US20020017488A1 - Surface modified polymer beads - Google Patents
Surface modified polymer beads Download PDFInfo
- Publication number
- US20020017488A1 US20020017488A1 US09/965,256 US96525601A US2002017488A1 US 20020017488 A1 US20020017488 A1 US 20020017488A1 US 96525601 A US96525601 A US 96525601A US 2002017488 A1 US2002017488 A1 US 2002017488A1
- Authority
- US
- United States
- Prior art keywords
- resin
- meth
- acrylate
- blood
- hemocompatible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/0202—Separation of non-miscible liquids by ab- or adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/264—Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28069—Pore volume, e.g. total pore volume, mesopore volume, micropore volume
- B01J20/28076—Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3206—Organic carriers, supports or substrates
- B01J20/3208—Polymeric carriers, supports or substrates
- B01J20/321—Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3268—Macromolecular compounds
- B01J20/327—Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3615—Cleaning blood contaminated by local chemotherapy of a body part temporarily isolated from the blood circuit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3679—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/58—Use in a single column
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S210/00—Liquid purification or separation
- Y10S210/902—Materials removed
- Y10S210/903—Nitrogenous
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S210/00—Liquid purification or separation
- Y10S210/902—Materials removed
- Y10S210/903—Nitrogenous
- Y10S210/905—Protein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/2964—Artificial fiber or filament
- Y10T428/2967—Synthetic resin or polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
- Y10T428/2978—Surface characteristic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31—Surface property or characteristic of web, sheet or block
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31913—Monoolefin polymer
- Y10T428/3192—Next to vinyl or vinylidene chloride polymer
Definitions
- the present invention relates to adsorbents for removing toxicants from blood or plasma, and also for a method of producing such adsorbents.
- Hemoperfusion involves the passage of the contaminated blood over a solid surface of a detoxicant particulate mass that separates the contaminant by sorption or by ion exchange.
- Another procedure, plasma perfusion involves separation of blood cells prior to contacting plasma with the adsorbent.
- treated blood, or both cells and treated plasma have to be returned to the patient's blood circulation system.
- selective adsorbents can be employed which incorporate ligands specially designed to attract and bind the target species.
- adsorbents such as Protein-A
- removal of circulating toxins and tumor antigens e.g., a-fetoprotein associated with hepatic cancer, carcinoembrionic antigen associated with various carcinomas, thioesterase or cytokeratins associated with breast cancer, and the like
- adsorbents such as immobilized monoclonal antibodies and specific immobilized ligands
- removal of protein bound toxins and drugs e.g., in the case of psychotomimetic or narcotic drug overdose
- Bodden U.S. Pat. No. 5,069,662, December 1991
- high concentrations of anti-cancer agents can be perfused through a body organ containing a tumor and then removed from the organ with effluent blood.
- the contaminated blood is then transported to an extracorporeal circuit, purified from contaminations and returned to the body.
- This permits safe infusion of greater than usual concentrations of chemotherapeutic agents and delivering lethal doses of the agents to the tumor while preventing toxic levels of the agents from entering the body's general circulation.
- the process is applicable to the treatment of a number of tumors such as those of kidney, pancreas, bladder, pelvis and, in particular, the liver.
- chemotherapeutic agents for use in the practice are Adriamycin (doxorubicin), fluorinated pyrimidines (5-fluorouracyl 5-FU or floxuridine FURD), cisplatin, Mytomycin C, cyclophosphamide, methotrexate, vincristine, Bleomycin, FAMT, and any other anti-cancer agent.
- Blood detoxication most effectively can be achieved by hemoperfusion through a cartridge with a non-specific sorbent, for example, activated carbon, able to clear the blood from the above antineoplastic agents.
- the sorbent such as active carbon
- the biological defense system of blood may be activated and react in several ways: the blood may coagulate to form a clot, or thrombus, the immune system may respond unfavorably, and white blood cells may act to encapsulate the artificial device.
- Clark U.S. Pat. No. 4,048,064, September 1977
- HEMA hydroxyethylmethacrylate
- he includes heparin into the coating polymer, in order to minimize complement activation and aggregation of platelets.
- Nakashima, et al. U.S. Pat. No.
- activated carbon was coated with a polyelectrolyte complex prepared from a polycation (DEAE-cellulose) and heparin and precipitated on the surface of carbon beads (Valueva, et al., SU 844-569, 1981).
- a polyelectrolyte complex prepared from a polycation (DEAE-cellulose) and heparin and precipitated on the surface of carbon beads (Valueva, et al., SU 844-569, 1981).
- Polymeric hydrophobic materials may serve as non-selective adsorbents. Endotoxins were observed to adsorb on porous polypropylene and polyethylene (Harris, U.S. Pat. No. 4,059,512, November 1977). Macroporous styrene-divinylbenzene copolymers were shown to be useful for blood detoxication from barbiturates and glutethimides (Kunin, et al., U.S. Pat. No. 3,794,584, February 1974).
- U.S. Pat. No. 5,051,185 discloses a double-layered structure comprising a water-insoluble core coated with a blood compatible polymer.
- a water-insoluble core there is disclosed a spherical or particulate polymer having a particle size from 25 to 2500 ⁇ m having a specific surface area from 5 to 55 m 2 /g.
- the water-insoluble core is preferably porous, displaying an average pore size of from 20 to 5,000 ⁇ .
- the present invention has as an objective to provide an adsorbent for removing toxicants from blood or plasma, which is rendered hemocompatible through reaction of hemocompatible monomers or polymers with pendant vinyl groups on the adsorbent resin.
- the resin may be shaped to a convenient physical dimension for use. Bead form and fiber form are physical shapes convenient for exposure to blood or plasma for removal from blood of an absorbable component thereof.
- one feature of the present invention resides, in an adsorbent for removing toxicants from blood or plasma, of resin prepared from monomeric reactants of aromatic compounds, which resin has a surface and pore structure modified so as to prevent adsorption of large proteins and platelets and to minimize activation of blood complement system, without affecting noticeably the accessibility of the inner adsorption space of the beads for small and middle-size toxicant molecules.
- Preparation of the polymeric resin beads useful for this invention may follow known methods of addition polymerization. Helfferich. F., Ion Exchange, McGraw-Hill Book Company, Inc., 1962, p. 34-36 to produce resin heads of known sizes: 25 to 2500 ⁇ m, preferably from 50 to 1500 ⁇ m.
- divinylbenzene As monomeric starting materials for preparation of the inventive polymeric resin, divinylbenzene (DVB) is the preferred material. As noted by Helfferich, pure divinylbenzene is not readily accessible. Commercially available sources are mixtures of divinylbenzene isomers (about 40 to 60 percent) and ethylstyrene (about 60 to 40 percent). Nominal DVB content is referenced as the mole percent of pure divinylbenzene monomer in the polymerization starting materials.
- the monomeric starting materials are combined with an addition type catalyst such as benzoyl peroxide, lauroyl peroxide, t-butyl hydroperoxide, or asobisisobutyronitrile present from 0.5 to 5 percent by weight of the monomeric reactants present.
- the hydrophobic monomeric starting materials are formed into small droplets, such as by agitation in water to which a suspension stabilizer such as: geletin, polyvinyl alcohol, an oleate salt, or a methacrylate salt has been added.
- the aqueous phase including the droplets of catalyzed monomer of DVB and divinylbenzene are maintained at a temperature (40 to 110° C., preferably from 60 to 90° C.) sufficient for polymerization.
- the beads can be externally sized in order to provide a more narrow particle size distribution as described in U.S. Pat. No. 4,444,961, incorporated herein by reference.
- resin is formed from monomeric starting materials comprising DVB of 40 percent or more. Further, is not necessary or desirable to subject the resin to a solvent swelling and subsequent cross-linking step with a Lewis acid catalyst. Rather, DVB resin can be prepared with porosity suitable for absorbing the contaminants in blood by variation of the known parameters for preparation of DVB resins: temperature, solvent amount and choice of catalyst, and reaction time. Upgrading of the DVB monomer from commercially available values to 65 to 90 mole % DVB can provide the skilled artisan another parameter useful to benefit pore size, porosity, and surface area.
- Rendering DVB resin hemocompatible also varies from the prior art of U.S. Pat. No. 5,773,384.
- Several approaches to chemically modify the bead surface of an adsorbent are suggested to render the resin hemocompatibile. These approaches include: the formation of lipid-like layers on the surface of polystyrene beads in an attempt to simulate the structure of biomembranes by forming co-polymers of 2-methacryloyloxyethyl-phosphorylcholine with n-butyl-methacrylate grafted on the surface of a polystyrene resin.
- Groups of phosphatidylcholine are formed on the surface of polystyrene beads, without a preliminary grafting of the hydrophilic copolymer suggested by Ishihara, et al.
- heparin deposited on the surface of the polystyrene beads are believed to inhibit activation of the blood complement system and prevent formation of clots.
- long hydrophilic polymer chains on the surface are believed to prevent contacts between blood proteins and cells with the hydrophobic polystyrene surface.
- a fourth approach is to deposit high molecular weight fluorinated polyalkoxyphosphazene on the outer surface of the beads.
- the DVB resins of the instant invention are readily rendered hemocompatible by coating the resin by reaction of vinyl reactive and hemocompatible monomers and polymers with unreacted vinyl groups of the DVB resins. Also in contrast to the water-insoluble carrier of particulate or spherical form according to U.S. Pat. No.
- the inventive resins while having a surface area from 20 to 500 m 2 /g, a pore size from 20 to 500 ⁇ , preferably from 20 to 300 ⁇ , and a pore volume less than 2.5 cc/g, preferably less than 2.0 cc/g, but more than 1.0 cc/g, the instant resins can be manufactured having a surface area from 200 to 1,600 m 2 /g, preferably from 500 to 1,200 m 2 /g, more preferably 700 to 1,000 m 2 /g.
- Suitable hemocompatible coating may be prepared from a wide variety of such reactants capable of reacting with vinyl groups.
- Suitable nitrogen containing reactants include: primary amines, secondary amines, tertiary amines, quaternary amines and nitrogen-containing aromatic cyclic compounds such as pyridines, and imidazols.
- aromatic cyclic compounds include vinyl derivatives of such nitrogen containing compounds such as 2-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, 4-vinylimidazole, N-vinyl-2-ethylimidazole, vinylpyrrolidinone, N-vinyl-2-methylimidazole.
- acrylic or (meth)acrylic acid derivatives including: dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, 3-dimethylamino-2-hydroxypropyl (meth)acrylate), acrylamide or methacrylamide derivative.
- Acrylamide and methacrylamide such as N-dimethylaminoethyl (meth)acrylamide, N-diethylaminoethyl (meth)acrylamide.
- alkyl (meth)acrylates i.e., 2-hydroxyethyl methacrylate, methyl (meth)acrylate, ethyl (meth)acrylate, and n-butyl(meth)acrylate.
- alkyl (meth)acrylates i.e., 2-hydroxyethyl methacrylate, methyl (meth)acrylate, ethyl (meth)acrylate, and n-butyl(meth)acrylate.
- N-methyl (meth)acrylamide, N-vinylpyrrolidone, vinyl acetate, and vinylpyridine are also useful alone or as a co-polymer as a hemocompatible coating.
- Reaction conditions for coating the DVB resin beads with a vinyl reactive additive reactant are similar to the reaction conditions for formation of the DVB resin: a suitable catalyst such as are generally known, a suitable solvent, heating the DVB resin, catalyst, solvent, and additive reactant to the reactive temperature: generally from 40 to 110° C., for a time sufficient for reaction, from 8 hours to 1 ⁇ 2 hour.
- Such divinylbenzene resins avoid cross-linking of styrene-divinylbenzene copolymers with monochlorodimethyl ether as a bifunctional reagent, or cross-linking of such resin using chloromethylation taught by U.S. Pat. No. 5,773,384. Consequently, the concerns for removing unreacted cross-linker can be avoided.
- the adsorbents prepared in accordance with this invention are charged to a column or cartridge for use to removal contaminants from blood or plasma.
- the column should preferably be provided with an inlet and an outlet designed to allow easy connection with the blood circuit, and with two porous filters set between the inlet and the absorbent layer, and between the absorbent layer and the outlet.
- the column may be made of a biocompatible material, glass, polyethylene, polypropylene, polycarbonate, polystyrene. Of these, polypropylene and polycarbonate are preferred materials, because the column packed with the sorbent can be sterilized (e.g., autoclave and alpha-ray sterilization) before use.
- the resin is useful to remove blood components having molecular weights of between 100 and 20,000 daltons including proteins, glycosated proteins, including degranulation inhibitory protein, advanced glycosylation endproducts, hormones such as parathyroid hormone and endotoxins such as those toxins which cause sepsis.
- blood components having molecular weights of between 100 and 20,000 daltons including proteins, glycosated proteins, including degranulation inhibitory protein, advanced glycosylation endproducts, hormones such as parathyroid hormone and endotoxins such as those toxins which cause sepsis.
- Such compounds as creatinine, barbiturate, phenobarbital, sodium salicylate, amphetamines, morphine sulfate, meprobamate, glutethimide, etc. can also be effectively and rapidly removed from the blood by the disclosed resin rendered hemocompatible.
- the hemocompatible resin will absorb cytochrome C, ⁇ -2-microglobulin (molecular weight of about 20,000 daltons), as well as vitamin B 12
- Divinylbenzene/ethyl vinylbenzene copolymer beads having a ratio of DVB to EVB of 80 to 20 on a weight basis were dried at 70° C. in a vacuum oven for 24 hours. 100 g of the resulting beads were placed into a flask with 650 ml of methanol. The reaction mixture was heated to 65° C. and this temperature maintained until 200 ml of distillate removed. 200 ml methanol was then added to the flask. After cooling to ambient temperature, 1-vinyl-2-pyrrolidinone (1.0 g., 9.0 mMole) and 75 ml of methanol is added, followed by 0.237 g.
- Divinylbenzene/ethyl vinylbenzene copolymer beads having a ratio of DVB to EVB of 80 to 20 on a weight basis were dried at 70° C. in a vacuum oven for 24 hours. 100 g of the resulting beads were placed into a flask with 650 ml of ethanol. The reaction mixture was heated to 78° C. and this temperature maintained until 200 ml of distillate removed. 200 ml ethanol was then added to the flask. After cooling to ambient temperature, polyvinylpyrrolidinone molecular weight, 10,000 (1.0 g., 9.0 mMole) available from Aldrich P.O. 2060 Milwaukee Wis. 53201 United States solid was added, followed by 0.02 g.
- the polymer beads when contacted with blood are compatible. Blood does not clot on contact. The beads remove blood contaminants such as ⁇ -2-microglobulin.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- External Artificial Organs (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Materials For Medical Uses (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
Abstract
A polymeric resin is disclosed in the form of beads or particles having a coating thereon which renders the resin blood compatible. The resin comprises divinylbenzene monomer which has a porosity, pore size, and surface area suitable for absorption of unhealthy components of blood, such as β-2-microglobulin.
Description
- This application is a continuation of copending U.S. Ser. No. 09/861,969 filed May 21, 2001 and 09/746,810 filed Dec. 22, 2000, both of which are divisionals of U.S. Pat. No. 6,238,795 issued May 29, 2001, which is a continuation of U.S. Ser. No. 09/236,153, filed Jan. 22, 1999, now abandoned. All of the aforementioned references are incorporated herein and are relied upon for priority.
- The present invention relates to adsorbents for removing toxicants from blood or plasma, and also for a method of producing such adsorbents.
- Conventional procedures for the purification of blood extracorporeally include membrane techniques (hemodialysis, plasmapheresis, ultrafiltration), sorption techniques (hemoperfusion, plasma perfusion) and combinations of these methods. Hemodialysis, ultrafiltration and plasma pheresis separate compounds according to their size and do not selectively remove specified components. Sorption techniques, on the contrary, can be both selective and non-selective.
- Hemoperfusion involves the passage of the contaminated blood over a solid surface of a detoxicant particulate mass that separates the contaminant by sorption or by ion exchange. Another procedure, plasma perfusion, involves separation of blood cells prior to contacting plasma with the adsorbent. In any case, treated blood, or both cells and treated plasma, have to be returned to the patient's blood circulation system.
- There are cases where the toxic components to be removed from blood are well established. In these cases, selective adsorbents can be employed which incorporate ligands specially designed to attract and bind the target species. Exemplary of potential applications of selective perfusion systems are: (1) the removal of autoimmune antibodies, immunoglobulins and immune complexes using adsorbents such as Protein-A; (2) removal of circulating toxins and tumor antigens (e.g., a-fetoprotein associated with hepatic cancer, carcinoembrionic antigen associated with various carcinomas, thioesterase or cytokeratins associated with breast cancer, and the like) using adsorbents such as immobilized monoclonal antibodies and specific immobilized ligands; (3) removal of protein bound toxins and drugs (e.g., in the case of psychotomimetic or narcotic drug overdose) based on the antigenic properties of these protein conjugates; (4) procedures using live cells in the plasma chamber in the place of adsorbents such as islet cells or liver tissue fragments for the treatment of diabetes, hepatocytes for the treatment of hepatic failure and the like; (5) selective removal of plasma components using immobilized enzymes as adsorbents; (6) removal of cholesterol [low density lipoproteins (LDL)] using adsorbents specific to LDL; (7) removal of excess phosphate on the MgO/TiO complex deposited on active carbons; (8) adsorption of triglycerides, cholesterol and fatty acids on hydrophobic polymer materials; (9) removal of human immunodeficiency virus using calcinated hydroxyapatite-silica-alumina adsorbing materials; (10) absorbing free hemoglobin from plasma on polyphenylalanine, polyalkylene-oxide or mineral or polymeric porous materials bearing groups of tyramine, tyrosine, phenylalanine and aminophenol on the surface.
- Not less frequent are cases where several toxic compounds appear in blood simultaneously, often unidentified or even unknown. These are mainly toxins of low or middle-range molecular weights. Here, selective immunoadsorbents can not be prepared in a reasonable period of time and non-selective adsorbents are needed which readily adsorb a variety of relatively small toxic molecules. Preferential adsorption is mainly caused by smaller polarity of these toxins as compared to that of natural amino acids and saccharides which are useful conventional small components of normal blood. Hydrophobic adsorbing materials, in particular activated carbon, are used as the non-selective adsorbents in these cases.
- Hemoperfusion and plasma perfusion on non-specific activated carbon-type sorbents was shown to be helpful in treatment of schizophrenia (Kinney, U.S. Pat. No. 4,300,551, 1981), pulmonary hypertension (SU 1507-397-A, 1989), multiple sclerosis (SU 1466-754-A, 1989), treatment of rhesus-conflict in obstetrics (SU 1533-697-A, 1989), for detoxication of organism of patients who have undergone extensive surgery (SU 1487-909-A, 1989).
- A technique for cancer treatment is described by Bodden (U.S. Pat. No. 5,069,662, December 1991), by which high concentrations of anti-cancer agents can be perfused through a body organ containing a tumor and then removed from the organ with effluent blood. The contaminated blood is then transported to an extracorporeal circuit, purified from contaminations and returned to the body. This permits safe infusion of greater than usual concentrations of chemotherapeutic agents and delivering lethal doses of the agents to the tumor while preventing toxic levels of the agents from entering the body's general circulation. The process is applicable to the treatment of a number of tumors such as those of kidney, pancreas, bladder, pelvis and, in particular, the liver. Illustrative of suitable chemotherapeutic agents for use in the practice are Adriamycin (doxorubicin), fluorinated pyrimidines (5-fluorouracyl 5-FU or floxuridine FURD), cisplatin, Mytomycin C, cyclophosphamide, methotrexate, vincristine, Bleomycin, FAMT, and any other anti-cancer agent. Blood detoxication most effectively can be achieved by hemoperfusion through a cartridge with a non-specific sorbent, for example, activated carbon, able to clear the blood from the above antineoplastic agents.
- In a hemoperfusion system, whole blood comes into direct contact with the sorbent, such as active carbon, which leads to two kinds of serious problems: first, fine carbon particles tend to be released into the blood stream to become emboli in blood vessels and organs such as lungs, spleen and kidneys; second, the biological defense system of blood may be activated and react in several ways: the blood may coagulate to form a clot, or thrombus, the immune system may respond unfavorably, and white blood cells may act to encapsulate the artificial device.
- Therefore, many attempts have been done to prevent release of fines and to enhance the biocompatibility of the sorbents. Clark (U.S. Pat. No. 4,048,064, September 1977) describes formation of a semipermeable polymeric coating on the carbon particles by polymerization of various hydrophilic monomers, in particular hydroxyethylmethacrylate (HEMA) and acrylamide. Moreover, he includes heparin into the coating polymer, in order to minimize complement activation and aggregation of platelets. Nakashima, et al. (U.S. Pat. No. 4,171,283, October 1979) suggests to add an epoxy moiety containing comonomer, which allows post-crosslinking of the polymeric coat formed, thus enhancing the mechanical stability of the coating. However, thin hydrophilic polymeric coatings were found to “fall apart”, whereas thick coatings retarded diffusion and deteriorated sorption properties of the carbon.
- Maxid discloses (U.S. Pat. No. 5,149,425, September 1992; U.S. Pat. No. 5,420,601, August 1993), thin integral membranes on the surface of the adsorbent can be better prepared from hydrophobic, insoluble in water polymer, in turn coated by a second, but water-soluble polymer.
- Alternatively, activated carbon was coated with a polyelectrolyte complex prepared from a polycation (DEAE-cellulose) and heparin and precipitated on the surface of carbon beads (Valueva, et al., SU 844-569, 1981).
- Polymeric hydrophobic materials may serve as non-selective adsorbents. Endotoxins were observed to adsorb on porous polypropylene and polyethylene (Harris, U.S. Pat. No. 4,059,512, November 1977). Macroporous styrene-divinylbenzene copolymers were shown to be useful for blood detoxication from barbiturates and glutethimides (Kunin, et al., U.S. Pat. No. 3,794,584, February 1974).
- Polystyrene polymers prepared by an extensive crosslinking of polystyrene chains with rigid bi-functional cross-linking reagents such as dichlorodimethyl ether are taught by U.S. Pat. No. 5,773,384.
- While polystyrene-type adsorbents are useful to adsorb small and middle-size organic molecules, the hemocompatibility of the material required additional improvement. An effort to render such adsorbents hemocompatible is taught in WO 97/35660, or U.S. Pat. No. 5,773,384.
- The foregoing efforts are not efficient means of preparing sufficient quantities of hemocompatible absorbent resin as the cross-linked adsorbents contain from 0.5 to 7 percent by weight of unreacted chloromethyl groups (U.S. Pat. No. 5,773,384, Col. 6, Line 52).
- U.S. Pat. No. 5,051,185 discloses a double-layered structure comprising a water-insoluble core coated with a blood compatible polymer. As a water-insoluble core there is disclosed a spherical or particulate polymer having a particle size from 25 to 2500 μm having a specific surface area from 5 to 55 m2/g. The water-insoluble core is preferably porous, displaying an average pore size of from 20 to 5,000 Å.
- The present invention has as an objective to provide an adsorbent for removing toxicants from blood or plasma, which is rendered hemocompatible through reaction of hemocompatible monomers or polymers with pendant vinyl groups on the adsorbent resin. The resin may be shaped to a convenient physical dimension for use. Bead form and fiber form are physical shapes convenient for exposure to blood or plasma for removal from blood of an absorbable component thereof.
- In keeping with these objects and with others which will become apparent hereinafter, one feature of the present invention resides, in an adsorbent for removing toxicants from blood or plasma, of resin prepared from monomeric reactants of aromatic compounds, which resin has a surface and pore structure modified so as to prevent adsorption of large proteins and platelets and to minimize activation of blood complement system, without affecting noticeably the accessibility of the inner adsorption space of the beads for small and middle-size toxicant molecules.
- It is another feature of the present invention to provide a method of producing the new adsorbent, which includes coating of the surface of the beads, particles, spheres, fiber or other convenient shape for resin, such that adsorption of large proteins and platelets is prevented and activation of blood complement system is minimized without blocking access by blood toxicants to the inner adsorption space of the resin for small and middle-size toxicant molecules. Preparation of the polymeric resin beads useful for this invention may follow known methods of addition polymerization. Helfferich. F.,Ion Exchange, McGraw-Hill Book Company, Inc., 1962, p. 34-36 to produce resin heads of known sizes: 25 to 2500 μm, preferably from 50 to 1500 μm.
- As monomeric starting materials for preparation of the inventive polymeric resin, divinylbenzene (DVB) is the preferred material. As noted by Helfferich, pure divinylbenzene is not readily accessible. Commercially available sources are mixtures of divinylbenzene isomers (about 40 to 60 percent) and ethylstyrene (about 60 to 40 percent). Nominal DVB content is referenced as the mole percent of pure divinylbenzene monomer in the polymerization starting materials. The monomeric starting materials are combined with an addition type catalyst such as benzoyl peroxide, lauroyl peroxide, t-butyl hydroperoxide, or asobisisobutyronitrile present from 0.5 to 5 percent by weight of the monomeric reactants present. The hydrophobic monomeric starting materials are formed into small droplets, such as by agitation in water to which a suspension stabilizer such as: geletin, polyvinyl alcohol, an oleate salt, or a methacrylate salt has been added. The aqueous phase including the droplets of catalyzed monomer of DVB and divinylbenzene are maintained at a temperature (40 to 110° C., preferably from 60 to 90° C.) sufficient for polymerization. Of course pressurization will be necessary to polymerize the monomers in liquid water at temperatures greater than 100° C. Alternatively, the beads can be externally sized in order to provide a more narrow particle size distribution as described in U.S. Pat. No. 4,444,961, incorporated herein by reference.
- In contrast to the polymeric resin of U.S. Pat. Nos. 5,773,384 and 5,051,185, according to the instant invention resin is formed from monomeric starting materials comprising DVB of 40 percent or more. Further, is not necessary or desirable to subject the resin to a solvent swelling and subsequent cross-linking step with a Lewis acid catalyst. Rather, DVB resin can be prepared with porosity suitable for absorbing the contaminants in blood by variation of the known parameters for preparation of DVB resins: temperature, solvent amount and choice of catalyst, and reaction time. Upgrading of the DVB monomer from commercially available values to 65 to 90 mole % DVB can provide the skilled artisan another parameter useful to benefit pore size, porosity, and surface area.
- Rendering DVB resin hemocompatible also varies from the prior art of U.S. Pat. No. 5,773,384. Several approaches to chemically modify the bead surface of an adsorbent are suggested to render the resin hemocompatibile. These approaches include: the formation of lipid-like layers on the surface of polystyrene beads in an attempt to simulate the structure of biomembranes by forming co-polymers of 2-methacryloyloxyethyl-phosphorylcholine with n-butyl-methacrylate grafted on the surface of a polystyrene resin. Groups of phosphatidylcholine are formed on the surface of polystyrene beads, without a preliminary grafting of the hydrophilic copolymer suggested by Ishihara, et al. Secondly, heparin deposited on the surface of the polystyrene beads are believed to inhibit activation of the blood complement system and prevent formation of clots. Thirdly, long hydrophilic polymer chains on the surface are believed to prevent contacts between blood proteins and cells with the hydrophobic polystyrene surface. A fourth approach is to deposit high molecular weight fluorinated polyalkoxyphosphazene on the outer surface of the beads.
- All the forgoing methods of rendering hemocompatible the cross-linked polystyrene resin require the presence of unreacted functional groups remaining after crosslinking polystyrene chains with large amounts of bifunctional compounds, in particular, those bearing reactive chloromethyl groups. This process is limited to a curiosity as it is not scaleable to commercial size manufacture. In contrast, porous adsorbent prepared from divinylbenzene is not only commercially scaleable, but such resins are presently available. Suitable commercially available resins include Dowex® polymeric resins available from The Dow Chemical Company, Midland, Mich., United States of America identified as Dowex product numbers XUS-43520.01, XUS-43520.10, and XUS-40323.00.
- In contrast to the polystyrene resins mildly cross-linked with amounts of DVB disclosed from 0.5 to 4.5 percent having negligible unreacted vinyl groups taught by U.S. Pat. No. 5,773,384 which polystyrene resins must be subsequently cross-linked with bifunctional cross-linkers such as dichlorodimethyl ether, the DVB resins of the instant invention are readily rendered hemocompatible by coating the resin by reaction of vinyl reactive and hemocompatible monomers and polymers with unreacted vinyl groups of the DVB resins. Also in contrast to the water-insoluble carrier of particulate or spherical form according to U.S. Pat. No. 5,051,185, the inventive resins while having a surface area from 20 to 500 m2/g, a pore size from 20 to 500 Å, preferably from 20 to 300 Å, and a pore volume less than 2.5 cc/g, preferably less than 2.0 cc/g, but more than 1.0 cc/g, the instant resins can be manufactured having a surface area from 200 to 1,600 m2/g, preferably from 500 to 1,200 m2/g, more preferably 700 to 1,000 m2/g.
- Suitable hemocompatible coating may be prepared from a wide variety of such reactants capable of reacting with vinyl groups. Suitable nitrogen containing reactants include: primary amines, secondary amines, tertiary amines, quaternary amines and nitrogen-containing aromatic cyclic compounds such as pyridines, and imidazols. Specific examples of aromatic cyclic compounds include vinyl derivatives of such nitrogen containing compounds such as 2-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, 4-vinylimidazole, N-vinyl-2-ethylimidazole, vinylpyrrolidinone, N-vinyl-2-methylimidazole. Also useful are acrylic or (meth)acrylic acid derivatives including: dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, 3-dimethylamino-2-hydroxypropyl (meth)acrylate), acrylamide or methacrylamide derivative. Acrylamide and methacrylamide such as N-dimethylaminoethyl (meth)acrylamide, N-diethylaminoethyl (meth)acrylamide. Useful alone, or as a co-polymer with the above mentioned addition polymerizable nitrogen containing monomers, are the alkyl (meth)acrylates i.e., 2-hydroxyethyl methacrylate, methyl (meth)acrylate, ethyl (meth)acrylate, and n-butyl(meth)acrylate. Also useful alone or as a co-polymer as a hemocompatible coating are N-methyl (meth)acrylamide, N-vinylpyrrolidone, vinyl acetate, and vinylpyridine.
- Reaction conditions for coating the DVB resin beads with a vinyl reactive additive reactant are similar to the reaction conditions for formation of the DVB resin: a suitable catalyst such as are generally known, a suitable solvent, heating the DVB resin, catalyst, solvent, and additive reactant to the reactive temperature: generally from 40 to 110° C., for a time sufficient for reaction, from 8 hours to ½ hour.
- By rendering such resins hemocompatible, effective adsorbents for blood toxins can be provided. Such divinylbenzene resins avoid cross-linking of styrene-divinylbenzene copolymers with monochlorodimethyl ether as a bifunctional reagent, or cross-linking of such resin using chloromethylation taught by U.S. Pat. No. 5,773,384. Consequently, the concerns for removing unreacted cross-linker can be avoided.
- The adsorbents prepared in accordance with this invention are charged to a column or cartridge for use to removal contaminants from blood or plasma. The column should preferably be provided with an inlet and an outlet designed to allow easy connection with the blood circuit, and with two porous filters set between the inlet and the absorbent layer, and between the absorbent layer and the outlet. The column may be made of a biocompatible material, glass, polyethylene, polypropylene, polycarbonate, polystyrene. Of these, polypropylene and polycarbonate are preferred materials, because the column packed with the sorbent can be sterilized (e.g., autoclave and alpha-ray sterilization) before use.
- By adjusting the pore size of the DVB resin and rendering the resin hemocompatible, the resin is useful to remove blood components having molecular weights of between 100 and 20,000 daltons including proteins, glycosated proteins, including degranulation inhibitory protein, advanced glycosylation endproducts, hormones such as parathyroid hormone and endotoxins such as those toxins which cause sepsis. Such compounds as creatinine, barbiturate, phenobarbital, sodium salicylate, amphetamines, morphine sulfate, meprobamate, glutethimide, etc. can also be effectively and rapidly removed from the blood by the disclosed resin rendered hemocompatible. Moreover, by adjusting the reaction conditions as stated herein to generate proper pore sizes, the hemocompatible resin will absorb cytochrome C, β-2-microglobulin (molecular weight of about 20,000 daltons), as well as vitamin B12.
- Divinylbenzene/ethyl vinylbenzene copolymer beads having a ratio of DVB to EVB of 80 to 20 on a weight basis were dried at 70° C. in a vacuum oven for 24 hours. 100 g of the resulting beads were placed into a flask with 650 ml of methanol. The reaction mixture was heated to 65° C. and this temperature maintained until 200 ml of distillate removed. 200 ml methanol was then added to the flask. After cooling to ambient temperature, 1-vinyl-2-pyrrolidinone (1.0 g., 9.0 mMole) and 75 ml of methanol is added, followed by 0.237 g. (0.9 mMole) of α-cumyl peroxyneoheptanoate and 20 ml methanol, followed by heating to 64° C. for 4 hours while stirring gently. The solvent is removed from the resin beads by suction filtration. The beads were rinsed with 400 ml methanol, followed by washing by 1 L methanol in a column with methanol pumped through the column at a rate of 3 ml/min.
- Divinylbenzene/ethyl vinylbenzene copolymer beads having a ratio of DVB to EVB of 80 to 20 on a weight basis were dried at 70° C. in a vacuum oven for 24 hours. 100 g of the resulting beads were placed into a flask with 650 ml of ethanol. The reaction mixture was heated to 78° C. and this temperature maintained until 200 ml of distillate removed. 200 ml ethanol was then added to the flask. After cooling to ambient temperature, polyvinylpyrrolidinone molecular weight, 10,000 (1.0 g., 9.0 mMole) available from Aldrich P.O. 2060 Milwaukee Wis. 53201 United States solid was added, followed by 0.02 g. (0.18 mMole) of α-cumyl peroxyneoheptanoate, followed by heating to 78° C. for 4 hours while stirring gently. The solvent was removed from the resin beads by suction filtration. The beads were rinsed with 400 ml ethanol, followed by washing by 1 L ethanol in a column pumped through the column at a rate of 3 ml/min for 5.5 hours followed by a wash of 1 L of 2-propanol pumped through the column at a rate of 3 ml/min for 5.5 hours.
- The polymer beads when contacted with blood are compatible. Blood does not clot on contact. The beads remove blood contaminants such as β-2-microglobulin.
Claims (18)
1. A method for removing β-2-microglobulin from blood or plasma comprising contacting blood or plasma with a polymeric divinylbenzene copolymer resin comprising from 60 to 90 mole percent divinylbenzene and having a hemocompatible coating on the surface thereof wherein β-2-microglobulin is removed from the blood or plasma.
2. The method of claim 1 wherein the resin comprises from 65 to 90 mole percent divinylbenzene.
3. The method of claim 1 wherein the resin comprises from 60 to 80 mole percent divinylbenzene.
4. The method of claim 1 wherein the resin comprises about 80 mole percent divinylbenzene.
5. The method of claim 1 wherein the surface of the resin is rendered hemocompatible through reaction of vinyl reactive hemocompatible monomers or polymers with unreacted vinyl groups of the resin.
6. The method according to claim 1 , wherein the hemocompatible coating is selected from the group consisting of: phosphatidylcholine, heparin, polyalkylene glycol, polyalkoxyphosphazene, and polyvinylpyrrolindone.
7. The method according to claim 1 , wherein the hemocompatible coating is selected from the group consisting of: 2-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, 4-vinylimidazole, N-vinyl-2-ethylimidazole, vinylpyrrolidone, and N-vinyl-2-methylimidazole.
8. The method according to claim 1 , wherein the hemocompatible coating is selected from the group consisting of: acrylic and methacrylic acid derivatives including: dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, and 3-dimethylamino-2-hydroxypropyl (meth)acrylate); acrylamide and methacrylamide derivative; acrylamide and methacrylamide including N-dimethylaminoethyl (meth)acrylamide, N-diethylaminoethyl (meth)acrylamide.
9. The method according to claim 1 , wherein the hemocompatible coating is an alkyl (meth)acrylate selected from the group consisting of: 2-hydroxyethyl methacrylate, methyl (meth)acrylate, ethyl (meth)acrylate, and n-butyl(meth)acrylate.
10. The method according to claim 1 , wherein the hemocompatible coating is selected from the group consisting of: N-methyl (meth)acrylamide, N-vinylpyrrolidone, vinyl acetate, and vinylpyridine.
11. The method according to claim 1 , wherein the resin is in the form of beads having a size from 25 to 2500 μm.
12. The method according to claim 1 , wherein the resin has a pore size from 20 to 500 Å.
13. The method according to claim 1 , wherein the resin has a pore volume less than 2.5 cc/g.
14. The method according to claim 1 , wherein the resin has a surface area from 200 to 1600 m2/g.
15. The method of claim 12 , wherein the resin has a pore volume of less than 2.5 cc/g.
16. The method of claim 15 , wherein the resin has a surface area from 200 to 1600 m2/g.
17. The method according to claim 1 , wherein the hemocompatible coating is a polymer prepared from the group consisting of: 2-hydroxyethyl methacrylate, methyl(meth)acrylate, ethyl(meth)acrylate, n-butyl (meth)acrylate, and vinylpyrrolidone.
18. The method of claim 1 wherein blood or plasma is withdrawn from a patient, contacted with said polymeric divinylbenzene resin to remove β-2-microglobulin, and returned to the patient.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/965,256 US6419830B2 (en) | 1999-01-22 | 2001-09-27 | Surface modified polymer beads |
US10/094,001 US6423024B1 (en) | 1999-01-22 | 2002-03-08 | Device for removing toxins from blood or plasma |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23615399A | 1999-01-22 | 1999-01-22 | |
US09/483,620 US6238795B1 (en) | 1999-01-22 | 2000-01-14 | Surface modified polymer beads |
US09/746,810 US6338801B2 (en) | 1999-01-22 | 2000-12-22 | Surface modified polymer beads |
US09/861,969 US6325939B2 (en) | 1999-01-22 | 2001-05-21 | Surface modified polymer beads |
US09/965,256 US6419830B2 (en) | 1999-01-22 | 2001-09-27 | Surface modified polymer beads |
Related Parent Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2000/000087 Continuation WO2000051576A2 (en) | 1999-03-03 | 2000-03-02 | Novel pharmaceuticals, dietary supplements and cosmetic compositions, and the use of certain mixtures for preparing a medicament or a dietary supplement for the treatment or prevention of inflammation, hypersensitivity reactions or pain |
US09861969 Continuation | 2000-05-21 | ||
US09/746,810 Continuation US6338801B2 (en) | 1999-01-22 | 2000-12-22 | Surface modified polymer beads |
US09/861,969 Continuation US6325939B2 (en) | 1999-01-22 | 2001-05-21 | Surface modified polymer beads |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/094,001 Continuation US6423024B1 (en) | 1999-01-22 | 2002-03-08 | Device for removing toxins from blood or plasma |
US10/266,470 Division US6638525B2 (en) | 1999-03-03 | 2002-10-08 | Pharmaceuticals, dietary supplements and cosmetic compositions, and the use of certain mixtures for preparing a medicament or a dietary supplement for the treatment or prevention of inflammation, hypersensitivity reactions or pain |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020017488A1 true US20020017488A1 (en) | 2002-02-14 |
US6419830B2 US6419830B2 (en) | 2002-07-16 |
Family
ID=22888346
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/483,620 Expired - Lifetime US6238795B1 (en) | 1999-01-22 | 2000-01-14 | Surface modified polymer beads |
US09/746,810 Expired - Fee Related US6338801B2 (en) | 1999-01-22 | 2000-12-22 | Surface modified polymer beads |
US09/861,969 Expired - Fee Related US6325939B2 (en) | 1999-01-22 | 2001-05-21 | Surface modified polymer beads |
US09/965,256 Expired - Lifetime US6419830B2 (en) | 1999-01-22 | 2001-09-27 | Surface modified polymer beads |
US10/094,001 Expired - Lifetime US6423024B1 (en) | 1999-01-22 | 2002-03-08 | Device for removing toxins from blood or plasma |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/483,620 Expired - Lifetime US6238795B1 (en) | 1999-01-22 | 2000-01-14 | Surface modified polymer beads |
US09/746,810 Expired - Fee Related US6338801B2 (en) | 1999-01-22 | 2000-12-22 | Surface modified polymer beads |
US09/861,969 Expired - Fee Related US6325939B2 (en) | 1999-01-22 | 2001-05-21 | Surface modified polymer beads |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/094,001 Expired - Lifetime US6423024B1 (en) | 1999-01-22 | 2002-03-08 | Device for removing toxins from blood or plasma |
Country Status (8)
Country | Link |
---|---|
US (5) | US6238795B1 (en) |
EP (2) | EP1148944B1 (en) |
JP (1) | JP2003506111A (en) |
AT (1) | ATE464947T1 (en) |
AU (1) | AU1923200A (en) |
CA (1) | CA2358949A1 (en) |
DE (1) | DE69942282D1 (en) |
WO (1) | WO2000043120A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100300971A1 (en) * | 2005-05-18 | 2010-12-02 | Sequant Ab | Zwitterionic stationary phase as well as method for using and producing said phase |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020159995A1 (en) * | 1997-07-30 | 2002-10-31 | Renal Tech International | Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood, generated as a result of extracorporeal blood processing |
US8329388B2 (en) * | 1997-07-30 | 2012-12-11 | Cytosorbents, Inc. | Biocompatible devices, systems, and methods for reducing levels of proinflammatory of antiinflammatory stimulators or mediators in the blood |
US20020197249A1 (en) * | 2001-04-10 | 2002-12-26 | Renal Tech International | Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in blood products |
US20020198487A1 (en) * | 2001-04-10 | 2002-12-26 | Renal Tech International | Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in physiologic fluids |
US20020197250A1 (en) * | 2001-04-10 | 2002-12-26 | Renal Tech International | Biocompatible devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood |
CA2358949A1 (en) | 1999-01-22 | 2000-07-27 | Robert M. Strom | Surface modified divinylbenzene resin having a hemocompatible coating |
US6960178B2 (en) * | 2000-02-02 | 2005-11-01 | Xepmed, Inc. | Apparatus for enhanced plasmapheresis and methods thereof |
DE10045434B4 (en) * | 2000-09-14 | 2005-07-14 | Fresenius Hemocare Gmbh | Adsorbent with differently modified surface areas, process for its preparation and use thereof |
US6878127B2 (en) | 2001-04-10 | 2005-04-12 | Renaltech International, Llc | Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood |
US20020197252A1 (en) * | 2001-04-10 | 2002-12-26 | Renal Tech International | Selective adsorption devices and systems |
ATE382670T1 (en) * | 2001-10-04 | 2008-01-15 | Toray Industries | HYDROPHILIC MATERIAL AND METHOD FOR PRODUCING IT |
DE10221055B4 (en) * | 2002-05-10 | 2007-10-25 | Hemoteq Ag | Compounds for hemocompatible coating of surfaces, process for their preparation and their use |
AU2003240391B8 (en) * | 2002-05-09 | 2009-08-06 | Hemoteq Ag | Compounds and method for coating surfaces in a haemocompatible manner |
AU2003251567A1 (en) * | 2002-06-19 | 2004-01-06 | The Board Of Regents Of The University Of Texas System | Dialysis system for treatment of vulnerable patients and methods of use |
US20040077985A1 (en) * | 2002-09-03 | 2004-04-22 | Donnie Rudd | Method of replenishing cells damaged by treatment for cancer |
US20040044300A1 (en) * | 2002-09-03 | 2004-03-04 | Donnie Rudd | Method of replenishing cells damaged by treatment for cancer |
US6884829B2 (en) * | 2002-10-18 | 2005-04-26 | Robert L. Albright | Hemocompatible coated polymer and related one-step methods |
US7112620B2 (en) | 2002-10-18 | 2006-09-26 | Albright Robert L | Hemocompatible polymer systems & related methods |
US7629049B2 (en) * | 2002-10-18 | 2009-12-08 | Medasorb, Inc. | Hemocompatible polymer systems and related devices |
DE10261910A1 (en) * | 2002-12-30 | 2004-07-15 | Polymerics Gmbh | Adsorber material for blood, blood plasma and albumin purification processes |
US7507442B2 (en) * | 2003-11-04 | 2009-03-24 | Guardian Industries Corp. | Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating |
EP1690898B1 (en) * | 2003-11-28 | 2013-01-09 | Daicel Chemical Industries, Ltd. | Dispersion and process for producing colored organic solid particle |
JP4903583B2 (en) | 2003-12-24 | 2012-03-28 | ケミカ テクノロジーズ, インコーポレイテッド | Portable personal dialysis dialysate regeneration system |
DE102004024140A1 (en) * | 2004-05-14 | 2005-12-08 | Fresenius Medical Care Deutschland Gmbh | Preservative for medical devices |
US20080044333A1 (en) * | 2004-07-30 | 2008-02-21 | Hakka Leo E | Method and apparatus for NOx and Hg removal |
US7208080B2 (en) * | 2004-09-16 | 2007-04-24 | Thermaco, Inc. | Low cost oil/grease separator |
US7297278B2 (en) * | 2004-10-20 | 2007-11-20 | Baker Hughes Incorporated | Methods for removing metals from water |
KR20070114378A (en) * | 2005-02-28 | 2007-12-03 | 리제네텍 인코포레이티드 | Method of providing readily available cellular material derived from peripheral blood and a composition thereof |
US20080075704A1 (en) * | 2005-02-28 | 2008-03-27 | Wolf David A | Method of providing readily available cellular material derived from peripheral blood, and a composition thereof |
JPWO2006106763A1 (en) * | 2005-03-30 | 2008-09-11 | 株式会社カネカ | Method for removing lymphocyte proliferation inhibitory factor |
WO2007041430A2 (en) * | 2005-10-03 | 2007-04-12 | Emv Technologies, Llc | Apparatus and method for enhanced hemodialysis performance |
US20080035568A1 (en) * | 2005-10-03 | 2008-02-14 | Zhongping Huang | Apparatus and Method for Filtering Fluids |
US20100135976A1 (en) * | 2006-06-16 | 2010-06-03 | Rune Nilsson | Adsorption device |
US9604196B2 (en) | 2006-11-20 | 2017-03-28 | Cytosorbent, Inc. | Size-selective hemocompatible polymer system |
US7875182B2 (en) | 2006-11-20 | 2011-01-25 | Cytosorbents, Inc. | Size-selective hemoperfusion polymeric adsorbents |
US8211310B2 (en) * | 2006-11-20 | 2012-07-03 | Cytosorbents, Inc. | Size-selective polymer system |
US8660800B2 (en) * | 2007-09-04 | 2014-02-25 | Koninklijke Philips N.V. | Multi-treatment planning apparatus and method |
WO2009158027A1 (en) * | 2008-06-26 | 2009-12-30 | Cytosorbents, Inc. | Removal of myoglobin from blood and/or physiological fluids |
WO2010014702A1 (en) * | 2008-07-29 | 2010-02-04 | Medtronic, Inc. | Apheresis of a target molecule from cerebrospinal fluid |
US20110033463A1 (en) * | 2009-08-06 | 2011-02-10 | Medtronic, Inc. | Apheresis, administration of agent, or combination thereof |
US8383319B2 (en) | 2009-08-25 | 2013-02-26 | Eastman Kodak Company | Lithographic printing plate precursors and stacks |
WO2017120461A1 (en) | 2016-01-08 | 2017-07-13 | The Board Of Trustees Of The Leland Stanford Junior University | Ccr3 modulation in the treatment of aging-associated impairments, and compositions for practicing the same |
US20160208011A1 (en) | 2010-01-28 | 2016-07-21 | The Board Of Trustees Of The Leland Stanford Junior University | Ccr3 modulation in the treatment of aging-associated impairments, and compositions for practicing the same |
US10487148B2 (en) | 2010-01-28 | 2019-11-26 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for treating aging-associated impairments |
US20140037837A1 (en) * | 2010-12-20 | 2014-02-06 | Dsm Ip Assets B.V. | Bio-renewable vinyl beads |
US10064406B2 (en) * | 2011-01-06 | 2018-09-04 | Cytosorbents Corporation | Polymeric sorbent for removal of impurities from whole blood and blood products |
RU2452562C1 (en) * | 2011-04-05 | 2012-06-10 | Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" ГОУ ВПО "БашГУ" | Method of producing sorbent |
US9161968B2 (en) | 2011-04-08 | 2015-10-20 | The Board Of Trustees Of The Leland Stanford Junior University | Methods of neuroprotection involving macrophage colony stimulating factor receptor agonists |
CN102603984B (en) * | 2012-01-16 | 2014-01-15 | 南开大学 | Synthesis of high specific surface area hydroxy resin and method for extracting stevioside by high specific surface area hydroxy resin |
EP2866854B1 (en) * | 2012-06-29 | 2020-08-05 | Cytosorbents Corporation | Polymers for use in methods |
WO2014111292A1 (en) | 2013-01-18 | 2014-07-24 | Basf Se | Acrylic dispersion-based coating compositions |
JP2016063846A (en) * | 2013-02-08 | 2016-04-28 | テルモ株式会社 | Medical coating material and medical device |
ES2732481T3 (en) | 2013-03-27 | 2019-11-22 | Biotage Ab | Use of a sorbent to extract mycotoxins |
US10287178B2 (en) * | 2013-12-03 | 2019-05-14 | Biofishency Ltd. | Mechanical-biological filter |
EA035336B1 (en) | 2013-12-09 | 2020-05-29 | Зе Боард Оф Трастиз Оф Зе Леланд Стэнфорд Джуниор Юниверсити | Method for treating aging-associated cognitive disorder or disease |
US10905779B2 (en) | 2013-12-09 | 2021-02-02 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for screening human blood products comprising plasma using immunocompromised rodent models |
EP3297702A4 (en) | 2015-05-18 | 2019-01-16 | The Board of Trustees of The Leland Stanford Junior University | Methods and compositions for treating aging-associated impairments |
KR20240025721A (en) | 2015-06-15 | 2024-02-27 | 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 | Methods and compositions for treating age-associated conditions |
CN105504131B (en) * | 2016-01-26 | 2018-07-17 | 重庆希尔康血液净化器材研发有限公司 | β is removed for blood purification2The preparation method of the resin of microglobulin |
US11911551B2 (en) | 2016-03-02 | 2024-02-27 | Exthera Medical Corporation | Method for treating drug intoxication |
EP3422943A4 (en) * | 2016-03-02 | 2019-10-16 | ExThera Medical Corporation | Method for treating drug intoxication |
CA3025321A1 (en) | 2016-05-26 | 2017-11-30 | Cytosorbents Corporation | The use of a hemocompatible porous polymer bead sorbent for removal of endotoxemia-inducing molecules |
CN108311121B (en) * | 2018-01-25 | 2021-05-14 | 健帆生物科技集团股份有限公司 | Adsorption resin for blood perfusion, preparation method thereof and perfusion apparatus |
CN111468079A (en) * | 2019-01-23 | 2020-07-31 | 重庆希尔康血液净化器材研发有限公司 | Preparation method of anticoagulant hemoperfusion adsorption material |
CN109762109A (en) * | 2019-02-18 | 2019-05-17 | 南开大学 | A kind of poly 4 vinyl pyridine function base resin and its preparation method and application |
CA3137294A1 (en) | 2019-05-16 | 2020-11-19 | Exthera Medical Corporation | Method for modulating endothelial glycocalyx structure |
CN115634673A (en) * | 2022-12-07 | 2023-01-24 | 盱眙凹土能源环保材料研发中心 | Preparation method of ultrahigh cross-linked resin for bilirubin adsorption and blood perfusion |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE249274C (en) | ||||
US3794584A (en) | 1970-04-09 | 1974-02-26 | Rohm & Haas | Removal of poisons and drugs from blood |
US4059512A (en) | 1974-12-27 | 1977-11-22 | Preventive Systems, Inc. | Process for removing endotoxin from biological fluids |
US4046766A (en) * | 1975-02-18 | 1977-09-06 | Rohm And Haas Company | Quinolizinium resins and monomers and methods for making them |
US4048064A (en) | 1976-04-23 | 1977-09-13 | Clark Iii William T | Biocompatible hemoperfusion system |
US4171283A (en) * | 1976-08-04 | 1979-10-16 | Kuraray Co., Ltd. | Hemoperfusion adsorbents |
GB1592702A (en) | 1976-10-28 | 1981-07-08 | Asahi Chemical Ind | Method of adsorbing a protein on a protein adsorbent comprising a porous copolymer of a cyano-group-containing monomer |
US4300551A (en) | 1978-05-02 | 1981-11-17 | Kinney Michael J | Method for treating schizophrenia |
SU844569A1 (en) | 1978-11-17 | 1981-07-07 | Всесоюзный Научно-Исследовательскийинститут Медицинских Полимеров | Method of preparing homocompatible adsorbents for blood purification from toxins |
CA1166413A (en) | 1980-10-30 | 1984-05-01 | Edward E. Timm | Process and apparatus for preparing uniform size polymer beads |
US4785079A (en) | 1984-11-09 | 1988-11-15 | The Salk Institute For Biological Studies | Isolation of fibroblast growth factor |
SU1533697A1 (en) | 1984-07-05 | 1990-01-07 | И.К.Деденко, О.А.Машков. М.П.Захараш ,А.В.Обухова. С.Л.Мизерна и В.Г.Николаев | Method of treating rh-conflict |
US4623706A (en) | 1984-08-23 | 1986-11-18 | The Dow Chemical Company | Process for preparing uniformly sized polymer particles by suspension polymerization of vibratorily excited monomers in a gaseous or liquid stream |
SU1487909A1 (en) | 1985-11-21 | 1989-06-23 | Nii Patologii Krovoobrashcheni | Method of detoxication of organism in post-surgery period |
SU1466754A1 (en) | 1986-03-06 | 1989-03-23 | 1-Й Ленинградский Медицинский Институт Им.Акад.И.П.Павлова | Method of treatment of disseminated sclerosis |
DE3787700T3 (en) | 1986-10-29 | 1998-12-24 | Kanegafuchi Kagaku Kogyo K.K., Osaka | Uniform polymer particles. |
SU1507397A1 (en) | 1987-06-01 | 1989-09-15 | Киевский Медицинский Институт Им.Акад.А.А.Богомольца | Method of drug therapy of the primary pulmonary hypertension |
JPH0622633B2 (en) | 1987-10-30 | 1994-03-30 | 鐘淵化学工業株式会社 | Adsorbent and removal device using the same |
EP0319144A1 (en) | 1987-11-06 | 1989-06-07 | Asahi Kasei Kogyo Kabushiki Kaisha | Adsorbent of beta 2-microglobulin |
JPH0611333B2 (en) | 1988-01-14 | 1994-02-16 | 鐘淵化学工業株式会社 | Immune complex adsorbent and immune complex removing apparatus using the same |
US5069662A (en) | 1988-10-21 | 1991-12-03 | Delcath Systems, Inc. | Cancer treatment |
US5149425A (en) * | 1988-11-09 | 1992-09-22 | Chembiomed, Ltd. | Affinity supports for hemoperfusion |
US5306561A (en) * | 1992-02-20 | 1994-04-26 | Cornell Research Foundation, Inc. | Preparation of surface-functional polymer particles |
JP2650013B2 (en) | 1992-09-29 | 1997-09-03 | 株式会社ティーティーティー | Driving method of display discharge tube |
US5545131A (en) | 1994-04-28 | 1996-08-13 | White Eagle International Technologies, Lp | Artificial kidney |
US5460725A (en) | 1994-06-21 | 1995-10-24 | The Dow Chemical Company | Polymeric adsorbents with enhanced adsorption capacity and kinetics and a process for their manufacture |
US5416124A (en) | 1994-06-21 | 1995-05-16 | The Dow Chemical Company | Polymeric adsorbents with enhanced adsorption capacity and kinetics and a process for their manufacture |
US5629353A (en) | 1995-05-22 | 1997-05-13 | The Regents Of The University Of California | Highly cross-linked nanoporous polymers |
RU2089283C1 (en) | 1996-03-23 | 1997-09-10 | Научно-исследовательская фирма "Ультрасан" | Bio- and heme-compatible sorbents based on super-cross-linked styrene polymers with modified surface, method of preparation thereof (versions), and method of preparing sorbent matrix |
US5904663A (en) | 1997-07-30 | 1999-05-18 | Braverman; Andrew | Method of removing beta-2 microglobulin from blood |
US6416487B1 (en) | 1997-07-30 | 2002-07-09 | Renal Tech International Llc | Method of removing beta-2 microglobulin from blood |
US6136424A (en) | 1998-02-06 | 2000-10-24 | Renal Tech International, Llc | Method of and material for purification of physiological liquids of organism, and method of producing the material |
US6114466A (en) | 1998-02-06 | 2000-09-05 | Renal Tech International Llc | Material for purification of physiological liquids of organism |
CA2358949A1 (en) | 1999-01-22 | 2000-07-27 | Robert M. Strom | Surface modified divinylbenzene resin having a hemocompatible coating |
-
1999
- 1999-11-23 CA CA002358949A patent/CA2358949A1/en not_active Abandoned
- 1999-11-23 AU AU19232/00A patent/AU1923200A/en not_active Abandoned
- 1999-11-23 EP EP99962883A patent/EP1148944B1/en not_active Expired - Lifetime
- 1999-11-23 JP JP2000594570A patent/JP2003506111A/en active Pending
- 1999-11-23 WO PCT/US1999/028073 patent/WO2000043120A1/en active Application Filing
- 1999-11-23 AT AT99962883T patent/ATE464947T1/en not_active IP Right Cessation
- 1999-11-23 EP EP10152368A patent/EP2189213A1/en not_active Withdrawn
- 1999-11-23 DE DE69942282T patent/DE69942282D1/en not_active Expired - Lifetime
-
2000
- 2000-01-14 US US09/483,620 patent/US6238795B1/en not_active Expired - Lifetime
- 2000-12-22 US US09/746,810 patent/US6338801B2/en not_active Expired - Fee Related
-
2001
- 2001-05-21 US US09/861,969 patent/US6325939B2/en not_active Expired - Fee Related
- 2001-09-27 US US09/965,256 patent/US6419830B2/en not_active Expired - Lifetime
-
2002
- 2002-03-08 US US10/094,001 patent/US6423024B1/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100300971A1 (en) * | 2005-05-18 | 2010-12-02 | Sequant Ab | Zwitterionic stationary phase as well as method for using and producing said phase |
Also Published As
Publication number | Publication date |
---|---|
DE69942282D1 (en) | 2010-06-02 |
US20010032819A1 (en) | 2001-10-25 |
US20010008958A1 (en) | 2001-07-19 |
US6338801B2 (en) | 2002-01-15 |
AU1923200A (en) | 2000-08-07 |
EP1148944A1 (en) | 2001-10-31 |
US6423024B1 (en) | 2002-07-23 |
CA2358949A1 (en) | 2000-07-27 |
WO2000043120A1 (en) | 2000-07-27 |
US6325939B2 (en) | 2001-12-04 |
US20020091231A1 (en) | 2002-07-11 |
ATE464947T1 (en) | 2010-05-15 |
EP2189213A1 (en) | 2010-05-26 |
EP1148944B1 (en) | 2010-04-21 |
US6419830B2 (en) | 2002-07-16 |
US6238795B1 (en) | 2001-05-29 |
JP2003506111A (en) | 2003-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6419830B2 (en) | Surface modified polymer beads | |
US5773384A (en) | Sorbents for removing toxicants from blood or plasma, and method of producing the same | |
US6133393A (en) | Method of purification of physiological liquids of organism | |
JP4992120B2 (en) | Virus and leukocyte selective removal material and use thereof | |
US6127311A (en) | Method of producing material for purification of physiological liquids of organism | |
ES2880509T3 (en) | Size Selection Hemoperfusion Polymeric Adsorbents | |
GB2075362A (en) | Column for adsorption of blood proteins | |
EP0143369A2 (en) | A porous adsorbent for adsorbing low density lipoproteins | |
US20060058413A1 (en) | Adsorbing material for blood and plasma cleaning method and for albumin purification | |
JPH0725776A (en) | Filter material for selectively removing leukocyte | |
US20020146413A1 (en) | System for treating patient with bacterial infections | |
JP2649224B2 (en) | Sterilization method for body fluid treatment device and sterilized body fluid treatment device | |
JP2568846B2 (en) | Myoglobin adsorbent | |
EP1679117A2 (en) | Adsorption system for removing viruses and viral components from fluids, in particular from blood and blood plasma | |
JP3330420B2 (en) | Bradykinin adsorbent | |
JPH06237996A (en) | Blood purifying/adsorbing material | |
EP0888178A1 (en) | Sorbents for removing toxicants from blood or plasma, and method of producing same | |
JPH06126167A (en) | Transthyretin adsorbent | |
JPS6319154A (en) | Beta 2-microglobulin adsorbent | |
JPH0595999A (en) | Adsorption body for contrast medium | |
JPH10179732A (en) | Whole blood treating device and whole blood treatment | |
JPH0623042A (en) | Blood purifying adsorbent and blood purifying method | |
JPH0783767B2 (en) | Blood purification device | |
JP2511410C (en) | ||
JPH0232897B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |