US10922420B2 - Virtualized volume level security - Google Patents
Virtualized volume level security Download PDFInfo
- Publication number
- US10922420B2 US10922420B2 US15/432,539 US201715432539A US10922420B2 US 10922420 B2 US10922420 B2 US 10922420B2 US 201715432539 A US201715432539 A US 201715432539A US 10922420 B2 US10922420 B2 US 10922420B2
- Authority
- US
- United States
- Prior art keywords
- virtualized
- data
- volume
- key
- volumes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000013500 data storage Methods 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 14
- 230000015654 memory Effects 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 11
- 239000007787 solid Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000013475 authorization Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/602—Providing cryptographic facilities or services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0894—Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/14—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms
Definitions
- Cloud data security schemes can employ a variety of techniques to protect data. Such techniques may include data encryption and user authentication. Both encryption and authentication may employ the use of keys to provide increased security. For example, a key may be used to encrypt data, or a key may be used to authenticate a user requesting access to network resources. The key may be shared among multiple users or devices.
- Implementations and methods herein provide a networked storage system including a plurality of virtualized volumes, data stored on each of the plurality of virtualized volumes being encrypted using a different key.
- An implementation further provides a networked data storage system including a plurality of virtualized volumes, data stored on each of the plurality of virtualized volumes being encrypted using a different key and a security manager configured to receive a request from a client to store data to a network resource comprising a plurality of virtualized volumes and to determine an identity of a target virtualized volume, the security manager is further configured to retrieve an encryption key from a key store to encrypt data on the one of the plurality of virtualized volumes.
- An alternative implementation further provides a method of secure communication with storage devices, including receiving, at a virtualized volume security manager, a request to store data on one of a plurality of virtualized volumes, determining a target volume level, retrieving an encryption key associated with the target volume level, encrypting the data using the encryption key, and storing the data on one or more of a plurality of physical drives associated with the target volume level.
- FIG. 1 illustrates an example implementation of a networked storage system using virtualized security structure disclosed herein.
- FIG. 2 illustrates example operations for using the networked storage system disclosed herein.
- FIG. 3 illustrates alternate example operations for using the networked storage system disclosed herein.
- FIG. 4 illustrates example computing device for implementing the virtualized volume level security system disclosed herein.
- Data encryption generally involves the transformation of input data into an encrypted output using a selected cryptographic algorithm, function or operation.
- the algorithm/function may utilize one or more keys to effect the transformation from input data (e.g., plain text) to output data (e.g., cypher text). If encrypted data is to be sent from a first user/device to a second user or device, then the second user or device must have knowledge of the one or more keys to decrypt the data such that it may be utilized.
- Multi-device storage systems may provide large scale storage capabilities in a distributed computing environment (e.g., cloud based object storage systems, RAID storage system, large database processing systems, etc.). Multi-device storage systems may utilize encrypted data at the storage device level and authentication passwords that can be used between the storage device and a host to identify and authenticate a data exchange.
- Implementations described herein provide an enhanced security system utilizing virtualized volume level security for remote data storage systems.
- One or more implementations disclosed herein provide for virtualized volume level security where each virtual volume of data on a server, such as a cloud server, uses a different key for encrypting data for that volume.
- a cloud server may be implemented using ten different physical storage drives and contain two virtual volumes spread across the ten different physical storage devices.
- the data stored on the first logical volume is encrypted using a first key and the data stored on the second volume is encrypted using a second key, with the first key being different than the second key.
- messaging to each virtual volume is controlled using a different key.
- a cloud server may be implemented using twenty different physical storage drives and contain two virtual volumes spread across the ten different physical storage devices with a storage controller configured to access the data on the cloud server.
- messages between the storage controller and the first volume may be controlled using a first key and the messages between the storage controller and the second volume may be controlled using a second key, with the first key being different than the second key.
- FIG. 1 illustrates an example implementation of a networked storage system 100 using a virtualized security structure disclosed herein.
- the networked storage system 100 includes a number of user devices 102 configured use a network 104 to access data on a remote data storage system 106 .
- the remote data storage system 106 may be, for example, a cloud server that can be accessed by the network 104 such as the Internet.
- the remote data storage system 106 may include a plurality of physical storage device such as drives 130 ( 130 a , 130 b , 130 c , etc.).
- the drives 130 may be implemented using storage devices such as magnetic disc drives, optical disc drives, tape drives, flash drives, solid-state storage device, etc.
- the drives 130 may be self-encrypted drives (SED). However, in an alternative implementation, the drives 130 may not be SEDs. In yet alternative implementation, the some of the drives 130 may be SED while the others of the drives 130 may not be SED. While such an implementation may have the drives 130 as SED, it is not a requirement and 130 may also be a non-SED drive.
- SED self-encrypted drives
- the networked storage system 100 includes a storage access controller 120 that may be used to control access to data on a remote data storage system 106 .
- the storage access controller 120 may be implemented on a same server or cloud that hosts the remote data storage system 106 .
- the storage access controller 120 may be implemented on a different server or cloud compared to the server that hosts the remote data storage system 106 .
- the remote data storage system 106 is configured to use virtualized volumes for storing data on the drives 130 .
- virtualized volumes V 1 124 a and V 2 124 b are illustrated herein.
- the virtualized volumes V 1 124 a and V 2 124 b may also be referred to as logical unit numbers (LUNs).
- LUNs logical unit numbers
- each of the virtualized volumes 124 are mapped to one or more of the drives 130 .
- the Volume V 2 124 b is illustrated to be mapped to a storage area XX-YY of drive 130 a , to two storage areas AA-CC and VV-ZZ of drive 130 b , and to a storage area QQ-SS of the drive 130 c .
- the storage access controller 120 may store and update such mapping.
- the virtualized volumes 124 may be thinly provisioned in that each of the virtualized volumes 124 may have larger virtual storage capacity than the physical storage capacity of the drives 130 .
- the storage access controller 120 may be configured to allocate one virtualized volume to one client.
- a client represented by the user 102 b may be allocated volume V 2 124 b .
- communications 110 a from the user device 102 a are directed to volume V 2 124 b .
- communications 110 b from the user device 102 b may be directed to volume V 2 124 a .
- data from a client may be dispersed among more than one of the drives 130 .
- each of the drives 130 may store data from more than one client.
- Such virtualized allocation of data over a plurality of devices may make the data on the drives 130 vulnerable to a number of security threats.
- a client A using the user device 102 a may store corrupted data on a storage region XX-YY of the drive 130 a such that the corrupted data may affect data from a client B stored on drive 130 a.
- the storage access controller 120 also includes a virtualized volume security manager 122 (referred to hereinafter as the “security manager” 122 ) that assigns a different key for storing data to each one of the volumes 124 .
- the security manager 122 may work with a key store 140 configured on the storage access controller 120 to generate encryption keys.
- the key store 140 may be used to generate encryption keys that may be used to encrypt data stored on the volumes 124 .
- the key store 140 may be locally implemented on the storage access controller 120 or alternatively it may be implemented externally to the storage access controller 120 .
- the implementation discloses such a remote key store 140 a that may be implemented on a remote data server.
- the virtualized volume security manager 122 may make calls to the remote key store 140 a to create and retrieve keys that may be tied to devices 124 a , 124 b , etc.
- the security manager 122 may use a first encryption key when storing data on the volume V 1 124 a and a second encryption key when storing data to the volume V 2 124 b .
- the security manager 122 encrypts the data using the first encryption key irrespective of whether the data is going to be stored on drive 130 a , 130 b , or 130 c .
- the security manager 122 encrypts the data using the second encryption key irrespective of whether the data is going to be stored on drive 130 a , 130 b , or 130 c.
- a storage area 132 a on the drive 130 a may be encrypted using the second key that is used for encrypting data of the volume V 2 124 b whereas a storage area 132 b on the same drive 130 a may be encrypted using the first key that is used for encrypting data of the volume V 1 124 a.
- the encryption keys used for encrypting data on particular volume of the remote data storage system 106 may be provided by the client that is allocated on a particular volume.
- the client A using the user device 102 a may provide the second encryption key to the storage access controller 120 together with the request 110 a for storage or retrieval of data from volume V 2 124 b .
- the client B using the user device 102 b may provide the first encryption key to the storage access controller 120 together with the request 110 b for storage or retrieval of data from volume V 1 124 a .
- the storage access controller 120 unless the storage access controller 120 receives a request for access to the virtualized volumes 124 with a proper encryption key, the storage access controller 120 is not capable of decrypting the data from the target volumes. In one implementation, if the storage access controller 120 is not provided the correct encryption key, it does not return any data at all to the requesting device and sends a message that the encryption key is not correct. Alternatively, in some implementation, the storage access controller 120 returns unencrypted data to the requesting device.
- the storage access controller 120 extracts the data from a particular storage region of the remote data storage system 106 without decrypting such data, but sends the encrypted data to the client.
- the client at a user device 102 will be able to decrypt and use the data only if they have the decryption key.
- the implementation of the networked storage system 100 in effect results in the virtualized volumes 124 a , 124 b to behave like self-encrypted drives (SEDs), even when the drives 130 may or may not be SEDs.
- SEDs self-encrypted drives
- FIG. 2 illustrates example operations 200 for using the networked storage system disclosed herein to store data to various drives of virtualized volumes.
- the operations 200 may be implemented by a virtualized volume security manager such as those described herein.
- An operation 202 receives a request for storing data to a networked resource, such as a cloud server having various virtualized volumes.
- the operation 202 may receive a request, such as a request from a client device connected with the security manager via the Internet.
- An operation 210 determines which of the various volumes is the target of the data storage request.
- the network resource may be a cloud storage system with ten drives and one hundred virtualized volumes implemented on the ten drives such as way that each volume may be allocated storage area on one or more of the ten drives.
- the operation 210 may determine that the target volume level is a volume A of the one hundred volumes.
- An operation 212 retrieves an encryption key for the target volume.
- the encryption key may be retrieved from a key store configured on the security manager.
- the key store may be configured to have different key for each volume on the networked storage resource.
- an operation 214 encrypts the data using the selected key and an operation 216 stores the encrypted data on the target volume.
- FIG. 3 illustrates example operations 300 for using the networked storage system disclosed herein to retrieve data from various drives of virtualized volumes.
- the operations 300 may be implemented by a virtualized volume security manager such as those described herein.
- An operation 302 receives a request for retrieving data to a networked resource, such as a cloud server having various virtualized volume.
- the operation 302 may receive a request, such as a request from a client device connected with the security manager via the Internet.
- An operation 320 determines the source volume from where the data is to be retrieved. Subsequently, an operation 322 retrieves a key for the source volume.
- An operation 324 retrieves data from the source target and using the key, an operation 326 decrypts the data, which is sent to the client at operation 328 .
- FIG. 4 illustrates an example computing system 400 that may be useful in implementing the volume lever security system disclosed herein.
- the example hardware and operating environment of FIG. 4 for implementing the described technology includes a computing device, such as a general-purpose computing device in the form of a computer 20 , a mobile telephone, a personal data assistant (PDA), a tablet, smart watch, gaming remote, or other type of computing device.
- the computer 20 includes a processing unit 21 , a system memory 22 , and a system bus 23 that operatively couples various system components, including the system memory 22 to the processing unit 21 .
- the processor of a computer 20 may comprise a single central-processing unit (CPU), or a plurality of processing units, commonly referred to as a parallel processing environment.
- the computer 20 may be a conventional computer, a distributed computer, or any other type of computer; the implementations are not so limited.
- the computer 20 also includes a security manager 410 , such as the virtualized volume security manager disclosed herein.
- the security manager 410 may communicate with key store 420 to control access to one or more virtualized volumes.
- the system bus 23 may be any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a switched fabric, point-to-point connections, and a local bus using any of a variety of bus architectures.
- the system memory 22 may also be referred to as simply the memory, and includes read-only memory (ROM) 24 and random access memory (RAM) 25 .
- ROM read-only memory
- RAM random access memory
- a basic input/output system (BIOS) 26 contains the basic routines that help to transfer information between elements within the computer 20 , such as during start-up, is stored in ROM 24 .
- the computer 20 further includes a hard disk drive 27 for reading from and writing to a hard disk, not shown, a magnetic disk drive 28 for reading from or writing to a removable magnetic disk 29 , and solid state disk drive 30 for reading from or writing to a solid state disk drive 31 .
- the computer 20 may be used to implement a volume lever security system disclosed herein.
- a frequency unwrapping module including instructions to unwrap frequencies based on the sampled reflected modulations signals, may be stored in memory of the computer 20 , such as the read-only memory (ROM) 24 and random access memory (RAM) 25 , etc.
- instructions stored on the memory of the computer 20 may be used to perform one or more operations disclosed in FIG. 4 .
- instructions stored on the memory of the computer 20 may also be used to implement one or more components of FIGS. 1-3 .
- the memory of the computer 20 may also one or more instructions to implement the volume level security system disclosed herein.
- the hard disk drive 27 , magnetic disk drive 28 , and solid state disk drive 30 are connected to the system bus 23 by a hard disk drive interface 32 , a magnetic disk drive interface 33 , and a solid state drive interface 34 , respectively.
- the drives and their associated tangible computer-readable media provide non-volatile storage of computer-readable instructions, data structures, program modules and other data for the computer 20 . It should be appreciated by those skilled in the art that any type of tangible computer-readable media may be used in the example operating environment.
- a number of program modules may be stored on the hard disk, magnetic disk 29 , solid state drive 31 , ROM 24 , or RAM 25 , including an operating system 35 , one or more application programs 36 , other program modules 37 , and program data 38 .
- a user may generate reminders on the personal computer 20 through input devices such as a keyboard 40 and pointing device 42 .
- Other input devices may include a microphone (e.g., for voice input), a camera (e.g., for a natural user interface (NUI)), a joystick, a game pad, a satellite dish, a scanner, or the like.
- NUI natural user interface
- serial port interface 46 that is coupled to the system bus 23 , but may be connected by other interfaces, such as a parallel port, game port, or a universal serial bus (USB).
- a monitor 47 or other type of display device is also connected to the system bus 23 via an interface, such as a video adapter 48 .
- computers typically include other peripheral output devices (not shown), such as speakers and printers.
- the computer 20 may operate in a networked environment using logical connections to one or more remote computers, such as remote computer 49 . These logical connections are achieved by a communication device coupled to or a part of the computer 20 ; the implementations are not limited to a particular type of communications device.
- the remote computer 49 may be another computer, a server, a router, a network PC, a client, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 20 .
- the logical connections depicted in FIG. 4 include a local-area network (LAN) 51 and a wide-area network (WAN) 52 .
- LAN local-area network
- WAN wide-area network
- Such networking environments are commonplace in office networks, enterprise-wide computer networks, intranets and the Internet, which are all types of networks.
- the computer 20 When used in a LAN-networking environment, the computer 20 is connected to the local area network 51 through a network interface or adapter 53 , which is one type of communications device.
- the computer 20 When used in a WAN-networking environment, the computer 20 typically includes a modem 54 , a network adapter, a type of communications device, or any other type of communications device for establishing communications over the wide area network 52 .
- the modem 54 which may be internal or external, is connected to the system bus 23 via the serial port interface 46 .
- program engines depicted relative to the personal computer 20 may be stored in the remote memory storage device. It is appreciated that the network connections shown are example and other means of communications devices for establishing a communications link between the computers may be used.
- software or firmware instructions for the power security manager 410 may be stored in system memory 22 and/or storage devices 29 or 31 and processed by the processing unit 21 .
- One or more instructions for virtualized volume level security scheme and data may be stored in system memory 22 and/or storage devices 29 or 31 as persistent data-stores.
- intangible computer-readable communication signals may embody computer readable instructions, data structures, program modules or other data resident in a modulated data signal, such as a carrier wave or other signal transport mechanism.
- modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
- intangible communication signals include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
- the embodiments of the technology described herein can be implemented as logical steps in one or more computer systems.
- the logical operations of the present technology can be implemented ( 1 ) as a sequence of processor-implemented steps executing in one or more computer systems and/or ( 2 ) as interconnected machine or circuit modules within one or more computer systems. Implementation is a matter of choice, dependent on the performance requirements of the computer system implementing the technology. Accordingly, the logical operations of the technology described herein are referred to variously as operations, steps, objects, or modules. Furthermore, it should be understood that logical operations may be performed in any order, unless explicitly claimed otherwise or unless a specific order is inherently necessitated by the claim language.
- Data storage and/or memory may be embodied by various types of storage, such as hard disc media, a storage array containing multiple storage devices, optical media, solid-state drive technology, ROM, RAM, and other technology.
- the operations may be implemented in firmware, software, hard-wired circuitry, gate array technology and other technologies, whether executed or assisted by a microprocessor, a microprocessor core, a microcontroller, special purpose circuitry, or other processing technologies.
- a write controller, a storage controller, data write circuitry, data read and recovery circuitry, a sorting module, and other functional modules of a data storage system may include or work in concert with a processor for processing processor-readable instructions for performing a system-implemented process.
- the term “memory” means a tangible data storage device, including non-volatile memories (such as flash memory and the like) and volatile memories (such as dynamic random access memory and the like).
- the computer instructions either permanently or temporarily reside in the memory, along with other information such as data, virtual mappings, operating systems, applications, and the like that are accessed by a computer processor to perform the desired functionality.
- the term “memory” expressly does not include a transitory medium such as a carrier signal, but the computer instructions can be transferred to the memory wirelessly.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Databases & Information Systems (AREA)
- Storage Device Security (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/432,539 US10922420B2 (en) | 2017-02-14 | 2017-02-14 | Virtualized volume level security |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/432,539 US10922420B2 (en) | 2017-02-14 | 2017-02-14 | Virtualized volume level security |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180232524A1 US20180232524A1 (en) | 2018-08-16 |
US10922420B2 true US10922420B2 (en) | 2021-02-16 |
Family
ID=63106419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/432,539 Active US10922420B2 (en) | 2017-02-14 | 2017-02-14 | Virtualized volume level security |
Country Status (1)
Country | Link |
---|---|
US (1) | US10922420B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10318767B2 (en) * | 2014-12-10 | 2019-06-11 | Hewlett Packard Enterprise Development Lp | Multi-tier security framework |
US10686765B2 (en) | 2017-04-19 | 2020-06-16 | International Business Machines Corporation | Data access levels |
US11494108B2 (en) * | 2019-09-23 | 2022-11-08 | Amazon Technologies, Inc. | Cross-zone replicated block storage devices |
US11537725B2 (en) * | 2019-09-23 | 2022-12-27 | Amazon Technologies, Inc. | Encrypted cross-zone replication for cross-zone replicated block storage devices |
FR3118231A1 (en) * | 2020-12-18 | 2022-06-24 | Sagemcom Broadband Sas | METHOD FOR ENCRYPTING AND STORAGE OF COMPUTER FILES AND ASSOCIATED ENCRYPTION AND STORAGE DEVICE. |
CN113658360B (en) * | 2021-08-18 | 2022-05-10 | 安徽江淮汽车集团股份有限公司 | Digital key safety control method for vehicle |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050144404A1 (en) * | 2003-12-25 | 2005-06-30 | Kunihiko Nashimoto | Storage control subsystem for managing logical volumes |
US20080082836A1 (en) * | 2006-09-29 | 2008-04-03 | Hitachi, Ltd. | Method and apparatus for data protection |
US20080114980A1 (en) | 2006-11-13 | 2008-05-15 | Thangapandi Sridhar | System, method and apparatus for using standard and extended storage devices in two-factor authentication |
US20090268903A1 (en) * | 2008-04-25 | 2009-10-29 | Netapp, Inc. | Network storage server with integrated encryption, compression and deduplication capability |
US20110252237A1 (en) | 2010-04-09 | 2011-10-13 | Palchaudhuri Santashil | Authorizing Remote Access Points |
US20120239943A1 (en) * | 2011-03-18 | 2012-09-20 | Fujitsu Limited | Storage system, storage control apparatus, and storage control method |
US20130148810A1 (en) * | 2011-12-12 | 2013-06-13 | Microsoft Corporation | Single use recovery key |
US8654971B2 (en) | 2009-05-19 | 2014-02-18 | Security First Corp. | Systems and methods for securing data in the cloud |
US8713633B2 (en) | 2012-07-13 | 2014-04-29 | Sophos Limited | Security access protection for user data stored in a cloud computing facility |
US20140164790A1 (en) | 2012-12-06 | 2014-06-12 | David Dodgson | Storage security using cryptographic splitting |
US9213857B2 (en) | 2010-03-31 | 2015-12-15 | Security First Corp. | Systems and methods for securing data in motion |
US20160034721A1 (en) * | 2013-03-11 | 2016-02-04 | Hitachi, Ltd. | Storage system and storage system control method |
US20160080323A1 (en) | 2014-09-11 | 2016-03-17 | Superna Business Consulting, Inc. | System and method for creating a trusted cloud security architecture |
US20160275303A1 (en) | 2015-03-19 | 2016-09-22 | Netskope, Inc. | Systems and methods of monitoring and controlling enterprise information stored on a cloud computing service (ccs) |
US20170288863A1 (en) * | 2014-09-26 | 2017-10-05 | British Telecommunications Public Limited Company | Secure virtualised data volumes |
US9864874B1 (en) * | 2014-05-21 | 2018-01-09 | Amazon Technologies, Inc. | Management of encrypted data storage |
US10102356B1 (en) * | 2016-03-09 | 2018-10-16 | EMC IP Holding Company LLC | Securing storage control path against unauthorized access |
US10372926B1 (en) | 2015-12-21 | 2019-08-06 | Amazon Technologies, Inc. | Passive distribution of encryption keys for distributed data stores |
-
2017
- 2017-02-14 US US15/432,539 patent/US10922420B2/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050144404A1 (en) * | 2003-12-25 | 2005-06-30 | Kunihiko Nashimoto | Storage control subsystem for managing logical volumes |
US20080082836A1 (en) * | 2006-09-29 | 2008-04-03 | Hitachi, Ltd. | Method and apparatus for data protection |
US20080114980A1 (en) | 2006-11-13 | 2008-05-15 | Thangapandi Sridhar | System, method and apparatus for using standard and extended storage devices in two-factor authentication |
US20090268903A1 (en) * | 2008-04-25 | 2009-10-29 | Netapp, Inc. | Network storage server with integrated encryption, compression and deduplication capability |
US9064127B2 (en) | 2009-05-19 | 2015-06-23 | Security First Corp. | Systems and methods for securing data in the cloud |
US8654971B2 (en) | 2009-05-19 | 2014-02-18 | Security First Corp. | Systems and methods for securing data in the cloud |
US20150249687A1 (en) | 2009-05-19 | 2015-09-03 | Security First Corp. | Systems and methods for securing data in the cloud |
US20160379005A1 (en) | 2010-03-31 | 2016-12-29 | Security First Corp. | Systems and methods for securing data in motion |
US9213857B2 (en) | 2010-03-31 | 2015-12-15 | Security First Corp. | Systems and methods for securing data in motion |
US20110252237A1 (en) | 2010-04-09 | 2011-10-13 | Palchaudhuri Santashil | Authorizing Remote Access Points |
US20120239943A1 (en) * | 2011-03-18 | 2012-09-20 | Fujitsu Limited | Storage system, storage control apparatus, and storage control method |
US20130148810A1 (en) * | 2011-12-12 | 2013-06-13 | Microsoft Corporation | Single use recovery key |
US8713633B2 (en) | 2012-07-13 | 2014-04-29 | Sophos Limited | Security access protection for user data stored in a cloud computing facility |
US20140164790A1 (en) | 2012-12-06 | 2014-06-12 | David Dodgson | Storage security using cryptographic splitting |
US20160034721A1 (en) * | 2013-03-11 | 2016-02-04 | Hitachi, Ltd. | Storage system and storage system control method |
US9864874B1 (en) * | 2014-05-21 | 2018-01-09 | Amazon Technologies, Inc. | Management of encrypted data storage |
US20160080323A1 (en) | 2014-09-11 | 2016-03-17 | Superna Business Consulting, Inc. | System and method for creating a trusted cloud security architecture |
US20170288863A1 (en) * | 2014-09-26 | 2017-10-05 | British Telecommunications Public Limited Company | Secure virtualised data volumes |
US20160275303A1 (en) | 2015-03-19 | 2016-09-22 | Netskope, Inc. | Systems and methods of monitoring and controlling enterprise information stored on a cloud computing service (ccs) |
US10372926B1 (en) | 2015-12-21 | 2019-08-06 | Amazon Technologies, Inc. | Passive distribution of encryption keys for distributed data stores |
US10102356B1 (en) * | 2016-03-09 | 2018-10-16 | EMC IP Holding Company LLC | Securing storage control path against unauthorized access |
Also Published As
Publication number | Publication date |
---|---|
US20180232524A1 (en) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10922420B2 (en) | Virtualized volume level security | |
AU2018367363B2 (en) | Processing data queries in a logically sharded data store | |
US10873450B2 (en) | Cryptographic key generation for logically sharded data stores | |
US9137304B2 (en) | Method and apparatus for achieving data security in a distributed cloud computing environment | |
US9912645B2 (en) | Methods and apparatus to securely share data | |
US9690954B2 (en) | Securing encrypted virtual hard disks | |
US10073988B2 (en) | Chipset and host controller with capability of disk encryption | |
WO2018024056A1 (en) | User password management method and server | |
US20190238323A1 (en) | Key managers for distributed computing systems using key sharing techniques | |
Alemami et al. | Cloud data security and various cryptographic algorithms | |
EP3697053B1 (en) | Accessing encrypted user data at a multi-tenant hosted cloud service | |
US10367643B2 (en) | Systems and methods for managing encryption keys for single-sign-on applications | |
US11360743B2 (en) | Data set including a secure key | |
US11295014B2 (en) | TPM-based secure multiparty computing system using a non-bypassable gateway | |
AU2017440029A1 (en) | Cryptographic key generation for logically sharded data stores | |
CN106919348A (en) | Distributed memory system and storage method that anti-violence is cracked | |
US10462113B1 (en) | Systems and methods for securing push authentications | |
CN114186245A (en) | Encryption keys from storage systems | |
US10742661B2 (en) | Virtualized volume level messaging | |
CN114238938B (en) | PCIE password card virtualization configuration management method | |
Mishra et al. | An Efficient User Protected Encryption Storage Algorithm Used in Encrypted Cloud Data | |
WO2018236351A1 (en) | Symmetrically encrypt a master passphrase key | |
US20240267210A1 (en) | Preventing Password Cracking Based on Combined Server/Client Salted Passwords | |
US20240267209A1 (en) | Preventing Password Cracking and Acceptance of Cracked Passwords | |
US20220326975A1 (en) | Transparent data reduction in private/public cloud environments for host encrypted data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SEAGATE TECHNOLOGY LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALLO, CHRISTOPHER N.;WEISS, RICHARD O.;SIGNING DATES FROM 20170131 TO 20170203;REEL/FRAME:041254/0652 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |