US20020009835A1 - Process for forming polycrystalline thin film transistor liquid crystal display - Google Patents
Process for forming polycrystalline thin film transistor liquid crystal display Download PDFInfo
- Publication number
- US20020009835A1 US20020009835A1 US09/812,106 US81210601A US2002009835A1 US 20020009835 A1 US20020009835 A1 US 20020009835A1 US 81210601 A US81210601 A US 81210601A US 2002009835 A1 US2002009835 A1 US 2002009835A1
- Authority
- US
- United States
- Prior art keywords
- layer
- forming
- masking
- substrate
- define
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 109
- 239000010409 thin film Substances 0.000 title claims description 13
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 7
- 239000004065 semiconductor Substances 0.000 claims abstract description 64
- 230000000873 masking effect Effects 0.000 claims abstract description 62
- 230000003197 catalytic effect Effects 0.000 claims abstract description 41
- 238000007669 thermal treatment Methods 0.000 claims abstract description 14
- 238000009413 insulation Methods 0.000 claims abstract description 13
- 238000000059 patterning Methods 0.000 claims description 57
- 239000000758 substrate Substances 0.000 claims description 38
- 238000002161 passivation Methods 0.000 claims description 18
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 230000000295 complement effect Effects 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 229920002120 photoresistant polymer Polymers 0.000 claims description 7
- 239000011810 insulating material Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 105
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/6675—Amorphous silicon or polysilicon transistors
- H01L29/66765—Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136227—Through-hole connection of the pixel electrode to the active element through an insulation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
- H01L29/78618—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
- H01L29/78621—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/10—Materials and properties semiconductor
- G02F2202/104—Materials and properties semiconductor poly-Si
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
Definitions
- the present invention relates to a process for forming a thin film transistor-liquid crystal display (TFT-LCD), and more particularly to a process for forming a complementary poly-silicon TFT-LCD.
- TFT-LCD thin film transistor-liquid crystal display
- the semiconductor materials such as the channel layer and the source/drain layer of the active matrix switch are usually made of intrinsic amorphous silicon and highly doped amorphous silicon respectively. Due to the low conductivity of the amorphous silicon material, the driving current ability of the amorphous silicon material can not meet the requirement of the LCD peripheral driving circuit. Therefore, the semiconductor material layer made of the intrinsic poly-silicon and highly doped poly-silicon has better conductivity and is easily to be assembled with the LCD device.
- the conventional process for TFT-LCD properly is complicated, hence, it is better way to achieve the TFTs and the LCD peripheral driving circuit at the same time.
- the TFTs and the LCD peripheral driving circuit are principally composed of the P-type and the N-type poly-silicon TFTs.
- the conventional steps for forming a complementary poly-silicon TFT including the P-type and N-type poly-silicon TFT and the peripheral driving circuit by employing eight masking and patterning process steps.
- a silicon oxide (SiOx) barrier layer 11 and a poly-silicon layer on a glass substrate 10 are formed and a first masking and patterning procedure is performed to define a poly-silicon channel layer 12 on the poly-silicon layer.
- a gate insulation material structure and a gate conductive material structure are successively formed and a second masking and patterning procedure is performed to define a gate insulation layer 13 and a gate conductive layer 14 respectively.
- a third masking and patterning procedure is proceeded and then an N-type ion-implanting procedure is performed on the exposed portions of a poly-silicon channel layer 12 uncovered with a photoresist 15 for forming a source/drain region 121 of an N-type poly-silicon TFT.
- a fourth masking and patterning procedure is proceeded and then a P-type ion-implanting procedure is performed on the exposed portions of a poly-silicon channel layer 12 uncovered with a photoresist 16 for forming a source/drain region 122 of a P-type poly-silicon TFT.
- a silicon oxide interlayer 17 is formed and a fifth masking and patterning procedure is performed to define a contact hole 18 .
- a metal conductive layer is formed and a sixth masking and patterning procedure is performed to define a source/drain conductive layer 19 . Subsequently, a seventh and an eighth masking and patterning procedures are proceeded to define a passivation layer and a transparent electrode layer (not shown in Figure) respectively.
- the process for forming a thin film transistor (TFT) liquid crystal display includes steps of providing a substrate made of an insulating material, forming a first conductive layer on the substrate, performing a first masking and patterning procedure to define a gate conductive region on the substrate, successively forming an insulation layer, an amorphous semiconductor channel layer, a catalytic layer and a doped semiconductor layer on the substrate, performing a second masking and patterning procedure to remove portions of the doped semiconductor layer and the catalytic layer to define an electrode region, performing a thermal treatment for the substrate to respectively convert the electrode region and the amorphous semiconductor channel layer into a source/drain region and a crystalline semiconductor channel layer by the catalytic layer, forming a second conductive layer on the substrate and performing a third masking and patterning procedure to define data lines, forming a passivation layer and performing a fourth masking and patterning procedure to remove portions of the passivation for forming a
- the first conductive layer is a gate conductive layer.
- the amorphous semiconductor channel layer is formed of intrinsic amorphous silicon and the doped semiconductor layer is formed of highly doped amorphous silicon.
- the catalytic layer is formed of a catalytic metal.
- the catalytic metal is formed of Nickel.
- the thermal treatment is an annealing procedure for heating 4 hours at 550° C. under one of a hydrogen atmosphere and an inert gas atmosphere.
- a process for forming a complementary TFT LCD includes steps of providing a substrate made of an insulating material, forming a first conductive layer on the substrate, performing a first masking and patterning procedure to define two gate conductive regions on the substrate, successively forming an insulation layer, an amorphous semiconductor channel layer, a catalytic layer, an N-type doped amorphous semiconductor layer on the substrate, performing a second masking and patterning procedure to remove portions of the N-type doped amorphous semiconductor layer and the catalytic layer to define a first electrode region and a second electrode region, forming a photoresist layer and performing a third masking and patterning procedure to expose the second electrode region, performing a P-type doping procedure to convert the materials of the second electrode region into a P-type doped amorphous semiconductor, performing a thermal treatment for the substrate to convert the first electrode region and the second electrode region and the amorphous semiconductor channel layer into
- a process for forming a complementary TFT-LCD includes steps of providing a substrate made of an insulating material, forming a first conductive layer on the substrate, performing a first masking and patterning procedure to define two gate conductive regions on the substrate, successively forming an insulation layer, an amorphous semiconductor channel layer, a catalytic layer, a P-type doped amorphous semiconductor layer on the substrate, performing a second masking and patterning procedure to remove portions of the P-type doped amorphous semiconductor layer and the catalytic layer to define a first electrode region and a second electrode region, forming a photoresist layer and performing a third masking and patterning procedure to expose the second electrode region, performing an N-type doping procedure to convert the materials of the second electrode region into an N-type doped amorphous semiconductor, performing a thermal treatment for the substrate to convert the first electrode region and the second electrode region and the amorphous semiconductor channel layer
- FIGS. 1 ( a ) to 1 ( f ) illustrate steps for forming a complementary poly-silicon TFT LCD according to prior art
- FIGS. 2 ( a ) to 2 ( e ) illustrate steps for forming a poly-silicon TFT LCD according to a preferred embodiment of the present invention.
- FIGS. 3 ( a ) to 3 ( f ) illustrate steps for forming a complementary poly-silicon TFT LCD according to another preferred embodiment of the present invention.
- FIGS. 2 ( a ) to 2 ( e ) shows a process for forming a poly-silicon complementary TFT LCD according to a preferred embodiment of the present invention.
- a gate conductive layer is formed on an insulation substrate 20 and then a first masking and patterning procedure is performed to define a gate conductive region 21 .
- a gate insulation layer 22 , an amorphous semiconductor layer 23 , a catalytic layer 24 and a highly doped amorphous semiconductor source/drain layer 25 are successively formed.
- a second masking and patterning procedure is performed to remove portions of the highly doped amorphous semiconductor source/drain layer 25 and the catalytic layer 24 owing to the high selective etching ratio between the highly doped amorphous semiconductor source/drain layer 25 and the catalytic layer 24 , and further to define a source/drain structure 251 , as shown in FIG. 2( c ), wherein an offset structure 252 is provided for reducing leakage current of the foregoing components.
- a thermal treatment for the overall processed substrate structure is performed to respectively convert the source/drain structure 251 and the amorphous semiconductor channel layer 23 into a poly-silicon source/drain structure 261 and a poly-silicon semiconductor channel layer 262 by means of a catalytic reaction generated by the catalytic layer 24 , as shown in FIG. 2( d ).
- the material of the catalytic layer 24 is formed of a nickel-containing catalytic metal, and the thermal treatment is an annealing procedure for heating 4 hours at 550° C. under an atmosphere of a hydrogen gas or an inert gas.
- a data conductive layer is formed and then a third masking and patterning procedure is performed to define a data line structure 27 .
- a passivation layer 28 is formed and a fourth masking and patterning procedure is performed to define a contact hole 29 on the passivation layer 28 .
- a transparent electrode layer is formed and a fifth masking and patterning procedure is performed to define a transparent pixel electrode region 30 , thereby forming a polycrystalline thin film transistor display panel.
- the present invention is also suitable to form the poly-silicon layer at a lower temperature.
- the temperature of manufacturing process could be effectively reduced to increase the flexible of the procedure materials.
- FIGS. 3 ( a ) to 3 ( f ) shows a process for forming a complementary poly-silicon TFT according to another embodiment of the present invention. Only six masking and patterning procedures are used in this embodiment.
- a first masking step and patterning procedure is performed to define two gate conductive structures 411 and 412 after forming a gate conductive layer on an insulating substrate 40 .
- a gate insulation layer 42 , an amorphous semiconductor channel layer 43 , a catalytic layer 44 and an N-type (P-type) highly doped semiconductor source/drain layer 45 are successively formed, as can be seen in FIG. 3( b ).
- a second masking and patterning procedure is performed to successively remove portions of the N-type (P-type) highly doped semiconductor source/drain layer 45 and the catalytic layer 44 by the high selective etching ratio between the catalytic layer 44 and the amorphous semiconductor channel layer 43 , and further define a first source/drain primitive structure 451 and a second source/drain primitive structure 452 , as shown in FIG. 3( c ). Then, an offset structure 453 shown in FIG. 3( c ) is provided for reducing the leakage current of the foregoing semiconductor components.
- a photoresist layer 46 is applied and a third masking and patterning procedure is performed to expose the second source/drain primitive structure 452 . Then, a P-type (N-type) highly doping procedure is proceeded to convert the materials of the second source/drain primitive structure 452 into a P-type (N-type) highly doped amorphous semiconductor.
- a thermal treatment for the overall processed substrate structure is performed to crystallize the materials of the first source/drain primitive structure 451 , the second source/drain primitive structure 452 and the amorphous semiconductor channel layer 43 , which are further converted into a first polycrystalline source/drain structure 471 , a second polycrystalline source/drain structure 472 and a polycrystalline semiconductor channel layer 473 , as can be seen in FIG. 3( e ).
- the material of the catalytic layer is formed of a nickel-containing catalytic metal, and the thermal treatment is an annealing procedure for heating 4 hours at 550° C. under an atmosphere of a hydrogen gas or an inert gas.
- a conductive layer is formed and a fourth masking and patterning procedure is performed to further define a data line structure 48 . Then, a fifth masking and patterning procedure is performed to define a contact hole 50 on a passivation layer 49 after forming the passivation layer 49 . Finally, a transparent electrode layer is formed and a sixth masking and patterning procedure is performed to define a transparent pixel electrode region 51 , thereby forming a polycrystalline thin film transistor display panel.
- the insulation substrates 20 and 40 are formed of transparent glasses
- the gate conductive layer can be formed of a material selected from a group consisting of chromium (Cr), molybdenum (Mo), tantalum (Ta), tantalum molybdate, tungsten molybdate, aluminum (Al), aluminum silicate and copper (Cu).
- the gate insulation layer can be formed of a material selected from a group consisting of silicon nitride (SiNx), silicon oxide (SiOx), silicon oxynitride (SiOxNy), tantalum oxide (TaOx) and aluminum oxide (AlOx).
- the data conductive layer is formed of a compound metal material selected form a group consisting of chromium/aluminum (Cr/Al) and molybdenum/aluminum (Mo/Al), and the passivation layer is principally formed of silicon nitride (SiNx).
- the process for forming polycrystalline silicon TFT-LCD according to the present invention can omit at least two masking and patterning procedures compared with the conventional process. Therefore, the present invention could reduce the manufacturing cost, shorten the product procedure time in the factory, and reduce the possibility for mis-alignment and particle pollution.
- the process according to the present invention could avoid employing the higher temperature used in the conventional manufacturing procedure.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Nonlinear Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
- Recrystallisation Techniques (AREA)
Abstract
A process for forming a polycrystalline TFT LCD is provided, thereby greatly reducing the manufacturing cost and time. The process includes steps of performing a first masking procedure to define a gate conductive region, successively forming an insulation layer, an amorphous channel semiconductor layer, a catalytic layer and a doped semiconductor layer, performing a second masking procedure to remove portions of the semiconductor layer and the catalytic layer to define an electrode region, performing a thermal treatment to respectively convert the electrode region and the amorphous semiconductor channel layer into a source/drain region and a crystalline semiconductor channel layer by the catalytic layer, performing a third masking procedure to define data lines, performing a fourth masking procedure to form a contact hole, and performing a fifth masking procedure to define a transparent pixel electrode region, thereby forming the TFT.
Description
- The present invention relates to a process for forming a thin film transistor-liquid crystal display (TFT-LCD), and more particularly to a process for forming a complementary poly-silicon TFT-LCD.
- In the conventional process for fabricating TFT-LCD (thin film transistor liquid crystal display), the semiconductor materials such as the channel layer and the source/drain layer of the active matrix switch are usually made of intrinsic amorphous silicon and highly doped amorphous silicon respectively. Due to the low conductivity of the amorphous silicon material, the driving current ability of the amorphous silicon material can not meet the requirement of the LCD peripheral driving circuit. Therefore, the semiconductor material layer made of the intrinsic poly-silicon and highly doped poly-silicon has better conductivity and is easily to be assembled with the LCD device. The conventional process for TFT-LCD properly is complicated, hence, it is better way to achieve the TFTs and the LCD peripheral driving circuit at the same time.
- The TFTs and the LCD peripheral driving circuit are principally composed of the P-type and the N-type poly-silicon TFTs. As shown in FIGS.1(a) to 1(f), the conventional steps for forming a complementary poly-silicon TFT including the P-type and N-type poly-silicon TFT and the peripheral driving circuit by employing eight masking and patterning process steps.
- In view of FIG. 1(a), a silicon oxide (SiOx)
barrier layer 11 and a poly-silicon layer on aglass substrate 10 are formed and a first masking and patterning procedure is performed to define a poly-silicon channel layer 12 on the poly-silicon layer. - In view of FIG. 1(b), a gate insulation material structure and a gate conductive material structure are successively formed and a second masking and patterning procedure is performed to define a
gate insulation layer 13 and a gateconductive layer 14 respectively. - Referring to FIG. 1(c), a third masking and patterning procedure is proceeded and then an N-type ion-implanting procedure is performed on the exposed portions of a poly-
silicon channel layer 12 uncovered with a photoresist 15 for forming a source/drain region 121 of an N-type poly-silicon TFT. - Referring to FIG. 1(d), a fourth masking and patterning procedure is proceeded and then a P-type ion-implanting procedure is performed on the exposed portions of a poly-
silicon channel layer 12 uncovered with a photoresist 16 for forming a source/drain region 122 of a P-type poly-silicon TFT. - As for FIG. 1(e), a
silicon oxide interlayer 17 is formed and a fifth masking and patterning procedure is performed to define acontact hole 18. - With regard to FIG. 1(f), a metal conductive layer is formed and a sixth masking and patterning procedure is performed to define a source/drain
conductive layer 19. Subsequently, a seventh and an eighth masking and patterning procedures are proceeded to define a passivation layer and a transparent electrode layer (not shown in Figure) respectively. - Thus, the above-mentioned conventional process has disadvantages of high manufacturing cost and time-consuming by using eight masking and patterning procedures. It is therefore tried by the applicant to deal with the above situation encountered by the prior art.
- It is therefore an object of the present invention to provide a process for forming a poly-silicon TFT-LCD with reduced masking and patterning steps.
- It is another object of the present invention to provide a process for forming a poly-silicon TFT-LCD to reduce the manufacturing cost and the procedure time.
- According to the present invention, there is provided the process for forming a thin film transistor (TFT) liquid crystal display (LCD). The process includes steps of providing a substrate made of an insulating material, forming a first conductive layer on the substrate, performing a first masking and patterning procedure to define a gate conductive region on the substrate, successively forming an insulation layer, an amorphous semiconductor channel layer, a catalytic layer and a doped semiconductor layer on the substrate, performing a second masking and patterning procedure to remove portions of the doped semiconductor layer and the catalytic layer to define an electrode region, performing a thermal treatment for the substrate to respectively convert the electrode region and the amorphous semiconductor channel layer into a source/drain region and a crystalline semiconductor channel layer by the catalytic layer, forming a second conductive layer on the substrate and performing a third masking and patterning procedure to define data lines, forming a passivation layer and performing a fourth masking and patterning procedure to remove portions of the passivation for forming a contact hole accessible to the data line, and forming a transparent electrode layer and performing a fifth masking and patterning procedure to define a transparent pixel electrode region, thereby forming the thin film transistor.
- Preferably, the first conductive layer is a gate conductive layer.
- Preferably, the amorphous semiconductor channel layer is formed of intrinsic amorphous silicon and the doped semiconductor layer is formed of highly doped amorphous silicon.
- Preferably, the catalytic layer is formed of a catalytic metal.
- Preferably the catalytic metal is formed of Nickel.
- Preferably the thermal treatment is an annealing procedure for heating 4 hours at 550° C. under one of a hydrogen atmosphere and an inert gas atmosphere.
- According to a further aspect of the present invention, there is provided a process for forming a complementary TFT LCD. The process includes steps of providing a substrate made of an insulating material, forming a first conductive layer on the substrate, performing a first masking and patterning procedure to define two gate conductive regions on the substrate, successively forming an insulation layer, an amorphous semiconductor channel layer, a catalytic layer, an N-type doped amorphous semiconductor layer on the substrate, performing a second masking and patterning procedure to remove portions of the N-type doped amorphous semiconductor layer and the catalytic layer to define a first electrode region and a second electrode region, forming a photoresist layer and performing a third masking and patterning procedure to expose the second electrode region, performing a P-type doping procedure to convert the materials of the second electrode region into a P-type doped amorphous semiconductor, performing a thermal treatment for the substrate to convert the first electrode region and the second electrode region and the amorphous semiconductor channel layer into a first source/drain region, a second source/drain region and a crystalline semiconductor layer by the catalytic layer, forming a second conductive layer and performing a fourth masking and patterning procedure to define data lines, forming a passivation layer and performing a fifth masking and patterning procedure to remove portions of the passivation layer to form a contact hole accessible to the data lines, forming a transparent electrode layer and performing a sixth masking and patterning procedure to form a transparent pixel region, thereby forming the complementary TFT.
- According to a still aspect of the present invention, there is provided a process for forming a complementary TFT-LCD. The process includes steps of providing a substrate made of an insulating material, forming a first conductive layer on the substrate, performing a first masking and patterning procedure to define two gate conductive regions on the substrate, successively forming an insulation layer, an amorphous semiconductor channel layer, a catalytic layer, a P-type doped amorphous semiconductor layer on the substrate, performing a second masking and patterning procedure to remove portions of the P-type doped amorphous semiconductor layer and the catalytic layer to define a first electrode region and a second electrode region, forming a photoresist layer and performing a third masking and patterning procedure to expose the second electrode region, performing an N-type doping procedure to convert the materials of the second electrode region into an N-type doped amorphous semiconductor, performing a thermal treatment for the substrate to convert the first electrode region and the second electrode region and the amorphous semiconductor channel layer into a first source/drain region, a second source/drain region and a crystalline semiconductor layer by the catalytic layer, forming a second conductive layer and performing a fourth masking and patterning procedure to define data lines, forming a passivation layer and performing a fifth masking and patterning procedure to remove portions of the passivation layer to form a contact hole accessible to the data lines, forming a transparent electrode layer and performing a sixth masking and patterning procedure to form a transparent pixel region, thereby forming the complementary TFT.
- The present invention may best be understood through the following descriptions with reference to the accompanying drawings, in which:
- FIGS.1(a) to 1(f) illustrate steps for forming a complementary poly-silicon TFT LCD according to prior art;
- FIGS.2(a) to 2(e) illustrate steps for forming a poly-silicon TFT LCD according to a preferred embodiment of the present invention; and
- FIGS.3(a) to 3(f) illustrate steps for forming a complementary poly-silicon TFT LCD according to another preferred embodiment of the present invention.
- FIGS.2(a) to 2(e) shows a process for forming a poly-silicon complementary TFT LCD according to a preferred embodiment of the present invention.
- Referring to FIG. 2(a), a gate conductive layer is formed on an
insulation substrate 20 and then a first masking and patterning procedure is performed to define a gateconductive region 21. - In view of FIG. 2(b), a
gate insulation layer 22, anamorphous semiconductor layer 23, acatalytic layer 24 and a highly doped amorphous semiconductor source/drain layer 25 are successively formed. - Then, a second masking and patterning procedure is performed to remove portions of the highly doped amorphous semiconductor source/
drain layer 25 and thecatalytic layer 24 owing to the high selective etching ratio between the highly doped amorphous semiconductor source/drain layer 25 and thecatalytic layer 24, and further to define a source/drain structure 251, as shown in FIG. 2(c), wherein anoffset structure 252 is provided for reducing leakage current of the foregoing components. - Subsequently, a thermal treatment for the overall processed substrate structure is performed to respectively convert the source/
drain structure 251 and the amorphoussemiconductor channel layer 23 into a poly-silicon source/drain structure 261 and a poly-siliconsemiconductor channel layer 262 by means of a catalytic reaction generated by thecatalytic layer 24, as shown in FIG. 2(d). - When the amorphous
semiconductor channel layer 23 is a highly doped amorphous silicon, the material of thecatalytic layer 24 is formed of a nickel-containing catalytic metal, and the thermal treatment is an annealing procedure for heating 4 hours at 550° C. under an atmosphere of a hydrogen gas or an inert gas. - Please refer to FIG. 2(e), a data conductive layer is formed and then a third masking and patterning procedure is performed to define a
data line structure 27. Subsequently, apassivation layer 28 is formed and a fourth masking and patterning procedure is performed to define acontact hole 29 on thepassivation layer 28. Finally, a transparent electrode layer is formed and a fifth masking and patterning procedure is performed to define a transparentpixel electrode region 30, thereby forming a polycrystalline thin film transistor display panel. - Certainly, the present invention is also suitable to form the poly-silicon layer at a lower temperature. Thus, the temperature of manufacturing process could be effectively reduced to increase the flexible of the procedure materials.
- FIGS.3(a) to 3(f) shows a process for forming a complementary poly-silicon TFT according to another embodiment of the present invention. Only six masking and patterning procedures are used in this embodiment.
- Referring to FIG. 3(a), a first masking step and patterning procedure is performed to define two gate
conductive structures insulating substrate 40. - Then, a
gate insulation layer 42, an amorphoussemiconductor channel layer 43, acatalytic layer 44 and an N-type (P-type) highly doped semiconductor source/drain layer 45 are successively formed, as can be seen in FIG. 3(b). - Subsequently, a second masking and patterning procedure is performed to successively remove portions of the N-type (P-type) highly doped semiconductor source/
drain layer 45 and thecatalytic layer 44 by the high selective etching ratio between thecatalytic layer 44 and the amorphoussemiconductor channel layer 43, and further define a first source/drainprimitive structure 451 and a second source/drainprimitive structure 452, as shown in FIG. 3(c). Then, anoffset structure 453 shown in FIG. 3(c) is provided for reducing the leakage current of the foregoing semiconductor components. - Referring to FIG. 3(d), a
photoresist layer 46 is applied and a third masking and patterning procedure is performed to expose the second source/drainprimitive structure 452. Then, a P-type (N-type) highly doping procedure is proceeded to convert the materials of the second source/drainprimitive structure 452 into a P-type (N-type) highly doped amorphous semiconductor. - A thermal treatment for the overall processed substrate structure is performed to crystallize the materials of the first source/drain
primitive structure 451, the second source/drainprimitive structure 452 and the amorphoussemiconductor channel layer 43, which are further converted into a first polycrystalline source/drain structure 471, a second polycrystalline source/drain structure 472 and a polycrystallinesemiconductor channel layer 473, as can be seen in FIG. 3(e). - When the amorphous
semiconductor channel layer 43 is an intrinsic amorphous silicon and the N-type (P-type) highly doped amorphous semiconductor source/drain layer 45 is an N-type (P-type) highly doped amorphous silicon, the material of the catalytic layer is formed of a nickel-containing catalytic metal, and the thermal treatment is an annealing procedure for heating 4 hours at 550° C. under an atmosphere of a hydrogen gas or an inert gas. - Please refer to FIG. 3(f), a conductive layer is formed and a fourth masking and patterning procedure is performed to further define a
data line structure 48. Then, a fifth masking and patterning procedure is performed to define acontact hole 50 on apassivation layer 49 after forming thepassivation layer 49. Finally, a transparent electrode layer is formed and a sixth masking and patterning procedure is performed to define a transparentpixel electrode region 51, thereby forming a polycrystalline thin film transistor display panel. - According to the foregoing preferred embodiments, the
insulation substrates - In the above description, the process for forming polycrystalline silicon TFT-LCD according to the present invention can omit at least two masking and patterning procedures compared with the conventional process. Therefore, the present invention could reduce the manufacturing cost, shorten the product procedure time in the factory, and reduce the possibility for mis-alignment and particle pollution. The process according to the present invention could avoid employing the higher temperature used in the conventional manufacturing procedure.
- While the invention has been described in terms of what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention need not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures. Therefore, the above description and illustration should not be taken as limiting the scope of the present invention which is defined by the appended claims.
Claims (12)
1. A process for forming a crystalline thin film transistor (TFT) liquid crystal display (LCD), comprising steps of:
providing a substrate made of an insulating material;
forming a first conductive layer on said substrate;
performing a first masking and patterning procedure to define a gate conductive region on said substrate;
successively forming an insulation layer, an amorphous semiconductor channel layer, a catalytic layer and a doped semiconductor layer on said substrate;
performing a second masking and patterning procedure to remove portions of said doped semiconductor layer and said catalytic layer to define an electrode region;
performing a thermal treatment for said substrate to respectively convert said electrode region and said amorphous semiconductor channel layer into a source/drain region and a crystalline semiconductor channel layer by said catalytic layer;
forming a second conductive layer on said substrate and performing a third masking and patterning procedure to define a data line;
forming a passivation layer and performing a fourth masking and patterning procedure to remove portions of said passivation for forming a contact hole accessible to said data line; and
forming a transparent electrode layer and performing a fifth masking and patterning procedure to define a transparent pixel electrode region, thereby forming said crystalline thin film transistor.
2. The process according to claim 1 , wherein said first conductive layer is a gate conductive layer.
3. The process according to claim 1 , wherein said amorphous semiconductor layer is formed of an intrinsic amorphous silicon and said doped semiconductor layer is formed of a highly doped amorphous silicon.
4. The process according to claim 1 , wherein said catalytic layer is formed of a catalytic metal.
5. The process according to claim 4 , wherein said catalytic metal is formed of Nickel.
6. The process according to claim 1 , wherein said thermal treatment is a annealing procedure for heating 4 hours at 550° C. under one of a hydrogen atmosphere and an inert gas atmosphere.
7. A process for forming a complementary thin film transistor liquid crystal display, comprising steps of:
providing a substrate made of an insulating material;
forming a first conductive layer on said substrate;
performing a first masking and patterning procedure to define two gate conductive regions on said substrate;
successively forming an insulation layer, an amorphous semiconductor channel layer, a catalytic layer, a N-type doped amorphous semiconductor layer on said substrate;
performing a second masking and patterning procedure to remove portions of said N-type doped amorphous semiconductor layer and said catalytic layer to define a first electrode region and a second electrode region;
forming a photoresist layer and performing a third masking and patterning procedure to expose said second electrode region;
performing a P-type doping procedure to convert the materials of said second electrode region into a P-type doped amorphous semiconductor;
performing a thermal treatment for said substrate to convert said first electrode region and said second electrode region and said amorphous semiconductor channel layer into a first source/drain region, a second source/drain region and a crystalline semiconductor layer by said catalytic layer;
forming a second conductive layer and performing a fourth masking and patterning procedure to define data lines;
forming a passivation layer and performing a fifth masking and patterning procedure to remove portions of said passivation layer to form a contact hole accessible to said data lines;
forming a transparent electrode layer and performing a sixth masking and patterning procedure to form a transparent pixel region, thereby forming said thin film transistor.
8. The process according to claim 7 , wherein said amorphous semiconductor layer is formed of an intrinsic amorphous silicon and said doped semiconductor layer is formed of a highly doped amorphous silicon.
9. The process according to claim 7 , wherein said catalytic layer is formed of a catalytic metal.
10. The process according to claim 9 , wherein said catalytic metal is formed of Nickel.
11. The process according to claim 7 , wherein said thermal treatment is a annealing procedure for heating 4 hours at 550° C. under one of a hydrogen atmosphere and an inert gas atmosphere.
12. A process for forming a complementary thin film transistor liquid crystal display, comprising steps of:
providing a substrate made of an insulating material;
forming a first conductive layer on said substrate;
performing a first masking and patterning procedure to define two gate conductive regions on said substrate;
successively forming an insulation layer, an amorphous semiconductor channel layer, a catalytic layer, a P-type doped amorphous semiconductor layer on said substrate;
performing a second masking and patterning procedure to remove portions of said P-type doped amorphous semiconductor layer and said catalytic layer to define a first electrode region and a second electrode region;
forming a photoresist layer and performing a third masking and patterning procedure to expose said second electrode region;
performing an N-type doping procedure to convert the materials of said second electrode region into an N-type doped amorphous semiconductor;
performing a thermal treatment for said substrate to convert said first electrode region and said second electrode region and said amorphous semiconductor channel layer into a first source/drain region, a second source/drain region and a crystalline semiconductor layer by said catalytic layer;
forming a second conductive layer and performing a fourth masking and patterning procedure to define data lines;
forming a passivation layer and performing a fifth masking and patterning procedure to remove portions of said passivation layer to form a contact hole accessible to said data lines;
forming a transparent electrode layer and performing a sixth masking and patterning procedure to form a transparent pixel region, thereby forming said thin film transistor.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW089113053A TW456048B (en) | 2000-06-30 | 2000-06-30 | Manufacturing method for polysilicon thin film transistor liquid crystal display panel |
TW89113053 | 2000-06-30 | ||
TW89113053A | 2000-06-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020009835A1 true US20020009835A1 (en) | 2002-01-24 |
US6365444B2 US6365444B2 (en) | 2002-04-02 |
Family
ID=21660265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/812,106 Expired - Lifetime US6365444B2 (en) | 2000-06-30 | 2001-03-19 | Process for forming polycrystalline thin film transistor liquid crystal display |
Country Status (3)
Country | Link |
---|---|
US (1) | US6365444B2 (en) |
JP (1) | JP3509014B2 (en) |
TW (1) | TW456048B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6589825B2 (en) * | 2001-05-09 | 2003-07-08 | Lg. Philips Lcd Co., Ltd. | Method for re-forming semiconductor layer in TFT-LCD |
US20060240606A1 (en) * | 2005-04-26 | 2006-10-26 | Nec Lcd Technologies, Ltd. | Method of manufacturing a liquid crystal display device |
US20090068801A1 (en) * | 2007-09-07 | 2009-03-12 | Beijing Boe Optoelectronics Technology Co., Ltd. | Method of manufacturing array substrate of liquid crystal display device |
US20100194719A1 (en) * | 2008-05-29 | 2010-08-05 | Panasonic Corporation | Thin-film transistor, manufacturing method thereof, and electronic apparatus using thin-film transistor |
US20100320467A1 (en) * | 2007-11-14 | 2010-12-23 | Panasonic Corporation | Thin-film transistor, manufacturing method therefor, and electronic device using a thin-film transistor |
US20120305910A1 (en) * | 2011-06-02 | 2012-12-06 | Au Optronics Corporation | Hybrid thin film transistor, manufacturing method thereof and display panel having the same |
US8871586B2 (en) | 2012-10-18 | 2014-10-28 | Globalfoundries Inc. | Methods of reducing material loss in isolation structures by introducing inert atoms into oxide hard mask layer used in growing channel semiconductor material |
CN106229320A (en) * | 2016-09-06 | 2016-12-14 | 武汉华星光电技术有限公司 | The manufacture method of LTPS array base palte |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050053883A (en) * | 2003-12-03 | 2005-06-10 | 삼성전자주식회사 | Thin film transistor array panel for a display |
KR100721555B1 (en) | 2004-08-13 | 2007-05-23 | 삼성에스디아이 주식회사 | Bottom gate thin film transistor and method fabricating thereof |
JP4879530B2 (en) * | 2004-09-08 | 2012-02-22 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP4754798B2 (en) * | 2004-09-30 | 2011-08-24 | 株式会社半導体エネルギー研究所 | Method for manufacturing display device |
JP4754918B2 (en) * | 2004-09-30 | 2011-08-24 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP4801406B2 (en) * | 2004-09-30 | 2011-10-26 | 株式会社半導体エネルギー研究所 | Method for manufacturing liquid crystal display device |
JP4698998B2 (en) * | 2004-09-30 | 2011-06-08 | 株式会社半導体エネルギー研究所 | Method for manufacturing liquid crystal display device |
JP4801407B2 (en) * | 2004-09-30 | 2011-10-26 | 株式会社半導体エネルギー研究所 | Method for manufacturing display device |
JP4781066B2 (en) * | 2004-09-30 | 2011-09-28 | 株式会社半導体エネルギー研究所 | Method for manufacturing display device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100203982B1 (en) * | 1993-03-12 | 1999-06-15 | 야마자끼 순페이 | Semiconductor device and manufacturing method thereof |
US6300659B1 (en) * | 1994-09-30 | 2001-10-09 | Semiconductor Energy Laboratory Co., Ltd. | Thin-film transistor and fabrication method for same |
JP3486240B2 (en) * | 1994-10-20 | 2004-01-13 | 株式会社半導体エネルギー研究所 | Semiconductor device |
US5977559A (en) * | 1995-09-29 | 1999-11-02 | Semiconductor Energy Laboratory Co., Ltd. | Thin-film transistor having a catalyst element in its active regions |
US6063654A (en) * | 1996-02-20 | 2000-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a thin film transistor involving laser treatment |
JP3593212B2 (en) * | 1996-04-27 | 2004-11-24 | 株式会社半導体エネルギー研究所 | Display device |
JPH10135137A (en) * | 1996-10-31 | 1998-05-22 | Semiconductor Energy Lab Co Ltd | Method of forming crystalline semiconductor |
US6218219B1 (en) * | 1997-09-29 | 2001-04-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and fabrication method thereof |
-
2000
- 2000-06-30 TW TW089113053A patent/TW456048B/en not_active IP Right Cessation
-
2001
- 2001-03-06 JP JP2001061866A patent/JP3509014B2/en not_active Expired - Fee Related
- 2001-03-19 US US09/812,106 patent/US6365444B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6589825B2 (en) * | 2001-05-09 | 2003-07-08 | Lg. Philips Lcd Co., Ltd. | Method for re-forming semiconductor layer in TFT-LCD |
US20060240606A1 (en) * | 2005-04-26 | 2006-10-26 | Nec Lcd Technologies, Ltd. | Method of manufacturing a liquid crystal display device |
US7300828B2 (en) * | 2005-04-26 | 2007-11-27 | Nec Lcd Technologies. Ltd. | Method of manufacturing a liquid crystal display device |
US8003451B2 (en) * | 2007-09-07 | 2011-08-23 | Beijing Boe Optoelectronics Technology Co., Ltd. | Method of manufacturing array substrate of liquid crystal display device |
US20090068801A1 (en) * | 2007-09-07 | 2009-03-12 | Beijing Boe Optoelectronics Technology Co., Ltd. | Method of manufacturing array substrate of liquid crystal display device |
US20100320467A1 (en) * | 2007-11-14 | 2010-12-23 | Panasonic Corporation | Thin-film transistor, manufacturing method therefor, and electronic device using a thin-film transistor |
US8436355B2 (en) | 2007-11-14 | 2013-05-07 | Panasonic Corporation | Thin-film transistor, manufacturing method therefor, and electronic device using a thin-film transistor |
US20100194719A1 (en) * | 2008-05-29 | 2010-08-05 | Panasonic Corporation | Thin-film transistor, manufacturing method thereof, and electronic apparatus using thin-film transistor |
US9330925B2 (en) | 2008-05-29 | 2016-05-03 | Joled Inc. | Thin-film transistor, manufacturing method thereof, and electronic apparatus using thin-film transistor |
US20120305910A1 (en) * | 2011-06-02 | 2012-12-06 | Au Optronics Corporation | Hybrid thin film transistor, manufacturing method thereof and display panel having the same |
US8829511B2 (en) * | 2011-06-02 | 2014-09-09 | Au Optronics Corporation | Hybrid thin film transistor, manufacturing method thereof and display panel having the same |
US8871586B2 (en) | 2012-10-18 | 2014-10-28 | Globalfoundries Inc. | Methods of reducing material loss in isolation structures by introducing inert atoms into oxide hard mask layer used in growing channel semiconductor material |
CN106229320A (en) * | 2016-09-06 | 2016-12-14 | 武汉华星光电技术有限公司 | The manufacture method of LTPS array base palte |
Also Published As
Publication number | Publication date |
---|---|
TW456048B (en) | 2001-09-21 |
JP2002124683A (en) | 2002-04-26 |
JP3509014B2 (en) | 2004-03-22 |
US6365444B2 (en) | 2002-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6365444B2 (en) | Process for forming polycrystalline thin film transistor liquid crystal display | |
US7968886B2 (en) | Semiconductor integrated circuit and method of fabricating same | |
KR100287776B1 (en) | Semiconductor device and manufacturing method thereof | |
US8183135B2 (en) | Method for manufacturing thin film transistor having hydrogen feeding layer formed between a metal gate and a gate insulating film | |
JPH0758339A (en) | Semiconductor device and its production | |
KR20050001937A (en) | Liquid crystal display panel and fabricating method thereof | |
US6541323B2 (en) | Method for fabricating polysilicon thin film transistor | |
US7071040B2 (en) | Method of fabricating thin film transistor | |
US20020137310A1 (en) | Method and apparatus for fabricating a semiconductor device | |
KR101274697B1 (en) | Silicon crystallization method and method for manufacturing thin film transistor using the same | |
US6498059B2 (en) | Method for fabricating thin film transistor | |
US6534350B2 (en) | Method for fabricating a low temperature polysilicon thin film transistor incorporating channel passivation step | |
KR100525436B1 (en) | Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD | |
KR100815894B1 (en) | Method of fabricating CMOS Poly Silicon TFT having LDD structure | |
KR100504538B1 (en) | Method For Crystallizing Amorphous Layer And Method For Fabricating Liquid Crystal Display Device By Using Said Method | |
US6482685B1 (en) | Method for fabricating a low temperature polysilicon thin film transistor incorporating multi-layer channel passivation step | |
JPH11307783A (en) | Semiconductor device and its manufacture | |
JPH07115205A (en) | Manufacture of polycrystalline si tft | |
CN108878456B (en) | Method for manufacturing crystalline metal oxide layer, active element substrate and manufacturing method | |
KR100525434B1 (en) | Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD | |
KR100421906B1 (en) | Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD | |
KR100434314B1 (en) | Process for crystallizing amorphous silicon and its application - fabricating method of TFT-LCD | |
JP2004064056A (en) | Manufacturing method of semiconductor integrated circuit | |
KR20050100843A (en) | Thin film transistor array substrate of poly-sillicon type and fabricating method thereof | |
JPH11307776A (en) | Manufacture for thin film transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HANNSTAR DISPLAY CORPORATION, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, CHIH-CHANG;KUNG, JERRY JI-HO;REEL/FRAME:011630/0258 Effective date: 20010307 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |