US1331997A - Power device - Google Patents

Power device Download PDF

Info

Publication number
US1331997A
US1331997A US239339A US23933918A US1331997A US 1331997 A US1331997 A US 1331997A US 239339 A US239339 A US 239339A US 23933918 A US23933918 A US 23933918A US 1331997 A US1331997 A US 1331997A
Authority
US
United States
Prior art keywords
disk
pockets
disks
rotor
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US239339A
Inventor
Russelle E Neal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US239339A priority Critical patent/US1331997A/en
Application granted granted Critical
Publication of US1331997A publication Critical patent/US1331997A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/007Propulsive discs, i.e. discs having the surface specially adapted for propulsion purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/06Wheels with compression spokes
    • B60B1/08Wheels with compression spokes formed by casting

Definitions

  • my invention is applicableto airplane motive powers of all kinds and as will be seen, is simple to manufac tureand eflicieiit" in its operation.
  • Theffl fundamental principle underlying myjinvention isthe-use of'a substantial or partial -vacuum. I obtain-such a vacuum by-rapidly rotating-a disk or member, which member is provided atone side with pockets 'haj 'ving open ends, while the other side is'entirely smooth or ,cl seaand is not provided with any openings'or pockets.
  • thepockets would pre'ferably be rarranged in a zoneifrom; the periphery SHE-inwardly,-;and..such a disk-.wouldbe about fl thick.
  • These'pockets may be arrangedeither in radial or circular series-or rowsyor in any manner whatsoever, and the longitudinal axes of these pocketsinay be parallel to the axis of rotation or they may be ins clined Lin different directions, depending upon the particularuse to which'thedevlc'e is to be put, and on otheriioircumstances.
  • Figure 1 is a perspective view of a part of a power device embodying my invention.
  • F ig. 2 is a-sectional .viewof the same.
  • Fig. 3 is a plan view of the same.
  • Fig. 7 is another view-partly. in section of another embodiment of my invention.
  • Figs. 1,2 and-3,10 designates adisk made of suitable ,mat'erial such as nickelsteel, the diameter-of said disk being say 24" and. its thickness-1,the circumference of the disk being smoothand cylindricalwhile its two end surfaces are plane and perpendicular to its axis of rotation, the. disk being shown as secured rigidly to a shaft 11 which may be assumed as suitably journaled inthe frame of an airplaneland drivenin any-suit able manner, say so as to give itf'a' speediof about 6000 revolutions per minute. O n one of its'faces, which isthe upper face in the drawings, the'said disk is providedwith a series of pockets 12. which extend into'the' disk but not through it, that istor say, the lower ends of said. pockets are closed", and
  • the arrangement of the pockets relatively to each other may vary and I do not wish to restrict myself to the particular arrange ment shown, according to which the pockets form two annular series at different distances from the shaft, both series of pockets being near the periphery of the disk and therefore within the outer third of its face, and the pockets of one series are staggered relatively to those of the other series.
  • the disk or rotor 13, shown in Fig. t, differs from the one described above, chiefly the fact that the upper face of the disk instead of being plane is conical, the pockets 12 being arrangedsubstantially in the same manner as the pockets 12.
  • the longitudinal axes of the pockets 12 or 12 are vertical, that is to not, however,
  • Fig. 7 I have shown that a plurality of disks or rotors of the character therein re ferred to may be mounted cnthe same shaft 11 to rotate about the same axis.
  • Fig. 7 shows four disks, each of them corresponding to one of the forms hereinbefore described,'and three of these disks are assumed to be rigidly secured to the shaft 11, so as to rotate therewith in the same direction.
  • the disks need not all be arranged to rotate in the same direction, I have indicated one of the said disks as mounted loosely on the shaft 11, so that this disk may be rotated in a direction I opposite the other disks by any suitable means, say the driving belt indicated at 14..
  • This disk would have thrust bearings as indicated at 15 so that the longitudinal pressure acting on this disk will be transmitted to the shaft 11, so that the longi'tudinal thrust exerted by all of the disks will be increased or combined, it being understood thatthe disks operate in multiple, as it were, and thus I produce a device having a greater capacity than if a single disk were employed.
  • both the end pockets are closed at one end and their open ends face toward one rotor.
  • the disk rotates (whether such disk has plane or conical end surfaces) it will cause air to be thrown outwardly by centrifugal side of the disk or force along both end surfaces of the rotor.
  • This outward movement of the air will tend to draw the air out of the pockets at their open ends and will thus produce a partial vacuum on that side of the rotor toward which the said pockets open.
  • This axial movement or thrust may be utilized in a great many different ways.
  • the rotor might be secured to a vertical shaft journaled in the frame of an airplane and the upward thrust of the disks or rotors utilized directly for a lifting effect on the airplane, or on the other hand the shaft may be horizontal and the power produced utilized for propulsion.
  • the rotor might be loose on the shaft as has been indicated for one of the rotors inoFig. 7.
  • the longitudinal movement of the 'motor might be employed to operate say a device which would indicate t e rotary speed of the appliance, or such longitudinal motion might exert power to operate any suitable device, for instance, the disk might be connected with a piston in such a manner as to shift such piston lengthwise in a cylinder and produce either pressure or a partial Vacuum in such cylinder for the purpose of operating or. controlling attachments of various characters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

R. E. NEAL.
POWER DEVICE.
APPLlCATlON FILED JUNE 10. 1918.
1 1,997. Patented Feb. 24, 1920.
mum.
UNITED STATES PATENT OFFICE.
RUSSELL. a. want, or. PALISADES, NEW messy.
.PoWER DEVICE.
' Applieation filed June 10, 1918. Serial No. 239,339.
provide a new and; improved power device whereby" such a device-may be operated with etfi'ciency, promptness and at the same time mhave a large 7 capacity for-the power "desired to be obtained. I
More particularly, my invention "is applicableto airplane motive powers of all kinds and as will be seen, is simple to manufac tureand eflicieiit" in its operation. *Theffl fundamental principle underlying myjinvention isthe-use of'a substantial or partial -vacuum. I obtain-such a vacuum by-rapidly rotating-a disk or member, which member is provided atone side with pockets 'haj 'ving open ends, while the other side is'entirely smooth or ,cl seaand is not provided with any openings'or pockets. ItisQa V well-established principle thatwhen recesses or pocketsare' provided in a rapidly moving object, there occurs an exhaustion of air from the recesses or-pock'etsanjd a 'creatfion therein of vacuum or a partial vacuum. Thus, it 'onestands beside a fast-moving train the exhaustion f air fr'omthepockets or -recesses'th'ereof will tend to drawhim toward the train due to the creation inthe said pockets and recesses of partial vacuum. In'the same nanner the rapid rotation of such la jclisk willcause partial vacuum to be formed? 011113118 side having the pockets; WVith the suction efi'ect or vacuum-effectthus produced on one side of the disk, "and the atmospheric air pressure 'actingon the other sidel'ofthe disk, the difference in pressures will-cause the "disk to be InOVe'd: lengthwise of itslaxis of rotation, and to: move-with said disk, any shaft or other member securedto," ore properly connected with, said disk. The. pockets "above referred to ;'arepreferably 'xarranged: only at the jouter portion of the disk and on a .zoneextending inward-1y onlyiabout 3; fromz the periphery. For instance, if the. diameter of thed-isk is 2,4,thepockets would pre'ferably be rarranged in a zoneifrom; the periphery SHE-inwardly,-;and..such a disk-.wouldbe about fl thick. These'pockets may be arrangedeither in radial or circular series-or rowsyor in any manner whatsoever, and the longitudinal axes of these pocketsinay be parallel to the axis of rotation or they may be ins clined Lin different directions, depending upon the particularuse to which'thedevlc'e is to be put, and on otheriioircumstances.
The centrifugal force action as a result-10f the rapid rotation of the d-isk 'tendsto drawair from said I pockets and this produces a partial vacuum on the side ofthedisk to- Evardwhich the open ends of the pockets ace.
When such a 'disk'isap lied; to "an air plane and made to rotate a out an upright axis, Withthe open ends of. the pockets facing'upwardly, the difference of. pressures will produce an upthrust onthe disk and' on the airplane. 'In certain cases it is necessary'to have two such disks revolving in opposite directions'for the purposeof co pensation and for securing azbetter-gyrb-v scopi efi'ect." Similarly the axial thrust ro-v duced by my invention can be utilize :v to operate or to control various partsor mechanisms, V
In the accompanying drawings,'Figure 1 is a perspective view of a part of a power device embodying my invention. F ig. 2 is a-sectional .viewof the same. Fig. 3 is a plan view of the same. Figs. 4, 5 andG-are side views, partly in section, showing other forms of my invention and Fig. 7 is another view-partly. in section of another embodiment of my invention.
Similar characters of reference indicate oer-responding parts throughout. the various vlews. i
'In Figs. 1,2 and-3,10 designates adisk made of suitable ,mat'erial such as nickelsteel, the diameter-of said disk being say 24" and. its thickness-1,the circumference of the disk being smoothand cylindricalwhile its two end surfaces are plane and perpendicular to its axis of rotation, the. disk being shown as secured rigidly to a shaft 11 which may be assumed as suitably journaled inthe frame of an airplaneland drivenin any-suit able manner, say so as to give itf'a' speediof about 6000 revolutions per minute. O n one of its'faces, which isthe upper face in the drawings, the'said disk is providedwith a series of pockets 12. which extend into'the' disk but not through it, that istor say, the lower ends of said. pockets are closed", and
s e ce i of Letters Patent Patented-Feb. 24,1920.
the lower-surfaceof the 'd isk is unbroken. it
The arrangement of the pockets relatively to each other may vary and I do not wish to restrict myself to the particular arrange ment shown, according to which the pockets form two annular series at different distances from the shaft, both series of pockets being near the periphery of the disk and therefore within the outer third of its face, and the pockets of one series are staggered relatively to those of the other series.
' The disk or rotor 13, shown in Fig. t, differs from the one described above, chiefly the fact that the upper face of the disk instead of being plane is conical, the pockets 12 being arrangedsubstantially in the same manner as the pockets 12.
- In Fig. 5 the lower surface of the rotor 13 is conical, tapering in the opposite direction to the upper face, but otherwise the construction is the same as in Fig. 4.
In each of the forms of construction so far described in detail, the longitudinal axes of the pockets 12 or 12 are vertical, that is to not, however,
arrangement, and 1n Fig. 6 I have illustratedsay parallel to the axis of rotation. I do restrict myself to this specific a disk of the same character as in Figs. 1, 2
and 3, but having its pockets 12 so arranged that their longitudinal axes are inclined and converge toward the axis of rotation, the particular arrangement shown having the outer series of pockets with their longitudinal axes converging downwardly while the longitudinal axes of the inner series of pockets converge upwardly. I may also, if desired, employ radially disposed grooves, annular or spiral grooves, or'any other suitable means of indentation.
In Fig. 7 I have shown that a plurality of disks or rotors of the character therein re ferred to may be mounted cnthe same shaft 11 to rotate about the same axis. Fig. 7 shows four disks, each of them corresponding to one of the forms hereinbefore described,'and three of these disks are assumed to be rigidly secured to the shaft 11, so as to rotate therewith in the same direction.
- In order to make it clear that the disks need not all be arranged to rotate in the same direction, I have indicated one of the said disks as mounted loosely on the shaft 11, so that this disk may be rotated in a direction I opposite the other disks by any suitable means, say the driving belt indicated at 14.. This disk, however, would have thrust bearings as indicated at 15 so that the longitudinal pressure acting on this disk will be transmitted to the shaft 11, so that the longi'tudinal thrust exerted by all of the disks will be increased or combined, it being understood thatthe disks operate in multiple, as it were, and thus I produce a device having a greater capacity than if a single disk were employed.
- "It will be observed that in each of the forms of construction shown, both the end pockets are closed at one end and their open ends face toward one rotor. As the disk rotates (whether such disk has plane or conical end surfaces) it will cause air to be thrown outwardly by centrifugal side of the disk or force along both end surfaces of the rotor. I
This outward movement of the air will tend to draw the air out of the pockets at their open ends and will thus produce a partial vacuum on that side of the rotor toward which the said pockets open. On theother side or face of the rotor there will be atmospheric pressure. Thus there will be a preponderance of. pressure on one side and therefore a tendency to move the rotor lengthwise of its axis of rotation. This axial movement or thrust may be utilized in a great many different ways. As suggested above, the rotor might be secured to a vertical shaft journaled in the frame of an airplane and the upward thrust of the disks or rotors utilized directly for a lifting effect on the airplane, or on the other hand the shaft may be horizontal and the power produced utilized for propulsion. I do not, however, restrict myself to this particular application. It will be observed that the rotor might be loose on the shaft as has been indicated for one of the rotors inoFig. 7. The longitudinal movement of the 'motor might be employed to operate say a device which would indicate t e rotary speed of the appliance, or such longitudinal motion might exert power to operate any suitable device, for instance, the disk might be connected with a piston in such a manner as to shift such piston lengthwise in a cylinder and produce either pressure or a partial Vacuum in such cylinder for the purpose of operating or. controlling attachments of various characters.
I have illustrated and described preferred and satisfactory embodiments of my invention, but it is obvious that changes may be made therein within the spirit and scope member will produce a partial vacuum on members and an axial member on which they such side of said member. are mounted in such a manner that the axial 3. As a means for producing differences thrust of all of said rotary members will be of pressure, a rotary member provided with transmitted to said axial member, each of 5 pockets having open ends facing toward one said rotary members being provided with 15 side of said member and so arranged that pockets having open ends facing toward the rotation of said member will produce a parsame end of said axial member. tial vacuum on such side of said member. In testimony that I claim the foregoing as 4. As a means for producing differences my invention, I have signed my name. 10 of pressure, a plurality of coaxial rotary I RUSSELL E. NEAL.
US239339A 1918-06-10 1918-06-10 Power device Expired - Lifetime US1331997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US239339A US1331997A (en) 1918-06-10 1918-06-10 Power device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US239339A US1331997A (en) 1918-06-10 1918-06-10 Power device

Publications (1)

Publication Number Publication Date
US1331997A true US1331997A (en) 1920-02-24

Family

ID=22901734

Family Applications (1)

Application Number Title Priority Date Filing Date
US239339A Expired - Lifetime US1331997A (en) 1918-06-10 1918-06-10 Power device

Country Status (1)

Country Link
US (1) US1331997A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645413A (en) * 1983-05-17 1987-02-24 Leybold-Heraeus Gmbh Friction pump
US4872484A (en) * 1988-12-12 1989-10-10 John Hickey System for controlling the flow of a fluid medium relative to an object
US5075564A (en) * 1989-12-19 1991-12-24 Hickey John J Combined solar and wind powered generator with spiral surface pattern
US5254876A (en) * 1992-05-28 1993-10-19 Hickey John J Combined solar and wind powered generator with spiral blades
US5951243A (en) * 1997-07-03 1999-09-14 Cooper; Paul V. Rotor bearing system for molten metal pumps
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6345964B1 (en) 1996-12-03 2002-02-12 Paul V. Cooper Molten metal pump with metal-transfer conduit molten metal pump
US6398525B1 (en) 1998-08-11 2002-06-04 Paul V. Cooper Monolithic rotor and rigid coupling
US6565334B1 (en) 1998-07-20 2003-05-20 Phillip James Bradbury Axial flow fan having counter-rotating dual impeller blade arrangement
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US20040076533A1 (en) * 2002-07-12 2004-04-22 Cooper Paul V. Couplings for molten metal devices
US20040115079A1 (en) * 2002-07-12 2004-06-17 Cooper Paul V. Protective coatings for molten metal devices
US20050013713A1 (en) * 2003-07-14 2005-01-20 Cooper Paul V. Pump with rotating inlet
US20050013715A1 (en) * 2003-07-14 2005-01-20 Cooper Paul V. System for releasing gas into molten metal
US6856941B2 (en) 1998-07-20 2005-02-15 Minebea Co., Ltd. Impeller blade for axial flow fan having counter-rotating impellers
US20050053499A1 (en) * 2003-07-14 2005-03-10 Cooper Paul V. Support post system for molten metal pump
US7470392B2 (en) 2003-07-14 2008-12-30 Cooper Paul V Molten metal pump components
US20110133374A1 (en) * 2009-08-07 2011-06-09 Cooper Paul V Systems and methods for melting scrap metal
US20110135457A1 (en) * 2009-09-30 2011-06-09 Cooper Paul V Molten metal pump rotor
US20110133051A1 (en) * 2009-08-07 2011-06-09 Cooper Paul V Shaft and post tensioning device
US20110140319A1 (en) * 2007-06-21 2011-06-16 Cooper Paul V System and method for degassing molten metal
US20110142606A1 (en) * 2009-08-07 2011-06-16 Cooper Paul V Quick submergence molten metal pump
US20110148012A1 (en) * 2009-09-09 2011-06-23 Cooper Paul V Immersion heater for molten metal
US20110163486A1 (en) * 2009-08-07 2011-07-07 Cooper Paul V Rotary degassers and components therefor
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
FR3003208A1 (en) * 2013-03-15 2014-09-19 Jean Perret DEVICE FOR APPLYING TO A OBJECT A STRENGTH DUE TO ATMOSPHERIC PRESSURE
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11358216B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device
WO2024216309A1 (en) * 2023-04-18 2024-10-24 Huber Franz Ferdinand Propeller

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645413A (en) * 1983-05-17 1987-02-24 Leybold-Heraeus Gmbh Friction pump
US4872484A (en) * 1988-12-12 1989-10-10 John Hickey System for controlling the flow of a fluid medium relative to an object
US5075564A (en) * 1989-12-19 1991-12-24 Hickey John J Combined solar and wind powered generator with spiral surface pattern
US5254876A (en) * 1992-05-28 1993-10-19 Hickey John J Combined solar and wind powered generator with spiral blades
US6345964B1 (en) 1996-12-03 2002-02-12 Paul V. Cooper Molten metal pump with metal-transfer conduit molten metal pump
US5951243A (en) * 1997-07-03 1999-09-14 Cooper; Paul V. Rotor bearing system for molten metal pumps
US6565334B1 (en) 1998-07-20 2003-05-20 Phillip James Bradbury Axial flow fan having counter-rotating dual impeller blade arrangement
US6856941B2 (en) 1998-07-20 2005-02-15 Minebea Co., Ltd. Impeller blade for axial flow fan having counter-rotating impellers
US6398525B1 (en) 1998-08-11 2002-06-04 Paul V. Cooper Monolithic rotor and rigid coupling
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US20080230966A1 (en) * 2000-08-28 2008-09-25 Cooper Paul V Scrap melter and impeller therefore
US20040262825A1 (en) * 2000-08-28 2004-12-30 Cooper Paul V. Scrap melter and impeller therefore
US9435343B2 (en) 2002-07-12 2016-09-06 Molten Meal Equipment Innovations, LLC Gas-transfer foot
US20080279704A1 (en) * 2002-07-12 2008-11-13 Cooper Paul V Pump with rotating inlet
US20040115079A1 (en) * 2002-07-12 2004-06-17 Cooper Paul V. Protective coatings for molten metal devices
US8529828B2 (en) 2002-07-12 2013-09-10 Paul V. Cooper Molten metal pump components
US8440135B2 (en) 2002-07-12 2013-05-14 Paul V. Cooper System for releasing gas into molten metal
US20080211147A1 (en) * 2002-07-12 2008-09-04 Cooper Paul V System for releasing gas into molten metal
US20040076533A1 (en) * 2002-07-12 2004-04-22 Cooper Paul V. Couplings for molten metal devices
US9034244B2 (en) 2002-07-12 2015-05-19 Paul V. Cooper Gas-transfer foot
US8409495B2 (en) 2002-07-12 2013-04-02 Paul V. Cooper Rotor with inlet perimeters
US20090054167A1 (en) * 2002-07-12 2009-02-26 Cooper Paul V Molten metal pump components
US7507367B2 (en) 2002-07-12 2009-03-24 Cooper Paul V Protective coatings for molten metal devices
US20090140013A1 (en) * 2002-07-12 2009-06-04 Cooper Paul V Protective coatings for molten metal devices
US7731891B2 (en) 2002-07-12 2010-06-08 Cooper Paul V Couplings for molten metal devices
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US8178037B2 (en) 2002-07-12 2012-05-15 Cooper Paul V System for releasing gas into molten metal
US8110141B2 (en) 2002-07-12 2012-02-07 Cooper Paul V Pump with rotating inlet
US20110220771A1 (en) * 2003-07-14 2011-09-15 Cooper Paul V Support post clamps for molten metal pumps
US7906068B2 (en) 2003-07-14 2011-03-15 Cooper Paul V Support post system for molten metal pump
US20050013713A1 (en) * 2003-07-14 2005-01-20 Cooper Paul V. Pump with rotating inlet
US20050013715A1 (en) * 2003-07-14 2005-01-20 Cooper Paul V. System for releasing gas into molten metal
US20050053499A1 (en) * 2003-07-14 2005-03-10 Cooper Paul V. Support post system for molten metal pump
US8501084B2 (en) 2003-07-14 2013-08-06 Paul V. Cooper Support posts for molten metal pumps
US8075837B2 (en) 2003-07-14 2011-12-13 Cooper Paul V Pump with rotating inlet
US8475708B2 (en) 2003-07-14 2013-07-02 Paul V. Cooper Support post clamps for molten metal pumps
US7402276B2 (en) 2003-07-14 2008-07-22 Cooper Paul V Pump with rotating inlet
US7470392B2 (en) 2003-07-14 2008-12-30 Cooper Paul V Molten metal pump components
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US10195664B2 (en) 2007-06-21 2019-02-05 Molten Metal Equipment Innovations, Llc Multi-stage impeller for molten metal
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US11759854B2 (en) 2007-06-21 2023-09-19 Molten Metal Equipment Innovations, Llc Molten metal transfer structure and method
US11020798B2 (en) 2007-06-21 2021-06-01 Molten Metal Equipment Innovations, Llc Method of transferring molten metal
US10562097B2 (en) 2007-06-21 2020-02-18 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US11185916B2 (en) 2007-06-21 2021-11-30 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel with pump
US9566645B2 (en) 2007-06-21 2017-02-14 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US10458708B2 (en) 2007-06-21 2019-10-29 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US11167345B2 (en) 2007-06-21 2021-11-09 Molten Metal Equipment Innovations, Llc Transfer system with dual-flow rotor
US10352620B2 (en) 2007-06-21 2019-07-16 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US20110140319A1 (en) * 2007-06-21 2011-06-16 Cooper Paul V System and method for degassing molten metal
US10345045B2 (en) 2007-06-21 2019-07-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US8753563B2 (en) 2007-06-21 2014-06-17 Paul V. Cooper System and method for degassing molten metal
US10274256B2 (en) 2007-06-21 2019-04-30 Molten Metal Equipment Innovations, Llc Vessel transfer systems and devices
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US9017597B2 (en) 2007-06-21 2015-04-28 Paul V. Cooper Transferring molten metal using non-gravity assist launder
US11103920B2 (en) 2007-06-21 2021-08-31 Molten Metal Equipment Innovations, Llc Transfer structure with molten metal pump support
US10072891B2 (en) 2007-06-21 2018-09-11 Molten Metal Equipment Innovations, Llc Transferring molten metal using non-gravity assist launder
US9982945B2 (en) 2007-06-21 2018-05-29 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US9925587B2 (en) 2007-06-21 2018-03-27 Molten Metal Equipment Innovations, Llc Method of transferring molten metal from a vessel
US9909808B2 (en) 2007-06-21 2018-03-06 Molten Metal Equipment Innovations, Llc System and method for degassing molten metal
US9383140B2 (en) 2007-06-21 2016-07-05 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US9862026B2 (en) 2007-06-21 2018-01-09 Molten Metal Equipment Innovations, Llc Method of forming transfer well
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9855600B2 (en) 2007-06-21 2018-01-02 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US11130173B2 (en) 2007-06-21 2021-09-28 Molten Metal Equipment Innovations, LLC. Transfer vessel with dividing wall
US9581388B2 (en) 2007-06-21 2017-02-28 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US20110163486A1 (en) * 2009-08-07 2011-07-07 Cooper Paul V Rotary degassers and components therefor
US9377028B2 (en) 2009-08-07 2016-06-28 Molten Metal Equipment Innovations, Llc Tensioning device extending beyond component
US9506129B2 (en) 2009-08-07 2016-11-29 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US9470239B2 (en) 2009-08-07 2016-10-18 Molten Metal Equipment Innovations, Llc Threaded tensioning device
US9464636B2 (en) 2009-08-07 2016-10-11 Molten Metal Equipment Innovations, Llc Tension device graphite component used in molten metal
US20110133374A1 (en) * 2009-08-07 2011-06-09 Cooper Paul V Systems and methods for melting scrap metal
US9422942B2 (en) 2009-08-07 2016-08-23 Molten Metal Equipment Innovations, Llc Tension device with internal passage
US9657578B2 (en) 2009-08-07 2017-05-23 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US9382599B2 (en) 2009-08-07 2016-07-05 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US10570745B2 (en) 2009-08-07 2020-02-25 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US9328615B2 (en) 2009-08-07 2016-05-03 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US8449814B2 (en) 2009-08-07 2013-05-28 Paul V. Cooper Systems and methods for melting scrap metal
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US9080577B2 (en) 2009-08-07 2015-07-14 Paul V. Cooper Shaft and post tensioning device
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US20110142606A1 (en) * 2009-08-07 2011-06-16 Cooper Paul V Quick submergence molten metal pump
US20110133051A1 (en) * 2009-08-07 2011-06-09 Cooper Paul V Shaft and post tensioning device
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US20110148012A1 (en) * 2009-09-09 2011-06-23 Cooper Paul V Immersion heater for molten metal
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US10309725B2 (en) 2009-09-09 2019-06-04 Molten Metal Equipment Innovations, Llc Immersion heater for molten metal
US20110135457A1 (en) * 2009-09-30 2011-06-09 Cooper Paul V Molten metal pump rotor
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9482469B2 (en) 2010-05-12 2016-11-01 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US10641279B2 (en) 2013-03-13 2020-05-05 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened tip
US11391293B2 (en) 2013-03-13 2022-07-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10126058B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Molten metal transferring vessel
US10302361B2 (en) 2013-03-14 2019-05-28 Molten Metal Equipment Innovations, Llc Transfer vessel for molten metal pumping device
US9587883B2 (en) 2013-03-14 2017-03-07 Molten Metal Equipment Innovations, Llc Ladle with transfer conduit
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US10126059B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Controlled molten metal flow from transfer vessel
US10322451B2 (en) 2013-03-15 2019-06-18 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10307821B2 (en) 2013-03-15 2019-06-04 Molten Metal Equipment Innovations, Llc Transfer pump launder system
FR3003208A1 (en) * 2013-03-15 2014-09-19 Jean Perret DEVICE FOR APPLYING TO A OBJECT A STRENGTH DUE TO ATMOSPHERIC PRESSURE
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US11939994B2 (en) 2014-07-02 2024-03-26 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10465688B2 (en) 2014-07-02 2019-11-05 Molten Metal Equipment Innovations, Llc Coupling and rotor shaft for molten metal devices
US11286939B2 (en) 2014-07-02 2022-03-29 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11933324B2 (en) 2015-02-02 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11098720B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US11098719B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11519414B2 (en) 2016-01-13 2022-12-06 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US10641270B2 (en) 2016-01-13 2020-05-05 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US12031550B2 (en) 2017-11-17 2024-07-09 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11976672B2 (en) 2017-11-17 2024-05-07 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11358217B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc Method for melting solid metal
US11858037B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11858036B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc System and method to feed mold with molten metal
US11850657B2 (en) 2019-05-17 2023-12-26 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11931802B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal controlled flow launder
US11931803B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal transfer system and method
US11759853B2 (en) 2019-05-17 2023-09-19 Molten Metal Equipment Innovations, Llc Melting metal on a raised surface
US11471938B2 (en) 2019-05-17 2022-10-18 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11358216B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device
WO2024216309A1 (en) * 2023-04-18 2024-10-24 Huber Franz Ferdinand Propeller

Similar Documents

Publication Publication Date Title
US1331997A (en) Power device
US860590A (en) Clutch.
US1104542A (en) Aeronautical machine.
US639406A (en) Disintegrator.
US3098820A (en) Centrifuge
US1360929A (en) Rotary screen
US995725A (en) Fan.
US968653A (en) Rotary engine.
US945592A (en) Centrifugal separator.
US111538A (en) Improvement in double-acting rotary engines
US1129934A (en) Propeller.
US1377210A (en) Pump
US587319A (en) Reversing mechanism
US1179078A (en) Turbine.
US905885A (en) Fluid-gear.
US398301A (en) Combined centrifugal and screw pump
US954539A (en) Reversible propeller.
US1864316A (en) Airplane propeller
US1079094A (en) Clutch.
US2035175A (en) Aeronautical wheel
US529916A (en) Propeller
US637959A (en) Means for propelling boats.
US630499A (en) Submerged feathering-propeller.
US547404A (en) Thomas ii
US733229A (en) Rotary-pump.