US1331997A - Power device - Google Patents
Power device Download PDFInfo
- Publication number
- US1331997A US1331997A US239339A US23933918A US1331997A US 1331997 A US1331997 A US 1331997A US 239339 A US239339 A US 239339A US 23933918 A US23933918 A US 23933918A US 1331997 A US1331997 A US 1331997A
- Authority
- US
- United States
- Prior art keywords
- disk
- pockets
- disks
- rotor
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/007—Propulsive discs, i.e. discs having the surface specially adapted for propulsion purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B1/00—Spoked wheels; Spokes thereof
- B60B1/06—Wheels with compression spokes
- B60B1/08—Wheels with compression spokes formed by casting
Definitions
- my invention is applicableto airplane motive powers of all kinds and as will be seen, is simple to manufac tureand eflicieiit" in its operation.
- Theffl fundamental principle underlying myjinvention isthe-use of'a substantial or partial -vacuum. I obtain-such a vacuum by-rapidly rotating-a disk or member, which member is provided atone side with pockets 'haj 'ving open ends, while the other side is'entirely smooth or ,cl seaand is not provided with any openings'or pockets.
- thepockets would pre'ferably be rarranged in a zoneifrom; the periphery SHE-inwardly,-;and..such a disk-.wouldbe about fl thick.
- These'pockets may be arrangedeither in radial or circular series-or rowsyor in any manner whatsoever, and the longitudinal axes of these pocketsinay be parallel to the axis of rotation or they may be ins clined Lin different directions, depending upon the particularuse to which'thedevlc'e is to be put, and on otheriioircumstances.
- Figure 1 is a perspective view of a part of a power device embodying my invention.
- F ig. 2 is a-sectional .viewof the same.
- Fig. 3 is a plan view of the same.
- Fig. 7 is another view-partly. in section of another embodiment of my invention.
- Figs. 1,2 and-3,10 designates adisk made of suitable ,mat'erial such as nickelsteel, the diameter-of said disk being say 24" and. its thickness-1,the circumference of the disk being smoothand cylindricalwhile its two end surfaces are plane and perpendicular to its axis of rotation, the. disk being shown as secured rigidly to a shaft 11 which may be assumed as suitably journaled inthe frame of an airplaneland drivenin any-suit able manner, say so as to give itf'a' speediof about 6000 revolutions per minute. O n one of its'faces, which isthe upper face in the drawings, the'said disk is providedwith a series of pockets 12. which extend into'the' disk but not through it, that istor say, the lower ends of said. pockets are closed", and
- the arrangement of the pockets relatively to each other may vary and I do not wish to restrict myself to the particular arrange ment shown, according to which the pockets form two annular series at different distances from the shaft, both series of pockets being near the periphery of the disk and therefore within the outer third of its face, and the pockets of one series are staggered relatively to those of the other series.
- the disk or rotor 13, shown in Fig. t, differs from the one described above, chiefly the fact that the upper face of the disk instead of being plane is conical, the pockets 12 being arrangedsubstantially in the same manner as the pockets 12.
- the longitudinal axes of the pockets 12 or 12 are vertical, that is to not, however,
- Fig. 7 I have shown that a plurality of disks or rotors of the character therein re ferred to may be mounted cnthe same shaft 11 to rotate about the same axis.
- Fig. 7 shows four disks, each of them corresponding to one of the forms hereinbefore described,'and three of these disks are assumed to be rigidly secured to the shaft 11, so as to rotate therewith in the same direction.
- the disks need not all be arranged to rotate in the same direction, I have indicated one of the said disks as mounted loosely on the shaft 11, so that this disk may be rotated in a direction I opposite the other disks by any suitable means, say the driving belt indicated at 14..
- This disk would have thrust bearings as indicated at 15 so that the longitudinal pressure acting on this disk will be transmitted to the shaft 11, so that the longi'tudinal thrust exerted by all of the disks will be increased or combined, it being understood thatthe disks operate in multiple, as it were, and thus I produce a device having a greater capacity than if a single disk were employed.
- both the end pockets are closed at one end and their open ends face toward one rotor.
- the disk rotates (whether such disk has plane or conical end surfaces) it will cause air to be thrown outwardly by centrifugal side of the disk or force along both end surfaces of the rotor.
- This outward movement of the air will tend to draw the air out of the pockets at their open ends and will thus produce a partial vacuum on that side of the rotor toward which the said pockets open.
- This axial movement or thrust may be utilized in a great many different ways.
- the rotor might be secured to a vertical shaft journaled in the frame of an airplane and the upward thrust of the disks or rotors utilized directly for a lifting effect on the airplane, or on the other hand the shaft may be horizontal and the power produced utilized for propulsion.
- the rotor might be loose on the shaft as has been indicated for one of the rotors inoFig. 7.
- the longitudinal movement of the 'motor might be employed to operate say a device which would indicate t e rotary speed of the appliance, or such longitudinal motion might exert power to operate any suitable device, for instance, the disk might be connected with a piston in such a manner as to shift such piston lengthwise in a cylinder and produce either pressure or a partial Vacuum in such cylinder for the purpose of operating or. controlling attachments of various characters.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
R. E. NEAL.
POWER DEVICE.
APPLlCATlON FILED JUNE 10. 1918.
1 1,997. Patented Feb. 24, 1920.
mum.
UNITED STATES PATENT OFFICE.
RUSSELL. a. want, or. PALISADES, NEW messy.
.PoWER DEVICE.
' Applieation filed June 10, 1918. Serial No. 239,339.
provide a new and; improved power device whereby" such a device-may be operated with etfi'ciency, promptness and at the same time mhave a large 7 capacity for-the power "desired to be obtained. I
More particularly, my invention "is applicableto airplane motive powers of all kinds and as will be seen, is simple to manufac tureand eflicieiit" in its operation. *Theffl fundamental principle underlying myjinvention isthe-use of'a substantial or partial -vacuum. I obtain-such a vacuum by-rapidly rotating-a disk or member, which member is provided atone side with pockets 'haj 'ving open ends, while the other side is'entirely smooth or ,cl seaand is not provided with any openings'or pockets. ItisQa V well-established principle thatwhen recesses or pocketsare' provided in a rapidly moving object, there occurs an exhaustion of air from the recesses or-pock'etsanjd a 'creatfion therein of vacuum or a partial vacuum. Thus, it 'onestands beside a fast-moving train the exhaustion f air fr'omthepockets or -recesses'th'ereof will tend to drawhim toward the train due to the creation inthe said pockets and recesses of partial vacuum. In'the same nanner the rapid rotation of such la jclisk willcause partial vacuum to be formed? 011113118 side having the pockets; WVith the suction efi'ect or vacuum-effectthus produced on one side of the disk, "and the atmospheric air pressure 'actingon the other sidel'ofthe disk, the difference in pressures will-cause the "disk to be InOVe'd: lengthwise of itslaxis of rotation, and to: move-with said disk, any shaft or other member securedto," ore properly connected with, said disk. The. pockets "above referred to ;'arepreferably 'xarranged: only at the jouter portion of the disk and on a .zoneextending inward-1y onlyiabout 3; fromz the periphery. For instance, if the. diameter of thed-isk is 2,4,thepockets would pre'ferably be rarranged in a zoneifrom; the periphery SHE-inwardly,-;and..such a disk-.wouldbe about fl thick. These'pockets may be arrangedeither in radial or circular series-or rowsyor in any manner whatsoever, and the longitudinal axes of these pocketsinay be parallel to the axis of rotation or they may be ins clined Lin different directions, depending upon the particularuse to which'thedevlc'e is to be put, and on otheriioircumstances.
The centrifugal force action as a result-10f the rapid rotation of the d-isk 'tendsto drawair from said I pockets and this produces a partial vacuum on the side ofthedisk to- Evardwhich the open ends of the pockets ace.
When such a 'disk'isap lied; to "an air plane and made to rotate a out an upright axis, Withthe open ends of. the pockets facing'upwardly, the difference of. pressures will produce an upthrust onthe disk and' on the airplane. 'In certain cases it is necessary'to have two such disks revolving in opposite directions'for the purposeof co pensation and for securing azbetter-gyrb-v scopi efi'ect." Similarly the axial thrust ro-v duced by my invention can be utilize :v to operate or to control various partsor mechanisms, V
In the accompanying drawings,'Figure 1 is a perspective view of a part of a power device embodying my invention. F ig. 2 is a-sectional .viewof the same. Fig. 3 is a plan view of the same. Figs. 4, 5 andG-are side views, partly in section, showing other forms of my invention and Fig. 7 is another view-partly. in section of another embodiment of my invention.
Similar characters of reference indicate oer-responding parts throughout. the various vlews. i
'In Figs. 1,2 and-3,10 designates adisk made of suitable ,mat'erial such as nickelsteel, the diameter-of said disk being say 24" and. its thickness-1,the circumference of the disk being smoothand cylindricalwhile its two end surfaces are plane and perpendicular to its axis of rotation, the. disk being shown as secured rigidly to a shaft 11 which may be assumed as suitably journaled inthe frame of an airplaneland drivenin any-suit able manner, say so as to give itf'a' speediof about 6000 revolutions per minute. O n one of its'faces, which isthe upper face in the drawings, the'said disk is providedwith a series of pockets 12. which extend into'the' disk but not through it, that istor say, the lower ends of said. pockets are closed", and
s e ce i of Letters Patent Patented-Feb. 24,1920.
the lower-surfaceof the 'd isk is unbroken. it
The arrangement of the pockets relatively to each other may vary and I do not wish to restrict myself to the particular arrange ment shown, according to which the pockets form two annular series at different distances from the shaft, both series of pockets being near the periphery of the disk and therefore within the outer third of its face, and the pockets of one series are staggered relatively to those of the other series.
' The disk or rotor 13, shown in Fig. t, differs from the one described above, chiefly the fact that the upper face of the disk instead of being plane is conical, the pockets 12 being arrangedsubstantially in the same manner as the pockets 12.
- In Fig. 5 the lower surface of the rotor 13 is conical, tapering in the opposite direction to the upper face, but otherwise the construction is the same as in Fig. 4.
In each of the forms of construction so far described in detail, the longitudinal axes of the pockets 12 or 12 are vertical, that is to not, however,
arrangement, and 1n Fig. 6 I have illustratedsay parallel to the axis of rotation. I do restrict myself to this specific a disk of the same character as in Figs. 1, 2
and 3, but having its pockets 12 so arranged that their longitudinal axes are inclined and converge toward the axis of rotation, the particular arrangement shown having the outer series of pockets with their longitudinal axes converging downwardly while the longitudinal axes of the inner series of pockets converge upwardly. I may also, if desired, employ radially disposed grooves, annular or spiral grooves, or'any other suitable means of indentation.
In Fig. 7 I have shown that a plurality of disks or rotors of the character therein re ferred to may be mounted cnthe same shaft 11 to rotate about the same axis. Fig. 7 shows four disks, each of them corresponding to one of the forms hereinbefore described,'and three of these disks are assumed to be rigidly secured to the shaft 11, so as to rotate therewith in the same direction.
- In order to make it clear that the disks need not all be arranged to rotate in the same direction, I have indicated one of the said disks as mounted loosely on the shaft 11, so that this disk may be rotated in a direction I opposite the other disks by any suitable means, say the driving belt indicated at 14.. This disk, however, would have thrust bearings as indicated at 15 so that the longitudinal pressure acting on this disk will be transmitted to the shaft 11, so that the longi'tudinal thrust exerted by all of the disks will be increased or combined, it being understood thatthe disks operate in multiple, as it were, and thus I produce a device having a greater capacity than if a single disk were employed.
- "It will be observed that in each of the forms of construction shown, both the end pockets are closed at one end and their open ends face toward one rotor. As the disk rotates (whether such disk has plane or conical end surfaces) it will cause air to be thrown outwardly by centrifugal side of the disk or force along both end surfaces of the rotor. I
This outward movement of the air will tend to draw the air out of the pockets at their open ends and will thus produce a partial vacuum on that side of the rotor toward which the said pockets open. On theother side or face of the rotor there will be atmospheric pressure. Thus there will be a preponderance of. pressure on one side and therefore a tendency to move the rotor lengthwise of its axis of rotation. This axial movement or thrust may be utilized in a great many different ways. As suggested above, the rotor might be secured to a vertical shaft journaled in the frame of an airplane and the upward thrust of the disks or rotors utilized directly for a lifting effect on the airplane, or on the other hand the shaft may be horizontal and the power produced utilized for propulsion. I do not, however, restrict myself to this particular application. It will be observed that the rotor might be loose on the shaft as has been indicated for one of the rotors inoFig. 7. The longitudinal movement of the 'motor might be employed to operate say a device which would indicate t e rotary speed of the appliance, or such longitudinal motion might exert power to operate any suitable device, for instance, the disk might be connected with a piston in such a manner as to shift such piston lengthwise in a cylinder and produce either pressure or a partial Vacuum in such cylinder for the purpose of operating or. controlling attachments of various characters.
I have illustrated and described preferred and satisfactory embodiments of my invention, but it is obvious that changes may be made therein within the spirit and scope member will produce a partial vacuum on members and an axial member on which they such side of said member. are mounted in such a manner that the axial 3. As a means for producing differences thrust of all of said rotary members will be of pressure, a rotary member provided with transmitted to said axial member, each of 5 pockets having open ends facing toward one said rotary members being provided with 15 side of said member and so arranged that pockets having open ends facing toward the rotation of said member will produce a parsame end of said axial member. tial vacuum on such side of said member. In testimony that I claim the foregoing as 4. As a means for producing differences my invention, I have signed my name. 10 of pressure, a plurality of coaxial rotary I RUSSELL E. NEAL.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US239339A US1331997A (en) | 1918-06-10 | 1918-06-10 | Power device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US239339A US1331997A (en) | 1918-06-10 | 1918-06-10 | Power device |
Publications (1)
Publication Number | Publication Date |
---|---|
US1331997A true US1331997A (en) | 1920-02-24 |
Family
ID=22901734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US239339A Expired - Lifetime US1331997A (en) | 1918-06-10 | 1918-06-10 | Power device |
Country Status (1)
Country | Link |
---|---|
US (1) | US1331997A (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4645413A (en) * | 1983-05-17 | 1987-02-24 | Leybold-Heraeus Gmbh | Friction pump |
US4872484A (en) * | 1988-12-12 | 1989-10-10 | John Hickey | System for controlling the flow of a fluid medium relative to an object |
US5075564A (en) * | 1989-12-19 | 1991-12-24 | Hickey John J | Combined solar and wind powered generator with spiral surface pattern |
US5254876A (en) * | 1992-05-28 | 1993-10-19 | Hickey John J | Combined solar and wind powered generator with spiral blades |
US5951243A (en) * | 1997-07-03 | 1999-09-14 | Cooper; Paul V. | Rotor bearing system for molten metal pumps |
US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
US6345964B1 (en) | 1996-12-03 | 2002-02-12 | Paul V. Cooper | Molten metal pump with metal-transfer conduit molten metal pump |
US6398525B1 (en) | 1998-08-11 | 2002-06-04 | Paul V. Cooper | Monolithic rotor and rigid coupling |
US6565334B1 (en) | 1998-07-20 | 2003-05-20 | Phillip James Bradbury | Axial flow fan having counter-rotating dual impeller blade arrangement |
US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
US20040076533A1 (en) * | 2002-07-12 | 2004-04-22 | Cooper Paul V. | Couplings for molten metal devices |
US20040115079A1 (en) * | 2002-07-12 | 2004-06-17 | Cooper Paul V. | Protective coatings for molten metal devices |
US20050013713A1 (en) * | 2003-07-14 | 2005-01-20 | Cooper Paul V. | Pump with rotating inlet |
US20050013715A1 (en) * | 2003-07-14 | 2005-01-20 | Cooper Paul V. | System for releasing gas into molten metal |
US6856941B2 (en) | 1998-07-20 | 2005-02-15 | Minebea Co., Ltd. | Impeller blade for axial flow fan having counter-rotating impellers |
US20050053499A1 (en) * | 2003-07-14 | 2005-03-10 | Cooper Paul V. | Support post system for molten metal pump |
US7470392B2 (en) | 2003-07-14 | 2008-12-30 | Cooper Paul V | Molten metal pump components |
US20110133374A1 (en) * | 2009-08-07 | 2011-06-09 | Cooper Paul V | Systems and methods for melting scrap metal |
US20110135457A1 (en) * | 2009-09-30 | 2011-06-09 | Cooper Paul V | Molten metal pump rotor |
US20110133051A1 (en) * | 2009-08-07 | 2011-06-09 | Cooper Paul V | Shaft and post tensioning device |
US20110140319A1 (en) * | 2007-06-21 | 2011-06-16 | Cooper Paul V | System and method for degassing molten metal |
US20110142606A1 (en) * | 2009-08-07 | 2011-06-16 | Cooper Paul V | Quick submergence molten metal pump |
US20110148012A1 (en) * | 2009-09-09 | 2011-06-23 | Cooper Paul V | Immersion heater for molten metal |
US20110163486A1 (en) * | 2009-08-07 | 2011-07-07 | Cooper Paul V | Rotary degassers and components therefor |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
FR3003208A1 (en) * | 2013-03-15 | 2014-09-19 | Jean Perret | DEVICE FOR APPLYING TO A OBJECT A STRENGTH DUE TO ATMOSPHERIC PRESSURE |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
WO2024216309A1 (en) * | 2023-04-18 | 2024-10-24 | Huber Franz Ferdinand | Propeller |
-
1918
- 1918-06-10 US US239339A patent/US1331997A/en not_active Expired - Lifetime
Cited By (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4645413A (en) * | 1983-05-17 | 1987-02-24 | Leybold-Heraeus Gmbh | Friction pump |
US4872484A (en) * | 1988-12-12 | 1989-10-10 | John Hickey | System for controlling the flow of a fluid medium relative to an object |
US5075564A (en) * | 1989-12-19 | 1991-12-24 | Hickey John J | Combined solar and wind powered generator with spiral surface pattern |
US5254876A (en) * | 1992-05-28 | 1993-10-19 | Hickey John J | Combined solar and wind powered generator with spiral blades |
US6345964B1 (en) | 1996-12-03 | 2002-02-12 | Paul V. Cooper | Molten metal pump with metal-transfer conduit molten metal pump |
US5951243A (en) * | 1997-07-03 | 1999-09-14 | Cooper; Paul V. | Rotor bearing system for molten metal pumps |
US6565334B1 (en) | 1998-07-20 | 2003-05-20 | Phillip James Bradbury | Axial flow fan having counter-rotating dual impeller blade arrangement |
US6856941B2 (en) | 1998-07-20 | 2005-02-15 | Minebea Co., Ltd. | Impeller blade for axial flow fan having counter-rotating impellers |
US6398525B1 (en) | 1998-08-11 | 2002-06-04 | Paul V. Cooper | Monolithic rotor and rigid coupling |
US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
US20080230966A1 (en) * | 2000-08-28 | 2008-09-25 | Cooper Paul V | Scrap melter and impeller therefore |
US20040262825A1 (en) * | 2000-08-28 | 2004-12-30 | Cooper Paul V. | Scrap melter and impeller therefore |
US9435343B2 (en) | 2002-07-12 | 2016-09-06 | Molten Meal Equipment Innovations, LLC | Gas-transfer foot |
US20080279704A1 (en) * | 2002-07-12 | 2008-11-13 | Cooper Paul V | Pump with rotating inlet |
US20040115079A1 (en) * | 2002-07-12 | 2004-06-17 | Cooper Paul V. | Protective coatings for molten metal devices |
US8529828B2 (en) | 2002-07-12 | 2013-09-10 | Paul V. Cooper | Molten metal pump components |
US8440135B2 (en) | 2002-07-12 | 2013-05-14 | Paul V. Cooper | System for releasing gas into molten metal |
US20080211147A1 (en) * | 2002-07-12 | 2008-09-04 | Cooper Paul V | System for releasing gas into molten metal |
US20040076533A1 (en) * | 2002-07-12 | 2004-04-22 | Cooper Paul V. | Couplings for molten metal devices |
US9034244B2 (en) | 2002-07-12 | 2015-05-19 | Paul V. Cooper | Gas-transfer foot |
US8409495B2 (en) | 2002-07-12 | 2013-04-02 | Paul V. Cooper | Rotor with inlet perimeters |
US20090054167A1 (en) * | 2002-07-12 | 2009-02-26 | Cooper Paul V | Molten metal pump components |
US7507367B2 (en) | 2002-07-12 | 2009-03-24 | Cooper Paul V | Protective coatings for molten metal devices |
US20090140013A1 (en) * | 2002-07-12 | 2009-06-04 | Cooper Paul V | Protective coatings for molten metal devices |
US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
US8110141B2 (en) | 2002-07-12 | 2012-02-07 | Cooper Paul V | Pump with rotating inlet |
US20110220771A1 (en) * | 2003-07-14 | 2011-09-15 | Cooper Paul V | Support post clamps for molten metal pumps |
US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
US20050013713A1 (en) * | 2003-07-14 | 2005-01-20 | Cooper Paul V. | Pump with rotating inlet |
US20050013715A1 (en) * | 2003-07-14 | 2005-01-20 | Cooper Paul V. | System for releasing gas into molten metal |
US20050053499A1 (en) * | 2003-07-14 | 2005-03-10 | Cooper Paul V. | Support post system for molten metal pump |
US8501084B2 (en) | 2003-07-14 | 2013-08-06 | Paul V. Cooper | Support posts for molten metal pumps |
US8075837B2 (en) | 2003-07-14 | 2011-12-13 | Cooper Paul V | Pump with rotating inlet |
US8475708B2 (en) | 2003-07-14 | 2013-07-02 | Paul V. Cooper | Support post clamps for molten metal pumps |
US7402276B2 (en) | 2003-07-14 | 2008-07-22 | Cooper Paul V | Pump with rotating inlet |
US7470392B2 (en) | 2003-07-14 | 2008-12-30 | Cooper Paul V | Molten metal pump components |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US10195664B2 (en) | 2007-06-21 | 2019-02-05 | Molten Metal Equipment Innovations, Llc | Multi-stage impeller for molten metal |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US11759854B2 (en) | 2007-06-21 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer structure and method |
US11020798B2 (en) | 2007-06-21 | 2021-06-01 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal |
US10562097B2 (en) | 2007-06-21 | 2020-02-18 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US11185916B2 (en) | 2007-06-21 | 2021-11-30 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel with pump |
US9566645B2 (en) | 2007-06-21 | 2017-02-14 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US10458708B2 (en) | 2007-06-21 | 2019-10-29 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US11167345B2 (en) | 2007-06-21 | 2021-11-09 | Molten Metal Equipment Innovations, Llc | Transfer system with dual-flow rotor |
US10352620B2 (en) | 2007-06-21 | 2019-07-16 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US20110140319A1 (en) * | 2007-06-21 | 2011-06-16 | Cooper Paul V | System and method for degassing molten metal |
US10345045B2 (en) | 2007-06-21 | 2019-07-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US8753563B2 (en) | 2007-06-21 | 2014-06-17 | Paul V. Cooper | System and method for degassing molten metal |
US10274256B2 (en) | 2007-06-21 | 2019-04-30 | Molten Metal Equipment Innovations, Llc | Vessel transfer systems and devices |
US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
US9017597B2 (en) | 2007-06-21 | 2015-04-28 | Paul V. Cooper | Transferring molten metal using non-gravity assist launder |
US11103920B2 (en) | 2007-06-21 | 2021-08-31 | Molten Metal Equipment Innovations, Llc | Transfer structure with molten metal pump support |
US10072891B2 (en) | 2007-06-21 | 2018-09-11 | Molten Metal Equipment Innovations, Llc | Transferring molten metal using non-gravity assist launder |
US9982945B2 (en) | 2007-06-21 | 2018-05-29 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US9925587B2 (en) | 2007-06-21 | 2018-03-27 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal from a vessel |
US9909808B2 (en) | 2007-06-21 | 2018-03-06 | Molten Metal Equipment Innovations, Llc | System and method for degassing molten metal |
US9383140B2 (en) | 2007-06-21 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US9862026B2 (en) | 2007-06-21 | 2018-01-09 | Molten Metal Equipment Innovations, Llc | Method of forming transfer well |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9855600B2 (en) | 2007-06-21 | 2018-01-02 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US11130173B2 (en) | 2007-06-21 | 2021-09-28 | Molten Metal Equipment Innovations, LLC. | Transfer vessel with dividing wall |
US9581388B2 (en) | 2007-06-21 | 2017-02-28 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US20110163486A1 (en) * | 2009-08-07 | 2011-07-07 | Cooper Paul V | Rotary degassers and components therefor |
US9377028B2 (en) | 2009-08-07 | 2016-06-28 | Molten Metal Equipment Innovations, Llc | Tensioning device extending beyond component |
US9506129B2 (en) | 2009-08-07 | 2016-11-29 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US9470239B2 (en) | 2009-08-07 | 2016-10-18 | Molten Metal Equipment Innovations, Llc | Threaded tensioning device |
US9464636B2 (en) | 2009-08-07 | 2016-10-11 | Molten Metal Equipment Innovations, Llc | Tension device graphite component used in molten metal |
US20110133374A1 (en) * | 2009-08-07 | 2011-06-09 | Cooper Paul V | Systems and methods for melting scrap metal |
US9422942B2 (en) | 2009-08-07 | 2016-08-23 | Molten Metal Equipment Innovations, Llc | Tension device with internal passage |
US9657578B2 (en) | 2009-08-07 | 2017-05-23 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
US9382599B2 (en) | 2009-08-07 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US10570745B2 (en) | 2009-08-07 | 2020-02-25 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US9328615B2 (en) | 2009-08-07 | 2016-05-03 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US9080577B2 (en) | 2009-08-07 | 2015-07-14 | Paul V. Cooper | Shaft and post tensioning device |
US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
US20110142606A1 (en) * | 2009-08-07 | 2011-06-16 | Cooper Paul V | Quick submergence molten metal pump |
US20110133051A1 (en) * | 2009-08-07 | 2011-06-09 | Cooper Paul V | Shaft and post tensioning device |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
US20110148012A1 (en) * | 2009-09-09 | 2011-06-23 | Cooper Paul V | Immersion heater for molten metal |
US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
US10309725B2 (en) | 2009-09-09 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Immersion heater for molten metal |
US20110135457A1 (en) * | 2009-09-30 | 2011-06-09 | Cooper Paul V | Molten metal pump rotor |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9482469B2 (en) | 2010-05-12 | 2016-11-01 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US10641279B2 (en) | 2013-03-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened tip |
US11391293B2 (en) | 2013-03-13 | 2022-07-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10126058B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Molten metal transferring vessel |
US10302361B2 (en) | 2013-03-14 | 2019-05-28 | Molten Metal Equipment Innovations, Llc | Transfer vessel for molten metal pumping device |
US9587883B2 (en) | 2013-03-14 | 2017-03-07 | Molten Metal Equipment Innovations, Llc | Ladle with transfer conduit |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US10126059B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Controlled molten metal flow from transfer vessel |
US10322451B2 (en) | 2013-03-15 | 2019-06-18 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10307821B2 (en) | 2013-03-15 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
FR3003208A1 (en) * | 2013-03-15 | 2014-09-19 | Jean Perret | DEVICE FOR APPLYING TO A OBJECT A STRENGTH DUE TO ATMOSPHERIC PRESSURE |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US11939994B2 (en) | 2014-07-02 | 2024-03-26 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10465688B2 (en) | 2014-07-02 | 2019-11-05 | Molten Metal Equipment Innovations, Llc | Coupling and rotor shaft for molten metal devices |
US11286939B2 (en) | 2014-07-02 | 2022-03-29 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11933324B2 (en) | 2015-02-02 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11098720B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US11098719B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11519414B2 (en) | 2016-01-13 | 2022-12-06 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US10641270B2 (en) | 2016-01-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US12031550B2 (en) | 2017-11-17 | 2024-07-09 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11976672B2 (en) | 2017-11-17 | 2024-05-07 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11358217B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | Method for melting solid metal |
US11858037B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11858036B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | System and method to feed mold with molten metal |
US11850657B2 (en) | 2019-05-17 | 2023-12-26 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11931802B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal controlled flow launder |
US11931803B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and method |
US11759853B2 (en) | 2019-05-17 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Melting metal on a raised surface |
US11471938B2 (en) | 2019-05-17 | 2022-10-18 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
WO2024216309A1 (en) * | 2023-04-18 | 2024-10-24 | Huber Franz Ferdinand | Propeller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1331997A (en) | Power device | |
US860590A (en) | Clutch. | |
US1104542A (en) | Aeronautical machine. | |
US639406A (en) | Disintegrator. | |
US3098820A (en) | Centrifuge | |
US1360929A (en) | Rotary screen | |
US995725A (en) | Fan. | |
US968653A (en) | Rotary engine. | |
US945592A (en) | Centrifugal separator. | |
US111538A (en) | Improvement in double-acting rotary engines | |
US1129934A (en) | Propeller. | |
US1377210A (en) | Pump | |
US587319A (en) | Reversing mechanism | |
US1179078A (en) | Turbine. | |
US905885A (en) | Fluid-gear. | |
US398301A (en) | Combined centrifugal and screw pump | |
US954539A (en) | Reversible propeller. | |
US1864316A (en) | Airplane propeller | |
US1079094A (en) | Clutch. | |
US2035175A (en) | Aeronautical wheel | |
US529916A (en) | Propeller | |
US637959A (en) | Means for propelling boats. | |
US630499A (en) | Submerged feathering-propeller. | |
US547404A (en) | Thomas ii | |
US733229A (en) | Rotary-pump. |