US11379481B2 - Query and metadata repositories to facilitate content management and lifecycles in remote analytical application integration - Google Patents

Query and metadata repositories to facilitate content management and lifecycles in remote analytical application integration Download PDF

Info

Publication number
US11379481B2
US11379481B2 US15/999,388 US201815999388A US11379481B2 US 11379481 B2 US11379481 B2 US 11379481B2 US 201815999388 A US201815999388 A US 201815999388A US 11379481 B2 US11379481 B2 US 11379481B2
Authority
US
United States
Prior art keywords
data center
query
data
user
qms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/999,388
Other versions
US20190340285A1 (en
Inventor
Bare Said
Peter Weddeling
Tobias Hoehmann
David Foerderer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAP SE
Original Assignee
SAP SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAP SE filed Critical SAP SE
Priority to US15/999,388 priority Critical patent/US11379481B2/en
Assigned to SAP SE reassignment SAP SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOERDERER, DAVID, WEDDELING, PETER, HOEHMANN, TOBIAS, SAID, BARE
Publication of US20190340285A1 publication Critical patent/US20190340285A1/en
Application granted granted Critical
Publication of US11379481B2 publication Critical patent/US11379481B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2455Query execution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/23Updating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2465Query processing support for facilitating data mining operations in structured databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/248Presentation of query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/901Indexing; Data structures therefor; Storage structures
    • G06F16/9024Graphs; Linked lists
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/466Transaction processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/543User-generated data transfer, e.g. clipboards, dynamic data exchange [DDE], object linking and embedding [OLE]

Definitions

  • Enterprises can use third-party systems to maintain data, and analyze data.
  • data maintenance, and data analysis are performed in different data centers.
  • an enterprise can maintain its production data in a first data center, and can perform analytics on its production data in a second data center.
  • technological inefficiencies can occur. For example, transmitting data from the first data center to the second data center can require a significant amount of technical resources (e.g., processors, memory, bandwidth).
  • technical resources e.g., processors, memory, bandwidth.
  • storing redundant data in multiple data centers burdens technical resources (e.g., memory).
  • Implementations of the present disclosure include computer-implemented methods for data analytics across multiple data centers. More particularly, implementations of the present disclosure are directed to computer-implemented methods for analytical application integration based on a remote services plug-in.
  • actions include receiving, by a query manager service (QMS) executed within a first data center, a query definition provided from a browser of an analytics platform executed within the second data center, the query definition being stored in a query repository of the second data center, the query definition being validated by the QMS based on analytical metadata, and being stored in a mirror query repository of the first data center, providing, after validation of the query definition by the QMS, a calculation scenario as an object model based on the query definition, executing, by a calculation engine within the first data center, the calculation scenario to provide an analytical artifact including a query-level calculation view on transactional data stored in the first data center, and transmitting, by the first data center, the analytical artifact to the second data center to perform analytics on at least a portion of the transactional data stored in
  • the analytical metadata is provided from an application server of the first data center, and is used by the QMS to validate the query definition; a plurality of query definitions stored in the query repository of the second data center are displayed in the browser, and the query definition is selected from the plurality of query definitions for sending to the QMS of the first data center; actions further include enhancing the calculation scenario based on analytical metadata; a query of the transactional data is executed based on the analytical artifact; at least a portion of the transactional data is provided from execution of an application within the first data center; and the query definition is provided to the QMS through one or more application programming interfaces (APIs).
  • APIs application programming interfaces
  • the present disclosure also provides a computer-readable storage medium coupled to one or more processors and having instructions stored thereon which, when executed by the one or more processors, cause the one or more processors to perform operations in accordance with implementations of the methods provided herein.
  • the present disclosure further provides a system for implementing the methods provided herein.
  • the system includes one or more processors, and a computer-readable storage medium coupled to the one or more processors having instructions stored thereon which, when executed by the one or more processors, cause the one or more processors to perform operations in accordance with implementations of the methods provided herein.
  • FIG. 1 depicts an example architecture that can be used to execute implementations of the present disclosure.
  • FIG. 2 depicts an example conceptual architecture in accordance with implementations of the present disclosure.
  • FIG. 3 depicts an example query builder user interface in accordance with implementations of the present disclosure.
  • FIG. 4 depicts an example query-level calculation in accordance with implementations of the present disclosure.
  • FIG. 5 depicts an example permission calculation in accordance with implementations of the present disclosure.
  • FIG. 6 depicts an example scope calculation in accordance with implementations of the present disclosure.
  • FIG. 7 depicts an example filter definition user interface, and an associated file format definition in accordance with implementations of the present disclosure.
  • FIG. 8 depicts another example conceptual architecture in accordance with implementations of the present disclosure.
  • FIG. 9 depicts an example process in accordance with implementations of the present disclosure.
  • FIG. 10 is a schematic illustration of example computer systems that can be used to execute implementations of the present disclosure.
  • Implementations of the present disclosure include computer-implemented methods for data analytics across multiple data centers. More particularly, implementations of the present disclosure are directed to computer-implemented methods for analytical application integration based on a remote services plug-in. Implementations can include actions of receiving, by a query manager service (QMS) executed within a first data center, a query definition provided from a browser of an analytics platform executed within the second data center, the query definition being stored in a query repository of the second data center, the query definition being validated by the QMS based on analytical metadata, and being stored in a mirror query repository of the first data center, providing, after validation of the query definition by the QMS, a calculation scenario as an object model based on the query definition, executing, by a calculation engine within the first data center, the calculation scenario to provide an analytical artifact including a query-level calculation view on transactional data stored in the first data center, and transmitting, by the first data center, the analytical artifact to the second data center to perform analytics on at least a portion of the transactional data stored in
  • FIG. 1 depicts an example architecture 100 that can be used to execute implementations of the present disclosure.
  • the example architecture 100 includes one or more client devices 102 , data centers 104 , 106 , and a network 108 .
  • Each data center 104 , 106 includes one or more server devices 110 .
  • a user 110 interacts with the client device 102 .
  • the user 110 can include a user, who interacts with an application that is hosted in the data center 104 .
  • the client device 102 can communicate with one or more of the data centers 104 , 106 over the network 108 .
  • the client device 102 can include any appropriate type of computing device such as a desktop computer, a laptop computer, a handheld computer, a tablet computer, a personal digital assistant (PDA), a cellular telephone, a network appliance, a camera, a smart phone, an enhanced general packet radio service (EGPRS) mobile phone, a media player, a navigation device, an email device, a game console, or an appropriate combination of any two or more of these devices or other data processing devices.
  • PDA personal digital assistant
  • EGPS enhanced general packet radio service
  • the network 108 can include a large computer network, such as a local area network (LAN), a wide area network (WAN), the Internet, a cellular network, a telephone network (e.g., PSTN) or an appropriate combination thereof connecting any number of communication devices, mobile computing devices, fixed computing devices and server systems.
  • LAN local area network
  • WAN wide area network
  • the Internet a cellular network
  • PSTN telephone network
  • each server device 110 includes at least one server and at least one data store.
  • the server devices 110 are intended to represent various forms of servers including, but not limited to a web server, an application server, a proxy server, a network server, and/or a server pool.
  • server systems accept requests for application services, and provides such services to any number of client devices (e.g., the client device 102 ) over the network 106 .
  • the data center 104 can host a data analytics platform, and the data center 106 can host development, test, and/or production systems, and store production data, and/or test data.
  • the data center 106 can be referred to as a transactional system (e.g., executing applications an enterprise uses for its operations, and storing respective data models, and data).
  • a transactional system e.g., executing applications an enterprise uses for its operations, and storing respective data models, and data.
  • an enterprise can run operations at least partially based on applications hosted in the data center 106 , which operations can create, modify, process, and store production data (transaction data), among other activities.
  • enterprises can use third-party systems to maintain data, and analyze data.
  • data maintenance, and data analysis are performed in different data centers.
  • an enterprise can maintain its production data in the data center 106 , and can perform analytics on its production data in the data center 104 .
  • technological inefficiencies can occur. For example, transmitting data from the data center 106 to the data center 104 can require a significant amount of technical resources (e.g., processors, memory, bandwidth).
  • storing redundant data in multiple data centers burdens technical resources (e.g., memory).
  • technical resources e.g., memory.
  • Other challenges can include the preparation of analytical artifacts in the first data center, which analytical artifacts are ready-to-use by the analytics platform in the second data center, and which are at the same time already tailored to the specific needs defined by the user of the analytical platform.
  • implementations of the present disclosure enable provision of analytical artifacts within a first data center for data analytics in a second data center. More particularly, implementations of the present disclosure provide analytical application integration based on a remote services plug-in.
  • a first example platform includes the SAP Analytics Cloud (SAC) provided by SAP SE of Walldorf, Germany.
  • SAC SAP Analytics Cloud
  • SAP SE of Walldorf, Germany provides SAP SuccessFactors provided by SAP SE of Walldorf, Germany, and can be described as a cloud-based human capital management (HCM) platform.
  • HCM human capital management
  • the enterprise can use SuccessFactors to perform human resource operations (e.g., payroll, employee engagement, reviews).
  • FIG. 2 depicts an example conceptual architecture 200 in accordance with implementations of the present disclosure.
  • the example conceptual architecture 200 includes a data center 202 , a data center 204 , and a browser 206 .
  • the data center 202 , and the data center 204 can be provided by respective server systems.
  • the data center 202 can be owned by, or operated on behalf of a third-party service provider (e.g., SAP SE, which provides SAC as a cloud-based service).
  • SAP SE which provides SAC as a cloud-based service
  • the data center 204 can be owned by, or operated on behalf of an enterprise that consumes services provided by the third-party service provider.
  • the browser 206 is executed on a client-side computing device (e.g., the client device 102 used by the user 110 of FIG. 1 ).
  • the data center 202 hosts an analytics platform.
  • the data center 202 hosts the SAC platform.
  • the data center 204 hosts one or more applications used for enterprise operations, and stores enterprise data (transactional data) 205 that can be processed by the analytics platform, as described herein.
  • SuccessFactors is an example application that can be hosted on the data center 204 , and data stored in the data center 204 can include employee data (e.g., name, address, hire date, role, permissions, compensation information, review information).
  • the data center 204 includes an application server 208 (e.g., an Apache Tomcat server for execution of SuccessFactors), and a database server 210 (e.g., an SAP HANA server).
  • a user 212 can interface with the SAC platform using the browser 206 .
  • the user 212 interfaces with the SAC platform to access analytical reports, retrieve data, run data aggregations, manipulate views on data (e.g., filter, slice), and the like.
  • the browser 206 can display one or more user interfaces (UIs) that enable the user 212 to input data to, and receive data from the SAC platform.
  • the device that the browser 206 executes on is in communication with the data center 202 over a network (e.g., the network 108 of FIG. 1 ).
  • the user 206 defines queries to provide a query definition 214 .
  • a query execution 216 is performed based on the query definition 214 to retrieve data from the data center 204 , which is to be processed in the analytics platform in the data center 202 .
  • FIG. 3 depicts an example query builder UI 300 in accordance with implementations of the present disclosure.
  • the query builder UI 300 is displayed by the browser 206 enabling the user 212 to define queries using, for example, drag-and-drop functionality.
  • the query builder UI 300 displays available data 302 for constructing a query (e.g., employee profile data, such as, name, photo, functional experience, performance rating(s), honors/awards, language skills, geographic mobility, and the like).
  • the user 212 can select a data type (e.g., click on), drag the data type to a query panel 304 , and drop the data type to the query panel 304 .
  • a data type e.g., click on
  • a graphical representation 306 of the respective data type is displayed in the query panel 306 .
  • graphical representations 306 are provided for example data types of employee (e.g., name), geographic mobility, all ratings, and language skills.
  • the graphical representations 306 can be moved, and connected to one another to provide the query definition 214 .
  • the data center 204 includes a QMS 218 .
  • the QMS 218 is provided as a plug-in component to the database server 210 (e.g., Java-based code that is injected into the database server 210 ).
  • the QMS 218 coordinates execution of user queries that are input using the browser 206 (e.g., the query builder UI of FIG. 3 ).
  • the browser 206 communicates with the QMS 218 using one or more application programming interface (API) calls through one or more APIs.
  • API application programming interface
  • the QMS 218 includes a calculation scenario 220 .
  • a calculation scenario is an object model that can be used to generate representations of analytical artifacts (e.g., calculation views, SQL views).
  • each calculation scenario can be used, in hand with a calculation engine 222 , to generate a corresponding analytical artifact 224 in the database server 210 .
  • These analytical artifacts 224 are streamlined for usage in the analytics platform (e.g., SAP SAC) of the data center 202 .
  • the calculation scenario is defined by the user 212 using the browser 206 .
  • the calculation scenario is represented as a graph, in which base calculation views on the data in the data center 204 are connected using join relationships.
  • the user 212 can compose a set of columns out of the base calculation views, which are tailored to the specific need.
  • the calculation scenario 220 can be enhanced in the browser 206 by further specific analytical metadata (e.g., different types of filters, data wrangling of different columns).
  • the QMS provides an analytical artifact based on the user query.
  • An example analytical artifact can include a query-level calculation view in the database server 210 . Accordingly, the query execution at runtime is based on the analytical artifact. In this manner, an abundant set of analytical requirements can be directly consumed on top of the transactional database tables of the data center 204 using the calculation engine 222 .
  • the data center 204 provides analytical metadata in a predefined format.
  • the predefined format includes a structured list of base artifacts (e.g., base calculation views, table functions, SQL views, database tables) that are listed in a metadata interface.
  • base artifacts e.g., base calculation views, table functions, SQL views, database tables
  • columns for each data source, and join information between the different base data sources are provided.
  • An example calculation scenario format is provided as:
  • queryName defines an identifier of the calculation view. For example:
  • dataSources represent the smallest granularity in the query builder.
  • Example data sources can include, without limitation, calculation views, SQL views, and tables.
  • Example pseudo-code includes:
  • a definition for a data source can be provided as:
  • a metadata link can be provided as:
  • each data source contains a set of fields.
  • Example fields can include, without limitation, attributes, and measures. For example:
  • fields [ ⁇ “id”: “String”, “description”: “String”, “reportingType”: “ ATTRIBUTE
  • the description of the field can be provided in multiple languages.
  • field labels can be displayed in the logon language of the use. For example:
  • the query model [ ⁇ “locale”: “en_US”, “labelFieldDescription”: “last Name” ⁇ ]
  • the query model can be provided as:
  • outputFields [ ⁇ ... ⁇ ] [ ⁇ ... ⁇ ] [ ⁇ ... ⁇ ] [ ⁇ ... ⁇ ] [ ⁇ ... ⁇ ] [ ⁇ ... ⁇ ][ ⁇ ... ⁇ ] ⁇ ]
  • outputFields can be provided as:
  • joins [ ⁇ “dataSourceId”: “String”, “type”: “DATA_SOURCE_FIELD
  • joins can be provided as:
  • mappings [ ⁇ ... ⁇ ] ⁇ ] In some examples, mappings can be provided as:
  • scopeFilters [ ⁇ “sourceDataSourceId”: “String, real data source ID”, “sourceField”: “String”, “targetDataSourceId”: “String, real data source ID”, “targetField”: “String” ⁇ ]
  • scopeFilters can be used, and can be provided as:
  • joinFields [ ⁇ ... ⁇ ]
  • inputParameterReferences [ ⁇ “id”: “String” ⁇ ]
  • pushDefault “Boolean” ⁇ ]
  • inputParameterReferences [ ⁇ “inputParameterValue”: “String, real data source ID”, “targetField”: “String” ⁇ ]
  • filterOperators [ ⁇ ... ⁇ ], “logicalConditionNodes”: [“...”], ⁇ ,
  • filterOperators [ ⁇ ... ⁇ ]
  • filterOperators [ ⁇ “operator”: “AND
  • one or more logical condition nodes can be provided, and are relevant if a value type (logicalConditionNodes.valueType) is equal to FUNCTION. It contains an object of type line of a function. The parameter will be ignored for all other value types.
  • logicalConditionNodes.targetField and logicalConditionNodes.targetDataSourceId are only relevant if the value type is equal to COLUMN. The parameters will be ignored for all other value types.
  • logicalConditionNodes.values is only relevant if the value type is VALUE_LIST, or PATTERN. The parameter will be ignored for all other value types. For example:
  • input parameters can be provided as:
  • FIG. 4 depicts an example query-level calculation 400 in accordance with implementations of the present disclosure.
  • data source and associated sets of columns provided by the data center 204 are composed into the analytical artifact 224 (e.g., the query level calculation view).
  • the example of FIG. 4 represents a relatively simple situation, in which three base calculation views 402 , 404 , 406 (e.g., specific data sources provided in the data center 204 ) are composed into the overall query level calculation view.
  • connection of the generated query level analytical artifact, and the associated query in the analytical platform are stored as query administration data (e.g., query administration data 226 of FIG. 2 ) in the data center 202 .
  • query administration data e.g., query administration data 226 of FIG. 2
  • an analytical story e.g., SAC-based story
  • implementations of the present disclosure provide live data connectivity of the analytical platform into remote transactional applications (e.g., SAP SuccessFactors, Ariba, Fieldglass).
  • implementations of the present disclosure provide a mechanism to create analytical artifacts in a generic way in the remote database system of the transactional applications, and a structured definition of analytical metadata is the basis for the creation of these tailored query scenarios. Appropriate analytical artifacts are generated out of this so that the end user analytical queries can run directly run on the remote transaction system without the need of data replication.
  • Implementations of the present disclosure further provide access control to data that is to be processed in the analytical platform. More particularly, one of the challenges of the remote integration approach described herein is to apply fine granular, user-specific access control for the analytical evaluations. Further, the access control should cover the full range of security as required by the underlying transactional system (e.g., the data center 204 of FIG. 2 ).
  • the remote application server e.g., the application server 208 of FIG. 2
  • metadata for row, cell and field permissions are extracted from the remote application server (e.g., the application server 208 of FIG. 2 ), and are used at runtime of the analytical evaluation to enrich the calculation scenario, which is used to fetch the analytical data.
  • a raw calculation scenario is defined by the user in the browser application of the analytics platform (e.g., the browser 206 of FIG. 2 ).
  • the raw calculation scenario is an analytical calculation scenario represented by a directed acyclic graph, in which the base calculation views from the transactional system (e.g., the data center 204 of FIG. 2 ) are connected using join relationships.
  • the QMS fetches user specific permission metadata from the transactional application (e.g., on the application server 208 of FIG. 2 ), and provides an enriched calculation scenario incorporating the permission relationships.
  • the enriched query calculation scenario is transferred into a database, analytical representation by the QMS.
  • This can be, for example, a calculation view, or a SQL view.
  • the analytical representation is passed to the calculation engine to retrieve the aggregated analytical data requested by the user.
  • the runtime query execution is based on the enriched calculation scenario. In this manner, the full fine granular bandwidth of cell, row and field based permissions of the transactional data center is applied in the user-specific analytical request.
  • the transactional data center provides a set of base calculation data sources (e.g., base calculation views).
  • Each data source is associated with a set of columns for which data is to be fetched at runtime.
  • Data source and set of columns along with the user executing the query provides a context to fetch the relevant permission metadata from the application server.
  • One or more database table functions parametrized for the user are returned, and include the information on row and cell permissions. These table functions are used to construct the fine granular permissions by substituting each lowest level data source of the raw calculation scenario by a corresponding data source-specific permission calculation scenario graph.
  • FIG. 5 depicts an example permission calculation 500 in accordance with implementations of the present disclosure.
  • the specific structure of these data source specific graphs depicted in FIG. 5 represents user-specific permissions for one data source within the transactional system.
  • fine granular permissions are applied by substituting each lowest level data source of the raw calculation scenario by a corresponding data source specific permission calculation scenario graph (e.g., the topmost projection in FIG. 5 ).
  • the specific structure of these data source specific graphs reflects the user specific permissions.
  • the base transactional data source in a row permission base join, is inner-joined with the row permission table function.
  • the overall set of records can be reduced to a relatively large extent by this first row permission join.
  • the row permission base join replaces the base transactional data source in the later cell permission groups, which optimizes the performance of the processing (see arrow from row permission base join to cell permission projection in FIG. 5 ). In this manner, processing on the full data source is only performed once.
  • an additional topological sorting of the permission graph can be provided for a syntactically correct processing. This is for the example required for the SQL representation used in the Successfactors integration scenario referred to herein by way of example. This can depend on the database server calculation scenario representation, and the specifics of the underlying calculation engine.
  • a cell permission base join is provided using a projection on the row permission base join for the set of columns.
  • the right join source (right, as viewed in FIG. 5 ) is provided as the union of a set of table functions provided by the transactional system for the cell group.
  • a union of table functions is to be provided, because each table function represents a role to which the user is assigned. Permission to access a column is to be provided if the user has at least one role which grants this permission.
  • the projection on the cell group columns with the union of permission table function is inner-joined to form the cell permission base join.
  • the first compound join is formed as left-outer join between the row permission base join, and the first cell permission base join.
  • the cell columns are to be joined from the right side, whereas all other columns are to be joined from the left side, to properly reflect cell permissions.
  • Further permission base joins are formed similarly with the exception that the left data source of the n th permission compound join is be the (n ⁇ 1) th permission compound join.
  • the last permission compound join can be linked to the root compound projection.
  • the root compound projection is used as a platform to apply the field permissions by means of an initialized calculated attribute for non-permissioned fields.
  • the permission root projection can substitute for the transactional data source in the raw calculation scenario.
  • implementations of the present disclosure provide a mechanism to apply fine granular, user-specific access control requested by the underlying transactional system (e.g., the data center 204 of FIG. 2 ) in the context of an analytics platform (e.g., SAC executed in the data center 202 of FIG. 2 ).
  • This is a required building block for the usage of remote connectivity of such remote transactional systems using the full power of the underlying database architecture.
  • this mechanism is based on the substitution of each particular transactional data source in the initial calculation scenario by a specific fine granular calculation scenario, which is based on the permission metadata provided by the transactional system for the user who is processing the analytical request.
  • Another challenge of integrating transactional application systems with analytics platforms is to apply complex application logic for user-specific filtering in an encapsulated way.
  • a set of complex and specific filter methods reflecting the full application needs is provided by the transactional system.
  • parametrization and application of the filter methods is done by the QMS (e.g., the QMS 218 of FIG. 2 ).
  • scope filters are used to support users in the definition of complex (dynamic) filters that cannot be expressed with simple filter conditions. For example, if a user wants to see data for all employees in his team, how the selection of “all employees in the team of a user” can be performed needs to be defined. It may be possible for a user to specify a constant selection with the set of employees at the point in time the report is executed. However, in this example, the members of a team may change at any point in time, and it can require significant effort to maintain filters. In addition, it may not be possible for the common reporting user to define a set of joins and selections that are necessary to dynamically derive the list of user IDs for the selection of employees in his team.
  • scope filters include an application of scope filter, and a parameterization of scope filter.
  • application of a scope filter includes a strategy that is used to execute the selection.
  • parametrization of a scope filter includes a set of selection criteria options that are shown on a UI to a user. The selection criteria options are used to parameterize the execution behavior.
  • interface elements for selection can range from simple check boxes up to drop down boxes/value help dialogs that are used to select specific values. The user selection is used to set the input parameters of the function/artifact that is used to execute the selection of values.
  • FIG. 6 depicts an example scope calculation 600 in accordance with implementations of the present disclosure.
  • the scope filter application contains a data source including, for example, a table function, or a database view.
  • the scope filter application describes which data source, and how the scope filter data source is to be joined.
  • ScopeFilter_RD1 for example, is the result view of the scope filter scfi1 applied on the object rd1.
  • scope filter data sources are inner-joined to the base data sources.
  • Scope filter data sources can be parametrized in multiple ways. Scope filters can already be parametrized by the transactional system. This can be done on the basis of defined metadata structure (e.g., provided in the application server 208 of FIG. 2 ). The transactional system could provide a defined value for a certain parameter, or a list of options for a certain scope filter parameter. The concrete selection of this option can be either done in the definition of the query by the end user. In this case, the QMS is already able to enrich the query calculation scenario, such that the selected parameter is considered. Alternatively, the selection of the parameter can be done by the end user, who is executing the query. In this case, the parametrization will be done by the underlying calculation engine. Another parametrization option is a based on a function which can only be computed on query execution. An example of this is the user who is executing the query. A parametrization of the scope is to be done by the QMS in this case.
  • implementations of the present disclosure provide a mechanism to apply application-specific filters as part of the live data connectivity between an analytics platform, and a transactional system.
  • Scope filters are a major building block for real application scenarios, because they support complex, user-based and parametrized filters with an easy structured application of base filter methods.
  • a raw calculation scenario is defined by the user in the browser application (e.g., the browser 206 of FIG. 2 ).
  • a filter and data wrangling engine enriches the calculation scenario so that end user can set appropriate column-specific filters.
  • the user is also able to combine arbitrary columns to tailor the analytical output.
  • the QMS (e.g., the QMS 218 of FIG. 2 ) includes a raw calculation scenario, a filter and data wrangling engine, and an enriched calculation scenario.
  • specific data structures are input to the filter and data wrangling engine, and are the basis for the a tailored calculation scenario.
  • These data structures are sent to the transactional database system (e.g., the database system 210 of FIG. 2 ), and are used to enrich the raw calculation scenario.
  • filters are defined based on a recursion algorithm.
  • the logical condition nodes example pseudo-code detailed above, define basic filters at the data source level. It is possible to apply specific filters based on value comparison, column comparison, and user functions (e.g., comparing a date with the current date).
  • a Boolean result of the logical condition nodes can be nested into a filter operator, example pseudo-code detailed above, which itself includes a combination of filter operators, and logical condition nodes. Accordingly, the overall filter, example pseudo-code detailed above, includes a combination of logical condition nodes, and filter operators. By this recursive approach, it is possible to cover a relatively wider range of static filter functions.
  • FIG. 7 depicts an example filter definition UI 700 , and an associated file format definition 702 (e.g., resulting pseudo-code).
  • analytical reports can require the definition of virtual fields including a combination of physical data source fields, functions, and the like.
  • virtual fields including a combination of physical data source fields, functions, and the like.
  • data columns first name and last name of an employee are to be displayed as a concatenated column of both strings.
  • data structure below provides a generic formulation of such data wrangling algorithms:
  • implementations of the present disclosure enable column-specific filters, and data wrangling in the transactional system (e.g., the data center 204 of FIG. 2 ).
  • implementations of the present disclosure provide a query repository in the analytics platform (e.g., the data center 202 of FIG. 2 ), and a corresponding mirror query repository, and analytical metadata in the transactional system (e.g., the data center 204 of FIG. 2 ).
  • FIG. 8 depicts another example conceptual architecture 800 in accordance with implementations of the present disclosure.
  • the conceptual architecture 800 of FIG. 8 mirrors that described herein with reference to FIG. 2 .
  • a query repository 802 is provided in the data center 202
  • a query repository 804 and an analytical metadata repository 805 are provided in the data center 204 .
  • the query repository 804 is provided in the database system 210
  • the analytical metadata 806 is provided in the application server 208 .
  • the QMS 218 includes a metadata population service 810 , a query validation service 812 , and a query load service 814 .
  • the data center 202 includes a query validation service 820 , and a query replication service 822 .
  • the query repository 804 provides an inventory of all query-level calculation scenarios in the database system 210 . In some examples, the query repository 804 provides a set of queries that are available to display to the user. In some examples, the query repository 804 stores information that can be used to successfully re-create the query builder UI of a query. In some examples, the query repository 804 is used to distribute query content in a complex system landscape. In some implementations, the metadata repository 805 persists the analytical metadata that is used as an input for the setup of the query scenarios.
  • the underlying analytical model of the transactional system (e.g., the data center 204 ), and its corresponding metadata undergo changes during production use, because data model changes are common.
  • changes of the analytical models are common (e.g. yearly performance management cycle).
  • Administrative tools are provided to manage lifecycle events in a robust and reliable way.
  • the query repository is the basis for the administrative tools.
  • queries can be validated against the metadata representations of the underlying analytical model provided by the respective transactional application (e.g., executed on the application server 208 ).
  • the query validation can be performed by comparing metadata of the current query with metadata stored in the metadata repository.
  • the query-level calculation view is adapted in view of changes to the underlying analytical model of the transactional application. Depending on the severity, these changes can either be done automatically, or the query will be labelled as invalid, so that an administrator can fix any issues manually.
  • implementations in the transactional system require content transport management. This can include, for example, the transportation of queries from a test system to a production system. Implementations of the present disclosure provide administration services to achieve this. As a basis for these administration services, implementations of the present disclosure enable loading of queries to the query repository.
  • the query repository is used to manage the content lifecycle.
  • default queries can be provided (e.g., by the third-party provider of the analytical platform), and are imported into the query repository of the transactional system. In some examples, the default queries can be used as a template to tailor a query.
  • FIG. 9 depicts an example process 900 that can be executed in accordance with implementations of the present disclosure.
  • the example process 900 can be provided by one or more computer-executable programs executed using one or more computing devices.
  • the example process 900 can be executed by the data center 202 , and the data center 206 .
  • a query definition is received ( 902 ).
  • the QMS 218 executed within the data center 204 receives a query definition provided from the browser 206 of an analytics platform executed within the data center 202 .
  • a calculation scenario is provided ( 904 ).
  • the QMS 218 provides a calculation scenario based on the query definition.
  • the calculation scenario is provided as an object model.
  • the object model is a graph that includes a plurality of base calculation views that are connected by at least one join relationship.
  • the calculation scenario is executed to provide an analytical artifact ( 906 ).
  • the calculation engine 222 within the data center 204 executes the calculation scenario to provide the analytical artifact 224 .
  • the analytical artifact includes a query-level calculation view on transactional data (e.g., at least a portion of the transactional data 205 ) stored in the data center 204 .
  • the analytical artifact is transmitted ( 908 ).
  • the data center 204 transmits the analytical artifact for use by the data center 202 .
  • a query is executed based on the analytical artifact ( 910 ). For example, an analytics platform executed on the data center 202 executes a query corresponding to the query definition based on the analytical artifact.
  • a query result is provided as output ( 912 ). For example, the data center 202 provides output of query execution to the browser 206 for display to the user 212 .
  • the system 1000 can be used for the operations described in association with the implementations described herein.
  • the system 1000 may be included in any or all of the server components discussed herein.
  • the system 1000 includes a processor 1010 , a memory 1020 , a storage device 1030 , and an input/output device 1040 .
  • the components 1010 , 1020 , 1030 , 1040 are interconnected using a system bus 1050 .
  • the processor 1010 is capable of processing instructions for execution within the system 1000 .
  • the processor 1010 is a single-threaded processor.
  • the processor 1010 is a multi-threaded processor.
  • the processor 1010 is capable of processing instructions stored in the memory 1020 or on the storage device 1030 to display graphical information for a user interface on the input/output device 1040 .
  • the memory 1020 stores information within the system 1000 .
  • the memory 1020 is a computer-readable medium.
  • the memory 1020 is a volatile memory unit.
  • the memory 1020 is a non-volatile memory unit.
  • the storage device 1030 is capable of providing mass storage for the system 1000 .
  • the storage device 1030 is a computer-readable medium.
  • the storage device 1030 may be a floppy disk device, a hard disk device, an optical disk device, or a tape device.
  • the input/output device 1040 provides input/output operations for the system 1000 .
  • the input/output device 1040 includes a keyboard and/or pointing device.
  • the input/output device 1040 includes a display unit for displaying graphical user interfaces.
  • the features described can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them.
  • the apparatus can be implemented in a computer program product tangibly embodied in an information carrier (e.g., in a machine-readable storage device, for execution by a programmable processor), and method steps can be performed by a programmable processor executing a program of instructions to perform functions of the described implementations by operating on input data and generating output.
  • the described features can be implemented advantageously in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device.
  • a computer program is a set of instructions that can be used, directly or indirectly, in a computer to perform a certain activity or bring about a certain result.
  • a computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • Suitable processors for the execution of a program of instructions include, by way of example, both general and special purpose microprocessors, and the sole processor or one of multiple processors of any kind of computer.
  • a processor will receive instructions and data from a read-only memory or a random access memory or both.
  • Elements of a computer can include a processor for executing instructions and one or more memories for storing instructions and data.
  • a computer can also include, or be operatively coupled to communicate with, one or more mass storage devices for storing data files; such devices include magnetic disks, such as internal hard disks and removable disks; magneto-optical disks; and optical disks.
  • Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
  • semiconductor memory devices such as EPROM, EEPROM, and flash memory devices
  • magnetic disks such as internal hard disks and removable disks
  • magneto-optical disks and CD-ROM and DVD-ROM disks.
  • the processor and the memory can be supplemented by, or incorporated in, ASICs (application-specific integrated circuits).
  • ASICs application-specific integrated circuits
  • the features can be implemented on a computer having a display device such as a CRT (cathode ray tube) or LCD (liquid crystal display) monitor for displaying information to the user and a keyboard and a pointing device such as a mouse or a trackball by which the user can provide input to the computer.
  • a display device such as a CRT (cathode ray tube) or LCD (liquid crystal display) monitor for displaying information to the user and a keyboard and a pointing device such as a mouse or a trackball by which the user can provide input to the computer.
  • the features can be implemented in a computer system that includes a back-end component, such as a data server, or that includes a middleware component, such as an application server or an Internet server, or that includes a front-end component, such as a client computer having a graphical user interface or an Internet browser, or any combination of them.
  • the components of the system can be connected by any form or medium of digital data communication such as a communication network. Examples of communication networks include, for example, a LAN, a WAN, and the computers and networks forming the Internet.
  • the computer system can include clients and servers.
  • a client and server are generally remote from each other and typically interact through a network, such as the described one.
  • the relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

Methods, systems, and computer-readable storage media for receiving, by a QMS executed within a first data center, a query definition provided from a browser of an analytics platform executed within the second data center, the query definition being stored in a query repository, being validated by the QMS based on analytical metadata, and being stored in a mirror query repository of the first data center, providing, after validation of the query definition, a calculation scenario as an object model based on the query definition, executing, by a calculation engine within the first data center, the calculation scenario to provide an analytical artifact including a query-level calculation view on transactional data stored in the first data center, and transmitting, by the first data center, the analytical artifact to the second data center to perform analytics on at least a portion of the transactional data stored in the first data center.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of, and priority to U.S. Prov. App. No. 62/666,232, filed on May 3, 2018, the disclosure of which is expressly incorporated herein by reference in the entirety.
BACKGROUND
Enterprises can use third-party systems to maintain data, and analyze data. In some examples, data maintenance, and data analysis are performed in different data centers. For example, an enterprise can maintain its production data in a first data center, and can perform analytics on its production data in a second data center. In analyzing the data, technological inefficiencies can occur. For example, transmitting data from the first data center to the second data center can require a significant amount of technical resources (e.g., processors, memory, bandwidth). Further, storing redundant data in multiple data centers (e.g., production data in the first data center, and a copy of the production data in the second data center for analysis) burdens technical resources (e.g., memory).
SUMMARY
Implementations of the present disclosure include computer-implemented methods for data analytics across multiple data centers. More particularly, implementations of the present disclosure are directed to computer-implemented methods for analytical application integration based on a remote services plug-in. In some implementations, actions include receiving, by a query manager service (QMS) executed within a first data center, a query definition provided from a browser of an analytics platform executed within the second data center, the query definition being stored in a query repository of the second data center, the query definition being validated by the QMS based on analytical metadata, and being stored in a mirror query repository of the first data center, providing, after validation of the query definition by the QMS, a calculation scenario as an object model based on the query definition, executing, by a calculation engine within the first data center, the calculation scenario to provide an analytical artifact including a query-level calculation view on transactional data stored in the first data center, and transmitting, by the first data center, the analytical artifact to the second data center to perform analytics on at least a portion of the transactional data stored in the first data center. Other implementations of this aspect include corresponding systems, apparatus, and computer programs, configured to perform the actions of the methods, encoded on computer storage devices.
These and other implementations can each optionally include one or more of the following features: the analytical metadata is provided from an application server of the first data center, and is used by the QMS to validate the query definition; a plurality of query definitions stored in the query repository of the second data center are displayed in the browser, and the query definition is selected from the plurality of query definitions for sending to the QMS of the first data center; actions further include enhancing the calculation scenario based on analytical metadata; a query of the transactional data is executed based on the analytical artifact; at least a portion of the transactional data is provided from execution of an application within the first data center; and the query definition is provided to the QMS through one or more application programming interfaces (APIs).
The present disclosure also provides a computer-readable storage medium coupled to one or more processors and having instructions stored thereon which, when executed by the one or more processors, cause the one or more processors to perform operations in accordance with implementations of the methods provided herein.
The present disclosure further provides a system for implementing the methods provided herein. The system includes one or more processors, and a computer-readable storage medium coupled to the one or more processors having instructions stored thereon which, when executed by the one or more processors, cause the one or more processors to perform operations in accordance with implementations of the methods provided herein.
It is appreciated that methods in accordance with the present disclosure can include any combination of the aspects and features described herein. That is, methods in accordance with the present disclosure are not limited to the combinations of aspects and features specifically described herein, but also include any combination of the aspects and features provided.
The details of one or more implementations of the present disclosure are set forth in the accompanying drawings and the description below. Other features and advantages of the present disclosure will be apparent from the description and drawings, and from the claims.
DESCRIPTION OF DRAWINGS
FIG. 1 depicts an example architecture that can be used to execute implementations of the present disclosure.
FIG. 2 depicts an example conceptual architecture in accordance with implementations of the present disclosure.
FIG. 3 depicts an example query builder user interface in accordance with implementations of the present disclosure.
FIG. 4 depicts an example query-level calculation in accordance with implementations of the present disclosure.
FIG. 5 depicts an example permission calculation in accordance with implementations of the present disclosure.
FIG. 6 depicts an example scope calculation in accordance with implementations of the present disclosure.
FIG. 7 depicts an example filter definition user interface, and an associated file format definition in accordance with implementations of the present disclosure.
FIG. 8 depicts another example conceptual architecture in accordance with implementations of the present disclosure.
FIG. 9 depicts an example process in accordance with implementations of the present disclosure.
FIG. 10 is a schematic illustration of example computer systems that can be used to execute implementations of the present disclosure.
Like reference symbols in the various drawings indicate like elements.
DETAILED DESCRIPTION
Implementations of the present disclosure include computer-implemented methods for data analytics across multiple data centers. More particularly, implementations of the present disclosure are directed to computer-implemented methods for analytical application integration based on a remote services plug-in. Implementations can include actions of receiving, by a query manager service (QMS) executed within a first data center, a query definition provided from a browser of an analytics platform executed within the second data center, the query definition being stored in a query repository of the second data center, the query definition being validated by the QMS based on analytical metadata, and being stored in a mirror query repository of the first data center, providing, after validation of the query definition by the QMS, a calculation scenario as an object model based on the query definition, executing, by a calculation engine within the first data center, the calculation scenario to provide an analytical artifact including a query-level calculation view on transactional data stored in the first data center, and transmitting, by the first data center, the analytical artifact to the second data center to perform analytics on at least a portion of the transactional data stored in the first data center.
FIG. 1 depicts an example architecture 100 that can be used to execute implementations of the present disclosure. In the depicted example, the example architecture 100 includes one or more client devices 102, data centers 104, 106, and a network 108. Each data center 104, 106 includes one or more server devices 110. In the depicted example, a user 110 interacts with the client device 102. In an example context, the user 110 can include a user, who interacts with an application that is hosted in the data center 104.
In some examples, the client device 102 can communicate with one or more of the data centers 104, 106 over the network 108. In some examples, the client device 102 can include any appropriate type of computing device such as a desktop computer, a laptop computer, a handheld computer, a tablet computer, a personal digital assistant (PDA), a cellular telephone, a network appliance, a camera, a smart phone, an enhanced general packet radio service (EGPRS) mobile phone, a media player, a navigation device, an email device, a game console, or an appropriate combination of any two or more of these devices or other data processing devices.
In some implementations, the network 108 can include a large computer network, such as a local area network (LAN), a wide area network (WAN), the Internet, a cellular network, a telephone network (e.g., PSTN) or an appropriate combination thereof connecting any number of communication devices, mobile computing devices, fixed computing devices and server systems.
In some implementations, each server device 110 includes at least one server and at least one data store. In the example of FIG. 1, the server devices 110 are intended to represent various forms of servers including, but not limited to a web server, an application server, a proxy server, a network server, and/or a server pool. In general, server systems accept requests for application services, and provides such services to any number of client devices (e.g., the client device 102) over the network 106. In accordance with implementations of the present disclosure, the data center 104 can host a data analytics platform, and the data center 106 can host development, test, and/or production systems, and store production data, and/or test data. In some examples, the data center 106 can be referred to as a transactional system (e.g., executing applications an enterprise uses for its operations, and storing respective data models, and data). For example, an enterprise can run operations at least partially based on applications hosted in the data center 106, which operations can create, modify, process, and store production data (transaction data), among other activities.
To provide context for implementations of the present disclosure, enterprises can use third-party systems to maintain data, and analyze data. In some examples, data maintenance, and data analysis are performed in different data centers. For example, and with reference to FIG. 1, an enterprise can maintain its production data in the data center 106, and can perform analytics on its production data in the data center 104. In analyzing the data, technological inefficiencies can occur. For example, transmitting data from the data center 106 to the data center 104 can require a significant amount of technical resources (e.g., processors, memory, bandwidth). Further, storing redundant data in multiple data centers (e.g., production data in the data center 106, and a copy of the production data in the data center 104 for analysis) burdens technical resources (e.g., memory). Other challenges can include the preparation of analytical artifacts in the first data center, which analytical artifacts are ready-to-use by the analytics platform in the second data center, and which are at the same time already tailored to the specific needs defined by the user of the analytical platform.
In view of this, and as described in further detail herein, implementations of the present disclosure enable provision of analytical artifacts within a first data center for data analytics in a second data center. More particularly, implementations of the present disclosure provide analytical application integration based on a remote services plug-in.
Implementations of the present disclosure are described in further detail with reference to example platforms. It is contemplated, however, that implementations of the present disclosure can be realized with any appropriate platform. A first example platform includes the SAP Analytics Cloud (SAC) provided by SAP SE of Walldorf, Germany. In some examples, SAC is provided as a third-party service that an enterprise can access to perform analytics on its data (e.g., production data used in operations of the enterprise). A second example platform includes SAP SuccessFactors provided by SAP SE of Walldorf, Germany, and can be described as a cloud-based human capital management (HCM) platform. In some examples, the enterprise can use SuccessFactors to perform human resource operations (e.g., payroll, employee engagement, reviews).
FIG. 2 depicts an example conceptual architecture 200 in accordance with implementations of the present disclosure. The example conceptual architecture 200 includes a data center 202, a data center 204, and a browser 206. In some examples, the data center 202, and the data center 204 can be provided by respective server systems. For example, the data center 202 can be owned by, or operated on behalf of a third-party service provider (e.g., SAP SE, which provides SAC as a cloud-based service). As another example, the data center 204 can be owned by, or operated on behalf of an enterprise that consumes services provided by the third-party service provider. In some examples, the browser 206 is executed on a client-side computing device (e.g., the client device 102 used by the user 110 of FIG. 1).
In some implementations, the data center 202 hosts an analytics platform. In the example context introduced above, the data center 202 hosts the SAC platform. In some implementations, the data center 204 hosts one or more applications used for enterprise operations, and stores enterprise data (transactional data) 205 that can be processed by the analytics platform, as described herein. In the example context introduced above, SuccessFactors is an example application that can be hosted on the data center 204, and data stored in the data center 204 can include employee data (e.g., name, address, hire date, role, permissions, compensation information, review information). As depicted in FIG. 2, the data center 204 includes an application server 208 (e.g., an Apache Tomcat server for execution of SuccessFactors), and a database server 210 (e.g., an SAP HANA server).
In some implementations, a user 212 can interface with the SAC platform using the browser 206. In some examples, the user 212 interfaces with the SAC platform to access analytical reports, retrieve data, run data aggregations, manipulate views on data (e.g., filter, slice), and the like. For example, the browser 206 can display one or more user interfaces (UIs) that enable the user 212 to input data to, and receive data from the SAC platform. In some examples, the device that the browser 206 executes on is in communication with the data center 202 over a network (e.g., the network 108 of FIG. 1). In some implementations, the user 206 defines queries to provide a query definition 214. A query execution 216 is performed based on the query definition 214 to retrieve data from the data center 204, which is to be processed in the analytics platform in the data center 202.
FIG. 3 depicts an example query builder UI 300 in accordance with implementations of the present disclosure. In some examples, the query builder UI 300 is displayed by the browser 206 enabling the user 212 to define queries using, for example, drag-and-drop functionality. The query builder UI 300 displays available data 302 for constructing a query (e.g., employee profile data, such as, name, photo, functional experience, performance rating(s), honors/awards, language skills, geographic mobility, and the like). The user 212 can select a data type (e.g., click on), drag the data type to a query panel 304, and drop the data type to the query panel 304. In response, a graphical representation 306 of the respective data type is displayed in the query panel 306. In the example of FIG. 3, graphical representations 306 are provided for example data types of employee (e.g., name), geographic mobility, all ratings, and language skills. The graphical representations 306 can be moved, and connected to one another to provide the query definition 214.
In accordance with implementations of the present disclosure, and referring again to FIG. 2, the data center 204 includes a QMS 218. In some implementations, the QMS 218 is provided as a plug-in component to the database server 210 (e.g., Java-based code that is injected into the database server 210). In some implementations, and as described in further detail herein, the QMS 218 coordinates execution of user queries that are input using the browser 206 (e.g., the query builder UI of FIG. 3). In some examples, the browser 206 communicates with the QMS 218 using one or more application programming interface (API) calls through one or more APIs.
In some implementations, the QMS 218 includes a calculation scenario 220. A calculation scenario is an object model that can be used to generate representations of analytical artifacts (e.g., calculation views, SQL views). In some examples, each calculation scenario can be used, in hand with a calculation engine 222, to generate a corresponding analytical artifact 224 in the database server 210. These analytical artifacts 224 are streamlined for usage in the analytics platform (e.g., SAP SAC) of the data center 202.
In some examples, the calculation scenario is defined by the user 212 using the browser 206. In some examples, the calculation scenario is represented as a graph, in which base calculation views on the data in the data center 204 are connected using join relationships. In some examples, the user 212 can compose a set of columns out of the base calculation views, which are tailored to the specific need. The calculation scenario 220 can be enhanced in the browser 206 by further specific analytical metadata (e.g., different types of filters, data wrangling of different columns). In some implementations, the QMS provides an analytical artifact based on the user query. An example analytical artifact can include a query-level calculation view in the database server 210. Accordingly, the query execution at runtime is based on the analytical artifact. In this manner, an abundant set of analytical requirements can be directly consumed on top of the transactional database tables of the data center 204 using the calculation engine 222.
In further detail, the data center 204 provides analytical metadata in a predefined format. In some examples, the predefined format includes a structured list of base artifacts (e.g., base calculation views, table functions, SQL views, database tables) that are listed in a metadata interface. In addition, columns for each data source, and join information between the different base data sources are provided.
An example calculation scenario format is provided as:
{
  “globalProperties”:{...},
  “dataSources”: [{...}],
  “queryModel”: {...}
}

In some examples, a query name (queryName) defines an identifier of the calculation view. For example:
“globalProperties”: {
  “queryName”: “String”,
  “description”:“String”
}

In some examples, data sources (dataSources) represent the smallest granularity in the query builder. Example data sources can include, without limitation, calculation views, SQL views, and tables. Example pseudo-code includes:
“dataSources”: [{
  “id”: “String”,
  “dataSourceDefinition”:{...},
  “fields”: [{...}],
  “metadataLink”:{...}
},

In some examples, a definition for a data source can be provided as:
“dataSourceDefinition”: {
  “type”: “calculationView | sqlView | table ”,
  “schemaName”: “String (optional for calc views)”,
  “packageName”: “String”,
  “objectName”: “String”
}

In some examples, a metadata link can be provided as:
“metadataLink”: {
  “logicalModelId”: “String”,
  “logicalObjectId”: “String”
},

In some examples, each data source contains a set of fields. Example fields can include, without limitation, attributes, and measures. For example:
“fields”: [{
“id”: “String”,
“description”: “String”,
“reportingType”: “ ATTRIBUTE | MEASURE ”,
“semanticType”: “String (optional)”,
“unitFieldId”: {“dataSourceId”:“String”, “fieldId”:“String”}
“labelField”: {“dataSourceId”:“String”, “fieldId”:“String”}
“translations”: [{
  ...
}]

In some examples, the description of the field can be provided in multiple languages. For example, field labels can be displayed in the logon language of the use. For example:
“translations”: [{
  “locale”: “en_US”,
  “labelFieldDescription”: “last Name”
}]

In some implementations, the query model can be provided as:
“queryModel”: [{
“outputFields”: [{...}],
“joins”: [{...}],
“scopeFilters”: [{...}],
“filter”: {...},
“variables”: [{...}]},
“inputParameters”:[{...}]}
]

In some implementations, output fields (outputFields) can be provided as:
“outputFields”: [{
  “dataSourceId”: “String”,
  “type”: “DATA_SOURCE_FIELD |
  CALCULATED_COLUMN_FIELD”,
  “fieldId”: “String”
}],

In some implementations, joins can be provided as:
“joins”: [{
“outputDataSourceId”: “String”,
“leftDataSourceId”: “String”,
“leftDataSourceType”: “ VIRTUAL | REAL ”,
“rightDataSourceId”: “String”,
“rightDataSourceType”: “ VIRTUAL | REAL ”,
“joinType”: “INNER_JOIN | LEFT_OUTER_JOIN |
RIGHT_OUTER_JOIN ”,
“mappings”: [{...}]
}]

In some examples, mappings can be provided as:
“mappings”: [{
  “sourceDataSourceId”: “String, real data source ID”,
  “sourceField”: “String”,
  “targetDataSourceId”: “String, real data source ID”,
  “targetField”: “String”
}]

In some examples, scope filters (scopeFilters) can be used, and can be provided as:
“scopeFilters”: [{
  “dataSourceId”: “String”,
  “joinFields”: [{...}],
  “inputParameterReferences”: [{“id”: “String”}],
  “pushDefault”:“Boolean”
}]

In some examples, join fields (joinFields) can be provided as:
“joinFields”: [{
  “filterField”: “String”,
  “targetDataSourceId”: “String, real data source ID”,
  “targetField”: “String”
}],

In some examples, input parameter references (inputParameterReferences) can be provided as:
“inputParameterReferences”: [{
  “id”: “String, instance Id of parameter”,
  “fieldId”: “String, column name of scope view”,
  “parameterValue”: “String, instance value of parameter, used if no
fieldId specified”,
  “parameterDataType”: “String”,
  “selectionType”:“FUNCTION”,
  “operator”: “EQUAL_TO| GREATER_THAN_OR_EQUAL_TO|
GREATER_THAN| LESS_THAN| LESS_THAN_OR_EQUAL_TO”,
  “inputParameterOfHanaObject”: “String, id of input parameter e.g.
of table function”
}],

In some examples, one or more filters can be applied, and provided as:
“filter”: {
  “LogicalOperator”: “AND | OR”,
  “filterOperators”: [{...}],
  “logicalConditionNodes”: [“...”],
},

In some examples, filter operators (filterOperators) can be provided as:
“filterOperators”: [{
  “operator”: “AND | OR”,
  “filterOperators”: [“...”],
  “logicalConditionNodes”: [{...}]
]}
In some implementations, one or more logical condition nodes (logicalConditionNodes) can be provided, and are relevant if a value type (logicalConditionNodes.valueType) is equal to FUNCTION. It contains an object of type line of a function. The parameter will be ignored for all other value types. In some examples, logicalConditionNodes.targetField and logicalConditionNodes.targetDataSourceId are only relevant if the value type is equal to COLUMN. The parameters will be ignored for all other value types. In some examples, logicalConditionNodes.values is only relevant if the value type is VALUE_LIST, or PATTERN. The parameter will be ignored for all other value types. For example:
“logicalConditionNodes”: [{
  “dataSourceId”: “String, optional”,
  “fieldName”: “String”,
  “operator”: “ <LESS_THAN | | AS_OF_DATE |
LESS_THAN_EQUAL | GREATER_THAN |
GREATER_THAN_EQUAL | EQUAL_TO |
NOT_EQUAL | BETWEEN | IN
| NOT_IN | IS_NULL | IS_NOT_NULL>”,
  “valueType”: “ <VALUE_LIST | PATTERN | FUNCTION |
  COLUMN> ”,
  “values”: [“String”],
  “targetField”: “String, used for value Type COLUMN”,
  “targetDataSourceId”: “String, used for value Type COLUMN”,
  “function”: {
    “id”:“<CURRENT_DATE|
FIRST_DAY_OF_CURRENT_YEAR|
FIRST_DAY_OF_CURRENT_MONTH|
FIRST_DAY_OF_CURRENT_WEEK|
FIRST_DAY_OF_CURRENT_QUARTER|...>”
    “parameters”: [{
      “type”:“<CONSTANT|INPUT_PARAMETER>”
      “value”: “String”,
    }]
}],
In some examples, input parameters (InputParameters) can be provided as:
“inputParameters”: [{
  “id”: “String ”,
  “properties”: {
    “description”: “String”,
    “parameterType”: “<DIRECT|LIST|COLUMN>”,
    “isMandatory”: “Boolean”,
    “isMultipleValues”: “Boolean”,
    “dataType”: “String”,
    “length”: “Integer”,
    “staticValueList”: [{
      “id”: “String”,
      “value”: “String”
      }]
  },
  “mappingType”: {
    “isConstantMapping”: “Boolean”,
    “constantValue”: “String”
  },
  “defaultValues”: [{
    “type”: “<CONSTANT|FUNCTION>”,
    “value”: “If type = CONSTANT: String, if type = FUNCTION:
<CURRENT_DATE|...>”
  }]
}]
FIG. 4 depicts an example query-level calculation 400 in accordance with implementations of the present disclosure. As described herein, data source and associated sets of columns provided by the data center 204 are composed into the analytical artifact 224 (e.g., the query level calculation view). The example of FIG. 4 represents a relatively simple situation, in which three base calculation views 402, 404, 406 (e.g., specific data sources provided in the data center 204) are composed into the overall query level calculation view.
In accordance with implementations of the present disclosure, the connection of the generated query level analytical artifact, and the associated query in the analytical platform are stored as query administration data (e.g., query administration data 226 of FIG. 2) in the data center 202. This enables an analytical story (e.g., SAC-based story) to be executed using the calculation engine 222 directly based on the complex analytical artifact in the data center 204.
Accordingly, implementations of the present disclosure provide live data connectivity of the analytical platform into remote transactional applications (e.g., SAP SuccessFactors, Ariba, Fieldglass). Implementations of the present disclosure provide a mechanism to create analytical artifacts in a generic way in the remote database system of the transactional applications, and a structured definition of analytical metadata is the basis for the creation of these tailored query scenarios. Appropriate analytical artifacts are generated out of this so that the end user analytical queries can run directly run on the remote transaction system without the need of data replication.
Implementations of the present disclosure further provide access control to data that is to be processed in the analytical platform. More particularly, one of the challenges of the remote integration approach described herein is to apply fine granular, user-specific access control for the analytical evaluations. Further, the access control should cover the full range of security as required by the underlying transactional system (e.g., the data center 204 of FIG. 2). In accordance with implementations of the present disclosure, and as described in further detail herein, metadata for row, cell and field permissions are extracted from the remote application server (e.g., the application server 208 of FIG. 2), and are used at runtime of the analytical evaluation to enrich the calculation scenario, which is used to fetch the analytical data.
In further detail, a raw calculation scenario is defined by the user in the browser application of the analytics platform (e.g., the browser 206 of FIG. 2). In some examples, the raw calculation scenario is an analytical calculation scenario represented by a directed acyclic graph, in which the base calculation views from the transactional system (e.g., the data center 204 of FIG. 2) are connected using join relationships. During execution time of the analytical request, the QMS fetches user specific permission metadata from the transactional application (e.g., on the application server 208 of FIG. 2), and provides an enriched calculation scenario incorporating the permission relationships.
In some implementations, the enriched query calculation scenario is transferred into a database, analytical representation by the QMS. This can be, for example, a calculation view, or a SQL view. The analytical representation is passed to the calculation engine to retrieve the aggregated analytical data requested by the user. Through this approach of the present disclosure, is approach the runtime query execution is based on the enriched calculation scenario. In this manner, the full fine granular bandwidth of cell, row and field based permissions of the transactional data center is applied in the user-specific analytical request.
In further detail, the transactional data center provides a set of base calculation data sources (e.g., base calculation views). Each data source is associated with a set of columns for which data is to be fetched at runtime. Data source and set of columns along with the user executing the query provides a context to fetch the relevant permission metadata from the application server. One or more database table functions parametrized for the user are returned, and include the information on row and cell permissions. These table functions are used to construct the fine granular permissions by substituting each lowest level data source of the raw calculation scenario by a corresponding data source-specific permission calculation scenario graph.
FIG. 5 depicts an example permission calculation 500 in accordance with implementations of the present disclosure. The specific structure of these data source specific graphs depicted in FIG. 5 represents user-specific permissions for one data source within the transactional system.
In accordance with implementations of the present disclosure, fine granular permissions are applied by substituting each lowest level data source of the raw calculation scenario by a corresponding data source specific permission calculation scenario graph (e.g., the topmost projection in FIG. 5). The specific structure of these data source specific graphs reflects the user specific permissions.
In some examples, in a row permission base join, the base transactional data source is inner-joined with the row permission table function. The overall set of records can be reduced to a relatively large extent by this first row permission join. Accordingly, the row permission base join replaces the base transactional data source in the later cell permission groups, which optimizes the performance of the processing (see arrow from row permission base join to cell permission projection in FIG. 5). In this manner, processing on the full data source is only performed once. It can be noted that an additional topological sorting of the permission graph can be provided for a syntactically correct processing. This is for the example required for the SQL representation used in the Successfactors integration scenario referred to herein by way of example. This can depend on the database server calculation scenario representation, and the specifics of the underlying calculation engine.
In some implementations, a cell permission base join is provided using a projection on the row permission base join for the set of columns. This forms one cell group representing the left join source (left, as viewed in FIG. 5). The right join source (right, as viewed in FIG. 5) is provided as the union of a set of table functions provided by the transactional system for the cell group. In this example, it can be noted that a union of table functions is to be provided, because each table function represents a role to which the user is assigned. Permission to access a column is to be provided if the user has at least one role which grants this permission. In some implementations, the projection on the cell group columns with the union of permission table function is inner-joined to form the cell permission base join.
With regard to a permission compound join, the first compound join is formed as left-outer join between the row permission base join, and the first cell permission base join. In the example of FIG. 5, the cell columns are to be joined from the right side, whereas all other columns are to be joined from the left side, to properly reflect cell permissions. Further permission base joins are formed similarly with the exception that the left data source of the nth permission compound join is be the (n−1)th permission compound join.
In some implementations, the last permission compound join can be linked to the root compound projection. In some examples, the root compound projection is used as a platform to apply the field permissions by means of an initialized calculated attribute for non-permissioned fields. The permission root projection can substitute for the transactional data source in the raw calculation scenario.
Accordingly, implementations of the present disclosure provide a mechanism to apply fine granular, user-specific access control requested by the underlying transactional system (e.g., the data center 204 of FIG. 2) in the context of an analytics platform (e.g., SAC executed in the data center 202 of FIG. 2). This is a required building block for the usage of remote connectivity of such remote transactional systems using the full power of the underlying database architecture. As described herein, this mechanism is based on the substitution of each particular transactional data source in the initial calculation scenario by a specific fine granular calculation scenario, which is based on the permission metadata provided by the transactional system for the user who is processing the analytical request.
Another challenge of integrating transactional application systems with analytics platforms is to apply complex application logic for user-specific filtering in an encapsulated way. A set of complex and specific filter methods reflecting the full application needs is provided by the transactional system. In accordance with implementations of the present disclosure, parametrization and application of the filter methods is done by the QMS (e.g., the QMS 218 of FIG. 2).
To provide further context, scope filters are used to support users in the definition of complex (dynamic) filters that cannot be expressed with simple filter conditions. For example, if a user wants to see data for all employees in his team, how the selection of “all employees in the team of a user” can be performed needs to be defined. It may be possible for a user to specify a constant selection with the set of employees at the point in time the report is executed. However, in this example, the members of a team may change at any point in time, and it can require significant effort to maintain filters. In addition, it may not be possible for the common reporting user to define a set of joins and selections that are necessary to dynamically derive the list of user IDs for the selection of employees in his team.
In view of this, implementations of the present disclosure provide a convenient selection method that enables users to define complex selection with a parameterization of the selection execution behavior. In some implementations, scope filters include an application of scope filter, and a parameterization of scope filter. In some examples, application of a scope filter includes a strategy that is used to execute the selection. In some examples, parametrization of a scope filter includes a set of selection criteria options that are shown on a UI to a user. The selection criteria options are used to parameterize the execution behavior. In some examples, interface elements for selection can range from simple check boxes up to drop down boxes/value help dialogs that are used to select specific values. The user selection is used to set the input parameters of the function/artifact that is used to execute the selection of values.
FIG. 6 depicts an example scope calculation 600 in accordance with implementations of the present disclosure. In some implementations, the scope filter application contains a data source including, for example, a table function, or a database view. In addition, the scope filter application describes which data source, and how the scope filter data source is to be joined. In FIG. 6, ScopeFilter_RD1, for example, is the result view of the scope filter scfi1 applied on the object rd1. In order to achieve the filter characteristics, scope filter data sources are inner-joined to the base data sources.
Scope filter data sources can be parametrized in multiple ways. Scope filters can already be parametrized by the transactional system. This can be done on the basis of defined metadata structure (e.g., provided in the application server 208 of FIG. 2). The transactional system could provide a defined value for a certain parameter, or a list of options for a certain scope filter parameter. The concrete selection of this option can be either done in the definition of the query by the end user. In this case, the QMS is already able to enrich the query calculation scenario, such that the selected parameter is considered. Alternatively, the selection of the parameter can be done by the end user, who is executing the query. In this case, the parametrization will be done by the underlying calculation engine. Another parametrization option is a based on a function which can only be computed on query execution. An example of this is the user who is executing the query. A parametrization of the scope is to be done by the QMS in this case.
Accordingly, implementations of the present disclosure provide a mechanism to apply application-specific filters as part of the live data connectivity between an analytics platform, and a transactional system. Scope filters are a major building block for real application scenarios, because they support complex, user-based and parametrized filters with an easy structured application of base filter methods.
Another challenge of integrating transactional application systems with analytics platforms is to provide scenario-specific filters, and data wrangling functions that are pre-configured for user-based parameters, and that can be further adopted by the end user. In accordance with implementations of the present disclosure, a raw calculation scenario is defined by the user in the browser application (e.g., the browser 206 of FIG. 2). A filter and data wrangling engine enriches the calculation scenario so that end user can set appropriate column-specific filters. The user is also able to combine arbitrary columns to tailor the analytical output.
In further detail, the QMS (e.g., the QMS 218 of FIG. 2) includes a raw calculation scenario, a filter and data wrangling engine, and an enriched calculation scenario. As described herein, specific data structures are input to the filter and data wrangling engine, and are the basis for the a tailored calculation scenario. These data structures are sent to the transactional database system (e.g., the database system 210 of FIG. 2), and are used to enrich the raw calculation scenario.
In some implementations, filters are defined based on a recursion algorithm. In some examples, the logical condition nodes, example pseudo-code detailed above, define basic filters at the data source level. It is possible to apply specific filters based on value comparison, column comparison, and user functions (e.g., comparing a date with the current date). In some implementations, a Boolean result of the logical condition nodes can be nested into a filter operator, example pseudo-code detailed above, which itself includes a combination of filter operators, and logical condition nodes. Accordingly, the overall filter, example pseudo-code detailed above, includes a combination of logical condition nodes, and filter operators. By this recursive approach, it is possible to cover a relatively wider range of static filter functions.
FIG. 7 depicts an example filter definition UI 700, and an associated file format definition 702 (e.g., resulting pseudo-code).
In some examples, analytical reports can require the definition of virtual fields including a combination of physical data source fields, functions, and the like. By way of non-limiting example, the data columns first name and last name of an employee are to be displayed as a concatenated column of both strings. For this example, the data structure below provides a generic formulation of such data wrangling algorithms:
“calculatedFields”: [{
  “name”: “String (calculated field name, ex:FULL_NAME”,
  “type”: “Enumeration: attribute|measure”,
  “dataType”: “Enumeration BIGINT|BOOLEAN|DATE|DECIMAL|
FLOAT|INTEGER| NVARCHAR|REAL|SECONDDATE|...”,
  “length”: Integer: length of ther calculated field content
  “scale”: Integer: (only for DECIMAL, ex: scale=3 -->
calculatedField= 12.987),
  “semanticType”: “Enumeration: currencyCode(“currencyCode”)|
unitOfMeasure(“unitOfMeasure”)|space(“”)”,
  “aggregationType”: “Enumeration: sum|max|count|min (default value:
sum) ”,
    “formula”: {...}
    OR
    “constant”: {...}
    OR
    “column”: {...}
  }
}]

In some examples, function can be provided as:
“function”: {
  “name”: “String (supported values now are:+,* to be extended)”,
  “parameters”: [{
    “formula1”
  }, {
    “formula2”
  }] (List of formulas, ex:
  “parameters”: [{
    “constant”: {
      “value”: “ ”,
      “valueType”: “NVARCHAR”
    }
  }, {
    “column”: {
      “dataSourceId”: “rd3”,
      “type”: “DATA_SOURCE_FIELD”,
      “fieldId”: “VARCHAR_FIELD”
    }
  }]
  )
}

In some examples, constant can be provided as:
“constant”: {
  “value”: “String”,
  “valueType”: “Enumeration: BIGINT|BOOLEAN|DATE|
DECIMAL|DOUBLE|FLOAT|INTEGER|NVARCHAR|REAL”,
}
ex: “constant”: {
    “value”: “ ”,
    “valueType”: “NVARCHAR”
  }

In some examples, column can be provided as:
“column”: {
  “dataSourceId ”: “String”,
  “type”: “Enumeration: DATA_SOURCE_FIELD|
CALCULATED_COLUMN_FIELD_ID”,
  “fielId”: “String”
}
ex: “column”: {
    “dataSourceId”: “rd3”,
    “type”: “DATA_SOURCE_FIELD”,
    “fieldId”: “VARCHAR_FIELD”
}
Accordingly, implementations of the present disclosure enable column-specific filters, and data wrangling in the transactional system (e.g., the data center 204 of FIG. 2).
Another challenge of integrating transactional application systems with analytics platforms is query definition content management across the involved distributed systems (e.g., the analytics platform, the transaction system). In view of this, implementations of the present disclosure provide a query repository in the analytics platform (e.g., the data center 202 of FIG. 2), and a corresponding mirror query repository, and analytical metadata in the transactional system (e.g., the data center 204 of FIG. 2).
FIG. 8 depicts another example conceptual architecture 800 in accordance with implementations of the present disclosure. The conceptual architecture 800 of FIG. 8 mirrors that described herein with reference to FIG. 2. In the example of FIG. 8, a query repository 802 is provided in the data center 202, a query repository 804, and an analytical metadata repository 805 are provided in the data center 204. In the depicted example, the query repository 804 is provided in the database system 210, and the analytical metadata 806 is provided in the application server 208. Further, the QMS 218 includes a metadata population service 810, a query validation service 812, and a query load service 814. The data center 202 includes a query validation service 820, and a query replication service 822.
In some implementations, the query repository 804 provides an inventory of all query-level calculation scenarios in the database system 210. In some examples, the query repository 804 provides a set of queries that are available to display to the user. In some examples, the query repository 804 stores information that can be used to successfully re-create the query builder UI of a query. In some examples, the query repository 804 is used to distribute query content in a complex system landscape. In some implementations, the metadata repository 805 persists the analytical metadata that is used as an input for the setup of the query scenarios.
In some implementations, the underlying analytical model of the transactional system (e.g., the data center 204), and its corresponding metadata undergo changes during production use, because data model changes are common. In addition, even in production systems underlying changes of the analytical models are common (e.g. yearly performance management cycle). Administrative tools are provided to manage lifecycle events in a robust and reliable way. In some examples, the query repository is the basis for the administrative tools.
In some implementations, queries can be validated against the metadata representations of the underlying analytical model provided by the respective transactional application (e.g., executed on the application server 208). The query validation can be performed by comparing metadata of the current query with metadata stored in the metadata repository. In some examples, the query-level calculation view is adapted in view of changes to the underlying analytical model of the transactional application. Depending on the severity, these changes can either be done automatically, or the query will be labelled as invalid, so that an administrator can fix any issues manually.
In some instances, implementation projects in the transactional system require content transport management. This can include, for example, the transportation of queries from a test system to a production system. Implementations of the present disclosure provide administration services to achieve this. As a basis for these administration services, implementations of the present disclosure enable loading of queries to the query repository. The query repository is used to manage the content lifecycle. In some examples, default queries can be provided (e.g., by the third-party provider of the analytical platform), and are imported into the query repository of the transactional system. In some examples, the default queries can be used as a template to tailor a query.
FIG. 9 depicts an example process 900 that can be executed in accordance with implementations of the present disclosure. In some examples, the example process 900 can be provided by one or more computer-executable programs executed using one or more computing devices. For example, the example process 900 can be executed by the data center 202, and the data center 206.
A query definition is received (902). For example, the QMS 218 executed within the data center 204 receives a query definition provided from the browser 206 of an analytics platform executed within the data center 202. A calculation scenario is provided (904). For example, the QMS 218 provides a calculation scenario based on the query definition. In some examples, the calculation scenario is provided as an object model. In some examples, the object model is a graph that includes a plurality of base calculation views that are connected by at least one join relationship.
The calculation scenario is executed to provide an analytical artifact (906). For example, the calculation engine 222 within the data center 204 executes the calculation scenario to provide the analytical artifact 224. In some examples, the analytical artifact includes a query-level calculation view on transactional data (e.g., at least a portion of the transactional data 205) stored in the data center 204. The analytical artifact is transmitted (908). For example, the data center 204 transmits the analytical artifact for use by the data center 202.
A query is executed based on the analytical artifact (910). For example, an analytics platform executed on the data center 202 executes a query corresponding to the query definition based on the analytical artifact. A query result is provided as output (912). For example, the data center 202 provides output of query execution to the browser 206 for display to the user 212.
Referring now to FIG. 10, a schematic diagram of an example computing system 1000 is provided. The system 1000 can be used for the operations described in association with the implementations described herein. For example, the system 1000 may be included in any or all of the server components discussed herein. The system 1000 includes a processor 1010, a memory 1020, a storage device 1030, and an input/output device 1040. The components 1010, 1020, 1030, 1040 are interconnected using a system bus 1050. The processor 1010 is capable of processing instructions for execution within the system 1000. In one implementation, the processor 1010 is a single-threaded processor. In another implementation, the processor 1010 is a multi-threaded processor. The processor 1010 is capable of processing instructions stored in the memory 1020 or on the storage device 1030 to display graphical information for a user interface on the input/output device 1040.
The memory 1020 stores information within the system 1000. In one implementation, the memory 1020 is a computer-readable medium. In one implementation, the memory 1020 is a volatile memory unit. In another implementation, the memory 1020 is a non-volatile memory unit. The storage device 1030 is capable of providing mass storage for the system 1000. In one implementation, the storage device 1030 is a computer-readable medium. In various different implementations, the storage device 1030 may be a floppy disk device, a hard disk device, an optical disk device, or a tape device. The input/output device 1040 provides input/output operations for the system 1000. In one implementation, the input/output device 1040 includes a keyboard and/or pointing device. In another implementation, the input/output device 1040 includes a display unit for displaying graphical user interfaces.
The features described can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. The apparatus can be implemented in a computer program product tangibly embodied in an information carrier (e.g., in a machine-readable storage device, for execution by a programmable processor), and method steps can be performed by a programmable processor executing a program of instructions to perform functions of the described implementations by operating on input data and generating output. The described features can be implemented advantageously in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device. A computer program is a set of instructions that can be used, directly or indirectly, in a computer to perform a certain activity or bring about a certain result. A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
Suitable processors for the execution of a program of instructions include, by way of example, both general and special purpose microprocessors, and the sole processor or one of multiple processors of any kind of computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. Elements of a computer can include a processor for executing instructions and one or more memories for storing instructions and data. Generally, a computer can also include, or be operatively coupled to communicate with, one or more mass storage devices for storing data files; such devices include magnetic disks, such as internal hard disks and removable disks; magneto-optical disks; and optical disks. Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, ASICs (application-specific integrated circuits).
To provide for interaction with a user, the features can be implemented on a computer having a display device such as a CRT (cathode ray tube) or LCD (liquid crystal display) monitor for displaying information to the user and a keyboard and a pointing device such as a mouse or a trackball by which the user can provide input to the computer.
The features can be implemented in a computer system that includes a back-end component, such as a data server, or that includes a middleware component, such as an application server or an Internet server, or that includes a front-end component, such as a client computer having a graphical user interface or an Internet browser, or any combination of them. The components of the system can be connected by any form or medium of digital data communication such as a communication network. Examples of communication networks include, for example, a LAN, a WAN, and the computers and networks forming the Internet.
The computer system can include clients and servers. A client and server are generally remote from each other and typically interact through a network, such as the described one. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
In addition, the logic flows depicted in the figures do not require the particular order shown, or sequential order, to achieve desirable results. In addition, other steps may be provided, or steps may be eliminated, from the described flows, and other components may be added to, or removed from, the described systems. Accordingly, other implementations are within the scope of the following claims.
A number of implementations of the present disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the present disclosure. Accordingly, other implementations are within the scope of the following claims,

Claims (20)

What is claimed is:
1. A computer-implemented method for data analytics in a first data center using transactional data of a second data center, the computer-implemented method being executed by one or more processors and comprising:
receiving, by a query manager service (QMS) executed within a database server of the first data center, a query definition provided from a browser of an analytics platform executed within the second data center, the query definition being stored in a query repository of the second data center, being validated by the QMS based on analytical metadata, and being stored in a mirror query repository of the first data center;
providing, after validation of the query definition by the QMS, a raw calculation scenario as an object model based on the query definition, the raw calculation scenario being absent user-specific permissions;
retrieving, by the QMS, user-specific permission metadata from a transactional application executed within an application server of the first data center to provide an enriched calculation scenario that includes user-specific permissions of the user, the user-specific permissions comprising cell-based permissions, row-based permissions, and field-based permissions of the user for accessing at least a portion of transactional data stored within the first data center;
executing, by a calculation engine within the first data center, the enriched calculation scenario to provide an analytical artifact comprising a query-level calculation view on transactional data stored in the first data center, the executing comprising initially executing a row permission base join to replace a base transactional data source in at least one subsequent cell permission group, and subsequently executing a cell permission base join, where the cell permission base join is formed by a projection on cell group columns with a union of permission table function is inner-joined, and a permission compound join to provide a root compound projection to determine the transactional data that the user is allowed to access based on the field-based permissions; and
transmitting, by the first data center, the analytical artifact to the second data center to perform analytics on at least a portion of the transactional data stored in the first data center.
2. The computer-implemented method of claim 1, wherein the analytical metadata is provided from an application server of the first data center, and is used by the QMS to validate the query definition.
3. The computer-implemented method of claim 1, wherein a plurality of query definitions stored in the query repository of the second data center are displayed in the browser, and the query definition is selected from the plurality of query definitions for sending to the QMS of the first data center.
4. The computer-implemented method of claim 1, further comprising enhancing the calculation scenario based on analytical metadata.
5. The computer-implemented method of claim 1, wherein a query of the transactional data is executed based on the analytical artifact.
6. The computer-implemented method of claim 1, wherein at least a portion of the transactional data is provided from execution of an application within the first data center.
7. The computer-implemented method of claim 1, wherein the query definition is provided to the QMS through one or more application programming interfaces (APIs).
8. A non-transitory computer-readable storage medium coupled to one or more processors and having instructions stored thereon which, when executed by the one or more processors, cause the one or more processors to perform operations for data analytics in a first data center using transactional data of a second data center, the operations comprising:
receiving, by a query manager service (QMS) executed within a database server of the first data center, a query definition provided from a browser of an analytics platform executed within the second data center, the query definition being stored in a query repository of the second data center, being validated by the QMS based on analytical metadata, and being stored in a mirror query repository of the first data center;
providing, after validation of the query definition by the QMS, a raw calculation scenario as an object model based on the query definition, the raw calculation scenario being absent user-specific permissions;
retrieving, by the QMS, user-specific permission metadata from a transactional application executed within an application server of the first data center to provide an enriched calculation scenario that includes user-specific permissions of the user, the user-specific permissions comprising cell-based permissions, row-based permissions, and field-based permissions of the user for accessing at least a portion of transactional data stored within the first data center;
executing, by a calculation engine within the first data center, the enriched calculation scenario to provide an analytical artifact comprising a query-level calculation view on transactional data stored in the first data center, the executing comprising initially executing a row permission base join to replace a base transactional data source in at least one subsequent cell permission group, and subsequently executing a cell permission base join, where the cell permission base join is formed by a projection on cell group columns with a union of permission table function is inner-joined, and a permission compound join to provide a root compound projection to determine the transactional data that the user is allowed to access based on the field-based permissions; and
transmitting, by the first data center, the analytical artifact to the second data center to perform analytics on at least a portion of the transactional data stored in the first data center.
9. The non-transitory computer-readable storage medium of claim 8, wherein the analytical metadata is provided from an application server of the first data center, and is used by the QMS to validate the query definition.
10. The non-transitory computer-readable storage medium of claim 8, wherein a plurality of query definitions stored in the query repository of the second data center are displayed in the browser, and the query definition is selected from the plurality of query definitions for sending to the QMS of the first data center.
11. The non-transitory computer-readable storage medium of claim 8, wherein operations further comprise enhancing the calculation scenario based on analytical metadata.
12. The non-transitory computer-readable storage medium of claim 8, wherein a query of the transactional data is executed based on the analytical artifact.
13. The non-transitory computer-readable storage medium of claim 8, wherein at least a portion of the transactional data is provided from execution of an application within the first data center.
14. The non-transitory computer-readable storage medium of claim 8, wherein the query definition is provided to the QMS through one or more application programming interfaces (APIs).
15. A system, comprising:
a computing device; and
a computer-readable storage device coupled to the computing device and having instructions stored thereon which, when executed by the computing device, cause the computing device to perform operations for data analytics in a first data center using transactional data of a second data center, the operations comprising:
receiving, by a query manager service (QMS) executed within a database server of the first data center, a query definition provided from a browser of an analytics platform executed within the second data center, the query definition being stored in a query repository of the second data center, being validated by the QMS based on analytical metadata, and being stored in a mirror query repository of the first data center;
providing, after validation of the query definition by the QMS, a raw calculation scenario as an object model based on the query definition, the raw calculation scenario being absent user-specific permissions;
retrieving, by the QMS, user-specific permission metadata from a transactional application executed within an application server of the first data center to provide an enriched calculation scenario that includes user-specific permissions of the user, the user-specific permissions comprising cell-based permissions, row-based permissions, and field-based permissions of the user for accessing at least a portion of transactional data stored within the first data center;
executing, by a calculation engine within the first data center, the enriched calculation scenario to provide an analytical artifact comprising a query-level calculation view on transactional data stored in the first data center, the executing comprising initially executing a row permission base join to replace a base transactional data source in at least one subsequent cell permission group, and subsequently executing a cell permission base join, where the cell permission base join is formed by a projection on cell group columns with a union of permission table function is inner-joined, and a permission compound join to provide a root compound projection to determine the transactional data that the user is allowed to access based on the field-based permissions; and
transmitting, by the first data center, the analytical artifact to the second data center to perform analytics on at least a portion of the transactional data stored in the first data center.
16. The system of claim 15, wherein the analytical metadata is provided from an application server of the first data center, and is used by the QMS to validate the query definition.
17. The system of claim 15, wherein a plurality of query definitions stored in the query repository of the second data center are displayed in the browser, and the query definition is selected from the plurality of query definitions for sending to the QMS of the first data center.
18. The system of claim 15, wherein operations further comprise enhancing the calculation scenario based on analytical metadata.
19. The system of claim 15, wherein a query of the transactional data is executed based on the analytical artifact.
20. The system of claim 15, wherein at least a portion of the transactional data is provided from execution of an application within the first data center.
US15/999,388 2018-05-03 2018-08-20 Query and metadata repositories to facilitate content management and lifecycles in remote analytical application integration Active 2039-04-04 US11379481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/999,388 US11379481B2 (en) 2018-05-03 2018-08-20 Query and metadata repositories to facilitate content management and lifecycles in remote analytical application integration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862666232P 2018-05-03 2018-05-03
US15/999,388 US11379481B2 (en) 2018-05-03 2018-08-20 Query and metadata repositories to facilitate content management and lifecycles in remote analytical application integration

Publications (2)

Publication Number Publication Date
US20190340285A1 US20190340285A1 (en) 2019-11-07
US11379481B2 true US11379481B2 (en) 2022-07-05

Family

ID=68383811

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/999,389 Active 2039-02-03 US10990597B2 (en) 2018-05-03 2018-08-20 Generic analytical application integration based on an analytic integration remote services plug-in
US15/999,512 Active 2038-12-10 US10901994B2 (en) 2018-05-03 2018-08-20 Fine granular application-specific complex filters in remote analytical application integration
US15/999,388 Active 2039-04-04 US11379481B2 (en) 2018-05-03 2018-08-20 Query and metadata repositories to facilitate content management and lifecycles in remote analytical application integration

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/999,389 Active 2039-02-03 US10990597B2 (en) 2018-05-03 2018-08-20 Generic analytical application integration based on an analytic integration remote services plug-in
US15/999,512 Active 2038-12-10 US10901994B2 (en) 2018-05-03 2018-08-20 Fine granular application-specific complex filters in remote analytical application integration

Country Status (1)

Country Link
US (3) US10990597B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11023495B2 (en) * 2018-03-19 2021-06-01 Adobe Inc. Automatically generating meaningful user segments
US10990597B2 (en) 2018-05-03 2021-04-27 Sap Se Generic analytical application integration based on an analytic integration remote services plug-in
US11321310B2 (en) * 2018-05-11 2022-05-03 Visa International Service Association System, method, and apparatus for generating analytics with structured query files
US11188546B2 (en) * 2019-09-24 2021-11-30 International Business Machines Corporation Pseudo real time communication system
US11354332B2 (en) 2020-05-20 2022-06-07 Sap Se Enabling data access by external cloud-based analytics system
US11582262B2 (en) * 2020-10-08 2023-02-14 Google Llc Extension framework for data analytics
CN112800070A (en) * 2020-12-28 2021-05-14 杭州涂鸦信息技术有限公司 Mirror image warehouse system

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899986A (en) * 1997-02-10 1999-05-04 Oracle Corporation Methods for collecting query workload based statistics on column groups identified by RDBMS optimizer
US6513154B1 (en) 1996-10-21 2003-01-28 John R. Porterfield System and method for testing of computer programs in programming effort
US6604110B1 (en) * 2000-08-31 2003-08-05 Ascential Software, Inc. Automated software code generation from a metadata-based repository
US20040199818A1 (en) 2003-03-31 2004-10-07 Microsoft Corp. Automated testing of web services
US20040225865A1 (en) * 1999-09-03 2004-11-11 Cox Richard D. Integrated database indexing system
US20050021557A1 (en) 2003-07-22 2005-01-27 Rainer Brendle Meta model for an enterprise service architecture
US20050022157A1 (en) 2003-07-22 2005-01-27 Rainer Brendle Application management
US20050138113A1 (en) 2003-12-17 2005-06-23 Rainer Brendle Remote debugging of software
US20060004699A1 (en) 2004-06-30 2006-01-05 Nokia Corporation Method and system for managing metadata
US20060080426A1 (en) 2004-10-12 2006-04-13 Frank Brunswig Dynamic value sets in a service-oriented business framework
US20060101403A1 (en) 2004-10-19 2006-05-11 Anoop Sharma Method and system to automate software testing using sniffer side and browser side recording and a toolbar interface
US20060242207A1 (en) 2005-04-22 2006-10-26 Igor Tsyganskiy Methods of comparing and merging business process configurations
US20070006041A1 (en) 2005-06-30 2007-01-04 Frank Brunswig Analytical regression testing on a software build
US20070061431A1 (en) 2005-09-12 2007-03-15 Sap Ag. Systems and methods for providing a local client proxy
US20070073702A1 (en) 2005-09-26 2007-03-29 Sap Ag Systems and methods for mapping text
US20070100943A1 (en) 2005-10-28 2007-05-03 Sap Ag Systems and methods for enhanced message support of common model interface
US7225433B2 (en) 2002-07-04 2007-05-29 Sap Aktiengesellschaft Dynamic breakpoints for computer software
US7225432B2 (en) 2002-07-04 2007-05-29 Sap Ag Methods and systems for debugging a computer program code
US20070124740A1 (en) 2005-11-04 2007-05-31 Sap Ag Systems and methods for adapting procedure calls to service providers
US20070150449A1 (en) * 2005-12-28 2007-06-28 Toshio Suganuma Database program acceleration
US20070157167A1 (en) 2005-12-29 2007-07-05 Sap Ag Service adaptation of the enterprise services framework
US20070226751A1 (en) 2006-03-23 2007-09-27 Sap Ag Systems and methods for providing an enterprise services description language
US20070233728A1 (en) 2006-03-30 2007-10-04 Joachim Puteick Foundation layer for services based enterprise software architecture
US20070271107A1 (en) 2006-05-19 2007-11-22 Sap Ag Context-dependent value help
US20070288885A1 (en) 2006-05-17 2007-12-13 The Mathworks, Inc. Action languages for unified modeling language model
US7315853B2 (en) 2004-10-11 2008-01-01 Sap Ag Service-oriented architecture for accessing reports in legacy systems
US20080005623A1 (en) 2006-06-30 2008-01-03 Sap Ag System and method for model-based user interface using transformation nodes
US20080010074A1 (en) 2006-06-27 2008-01-10 Sap Ag. Systems and methods for providing a mockup data generator
US20080120129A1 (en) 2006-05-13 2008-05-22 Michael Seubert Consistent set of interfaces derived from a business object model
US20080120597A1 (en) 2006-10-27 2008-05-22 Sap Ag Systems and methods for context-based content management
US20080120602A1 (en) 2006-11-21 2008-05-22 Microsoft Corporation Test Automation for Business Applications
US20080148166A1 (en) 2006-12-14 2008-06-19 Sap Ag Priority controlled display
US20080147455A1 (en) 2006-12-14 2008-06-19 Sap Ag Enterprise verification and certification framework
US20080168135A1 (en) * 2007-01-05 2008-07-10 Redlich Ron M Information Infrastructure Management Tools with Extractor, Secure Storage, Content Analysis and Classification and Method Therefor
US20080173702A1 (en) 2005-01-07 2008-07-24 Laurel Grace Meister Magnetic card and envelope
US20080244616A1 (en) 2007-03-30 2008-10-02 Sap Ag System and method for message lifetime management
US20080276225A1 (en) 2007-05-04 2008-11-06 Sap Ag Testing Executable Logic
US7454660B1 (en) 2003-10-13 2008-11-18 Sap Ag System and method for testing applications at the business layer
US20080301628A1 (en) 2007-05-29 2008-12-04 Sap Ag Semantic interpretation of software models for generating user interfaces
US20090019103A1 (en) * 2007-07-11 2009-01-15 James Joseph Tommaney Method and system for processing a database query
US20090019424A1 (en) 2007-07-12 2009-01-15 Sap Ag System and method of application context driven access restriction
US7487512B2 (en) 2004-09-30 2009-02-03 Sap Ag Publish-subscribe event notifications
US7533103B2 (en) 2003-07-22 2009-05-12 Sap Ag Self-describing business objects
US7536673B2 (en) 2003-07-22 2009-05-19 Sap Ag Application business object processing
US20090144721A1 (en) 2007-11-30 2009-06-04 Sap Ag System and method for providing software upgrades
US20090150473A1 (en) 2007-12-06 2009-06-11 Sap Ag System and method for business object sync-point and rollback framework
US20090210445A1 (en) * 2008-02-19 2009-08-20 International Business Machines Corporation Method and system for optimizing data access in a database using multi-class objects
US20090313606A1 (en) 2008-06-11 2009-12-17 Julius Geppert System and Method for Testing a Software Product
US7673245B2 (en) 2003-10-15 2010-03-02 Sap Aktiengesellschaft Converting user interface panels
US7676816B2 (en) 2006-06-30 2010-03-09 Sap Ag Systems and methods for integrating services
US7685268B2 (en) 2007-06-08 2010-03-23 Sap Ag Message handling for user interfaces
US7685568B2 (en) 2003-07-22 2010-03-23 Sap Ag Service management of a service oriented business framework
US7698174B2 (en) 2007-09-12 2010-04-13 Sap Ag Wiki biz web
US20100095276A1 (en) 2008-10-09 2010-04-15 Accenture S.A. Test data creation and execution system for service oriented architecture
US7702650B2 (en) 2006-12-28 2010-04-20 Sap Ag Adaptive models framework
US7725907B2 (en) 2006-12-28 2010-05-25 Sap Ag Default value initialization of business objects
US7765494B2 (en) 2006-05-24 2010-07-27 Sap Ag Harmonized theme definition language
US7769821B2 (en) 2005-12-20 2010-08-03 Sap Ag Systems and methods for enhanced meassage support using a generic client proxy
US7770146B2 (en) 2006-05-19 2010-08-03 Sap Ag Computer software development incorporating core and compound services
US7774463B2 (en) 2006-07-25 2010-08-10 Sap Ag Unified meta-model for a service oriented architecture
US7778965B2 (en) 2006-05-23 2010-08-17 Sap Ag Systems and methods for common instance handling of providers in a plurality of frameworks
US7823120B2 (en) 2004-03-02 2010-10-26 Metaphor Vision Ltd. Device, system and method for accelerated modeling
US20100281017A1 (en) * 2009-04-29 2010-11-04 Oracle International Corp Partition pruning via query rewrite
US20110066606A1 (en) * 2009-09-15 2011-03-17 International Business Machines Corporation Search engine with privacy protection
US7996814B1 (en) 2004-12-21 2011-08-09 Zenprise, Inc. Application model for automated management of software application deployments
US20120072884A1 (en) 2010-09-22 2012-03-22 Sap Ag Converting business process models to component models in a service oriented architecture domain
US20120198369A1 (en) * 2011-01-31 2012-08-02 Sap Ag Coupling analytics and transaction tasks
US20130018890A1 (en) * 2011-07-13 2013-01-17 Salesforce.Com, Inc. Creating a custom index in a multi-tenant database environment
US20130042219A1 (en) 2011-08-10 2013-02-14 Sap Ag Automated Support for Distributed Platform Development
US20130166534A1 (en) * 2011-12-22 2013-06-27 Sap Ag Hybrid Database Table Stored as Both Row and Column Store
US8510712B1 (en) 2007-03-19 2013-08-13 Interactive TKO, Inc. Testing in-container software objects
US20130339379A1 (en) * 2012-06-13 2013-12-19 Oracle International Corporation Information retrieval and navigation using a semantic layer and dynamic objects
US20130346380A1 (en) * 2012-06-26 2013-12-26 Sap Ag Database access acceleration
US8719770B2 (en) * 2010-09-09 2014-05-06 International Business Machines Corporation Verifying programming artifacts generated from ontology artifacts or models
US20140172827A1 (en) * 2012-12-18 2014-06-19 Sap Ag In-memory, columnar database multidimensional analytical view integration
US20140229464A1 (en) * 2013-02-11 2014-08-14 Oracle International Corporation Generating Estimates For Query Optimization
US20140279839A1 (en) * 2013-03-14 2014-09-18 Sap Ag Integration of transactional and analytical capabilities of a database management system
US20150074037A1 (en) 2013-09-12 2015-03-12 Sap Ag In Memory Database Warehouse
US9037609B1 (en) * 2012-10-29 2015-05-19 Amazon Technologies, Inc. Method for determining access of queries
US20150347542A1 (en) * 2010-07-09 2015-12-03 State Street Corporation Systems and Methods for Data Warehousing in Private Cloud Environment
US9256762B1 (en) * 2011-12-20 2016-02-09 Amazon Technologies, Inc. Securing a remote database
US20160055222A1 (en) 2014-08-22 2016-02-25 Siar SARFERAZ In-memory data warehouse planning and broadcasting
US9436721B2 (en) * 2014-02-28 2016-09-06 International Business Machines Corporation Optimization of mixed database workload scheduling and concurrency control by mining data dependency relationships via lock tracking
US9489423B1 (en) 2013-08-22 2016-11-08 Amazon Technologies, Inc. Query data acquisition and analysis
US20160337366A1 (en) * 2015-05-14 2016-11-17 Walleye Software, LLC Data store access permission system with interleaved application of deferred access control filters
US20160350375A1 (en) * 2015-05-29 2016-12-01 Oracle International Corporation Optimizing execution plans for in-memory-aware joins
US20170124152A1 (en) * 2015-11-02 2017-05-04 LeapYear Technologies, Inc. Differentially private processing and database storage
US20170185655A1 (en) 2015-12-28 2017-06-29 Business Objects Software Limited Orchestration of Date Query Processing in a Database System
US9760601B2 (en) * 2011-09-06 2017-09-12 Eugene Burke Analytics
US20180218041A1 (en) * 2017-02-02 2018-08-02 International Business Machines Corporation Validation of query plan
US20180246948A1 (en) * 2017-02-28 2018-08-30 Sap Se Replay of Redo Log Records in Persistency or Main Memory of Database Systems
US20190340289A1 (en) 2018-05-03 2019-11-07 Sap Se Fine granular application-specific complex filters in remote analytical application integration
US20200034480A1 (en) * 2018-07-30 2020-01-30 Sap Se Agile semantic framework
US10606825B1 (en) * 2017-02-28 2020-03-31 Synack, Inc. Flexible installation of data type validation instructions for security data for analytics applications
US11074277B1 (en) * 2017-05-01 2021-07-27 Palantir Technologies Inc. Secure resolution of canonical entities
US11222036B1 (en) * 2015-12-15 2022-01-11 Amazon Technologies, Inc. Data warehouse access reporting

Patent Citations (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6513154B1 (en) 1996-10-21 2003-01-28 John R. Porterfield System and method for testing of computer programs in programming effort
US5899986A (en) * 1997-02-10 1999-05-04 Oracle Corporation Methods for collecting query workload based statistics on column groups identified by RDBMS optimizer
US20040225865A1 (en) * 1999-09-03 2004-11-11 Cox Richard D. Integrated database indexing system
US6604110B1 (en) * 2000-08-31 2003-08-05 Ascential Software, Inc. Automated software code generation from a metadata-based repository
US7225433B2 (en) 2002-07-04 2007-05-29 Sap Aktiengesellschaft Dynamic breakpoints for computer software
US7225432B2 (en) 2002-07-04 2007-05-29 Sap Ag Methods and systems for debugging a computer program code
US20040199818A1 (en) 2003-03-31 2004-10-07 Microsoft Corp. Automated testing of web services
US7536673B2 (en) 2003-07-22 2009-05-19 Sap Ag Application business object processing
US7685568B2 (en) 2003-07-22 2010-03-23 Sap Ag Service management of a service oriented business framework
US20050022157A1 (en) 2003-07-22 2005-01-27 Rainer Brendle Application management
US20050021557A1 (en) 2003-07-22 2005-01-27 Rainer Brendle Meta model for an enterprise service architecture
US7533103B2 (en) 2003-07-22 2009-05-12 Sap Ag Self-describing business objects
US7454660B1 (en) 2003-10-13 2008-11-18 Sap Ag System and method for testing applications at the business layer
US7673245B2 (en) 2003-10-15 2010-03-02 Sap Aktiengesellschaft Converting user interface panels
US20050138113A1 (en) 2003-12-17 2005-06-23 Rainer Brendle Remote debugging of software
US7823120B2 (en) 2004-03-02 2010-10-26 Metaphor Vision Ltd. Device, system and method for accelerated modeling
US20060004699A1 (en) 2004-06-30 2006-01-05 Nokia Corporation Method and system for managing metadata
US7487512B2 (en) 2004-09-30 2009-02-03 Sap Ag Publish-subscribe event notifications
US7315853B2 (en) 2004-10-11 2008-01-01 Sap Ag Service-oriented architecture for accessing reports in legacy systems
US20060080426A1 (en) 2004-10-12 2006-04-13 Frank Brunswig Dynamic value sets in a service-oriented business framework
US20060101403A1 (en) 2004-10-19 2006-05-11 Anoop Sharma Method and system to automate software testing using sniffer side and browser side recording and a toolbar interface
US7996814B1 (en) 2004-12-21 2011-08-09 Zenprise, Inc. Application model for automated management of software application deployments
US20080173702A1 (en) 2005-01-07 2008-07-24 Laurel Grace Meister Magnetic card and envelope
US20060242207A1 (en) 2005-04-22 2006-10-26 Igor Tsyganskiy Methods of comparing and merging business process configurations
US20070006041A1 (en) 2005-06-30 2007-01-04 Frank Brunswig Analytical regression testing on a software build
US7801996B2 (en) 2005-09-12 2010-09-21 Sap Ag Systems and methods for providing a local client proxy
US20070061431A1 (en) 2005-09-12 2007-03-15 Sap Ag. Systems and methods for providing a local client proxy
US7685114B2 (en) 2005-09-26 2010-03-23 Sap Ag Systems and methods for mapping text
US20070073702A1 (en) 2005-09-26 2007-03-29 Sap Ag Systems and methods for mapping text
US20070100943A1 (en) 2005-10-28 2007-05-03 Sap Ag Systems and methods for enhanced message support of common model interface
US7797370B2 (en) 2005-10-28 2010-09-14 Sap Ag Systems and methods for enhanced message support of common model interface
US20070124740A1 (en) 2005-11-04 2007-05-31 Sap Ag Systems and methods for adapting procedure calls to service providers
US7769821B2 (en) 2005-12-20 2010-08-03 Sap Ag Systems and methods for enhanced meassage support using a generic client proxy
US20070150449A1 (en) * 2005-12-28 2007-06-28 Toshio Suganuma Database program acceleration
US7810102B2 (en) 2005-12-29 2010-10-05 Sap Ag Service adaptation of the enterprise services framework
US20070157167A1 (en) 2005-12-29 2007-07-05 Sap Ag Service adaptation of the enterprise services framework
US7480920B2 (en) 2006-03-23 2009-01-20 Sap Ag Systems and methods for providing an enterprise services description language
US20070226751A1 (en) 2006-03-23 2007-09-27 Sap Ag Systems and methods for providing an enterprise services description language
US20070233728A1 (en) 2006-03-30 2007-10-04 Joachim Puteick Foundation layer for services based enterprise software architecture
US20080120129A1 (en) 2006-05-13 2008-05-22 Michael Seubert Consistent set of interfaces derived from a business object model
US20070288885A1 (en) 2006-05-17 2007-12-13 The Mathworks, Inc. Action languages for unified modeling language model
US7770146B2 (en) 2006-05-19 2010-08-03 Sap Ag Computer software development incorporating core and compound services
US20070271107A1 (en) 2006-05-19 2007-11-22 Sap Ag Context-dependent value help
US7778965B2 (en) 2006-05-23 2010-08-17 Sap Ag Systems and methods for common instance handling of providers in a plurality of frameworks
US7765494B2 (en) 2006-05-24 2010-07-27 Sap Ag Harmonized theme definition language
US20080010074A1 (en) 2006-06-27 2008-01-10 Sap Ag. Systems and methods for providing a mockup data generator
US7676816B2 (en) 2006-06-30 2010-03-09 Sap Ag Systems and methods for integrating services
US20080005623A1 (en) 2006-06-30 2008-01-03 Sap Ag System and method for model-based user interface using transformation nodes
US7730412B2 (en) 2006-06-30 2010-06-01 Sap Ag System and method for model-based user interface using transformation nodes
US7774463B2 (en) 2006-07-25 2010-08-10 Sap Ag Unified meta-model for a service oriented architecture
US20080120597A1 (en) 2006-10-27 2008-05-22 Sap Ag Systems and methods for context-based content management
US20080120602A1 (en) 2006-11-21 2008-05-22 Microsoft Corporation Test Automation for Business Applications
US20080147455A1 (en) 2006-12-14 2008-06-19 Sap Ag Enterprise verification and certification framework
US20080148166A1 (en) 2006-12-14 2008-06-19 Sap Ag Priority controlled display
US7702650B2 (en) 2006-12-28 2010-04-20 Sap Ag Adaptive models framework
US7725907B2 (en) 2006-12-28 2010-05-25 Sap Ag Default value initialization of business objects
US10182073B2 (en) * 2007-01-05 2019-01-15 Digital Doors, Inc. Information infrastructure management tools with variable and configurable filters and segmental data stores
US20080168135A1 (en) * 2007-01-05 2008-07-10 Redlich Ron M Information Infrastructure Management Tools with Extractor, Secure Storage, Content Analysis and Classification and Method Therefor
US8510712B1 (en) 2007-03-19 2013-08-13 Interactive TKO, Inc. Testing in-container software objects
US20080244616A1 (en) 2007-03-30 2008-10-02 Sap Ag System and method for message lifetime management
US20080276225A1 (en) 2007-05-04 2008-11-06 Sap Ag Testing Executable Logic
US20080301628A1 (en) 2007-05-29 2008-12-04 Sap Ag Semantic interpretation of software models for generating user interfaces
US7685268B2 (en) 2007-06-08 2010-03-23 Sap Ag Message handling for user interfaces
US20090019103A1 (en) * 2007-07-11 2009-01-15 James Joseph Tommaney Method and system for processing a database query
US20090019424A1 (en) 2007-07-12 2009-01-15 Sap Ag System and method of application context driven access restriction
US7698174B2 (en) 2007-09-12 2010-04-13 Sap Ag Wiki biz web
US20090144721A1 (en) 2007-11-30 2009-06-04 Sap Ag System and method for providing software upgrades
US20090150473A1 (en) 2007-12-06 2009-06-11 Sap Ag System and method for business object sync-point and rollback framework
US20090210445A1 (en) * 2008-02-19 2009-08-20 International Business Machines Corporation Method and system for optimizing data access in a database using multi-class objects
US20090313606A1 (en) 2008-06-11 2009-12-17 Julius Geppert System and Method for Testing a Software Product
US20100095276A1 (en) 2008-10-09 2010-04-15 Accenture S.A. Test data creation and execution system for service oriented architecture
US20100281017A1 (en) * 2009-04-29 2010-11-04 Oracle International Corp Partition pruning via query rewrite
US20110066606A1 (en) * 2009-09-15 2011-03-17 International Business Machines Corporation Search engine with privacy protection
US20150347542A1 (en) * 2010-07-09 2015-12-03 State Street Corporation Systems and Methods for Data Warehousing in Private Cloud Environment
US8719770B2 (en) * 2010-09-09 2014-05-06 International Business Machines Corporation Verifying programming artifacts generated from ontology artifacts or models
US20120072884A1 (en) 2010-09-22 2012-03-22 Sap Ag Converting business process models to component models in a service oriented architecture domain
US20120198369A1 (en) * 2011-01-31 2012-08-02 Sap Ag Coupling analytics and transaction tasks
US20130018890A1 (en) * 2011-07-13 2013-01-17 Salesforce.Com, Inc. Creating a custom index in a multi-tenant database environment
US20130042219A1 (en) 2011-08-10 2013-02-14 Sap Ag Automated Support for Distributed Platform Development
US9760601B2 (en) * 2011-09-06 2017-09-12 Eugene Burke Analytics
US9256762B1 (en) * 2011-12-20 2016-02-09 Amazon Technologies, Inc. Securing a remote database
US20130166534A1 (en) * 2011-12-22 2013-06-27 Sap Ag Hybrid Database Table Stored as Both Row and Column Store
US20130339379A1 (en) * 2012-06-13 2013-12-19 Oracle International Corporation Information retrieval and navigation using a semantic layer and dynamic objects
US20130346380A1 (en) * 2012-06-26 2013-12-26 Sap Ag Database access acceleration
US9037609B1 (en) * 2012-10-29 2015-05-19 Amazon Technologies, Inc. Method for determining access of queries
US20140172827A1 (en) * 2012-12-18 2014-06-19 Sap Ag In-memory, columnar database multidimensional analytical view integration
US20140229464A1 (en) * 2013-02-11 2014-08-14 Oracle International Corporation Generating Estimates For Query Optimization
US20140279839A1 (en) * 2013-03-14 2014-09-18 Sap Ag Integration of transactional and analytical capabilities of a database management system
US9489423B1 (en) 2013-08-22 2016-11-08 Amazon Technologies, Inc. Query data acquisition and analysis
US20150074037A1 (en) 2013-09-12 2015-03-12 Sap Ag In Memory Database Warehouse
US9436721B2 (en) * 2014-02-28 2016-09-06 International Business Machines Corporation Optimization of mixed database workload scheduling and concurrency control by mining data dependency relationships via lock tracking
US20160055222A1 (en) 2014-08-22 2016-02-25 Siar SARFERAZ In-memory data warehouse planning and broadcasting
US20160337366A1 (en) * 2015-05-14 2016-11-17 Walleye Software, LLC Data store access permission system with interleaved application of deferred access control filters
US20160350375A1 (en) * 2015-05-29 2016-12-01 Oracle International Corporation Optimizing execution plans for in-memory-aware joins
US20170124152A1 (en) * 2015-11-02 2017-05-04 LeapYear Technologies, Inc. Differentially private processing and database storage
US11222036B1 (en) * 2015-12-15 2022-01-11 Amazon Technologies, Inc. Data warehouse access reporting
US20170185655A1 (en) 2015-12-28 2017-06-29 Business Objects Software Limited Orchestration of Date Query Processing in a Database System
US20180218041A1 (en) * 2017-02-02 2018-08-02 International Business Machines Corporation Validation of query plan
US20180246948A1 (en) * 2017-02-28 2018-08-30 Sap Se Replay of Redo Log Records in Persistency or Main Memory of Database Systems
US10606825B1 (en) * 2017-02-28 2020-03-31 Synack, Inc. Flexible installation of data type validation instructions for security data for analytics applications
US11074277B1 (en) * 2017-05-01 2021-07-27 Palantir Technologies Inc. Secure resolution of canonical entities
US20210357437A1 (en) * 2017-05-01 2021-11-18 Palantir Technologies Inc. Secure resolution of canonical entities
US20190340286A1 (en) 2018-05-03 2019-11-07 Sap Se Generic analytical application intergration based on an analytic integration remote services plug-in
US10901994B2 (en) 2018-05-03 2021-01-26 Sap Se Fine granular application-specific complex filters in remote analytical application integration
US20190340289A1 (en) 2018-05-03 2019-11-07 Sap Se Fine granular application-specific complex filters in remote analytical application integration
US20200034480A1 (en) * 2018-07-30 2020-01-30 Sap Se Agile semantic framework

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Final Office Action issued in U.S. Appl. No. 15/999,389 dated Dec. 4, 2020, 15 pages.
Non-Final Office Action issued in U.S. Appl. No. 15/999,389 dated Jun. 9, 2020, 19 pages.
Non-Final Office Action issued in U.S. Appl. No. 15/999,512 dated Apr. 17, 2020, 18 pages.
U.S. Appl. No. 16/048,863, Kazmaier et al., filed Jul. 30, 2018.

Also Published As

Publication number Publication date
US20190340285A1 (en) 2019-11-07
US20190340286A1 (en) 2019-11-07
US10901994B2 (en) 2021-01-26
US10990597B2 (en) 2021-04-27
US20190340289A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US11379481B2 (en) Query and metadata repositories to facilitate content management and lifecycles in remote analytical application integration
US9535965B2 (en) System and method for specifying metadata extension input for extending data warehouse
US9927992B2 (en) Segmented database migration
US9665270B2 (en) Layout algorithm for entity relation model diagram
US10558644B2 (en) Source independent query language
US20150161235A1 (en) Database content publisher
US11055367B2 (en) Web application architecture for information management
US9646040B2 (en) Configurable rule for monitoring data of in memory database
US9122732B2 (en) Data comparison system
US9396446B2 (en) Modeling properties of data and events as transformations of document data and system values
US20170262498A1 (en) Source independent query language
EP3913496B1 (en) Enabling data access by external cloud-based analytics system
US10324908B2 (en) Exposing database artifacts
US20170177686A1 (en) Property models on mobile devices
US10558624B2 (en) System and method for datastore management framework
US11113664B2 (en) Data provisioning system and method
US20230281339A1 (en) Centralized data transformation in a multi-tenant computing environment
US9053151B2 (en) Dynamically joined fast search views for business objects
US20140089207A1 (en) System and method for providing high level view tracking of changes in sca artifacts
US20240126775A1 (en) System and method for automatically enriching datasets with system knowledge data
US12033101B2 (en) Web-based system and method for unit value driver operations
US20240078236A1 (en) Source independent query language for application layer
US20230081212A1 (en) System and method for providing multi-hub datasets for use with data analytics environments
US20240126725A1 (en) System and method for integrated function editor for use in data analytics environment
US12039069B2 (en) Metadata-driven restricted measures

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SAP SE, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAID, BARE;WEDDELING, PETER;HOEHMANN, TOBIAS;AND OTHERS;SIGNING DATES FROM 20180807 TO 20180813;REEL/FRAME:049187/0410

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE