 2013-11-20 PG-TXL Company, L.P. Water-soluble prodrugs
US5660858A (en) 1996-04-03 1997-08-26 Research Triangle Pharmaceuticals Cyclosporin emulsions
JP4142742B2 (en) 1996-05-23 2008-09-03 大正製薬株式会社 Microemulsion
ATE252316T1 (en) 1996-06-05 2003-11-15 Ashmont Holdings Ltd INJECTABLE COMPOSITIONS
AU727447B2 (en) 1996-07-03 2000-12-14 University Of Pittsburgh Emulsion formulations for hydrophilic active agents
US5744062A (en) 1996-08-29 1998-04-28 R.I.T.A. Corporation Balanced emulsifier blends for oil-in-water emulsions
DE19638045A1 (en) 1996-09-18 1998-03-19 Bayer Ag Injection formulations of avermectins and milbemycins
DE69714600T2 (en) 1996-10-08 2003-03-27 Kreatech Biotechnology B.V., Amsterdam METHOD FOR MARKING NUCLEOTIDES, MARKED NUCLEOTIDES AND USEFUL INTERMEDIATE PRODUCTS
US5827522A (en) 1996-10-30 1998-10-27 Troy Corporation Microemulsion and method
CA2189916C (en) * 1996-11-08 2001-01-16 Parkash S. Gill A new regime for paclitaxel in kaposi's sarcoma patients
US5908939A (en) 1996-11-11 1999-06-01 Roche Vitamins Inc. Method of making D,L-A-tocopherol
US6727280B2 (en) * 1997-01-07 2004-04-27 Sonus Pharmaceuticals, Inc. Method for treating colorectal carcinoma using a taxane/tocopherol formulation
NZ314060A (en) 1997-01-13 1997-08-22 Bernard Charles Sherman Pharmaceutical microemulsion preconcentrate comprising cyclosporin dissolved in a solvent system comprising hydrophobic solvent(s) and surfactant(s)
CA2282411A1 (en) 1997-02-27 1998-09-03 Nippon Shinyaku Co., Ltd. Fat emulsion for oral administration
NZ337316A (en) 1997-03-12 2001-06-29 Abbott Lab Hydrophilic binary systems comprising cyclosporine, hydrophilic phase and a surfactant for the administration of cyclosporine
EP0973502A1 (en) 1997-03-12 2000-01-26 Abbott Laboratories Lipophilic binary systems for the administration of lipophilic compounds
CN1252711A (en) 1997-04-18 2000-05-10 大正制药株式会社 Microemulsion
US7030155B2 (en) * 1998-06-05 2006-04-18 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
WO2001025223A1 (en) * 1999-10-06 2001-04-12 The Research Foundation Of State University Of New York Stabilization of taxane-containing dispersed systems

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551332A (en) * 1981-08-05 1985-11-05 Theodore Stillman Vitamin E compositions and methods
US4578391A (en) * 1982-01-20 1986-03-25 Yamanouchi Pharmaceutical Co., Ltd. Oily compositions of antitumor drugs
US4439432A (en) * 1982-03-22 1984-03-27 Peat Raymond F Treatment of progesterone deficiency and related conditions with a stable composition of progesterone and tocopherols
US5002767A (en) * 1985-05-02 1991-03-26 Laboratories Natura Medica Therapeutic composition containing alpha-linolenic acid and a compound capable of promoting the passage of the acid through the cell membrane, plant extract comprising the acid and the compound, and process for the preparation of the extract
US4784845A (en) * 1985-09-16 1988-11-15 American Cyanamid Company Emulsion compostions for the parenteral administration of sparingly water soluble ionizable hydrophobic drugs
US5041278A (en) * 1985-10-15 1991-08-20 The Liposome Company, Inc. Alpha tocopherol-based vesicles
US5330689A (en) * 1985-10-15 1994-07-19 The Liposome Company, Inc. Entrapment of water-insoluble compound in alpha tocopherol-based vesicles
US4898735A (en) * 1985-12-06 1990-02-06 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Liposome/doxorubicin composition and method
US4797285A (en) * 1985-12-06 1989-01-10 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Lipsome/anthraquinone drug composition and method
US4997852A (en) * 1987-08-26 1991-03-05 Ohio State University Research Foundation Method and composition for achieving cancer chemopreventive and chemotherapeutic activity
US4960814A (en) * 1988-06-13 1990-10-02 Eastman Kodak Company Water-dispersible polymeric compositions
US5532002A (en) * 1989-08-17 1996-07-02 Cortecs Limited Gelatin pharmaceutical formulations
US5387579A (en) * 1990-01-31 1995-02-07 Lvmh Recherche Use of α-tocopherol phosphate or a derivative thereof for preparing cosmetic, dermatological or pharmaceutical compositions, and compositions thereby obtained
US5114957A (en) * 1990-05-08 1992-05-19 Biodor U.S. Holding Tocopherol-based antiviral agents and method of using same
US5407683A (en) * 1990-06-01 1995-04-18 Research Corporation Technologies, Inc. Pharmaceutical solutions and emulsions containing taxol
US5391377A (en) * 1990-10-19 1995-02-21 Cortecs Limited Biphasic release formations for lipophilic acids
US5391337A (en) * 1991-06-24 1995-02-21 Ford Motor Company Method for making evaporative casting patterns
US5403858A (en) * 1991-07-08 1995-04-04 Rhone-Poulenc Rorer, S.A. New compositions containing taxane derivatives
US5626869A (en) * 1992-03-27 1997-05-06 Pharmacia & Upjohn Ab Pharmaceutical composition containing a defined lipid system
US5648506A (en) * 1992-06-04 1997-07-15 Vivorx, Inc. Water-soluble polymeric carriers for drug delivery
US5621001A (en) * 1992-08-03 1997-04-15 Bristol-Myers Squibb Company Methods for administration of taxol
US5614549A (en) * 1992-08-21 1997-03-25 Enzon, Inc. High molecular weight polymer-based prodrugs
US5733888A (en) * 1992-11-27 1998-03-31 Napro Biotherapeutics, Inc. Injectable composition
US5977164A (en) * 1992-11-27 1999-11-02 Napro Biotherapeutics, Inc. Stabilized pharmaceutical composition
US6096331A (en) * 1993-02-22 2000-08-01 Vivorx Pharmaceuticals, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US5683715A (en) * 1993-05-17 1997-11-04 The Liposome Company, Inc. Taxane-containing phosphatidylcholine liposomes
US5478860A (en) * 1993-06-04 1995-12-26 Inex Pharmaceuticals Corp. Stable microemulsions for hydrophobic compound delivery
US5504102A (en) * 1993-09-29 1996-04-02 Bristol-Myers Squibb Company Stabilized pharmaceutical composition and stabilizing solvent
US5415869A (en) * 1993-11-12 1995-05-16 The Research Foundation Of State University Of New York Taxol formulation
US5573781A (en) * 1993-12-29 1996-11-12 Matrix Pharmaceutical, Inc. Methods and compositions for the treatment of a host with a cellular proliferative disease
US5534499A (en) * 1994-05-19 1996-07-09 The University Of British Columbia Lipophilic drug derivatives for use in liposomes
US5616330A (en) * 1994-07-19 1997-04-01 Hemagen/Pfc Stable oil-in-water emulsions incorporating a taxine (taxol) and method of making same
US5653998A (en) * 1994-09-12 1997-08-05 Bayer Aktiengesellschaft Injectable liposomal pharmaceutical preparations
US5583105A (en) * 1994-11-21 1996-12-10 Biogal Gyogyszerguar Rt Oral pharmaceutical preparation
US5863715A (en) * 1995-01-12 1999-01-26 The Governors Of The University Of Alberta Methods for bulk cryopreservation encapsulated islets
US5681846A (en) * 1995-03-17 1997-10-28 Board Of Regents, The University Of Texas System Extended stability formulations for paclitaxel
US5726181A (en) * 1995-06-05 1998-03-10 Bionumerik Pharmaceuticals, Inc. Formulations and compositions of poorly water soluble camptothecin derivatives
US5733526A (en) * 1995-12-14 1998-03-31 Alliance Pharmaceutical Corp. Hydrocarbon oil/fluorochemical preparations and methods of use
US5877205A (en) * 1996-06-28 1999-03-02 Board Of Regents, The University Of Texas System Parenteral paclitaxel in a stable non-toxic formulation
US20030109575A1 (en) * 1997-01-07 2003-06-12 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US6660286B1 (en) * 1997-01-07 2003-12-09 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US6667048B1 (en) * 1997-01-07 2003-12-23 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US6146659A (en) * 1998-07-01 2000-11-14 Neopharm, Inc. Method of administering liposomal encapsulated taxane
US6136846A (en) * 1999-10-25 2000-10-24 Supergen, Inc. Formulation for paclitaxel

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030109575A1 (en) * 1997-01-07 2003-06-12 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US20050142189A1 (en) * 1997-01-07 2005-06-30 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US20030191093A1 (en) * 2001-12-03 2003-10-09 Novacea, Inc. Pharmaceutical compositions comprising active vitamin D compounds
US20070003614A1 (en) * 2001-12-03 2007-01-04 Chen Andrew X Pharmaceutical compositions comprising active vitamin D compounds
US20050026877A1 (en) * 2002-12-03 2005-02-03 Novacea, Inc. Pharmaceutical compositions comprising active vitamin D compounds
US20060251685A1 (en) * 2003-03-18 2006-11-09 Zhi-Jian Yu Stable ophthalmic oil-in-water emulsions with Omega-3 fatty acids for alleviating dry eye
WO2004082625A2 (en) * 2003-03-18 2004-09-30 Advanced Medical Optics, Inc. Self-emulsifying compositions, methods of use and preparation
US20040191284A1 (en) * 2003-03-18 2004-09-30 Zhi-Jian Yu Self-emulsifying compositions, methods of use and preparation
WO2004082625A3 (en) * 2003-03-18 2004-11-18 Advanced Medical Optics Inc Self-emulsifying compositions, methods of use and preparation
US20070036829A1 (en) * 2003-03-18 2007-02-15 Zhi-Jian Yu Stable ophthalmic oil-in-water emulsions with sodium hyaluronate for alleviating dry eye
US20050196370A1 (en) * 2003-03-18 2005-09-08 Zhi-Jian Yu Stable ophthalmic oil-in-water emulsions with sodium hyaluronate for alleviating dry eye
EP2266685A2 (en) 2003-05-16 2010-12-29 Velocys Inc. Process for forming an emulsion using microchannel process technology
US7307104B2 (en) 2003-05-16 2007-12-11 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US20040228882A1 (en) * 2003-05-16 2004-11-18 Dongming Qiu Process for forming an emulsion using microchannel process technology
EP2266684A2 (en) 2003-05-16 2010-12-29 Velocys Inc. Process for forming an emulsion using microchannel process technology
US7485671B2 (en) 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US20080182910A1 (en) * 2003-05-16 2008-07-31 Dongming Qiu Process for forming an emulsion using microchannel process technology
US20040234566A1 (en) * 2003-05-16 2004-11-25 Dongming Qiu Process for forming an emulsion using microchannel process technology
US20070004688A1 (en) * 2003-06-11 2007-01-04 Laidlaw Barbara F Pharmaceutical compositions comprising active vitamin D compounds
US20050020546A1 (en) * 2003-06-11 2005-01-27 Novacea, Inc. Pharmaceutical compositions comprising active vitamin D compounds
US20060189586A1 (en) * 2003-06-11 2006-08-24 Cleland Jeffrey L Pharmaceutical compositions comprising active vitamin D compounds
US7622509B2 (en) 2004-10-01 2009-11-24 Velocys, Inc. Multiphase mixing process using microchannel process technology
US7816411B2 (en) 2004-10-01 2010-10-19 Velocys, Inc. Multiphase mixing process using microchannel process technology
US20060073080A1 (en) * 2004-10-01 2006-04-06 Tonkovich Anna L Multiphase mixing process using microchannel process technology
US20060120213A1 (en) * 2004-11-17 2006-06-08 Tonkovich Anna L Emulsion process using microchannel process technology
TWI396697B (en) * 2005-08-30 2013-05-21 Lanxess Deutschland Gmbh Use of catalysts for the degradation of nitrile rubber by metathesis
WO2007124409A2 (en) 2006-04-20 2007-11-01 Velocys, Inc. Process for treating and/or forming a non-newtonian fluid using microchannel process technology
US20080319048A1 (en) * 2007-06-22 2008-12-25 Scidose Llc Solubilized formulation of docetaxel without tween 80
US20110038899A1 (en) * 2008-03-28 2011-02-17 Garry Thomas Gwozdz Pharmaceutical Solutions and Method for Solublilizing Therapeutic Agents
US7772274B1 (en) 2009-10-19 2010-08-10 Scidose, Llc Docetaxel formulations with lipoic acid
US20110092580A1 (en) * 2009-10-19 2011-04-21 Scidose Llc Docetaxel formulations with lipoic acid and/or dihydrolipoic acid
US20110092579A1 (en) * 2009-10-19 2011-04-21 Scidose Llc Solubilized formulation of docetaxel
US8541465B2 (en) 2009-10-19 2013-09-24 Scidose, Llc Docetaxel formulations with lipoic acid and/or dihydrolipoic acid
US8912228B2 (en) 2009-10-19 2014-12-16 Scidose Llc Docetaxel formulations with lipoic acid
WO2017119936A1 (en) * 2016-01-08 2017-07-13 Abon Pharmaceuticals, Llc Long acting injectable formulations
US11596628B2 (en) 2016-01-08 2023-03-07 Abon Pharmaceuticals, Llc Long acting injectable formulations
WO2022066600A1 (en) * 2020-09-22 2022-03-31 Micronization Technologies And Therapeutics Group Llc Nebulizer and nebulized anti-virals

Also Published As

Publication number Publication date
US20040202712A1 (en) 2004-10-14
CA2276730A1 (en) 1998-07-16
EP0981328B1 (en) 2007-03-14
ES2285753T3 (en) 2007-11-16
TW579297B (en) 2004-03-11
CA2276730C (en) 2004-10-26
AR011518A1 (en) 2000-08-30
JP2001508445A (en) 2001-06-26
US20030109575A1 (en) 2003-06-12
US6982282B2 (en) 2006-01-03
US20030104015A1 (en) 2003-06-05
TW200425913A (en) 2004-12-01
ATE356611T1 (en) 2007-04-15
KR100612528B1 (en) 2006-08-11
US6660286B1 (en) 2003-12-09
US20050142189A1 (en) 2005-06-30
IN183539B (en) 2000-02-05
WO1998030205A1 (en) 1998-07-16
DE69837328T2 (en) 2007-12-20
US20030147959A1 (en) 2003-08-07
EP0981328A1 (en) 2000-03-01
DK0981328T3 (en) 2007-07-02
US6458373B1 (en) 2002-10-01
IL130737A0 (en) 2000-06-01
DE69837328D1 (en) 2007-04-26
KR20000069893A (en) 2000-11-25
US6667048B1 (en) 2003-12-23
PT981328E (en) 2007-05-31
JP2007332157A (en) 2007-12-27
US20030170279A1 (en) 2003-09-11

Similar Documents

Publication Publication Date Title
US6458373B1 (en) Emulsion vehicle for poorly soluble drugs
US7030155B2 (en) Emulsion vehicle for poorly soluble drugs
WO1998030205A9 (en) Emulsion vehicle for poorly soluble drugs
KR20070058028A (en) Emulsion vehicle for poorly soluble drugs
Collins-Gold et al. Parenteral emulsions for drug delivery
US6245349B1 (en) Drug delivery compositions suitable for intravenous injection
US20070129448A1 (en) Compositions and methods of delivery of pharmacological agents
JPH08511245A (en) Solid fat nanoemulsion as drug delivery vehicle
JP2004523577A (en) New composition
US6858227B1 (en) Vitamin E conjugates
WO2002026208A2 (en) Emulsion vehicle for poorly soluble drugs
EP2384188B1 (en) Pharmaceutical microemulsion for preventing supramolecular aggregation of amphiphilic molecules
KR100754352B1 (en) The method of preparing emulsion vehicle for poorly soluble drugs
AU5731498A (en) Emulsion vehicle for poorly soluble drugs
AU2001280084B2 (en) Amphotericin b structured emulsion
EP0988055A1 (en) Compositions comprising flexible particles, non-ionic surfactant and non-ionic cloud-point modifier

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONUS PHARMACEUTICALS, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAMBERT, KAREL J.;CONSTANTINIDES, PANAYIOTIS P.;QUAY, STEVEN C.;REEL/FRAME:013367/0038;SIGNING DATES FROM 20020808 TO 20020813

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION