US20030006493A1 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
US20030006493A1
US20030006493A1 US10/185,000 US18500002A US2003006493A1 US 20030006493 A1 US20030006493 A1 US 20030006493A1 US 18500002 A US18500002 A US 18500002A US 2003006493 A1 US2003006493 A1 US 2003006493A1
Authority
US
United States
Prior art keywords
semiconductor chip
semiconductor
main surface
electrodes
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/185,000
Inventor
Nozomi Shimoishizaka
Toshiyuki Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Assigned to MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. reassignment MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUDA, TOSHIYUKI, SHIMOISHIZAKA, NOZOMI
Publication of US20030006493A1 publication Critical patent/US20030006493A1/en
Priority to US11/057,195 priority Critical patent/US7595222B2/en
Assigned to PANASONIC CORPORATION reassignment PANASONIC CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2401Structure
    • H01L2224/24011Deposited, e.g. MCM-D type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2499Auxiliary members for HDI interconnects, e.g. spacers, alignment aids
    • H01L2224/24996Auxiliary members for HDI interconnects, e.g. spacers, alignment aids being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/24998Reinforcing structures, e.g. ramp-like support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI] involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting a build-up interconnect during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10157Shape being other than a cuboid at the active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention generally relates to a stacked-chip semiconductor device in which a plurality of semiconductor chips having different functions are stacked in a three-dimensional direction, and a manufacturing method thereof. More particularly, the present invention relates to a stacked-chip semiconductor device adapted for improved transmission speed of electric signals, and a manufacturing method thereof.
  • a stacked-chip semiconductor device in which a plurality of semiconductor chips having different functions are stacked on a single circuit board (carrier substrate) in a single package.
  • FIG. 10 is a cross-sectional view showing the structure of a conventional stacked-chip semiconductor device.
  • the conventional semiconductor device includes a circuit board 3 , a first semiconductor chip 7 , a second semiconductor chip 8 , and a third semiconductor chip 10 .
  • the circuit board 3 has wiring electrodes 1 on its top surface and terminal electrodes 2 on its bottom surface.
  • the first semiconductor chip 7 is bonded to the circuit board 3 with face-up state and has first electrodes 4 , second electrodes 5 and third electrodes 6 at its surface.
  • the second semiconductor chip 8 is flip-chip connected to the surface of the first semiconductor chip 7 with face-down state, and is electrically connected to the first electrodes 4 of the first semiconductor chip 7 .
  • the third semiconductor chip 10 is bonded to the rear surface of the second semiconductor chip 8 with face-up state and has fourth electrodes 9 at its surface.
  • the second electrodes 5 of the first semiconductor chip 7 and the fourth electrodes 9 of the third semiconductor chip 10 are electrically connected to each other by first thin metal wires 11 .
  • the wiring electrodes 1 of the circuit board 3 and the third electrodes 6 of the first semiconductor chip 7 are electrically connected to each other by second thin metal wires 12 .
  • the top surface region of the circuit board 3 including the semiconductor chips and the thin metal wires is sealed with an insulating resin package 13 . Note that the gap between the first and second semiconductor chips 7 , 8 is sealed with a resin that is different from the resin package 13 .
  • a semiconductor device includes a first semiconductor chip having first electrodes on a fringe region of a main surface thereof, and a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof.
  • the first semiconductor chip and the second semiconductor chip are connected together by bonding a surface of the second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the first semiconductor chip other than the fringe region.
  • the first electrodes are connected to the second electrodes by wirings formed over the main surface of the first semiconductor chip, a side surface of the second semiconductor chip and the main surface of the second semiconductor chip.
  • the second semiconductor chip is bonded to the main surface of the first semiconductor chip with face-up state.
  • the first electrodes on the main surface of the first semiconductor chip are connected to the second electrodes on the main surface of the second semiconductor chip by the wirings formed over the side surface of the second semiconductor chip.
  • a semiconductor device includes a first semiconductor chip having first electrodes on a fringe region of a main surface thereof, and a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof.
  • the first semiconductor chip and the second semiconductor chip are connected together by bonding a surface of the second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the first semiconductor chip other than the fringe region.
  • the second semiconductor chip has a side surface having an inclination of less than 90 degrees with respect to the main surface of the first semiconductor chip.
  • the first electrodes are connected to the second electrodes by wirings formed over the main surface of the first semiconductor chip, the side surface of the second semiconductor chip and the main surface of the second semiconductor chip.
  • the following effects are obtained in addition to the effects obtained in the first aspect: since the side surface of the second semiconductor chip has an inclination of less than 90 degrees with respect to the main surface of the first semiconductor chip, the length of the wirings formed over the side surface of the second semiconductor chip can be reduced as compared to the case where the side surface of the second semiconductor chip is vertical to the main surface of the first semiconductor chip. This enables further reduction in signal propagation distance between the chips and further improvement in signal propagation speed between the chips.
  • the wirings for connecting the first electrodes to the second electrodes are formed on the ground having a gentler slope. This reduces concentration of stresses on the bent portion of each wiring caused by heat or mechanical stresses. As a result, disconnection of the wirings can be prevented, thereby improving reliability of the semiconductor device. Moreover, there is no abrupt difference in level between the main surface of the first semiconductor chip and the main surface of the second semiconductor chip. This facilitates a lithography process for forming the wirings for connecting the first electrodes to the second electrodes, thereby increasing a process margin. Moreover, when an insulating resin or the like is applied in order to insulate these wirings from the side surface of the second semiconductor chip, coverage of the insulating resin can be improved.
  • the inclination is preferably 30 degrees or more.
  • the second semiconductor chip preferably has a thickness of 0.15 mm or less.
  • the wirings are preferably formed on an insulating layer that covers the fringe region of the main surface of the first semiconductor chip, the side surface of the second semiconductor chip and the main surface of the second semiconductor chip. Moreover, the wirings are preferably connected to the first electrodes and the second electrodes via contact holes formed in the insulating layer.
  • the second semiconductor chip preferably has the second electrodes on a fringe region of the main surface thereof.
  • the semiconductor device further includes a third semiconductor chip smaller in area than the second semiconductor chip and having third electrodes on a main surface thereof.
  • the first semiconductor chip, the second semiconductor chip and the third semiconductor chip are preferably connected together by bonding a surface of the third semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the second semiconductor chip other than the fringe region.
  • the second electrodes are preferably connected to the third electrodes by other wirings formed over the main surface of the second semiconductor chip, a side surface of the third semiconductor chip and the main surface of the third semiconductor chip.
  • a method for manufacturing a semiconductor device including a first semiconductor chip having first electrodes on a fringe region of a main surface thereof, and a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof includes the following steps: a first step of preparing a first semiconductor wafer having a plurality of first semiconductor chips; a second step of preparing a second semiconductor wafer having a plurality of second semiconductor chips; a third step of cutting the second semiconductor wafer into the second semiconductor chips with a dicing blade while tapering ends of each second semiconductor chip in a forward direction; a fourth step of connecting the first semiconductor wafer and the second semiconductor chips together by bonding a surface of each second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of a corresponding first semiconductor chip of the first semiconductor wafer other than the fringe region; a fifth step of forming a conductive film on the resultant first semiconductor wafer and patterning the conductive film to form wirings
  • the semiconductor device of the second aspect of the present invention can be manufactured by the manufacturing method of the third aspect of the present invention. Accordingly, the same effects as those obtained in the semiconductor device of the second aspect of the present invention can be obtained.
  • the wirings for connecting the first electrodes of each first semiconductor chip of the first semiconductor wafer to the second electrodes of a corresponding second semiconductor chip are formed at a wafer level.
  • the third step preferably includes the step of processing the ends of each second semiconductor chip so that a side surface of the second semiconductor chip forms an angle of 30 degrees to less than 90 degrees with respect to a rear surface thereof.
  • the manufacturing method according to the third aspect of the present invention further includes, between the second and third steps, the step of grinding the second semiconductor wafer from a side opposite to the main surface of each second semiconductor chip so that each second semiconductor chip has a thickness of 0.15 mm or less.
  • the manufacturing method of the third aspect of the present invention further includes, between the fourth and fifth steps, the steps of forming an insulating layer that covers the fringe region of the main surface of each first semiconductor chip, a side surface of each second semiconductor chip, and the main surface of each second semiconductor chip, and forming in the insulating layer first contact holes reaching the first electrodes of each first semiconductor chip and second contact holes reaching the second electrodes of each second semiconductor chip.
  • the fifth step preferably includes the step of forming the conductive film on the insulating layer so as to fill the first contact holes and the second contact holes.
  • FIG. 1A is a plan view of a stacked-chip element mounted in a semiconductor device according to a first embodiment of the present invention
  • FIG. 1B is a cross-sectional view of an electrode portion of the stacked-chip element
  • FIG. 2 is a cross-sectional view of the semiconductor device according to the first embodiment of the present invention.
  • FIGS. 3A, 3B and 3 C are cross-sectional views illustrating main steps of a method for manufacturing the semiconductor device according to the first embodiment of the present invention
  • FIGS. 4A, 4B and 4 C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 5A is a plan view of a stacked-chip element mounted in a semiconductor device according to a second embodiment of the present invention
  • FIG. 5B is a cross-sectional view of an electrode portion of the stacked-chip element
  • FIG. 6 is a cross-sectional view of the semiconductor device according to the second embodiment of the present invention.
  • FIGS. 7A, 7B and 7 C are cross-sectional views illustrating main steps of a method for manufacturing the semiconductor device according to the second embodiment of the present invention.
  • FIGS. 8A, 8B and 8 C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device according to the second embodiment of the present invention.
  • FIGS. 9A, 9B and 9 C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a conventional semiconductor device.
  • FIG. 1A is a plan view of the stacked-chip element of the present embodiment
  • FIG. 1B is a cross-sectional view of an electrode portion of the stacked-chip element of the present embodiment.
  • the stacked-chip element of the present embodiment includes a first semiconductor chip 102 , a second semiconductor chip 104 and a third semiconductor chip 106 .
  • the first semiconductor chip 102 has first electrodes 101 on the fringe region of its main surface.
  • the second semiconductor chip 104 is smaller in area than the first semiconductor chip 102 and has second electrodes 103 on the fringe region of its main surface.
  • the third semiconductor chip 106 is smaller in area than the second semiconductor chip 104 and has third electrodes 105 on the fringe region of its main surface.
  • the first semiconductor chip 102 , the second semiconductor chip 104 and the third semiconductor chip 106 are bonded together in the following manner: the surface of the second semiconductor chip 104 that is opposite to the main surface thereof is bonded to a region of the main surface of the first semiconductor chip 102 other than the fringe region with an insulating adhesive. Moreover, the surface of the third semiconductor chip 106 that is opposite to the main surface thereof is bonded to a region of the main surface of the second semiconductor chip 104 other than the fringe region with an insulating adhesive.
  • the first semiconductor chip 102 , the second semiconductor chip 104 and the third semiconductor chip 106 are those selected from a plurality of types of chips such as logic chip and memory chip. All signal connection electrodes are arranged in the fringe regions of the corresponding semiconductor chips. Accordingly, in the stacked-chip element of the present embodiment, the second semiconductor chip 104 is smaller in area than the first semiconductor chip 102 , and the third semiconductor chip 106 is smaller than the second semiconductor chip 104 .
  • the main surface (fringe region) of the first semiconductor chip 102 , the side surface and the main surface (fringe region) of the second semiconductor chip 104 , and the side surface and the main surface of the third semiconductor chip 106 are covered with an insulating resin layer 107 .
  • the insulating resin layer 107 has first contact holes 107 a reaching the respective first electrodes 101 , second contact holes 107 b reaching the respective second electrode 103 , and third contact electrode 107 c reaching the respective third electrodes 105 .
  • First inter-chip wirings 108 and second inter-chip wirings 109 are formed on the insulating resin layer 107 .
  • Each of the first inter-chip wirings 108 is connected to the first electrode 101 and the second electrode 103 via the first contact hole 107 a and the second contact hole 107 b , respectively.
  • Each of the second inter-chip wirings 109 is connected to the second electrode 103 and the third electrode 105 via the second contact hole 107 b and the third contact hole 107 c , respectively.
  • the insulating resin layer 107 electrically insulates the first inter-chip wirings 108 from the side surface of the second semiconductor chip 104 , and also insulates the second inter-chip wirings 109 from the side surface of the third semiconductor chip 106 . Note that illustration of the insulating resin layer 107 is omitted in FIG. 1A.
  • the first electrodes 101 are connected to the second electrodes 103 by the first inter-chip wirings 108 formed over the main surface of the first semiconductor chip 102 and the side surface and the main surface of the second semiconductor chip 104 .
  • the second electrodes 103 are connected to the third electrodes 105 by the second inter-chip wirings 109 formed over the main surface of the second semiconductor chip 104 and the side surface and the main surface of the third semiconductor chip 106 .
  • the use of such inter-chip wirings reduces the signal propagation distance between chips and thus improves the signal propagation speed between chips as compared to the case where thin metal wires are used as means for electric connection between electrodes, that is, means for electric connection between chips.
  • the first inter-chip wirings 108 and the second inter-chip wirings 109 are formed from an integrally patterned conductive film.
  • the first electrodes 101 of the first semiconductor chip 102 function also as external electrodes for transmitting a signal with an external equipment.
  • the semiconductor device of the first embodiment will be described.
  • the semiconductor device of the first embodiment is a BGA (Ball Grid Array)-type semiconductor device having the stacked-chip element of the present embodiment of FIGS. 1A, 1B mounted on a circuit board.
  • FIG. 2 is a cross-sectional view of the semiconductor device of the first embodiment.
  • the semiconductor device of the first embodiment is a BGA-type semiconductor device using a circuit board 113 . More specifically, the semiconductor device of the first embodiment includes a circuit board 113 , a stacked-chip element of the present embodiment (see FIG. 1B), thin metal wires 114 , and an insulating resin package 115 .
  • the circuit board 113 has wiring electrodes 111 on the fringe region of its top surface and ball-shaped external terminals 112 at its bottom surface.
  • the stacked-chip element of the present embodiment is bonded to the top surface of the circuit board 113 .
  • the thin metal wires 114 electrically connect the first electrodes 101 of the first semiconductor chip 102 to the wiring electrodes 111 , respectively.
  • the insulating resin package 115 seals the top surface region of the circuit board 113 including the stacked-chip element of the present embodiment, the wiring electrodes 111 and the thin metal wires 114 .
  • the circuit board 113 and the stacked-chip element of the present embodiment are bonded together in the following manner: the surface of the first semiconductor chip 102 that is opposite to the main surface thereof is bonded to the region of the top surface of the circuit board 113 other than the fringe region.
  • the wiring electrodes 111 are electrically connected to the external terminals 112 via through holes formed in the wiring substrate 113 , respectively.
  • the stacked-chip element of the present embodiment mounted in the semiconductor device of the first embodiment includes a first semiconductor chip 102 , a second semiconductor chip 104 and a third semiconductor chip 106 .
  • the first semiconductor chip 102 has first electrodes 101 on the fringe region of its main surface.
  • the second semiconductor chip 104 is smaller in area than the first semiconductor chip 102 and has second electrodes 103 on the fringe region of its main surface.
  • the third semiconductor chip 106 is smaller in area than the second semiconductor chip 104 and has third electrodes 105 on the fringe region of its main surface.
  • the second semiconductor chip 104 is bonded to the region of the main surface of the first semiconductor chip 102 other than the fringe region with face-up state.
  • the third semiconductor chip 106 is bonded to the region of the main surface of the second semiconductor chip 104 other than the fringe region with face-up state.
  • the main surface of the first semiconductor chip 102 , the side surface and the main surface of the second semiconductor chip 104 , and the side surface and the main surface of the third semiconductor chip 106 are covered with an insulating resin layer 107 .
  • the insulating resin layer 107 has first contact holes 107 a reaching the respective first electrodes 101 , second contact holes 107 b reaching the respective second electrodes 103 , and third contact holes 107 c reaching the respective third electrodes 105 .
  • the first electrodes 101 are electrically connected to the second electrodes 103 by the first inter-chip wirings 108 formed on the side surface of the semiconductor chip 104 with the insulating resin layer 107 interposed therebetween.
  • the second electrodes 103 are electrically connected to the third electrodes 105 by the second inter-chip wirings 109 formed on the side surface of the third semiconductor chip 106 with the insulating resin layer 107 interposed therebetween.
  • the semiconductor device of the present embodiment uses the stacked-chip element of the present embodiment mounted in a single package. This reduces the signal propagation distance between chips and thus improves the signal propagation speed between chips as compared to the case where thin metal wires are used as means for electric connection between chips. This enables improvement in operation speed of a semiconductor device having multiple chips stacked on each other.
  • FIGS. 3A to 3 C and FIGS. 4A to 4 C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • a first semiconductor wafer 121 is prepared.
  • the first semiconductor wafer 121 has a plurality of first semiconductor chips 102 each having first electrodes 101 on the fringe region of its main surface.
  • dashed line indicates a scribe line along which the first semiconductor wafer 121 is cut into individual first semiconductor chips 102 .
  • a second semiconductor chip 104 is prepared for every first semiconductor chip 102 .
  • Each of the second semiconductor chips 104 is smaller in area than the first semiconductor chip 102 and has second electrodes 103 on the fringe region of its main surface.
  • Each of the second semiconductor chips 104 is bonded to a corresponding first semiconductor chip 102 of the first semiconductor wafer 121 with an insulating adhesive or the like so as to expose the first electrodes 101 . More specifically, the surface of the second semiconductor chip 104 that is opposite to the main surface thereof is bonded to the central region of the main surface of the corresponding first semiconductor chip 102 in the first semiconductor wafer 121 . The first semiconductor wafer 121 and the second semiconductor chips 104 are thus bonded together.
  • a third semiconductor chip 106 is prepared for every first semiconductor chip 102 .
  • Each of the third semiconductor chips 106 is smaller in area than the second semiconductor chip 104 and has third electrodes 105 on the fringe region of its main surface.
  • Each of the third semiconductor chips 106 is bonded to a corresponding second semiconductor chip 104 on the first semiconductor wafer 121 with an insulating adhesive or the like so as to expose the second electrodes 103 . More specifically, the surface of the third semiconductor chip 106 that is opposite to the main surface thereof is bonded to the central region of the main surface of the corresponding second semiconductor chip 104 on the first semiconductor wafer 121 .
  • the first semiconductor wafer 121 , the second semiconductor chips 104 and the third semiconductor chips 106 are thus bonded together.
  • a photosensitive insulating material is then applied to the first semiconductor wafer 121 so as to cover the main surfaces of the first semiconductor chips 102 , the side surfaces and the main surfaces of the second semiconductor chips 104 , and the side surfaces and the main surfaces of the third semiconductor chips 106 .
  • a prescribed part of the applied photosensitive insulating material is then exposed to light for curing.
  • An unnecessary part of the photosensitive insulating material is then removed.
  • an insulating resin layer 107 is formed which has first contact holes 107 a reaching the respective first electrodes 101 , second contact holes 107 b reaching the respective second electrodes 103 , and third contact holes 107 c reaching the respective third electrodes 105 .
  • the photosensitive insulating material as the insulating resin layer 107 may be applied by a commonly used spin coating method. Alternatively, another method such as a spray method or a printing method may be used.
  • a conductive film is formed on the insulating resin layer 107 so as to fill the first contact holes 107 a , the second contact holes 107 b and the third contact holes 107 c .
  • the conductive film thus formed is then patterned to form first inter-chip wirings 108 and second inter-chip wirings 109 , as shown in FIG. 4B
  • Each of the first inter-chip wirings 108 connects a corresponding first electrode 101 of a corresponding first semiconductor chip 102 to a corresponding second electrode 103 of a corresponding second semiconductor chip 104 .
  • Each of the second inter-chip wirings 109 connects a corresponding second electrode 103 of a corresponding second semiconductor chip 104 to a corresponding third electrode 105 of a corresponding third semiconductor chip 106 .
  • the first semiconductor chip 102 and the second semiconductor chip 104 are electrically connected to each other by the first inter-chip wirings 108 formed over the main surface of the first semiconductor chip 102 and the side surface and the main surface of the second semiconductor chip 104 .
  • the insulating resin layer 107 electrically insulates the first inter-chip wirings 108 from the side surface of the second semiconductor chip 104 .
  • the second semiconductor chip 104 and the third semiconductor chip 106 are electrically connected to each other by the second inter-chip wirings 109 formed over the main surface of the second semiconductor chip 104 and the side surface and the main surface of the third semiconductor chip 106 .
  • the insulating resin layer 107 electrically insulates the second inter-chip wirings 109 from the side surface of the third semiconductor chip 106 .
  • the first inter-chip wirings 108 and the second inter-chip wirings 109 may be formed by a semi-additive method, one of the existing technologies. More specifically, a metal barrier layer and a plating seed layer are sequentially formed on the insulating resin layer 107 on the first semiconductor wafer 121 by a sputtering method, and a resist pattern is formed on the plating seed layer. Thereafter, by an electroplating method, a thick metal film is selectively formed on the region of the plating seed layer having no resist pattern, and the resist pattern is then removed. The plating seed layer and the metal barrier layer are then etched away using the thick metal film as a mask.
  • the first inter-chip wirings 108 and the second inter-chip wirings 109 are formed.
  • a metal having an excellent adhesion property to the insulting resin layer 107 and the plating seed layer and serving as a barrier against an etchant of the plating seed layer e.g., TiW
  • TiW a metal having an excellent adhesion property to the insulting resin layer 107 and the plating seed layer and serving as a barrier against an etchant of the plating seed layer
  • a low-resistance, non-magnetic metal e.g., Cu
  • the thick metal film i.e., plated metal film
  • the first semiconductor wafer 121 is then cut into a plurality of first semiconductor chips 102 with a dicing blade.
  • the same stacked-chip element as that of the present embodiment in FIG. 1B is completed as shown in FIG. 4C. More specifically, the second semiconductor chip 104 and the third semiconductor chip 106 are stacked on each first semiconductor chip 102 , and the first, second and third semiconductor chips 102 , 104 , 106 of each stacked-chip element are electrically connected to each other by the first inter-chip wirings 108 and the second inter-chip wirings 109 .
  • the second semiconductor chip 104 is bonded to the main surface of the first semiconductor chip 102 with face-up state.
  • the first electrodes 101 on the main surface of the first semiconductor chip 102 are connected to the second electrodes 103 on the main surface of the second semiconductor chip 104 by the first inter-chip wirings 108 formed over the side surface of the second semiconductor chip 104 .
  • the third semiconductor chip 106 is bonded to the main surface of the second semiconductor chip 104 with face-up state.
  • the second electrodes 103 on the main surface of the second semiconductor chip 104 are connected to the third electrodes 105 on the main surface of the third semiconductor chip 106 by the second inter-chip wirings 109 formed over the side surface of the third semiconductor chip 106 .
  • the first embodiment is implemented based on the difference in area between the semiconductor chips. More specifically, the second semiconductor chip 104 and the third semiconductor chip 106 are sequentially stacked on each first semiconductor chip 102 of the first semiconductor wafer 121 at a wafer level. Thereafter, the first inter-chip wirings 108 and the second inter-chip wirings 109 for electric connection between chips are formed at a wafer level.
  • This enables the manufacturing process of the semiconductor device to be conducted at a wafer level, and also enables the mounting step to be conducted successively to the wafer diffusion step (the step of forming elements such as transistors, wirings, interlayer films and the like at a wafer level). This allows for efficient manufacturing of the semiconductor device.
  • a semiconductor device having three chips stacked on each other is described in the first embodiment.
  • a semiconductor device having two chips or four or more chips stacked on each other may alternatively be used as long as an upper semiconductor chip has a smaller area and each semiconductor chip has signal connection electrodes on the fringe region thereof. The same effects as those described above can be obtained by such a semiconductor device.
  • the stacked-chip element is mounted in a BGA-type semiconductor device by using a circuit board.
  • the stacked-chip element may be mounted in a QFP (Quad Flat Package) or a QFN (Quad Flat Non-leaded Package) by using a lead frame.
  • the stacked-chip element may be mounted in a TCP (Tape Carrier Package) by a TAB (Tape Automated Bonding) technology. In such cases as well, a high-speed semiconductor device having a stacked-chip element mounted in a single package can be implemented.
  • a semiconductor chip having a thickness of about 0.15 mm to about 0.60 mm is commonly mounted in a semiconductor device.
  • the total thickness of the second and third semiconductor chips 104 , 106 is about 0.15 mm or less.
  • the semiconductor wafer having the second semiconductor chips 104 is ground from the side opposite to the main surface of the second semiconductor chips 104 and the semiconductor wafer having the third semiconductor chips 106 is ground from the side opposite to the main surface of the third semiconductor chips 106 so that the total thickness of the second and third semiconductor chips 104 , 106 becomes equal to about 0.15 mm or less.
  • This facilitates a lithography process for forming the first and second inter-chip wirings 108 , 109 , thereby increasing a process margin.
  • each of the first and second inter-chip wirings 108 , 109 must have a width of 0.02 mm or more.
  • each of the first and second inter-chip wirings 108 , 109 is a flat wiring with an aspect ratio of less than one.
  • the upper semiconductor chip has a thickness of about 0.15 mm or less.
  • the total thickness of the second semiconductor chip from the bottom and the semiconductor chips stacked thereon is about 0.15 mm or less.
  • Reducing the total thickness of the second and third semiconductor chips 104 , 106 in the first embodiment would enable further reduction in size of a semiconductor device having multiple chips stacked on each other, and also enable further reduction in signal propagation distance between chips as well as further improvement in signal propagation speed between chips.
  • a semiconductor wafer to be cut into the second or third semiconductor chips 104 , 106 may be reduced in thickness by the following method: a semiconductor wafer having a thickness of about 0.50 mm to about 0.80 mm is first ground to about 0.15 mm to about 0.30 mm by a machining process.
  • An example of the machining process is an infeed grinding method, a two-step grinding method using a grinding stone (rough machining step and finishing step).
  • the resultant semiconductor wafer is further reduced in thickness to about 0.02 mm to about 0.08 mm by a chemical etching method, a CMP (Chemical Mechanical Polishing) method, or the like.
  • the reason why the chemical etching method or the CMP method is used is as follows: as the wafer thickness is reduced to 0.08 mm or less, it becomes difficult to grind the semiconductor wafer by a machining process in view of stresses, strength or the like.
  • the first and second inter-chip wirings 108 , 109 are formed by a semi-additive method.
  • the first and second inter-chip wirings 108 , 109 may alternatively be formed by another existing wiring formation technology, e.g., a sputtering method.
  • FIG. 5A is a plan view of the stacked-chip element of the present embodiment.
  • FIG. 5B is a cross-sectional view of an electrode portion of the stacked-chip element of the present embodiment. Note that, in FIGS. 5A, 5B, the same members as those of the stacked-chip element mounted in the semiconductor device of the first embodiment in FIGS. 1A, 1B are denoted with the same reference numerals and characters, and description thereof will be omitted.
  • the stacked-chip element of the present embodiment is different from that of the first embodiment in that the side surface of the second semiconductor chip 104 has an inclination of less than 90 degrees with respect to the main surface of the first semiconductor chip 102 , and in that the side surface of the third semiconductor chip 106 has an inclination of less than 90 degrees with respect to the main surface of the second semiconductor chip 104 .
  • the length L′ of the first inter-chip wiring 108 of the present embodiment is shorter than the length L of the first inter-chip wiring 108 of the first embodiment.
  • ⁇ 1 denotes an angle of the side surface of the second semiconductor chip 104 with respect to the main surface of the first semiconductor chip 102
  • ⁇ 2 denotes an angle of the side surface of the third semiconductor chip 106 with respect to the main surface of the second semiconductor chip 104 .
  • the upper limit of ⁇ 1 and ⁇ 2 is about 90 degrees in view of the limitations on coverage of the insulating resin layer 107 , sputtering coverage of the plating seed layer (see the method for forming the first and second inter-chip wirings 108 , 109 in the first embodiment) or the like.
  • the lower limit of ⁇ 1 and ⁇ 2 is about 30 degrees in view of the limitations on the blade angle of a dicing blade for cutting semiconductor wafers into second semiconductor chips 104 and third semiconductor chips 106 .
  • ⁇ 1 and ⁇ 2 are about 45 degrees.
  • the stacked-chip element of the present embodiment is the same as that mounted in the semiconductor device of the first embodiment in FIGS. 1A, 1B. Note that illustration of the insulting resin layer 107 is omitted in FIG. 5A.
  • the semiconductor device of the second embodiment is a BGA-type semiconductor device having the stacked-chip element of the present embodiment of FIGS. 5A, 5B mounted on a circuit board.
  • FIG. 6 is a cross-sectional view of a semiconductor device of the second embodiment. Note that, in FIG. 6, the same members as those in the semiconductor device of the first embodiment in FIG. 2 are denoted with the same reference numerals and characters, and description thereof will be omitted. As shown in FIG.
  • the semiconductor device of the second embodiment is different from that of the first embodiment in that each of the side surface of the second semiconductor chip 104 and the side surface of the third semiconductor chip 106 has an inclination of less than 90 degrees with respect to the main surface of the underlying semiconductor chip.
  • FIGS. 7A to 7 C, FIGS. 8A to 8 C and FIGS. 9A to 9 C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device of the second embodiment.
  • a first semiconductor wafer 121 is prepared.
  • the first semiconductor wafer 121 has a plurality of first semiconductor chips 102 each having first electrodes 101 on the fringe region of its main surface.
  • dashed line indicates a scribe line along which a first semiconductor wafer 121 is cut into individual first semiconductor chips 102 .
  • a second semiconductor wafer 122 is prepared.
  • the second semiconductor wafer 122 has a plurality of second semiconductor chips 104 .
  • Each of the plurality of second semiconductor chips 104 is smaller in area than the first semiconductor chip 102 and has second electrodes 103 on the fringe region of its main surface.
  • the second semiconductor wafer 122 is then cut into the second semiconductor chips 104 with a dicing blade 131 having a prescribed blade angle.
  • FIG. 8A when the second semiconductor wafer 122 is cut into the second semiconductor chips 104 , both ends of each second semiconductor chip 104 are tapered in the forward direction.
  • both ends of each second semiconductor chip 104 are processed so that the side surface of the second semiconductor chip 104 forms an angle ⁇ 1 of less than 90 degrees with respect to the rear surface thereof.
  • chain line in FIGS. 7B, 7C indicates a scribe line along which the second semiconductor wafer 122 is cut into individual second semiconductor chips 104 .
  • each of the second semiconductor chips 104 is bonded to a corresponding first semiconductor chip 102 of the first semiconductor wafer 121 with an insulating adhesive or the like so as to expose the first electrodes 101 . More specifically, the surface of the second semiconductor chip 104 that is opposite to the main surface thereof is bonded to the central region of the main surface of the corresponding first semiconductor chip 102 in the first semiconductor wafer 121 . The first semiconductor wafer 121 and the second semiconductor chips 104 are thus bonded together.
  • a third semiconductor wafer (not shown) is prepared.
  • the third semiconductor wafer has a plurality of third semiconductor chips 106 .
  • Each of the third semiconductor chips 106 is smaller in area than the second semiconductor chip 104 and has third electrodes 105 on the fringe region of its main surface.
  • the third semiconductor wafer is then cut into the third semiconductor chips 106 in the same manner as that shown in FIGS. 7B, 7C and FIG. 8A so that both ends of each third semiconductor chip 106 are tapered in the forward direction.
  • the side surface of the third semiconductor chip 106 forms an angle ⁇ 2 of less than 90 degrees with respect to the rear surface thereof. As shown in FIG.
  • each of the third semiconductor chips 106 is bonded to a corresponding second semiconductor chip 104 on the first semiconductor wafer 121 with an insulating adhesive or the like so as to expose the second electrodes 103 . More specifically, the surface of the third semiconductor chip 106 that is opposite to the main surface thereof is bonded to the central region of the main surface of the corresponding second semiconductor chip 104 on the first semiconductor wafer 121 . The first semiconductor wafer 121 , the second semiconductor chips 104 and the third semiconductor chips 106 are thus bonded together.
  • a photosensitive insulating material is then applied to the first semiconductor wafer 121 so as to cover the main surfaces of the first semiconductor chips 102 , the side surfaces and the main surfaces of the second semiconductor chips 104 , and the side surfaces and the main surfaces of the third semiconductor chips 106 .
  • a prescribed part of the applied photosensitive insulating material is then exposed to light for curing.
  • An unnecessary part of the photosensitive insulating material is then removed.
  • an insulating resin layer 107 is formed which has first contact holes 107 a reaching the respective first electrodes 101 , second contact holes 107 b reaching the respective second electrodes 103 , and third contact holes 107 c reaching the respective third electrodes 105 .
  • the photosensitive insulating material as the insulating resin layer 107 may be applied by a commonly used spin coating method. Alternatively, another method such as a spray method or a printing method may be used.
  • a conductive film is formed on the insulating resin layer 107 so as to fill the first contact holes 107 a , the second contact holes 107 b and the third contact holes 107 c .
  • the conductive film thus formed is then patterned to form first inter-chip wirings 108 and second inter-chip wirings 109 , as shown in FIG. 9B
  • Each of the first inter-chip wirings 108 connects a corresponding first electrode 101 of a corresponding first semiconductor chip 102 to a corresponding second electrode 103 of a corresponding second semiconductor chip 104 .
  • Each of the second inter-chip wirings 109 connects a corresponding second electrode 103 of a corresponding second semiconductor chip 104 to a corresponding third electrode 105 of a corresponding third semiconductor chip 106 .
  • the first semiconductor chip 102 and the second semiconductor chip 104 are electrically connected to each other by the first inter-chip wirings 108 formed over the main surface of the first semiconductor chip 102 and the side surface and the main surface of the second semiconductor chip 104 .
  • the insulating resin layer 107 electrically insulates the first inter-chip wirings 108 from the side surface of the second semiconductor chip 104 .
  • the second semiconductor chip 104 and the third semiconductor chip 106 are electrically connected to each other by the second inter-chip wirings 109 formed over the main surface of the second semiconductor chip 104 and the side surface and the main surface of the third semiconductor chip 106 .
  • the insulating resin layer 107 electrically insulates the second inter-chip wirings 109 from the side surface of the third semiconductor chip 106 .
  • the first semiconductor wafer 121 is then cut into a plurality of first semiconductor chips 102 with a dicing blade.
  • the same stacked-chip element as that of the present embodiment in FIG. 5B is completed as shown in FIG. 9C. More specifically, the second semiconductor chip 104 and the third semiconductor chip 106 are stacked on each first semiconductor chip 102 , and the first, second and third semiconductor chips 102 , 104 , 106 of each stacked-chip element are electrically connected to each other by the first inter-chip wirings 108 and the second inter-chip wirings 109 .
  • the second semiconductor chip 104 is bonded to the main surface of the first semiconductor chip 102 with face-up state.
  • the first electrodes 101 on the main surface of the first semiconductor chip 102 are connected to the second electrodes 103 on the main surface of the second semiconductor chip 104 by the first inter-chip wirings 108 formed over the side surface of the second semiconductor chip 104 .
  • the third semiconductor chip 106 is bonded to the main surface of the second semiconductor chip 104 with face-up state.
  • the second electrodes 103 on the main surface of the second semiconductor chip 104 are connected to the third electrodes 105 on the main surface of the third semiconductor chip 106 by the second inter-chip wirings 109 formed over the side surface of the third semiconductor chip 106 .
  • the second embodiment is implemented based on the difference in area between the semiconductor chips. More specifically, the second semiconductor chip 104 and the third semiconductor chip 106 are sequentially stacked on each first semiconductor chip 102 of the first semiconductor wafer 121 at a wafer level. Thereafter, the first inter-chip wirings 108 and the second inter-chip wirings 109 for electric connection between chips are formed at a wafer level. This enables the manufacturing process of the semiconductor device to be conducted at a wafer level, and also enables the mounting step to be conducted successively to the wafer diffusion step. This allows for efficient manufacturing of the semiconductor device.
  • the side surface of the second semiconductor chip 104 has an inclination of less than 90 degrees with respect to the main surface of the first semiconductor chip 102 .
  • the side surface of the third semiconductor chip 106 has an inclination of less than 90 degrees with respect to the main surface of the second semiconductor chip 104 .
  • the signal propagation distance between chips is further reduced and thus the signal propagation speed between chips is further improved.
  • the first inter-chip wiring 108 and the second inter-chip wiring 109 are formed on the ground having a gentler slope. This reduces concentration of stresses on the bent portion of each wiring caused by heat or mechanical stresses. As a result, disconnection of the wirings can be prevented, thereby improving reliability of the semiconductor device. Moreover, there is no abrupt difference in level between the main surface of the first semiconductor chip 102 and the main surface of the second semiconductor chip 104 and between the main surface of the second semiconductor chip 104 and the main surface of the third semiconductor chip 106 . This facilitates a lithography process for forming the first and second inter-chip wirings 108 , 109 , thereby increasing a process margin. Moreover, the insulating resin layer 107 for insulating the first inter-chip wirings 108 from the side surface of the second semiconductor chip 104 and insulating the second inter-chip wirings 108 from the side surface of the third semiconductor chip 106 has improved coverage.
  • a semiconductor device having three chips stacked on each other is described in the second embodiment.
  • a semiconductor device having two chips or four or more chips stacked on each other may alternatively be used as long as an upper semiconductor chip has a smaller area and each semiconductor chip has signal connection electrodes on the fringe region thereof. The same effects as those described above can be obtained by such a semiconductor device.
  • the stacked-chip element is mounted in a BGA-type semiconductor device by using a circuit board.
  • the stacked-chip element may be mounted in a QFP or a QFN by using a lead frame.
  • the stacked-chip element may be mounted in a TCP by a TAB technology. In such cases as well, a high-speed semiconductor device having a stacked-chip element mounted in a single package can be implemented.
  • ⁇ 1 (the angle of the side surface of the second semiconductor chip 104 with respect to the main surface of the first semiconductor chip 102 ) and ⁇ 2 (the angle of the side surface of the third semiconductor chip 106 with respect to the main surface of the second semiconductor chip 104 ) are preferably 80 degrees or less in view of the limitations on coverage of the insulating resin layer 107 , sputtering coverage of the plating seed layer, or the like.
  • ⁇ 1 and ⁇ 2 are reduced to 60 degrees, 45 degrees and the like, the first inter-chip wirings 108 and the second inter-chip wirings 109 are formed with further improved reliability.
  • ⁇ 1 and ⁇ 2 are about 90 degrees, however, the same effects as those of the present embodiment can be obtained as long as the surface of the insulating resin layer 107 formed on the side surface of the second semiconductor chip 104 forms an angle of less than 90 degrees (more preferably, 80 degrees) with respect to the main surface of the first semiconductor chip 102 and the surface of the insulting resin layer 107 formed on the side surface of the third semiconductor chip 106 forms an angle of less than 90 degrees (more preferably, less than 80 degrees) with respect to the main surface of the second semiconductor chip 104 .
  • the ends of the second semiconductor chip 104 and the third semiconductor chip 106 can be relatively easily processed so that ⁇ 1 and ⁇ 2 become equal to about 60 degrees.
  • ⁇ 1 and ⁇ 2 it is difficult to reduce ⁇ 1 and ⁇ 2 to less than 30 degrees due to the limitations on the blade angle of the dicing blade.
  • ⁇ 1 and ⁇ 2 are reduced, cracks, chippings or the like are more likely to be produced.
  • secondary processing may be conducted after the ends of the second semiconductor chip 104 and the third semiconductor chip 106 are tapered in the forward direction. More specifically, an acute-angled edge in each chip end may be ground vertically or may be rounded off by a chemical etching method.
  • the total thickness of the second and third semiconductor chips 104 , 106 is about 0.15 mm or less.
  • the second semiconductor wafer 122 is ground from the side opposite to the main surface of the second semiconductor chips 104
  • the third semiconductor wafer is ground from the side opposite to the main surface of the third semiconductor chips 106 so that the total thickness of the second and third semiconductor chips 104 , 106 becomes equal to about 0.15 mm or less.
  • each of the first and second inter-chip wirings 108 , 109 must have a width of 0.02 mm or more. In other words, each of the first and second inter-chip wirings 108 , 109 is a flat wiring with an aspect ratio of less than one.
  • the upper semiconductor chip has a thickness of about 0.15 mm or less.
  • the total thickness of the second semiconductor chip from the bottom and the semiconductor chips stacked thereon is about 0.15 mm or less.
  • Reducing the total thickness of the second and third semiconductor chips 104 , 106 in the second embodiment would enable further reduction in size of a semiconductor device having multiple chips stacked on each other, and also enable further reduction in signal propagation distance between chips as well as further improvement in signal propagation speed between chips.
  • the second or third semiconductor wafer (i.e., the semiconductor wafer to be cut into the second or third semiconductor chips 104 , 106 ) may be reduced in thickness by the following method: a semiconductor wafer having a thickness of about 0.50 mm to about 0.80 mm is first ground to about 0.15 mm to about 0.30 mm by a machining process.
  • An example of the machining process is an infeed grinding method, a two-step grinding method using a grinding stone (rough machining step and finishing step).
  • the resultant semiconductor wafer is further reduced in thickness to about 0.02 mm to about 0.08 mm by a chemical etching method, a CMP method, or the like.
  • the reason why the chemical etching method or the CMP method is used is as follows: as the wafer thickness is reduced to 0.08 mm or less, it becomes difficult to grind the semiconductor wafer by a machining process in view of stresses, strength or the like.
  • the method for forming the first and second inter-chip wirings 108 , 109 is not specifically limited.
  • the semi-additive method as used in the first embodiment may be used.
  • another method such as a sputtering method may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

The semiconductor device includes a first semiconductor chip having first electrodes on a fringe region of a main surface thereof, and a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof. The first semiconductor chip and the second semiconductor chip are connected together by bonding a surface of the second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the first semiconductor chip other than the fringe region. The first electrodes are connected to the second electrodes by wirings formed over the main surface of the first semiconductor chip, a side surface of the second semiconductor chip and the main surface of the second semiconductor chip.

Description

    BACKGROUND OF THE INVENTION
  • The present invention generally relates to a stacked-chip semiconductor device in which a plurality of semiconductor chips having different functions are stacked in a three-dimensional direction, and a manufacturing method thereof. More particularly, the present invention relates to a stacked-chip semiconductor device adapted for improved transmission speed of electric signals, and a manufacturing method thereof. [0001]
  • Recently, a stacked-chip semiconductor device is developed in which a plurality of semiconductor chips having different functions are stacked on a single circuit board (carrier substrate) in a single package. [0002]
  • Hereinafter, a semiconductor device having three semiconductor chips stacked on a circuit board will be described as a typical example of such a conventional stacked-chip semiconductor device. [0003]
  • FIG. 10 is a cross-sectional view showing the structure of a conventional stacked-chip semiconductor device. [0004]
  • Referring to FIG. 10, the conventional semiconductor device includes a circuit board [0005] 3, a first semiconductor chip 7, a second semiconductor chip 8, and a third semiconductor chip 10. The circuit board 3 has wiring electrodes 1 on its top surface and terminal electrodes 2 on its bottom surface. The first semiconductor chip 7 is bonded to the circuit board 3 with face-up state and has first electrodes 4, second electrodes 5 and third electrodes 6 at its surface. The second semiconductor chip 8 is flip-chip connected to the surface of the first semiconductor chip 7 with face-down state, and is electrically connected to the first electrodes 4 of the first semiconductor chip 7. The third semiconductor chip 10 is bonded to the rear surface of the second semiconductor chip 8 with face-up state and has fourth electrodes 9 at its surface. The second electrodes 5 of the first semiconductor chip 7 and the fourth electrodes 9 of the third semiconductor chip 10 are electrically connected to each other by first thin metal wires 11. The wiring electrodes 1 of the circuit board 3 and the third electrodes 6 of the first semiconductor chip 7 are electrically connected to each other by second thin metal wires 12. The top surface region of the circuit board 3 including the semiconductor chips and the thin metal wires is sealed with an insulating resin package 13. Note that the gap between the first and second semiconductor chips 7, 8 is sealed with a resin that is different from the resin package 13.
  • In the conventional semiconductor device of FIG. 10, a plurality of types of semiconductor chips that will serve as memory elements, logic elements and the like are mounted on the circuit board [0006] 3. This enables implementation of a multi-functional semiconductor device capable of implementing multifunctional elements in a single package.
  • In this conventional semiconductor device, however, thin metal wires are used as means for electrically connecting the chips other than the flip-chip-connected semiconductor chips. This puts limitations on improvement in transmission speed of electric signals. In other words, the use of the electric connection means like thin metal wires in a multi-functional semiconductor device having multiple chips (two or more chips) stacked in a single package results in a reduced signal propagation speed between the chips. Therefore, such a conventional semiconductor device cannot meet future expectation of improved operation speed of the semiconductor device. In other words, there is a need for an improved signal speed of a semiconductor device having two or more chips, e.g., three chips, stacked in a single package. [0007]
  • SUMMARY OF THE INVENTION
  • In view of the above problems, it is an object of the present invention to implement a high-density, high-performance semiconductor device capable of transmitting a signal with an external equipment at a high speed by improving a signal propagation speed between chips in a semiconductor device having two or more semiconductor chips stacked on each other. [0008]
  • In order to achieve the above object, according to a first aspect of the present invention, a semiconductor device includes a first semiconductor chip having first electrodes on a fringe region of a main surface thereof, and a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof. The first semiconductor chip and the second semiconductor chip are connected together by bonding a surface of the second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the first semiconductor chip other than the fringe region. The first electrodes are connected to the second electrodes by wirings formed over the main surface of the first semiconductor chip, a side surface of the second semiconductor chip and the main surface of the second semiconductor chip. [0009]
  • According to the semiconductor device of the first aspect of the present invention, the second semiconductor chip is bonded to the main surface of the first semiconductor chip with face-up state. The first electrodes on the main surface of the first semiconductor chip are connected to the second electrodes on the main surface of the second semiconductor chip by the wirings formed over the side surface of the second semiconductor chip. This reduces the signal propagation distance between the first and second electrodes, that is, the signal propagation distance between the first and second semiconductor chips, and thus improves the signal propagation speed between the chips, as compared to the case where thin metal wires are used as means for electric connection between the first and second electrodes. This results in an improved signal transmission speed between a semiconductor device having multiple chips stacked on each other and an external equipment connected thereto. [0010]
  • According to a second aspect of the present invention, a semiconductor device includes a first semiconductor chip having first electrodes on a fringe region of a main surface thereof, and a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof. The first semiconductor chip and the second semiconductor chip are connected together by bonding a surface of the second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the first semiconductor chip other than the fringe region. The second semiconductor chip has a side surface having an inclination of less than 90 degrees with respect to the main surface of the first semiconductor chip. The first electrodes are connected to the second electrodes by wirings formed over the main surface of the first semiconductor chip, the side surface of the second semiconductor chip and the main surface of the second semiconductor chip. [0011]
  • According to the semiconductor device of the second aspect of the present invention, the following effects are obtained in addition to the effects obtained in the first aspect: since the side surface of the second semiconductor chip has an inclination of less than 90 degrees with respect to the main surface of the first semiconductor chip, the length of the wirings formed over the side surface of the second semiconductor chip can be reduced as compared to the case where the side surface of the second semiconductor chip is vertical to the main surface of the first semiconductor chip. This enables further reduction in signal propagation distance between the chips and further improvement in signal propagation speed between the chips. [0012]
  • According to the semiconductor device of the second aspect of the present invention, the wirings for connecting the first electrodes to the second electrodes are formed on the ground having a gentler slope. This reduces concentration of stresses on the bent portion of each wiring caused by heat or mechanical stresses. As a result, disconnection of the wirings can be prevented, thereby improving reliability of the semiconductor device. Moreover, there is no abrupt difference in level between the main surface of the first semiconductor chip and the main surface of the second semiconductor chip. This facilitates a lithography process for forming the wirings for connecting the first electrodes to the second electrodes, thereby increasing a process margin. Moreover, when an insulating resin or the like is applied in order to insulate these wirings from the side surface of the second semiconductor chip, coverage of the insulating resin can be improved. [0013]
  • In the semiconductor device of the second aspect of the present invention, the inclination is preferably 30 degrees or more. [0014]
  • This prevents clacks, chippings or the like from being produced in the side portion of the second semiconductor chip. [0015]
  • In the semiconductor device of the first or second aspect of the present invention, the second semiconductor chip preferably has a thickness of 0.15 mm or less. [0016]
  • This reduces the difference in level between the main surface of the first semiconductor chip and the main surface of the second semiconductor chip. This facilitates a lithography process for forming the wirings for connecting the first electrodes to the second electrodes, thereby increasing a process margin. Moreover, this enables further reduction in size of a semiconductor device having multiple chips stacked on each other, and also enables further reduction in signal propagation distance between the chips as well as further improvement in signal propagation speed between the chips. [0017]
  • In the semiconductor device of the first or second aspect of the present invention, the wirings are preferably formed on an insulating layer that covers the fringe region of the main surface of the first semiconductor chip, the side surface of the second semiconductor chip and the main surface of the second semiconductor chip. Moreover, the wirings are preferably connected to the first electrodes and the second electrodes via contact holes formed in the insulating layer. [0018]
  • This enables the wirings for connecting the first electrodes to the second electrodes to be electrically insulated from the side surface of the second semiconductor chip. [0019]
  • In the semiconductor device of the first or second aspect of the present invention, the second semiconductor chip preferably has the second electrodes on a fringe region of the main surface thereof. Preferably, the semiconductor device further includes a third semiconductor chip smaller in area than the second semiconductor chip and having third electrodes on a main surface thereof. The first semiconductor chip, the second semiconductor chip and the third semiconductor chip are preferably connected together by bonding a surface of the third semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the second semiconductor chip other than the fringe region. The second electrodes are preferably connected to the third electrodes by other wirings formed over the main surface of the second semiconductor chip, a side surface of the third semiconductor chip and the main surface of the third semiconductor chip. [0020]
  • This enables implementation of a high-speed semiconductor device having three chips stacked on each other. [0021]
  • According to a third aspect of the present invention, a method for manufacturing a semiconductor device including a first semiconductor chip having first electrodes on a fringe region of a main surface thereof, and a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof includes the following steps: a first step of preparing a first semiconductor wafer having a plurality of first semiconductor chips; a second step of preparing a second semiconductor wafer having a plurality of second semiconductor chips; a third step of cutting the second semiconductor wafer into the second semiconductor chips with a dicing blade while tapering ends of each second semiconductor chip in a forward direction; a fourth step of connecting the first semiconductor wafer and the second semiconductor chips together by bonding a surface of each second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of a corresponding first semiconductor chip of the first semiconductor wafer other than the fringe region; a fifth step of forming a conductive film on the resultant first semiconductor wafer and patterning the conductive film to form wirings for connecting the first electrodes of each first semiconductor chip to the second electrodes of a corresponding second semiconductor chip; and a sixth step of cutting the resultant first semiconductor wafer into the first semiconductor chips as stacked-chip elements each having the first and second semiconductor chips stacked on each other. [0022]
  • The semiconductor device of the second aspect of the present invention can be manufactured by the manufacturing method of the third aspect of the present invention. Accordingly, the same effects as those obtained in the semiconductor device of the second aspect of the present invention can be obtained. In the third aspect of the present invention, after the second semiconductor chip is stacked on each first semiconductor chip of the first semiconductor wafer at a wafer level, the wirings for connecting the first electrodes of each first semiconductor chip of the first semiconductor wafer to the second electrodes of a corresponding second semiconductor chip are formed at a wafer level. This enables the manufacturing process of the semiconductor device to be conducted at a wafer level, and also enables the mounting step to be conducted successively to the wafer diffusion step (the step of forming elements such as transistors, wirings, interlayer films and the like at a wafer level). This allows for efficient manufacturing of the semiconductor device. [0023]
  • In the manufacturing method according to the third aspect of the present invention, the third step preferably includes the step of processing the ends of each second semiconductor chip so that a side surface of the second semiconductor chip forms an angle of 30 degrees to less than 90 degrees with respect to a rear surface thereof. [0024]
  • This enables the same effects as those obtained in the semiconductor device of the second aspect of the present invention to be obtained reliably, and prevents cracks, chippings or the like from being produced in the side portion of the second semiconductor chip. [0025]
  • Preferably, the manufacturing method according to the third aspect of the present invention further includes, between the second and third steps, the step of grinding the second semiconductor wafer from a side opposite to the main surface of each second semiconductor chip so that each second semiconductor chip has a thickness of 0.15 mm or less. [0026]
  • This reduces the difference in level between the main surface of the first semiconductor chip and the main surface of the second semiconductor chip. This facilitates a lithography process for forming the wirings for connecting the first electrodes to the second electrodes, thereby increasing a process margin. Moreover, this enables further reduction in size of a semiconductor device having multiple chips stacked on each other, and also enables further reduction in signal propagation distance between the chips as well as further improvement in signal propagation speed between the chips. [0027]
  • Preferably, the manufacturing method of the third aspect of the present invention further includes, between the fourth and fifth steps, the steps of forming an insulating layer that covers the fringe region of the main surface of each first semiconductor chip, a side surface of each second semiconductor chip, and the main surface of each second semiconductor chip, and forming in the insulating layer first contact holes reaching the first electrodes of each first semiconductor chip and second contact holes reaching the second electrodes of each second semiconductor chip. The fifth step preferably includes the step of forming the conductive film on the insulating layer so as to fill the first contact holes and the second contact holes. [0028]
  • This enables the wirings for connecting the first electrodes to the second electrodes to be electrically insulated from the side surface of the second semiconductor chip.[0029]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a plan view of a stacked-chip element mounted in a semiconductor device according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view of an electrode portion of the stacked-chip element; [0030]
  • FIG. 2 is a cross-sectional view of the semiconductor device according to the first embodiment of the present invention; [0031]
  • FIGS. 3A, 3B and [0032] 3C are cross-sectional views illustrating main steps of a method for manufacturing the semiconductor device according to the first embodiment of the present invention;
  • FIGS. 4A, 4B and [0033] 4C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention;
  • FIG. 5A is a plan view of a stacked-chip element mounted in a semiconductor device according to a second embodiment of the present invention, and FIG. 5B is a cross-sectional view of an electrode portion of the stacked-chip element; [0034]
  • FIG. 6 is a cross-sectional view of the semiconductor device according to the second embodiment of the present invention; [0035]
  • FIGS. 7A, 7B and [0036] 7C are cross-sectional views illustrating main steps of a method for manufacturing the semiconductor device according to the second embodiment of the present invention;
  • FIGS. 8A, 8B and [0037] 8C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device according to the second embodiment of the present invention;
  • FIGS. 9A, 9B and [0038] 9C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device according to the second embodiment of the present invention; and
  • FIG. 10 is a cross-sectional view of a conventional semiconductor device.[0039]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • (First Embodiment) [0040]
  • Hereinafter, a semiconductor device according to the first embodiment of the present invention and a manufacturing method thereof will be described. [0041]
  • First, the structure of a stacked-chip element mounted in a single package in a semiconductor device of the first embodiment (hereinafter, referred to as “stacked-chip element of the present embodiment”) will be described with reference to the accompanying drawings. FIG. 1A is a plan view of the stacked-chip element of the present embodiment, and FIG. 1B is a cross-sectional view of an electrode portion of the stacked-chip element of the present embodiment. [0042]
  • Referring to FIGS. 1A, 1B, the stacked-chip element of the present embodiment includes a [0043] first semiconductor chip 102, a second semiconductor chip 104 and a third semiconductor chip 106. The first semiconductor chip 102 has first electrodes 101 on the fringe region of its main surface. The second semiconductor chip 104 is smaller in area than the first semiconductor chip 102 and has second electrodes 103 on the fringe region of its main surface. The third semiconductor chip 106 is smaller in area than the second semiconductor chip 104 and has third electrodes 105 on the fringe region of its main surface. The first semiconductor chip 102, the second semiconductor chip 104 and the third semiconductor chip 106 are bonded together in the following manner: the surface of the second semiconductor chip 104 that is opposite to the main surface thereof is bonded to a region of the main surface of the first semiconductor chip 102 other than the fringe region with an insulating adhesive. Moreover, the surface of the third semiconductor chip 106 that is opposite to the main surface thereof is bonded to a region of the main surface of the second semiconductor chip 104 other than the fringe region with an insulating adhesive. The first semiconductor chip 102, the second semiconductor chip 104 and the third semiconductor chip 106 are those selected from a plurality of types of chips such as logic chip and memory chip. All signal connection electrodes are arranged in the fringe regions of the corresponding semiconductor chips. Accordingly, in the stacked-chip element of the present embodiment, the second semiconductor chip 104 is smaller in area than the first semiconductor chip 102, and the third semiconductor chip 106 is smaller than the second semiconductor chip 104.
  • As shown in FIGS. 1A and 1B, the main surface (fringe region) of the [0044] first semiconductor chip 102, the side surface and the main surface (fringe region) of the second semiconductor chip 104, and the side surface and the main surface of the third semiconductor chip 106 are covered with an insulating resin layer 107. The insulating resin layer 107 has first contact holes 107 a reaching the respective first electrodes 101, second contact holes 107 b reaching the respective second electrode 103, and third contact electrode 107 c reaching the respective third electrodes 105. First inter-chip wirings 108 and second inter-chip wirings 109 are formed on the insulating resin layer 107. Each of the first inter-chip wirings 108 is connected to the first electrode 101 and the second electrode 103 via the first contact hole 107 a and the second contact hole 107 b, respectively.
  • Each of the second [0045] inter-chip wirings 109 is connected to the second electrode 103 and the third electrode 105 via the second contact hole 107 b and the third contact hole 107 c, respectively. In other words, the insulating resin layer 107 electrically insulates the first inter-chip wirings 108 from the side surface of the second semiconductor chip 104, and also insulates the second inter-chip wirings 109 from the side surface of the third semiconductor chip 106. Note that illustration of the insulating resin layer 107 is omitted in FIG. 1A.
  • In the stacked-chip element of the present embodiment, the [0046] first electrodes 101 are connected to the second electrodes 103 by the first inter-chip wirings 108 formed over the main surface of the first semiconductor chip 102 and the side surface and the main surface of the second semiconductor chip 104. Moreover, the second electrodes 103 are connected to the third electrodes 105 by the second inter-chip wirings 109 formed over the main surface of the second semiconductor chip 104 and the side surface and the main surface of the third semiconductor chip 106. The use of such inter-chip wirings reduces the signal propagation distance between chips and thus improves the signal propagation speed between chips as compared to the case where thin metal wires are used as means for electric connection between electrodes, that is, means for electric connection between chips. This enables improvement in operation speed of a semiconductor device having multiple chips stacked on each other. More specifically, it is clearly understood from FIG. 1B that, provided that D is the distance between the first electrode 101 and the second electrode 103 and L is the length of the first inter-chip wiring 108, the length L is shorter than the length of a thin metal wire connecting a pair of electrodes provided at a distance D.
  • Note that, in the stacked-chip element of the present embodiment, the first [0047] inter-chip wirings 108 and the second inter-chip wirings 109 are formed from an integrally patterned conductive film. The first electrodes 101 of the first semiconductor chip 102 function also as external electrodes for transmitting a signal with an external equipment. Hereinafter, the semiconductor device of the first embodiment will be described.
  • The semiconductor device of the first embodiment is a BGA (Ball Grid Array)-type semiconductor device having the stacked-chip element of the present embodiment of FIGS. 1A, 1B mounted on a circuit board. FIG. 2 is a cross-sectional view of the semiconductor device of the first embodiment. [0048]
  • Referring to FIG. 2, the semiconductor device of the first embodiment is a BGA-type semiconductor device using a [0049] circuit board 113. More specifically, the semiconductor device of the first embodiment includes a circuit board 113, a stacked-chip element of the present embodiment (see FIG. 1B), thin metal wires 114, and an insulating resin package 115. The circuit board 113 has wiring electrodes 111 on the fringe region of its top surface and ball-shaped external terminals 112 at its bottom surface. The stacked-chip element of the present embodiment is bonded to the top surface of the circuit board 113. The thin metal wires 114 electrically connect the first electrodes 101 of the first semiconductor chip 102 to the wiring electrodes 111, respectively. The insulating resin package 115 seals the top surface region of the circuit board 113 including the stacked-chip element of the present embodiment, the wiring electrodes 111 and the thin metal wires 114. Note that the circuit board 113 and the stacked-chip element of the present embodiment are bonded together in the following manner: the surface of the first semiconductor chip 102 that is opposite to the main surface thereof is bonded to the region of the top surface of the circuit board 113 other than the fringe region. The wiring electrodes 111 are electrically connected to the external terminals 112 via through holes formed in the wiring substrate 113, respectively.
  • As described above, the stacked-chip element of the present embodiment mounted in the semiconductor device of the first embodiment includes a [0050] first semiconductor chip 102, a second semiconductor chip 104 and a third semiconductor chip 106. The first semiconductor chip 102 has first electrodes 101 on the fringe region of its main surface. The second semiconductor chip 104 is smaller in area than the first semiconductor chip 102 and has second electrodes 103 on the fringe region of its main surface. The third semiconductor chip 106 is smaller in area than the second semiconductor chip 104 and has third electrodes 105 on the fringe region of its main surface. The second semiconductor chip 104 is bonded to the region of the main surface of the first semiconductor chip 102 other than the fringe region with face-up state. The third semiconductor chip 106 is bonded to the region of the main surface of the second semiconductor chip 104 other than the fringe region with face-up state. The main surface of the first semiconductor chip 102, the side surface and the main surface of the second semiconductor chip 104, and the side surface and the main surface of the third semiconductor chip 106 are covered with an insulating resin layer 107. The insulating resin layer 107 has first contact holes 107 a reaching the respective first electrodes 101, second contact holes 107 b reaching the respective second electrodes 103, and third contact holes 107 c reaching the respective third electrodes 105. The first electrodes 101 are electrically connected to the second electrodes 103 by the first inter-chip wirings 108 formed on the side surface of the semiconductor chip 104 with the insulating resin layer 107 interposed therebetween. Moreover, the second electrodes 103 are electrically connected to the third electrodes 105 by the second inter-chip wirings 109 formed on the side surface of the third semiconductor chip 106 with the insulating resin layer 107 interposed therebetween.
  • More specifically, the semiconductor device of the present embodiment uses the stacked-chip element of the present embodiment mounted in a single package. This reduces the signal propagation distance between chips and thus improves the signal propagation speed between chips as compared to the case where thin metal wires are used as means for electric connection between chips. This enables improvement in operation speed of a semiconductor device having multiple chips stacked on each other. [0051]
  • Hereinafter, a method for manufacturing the semiconductor device according to the first embodiment, more specifically, a method for manufacturing the stacked-chip element of the present embodiment, will be described. FIGS. 3A to [0052] 3C and FIGS. 4A to 4C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • As shown in FIG. 3A, a [0053] first semiconductor wafer 121 is prepared. The first semiconductor wafer 121 has a plurality of first semiconductor chips 102 each having first electrodes 101 on the fringe region of its main surface. Note that, in FIGS. 3A to 3C and FIGS. 4A, 4B, dashed line indicates a scribe line along which the first semiconductor wafer 121 is cut into individual first semiconductor chips 102.
  • As shown in FIG. 3B, a [0054] second semiconductor chip 104 is prepared for every first semiconductor chip 102. Each of the second semiconductor chips 104 is smaller in area than the first semiconductor chip 102 and has second electrodes 103 on the fringe region of its main surface. Each of the second semiconductor chips 104 is bonded to a corresponding first semiconductor chip 102 of the first semiconductor wafer 121 with an insulating adhesive or the like so as to expose the first electrodes 101. More specifically, the surface of the second semiconductor chip 104 that is opposite to the main surface thereof is bonded to the central region of the main surface of the corresponding first semiconductor chip 102 in the first semiconductor wafer 121. The first semiconductor wafer 121 and the second semiconductor chips 104 are thus bonded together.
  • As shown in FIG. 3C, a [0055] third semiconductor chip 106 is prepared for every first semiconductor chip 102. Each of the third semiconductor chips 106 is smaller in area than the second semiconductor chip 104 and has third electrodes 105 on the fringe region of its main surface. Each of the third semiconductor chips 106 is bonded to a corresponding second semiconductor chip 104 on the first semiconductor wafer 121 with an insulating adhesive or the like so as to expose the second electrodes 103. More specifically, the surface of the third semiconductor chip 106 that is opposite to the main surface thereof is bonded to the central region of the main surface of the corresponding second semiconductor chip 104 on the first semiconductor wafer 121. The first semiconductor wafer 121, the second semiconductor chips 104 and the third semiconductor chips 106 are thus bonded together.
  • A photosensitive insulating material is then applied to the [0056] first semiconductor wafer 121 so as to cover the main surfaces of the first semiconductor chips 102, the side surfaces and the main surfaces of the second semiconductor chips 104, and the side surfaces and the main surfaces of the third semiconductor chips 106. A prescribed part of the applied photosensitive insulating material is then exposed to light for curing. An unnecessary part of the photosensitive insulating material is then removed. As a result, as shown in FIG. 4A, an insulating resin layer 107 is formed which has first contact holes 107 a reaching the respective first electrodes 101, second contact holes 107 b reaching the respective second electrodes 103, and third contact holes 107 c reaching the respective third electrodes 105. Note that the photosensitive insulating material as the insulating resin layer 107 may be applied by a commonly used spin coating method. Alternatively, another method such as a spray method or a printing method may be used.
  • Thereafter, a conductive film is formed on the insulating [0057] resin layer 107 so as to fill the first contact holes 107 a, the second contact holes 107 b and the third contact holes 107 c. The conductive film thus formed is then patterned to form first inter-chip wirings 108 and second inter-chip wirings 109, as shown in FIG. 4B Each of the first inter-chip wirings 108 connects a corresponding first electrode 101 of a corresponding first semiconductor chip 102 to a corresponding second electrode 103 of a corresponding second semiconductor chip 104. Each of the second inter-chip wirings 109 connects a corresponding second electrode 103 of a corresponding second semiconductor chip 104 to a corresponding third electrode 105 of a corresponding third semiconductor chip 106. In other words, the first semiconductor chip 102 and the second semiconductor chip 104 are electrically connected to each other by the first inter-chip wirings 108 formed over the main surface of the first semiconductor chip 102 and the side surface and the main surface of the second semiconductor chip 104. The insulating resin layer 107 electrically insulates the first inter-chip wirings 108 from the side surface of the second semiconductor chip 104. Moreover, the second semiconductor chip 104 and the third semiconductor chip 106 are electrically connected to each other by the second inter-chip wirings 109 formed over the main surface of the second semiconductor chip 104 and the side surface and the main surface of the third semiconductor chip 106. The insulating resin layer 107 electrically insulates the second inter-chip wirings 109 from the side surface of the third semiconductor chip 106.
  • For example, the first [0058] inter-chip wirings 108 and the second inter-chip wirings 109 may be formed by a semi-additive method, one of the existing technologies. More specifically, a metal barrier layer and a plating seed layer are sequentially formed on the insulating resin layer 107 on the first semiconductor wafer 121 by a sputtering method, and a resist pattern is formed on the plating seed layer. Thereafter, by an electroplating method, a thick metal film is selectively formed on the region of the plating seed layer having no resist pattern, and the resist pattern is then removed. The plating seed layer and the metal barrier layer are then etched away using the thick metal film as a mask. As a result, the first inter-chip wirings 108 and the second inter-chip wirings 109 are formed. Note that a metal having an excellent adhesion property to the insulting resin layer 107 and the plating seed layer and serving as a barrier against an etchant of the plating seed layer, e.g., TiW, is used as a material of the metal barrier layer. A low-resistance metal allowing electroplating to be conducted in an excellent manner, e.g., Cu, is used as a material of the plating seed layer. In view of electric characteristics of the first and second inter-chip wirings 108, 109, a low-resistance, non-magnetic metal, e.g., Cu, is used as a material of the thick metal film (i.e., plated metal film).
  • The [0059] first semiconductor wafer 121 is then cut into a plurality of first semiconductor chips 102 with a dicing blade. As a result, the same stacked-chip element as that of the present embodiment in FIG. 1B is completed as shown in FIG. 4C. More specifically, the second semiconductor chip 104 and the third semiconductor chip 106 are stacked on each first semiconductor chip 102, and the first, second and third semiconductor chips 102, 104, 106 of each stacked-chip element are electrically connected to each other by the first inter-chip wirings 108 and the second inter-chip wirings 109.
  • As has been described above, according to the first embodiment, the [0060] second semiconductor chip 104 is bonded to the main surface of the first semiconductor chip 102 with face-up state. The first electrodes 101 on the main surface of the first semiconductor chip 102 are connected to the second electrodes 103 on the main surface of the second semiconductor chip 104 by the first inter-chip wirings 108 formed over the side surface of the second semiconductor chip 104. Moreover, the third semiconductor chip 106 is bonded to the main surface of the second semiconductor chip 104 with face-up state. The second electrodes 103 on the main surface of the second semiconductor chip 104 are connected to the third electrodes 105 on the main surface of the third semiconductor chip 106 by the second inter-chip wirings 109 formed over the side surface of the third semiconductor chip 106. This reduces the signal propagation distance between chips and thus improves the signal propagation speed between chips as compared to the case where thin metal wires are used as means for electric connection between electrodes, i.e., between chips. This results in an improved signal transmission speed between a semiconductor device having multiple chips (more specifically, three chips) stacked on each other and an external equipment connected thereto.
  • The first embodiment is implemented based on the difference in area between the semiconductor chips. More specifically, the [0061] second semiconductor chip 104 and the third semiconductor chip 106 are sequentially stacked on each first semiconductor chip 102 of the first semiconductor wafer 121 at a wafer level. Thereafter, the first inter-chip wirings 108 and the second inter-chip wirings 109 for electric connection between chips are formed at a wafer level. This enables the manufacturing process of the semiconductor device to be conducted at a wafer level, and also enables the mounting step to be conducted successively to the wafer diffusion step (the step of forming elements such as transistors, wirings, interlayer films and the like at a wafer level). This allows for efficient manufacturing of the semiconductor device.
  • Note that a semiconductor device having three chips stacked on each other is described in the first embodiment. However, a semiconductor device having two chips or four or more chips stacked on each other may alternatively be used as long as an upper semiconductor chip has a smaller area and each semiconductor chip has signal connection electrodes on the fringe region thereof. The same effects as those described above can be obtained by such a semiconductor device. [0062]
  • In the first embodiment, the stacked-chip element is mounted in a BGA-type semiconductor device by using a circuit board. However, the stacked-chip element may be mounted in a QFP (Quad Flat Package) or a QFN (Quad Flat Non-leaded Package) by using a lead frame. Alternatively, the stacked-chip element may be mounted in a TCP (Tape Carrier Package) by a TAB (Tape Automated Bonding) technology. In such cases as well, a high-speed semiconductor device having a stacked-chip element mounted in a single package can be implemented. [0063]
  • Conventionally, a semiconductor chip having a thickness of about 0.15 mm to about 0.60 mm is commonly mounted in a semiconductor device. In the first embodiment, however, it is preferable that the total thickness of the second and [0064] third semiconductor chips 104, 106 is about 0.15 mm or less. In other words, it is preferable to grind a semiconductor wafer having the second semiconductor chips 104 before dicing it into individual second semiconductor chips 104, and to grind a semiconductor wafer having the third semiconductor chips 106 before dicing it into individual third semiconductor chips 106. More specifically, the semiconductor wafer having the second semiconductor chips 104 is ground from the side opposite to the main surface of the second semiconductor chips 104 and the semiconductor wafer having the third semiconductor chips 106 is ground from the side opposite to the main surface of the third semiconductor chips 106 so that the total thickness of the second and third semiconductor chips 104, 106 becomes equal to about 0.15 mm or less. This reduces the difference in level between the respective main surfaces of the first and second semiconductor chips 102, 104 and also reduces the difference in level between the respective main surfaces of the second and third semiconductor chips 104, 106. This facilitates a lithography process for forming the first and second inter-chip wirings 108, 109, thereby increasing a process margin. In order to form the wirings in a desirable manner, the resist film must be applied with a thickness of at most about 0.15 mm. This requires that the distance from the main surface of the first semiconductor chip 102 to the main surface of the third semiconductor chip 106 be about 0.15 mm or less. It is difficult to form a resist pattern with an aspect ratio (i.e., the ratio of height to width) exceeding five. Therefore, each of the first and second inter-chip wirings 108, 109 must have a width of 0.02 mm or more. In other words, each of the first and second inter-chip wirings 108, 109 is a flat wiring with an aspect ratio of less than one. Accordingly, in a semiconductor device having two chips stacked on each other, it is preferable that the upper semiconductor chip has a thickness of about 0.15 mm or less. In a semiconductor device having four or more chips stacked on each other, it is preferable that the total thickness of the second semiconductor chip from the bottom and the semiconductor chips stacked thereon is about 0.15 mm or less.
  • Reducing the total thickness of the second and [0065] third semiconductor chips 104, 106 in the first embodiment would enable further reduction in size of a semiconductor device having multiple chips stacked on each other, and also enable further reduction in signal propagation distance between chips as well as further improvement in signal propagation speed between chips.
  • In the first embodiment, a semiconductor wafer to be cut into the second or [0066] third semiconductor chips 104, 106 may be reduced in thickness by the following method: a semiconductor wafer having a thickness of about 0.50 mm to about 0.80 mm is first ground to about 0.15 mm to about 0.30 mm by a machining process. An example of the machining process is an infeed grinding method, a two-step grinding method using a grinding stone (rough machining step and finishing step). The resultant semiconductor wafer is further reduced in thickness to about 0.02 mm to about 0.08 mm by a chemical etching method, a CMP (Chemical Mechanical Polishing) method, or the like. The reason why the chemical etching method or the CMP method is used is as follows: as the wafer thickness is reduced to 0.08 mm or less, it becomes difficult to grind the semiconductor wafer by a machining process in view of stresses, strength or the like.
  • In the first embodiment, the first and second [0067] inter-chip wirings 108, 109 are formed by a semi-additive method. However, the first and second inter-chip wirings 108, 109 may alternatively be formed by another existing wiring formation technology, e.g., a sputtering method.
  • (Second Embodiment) [0068]
  • Hereinafter, a semiconductor device according to the second embodiment of the present invention and a manufacturing method thereof will be described. [0069]
  • First, the structure of a stacked-chip element mounted in a single package in the semiconductor device of the second embodiment (hereinafter, referred to as “stacked-chip element of the present embodiment”) will be described with reference to the accompanying drawings. FIG. 5A is a plan view of the stacked-chip element of the present embodiment. FIG. 5B is a cross-sectional view of an electrode portion of the stacked-chip element of the present embodiment. Note that, in FIGS. 5A, 5B, the same members as those of the stacked-chip element mounted in the semiconductor device of the first embodiment in FIGS. 1A, 1B are denoted with the same reference numerals and characters, and description thereof will be omitted. [0070]
  • As shown in FIGS. 5A, 5B, the stacked-chip element of the present embodiment is different from that of the first embodiment in that the side surface of the [0071] second semiconductor chip 104 has an inclination of less than 90 degrees with respect to the main surface of the first semiconductor chip 102, and in that the side surface of the third semiconductor chip 106 has an inclination of less than 90 degrees with respect to the main surface of the second semiconductor chip 104. This reduces both the length of the first inter-chip wiring 108 connecting the first electrode 101 to the second electrode 103 and the length of the second inter-chip wiring 109 connecting the second electrode 103 to the third electrode 105 as compared to the first embodiment. More specifically, it is clearly understood from FIGS. 5B, 1B that, provided that the distance D′ between the first and second electrodes 101, 103 of the present embodiment is the same as the distance D between the first and second electrodes 101, 103 of the first embodiment (see FIG. 1B), the length L′ of the first inter-chip wiring 108 of the present embodiment is shorter than the length L of the first inter-chip wiring 108 of the first embodiment. In FIG. 5B, θ1 denotes an angle of the side surface of the second semiconductor chip 104 with respect to the main surface of the first semiconductor chip 102, and θ2 denotes an angle of the side surface of the third semiconductor chip 106 with respect to the main surface of the second semiconductor chip 104. The upper limit of θ1 and θ2 is about 90 degrees in view of the limitations on coverage of the insulating resin layer 107, sputtering coverage of the plating seed layer (see the method for forming the first and second inter-chip wirings 108, 109 in the first embodiment) or the like. The lower limit of θ1 and θ2 is about 30 degrees in view of the limitations on the blade angle of a dicing blade for cutting semiconductor wafers into second semiconductor chips 104 and third semiconductor chips 106. In the stacked-chip element of the present embodiment, θ1 and θ2 are about 45 degrees. When θ1 and θ2 are 90 degrees, the stacked-chip element of the present embodiment is the same as that mounted in the semiconductor device of the first embodiment in FIGS. 1A, 1B. Note that illustration of the insulting resin layer 107 is omitted in FIG. 5A.
  • Hereinafter, a semiconductor device of the second embodiment will be described. The semiconductor device of the second embodiment is a BGA-type semiconductor device having the stacked-chip element of the present embodiment of FIGS. 5A, 5B mounted on a circuit board. FIG. 6 is a cross-sectional view of a semiconductor device of the second embodiment. Note that, in FIG. 6, the same members as those in the semiconductor device of the first embodiment in FIG. 2 are denoted with the same reference numerals and characters, and description thereof will be omitted. As shown in FIG. 6, the semiconductor device of the second embodiment is different from that of the first embodiment in that each of the side surface of the [0072] second semiconductor chip 104 and the side surface of the third semiconductor chip 106 has an inclination of less than 90 degrees with respect to the main surface of the underlying semiconductor chip.
  • Hereinafter, a method for manufacturing the semiconductor device of the second embodiment, more specifically, a method for manufacturing the stacked-chip element of the present embodiment, will be described. FIGS. 7A to [0073] 7C, FIGS. 8A to 8C and FIGS. 9A to 9C are cross-sectional views illustrating main steps of the method for manufacturing the semiconductor device of the second embodiment.
  • As shown in FIG. 7A, a [0074] first semiconductor wafer 121 is prepared. The first semiconductor wafer 121 has a plurality of first semiconductor chips 102 each having first electrodes 101 on the fringe region of its main surface. Note that, in FIG. 7A, FIGS. 8B, 8C and FIGS. 9A, 9B, dashed line indicates a scribe line along which a first semiconductor wafer 121 is cut into individual first semiconductor chips 102.
  • As shown in FIG. 7B, a [0075] second semiconductor wafer 122 is prepared. The second semiconductor wafer 122 has a plurality of second semiconductor chips 104. Each of the plurality of second semiconductor chips 104 is smaller in area than the first semiconductor chip 102 and has second electrodes 103 on the fringe region of its main surface. As shown in FIG. 7C, the second semiconductor wafer 122 is then cut into the second semiconductor chips 104 with a dicing blade 131 having a prescribed blade angle. As shown in FIG. 8A, when the second semiconductor wafer 122 is cut into the second semiconductor chips 104, both ends of each second semiconductor chip 104 are tapered in the forward direction. In other words, both ends of each second semiconductor chip 104 are processed so that the side surface of the second semiconductor chip 104 forms an angle θ1 of less than 90 degrees with respect to the rear surface thereof. Note that chain line in FIGS. 7B, 7C indicates a scribe line along which the second semiconductor wafer 122 is cut into individual second semiconductor chips 104.
  • As shown in FIG. 8B, each of the [0076] second semiconductor chips 104 is bonded to a corresponding first semiconductor chip 102 of the first semiconductor wafer 121 with an insulating adhesive or the like so as to expose the first electrodes 101. More specifically, the surface of the second semiconductor chip 104 that is opposite to the main surface thereof is bonded to the central region of the main surface of the corresponding first semiconductor chip 102 in the first semiconductor wafer 121. The first semiconductor wafer 121 and the second semiconductor chips 104 are thus bonded together.
  • Thereafter, a third semiconductor wafer (not shown) is prepared. The third semiconductor wafer has a plurality of third semiconductor chips [0077] 106. Each of the third semiconductor chips 106 is smaller in area than the second semiconductor chip 104 and has third electrodes 105 on the fringe region of its main surface. The third semiconductor wafer is then cut into the third semiconductor chips 106 in the same manner as that shown in FIGS. 7B, 7C and FIG. 8A so that both ends of each third semiconductor chip 106 are tapered in the forward direction. As a result, the side surface of the third semiconductor chip 106 forms an angle θ2 of less than 90 degrees with respect to the rear surface thereof. As shown in FIG. 8C, each of the third semiconductor chips 106 is bonded to a corresponding second semiconductor chip 104 on the first semiconductor wafer 121 with an insulating adhesive or the like so as to expose the second electrodes 103. More specifically, the surface of the third semiconductor chip 106 that is opposite to the main surface thereof is bonded to the central region of the main surface of the corresponding second semiconductor chip 104 on the first semiconductor wafer 121. The first semiconductor wafer 121, the second semiconductor chips 104 and the third semiconductor chips 106 are thus bonded together.
  • A photosensitive insulating material is then applied to the [0078] first semiconductor wafer 121 so as to cover the main surfaces of the first semiconductor chips 102, the side surfaces and the main surfaces of the second semiconductor chips 104, and the side surfaces and the main surfaces of the third semiconductor chips 106. A prescribed part of the applied photosensitive insulating material is then exposed to light for curing. An unnecessary part of the photosensitive insulating material is then removed. As a result, as shown in FIG. 9A, an insulating resin layer 107 is formed which has first contact holes 107 a reaching the respective first electrodes 101, second contact holes 107 b reaching the respective second electrodes 103, and third contact holes 107 c reaching the respective third electrodes 105. Note that the photosensitive insulating material as the insulating resin layer 107 may be applied by a commonly used spin coating method. Alternatively, another method such as a spray method or a printing method may be used.
  • Thereafter, a conductive film is formed on the insulating [0079] resin layer 107 so as to fill the first contact holes 107 a, the second contact holes 107 b and the third contact holes 107 c. The conductive film thus formed is then patterned to form first inter-chip wirings 108 and second inter-chip wirings 109, as shown in FIG. 9B Each of the first inter-chip wirings 108 connects a corresponding first electrode 101 of a corresponding first semiconductor chip 102 to a corresponding second electrode 103 of a corresponding second semiconductor chip 104. Each of the second inter-chip wirings 109 connects a corresponding second electrode 103 of a corresponding second semiconductor chip 104 to a corresponding third electrode 105 of a corresponding third semiconductor chip 106. In other words, the first semiconductor chip 102 and the second semiconductor chip 104 are electrically connected to each other by the first inter-chip wirings 108 formed over the main surface of the first semiconductor chip 102 and the side surface and the main surface of the second semiconductor chip 104. The insulating resin layer 107 electrically insulates the first inter-chip wirings 108 from the side surface of the second semiconductor chip 104. Moreover, the second semiconductor chip 104 and the third semiconductor chip 106 are electrically connected to each other by the second inter-chip wirings 109 formed over the main surface of the second semiconductor chip 104 and the side surface and the main surface of the third semiconductor chip 106. The insulating resin layer 107 electrically insulates the second inter-chip wirings 109 from the side surface of the third semiconductor chip 106.
  • The [0080] first semiconductor wafer 121 is then cut into a plurality of first semiconductor chips 102 with a dicing blade. As a result, the same stacked-chip element as that of the present embodiment in FIG. 5B is completed as shown in FIG. 9C. More specifically, the second semiconductor chip 104 and the third semiconductor chip 106 are stacked on each first semiconductor chip 102, and the first, second and third semiconductor chips 102, 104, 106 of each stacked-chip element are electrically connected to each other by the first inter-chip wirings 108 and the second inter-chip wirings 109.
  • As has been described above, according to the second embodiment, the [0081] second semiconductor chip 104 is bonded to the main surface of the first semiconductor chip 102 with face-up state. The first electrodes 101 on the main surface of the first semiconductor chip 102 are connected to the second electrodes 103 on the main surface of the second semiconductor chip 104 by the first inter-chip wirings 108 formed over the side surface of the second semiconductor chip 104. Moreover, the third semiconductor chip 106 is bonded to the main surface of the second semiconductor chip 104 with face-up state. The second electrodes 103 on the main surface of the second semiconductor chip 104 are connected to the third electrodes 105 on the main surface of the third semiconductor chip 106 by the second inter-chip wirings 109 formed over the side surface of the third semiconductor chip 106. This reduces the signal propagation distance between chips and thus improves the signal propagation speed between chips as compared to the case where thin metal wires are used as means for electric connection between electrodes, i.e., between chips. This results in an improved signal transmission speed between a semiconductor device having multiple chips (more specifically, three chips) stacked on each other and an external equipment connected thereto.
  • The second embodiment is implemented based on the difference in area between the semiconductor chips. More specifically, the [0082] second semiconductor chip 104 and the third semiconductor chip 106 are sequentially stacked on each first semiconductor chip 102 of the first semiconductor wafer 121 at a wafer level. Thereafter, the first inter-chip wirings 108 and the second inter-chip wirings 109 for electric connection between chips are formed at a wafer level. This enables the manufacturing process of the semiconductor device to be conducted at a wafer level, and also enables the mounting step to be conducted successively to the wafer diffusion step. This allows for efficient manufacturing of the semiconductor device.
  • According to the second embodiment, the side surface of the [0083] second semiconductor chip 104 has an inclination of less than 90 degrees with respect to the main surface of the first semiconductor chip 102. This reduces the length of the first inter-chip wiring 108 as compared to the case where the side surface of the second semiconductor chip 104 is vertical to the main surface of the first semiconductor chip 102. Similarly, the side surface of the third semiconductor chip 106 has an inclination of less than 90 degrees with respect to the main surface of the second semiconductor chip 104. This reduces the length of the second inter-chip wiring 109 as compared to the case where the side surface of the third semiconductor chip 106 is vertical to the main surface of the second semiconductor chip 104. As a result, the signal propagation distance between chips is further reduced and thus the signal propagation speed between chips is further improved.
  • According to the second embodiment, the first [0084] inter-chip wiring 108 and the second inter-chip wiring 109 are formed on the ground having a gentler slope. This reduces concentration of stresses on the bent portion of each wiring caused by heat or mechanical stresses. As a result, disconnection of the wirings can be prevented, thereby improving reliability of the semiconductor device. Moreover, there is no abrupt difference in level between the main surface of the first semiconductor chip 102 and the main surface of the second semiconductor chip 104 and between the main surface of the second semiconductor chip 104 and the main surface of the third semiconductor chip 106. This facilitates a lithography process for forming the first and second inter-chip wirings 108, 109, thereby increasing a process margin. Moreover, the insulating resin layer 107 for insulating the first inter-chip wirings 108 from the side surface of the second semiconductor chip 104 and insulating the second inter-chip wirings 108 from the side surface of the third semiconductor chip 106 has improved coverage.
  • Note that a semiconductor device having three chips stacked on each other is described in the second embodiment. However, a semiconductor device having two chips or four or more chips stacked on each other may alternatively be used as long as an upper semiconductor chip has a smaller area and each semiconductor chip has signal connection electrodes on the fringe region thereof. The same effects as those described above can be obtained by such a semiconductor device. [0085]
  • In the second embodiment, the stacked-chip element is mounted in a BGA-type semiconductor device by using a circuit board. However, the stacked-chip element may be mounted in a QFP or a QFN by using a lead frame. Alternatively, the stacked-chip element may be mounted in a TCP by a TAB technology. In such cases as well, a high-speed semiconductor device having a stacked-chip element mounted in a single package can be implemented. [0086]
  • In the second embodiment, θ[0087] 1 (the angle of the side surface of the second semiconductor chip 104 with respect to the main surface of the first semiconductor chip 102) and θ2 (the angle of the side surface of the third semiconductor chip 106 with respect to the main surface of the second semiconductor chip 104) are preferably 80 degrees or less in view of the limitations on coverage of the insulating resin layer 107, sputtering coverage of the plating seed layer, or the like. As θ1 and θ2 are reduced to 60 degrees, 45 degrees and the like, the first inter-chip wirings 108 and the second inter-chip wirings 109 are formed with further improved reliability. Even if θ1 and θ2 are about 90 degrees, however, the same effects as those of the present embodiment can be obtained as long as the surface of the insulating resin layer 107 formed on the side surface of the second semiconductor chip 104 forms an angle of less than 90 degrees (more preferably, 80 degrees) with respect to the main surface of the first semiconductor chip 102 and the surface of the insulting resin layer 107 formed on the side surface of the third semiconductor chip 106 forms an angle of less than 90 degrees (more preferably, less than 80 degrees) with respect to the main surface of the second semiconductor chip 104. Moreover, in the step of cutting the second and third semiconductor wafers into second semiconductor chips 104 and third semiconductor chips 106 with a dicing blade, the ends of the second semiconductor chip 104 and the third semiconductor chip 106 can be relatively easily processed so that θ1 and θ2 become equal to about 60 degrees. However, it is difficult to reduce θ1 and θ2 to less than 30 degrees due to the limitations on the blade angle of the dicing blade. Moreover, as θ1 and θ2 are reduced, cracks, chippings or the like are more likely to be produced. In order to prevent such problems, secondary processing may be conducted after the ends of the second semiconductor chip 104 and the third semiconductor chip 106 are tapered in the forward direction. More specifically, an acute-angled edge in each chip end may be ground vertically or may be rounded off by a chemical etching method.
  • In the second embodiment, it is preferable that the total thickness of the second and [0088] third semiconductor chips 104, 106 is about 0.15 mm or less. In other words, it is preferable to grind the second semiconductor wafer 122 before dicing it into individual second semiconductor chips 104, and to grind the third semiconductor wafer (not shown) before dicing it into individual third semiconductor chips 106. More specifically, the second semiconductor wafer 122 is ground from the side opposite to the main surface of the second semiconductor chips 104, and the third semiconductor wafer is ground from the side opposite to the main surface of the third semiconductor chips 106 so that the total thickness of the second and third semiconductor chips 104, 106 becomes equal to about 0.15 mm or less. This reduces the difference in level between the respective main surfaces of the first and second semiconductor chips 102, 104 and also reduces the difference in level between the respective main surfaces of the second and third semiconductor chips 104, 106. This facilitates a lithography process for forming the first and second inter-chip wirings 108, 109, thereby increasing a process margin. However, it is difficult to form a resist pattern with an aspect ratio (i.e., the ratio of height to width) exceeding five. Therefore, each of the first and second inter-chip wirings 108, 109 must have a width of 0.02 mm or more. In other words, each of the first and second inter-chip wirings 108, 109 is a flat wiring with an aspect ratio of less than one. Accordingly, in a semiconductor device having two chips stacked on each other, it is preferable that the upper semiconductor chip has a thickness of about 0.15 mm or less. In a semiconductor device having four or more chips stacked on each other, it is preferable that the total thickness of the second semiconductor chip from the bottom and the semiconductor chips stacked thereon is about 0.15 mm or less.
  • Reducing the total thickness of the second and [0089] third semiconductor chips 104, 106 in the second embodiment would enable further reduction in size of a semiconductor device having multiple chips stacked on each other, and also enable further reduction in signal propagation distance between chips as well as further improvement in signal propagation speed between chips.
  • In the second embodiment, the second or third semiconductor wafer (i.e., the semiconductor wafer to be cut into the second or [0090] third semiconductor chips 104, 106) may be reduced in thickness by the following method: a semiconductor wafer having a thickness of about 0.50 mm to about 0.80 mm is first ground to about 0.15 mm to about 0.30 mm by a machining process. An example of the machining process is an infeed grinding method, a two-step grinding method using a grinding stone (rough machining step and finishing step). The resultant semiconductor wafer is further reduced in thickness to about 0.02 mm to about 0.08 mm by a chemical etching method, a CMP method, or the like. The reason why the chemical etching method or the CMP method is used is as follows: as the wafer thickness is reduced to 0.08 mm or less, it becomes difficult to grind the semiconductor wafer by a machining process in view of stresses, strength or the like.
  • In the second embodiment, the method for forming the first and second [0091] inter-chip wirings 108, 109 is not specifically limited. For example, the semi-additive method as used in the first embodiment may be used. Alternatively, another method such as a sputtering method may be used.

Claims (13)

What is claimed is:
1. A semiconductor device, comprising:
a first semiconductor chip having first electrodes on a fringe region of a main surface thereof; and
a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof, wherein
the first semiconductor chip and the second semiconductor chip are connected together by bonding a surface of the second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the first semiconductor chip other than the fringe region, and
the first electrodes are connected to the second electrodes by wirings formed over the main surface of the first semiconductor chip, a side surface of the second semiconductor chip and the main surface of the second semiconductor chip.
2. The semiconductor device according to claim 1, wherein the second semiconductor chip has a thickness of 0.15 mm or less.
3. The semiconductor device according to claim 1, wherein the wirings are formed on an insulating layer that covers the fringe region of the main surface of the first semiconductor chip, the side surface of the second semiconductor chip and the main surface of the second semiconductor chip, and are connected to the first electrodes and the second electrodes via contact holes formed in the insulating layer.
4. The semiconductor device according to claim 1, wherein
the second semiconductor chip has the second electrodes on a fringe region of the main surface thereof,
the semiconductor device further comprising:
a third semiconductor chip smaller in area than the second semiconductor chip and having third electrodes on a main surface thereof, wherein
the first semiconductor chip, the second semiconductor chip and the third semiconductor chip are connected together by bonding a surface of the third semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the second semiconductor chip other than the fringe region, and
the second electrodes are connected to the third electrodes by other wirings formed over the main surface of the second semiconductor chip, a side surface of the third semiconductor chip and the main surface of the third semiconductor chip.
5. A semiconductor device, comprising:
a first semiconductor chip having first electrodes on a fringe region of a main surface thereof; and
a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof, wherein
the first semiconductor chip and the second semiconductor chip are connected together by bonding a surface of the second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the first semiconductor chip other than the fringe region,
the second semiconductor chip has a side surface having an inclination of less than 90 degrees with respect to the main surface of the first semiconductor chip, and
the first electrodes are connected to the second electrodes by wirings formed over the main surface of the first semiconductor chip, the side surface of the second semiconductor chip and the main surface of the second semiconductor chip.
6. The semiconductor device according to claim 5, wherein the inclination is 30 degrees or more.
7. The semiconductor device according to claim 5, wherein the second semiconductor chip has a thickness of 0.15 mm or less.
8. The semiconductor device according to claim 5, wherein the wirings are formed on an insulating layer that covers the fringe region of the main surface of the first semiconductor chip, the side surface of the second semiconductor chip and the main surface of the second semiconductor chip, and are connected to the first electrodes and the second electrodes via contact holes formed in the insulating layer.
9. The semiconductor device according to claim 5, wherein
the second semiconductor chip has the second electrodes on a fringe region of the main surface thereof,
the semiconductor device further comprising:
a third semiconductor chip smaller in area than the second semiconductor chip and having third electrodes on a main surface thereof, wherein
the first semiconductor chip, the second semiconductor chip and the third semiconductor chip are connected together by bonding a surface of the third semiconductor chip that is opposite to the main surface thereof to a region of the main surface of the second semiconductor chip other than the fringe region, and
the second electrodes are connected to the third electrodes by other wirings formed over the main surface of the second semiconductor chip, a side surface of the third semiconductor chip and the main surface of the third semiconductor chip.
10. A method for manufacturing a semiconductor device including a first semiconductor chip having first electrodes on a fringe region of a main surface thereof, and a second semiconductor chip smaller in area than the first semiconductor chip and having second electrodes on a main surface thereof, comprising:
a first step of preparing a first semiconductor wafer having a plurality of first semiconductor chips;
a second step of preparing a second semiconductor wafer having a plurality of second semiconductor chips;
a third step of cutting the second semiconductor wafer into the second semiconductor chips with a dicing blade while tapering ends of each second semiconductor chip in a forward direction;
a fourth step of connecting the first semiconductor wafer and the second semiconductor chips together by bonding a surface of each second semiconductor chip that is opposite to the main surface thereof to a region of the main surface of a corresponding first semiconductor chip of the first semiconductor wafer other than the fringe region;
a fifth step of forming a conductive film on the resultant first semiconductor wafer and patterning the conductive film to form wirings for connecting the first electrodes of each first semiconductor chip to the second electrodes of a corresponding second semiconductor chip; and
a sixth step of cutting the resultant first semiconductor wafer into the first semiconductor chips as stacked-chip elements each having the first and second semiconductor chips stacked on each other.
11. The method according to claim 10, wherein the third step includes the step of processing the ends of each second semiconductor chip so that a side surface of the second semiconductor chip forms an angle of 30 degrees to less than 90 degrees with respect to a rear surface thereof.
12. The method according to claim 10, further comprising, between the second and third steps, the step of:
grinding the second semiconductor wafer from a side opposite to the main surface of each second semiconductor chip so that each second semiconductor chip has a thickness of 0.15 mm or less.
13. The method according to claim 10, further comprising, between the fourth and fifth steps, the steps of:
forming an insulating layer that covers the fringe region of the main surface of each first semiconductor chip, a side surface of each second semiconductor chip, and the main surface of each second semiconductor chip; and
forming in the insulating layer first contact holes reaching the first electrodes of each first semiconductor chip and second contact holes reaching the second electrodes of each second semiconductor chip, wherein
the fifth step includes the step of forming the conductive film on the insulating layer so as to fill the first contact holes and the second contact holes.
US10/185,000 2001-07-04 2002-07-01 Semiconductor device and manufacturing method thereof Abandoned US20030006493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/057,195 US7595222B2 (en) 2001-07-04 2005-02-15 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-203030 2001-07-04
JP2001203030 2001-07-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/057,195 Division US7595222B2 (en) 2001-07-04 2005-02-15 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
US20030006493A1 true US20030006493A1 (en) 2003-01-09

Family

ID=19039736

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/185,000 Abandoned US20030006493A1 (en) 2001-07-04 2002-07-01 Semiconductor device and manufacturing method thereof
US11/057,195 Expired - Fee Related US7595222B2 (en) 2001-07-04 2005-02-15 Semiconductor device and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/057,195 Expired - Fee Related US7595222B2 (en) 2001-07-04 2005-02-15 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
US (2) US20030006493A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077548A2 (en) * 2003-02-28 2004-09-10 Siemens Aktiengesellschaft Connection technology for power semiconductors
WO2005081315A2 (en) * 2004-02-18 2005-09-01 Infineon Technologies Ag Semiconductor component comprising a stack of semiconductor chips and method for producing the same
WO2005101504A1 (en) * 2004-04-19 2005-10-27 Siemens Aktiengesellschaft Power module
US20060049527A1 (en) * 2004-09-09 2006-03-09 Nobuaki Hashimoto Electronic device and method of manufacturing the same
US20060192299A1 (en) * 2005-02-25 2006-08-31 Seiko Epson Corporation Manufacturing method for electronic device
WO2006120309A2 (en) * 2005-05-11 2006-11-16 Stmicroelectronics Sa Silicon chips provided with inclined contact pads and an electronic module comprising said silicon chip
US20060284323A1 (en) * 2005-06-21 2006-12-21 Seiko Epson Corporation Electronic board, method of manufacturing the same, and electronic device
US20080096315A1 (en) * 2006-10-23 2008-04-24 Samsung Electronics Co., Ltd. Stacked chip package and method for forming the same
CN100385657C (en) * 2004-09-09 2008-04-30 精工爱普生株式会社 Electronic device and method of manufacturing the same
US20080131999A1 (en) * 2006-12-01 2008-06-05 Hem Takiar Method of die stacking using insulated wire bonds
US20080128879A1 (en) * 2006-12-01 2008-06-05 Hem Takiar Film-on-wire bond semiconductor device
WO2008099779A1 (en) 2007-02-13 2008-08-21 Olympus Corporation Variable spectroscopic element, spectroscopic device, and endoscope system
US20090045525A1 (en) * 2007-08-17 2009-02-19 Kabushiki Kaisha Toshiba Semiconductor element and semiconductor device
US20090065902A1 (en) * 2007-09-11 2009-03-12 Cheemen Yu Method of forming a semiconductor die having a sloped edge for receiving an electrical connector
US20090278265A1 (en) * 2008-05-07 2009-11-12 Panasonic Corporation Electronic component and resin packaging method for electronic component
US20100133577A1 (en) * 2007-07-31 2010-06-03 Werner Hoffmann Method for producing electronic component and electronic component
US20110163459A1 (en) * 2007-10-12 2011-07-07 Kabushiki Kaisha Toshiba Method for manufacturing a stacked semiconductor package, and stacked semiconductor package
CN102282661A (en) * 2009-01-27 2011-12-14 松下电工株式会社 Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, and three-dimensional structure, on the surface of which wiring is provided and fabrication method thereof
US20110316156A1 (en) * 2010-06-24 2011-12-29 Stats Chippac, Ltd. Semiconductor Device and Method of Forming RDL Along Sloped Side Surface of Semiconductor Die for Z-Direction Interconnect
US20130148401A1 (en) * 2011-12-07 2013-06-13 Apple Inc. Systems and methods for stacked semiconductor memory devices
US20130234330A1 (en) * 2012-03-08 2013-09-12 Infineon Technologies Ag Semiconductor Packages and Methods of Formation Thereof
US9070393B2 (en) 2009-01-27 2015-06-30 Panasonic Corporation Three-dimensional structure in which wiring is provided on its surface
US9082438B2 (en) 2008-12-02 2015-07-14 Panasonic Corporation Three-dimensional structure for wiring formation
FR3041147A1 (en) * 2015-09-14 2017-03-17 3Dis Tech METHOD FOR INTEGRATING AT LEAST ONE 3D INTERCONNECT FOR INTEGRATED CIRCUIT MANUFACTURING
US20190027466A1 (en) * 2017-07-24 2019-01-24 Cerebras Systems Inc. Apparatus and method for multi-die interconnection
US10242891B2 (en) 2017-08-24 2019-03-26 Cerebras Systems Inc. Apparatus and method for securing components of an integrated circuit
CN110444534A (en) * 2019-07-17 2019-11-12 上海先方半导体有限公司 A kind of multilayer chiop encapsulating structure and preparation method
US10672732B2 (en) 2017-07-24 2020-06-02 Cerebras Systems Inc. Apparatus and method for securing substrates with varying coefficients of thermal expansion
US10840216B2 (en) 2019-03-05 2020-11-17 Cerebras Systems Inc. Systems and methods for powering an integrated circuit having multiple interconnected die
US11062994B2 (en) * 2019-07-15 2021-07-13 Advanced Semiconducor Engineering, Inc. Semiconductor device package and method of manufacturing the same
US11145530B2 (en) 2019-11-08 2021-10-12 Cerebras Systems Inc. System and method for alignment of an integrated circuit
DE102022200340A1 (en) 2022-01-13 2023-07-13 Robert Bosch Gesellschaft mit beschränkter Haftung Micromechanical sensor device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579681B2 (en) * 2002-06-11 2009-08-25 Micron Technology, Inc. Super high density module with integrated wafer level packages
US7371676B2 (en) * 2005-04-08 2008-05-13 Micron Technology, Inc. Method for fabricating semiconductor components with through wire interconnects
US7393770B2 (en) 2005-05-19 2008-07-01 Micron Technology, Inc. Backside method for fabricating semiconductor components with conductive interconnects
DE102005041174A1 (en) * 2005-08-30 2007-03-15 Infineon Technologies Ag Power semiconductor device with cables within a housing
US7307348B2 (en) 2005-12-07 2007-12-11 Micron Technology, Inc. Semiconductor components having through wire interconnects (TWI)
US7659612B2 (en) 2006-04-24 2010-02-09 Micron Technology, Inc. Semiconductor components having encapsulated through wire interconnects (TWI)
US7812459B2 (en) 2006-12-19 2010-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional integrated circuits with protection layers
US7859092B2 (en) * 2007-01-02 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Package structures
US8723332B2 (en) 2007-06-11 2014-05-13 Invensas Corporation Electrically interconnected stacked die assemblies
US8704379B2 (en) 2007-09-10 2014-04-22 Invensas Corporation Semiconductor die mount by conformal die coating
US8143102B2 (en) * 2007-10-04 2012-03-27 Stats Chippac Ltd. Integrated circuit package system including die having relieved active region
US8178978B2 (en) 2008-03-12 2012-05-15 Vertical Circuits, Inc. Support mounted electrically interconnected die assembly
US7863159B2 (en) 2008-06-19 2011-01-04 Vertical Circuits, Inc. Semiconductor die separation method
US9153517B2 (en) 2008-05-20 2015-10-06 Invensas Corporation Electrical connector between die pad and z-interconnect for stacked die assemblies
JP5631328B2 (en) * 2008-12-09 2014-11-26 インヴェンサス・コーポレーション Semiconductor die interconnects formed by aerosol applications of electrically conductive materials
WO2010151578A2 (en) 2009-06-26 2010-12-29 Vertical Circuits, Inc. Electrical interconnect for die stacked in zig-zag configuration
TWI520213B (en) 2009-10-27 2016-02-01 英維瑟斯公司 Selective die electrical insulation by additive process
TWI544604B (en) 2009-11-04 2016-08-01 英維瑟斯公司 Stacked die assembly having reduced stress electrical interconnects
WO2011101170A1 (en) * 2010-02-22 2011-08-25 Andreas Jakob Method and assembly for producing a semiconductor module
US8723299B2 (en) * 2010-06-01 2014-05-13 Infineon Technologies Ag Method and system for forming a thin semiconductor device
CN103985683B (en) * 2013-02-08 2017-04-12 精材科技股份有限公司 Chip package
CN104409452B (en) * 2014-12-23 2018-02-27 通富微电子股份有限公司 A kind of semiconductor laminated encapsulating structure
DE102015102785A1 (en) * 2015-02-26 2016-09-01 Osram Opto Semiconductors Gmbh Optoelectronic lighting device
US9490195B1 (en) 2015-07-17 2016-11-08 Invensas Corporation Wafer-level flipped die stacks with leadframes or metal foil interconnects
US9825002B2 (en) 2015-07-17 2017-11-21 Invensas Corporation Flipped die stack
US9871019B2 (en) 2015-07-17 2018-01-16 Invensas Corporation Flipped die stack assemblies with leadframe interconnects
KR102420125B1 (en) 2015-12-10 2022-07-13 삼성전자주식회사 Semiconductor package and method of fabricating the same
US9508691B1 (en) 2015-12-16 2016-11-29 Invensas Corporation Flipped die stacks with multiple rows of leadframe interconnects
US10566310B2 (en) 2016-04-11 2020-02-18 Invensas Corporation Microelectronic packages having stacked die and wire bond interconnects
US9595511B1 (en) 2016-05-12 2017-03-14 Invensas Corporation Microelectronic packages and assemblies with improved flyby signaling operation
US9728524B1 (en) 2016-06-30 2017-08-08 Invensas Corporation Enhanced density assembly having microelectronic packages mounted at substantial angle to board
US11742284B2 (en) * 2018-12-12 2023-08-29 Intel Corporation Interconnect structure fabricated using lithographic and deposition processes
TWI747398B (en) * 2019-07-29 2021-11-21 精材科技股份有限公司 Chip package and manufacturing method thereof
US11171109B2 (en) * 2019-09-23 2021-11-09 Micron Technology, Inc. Techniques for forming semiconductor device packages and related packages, intermediate products, and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653019A (en) * 1995-08-31 1997-08-05 Regents Of The University Of California Repairable chip bonding/interconnect process
US6049124A (en) * 1997-12-10 2000-04-11 Intel Corporation Semiconductor package
US6376904B1 (en) * 1999-12-23 2002-04-23 Rambus Inc. Redistributed bond pads in stacked integrated circuit die package
US6568863B2 (en) * 2000-04-07 2003-05-27 Seiko Epson Corporation Platform and optical module, method of manufacture thereof, and optical transmission device
US6747348B2 (en) * 2001-10-16 2004-06-08 Micron Technology, Inc. Apparatus and method for leadless packaging of semiconductor devices
US6756252B2 (en) * 2002-07-17 2004-06-29 Texas Instrument Incorporated Multilayer laser trim interconnect method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453711A (en) * 1966-08-24 1969-07-08 Corning Glass Works Method of connecting together a plurality of transducer segments
GB2116363B (en) * 1982-03-03 1985-10-16 Philips Electronic Associated Multi-level infra-red detectors and their manufacture
JPS60130854A (en) 1983-12-20 1985-07-12 Toshiba Corp Semiconductor integrated circuit
JPS61113252A (en) 1984-11-08 1986-05-31 Fujitsu Ltd Semiconductor device
US5234633A (en) * 1987-12-28 1993-08-10 Canon Kabushiki Kaisha Cast molding die and process for producing information recording medium using the same
JPH0513663A (en) 1991-07-09 1993-01-22 Fujitsu Ltd Semiconductor device and method for mounting semiconductor chip
JPH05326735A (en) * 1992-05-14 1993-12-10 Toshiba Corp Semiconductor device and manufacture thereof
US5422435A (en) * 1992-05-22 1995-06-06 National Semiconductor Corporation Stacked multi-chip modules and method of manufacturing
US5268065A (en) * 1992-12-21 1993-12-07 Motorola, Inc. Method for thinning a semiconductor wafer
JP2755143B2 (en) 1993-12-24 1998-05-20 日本電気株式会社 Method for manufacturing semiconductor device
JP3481444B2 (en) * 1998-01-14 2003-12-22 シャープ株式会社 Semiconductor device and manufacturing method thereof
US6271102B1 (en) * 1998-02-27 2001-08-07 International Business Machines Corporation Method and system for dicing wafers, and semiconductor structures incorporating the products thereof
US6153929A (en) * 1998-08-21 2000-11-28 Micron Technology, Inc. Low profile multi-IC package connector
JP3765952B2 (en) * 1999-10-19 2006-04-12 富士通株式会社 Semiconductor device
JP3829562B2 (en) 1999-12-27 2006-10-04 セイコーエプソン株式会社 Multichip, multichip package, semiconductor device and electronic equipment
US6501663B1 (en) * 2000-02-28 2002-12-31 Hewlett Packard Company Three-dimensional interconnect system
TW502408B (en) * 2001-03-09 2002-09-11 Advanced Semiconductor Eng Chip with chamfer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653019A (en) * 1995-08-31 1997-08-05 Regents Of The University Of California Repairable chip bonding/interconnect process
US6049124A (en) * 1997-12-10 2000-04-11 Intel Corporation Semiconductor package
US6376904B1 (en) * 1999-12-23 2002-04-23 Rambus Inc. Redistributed bond pads in stacked integrated circuit die package
US6568863B2 (en) * 2000-04-07 2003-05-27 Seiko Epson Corporation Platform and optical module, method of manufacture thereof, and optical transmission device
US6747348B2 (en) * 2001-10-16 2004-06-08 Micron Technology, Inc. Apparatus and method for leadless packaging of semiconductor devices
US6756252B2 (en) * 2002-07-17 2004-06-29 Texas Instrument Incorporated Multilayer laser trim interconnect method

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208347B2 (en) 2003-02-28 2007-04-24 Siemens Aktiengesellschaft Connection technology for power semiconductors comprising a layer of electrically insulating material that follows the surface contours
WO2004077548A3 (en) * 2003-02-28 2005-05-12 Siemens Ag Connection technology for power semiconductors
US20070216025A1 (en) * 2003-02-28 2007-09-20 Siemens Aktiengesellschaft Device having a contacting structure
WO2004077548A2 (en) * 2003-02-28 2004-09-10 Siemens Aktiengesellschaft Connection technology for power semiconductors
US7855451B2 (en) 2003-02-28 2010-12-21 Siemens Aktiengesellschaft Device having a contacting structure
US20060192290A1 (en) * 2003-02-28 2006-08-31 Norbert Seliger Connection technology for power semiconductors comprising a layer of electrically insulating material that follows the surface contours
US20100207277A1 (en) * 2004-02-18 2010-08-19 Infineon Technologies Ag Semiconductor component having a stack of semiconductor chips and method for producing the same
WO2005081315A3 (en) * 2004-02-18 2005-12-15 Infineon Technologies Ag Semiconductor component comprising a stack of semiconductor chips and method for producing the same
US8354299B2 (en) 2004-02-18 2013-01-15 Infineon Technologies Ag Semiconductor component having a stack of semiconductor chips and method for producing the same
WO2005081315A2 (en) * 2004-02-18 2005-09-01 Infineon Technologies Ag Semiconductor component comprising a stack of semiconductor chips and method for producing the same
US7466020B2 (en) 2004-04-19 2008-12-16 Siemens Aktiengesellschaft Power module
WO2005101504A1 (en) * 2004-04-19 2005-10-27 Siemens Aktiengesellschaft Power module
US20070229143A1 (en) * 2004-04-19 2007-10-04 Siemens Aktiengesellschaft Power Module
US20060049527A1 (en) * 2004-09-09 2006-03-09 Nobuaki Hashimoto Electronic device and method of manufacturing the same
KR100734708B1 (en) * 2004-09-09 2007-07-02 세이코 엡슨 가부시키가이샤 Electronic device
CN100385657C (en) * 2004-09-09 2008-04-30 精工爱普生株式会社 Electronic device and method of manufacturing the same
EP1635387A1 (en) * 2004-09-09 2006-03-15 Seiko Epson Corporation Electronic device with a chip on a pedestal and method of manufacturing the same
SG125213A1 (en) * 2005-02-25 2006-09-29 Seiko Epson Corp Manufacturing method for electronic device
US20060192299A1 (en) * 2005-02-25 2006-08-31 Seiko Epson Corporation Manufacturing method for electronic device
WO2006120309A3 (en) * 2005-05-11 2007-03-08 St Microelectronics Sa Silicon chips provided with inclined contact pads and an electronic module comprising said silicon chip
WO2006120309A2 (en) * 2005-05-11 2006-11-16 Stmicroelectronics Sa Silicon chips provided with inclined contact pads and an electronic module comprising said silicon chip
US7823322B2 (en) 2005-05-11 2010-11-02 Stmicroelectronics Sa Silicon chip having inclined contact pads and electronic module comprising such a chip
US20080224320A1 (en) * 2005-05-11 2008-09-18 Stmicroelectronics Sa Silicon chip having inclined contact pads and electronic module comprising such a chip
US7760512B2 (en) * 2005-06-21 2010-07-20 Seiko Epson Corporation Electronic board, method of manufacturing the same, and electronic device
US8191247B2 (en) * 2005-06-21 2012-06-05 Seiko Epson Corporation Electronic board, method of manufacturing the same, and electronic device
US20060284323A1 (en) * 2005-06-21 2006-12-21 Seiko Epson Corporation Electronic board, method of manufacturing the same, and electronic device
US20100254113A1 (en) * 2005-06-21 2010-10-07 Seiko Epson Corporation Electronic board, method of manufacturing the same, and electronic device
US20080096315A1 (en) * 2006-10-23 2008-04-24 Samsung Electronics Co., Ltd. Stacked chip package and method for forming the same
US7638365B2 (en) * 2006-10-23 2009-12-29 Samsung Electronics Co., Ltd. Stacked chip package and method for forming the same
US20080128880A1 (en) * 2006-12-01 2008-06-05 Hem Takiar Die stacking using insulated wire bonds
US20080131999A1 (en) * 2006-12-01 2008-06-05 Hem Takiar Method of die stacking using insulated wire bonds
US20080131998A1 (en) * 2006-12-01 2008-06-05 Hem Takiar Method of fabricating a film-on-wire bond semiconductor device
US20080128879A1 (en) * 2006-12-01 2008-06-05 Hem Takiar Film-on-wire bond semiconductor device
EP2113804A1 (en) * 2007-02-13 2009-11-04 Olympus Corporation Variable spectroscopic element, spectroscopic device, and endoscope system
US20100022840A1 (en) * 2007-02-13 2010-01-28 Olympus Corporation Variable spectroscopy element, spectroscopy apparatus, and endoscope system
EP2113804A4 (en) * 2007-02-13 2012-02-22 Olympus Corp Variable spectroscopic element, spectroscopic device, and endoscope system
WO2008099779A1 (en) 2007-02-13 2008-08-21 Olympus Corporation Variable spectroscopic element, spectroscopic device, and endoscope system
US20100133577A1 (en) * 2007-07-31 2010-06-03 Werner Hoffmann Method for producing electronic component and electronic component
US7911045B2 (en) 2007-08-17 2011-03-22 Kabushiki Kaisha Toshiba Semiconductor element and semiconductor device
US20090045525A1 (en) * 2007-08-17 2009-02-19 Kabushiki Kaisha Toshiba Semiconductor element and semiconductor device
US20090065902A1 (en) * 2007-09-11 2009-03-12 Cheemen Yu Method of forming a semiconductor die having a sloped edge for receiving an electrical connector
US20110163459A1 (en) * 2007-10-12 2011-07-07 Kabushiki Kaisha Toshiba Method for manufacturing a stacked semiconductor package, and stacked semiconductor package
US8358018B2 (en) * 2008-05-07 2013-01-22 Panasonic Corporation Resin sealing structure for electronic component and resin sealing method for electronic component
US20090278265A1 (en) * 2008-05-07 2009-11-12 Panasonic Corporation Electronic component and resin packaging method for electronic component
US9082438B2 (en) 2008-12-02 2015-07-14 Panasonic Corporation Three-dimensional structure for wiring formation
CN102282661A (en) * 2009-01-27 2011-12-14 松下电工株式会社 Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, and three-dimensional structure, on the surface of which wiring is provided and fabrication method thereof
US9070393B2 (en) 2009-01-27 2015-06-30 Panasonic Corporation Three-dimensional structure in which wiring is provided on its surface
US8482137B2 (en) 2009-01-27 2013-07-09 Panasonic Corporation Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, three-dimensional structure in which wiring is provided on its surface, and method of producing the same
US9795033B2 (en) 2009-01-27 2017-10-17 Panasonic Corporation Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, three-dimensional structure in which wiring is provided on its surface, and method of producing the same
US8759148B2 (en) 2009-01-27 2014-06-24 Panasonic Corporation Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, three-dimensional structure in which wiring is provided on its surface, and method of producing the same
US8901728B2 (en) 2009-01-27 2014-12-02 Panasonic Corporation Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, three-dimensional structure in which wiring is provided on its surface, and method of producing the same
US9437538B2 (en) 2010-06-24 2016-09-06 STATS ChipPAC Pte. Ltd. Semiconductor device including RDL along sloped side surface of semiconductor die for Z-direction interconnect
US8796137B2 (en) * 2010-06-24 2014-08-05 Stats Chippac, Ltd. Semiconductor device and method of forming RDL along sloped side surface of semiconductor die for z-direction interconnect
US20110316156A1 (en) * 2010-06-24 2011-12-29 Stats Chippac, Ltd. Semiconductor Device and Method of Forming RDL Along Sloped Side Surface of Semiconductor Die for Z-Direction Interconnect
US8780600B2 (en) * 2011-12-07 2014-07-15 Apple Inc. Systems and methods for stacked semiconductor memory devices
US20140321189A1 (en) * 2011-12-07 2014-10-30 Apple Inc. Systems and Methods for Stacked Semiconductor Memory Devices
US20130148401A1 (en) * 2011-12-07 2013-06-13 Apple Inc. Systems and methods for stacked semiconductor memory devices
US9472243B2 (en) * 2011-12-07 2016-10-18 Apple Inc. Systems and methods for stacked semiconductor memory devices
US20130234330A1 (en) * 2012-03-08 2013-09-12 Infineon Technologies Ag Semiconductor Packages and Methods of Formation Thereof
FR3041147A1 (en) * 2015-09-14 2017-03-17 3Dis Tech METHOD FOR INTEGRATING AT LEAST ONE 3D INTERCONNECT FOR INTEGRATED CIRCUIT MANUFACTURING
WO2017046153A1 (en) 2015-09-14 2017-03-23 3Dis Technologies Method for integrating at least one 3d interconnection for the manufacture of an integrated circuit
US20180254258A1 (en) * 2015-09-14 2018-09-06 3Dis Technologies Method for integrating at least one 3d interconnection for the manufacture of an integrated circuit
US10438923B2 (en) 2015-09-14 2019-10-08 3Dis Technologies Method for integrating at least one 3D interconnection for the manufacture of an integrated circuit
US10332860B2 (en) 2017-07-24 2019-06-25 Cerebras Systems Inc. Apparatus and method for multi-die interconnection
US10892244B2 (en) 2017-07-24 2021-01-12 Cerebras Systems Inc. Apparatus and method for securing substrates with varying coefficients of thermal expansion
US10361172B2 (en) 2017-07-24 2019-07-23 Cerebras Systems Inc. Apparatus and method for multi-die interconnection
US10366967B2 (en) * 2017-07-24 2019-07-30 Cerebras Systems Inc. Apparatus and method for multi-die interconnection
US20190027466A1 (en) * 2017-07-24 2019-01-24 Cerebras Systems Inc. Apparatus and method for multi-die interconnection
US11367686B2 (en) 2017-07-24 2022-06-21 Cerebras Systems Inc. Apparatus and method for multi-die interconnection
US11367701B2 (en) 2017-07-24 2022-06-21 Cerebras Systems Inc. Apparatus and method for securing substrates with varying coefficients of thermal expansion
US10586784B2 (en) 2017-07-24 2020-03-10 Cerebras Systems Inc. Apparatus and method for multi-die interconnection
US10672732B2 (en) 2017-07-24 2020-06-02 Cerebras Systems Inc. Apparatus and method for securing substrates with varying coefficients of thermal expansion
US10777532B2 (en) 2017-07-24 2020-09-15 Cerebras Systems Inc. Apparatus and method for multi-die interconnection
US10453717B2 (en) 2017-08-24 2019-10-22 Cerebras Systems Inc. Apparatus and method for securing components of an integrated circuit
US10784128B2 (en) 2017-08-24 2020-09-22 Cerebras Systems Inc. Apparatus and method for securing components of an integrated circuit
US10242891B2 (en) 2017-08-24 2019-03-26 Cerebras Systems Inc. Apparatus and method for securing components of an integrated circuit
US11631600B2 (en) 2017-08-24 2023-04-18 Cerebras Systems Inc. Apparatus and method for securing components of an integrated circuit
US10840216B2 (en) 2019-03-05 2020-11-17 Cerebras Systems Inc. Systems and methods for powering an integrated circuit having multiple interconnected die
US11201137B2 (en) 2019-03-05 2021-12-14 Cerebras Systems Inc. Systems and methods for powering an integrated circuit having multiple interconnected die
US11062994B2 (en) * 2019-07-15 2021-07-13 Advanced Semiconducor Engineering, Inc. Semiconductor device package and method of manufacturing the same
CN110444534A (en) * 2019-07-17 2019-11-12 上海先方半导体有限公司 A kind of multilayer chiop encapsulating structure and preparation method
US11145530B2 (en) 2019-11-08 2021-10-12 Cerebras Systems Inc. System and method for alignment of an integrated circuit
DE102022200340A1 (en) 2022-01-13 2023-07-13 Robert Bosch Gesellschaft mit beschränkter Haftung Micromechanical sensor device

Also Published As

Publication number Publication date
US7595222B2 (en) 2009-09-29
US20050146005A1 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US7595222B2 (en) Semiconductor device and manufacturing method thereof
KR100486832B1 (en) Semiconductor Chip, Chip Stack Package And Manufacturing Method
US6844619B2 (en) Compact semiconductor device capable of mounting a plurality of semiconductor chips with high density and method of manufacturing the same
US9165898B2 (en) Method of manufacturing semiconductor device with through hole
US7592703B2 (en) RF and MMIC stackable micro-modules
US5726489A (en) Film carrier semiconductor device
US7115483B2 (en) Stacked chip package having upper chip provided with trenches and method of manufacturing the same
US7622810B2 (en) Semiconductor device and manufacturing method thereof
US5567981A (en) Bonding pad structure having an interposed rigid layer
KR101387701B1 (en) Semiconductor packages and methods for manufacturing the same
US7227243B2 (en) Semiconductor device
US6348363B1 (en) Method for manufacturing a semiconductor package
CN116705737A (en) Semiconductor package
JP3660918B2 (en) Semiconductor device and manufacturing method thereof
US20020089043A1 (en) Semiconductor package with shortened electric signal paths
KR20040105607A (en) Semiconductor device and manufacturing method thereof
KR100345166B1 (en) Wafer level stack package and method of fabricating the same
US7518211B2 (en) Chip and package structure
US7009300B2 (en) Low profile stacked multi-chip package and method of forming same
US20080142945A1 (en) Semiconductor package with redistribution layer of semiconductor chip directly contacted with substrate and method of fabricating the same
GB2370414A (en) Method of manufacturing integrated circuit package with cavity to expose lower conductive level
US20020163069A1 (en) Method for forming wafer level package having serpentine-shaped electrode along scribe line and package formed
US20040089946A1 (en) Chip size semiconductor package structure
CN211929479U (en) Semiconductor device with a plurality of transistors
JP2005311117A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIMOISHIZAKA, NOZOMI;FUKUDA, TOSHIYUKI;REEL/FRAME:013069/0201

Effective date: 20020619

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021930/0876

Effective date: 20081001