US20020066899A1 - Silicon wafer with embedded optoelectronic material for monolithic OEIC - Google Patents
Silicon wafer with embedded optoelectronic material for monolithic OEIC Download PDFInfo
- Publication number
- US20020066899A1 US20020066899A1 US09/920,506 US92050601A US2002066899A1 US 20020066899 A1 US20020066899 A1 US 20020066899A1 US 92050601 A US92050601 A US 92050601A US 2002066899 A1 US2002066899 A1 US 2002066899A1
- Authority
- US
- United States
- Prior art keywords
- layer
- heterostructure
- optically active
- semiconductor material
- active semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 62
- 229910052710 silicon Inorganic materials 0.000 title claims description 8
- 230000005693 optoelectronics Effects 0.000 title abstract description 51
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title 1
- 239000010703 silicon Substances 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 68
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 10
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 10
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 10
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 10
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims description 48
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 35
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 25
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 15
- 229910000756 V alloy Inorganic materials 0.000 claims description 12
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 7
- 230000002950 deficient Effects 0.000 claims description 4
- 229910006990 Si1-xGex Inorganic materials 0.000 claims 4
- 229910007020 Si1−xGex Inorganic materials 0.000 claims 4
- -1 Inp Inorganic materials 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 18
- 230000008878 coupling Effects 0.000 abstract description 5
- 238000010168 coupling process Methods 0.000 abstract description 5
- 238000005859 coupling reaction Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 154
- 235000012431 wafers Nutrition 0.000 description 63
- 238000000034 method Methods 0.000 description 16
- 230000010354 integration Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000011149 active material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000002939 deleterious effect Effects 0.000 description 3
- 208000012868 Overgrowth Diseases 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000002365 multiple layer Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76256—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14632—Wafer-level processed structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14634—Assemblies, i.e. Hybrid structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1844—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1852—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/12061—Silicon
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12176—Etching
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68359—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68363—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/021—Silicon based substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/0215—Bonding to the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/0217—Removal of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/0218—Substrates comprising semiconducting materials from other groups of the Periodic Table than the materials of the active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0261—Non-optical elements, e.g. laser driver components, heaters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/902—Capping layer
Definitions
- the invention relates to an epitaxial structure that contains optoelectronic material embedded in Si, such that the entire wafer can be processed using traditional Si CMOS tools to create a true monolithic optoelectronic integrated circuit (OEIC).
- OEIC monolithic optoelectronic integrated circuit
- the optically active material integrated with the Si CMOS circuitry must be something other than Si, such as Ge, SiGe, GaAs, InP, AlGaAs, InGaAs, InGaAsP, or any other optically active group IV or III-V semiconductor material.
- the invention provides a structure in which the optically active layer is embedded in a Si wafer, such that the outermost epitaxial layer exposed to the CMOS processing equipment is always Si (or another CMOS-compatible material such as SiO 2 ). Since the optoelectronic layer is completely surrounded by Si, the wafer is fully compatible with standard Si CMOS manufacturing. Therefore, all of the manufacturing and cost benefits associated with Si CMOS processing are fully realized by the invention.
- top Si cap layer can be made thin enough that it is only minimally absorbing at other commonly used wavelengths, such as 980 or 850 nm. Alternatively, edge coupling could be used for these wavelengths. This flexibility facilitates design of complex system-on-a-chip structures where multiple wavelengths and/or multiple optical in/out connections are required.
- FIGS. 1 A- 1 D are block diagrams of an exemplary embodiment of a graded buffer/wafer bonding process to create an optically-active layer embedded in a Si wafer in accordance with the invention
- FIGS. 2 A- 2 D are block diagrams of another exemplary embodiment of a graded buffer/wafer bonding process to create a more complex wafer structure that contains an insulating layer between the optically-active layer and the Si substrate;
- FIGS. 3 A- 3 D are block diagrams of yet another exemplary embodiment of a graded buffer/wafer bonding process to create a yet more complex wafer structure that contains a Si contact layer between the insulating layer and optically-active layer;
- FIG. 4 are block diagrams showing the resulting wafer structure of still yet another exemplary embodiment of a graded buffer/wafer bonding process, wherein the optically-active layer is isolated from both the Si substrate and the Si cap layer by insulating layers, and showing a possible implementation of the Si CMOS electronics to create a monolithic optoelectronic integrated circuit;
- FIGS. 5 A- 5 C are block diagrams of an exemplary embodiment of a graded buffer/wafer bonding process where the original substrate and graded buffer layer are not removed from the structure;
- FIGS. 6 A- 6 C are block diagrams showing an exemplary embodiment of an OEIC processing such that the Si CMOS electronics are located in the Si substrate below the optically-active layer;
- FIG. 7 is a block diagram of an exemplary embodiment of an OEIC implementation in which emitters, detectors, and Si CMOS electronics have all been monolithically integrated on the same Si substrate.
- Wafer bonding is an attractive option because it can directly combine two dissimilar materials together without the need for an “interlayer structure”, e.g., a graded buffer layer or selective epitaxial mask.
- interlayer structure e.g., a graded buffer layer or selective epitaxial mask.
- wafer bonding eliminates the lattice-mismatch problem, two new problems arise which have prevented wafer bonding from reaching its full potential: thermal expansion mismatch and wafer size mismatch.
- Wafer size mismatch relates to the fact that two dissimilar wafers being bonded typically have different diameters. Therefore, some fraction of the larger diameter wafer is wasted. For example, consider bonding a Si substrate and a Ge substrate. Si substrates are commonly available in an eight-inch diameter, while Ge is commonly available only four inches in diameter. Therefore, only a portion of the Si substrate would be covered by the bonding process, while the rest of the wafer would be wasted.
- graded layer growth and wafer bonding removes these two problems and provides tremendous flexibility to create new integrated semiconductor platforms on Si substrates.
- a graded SiGe layer 102 (graded from 0-100% Ge) is epitaxially grown on a Si substrate 100 of any diameter.
- a Ge layer 104 is then grown on the SiGe graded layer 102 .
- a planarization step such as chemical mechanical polishing can be inserted during growth of the SiGe graded layer 102 , as described in U.S. Pat. No. 6,107,653, incorporated herein by reference.
- any of the layers described in this invention can receive planarization steps, if desired.
- the wafer can then be bonded to another Si substrate 106 , of the same diameter as shown in FIGS. 1A and 1B.
- This technique therefore eliminates the wafer size mismatch issue, and it also eliminates the thermal mismatch issue because both wafers are essentially Si.
- the original Si substrate 100 can then be ground and selectively etched back.
- the SiGe graded layer 102 can also be completely removed to leave only the Ge layer 104 on the new host Si substrate 106 .
- a Si cap layer 108 can now be epitaxially grown on top of this structure, such that the optically-active layer 104 (Ge in this case) is effectively embedded in a Si wafer as shown in FIG. 1D.
- the large lattice mismatch (about 4%) between Ge and Si will create many dislocations during this final Si deposition, they will only reside in the Si cap layer 108 , and will not penetrate into the optoelectronic Ge layer 104 . This is because for systems with a large lattice mismatch (typically greater than 1.5%) the growth mode is such that dislocations can only achieve short glide distances and therefore will remain in the deposited film. Penetration of misfit dislocations into the underlying film layer (Ge in this case) requires long dislocation glide distances typically only achieved for systems with a lattice mismatch ⁇ 1.5%. These dislocations in the Si cap layer 108 will not have a deleterious effect on device operation if the CMOS electronics are located in the Si substrate 106 (see FIGS. 6 A- 6 C), rather than in the Si cap layer 108 .
- a Si cap layer could be wafer bonded (from another Si substrate) on top of the optically active layer, rather than epitaxially grown.
- the Si cap layer would be of high quality, and therefore could be processed into CMOS circuits containing field effect transistors (FETs) or similar devices.
- the original SiGe graded layer 102 could be only partially removed during etch back, such that a strained Si cap layer could be epitaxially grown on top of the remaining SiGe graded layer 102 . This strained Si cap layer would be of high quality, and could be processed into CMOS circuits with enhanced performance compared to relaxed Si CMOS circuits.
- the original Si substrate 100 and SiGe graded layer 102 could be completely removed, and a uniform composition SiGe layer could be wafer bonded on top of the optically active layer.
- a strained Si cap layer could then be epitaxially grown on this SiGe layer and could be processed into CMOS circuits.
- a first Si substrate 200 can have a 0-100% graded SiGe layer 202 with a Ge layer 204 on top as before, while a second Si substrate 206 can have a thick insulating layer 208 on its surface, such as SiO 2 .
- This insulating layer will serve to isolate the optoelectronic layer 204 from the Si substrate 206 (and any CMOS electronics subsequently processed in said substrate).
- a (highly defective) Si layer 210 can again be deposited on top of the optoelectronic layer 204 .
- a Si cap layer 306 can be grown on the Ge layer 302 .
- An optional SiO 2 layer can then be grown or deposited on this Si cap layer to aid in wafer bonding.
- this Si cap layer 306 will have a high density of dislocations, they will not deleteriously affect device performance since this Si layer 306 will not be active optically or electronically.
- One benefit of including this Si cap layer 306 in the heterostructure is to serve as an etch stop when forming the bottom contact to the Ge layer 302 .
- This wafer can then be bonded to another Si substrate 308 which has an insulating layer 310 , such as SiO 2 , on it as before.
- another Si cap layer 312 can be provided.
- an insulating layer 400 can be inserted between a top Si cap layer 402 and an optically active layer 404 . This would be useful to isolate the optically-active layer 404 from the CMOS electronics in a particular OEIC embodiment where the CMOS electronics were located in the top Si cap layer 402 , rather than in the Si substrate 408 .
- FIGS. 5 A- 5 C it is also possible to have an embodiment in which an original Si substrate 500 is not removed.
- One such structure would involve growing a graded SiGe layer (graded 0-100%) 502 , and then a uniform Ge layer 504 as the optically active layer.
- a second Si substrate 506 with a SiO 2 layer 508 can then be wafer bonded on top of the Ge layer 504 .
- the second Si substrate 506 can then be partially etched-back or delaminated to leave a thin Si cap layer 510 , which is substantially defect-free.
- the cap layer 510 can be substantially defect-free.
- the CMOS electronics would be processed into a top Si cap layer 510 in this embodiment. Additional layers could also be included in this embodiment as discussed above, such as a relaxed SiGe layer with a strained Si cap layer for strained Si CMOS.
- layers could be included at various heterointerfaces to minimize the (possibly deleterious) effect of energy band discontinuities at these heterointerfaces.
- quarter-wavelength-thick layers of materials of alternating high- and low-refractive index could be grown or deposited on top of either wafer before bonding such that a high-reflectance multilayer stack would exist below the optoelectronic material. This stack could serve as the lower mirror of a resonant cavity to enhance optical responsivity at a particular wavelength.
- a high-reflectance mirror could be deposited above the optoelectronic layer to complete the resonant cavity, or the uppermost ambient/semiconductor interface could serve as the top mirror.
- the structures and techniques described are extendable to other optoelectronic materials besides Ge. For example, simply by grading the SiGe graded layer on the first Si substrate to a certain composition less than 100% Ge, and then growing a uniform layer of SiGe at that composition, a SiGe layer of that composition could be embedded in a Si wafer as the optically-active layer.
- compositional grading of SiGe and InGaAs layers on Si it is possible to create a bonded layer of InP or InGaAs on Si as well.
- This can be accomplished as follows. First, a graded SiGe epitaxial layer (graded from 0-100% Ge) is epitaxially grown on a Si substrate. Since GaAs and Ge have nearly equal lattice constants, a GaAs layer can then be epitaxially grown on top of the Ge layer. At this point, the GaAs layer can be wafer bonded to another Si substrate such that the embedded active optoelectronic layer was GaAs.
- a relaxed, graded InGaAs layer can be grown on the GaAs layer, graded from 0% In to some desired In concentration, as described in U.S. Pat. No. 6,232,138, incorporated herein by reference.
- the InGaAs layer can be wafer bonded to another Si substrate.
- InGaAsP or InP lattice-matched to In 0.53 Ga 0 47 As can be grown on the structure and wafer bonded to another Si substrate.
- lattice-matched heterostructures for various optoelectronic devices can be epitaxially grown on the first wafer, and wafer bonded to the second Si substrate.
- a relaxed SiGe graded layer can be grown from 0-100% Ge on the first Si substrate, on top of which a relaxed, graded InGaAs layer can then be grown from 0-53% In.
- a lattice-matched InP layer could then be grown, and serve as the starting substrate for any optoelectronic device lattice-matched to InP.
- a laser structure containing InP, InGaAs, and InGaAsP, all lattice-matched to InP can then be grown.
- the entire device structure can be wafer bonded to a second Si substrate, such that the embedded optoelectronic layer in this case was an entire laser (or LED or detector) structure, rather than a single layer as described with Ge.
- the structure would have to be grown “upside-down” on the original Si substrate since it would be inverted upon being wafer bonded to the second Si substrate.
- an entire heterostructure lattice-matched to GaAs could be grown on the first Si substrate and then wafer bonded to the second Si substrate.
- These other optoelectronic layers can also be coated with Si, such that the embedded optically-active semiconductor material can be chosen from a wide range of materials, including: Ge, SiGe, GaAs, AlGaAs, InGaAs, InP, InGaAsP, any III-V alloy lattice-matched to GaAs, any III-V alloy lattice-matched to InP, any multiple-layer heterostructure (a laser, light emitting diode, or photodetector) lattice-matched to GaAs, or any multiple-layer heterostructure lattice-matched to InP.
- the embedded optically-active semiconductor material can be chosen from a wide range of materials, including: Ge, SiGe, GaAs, AlGaAs, InGaAs, InP, InGaAsP, any III-V alloy lattice-matched to GaAs, any III-V alloy lattice-matched to InP, any multiple-layer heterostructure (a laser, light emitting di
- the planar composite wafer contains at a minimum a Si substrate, a layer of optically active material, and a Si cap layer. It may also include optional additional layers or device heterostructures as described.
- This structure can be processed to create a monolithic optoelectronic integrated circuit. For example, consider the case of creating an optical receiver circuit on Si.
- the optical receiver could contain a detector and receiver circuit, or multiple detectors and a receiver circuit(s). Since the optically active layer is completely embedded in a Si wafer, this planar composite wafer can be processed as a normal Si wafer would be for CMOS manufacturing.
- CMOS electronics 602 can be processed on the Si substrate.
- an early step would include patterning the wafer to define the optoelectronic receiver areas, and these areas would be protected with a mask. The other areas would be etched down to the Si substrate, leaving a virgin Si surface to be processed into CMOS electronics.
- CMOS processing thermal budget it is expected that special attention may be required for the CMOS processing thermal budget to minimize the interdiffusion of (and maintain the integrity of) the embedded optoelectronic layer.
- thermal budget and controlled interdiffusion could also be used to the device designer's advantage. For example, a slight interdiffusion at the upper and lower surfaces of the optically-active layer (Ge in this example) would grade these interfaces and therefore minimize sharp energy band discontinuities that might be deleterious for certain devices.
- the Si CMOS electronics can also be fabricated above the optoelectronic layer, rather than co-planar with it. Rather than epitaxially growing a highly-defective Si cap layer above the optoelectronic (Ge in this example) layer, a high-quality Si cap layer can be wafer bonded above the optoelectronic layer as described.
- the Si CMOS electronics can be formed in this Si cap layer above the optoelectronic layer, rather than in the Si substrate. Vias can be drilled through this top Si CMOS layer to provide contacts to the underlying optoelectronic layer where desired. Underlying Si layers could serve as etch stops, as mentioned above. Individual components can be isolated from one another using trench isolation.
- the CMOS circuits can be fabricated in a strained Si cap layer above the optoelectronic layer as described, rather than in a relaxed Si cap layer. This can be achieved by wafer bonding (or epitaxially growing) a relaxed SiGe layer of a desired composition on top of the optoelectronic (Ge) layer. A strained Si cap layer can then be epitaxially grown on top of the relaxed SiGe layer. Again, vias can be drilled through the strained Si and relaxed SiGe layers to contact the optoelectronic layer where desired.
- the optoelectronic layer being embedded in Si has several advantages. First, the entire integration sequence can occur within a Si foundry. Even the interconnects between the Si CMOS and optoelectronic layer can be performed with Si contact technology, since the contact which will be formed in the optoelectronic region will be a contact to the Si cap layer on the optoelectronic layer. All contact and interconnect materials could be based on standard Si VLSI processing. For example, contacts could be made using Ni, Co, or Ti, and the resulting silicides. Via plugs can use tungsten, while metal interconnect lines can use Al or Cu. Also, the large defect density in the Si contact layers (present in certain embodiments) will aid in creating low resistance contacts, since these defects will enhance interdiffusion and diffusion.
- the doping can be controlled with epitaxy and high thermal budgets for activating implants are not needed in these embodiments.
- Ge-based optically active regions do not necessarily need to be doped during the epitaxial process. Since Ge is isoelectronic with Si, the same elements that dope Si will dope Ge. Thus, given the current process simulation tools, one can simply dope the Si contact layers (in certain embodiments where the Ge layer directly contacts a Si layer at its upper and lower surfaces, i.e. FIG. 3D) and leave the Ge intrinsic; during subsequent processing, the dopants can enter the Ge, creating the p-i-n structure in Ge needed for photodiode behavior. Also, in situ deposition of a Si layer on top of the Ge will help prevent the surface nucleation of cracks in the Ge due to the thermal expansion difference between Si and Ge.
- the Si substrate and top cap layer are both transparent to these wavelengths.
- transmission of optical signals between the embedded optoelectronic layer and an external waveguide can easily occur by either normal incidence through the front or backside of the wafer, or in-plane incidence.
- wavelengths shorter than the bandgap of Si can be coupled in and out of the embedded optoelectronic layer. This is because the top Si cap layer can be made thin enough that it is only minimally absorbing at other commonly used wavelengths, such as 980 or 850 nm. Alternatively, edge coupling could be used for these wavelengths.
- the embedded optically-active layers can be used for the creation of complex integrated optoelectronic transceivers.
- FIG. 7 A schematic example of such an OEIC 700 is shown in FIG. 7.
- an InGaAs/InP heterostructure has been embedded in a Si wafer 702 .
- Certain regions have been processed to form emitters 704 using this embedded optically-active material, while other regions have been processed to form detectors 706 .
- the diagram has been drawn simplistically for clarity, as the InGaAs/InP emitters and detectors are not actually exposed on the surface of the wafer. They are embedded in the wafer 702 .
- the top layer of the entire structure is Si.
- a simple structure that would enable the formation of both emitters and detectors is a p-i-n structure, which would emit light when forward-biased, and detect light when reverse-biased.
- Si electronics 708 have been processed into the Si substrate.
- the Si electronics are connected to the optoelectronic devices using interconnects based on standard Si interconnect materials, such as Al or Cu.
- the contacts to the optoelectronic emitters and detectors can be made using standard Si contact materials, such as Ni, Co, or Ti silicides.
- optical signals can be transmitted between the OEIC and external optical fibers.
- the light is transmitted through the substrate to butt-coupled fibers 710 .
- the optical signals could also be transmitted through the Si cap layer, such that optical fibers would be positioned above the OEIC.
- a third possibility is to use edge coupling, where v-grooves would be etched in the substrate to align optical fibers for in-plane incidence.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Optical Integrated Circuits (AREA)
- Recrystallisation Techniques (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Prostheses (AREA)
- Element Separation (AREA)
Abstract
A structure with an optically active layer embedded in a Si wafer, such that the outermost epitaxial layer exposed to the CMOS processing equipment is always Si or another CMOS-compatible material such as SiO2. Since the optoelectronic layer is completely surrounded by Si, the wafer is fully compatible with standard Si CMOS manufacturing. For wavelengths of light longer than the bandgap of Si (1.1 μm), Si is completely transparent and therefore optical signals can be transmitted between the embedded optoelectronic layer and an external waveguide using either normal incidence (through the Si substrate or top Si cap layer) or in-plane incidence (edge coupling).
Description
- This application claims priority from provisional application Ser. No. 60/223,407 filed Aug. 4, 2000.
- The invention relates to an epitaxial structure that contains optoelectronic material embedded in Si, such that the entire wafer can be processed using traditional Si CMOS tools to create a true monolithic optoelectronic integrated circuit (OEIC).
- It has been a long-standing desire of the microelectronics and telecommunications industries to combine optoelectronic components with Si circuitry. Adding optoelectronic functionality to standard Si integrated circuits (ICs) would enable a tremendous range of new applications and devices, such as on-chip optical communication (enabling optical clock timing for high speed processors), inter-chip optical communication links (optical interconnects), and more efficient and compact optical transceivers for data communications and telecommunications.
- Although hybrid integration of optical components with Si ICs provides a possible solution, this is not the preferred solution. True monolithic integration of optoelectronics with Si circuitry is far superior to hybrid integration for several reasons. Monolithic integration yields more compact devices (and therefore higher device integration densities); lower packaging costs since wire bonds or flip-chip bonds between the optoelectronic component and Si IC necessary in hybrid integration schemes are eliminated; lower processing costs since the entire device can be processed using standard Si CMOS techniques; and improved device characteristics in applications where hybrid integration yields undesirable electrical parasitics.
- It is therefore desirable to create a truly monolithic structure containing both optoelectronic functionality and Si CMOS circuitry. However, an intrinsic problem with integrating optoelectronic functionality into Si chips is that Si itself is not a good optoelectronic material as it neither emits nor detects light efficiently. Therefore, the optically active material integrated with the Si CMOS circuitry must be something other than Si, such as Ge, SiGe, GaAs, InP, AlGaAs, InGaAs, InGaAsP, or any other optically active group IV or III-V semiconductor material. Due to the large lattice mismatch and thermal expansion coefficient mismatch between these materials and Si, monolithically integrated devices created until now have been performance limited by the resulting crystalline defects (specifically threading dislocations) from epitaxy. However, recent progress in defect filtering schemes, such as graded buffer layers or selective epitaxial growth and epitaxial lateral overgrowth, has overcome this problem and enabled the creation of lattice-mismatched epitaxial layers of suitable quality for optoelectronic devices, such as photodetectors, light emitting diodes (LEDs), and lasers.
- A major limitation of monolithic optoelectronic integrated circuits created until now has been the requirement that all Si CMOS processing steps be fully completed before integration of the optically active material. This requirement has existed because Si CMOS processing tools cannot be exposed to any other materials due to contamination concerns.
- It is therefore an object of the invention to provide an epitaxial structure in which an optically active material is embedded within Si such that the entire wafer can be processed using traditional Si CMOS tools to yield a true monolithic optoelectronic integrated circuit. It is also an object of the invention to provide a method by which such a wafer structure may be obtained.
- The invention provides a structure in which the optically active layer is embedded in a Si wafer, such that the outermost epitaxial layer exposed to the CMOS processing equipment is always Si (or another CMOS-compatible material such as SiO2). Since the optoelectronic layer is completely surrounded by Si, the wafer is fully compatible with standard Si CMOS manufacturing. Therefore, all of the manufacturing and cost benefits associated with Si CMOS processing are fully realized by the invention.
- It is important to note that embedding the optoelectronic layer in Si does not prevent transmission of optical signals between the OEIC and an external waveguide (such as an optical fiber) or free space. Specifically, for wavelengths of light longer than the bandgap of Si (1.1 μm), Si is completely transparent and therefore optical signals can be transmitted between the embedded optoelectronic layer and an external waveguide using either normal incidence (through the Si substrate or top Si cap layer) or in-plane incidence (edge coupling). This provides tremendous flexibility in designing an OEIC used for the typical telecommunications wavelengths of 1.3 and 1.55 μm. Additionally, even wavelengths shorter than the bandgap of Si can be coupled in and out of the embedded optoelectronic layer. This is because the top Si cap layer can be made thin enough that it is only minimally absorbing at other commonly used wavelengths, such as 980 or 850 nm. Alternatively, edge coupling could be used for these wavelengths. This flexibility facilitates design of complex system-on-a-chip structures where multiple wavelengths and/or multiple optical in/out connections are required.
- FIGS.1A-1D are block diagrams of an exemplary embodiment of a graded buffer/wafer bonding process to create an optically-active layer embedded in a Si wafer in accordance with the invention;
- FIGS.2A-2D are block diagrams of another exemplary embodiment of a graded buffer/wafer bonding process to create a more complex wafer structure that contains an insulating layer between the optically-active layer and the Si substrate;
- FIGS.3A-3D are block diagrams of yet another exemplary embodiment of a graded buffer/wafer bonding process to create a yet more complex wafer structure that contains a Si contact layer between the insulating layer and optically-active layer;
- FIG. 4 are block diagrams showing the resulting wafer structure of still yet another exemplary embodiment of a graded buffer/wafer bonding process, wherein the optically-active layer is isolated from both the Si substrate and the Si cap layer by insulating layers, and showing a possible implementation of the Si CMOS electronics to create a monolithic optoelectronic integrated circuit;
- FIGS.5A-5C are block diagrams of an exemplary embodiment of a graded buffer/wafer bonding process where the original substrate and graded buffer layer are not removed from the structure;
- FIGS.6A-6C are block diagrams showing an exemplary embodiment of an OEIC processing such that the Si CMOS electronics are located in the Si substrate below the optically-active layer; and
- FIG. 7 is a block diagram of an exemplary embodiment of an OEIC implementation in which emitters, detectors, and Si CMOS electronics have all been monolithically integrated on the same Si substrate.
- There are several different techniques available to monolithically integrate lattice-mismatched materials, including wafer bonding, graded buffer layers, and epitaxial lateral overgrowth. Wafer bonding is an attractive option because it can directly combine two dissimilar materials together without the need for an “interlayer structure”, e.g., a graded buffer layer or selective epitaxial mask. However, even though wafer bonding eliminates the lattice-mismatch problem, two new problems arise which have prevented wafer bonding from reaching its full potential: thermal expansion mismatch and wafer size mismatch.
- Thermal expansion mismatch is a serious issue when the dissimilar wafers being bonded are of similar thickness. This mismatch can cause large strains to develop during heating and cooling that can crack the assembly or cause the wafers to debond. Wafer size mismatch relates to the fact that two dissimilar wafers being bonded typically have different diameters. Therefore, some fraction of the larger diameter wafer is wasted. For example, consider bonding a Si substrate and a Ge substrate. Si substrates are commonly available in an eight-inch diameter, while Ge is commonly available only four inches in diameter. Therefore, only a portion of the Si substrate would be covered by the bonding process, while the rest of the wafer would be wasted.
- The combination of graded layer growth and wafer bonding removes these two problems and provides tremendous flexibility to create new integrated semiconductor platforms on Si substrates. Consider again the example of bonding Ge to Si, this time using the graded layer/wafer bonding technique illustrated in FIGS.1A-1D. In this technique, a graded SiGe layer 102 (graded from 0-100% Ge) is epitaxially grown on a
Si substrate 100 of any diameter. AGe layer 104 is then grown on the SiGe gradedlayer 102. In order to reduce surface roughness, a planarization step such as chemical mechanical polishing can be inserted during growth of the SiGe gradedlayer 102, as described in U.S. Pat. No. 6,107,653, incorporated herein by reference. Also note that any of the layers described in this invention can receive planarization steps, if desired. - The wafer can then be bonded to another
Si substrate 106, of the same diameter as shown in FIGS. 1A and 1B. This technique therefore eliminates the wafer size mismatch issue, and it also eliminates the thermal mismatch issue because both wafers are essentially Si. - Once the wafers are bonded, the
original Si substrate 100 can then be ground and selectively etched back. In one embodiment (shown in FIG. 1C), the SiGe gradedlayer 102 can also be completely removed to leave only theGe layer 104 on the newhost Si substrate 106. ASi cap layer 108 can now be epitaxially grown on top of this structure, such that the optically-active layer 104 (Ge in this case) is effectively embedded in a Si wafer as shown in FIG. 1D. - Although the large lattice mismatch (about 4%) between Ge and Si will create many dislocations during this final Si deposition, they will only reside in the
Si cap layer 108, and will not penetrate into theoptoelectronic Ge layer 104. This is because for systems with a large lattice mismatch (typically greater than 1.5%) the growth mode is such that dislocations can only achieve short glide distances and therefore will remain in the deposited film. Penetration of misfit dislocations into the underlying film layer (Ge in this case) requires long dislocation glide distances typically only achieved for systems with a lattice mismatch <1.5%. These dislocations in theSi cap layer 108 will not have a deleterious effect on device operation if the CMOS electronics are located in the Si substrate 106 (see FIGS. 6A-6C), rather than in theSi cap layer 108. - In another embodiment, a Si cap layer could be wafer bonded (from another Si substrate) on top of the optically active layer, rather than epitaxially grown. In this embodiment, the Si cap layer would be of high quality, and therefore could be processed into CMOS circuits containing field effect transistors (FETs) or similar devices. In yet another embodiment, the original SiGe graded
layer 102 could be only partially removed during etch back, such that a strained Si cap layer could be epitaxially grown on top of the remaining SiGe gradedlayer 102. This strained Si cap layer would be of high quality, and could be processed into CMOS circuits with enhanced performance compared to relaxed Si CMOS circuits. In still yet another embodiment, theoriginal Si substrate 100 and SiGe gradedlayer 102 could be completely removed, and a uniform composition SiGe layer could be wafer bonded on top of the optically active layer. A strained Si cap layer could then be epitaxially grown on this SiGe layer and could be processed into CMOS circuits. - It will be appreciated by those skilled in the art that techniques other than grinding/etch back, such as delamination, can be used to remove the
Si substrate 100 and gradedSiGe layer 102 from the first wafer. - It will also be appreciated by those skilled in the art that additional layers could potentially be incorporated into the structure. For example, in another embodiment as illustrated in FIGS.2A-2D, a
first Si substrate 200 can have a 0-100% gradedSiGe layer 202 with aGe layer 204 on top as before, while asecond Si substrate 206 can have a thickinsulating layer 208 on its surface, such as SiO2. This insulating layer will serve to isolate theoptoelectronic layer 204 from the Si substrate 206 (and any CMOS electronics subsequently processed in said substrate). A (highly defective)Si layer 210 can again be deposited on top of theoptoelectronic layer 204. - In yet another embodiment as illustrated in FIGS.3A-3D, after a graded
SiGe 300 and Ge layers 302 are grown on afirst Si substrate 304, aSi cap layer 306 can be grown on theGe layer 302. An optional SiO2 layer can then be grown or deposited on this Si cap layer to aid in wafer bonding. Although thisSi cap layer 306 will have a high density of dislocations, they will not deleteriously affect device performance since thisSi layer 306 will not be active optically or electronically. One benefit of including thisSi cap layer 306 in the heterostructure is to serve as an etch stop when forming the bottom contact to theGe layer 302. This wafer can then be bonded to anotherSi substrate 308 which has an insulatinglayer 310, such as SiO2, on it as before. After etching back to theGe layer 302, anotherSi cap layer 312 can be provided. - In still yet another embodiment as illustrated in FIGS.4A-4B, an insulating
layer 400 can be inserted between a topSi cap layer 402 and an opticallyactive layer 404. This would be useful to isolate the optically-active layer 404 from the CMOS electronics in a particular OEIC embodiment where the CMOS electronics were located in the topSi cap layer 402, rather than in theSi substrate 408. - As shown in FIGS.5A-5C, it is also possible to have an embodiment in which an
original Si substrate 500 is not removed. One such structure would involve growing a graded SiGe layer (graded 0-100%) 502, and then auniform Ge layer 504 as the optically active layer. Asecond Si substrate 506 with a SiO2 layer 508 can then be wafer bonded on top of theGe layer 504. Thesecond Si substrate 506 can then be partially etched-back or delaminated to leave a thinSi cap layer 510, which is substantially defect-free. Thecap layer 510 can be substantially defect-free. The CMOS electronics would be processed into a topSi cap layer 510 in this embodiment. Additional layers could also be included in this embodiment as discussed above, such as a relaxed SiGe layer with a strained Si cap layer for strained Si CMOS. - It is to be understood that additional layers that serve various purposes could be included in the structure. For example, layers could be included at various heterointerfaces to minimize the (possibly deleterious) effect of energy band discontinuities at these heterointerfaces. As another example, quarter-wavelength-thick layers of materials of alternating high- and low-refractive index could be grown or deposited on top of either wafer before bonding such that a high-reflectance multilayer stack would exist below the optoelectronic material. This stack could serve as the lower mirror of a resonant cavity to enhance optical responsivity at a particular wavelength. During subsequent processing of the bonded wafers, a high-reflectance mirror could be deposited above the optoelectronic layer to complete the resonant cavity, or the uppermost ambient/semiconductor interface could serve as the top mirror.
- The structures and techniques described are extendable to other optoelectronic materials besides Ge. For example, simply by grading the SiGe graded layer on the first Si substrate to a certain composition less than 100% Ge, and then growing a uniform layer of SiGe at that composition, a SiGe layer of that composition could be embedded in a Si wafer as the optically-active layer.
- As another example, through compositional grading of SiGe and InGaAs layers on Si, it is possible to create a bonded layer of InP or InGaAs on Si as well. This can be accomplished as follows. First, a graded SiGe epitaxial layer (graded from 0-100% Ge) is epitaxially grown on a Si substrate. Since GaAs and Ge have nearly equal lattice constants, a GaAs layer can then be epitaxially grown on top of the Ge layer. At this point, the GaAs layer can be wafer bonded to another Si substrate such that the embedded active optoelectronic layer was GaAs. Alternatively, a relaxed, graded InGaAs layer can be grown on the GaAs layer, graded from 0% In to some desired In concentration, as described in U.S. Pat. No. 6,232,138, incorporated herein by reference. The InGaAs layer can be wafer bonded to another Si substrate.
- In yet another embodiment, InGaAsP or InP lattice-matched to In0.53Ga0 47As can be grown on the structure and wafer bonded to another Si substrate. In yet a more complicated embodiment, lattice-matched heterostructures for various optoelectronic devices can be epitaxially grown on the first wafer, and wafer bonded to the second Si substrate.
- As an example, a relaxed SiGe graded layer can be grown from 0-100% Ge on the first Si substrate, on top of which a relaxed, graded InGaAs layer can then be grown from 0-53% In. A lattice-matched InP layer could then be grown, and serve as the starting substrate for any optoelectronic device lattice-matched to InP. For example, a laser structure containing InP, InGaAs, and InGaAsP, all lattice-matched to InP, can then be grown. The entire device structure can be wafer bonded to a second Si substrate, such that the embedded optoelectronic layer in this case was an entire laser (or LED or detector) structure, rather than a single layer as described with Ge. Of course, the structure would have to be grown “upside-down” on the original Si substrate since it would be inverted upon being wafer bonded to the second Si substrate. Similarly, an entire heterostructure lattice-matched to GaAs could be grown on the first Si substrate and then wafer bonded to the second Si substrate.
- These other optoelectronic layers can also be coated with Si, such that the embedded optically-active semiconductor material can be chosen from a wide range of materials, including: Ge, SiGe, GaAs, AlGaAs, InGaAs, InP, InGaAsP, any III-V alloy lattice-matched to GaAs, any III-V alloy lattice-matched to InP, any multiple-layer heterostructure (a laser, light emitting diode, or photodetector) lattice-matched to GaAs, or any multiple-layer heterostructure lattice-matched to InP.
- Once the planar composite wafer has been fabricated, it contains at a minimum a Si substrate, a layer of optically active material, and a Si cap layer. It may also include optional additional layers or device heterostructures as described. This structure can be processed to create a monolithic optoelectronic integrated circuit. For example, consider the case of creating an optical receiver circuit on Si. The optical receiver could contain a detector and receiver circuit, or multiple detectors and a receiver circuit(s). Since the optically active layer is completely embedded in a Si wafer, this planar composite wafer can be processed as a normal Si wafer would be for CMOS manufacturing.
- In one embodiment as illustrated in FIGS.6A-6C, a starting wafer heterostructure 600 based on the resulting structure shown in FIG. 3D,
Si CMOS electronics 602 can be processed on the Si substrate. In this embodiment, an early step would include patterning the wafer to define the optoelectronic receiver areas, and these areas would be protected with a mask. The other areas would be etched down to the Si substrate, leaving a virgin Si surface to be processed into CMOS electronics. - It is expected that special attention may be required for the CMOS processing thermal budget to minimize the interdiffusion of (and maintain the integrity of) the embedded optoelectronic layer. However, the thermal budget and controlled interdiffusion could also be used to the device designer's advantage. For example, a slight interdiffusion at the upper and lower surfaces of the optically-active layer (Ge in this example) would grade these interfaces and therefore minimize sharp energy band discontinuities that might be deleterious for certain devices. After CMOS processing is complete, the areas with Ge can then be processed into detectors, and final interconnections can be made between the Si CMOS circuit and the Ge detectors.
- Alternatively, in another embodiment shown in FIG. 4D, the Si CMOS electronics can also be fabricated above the optoelectronic layer, rather than co-planar with it. Rather than epitaxially growing a highly-defective Si cap layer above the optoelectronic (Ge in this example) layer, a high-quality Si cap layer can be wafer bonded above the optoelectronic layer as described. The Si CMOS electronics can be formed in this Si cap layer above the optoelectronic layer, rather than in the Si substrate. Vias can be drilled through this top Si CMOS layer to provide contacts to the underlying optoelectronic layer where desired. Underlying Si layers could serve as etch stops, as mentioned above. Individual components can be isolated from one another using trench isolation.
- In yet another embodiment, the CMOS circuits can be fabricated in a strained Si cap layer above the optoelectronic layer as described, rather than in a relaxed Si cap layer. This can be achieved by wafer bonding (or epitaxially growing) a relaxed SiGe layer of a desired composition on top of the optoelectronic (Ge) layer. A strained Si cap layer can then be epitaxially grown on top of the relaxed SiGe layer. Again, vias can be drilled through the strained Si and relaxed SiGe layers to contact the optoelectronic layer where desired.
- The optoelectronic layer being embedded in Si has several advantages. First, the entire integration sequence can occur within a Si foundry. Even the interconnects between the Si CMOS and optoelectronic layer can be performed with Si contact technology, since the contact which will be formed in the optoelectronic region will be a contact to the Si cap layer on the optoelectronic layer. All contact and interconnect materials could be based on standard Si VLSI processing. For example, contacts could be made using Ni, Co, or Ti, and the resulting silicides. Via plugs can use tungsten, while metal interconnect lines can use Al or Cu. Also, the large defect density in the Si contact layers (present in certain embodiments) will aid in creating low resistance contacts, since these defects will enhance interdiffusion and diffusion.
- Alternatively, since the Si layers are deposited epitaxially in some embodiments, the doping can be controlled with epitaxy and high thermal budgets for activating implants are not needed in these embodiments. Additionally, Ge-based optically active regions do not necessarily need to be doped during the epitaxial process. Since Ge is isoelectronic with Si, the same elements that dope Si will dope Ge. Thus, given the current process simulation tools, one can simply dope the Si contact layers (in certain embodiments where the Ge layer directly contacts a Si layer at its upper and lower surfaces, i.e. FIG. 3D) and leave the Ge intrinsic; during subsequent processing, the dopants can enter the Ge, creating the p-i-n structure in Ge needed for photodiode behavior. Also, in situ deposition of a Si layer on top of the Ge will help prevent the surface nucleation of cracks in the Ge due to the thermal expansion difference between Si and Ge.
- Finally, it is important to note that since Si has a larger bandgap than the optical wavelengths of light typically used in telecommunications (1.3 and 1.55 μm), the Si substrate and top cap layer are both transparent to these wavelengths. Thus, transmission of optical signals between the embedded optoelectronic layer and an external waveguide (such as an optical fiber or free space) can easily occur by either normal incidence through the front or backside of the wafer, or in-plane incidence. Additionally, even wavelengths shorter than the bandgap of Si can be coupled in and out of the embedded optoelectronic layer. This is because the top Si cap layer can be made thin enough that it is only minimally absorbing at other commonly used wavelengths, such as 980 or 850 nm. Alternatively, edge coupling could be used for these wavelengths.
- Thus, the embedded optically-active layers can be used for the creation of complex integrated optoelectronic transceivers. One can therefore construct, for example, optical network switches on a chip. A schematic example of such an
OEIC 700 is shown in FIG. 7. In this example, an InGaAs/InP heterostructure has been embedded in aSi wafer 702. Certain regions have been processed to form emitters 704 using this embedded optically-active material, while other regions have been processed to formdetectors 706. The diagram has been drawn simplistically for clarity, as the InGaAs/InP emitters and detectors are not actually exposed on the surface of the wafer. They are embedded in thewafer 702. The top layer of the entire structure is Si. - A simple structure that would enable the formation of both emitters and detectors is a p-i-n structure, which would emit light when forward-biased, and detect light when reverse-biased. In another region of the wafer, Si electronics708 have been processed into the Si substrate. The Si electronics are connected to the optoelectronic devices using interconnects based on standard Si interconnect materials, such as Al or Cu. Additionally, since the entire top surface of the wafer is a Si cap layer, the contacts to the optoelectronic emitters and detectors can be made using standard Si contact materials, such as Ni, Co, or Ti silicides. Finally, optical signals can be transmitted between the OEIC and external optical fibers. One possibility is shown in the figure, where the light is transmitted through the substrate to butt-coupled
fibers 710. The optical signals could also be transmitted through the Si cap layer, such that optical fibers would be positioned above the OEIC. A third possibility is to use edge coupling, where v-grooves would be etched in the substrate to align optical fibers for in-plane incidence. - Although the present invention has been shown and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.
Claims (51)
1. A semiconductor heterostructure comprising:
a Si substrate;
an optically active semiconductor material on said substrate, said optically active semiconductor material being lattice mismatched with respect to said substrate and substantially relaxed; and
a cap layer on said optically active semiconductor material, said cap layer comprising Si.
2. The heterostructure of claim 1 , wherein said optically active semiconductor material comprises material from the group of: Ge, GaAs, InP, AlGaAs, InGaAs, InGaAsN, InGaAsP, a III-V alloy lattice-matched to GaAs, or a III-V alloy lattice-matched to InP.
3. The heterostructure of claim 1 , wherein said optically active semiconductor material comprises SiGe.
4. The heterostructure of claim 1 , wherein said optically active semiconductor material comprises a multiple layer heterostructure lattice-matched to GaAs, or a multiple layer heterostructure lattice-matched to InP.
5. The heterostructure of claim 1 , wherein said optically active semiconductor material has a smaller bandgap than the bandgap of Si.
6. The heterostructure of claim 1 , wherein said cap layer is monocrystalline and substantially defect-free.
7. The heterostructure of claim 1 , wherein said cap layer is monocrystalline and highly defective.
8. The heterostructure of claim 1 further comprising a relaxed, graded Si1−xGex layer graded from x=0 to x≦1, positioned between said Si substrate and said optically active semiconductor material.
9. The heterostructure of claim 8 further comprising a relaxed, graded InxGa1−xAs layer graded from x=0 to x≦1, positioned between said relaxed, graded Si1−xGex layer and said optically active semiconductor material.
10. The heterostructure of claim 1 , wherein at least one layer has been planarized.
11. A semiconductor heterostructure comprising:
a Si substrate;
an insulating layer on said substrate;
an optically active semiconductor material on said insulating layer, said optically active semiconductor material being lattice mismatched with respect to said substrate and substantially relaxed; and
a cap layer on said optically active semiconductor material, said cap layer comprising Si.
12. The heterostructure of claim 11 , wherein said optically active semiconductor material comprises material from the group of: Ge, GaAs, InP, AlGaAs, InGaAs, InGaAsN, InGaAsP, a III-V alloy lattice-matched to GaAs, or a III-V alloy lattice-matched to InP.
13. The heterostructure of claim 11 , wherein said optically active semiconductor material comprises SiGe.
14. The heterostructure of claim 11 , wherein said optically active semiconductor material comprises a multiple layer heterostructure lattice-matched to GaAs, or a multiple layer heterostructure lattice-matched to InP.
15. The heterostructure of claim 11 , wherein said optically active semiconductor material has a smaller bandgap than the bandgap of Si.
16. The heterostructure of claim 11 , wherein said insulating layer is SiO2.
17. The heterostructure of claim 11 , wherein said cap layer is monocrystalline and substantially defect-free.
18. The heterostructure of claim 11 , wherein said cap layer is monocrystalline and highly defective.
19. The heterostructure of claim 11 , wherein at least one layer has been planarized.
20. A semiconductor heterostructure comprising:
a Si substrate;
an optically active semiconductor material on said substrate, said optically active
semiconductor material being lattice mismatched with respect to said substrate and substantially relaxed;
an insulating layer on said optically active semiconductor material; and
a cap layer on said insulating layer, said cap layer comprising Si.
21. The heterostructure of claim 20 , wherein said optically active semiconductor material comprises material from the group of: Ge, GaAs, InP, AlGaAs, InGaAs, InGaAsN, InGaAsP, a III-V alloy lattice-matched to GaAs, or a III-V alloy lattice-matched to InP.
22. The heterostructure of claim 20 wherein said optically active semiconductor material comprises SiGe.
23. The heterostructure of claim 20 , where said optically active semiconductor material comprises a multiple layer heterostructure lattice-matched to GaAs, or a multiple layer heterostructure lattice-matched to InP.
24. The heterostructure of claim 20 , wherein said optically active semiconductor material has a smaller bandgap than the bandgap of Si.
25. The heterostructure of claim 20 , wherein said insulating layer comprises SiO2.
26. The heterostructure of claim 20 , wherein said cap layer is monocrystalline and substantially defect-free.
27. The heterostructure of claim 20 further comprising a relaxed, graded Si1−xGex layer graded from x=0 to x≦1, positioned between said Si substrate and said optically active semiconductor material.
28. The heterostructure of claim 27 further comprising a relaxed, graded InxGa1−xAs layer graded from x=0 to x≦1, positioned between said relaxed, graded Si1−xGex layer and said optically active semiconductor material.
29. The heterostructure of claim 20 , wherein at least one layer has been planarized.
30. A semiconductor heterostructure comprising:
a Si substrate;
a first insulating layer on said substrate;
an optically active semiconductor material on said first insulating layer, said optically active semiconductor material being lattice mismatched with respect to said substrate and substantially relaxed;
a second insulating layer on said optically active semiconductor material; and
a cap layer on said second insulating layer, said cap layer comprising Si.
31. The heterostructure of claim 30 , wherein said optically active semiconductor material comprises material from the group of: Ge, GaAs, InP, AlGaAs, InGaAs, InGaAsN, InGaAsP, a III-V alloy lattice-matched to GaAs, or a III-V alloy lattice-matched to InP.
32. The heterostructure of claim 30 , wherein said optically active semiconductor material comprises SiGe.
33. The heterostructure of claim 30 , wherein said optically active semiconductor material comprises a multiple layer heterostructure lattice-matched to GaAs, or a multiple layer heterostructure lattice-matched to InP.
34. The heterostructure of claim 30 , wherein said optically active semiconductor material has a smaller bandgap than the bandgap of Si.
35. The heterostructure of claim 30 , wherein said insulating layers comprise SiO2.
36. The heterostructure of claim 30 , wherein said cap layer is monocrystalline and substantially defect-free.
37. The heterostructure of claim 30 , wherein at least one layer has been planarized.
38. A semiconductor heterostructure comprising:
a Si substrate;
a first insulating layer on said substrate;
a first Si layer on said first insulating layer;
an optically active semiconductor material on said first Si layer, said optically active semiconductor material being lattice mismatched with respect to said substrate and substantially relaxed;
a second Si layer on said optically active semiconductor material;
a second insulating layer on said second Si layer;
a cap layer on said second insulating layer, said cap layer comprising Si.
39. The heterostructure of claim 38 , wherein said optically active semiconductor material comprises material from the group of: Ge, GaAs, Inp, AlGaAs, InGaAs, InGaAsN, InGaAsP, a III-V alloy lattice-matched to GaAs, or a III-V alloy lattice-matched to InP.
40. The heterostructure of claim 38 , wherein said optically active semiconductor material comprises SiGe.
41. The heterostructure of claim 38 , wherein said optically active semiconductor material comprises a multiple layer heterostructure lattice-matched to GaAs, or a multiple layer heterostructure lattice-matched to InP.
42. The heterostructure of claim 38 , wherein said optically active semiconductor material has a smaller bandgap than the bandgap of Si.
43. The heterostructure of claim 38 , wherein said insulating layers comprise SiO2.
44. The heterostructure of claim 38 , wherein said Si layers are monocrystalline and highly defective.
45. The heterostructure of claim 38 , wherein said cap layer is monocrystalline and substantially defect-free.
46. The heterostructure of claim 38 , wherein at least one layer has been planarized.
47. The heterostructure of claim 1 , wherein said cap layer comprises a relaxed SiGe layer with a strained Si cap layer.
48. The heterostructure of claim 11 , wherein said cap layer comprises a relaxed SiGe layer with a strained Si cap layer.
49. The heterostructure of claim 20 , wherein said cap layer comprises a relaxed SiGe layer with a strained Si cap layer.
50. The heterostructure of claim 30 , wherein said cap layer comprises a relaxed SiGe layer with a strained Si cap layer.
51. The heterostructure of claim 38 , wherein said cap layer comprises a relaxed SiGe layer with a strained Si cap layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/920,506 US20020066899A1 (en) | 2000-08-04 | 2001-08-01 | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22340700P | 2000-08-04 | 2000-08-04 | |
US09/920,506 US20020066899A1 (en) | 2000-08-04 | 2001-08-01 | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020066899A1 true US20020066899A1 (en) | 2002-06-06 |
Family
ID=22836361
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/920,520 Expired - Lifetime US6645829B2 (en) | 2000-08-04 | 2001-08-01 | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
US09/920,519 Expired - Lifetime US6680495B2 (en) | 2000-08-04 | 2001-08-01 | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
US09/920,506 Abandoned US20020066899A1 (en) | 2000-08-04 | 2001-08-01 | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
US09/920,075 Expired - Lifetime US6677655B2 (en) | 2000-08-04 | 2001-08-01 | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/920,520 Expired - Lifetime US6645829B2 (en) | 2000-08-04 | 2001-08-01 | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
US09/920,519 Expired - Lifetime US6680495B2 (en) | 2000-08-04 | 2001-08-01 | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/920,075 Expired - Lifetime US6677655B2 (en) | 2000-08-04 | 2001-08-01 | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
Country Status (7)
Country | Link |
---|---|
US (4) | US6645829B2 (en) |
EP (1) | EP1350290B1 (en) |
JP (1) | JP5066321B2 (en) |
AT (1) | ATE346410T1 (en) |
AU (1) | AU2001278105A1 (en) |
DE (1) | DE60124766T2 (en) |
WO (1) | WO2002013342A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050042842A1 (en) * | 2003-08-21 | 2005-02-24 | Ryan Lei | Germanium on insulator fabrication via epitaxial germanium bonding |
US20050067377A1 (en) * | 2003-09-25 | 2005-03-31 | Ryan Lei | Germanium-on-insulator fabrication utilizing wafer bonding |
US20080067499A1 (en) * | 2006-09-15 | 2008-03-20 | Sharp Laboratories Of America, Inc. | Silicon/germanium superlattice thermal sensor |
WO2009044923A1 (en) * | 2007-10-04 | 2009-04-09 | Canon Kabushiki Kaisha | Method for manufacturing light emitting device |
WO2021217256A1 (en) * | 2020-04-27 | 2021-11-04 | Moutanabbir Oussama | Short-wave infrared and mid-wave infrared optoelectronic device and methods for manufacturing the same |
Families Citing this family (129)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6807328B2 (en) * | 1998-04-17 | 2004-10-19 | John Farah | Polished polyimide substrate |
US6392257B1 (en) * | 2000-02-10 | 2002-05-21 | Motorola Inc. | Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same |
US20060125092A1 (en) * | 2000-07-18 | 2006-06-15 | Marshall Paul N | High density integrated circuit package architecture |
US20020096683A1 (en) * | 2001-01-19 | 2002-07-25 | Motorola, Inc. | Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate |
US20020158245A1 (en) * | 2001-04-26 | 2002-10-31 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices utilizing binary metal oxide layers |
US7442629B2 (en) | 2004-09-24 | 2008-10-28 | President & Fellows Of Harvard College | Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate |
US7057256B2 (en) | 2001-05-25 | 2006-06-06 | President & Fellows Of Harvard College | Silicon-based visible and near-infrared optoelectric devices |
US20030012965A1 (en) * | 2001-07-10 | 2003-01-16 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate comprising an oxygen-doped compound semiconductor layer |
US6992321B2 (en) * | 2001-07-13 | 2006-01-31 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials |
US7019332B2 (en) * | 2001-07-20 | 2006-03-28 | Freescale Semiconductor, Inc. | Fabrication of a wavelength locker within a semiconductor structure |
US20030022412A1 (en) * | 2001-07-25 | 2003-01-30 | Motorola, Inc. | Monolithic semiconductor-piezoelectric device structures and electroacoustic charge transport devices |
US20030034491A1 (en) * | 2001-08-14 | 2003-02-20 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices for detecting an object |
JP3970011B2 (en) * | 2001-12-11 | 2007-09-05 | シャープ株式会社 | Semiconductor device and manufacturing method thereof |
US6924510B2 (en) * | 2002-05-06 | 2005-08-02 | Intel Corporation | Silicon and silicon/germanium light-emitting device, methods and systems |
US7157119B2 (en) * | 2002-06-25 | 2007-01-02 | Ppg Industries Ohio, Inc. | Method and compositions for applying multiple overlying organic pigmented decorations on ceramic substrates |
US20040012037A1 (en) * | 2002-07-18 | 2004-01-22 | Motorola, Inc. | Hetero-integration of semiconductor materials on silicon |
US7072534B2 (en) * | 2002-07-22 | 2006-07-04 | Applied Materials, Inc. | Optical ready substrates |
AU2003273221A1 (en) * | 2002-07-22 | 2004-02-09 | Applied Materials Inc. | Optical-ready substrates with optical waveguide circuits and microelectronic circuits |
US7110629B2 (en) * | 2002-07-22 | 2006-09-19 | Applied Materials, Inc. | Optical ready substrates |
US20050072979A1 (en) * | 2002-07-22 | 2005-04-07 | Applied Materials, Inc. | Optical-ready wafers |
US7043106B2 (en) | 2002-07-22 | 2006-05-09 | Applied Materials, Inc. | Optical ready wafers |
EP2267762A3 (en) * | 2002-08-23 | 2012-08-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor heterostructures having reduced dislocation pile-ups and related methods |
JP2004140038A (en) * | 2002-10-15 | 2004-05-13 | Sumitomo Chem Co Ltd | Method for manufacturing thin film crystal wafer, semiconductor device and its manufacturing method |
US20040079285A1 (en) * | 2002-10-24 | 2004-04-29 | Motorola, Inc. | Automation of oxide material growth in molecular beam epitaxy systems |
US7169619B2 (en) * | 2002-11-19 | 2007-01-30 | Freescale Semiconductor, Inc. | Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process |
US6885065B2 (en) * | 2002-11-20 | 2005-04-26 | Freescale Semiconductor, Inc. | Ferromagnetic semiconductor structure and method for forming the same |
US7453129B2 (en) * | 2002-12-18 | 2008-11-18 | Noble Peak Vision Corp. | Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry |
US6993225B2 (en) | 2004-02-10 | 2006-01-31 | Sioptical, Inc. | Tapered structure for providing coupling between external optical device and planar optical waveguide and method of forming the same |
US6897498B2 (en) * | 2003-03-31 | 2005-05-24 | Sioptical, Inc. | Polycrystalline germanium-based waveguide detector integrated on a thin silicon-on-insulator (SOI) platform |
DE10318284A1 (en) * | 2003-04-22 | 2004-11-25 | Forschungszentrum Jülich GmbH | Process for producing a strained layer on a substrate and layer structure |
US7001788B2 (en) * | 2003-05-29 | 2006-02-21 | Applied Materials, Inc. | Maskless fabrication of waveguide mirrors |
EP1627249A4 (en) * | 2003-05-29 | 2007-05-09 | Applied Materials Inc | Serial routing of optical signals |
CN1813381A (en) | 2003-06-27 | 2006-08-02 | 应用材料公司 | Pulsed quantum dot laser system with low jitter |
US7164182B2 (en) * | 2003-07-07 | 2007-01-16 | Micron Technology, Inc. | Pixel with strained silicon layer for improving carrier mobility and blue response in imagers |
US20050016446A1 (en) * | 2003-07-23 | 2005-01-27 | Abbott John S. | CaF2 lenses with reduced birefringence |
US7579263B2 (en) | 2003-09-09 | 2009-08-25 | Stc.Unm | Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer |
US7084460B2 (en) * | 2003-11-03 | 2006-08-01 | International Business Machines Corporation | Method for fabricating SiGe-on-insulator (SGOI) and Ge-on-insulator (GOI) substrates |
KR100624415B1 (en) * | 2003-12-17 | 2006-09-18 | 삼성전자주식회사 | Optical device and method for manufacturing the same |
US7369718B2 (en) * | 2004-01-23 | 2008-05-06 | Intel Corporation | Package substrate pattern to accommodate optical waveguide |
US7332365B2 (en) * | 2004-05-18 | 2008-02-19 | Cree, Inc. | Method for fabricating group-III nitride devices and devices fabricated using method |
US7791061B2 (en) | 2004-05-18 | 2010-09-07 | Cree, Inc. | External extraction light emitting diode based upon crystallographic faceted surfaces |
TWI298895B (en) * | 2004-06-02 | 2008-07-11 | Applied Materials Inc | Electronic device manufacturing chamber and methods of forming the same |
GB0423599D0 (en) * | 2004-10-23 | 2004-11-24 | Univ Belfast | Electro-optical device |
US20060227825A1 (en) * | 2005-04-07 | 2006-10-12 | Nl-Nanosemiconductor Gmbh | Mode-locked quantum dot laser with controllable gain properties by multiple stacking |
WO2007027615A1 (en) * | 2005-09-01 | 2007-03-08 | Applied Materials, Inc. | Ridge technique for fabricating an optical detector and an optical waveguide |
WO2007044554A2 (en) * | 2005-10-07 | 2007-04-19 | Lee, Michael, J. | Amorphous silicon waveguides on iii/v substrates with a barrier layer |
US7535089B2 (en) * | 2005-11-01 | 2009-05-19 | Massachusetts Institute Of Technology | Monolithically integrated light emitting devices |
US20070252223A1 (en) * | 2005-12-05 | 2007-11-01 | Massachusetts Institute Of Technology | Insulated gate devices and method of making same |
US8411711B2 (en) * | 2005-12-07 | 2013-04-02 | Innolume Gmbh | Semiconductor laser with low relative intensity noise of individual longitudinal modes and optical transmission system incorporating the laser |
US7835408B2 (en) * | 2005-12-07 | 2010-11-16 | Innolume Gmbh | Optical transmission system |
JP2009518833A (en) | 2005-12-07 | 2009-05-07 | インノルメ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Laser light source with broadband spectral emission |
US7561607B2 (en) * | 2005-12-07 | 2009-07-14 | Innolume Gmbh | Laser source with broadband spectrum emission |
US8410523B2 (en) * | 2006-01-11 | 2013-04-02 | Diana L. Huffaker | Misfit dislocation forming interfacial self-assembly for growth of highly-mismatched III-SB alloys |
US8063397B2 (en) * | 2006-06-28 | 2011-11-22 | Massachusetts Institute Of Technology | Semiconductor light-emitting structure and graded-composition substrate providing yellow-green light emission |
US7805826B1 (en) * | 2006-07-06 | 2010-10-05 | Hewlett-Packard Development Company, L.P. | Fabrication of slot waveguide |
AU2007296744A1 (en) * | 2006-09-11 | 2008-03-20 | Curis, Inc. | Multi-functional small molecules as anti-proliferative agents |
FR2912552B1 (en) * | 2007-02-14 | 2009-05-22 | Soitec Silicon On Insulator | MULTILAYER STRUCTURE AND METHOD FOR MANUFACTURING THE SAME |
US8617997B2 (en) | 2007-08-21 | 2013-12-31 | Cree, Inc. | Selective wet etching of gold-tin based solder |
US8053810B2 (en) * | 2007-09-07 | 2011-11-08 | International Business Machines Corporation | Structures having lattice-mismatched single-crystalline semiconductor layers on the same lithographic level and methods of manufacturing the same |
WO2009051902A1 (en) | 2007-10-17 | 2009-04-23 | Bae Systems Information And Electronic Systems Integration Inc. | Method for fabricating selectively coupled optical waveguides on a substrate |
US8192638B2 (en) | 2007-10-18 | 2012-06-05 | Bae Systems Information And Electronic Systems Integration Inc. | Method for manufacturing multiple layers of waveguides |
US7736934B2 (en) | 2007-10-19 | 2010-06-15 | Bae Systems Information And Electronic Systems Integration Inc. | Method for manufacturing vertical germanium detectors |
US20100092682A1 (en) * | 2007-10-24 | 2010-04-15 | Bae Systems Information And Electronic Systems Int | Method for Fabricating a Heater Capable of Adjusting Refractive Index of an Optical Waveguide |
WO2009055778A1 (en) | 2007-10-25 | 2009-04-30 | Bae Systems Information And Electronic Systems Integration Inc. | Method for manufacturing lateral germanium detectors |
US7811844B2 (en) | 2007-10-26 | 2010-10-12 | Bae Systems Information And Electronic Systems Integration Inc. | Method for fabricating electronic and photonic devices on a semiconductor substrate |
US8031343B2 (en) * | 2007-10-29 | 2011-10-04 | Bae Systems Information And Electronic Systems Integration Inc. | High-index contrast waveguide optical gyroscope having segmented paths |
US8871554B2 (en) * | 2007-10-30 | 2014-10-28 | Bae Systems Information And Electronic Systems Integration Inc. | Method for fabricating butt-coupled electro-absorptive modulators |
US20100140587A1 (en) * | 2007-10-31 | 2010-06-10 | Carothers Daniel N | High-Injection Heterojunction Bipolar Transistor |
GB0802088D0 (en) * | 2008-02-05 | 2008-03-12 | Panalytical Bv | Imaging detector |
WO2009115859A1 (en) * | 2008-03-19 | 2009-09-24 | S.O.I. Tec Silicon On Insulator Technologies | Substrates for monolithic optical circuits and electronic circuits |
US20100116329A1 (en) * | 2008-06-09 | 2010-05-13 | Fitzgerald Eugene A | Methods of forming high-efficiency solar cell structures |
US7987066B2 (en) * | 2008-08-29 | 2011-07-26 | Bae Systems Information And Electronic Systems Integration Inc. | Components and configurations for test and valuation of integrated optical busses |
US7715663B2 (en) * | 2008-08-29 | 2010-05-11 | Bae Systems Information And Electronic Systems Integration Inc. | Integrated optical latch |
US7853101B2 (en) * | 2008-08-29 | 2010-12-14 | Bae Systems Information And Electronic Systems Integration Inc. | Bi-rate adaptive optical transfer engine |
US8148265B2 (en) * | 2008-08-29 | 2012-04-03 | Bae Systems Information And Electronic Systems Integration Inc. | Two-step hardmask fabrication methodology for silicon waveguides |
US8288290B2 (en) * | 2008-08-29 | 2012-10-16 | Bae Systems Information And Electronic Systems Integration Inc. | Integration CMOS compatible of micro/nano optical gain materials |
US7693354B2 (en) * | 2008-08-29 | 2010-04-06 | Bae Systems Information And Electronic Systems Integration Inc. | Salicide structures for heat-influenced semiconductor applications |
US8877616B2 (en) * | 2008-09-08 | 2014-11-04 | Luxtera, Inc. | Method and system for monolithic integration of photonics and electronics in CMOS processes |
US8831437B2 (en) | 2009-09-04 | 2014-09-09 | Luxtera, Inc. | Method and system for a photonic interposer |
US8018821B2 (en) * | 2008-09-30 | 2011-09-13 | Intel Corporation | Protection layers for media protection during fabrication of probe memory device |
US7847353B2 (en) * | 2008-12-05 | 2010-12-07 | Bae Systems Information And Electronic Systems Integration Inc. | Multi-thickness semiconductor with fully depleted devices and photonic integration |
US20110132445A1 (en) * | 2009-05-29 | 2011-06-09 | Pitera Arthur J | High-efficiency multi-junction solar cell structures |
US9305779B2 (en) * | 2009-08-11 | 2016-04-05 | Bae Systems Information And Electronic Systems Integration Inc. | Method for growing germanium epitaxial films |
US9911781B2 (en) | 2009-09-17 | 2018-03-06 | Sionyx, Llc | Photosensitive imaging devices and associated methods |
US9673243B2 (en) | 2009-09-17 | 2017-06-06 | Sionyx, Llc | Photosensitive imaging devices and associated methods |
EP2317554B1 (en) * | 2009-10-30 | 2014-04-09 | Imec | Integrated semiconductor substrate structure and method of manufacturing an integrated semiconductor substrate structure |
FR2954585B1 (en) * | 2009-12-23 | 2012-03-02 | Soitec Silicon Insulator Technologies | METHOD FOR MAKING A HETEROSTRUCTURE WITH MINIMIZATION OF STRESS |
US8692198B2 (en) | 2010-04-21 | 2014-04-08 | Sionyx, Inc. | Photosensitive imaging devices and associated methods |
EP2583312A2 (en) | 2010-06-18 | 2013-04-24 | Sionyx, Inc. | High speed photosensitive devices and associated methods |
US8824837B2 (en) | 2010-08-26 | 2014-09-02 | The Board Of Trustees Of The Leland Stanford Junior University | Integration of optoelectronics with waveguides using interposer layer |
US8124470B1 (en) * | 2010-09-29 | 2012-02-28 | International Business Machines Corporation | Strained thin body semiconductor-on-insulator substrate and device |
US8604330B1 (en) | 2010-12-06 | 2013-12-10 | 4Power, Llc | High-efficiency solar-cell arrays with integrated devices and methods for forming them |
EP2461352B1 (en) * | 2010-12-06 | 2013-07-10 | Imec | Method of manufacturing low resistivity contacts on n-type germanium |
FR2974413B1 (en) * | 2011-04-21 | 2014-06-13 | Commissariat Energie Atomique | PHOTOACOUSTIC GAS DETECTOR WITH HELMHOLTZ CELL |
US9496308B2 (en) | 2011-06-09 | 2016-11-15 | Sionyx, Llc | Process module for increasing the response of backside illuminated photosensitive imagers and associated methods |
US20130016203A1 (en) | 2011-07-13 | 2013-01-17 | Saylor Stephen D | Biometric imaging devices and associated methods |
US9064764B2 (en) | 2012-03-22 | 2015-06-23 | Sionyx, Inc. | Pixel isolation elements, devices, and associated methods |
EP2834850B1 (en) * | 2012-04-04 | 2020-10-14 | Massachusetts Institute of Technology | Monolithic integration of cmos and non-silicon devices |
US8735219B2 (en) | 2012-08-30 | 2014-05-27 | Ziptronix, Inc. | Heterogeneous annealing method and device |
US10094988B2 (en) | 2012-08-31 | 2018-10-09 | Micron Technology, Inc. | Method of forming photonics structures |
KR20150130303A (en) | 2013-02-15 | 2015-11-23 | 사이오닉스, 아이엔씨. | High dynamic range cmos image sensor having anti-blooming properties and associated methods |
JP2014165292A (en) * | 2013-02-25 | 2014-09-08 | Hitachi Ltd | Light-emitting element, manufacturing method of the same and optical transmitter/receiver |
WO2014151093A1 (en) | 2013-03-15 | 2014-09-25 | Sionyx, Inc. | Three dimensional imaging utilizing stacked imager devices and associated methods |
US8896008B2 (en) | 2013-04-23 | 2014-11-25 | Cree, Inc. | Light emitting diodes having group III nitride surface features defined by a mask and crystal planes |
WO2014209421A1 (en) | 2013-06-29 | 2014-12-31 | Sionyx, Inc. | Shallow trench textured regions and associated methods |
US9696486B2 (en) * | 2013-07-31 | 2017-07-04 | Oracle International Corporation | Surface-normal coupler for silicon-on-insulator platforms |
US9331227B2 (en) * | 2014-01-10 | 2016-05-03 | The Boeing Company | Directly bonded, lattice-mismatched semiconductor device |
US9766410B1 (en) * | 2014-07-11 | 2017-09-19 | Acacia Communications, Inc. | Wafer-level testing of photonic integrated circuits with optical IOs |
CN104090334A (en) * | 2014-07-30 | 2014-10-08 | 四川飞阳科技有限公司 | Method for preparing core film of planar optical waveguide device |
US9658400B2 (en) | 2015-06-01 | 2017-05-23 | International Business Machines Corporation | Method for fabricating a device for propagating light |
US9678273B2 (en) * | 2015-06-01 | 2017-06-13 | International Business Machines Corporation | Device for propagating light and method for fabricating a device |
US10109983B2 (en) * | 2016-04-28 | 2018-10-23 | Hewlett Packard Enterprise Development Lp | Devices with quantum dots |
US10122153B2 (en) | 2016-08-29 | 2018-11-06 | International Business Machines Corporation | Resonant cavity strained group III-V photodetector and LED on silicon substrate and method to fabricate same |
US10566765B2 (en) | 2016-10-27 | 2020-02-18 | Hewlett Packard Enterprise Development Lp | Multi-wavelength semiconductor lasers |
EP3568873B1 (en) * | 2017-01-13 | 2023-11-08 | Massachusetts Institute of Technology | A method of forming a multilayer structure for a pixelated display and a multilayer structure for a pixelated display |
US10680407B2 (en) | 2017-04-10 | 2020-06-09 | Hewlett Packard Enterprise Development Lp | Multi-wavelength semiconductor comb lasers |
US11664357B2 (en) | 2018-07-03 | 2023-05-30 | Adeia Semiconductor Bonding Technologies Inc. | Techniques for joining dissimilar materials in microelectronics |
US11545587B2 (en) | 2020-01-10 | 2023-01-03 | Newport Fab, Llc | Semiconductor structure having group III-V device on group IV substrate and contacts with liner stacks |
US11233159B2 (en) * | 2020-01-10 | 2022-01-25 | Newport Fab, Llc | Fabrication of semiconductor structure having group III-V device on group IV substrate with separately formed contacts using different metal liners |
US11296482B2 (en) | 2020-01-10 | 2022-04-05 | Newport Fab, Llc | Semiconductor structure having group III-V chiplet on group IV substrate and cavity in proximity to heating element |
US11581452B2 (en) | 2020-01-10 | 2023-02-14 | Newport Fab, Llc | Semiconductor structure having group III-V device on group IV substrate and contacts with precursor stacks |
US11929442B2 (en) | 2020-01-10 | 2024-03-12 | Newport Fab, Llc | Structure and method for process control monitoring for group III-V devices integrated with group IV substrate |
US11349280B2 (en) | 2020-01-10 | 2022-05-31 | Newport Fab, Llc | Semiconductor structure having group III-V device on group IV substrate |
US11495631B2 (en) * | 2020-02-07 | 2022-11-08 | Sensors Unlimited, Inc. | Pin mesa diodes with over-current protection |
US10951003B1 (en) * | 2020-02-25 | 2021-03-16 | Inphi Corporation | Light source for integrated silicon photonics |
WO2021188846A1 (en) | 2020-03-19 | 2021-09-23 | Invensas Bonding Technologies, Inc. | Dimension compensation control for directly bonded structures |
US11165509B1 (en) | 2020-06-05 | 2021-11-02 | Marvell Asia Pte, Ltd. | Method for co-packaging light engine chiplets on switch substrate |
US11428646B2 (en) * | 2020-08-28 | 2022-08-30 | Openlight Photonics, Inc. | Loss monitoring in photonic circuit fabrication |
US12074243B1 (en) * | 2023-08-24 | 2024-08-27 | Amplification Technologies, Corp. | Method for fabricating high-sensitivity photodetectors |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4370510A (en) | 1980-09-26 | 1983-01-25 | California Institute Of Technology | Gallium arsenide single crystal solar cell structure and method of making |
US4774205A (en) | 1986-06-13 | 1988-09-27 | Massachusetts Institute Of Technology | Monolithic integration of silicon and gallium arsenide devices |
US4888302A (en) * | 1987-11-25 | 1989-12-19 | North American Philips Corporation | Method of reduced stress recrystallization |
WO1989006050A1 (en) | 1987-12-23 | 1989-06-29 | British Telecommunications Public Limited Company | Semiconductor heterostructures |
JPH01315127A (en) | 1988-03-18 | 1989-12-20 | Fujitsu Ltd | Formation of gallium arsenide layer |
US5068695A (en) * | 1988-04-29 | 1991-11-26 | Sri International | Low dislocation density semiconductor device |
JPH02194519A (en) * | 1989-01-23 | 1990-08-01 | Nippon Telegr & Teleph Corp <Ntt> | Composite semiconductor substrate and manufacture thereof |
JPH02306680A (en) | 1989-05-22 | 1990-12-20 | Hikari Gijutsu Kenkyu Kaihatsu Kk | Optoelectronic integrated circuit device and manufacture thereof |
US5013681A (en) | 1989-09-29 | 1991-05-07 | The United States Of America As Represented By The Secretary Of The Navy | Method of producing a thin silicon-on-insulator layer |
US5102812A (en) | 1989-11-09 | 1992-04-07 | Bell Communications Research | Method of making a lateral bipolar heterojunction structure |
US5221413A (en) * | 1991-04-24 | 1993-06-22 | At&T Bell Laboratories | Method for making low defect density semiconductor heterostructure and devices made thereby |
JPH0594929A (en) * | 1991-10-02 | 1993-04-16 | Hitachi Ltd | Compound substrate and its manufacturing method and semiconductor device |
KR970003848B1 (en) | 1991-10-17 | 1997-03-22 | 미쓰비시덴키 가부시키가이샤 | Semiconductor device having active region semiconductor layer on insulator layer and manufacturing method thereof |
US5207864A (en) | 1991-12-30 | 1993-05-04 | Bell Communications Research | Low-temperature fusion of dissimilar semiconductors |
US5401983A (en) * | 1992-04-08 | 1995-03-28 | Georgia Tech Research Corporation | Processes for lift-off of thin film materials or devices for fabricating three dimensional integrated circuits, optical detectors, and micromechanical devices |
DE69315811T2 (en) | 1992-12-16 | 1998-06-10 | Koninkl Philips Electronics Nv | Method of manufacturing an optoelectric semiconductor device |
US5314107A (en) | 1992-12-31 | 1994-05-24 | Motorola, Inc. | Automated method for joining wafers |
US5346848A (en) | 1993-06-01 | 1994-09-13 | Motorola, Inc. | Method of bonding silicon and III-V semiconductor materials |
US5461243A (en) * | 1993-10-29 | 1995-10-24 | International Business Machines Corporation | Substrate for tensilely strained semiconductor |
JP2669368B2 (en) | 1994-03-16 | 1997-10-27 | 日本電気株式会社 | Method for manufacturing compound semiconductor laminated structure on Si substrate |
US5534713A (en) | 1994-05-20 | 1996-07-09 | International Business Machines Corporation | Complementary metal-oxide semiconductor transistor logic using strained SI/SIGE heterostructure layers |
US5937274A (en) * | 1995-01-31 | 1999-08-10 | Hitachi, Ltd. | Fabrication method for AlGaIn NPAsSb based devices |
JP3147141B2 (en) | 1995-08-30 | 2001-03-19 | 株式会社日立製作所 | Light assembly |
JPH09127352A (en) * | 1995-10-30 | 1997-05-16 | Hitachi Ltd | Semiconductor device and its production |
US6151347A (en) | 1996-01-17 | 2000-11-21 | Nortel Networks Corporation | Laser diode and method of fabrication thereof |
US5726462A (en) | 1996-02-07 | 1998-03-10 | Sandia Corporation | Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer |
JP2748917B2 (en) | 1996-03-22 | 1998-05-13 | 日本電気株式会社 | Semiconductor device |
FR2748851B1 (en) | 1996-05-15 | 1998-08-07 | Commissariat Energie Atomique | PROCESS FOR PRODUCING A THIN FILM OF SEMICONDUCTOR MATERIAL |
US5805755A (en) | 1996-06-17 | 1998-09-08 | Tellium, Inc. | Self-aligned transition from ridge to buried heterostructure waveguide, especially for multi-wavelength laser array integration |
US5906951A (en) * | 1997-04-30 | 1999-05-25 | International Business Machines Corporation | Strained Si/SiGe layers on insulator |
US6107653A (en) | 1997-06-24 | 2000-08-22 | Massachusetts Institute Of Technology | Controlling threading dislocation densities in Ge on Si using graded GeSi layers and planarization |
US5966622A (en) | 1997-10-08 | 1999-10-12 | Lucent Technologies Inc. | Process for bonding crystalline substrates with different crystal lattices |
US6136667A (en) | 1997-10-08 | 2000-10-24 | Lucent Technologies Inc. | Method for bonding two crystalline substrates together |
US6232138B1 (en) * | 1997-12-01 | 2001-05-15 | Massachusetts Institute Of Technology | Relaxed InxGa(1-x)as buffers |
JPH11238902A (en) | 1998-02-19 | 1999-08-31 | Nec Corp | Semiconductor photodetector and manufacture thereof |
JPH11274467A (en) * | 1998-03-26 | 1999-10-08 | Murata Mfg Co Ltd | Photo-electronic integrated-circuit device |
US6066513A (en) | 1998-10-02 | 2000-05-23 | International Business Machines Corporation | Process for precise multichip integration and product thereof |
US6323108B1 (en) | 1999-07-27 | 2001-11-27 | The United States Of America As Represented By The Secretary Of The Navy | Fabrication ultra-thin bonded semiconductor layers |
US6346453B1 (en) | 2000-01-27 | 2002-02-12 | Sige Microsystems Inc. | Method of producing a SI-GE base heterojunction bipolar device |
US6392257B1 (en) * | 2000-02-10 | 2002-05-21 | Motorola Inc. | Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same |
-
2001
- 2001-08-01 US US09/920,520 patent/US6645829B2/en not_active Expired - Lifetime
- 2001-08-01 WO PCT/US2001/024075 patent/WO2002013342A2/en active IP Right Grant
- 2001-08-01 EP EP01956069A patent/EP1350290B1/en not_active Expired - Lifetime
- 2001-08-01 US US09/920,519 patent/US6680495B2/en not_active Expired - Lifetime
- 2001-08-01 AT AT01956069T patent/ATE346410T1/en not_active IP Right Cessation
- 2001-08-01 DE DE60124766T patent/DE60124766T2/en not_active Expired - Lifetime
- 2001-08-01 AU AU2001278105A patent/AU2001278105A1/en not_active Abandoned
- 2001-08-01 JP JP2002518590A patent/JP5066321B2/en not_active Expired - Lifetime
- 2001-08-01 US US09/920,506 patent/US20020066899A1/en not_active Abandoned
- 2001-08-01 US US09/920,075 patent/US6677655B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050042842A1 (en) * | 2003-08-21 | 2005-02-24 | Ryan Lei | Germanium on insulator fabrication via epitaxial germanium bonding |
US7279369B2 (en) * | 2003-08-21 | 2007-10-09 | Intel Corporation | Germanium on insulator fabrication via epitaxial germanium bonding |
US20050067377A1 (en) * | 2003-09-25 | 2005-03-31 | Ryan Lei | Germanium-on-insulator fabrication utilizing wafer bonding |
US20060046488A1 (en) * | 2003-09-25 | 2006-03-02 | Ryan Lei | Germanium-on-insulator fabrication utilizing wafer bonding |
US20060049399A1 (en) * | 2003-09-25 | 2006-03-09 | Ryan Lei | Germanium-on-insulator fabrication utilizing wafer bonding |
US20080067499A1 (en) * | 2006-09-15 | 2008-03-20 | Sharp Laboratories Of America, Inc. | Silicon/germanium superlattice thermal sensor |
US7442599B2 (en) * | 2006-09-15 | 2008-10-28 | Sharp Laboratories Of America, Inc. | Silicon/germanium superlattice thermal sensor |
WO2009044923A1 (en) * | 2007-10-04 | 2009-04-09 | Canon Kabushiki Kaisha | Method for manufacturing light emitting device |
US20100197054A1 (en) * | 2007-10-04 | 2010-08-05 | Canon Kabushiki Kaisha | Method for manufacturing light emitting device |
KR101065990B1 (en) | 2007-10-04 | 2011-09-19 | 캐논 가부시끼가이샤 | Manufacturing method of light emitting device |
TWI395347B (en) * | 2007-10-04 | 2013-05-01 | Canon Kk | Method for manufacturing light emitting device |
WO2021217256A1 (en) * | 2020-04-27 | 2021-11-04 | Moutanabbir Oussama | Short-wave infrared and mid-wave infrared optoelectronic device and methods for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
US20020040983A1 (en) | 2002-04-11 |
JP2004506336A (en) | 2004-02-26 |
WO2002013342A2 (en) | 2002-02-14 |
DE60124766D1 (en) | 2007-01-04 |
EP1350290B1 (en) | 2006-11-22 |
US6677655B2 (en) | 2004-01-13 |
ATE346410T1 (en) | 2006-12-15 |
US6645829B2 (en) | 2003-11-11 |
JP5066321B2 (en) | 2012-11-07 |
US20020052061A1 (en) | 2002-05-02 |
US6680495B2 (en) | 2004-01-20 |
EP1350290A2 (en) | 2003-10-08 |
US20020068396A1 (en) | 2002-06-06 |
WO2002013342A3 (en) | 2003-08-07 |
AU2001278105A1 (en) | 2002-02-18 |
DE60124766T2 (en) | 2007-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6645829B2 (en) | Silicon wafer with embedded optoelectronic material for monolithic OEIC | |
US11316065B2 (en) | Multi-wafer based light absorption apparatus and applications thereof | |
US9360623B2 (en) | Bonding of heterogeneous material grown on silicon to a silicon photonic circuit | |
US8299485B2 (en) | Substrates for monolithic optical circuits and electronic circuits | |
US7043106B2 (en) | Optical ready wafers | |
US8722464B2 (en) | Method and system for template assisted wafer bonding | |
US20040013338A1 (en) | Optical ready substrates | |
US20210134654A1 (en) | Multilevel semiconductor device and structure with waveguides | |
US11327227B2 (en) | Multilevel semiconductor device and structure with electromagnetic modulators | |
US11437368B2 (en) | Multilevel semiconductor device and structure with oxide bonding | |
EP1130647A2 (en) | Procedure for the wafer scale integration of gallium arsenide based optoelectronic devices with silicon based integrated circuits | |
US20210210456A1 (en) | Multilevel semiconductor device and structure with waveguides | |
WO2003009377A2 (en) | Semiconductor structures with coplaner surfaces | |
US11855100B2 (en) | Multilevel semiconductor device and structure with oxide bonding | |
US10943934B2 (en) | Multilevel semiconductor device and structure | |
CN114914790A (en) | Low-loss silicon-based laser capable of being monolithically integrated and preparation method thereof | |
Pitera et al. | Novel CMOS-Compatible Optical Platform | |
Zimmermann et al. | III–V Semiconductor Materials on Silicon | |
Zimmermann et al. | III-V Semiconductor Materials on Silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMBERWAVE SYSTEMS CORPORATION, NEW HAMPSHIRE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FITZGERALD, EUGENE A.;REEL/FRAME:012518/0951 Effective date: 20011012 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |