US10895022B2 - Fibrous elements and fibrous structures employing same - Google Patents
Fibrous elements and fibrous structures employing same Download PDFInfo
- Publication number
- US10895022B2 US10895022B2 US12/917,585 US91758510A US10895022B2 US 10895022 B2 US10895022 B2 US 10895022B2 US 91758510 A US91758510 A US 91758510A US 10895022 B2 US10895022 B2 US 10895022B2
- Authority
- US
- United States
- Prior art keywords
- fibrous
- fibrous structure
- present
- filaments
- paper towel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 66
- 239000000080 wetting agent Substances 0.000 claims abstract description 60
- 239000000835 fiber Substances 0.000 claims description 66
- 239000000203 mixture Substances 0.000 claims description 42
- 239000000654 additive Substances 0.000 claims description 32
- 229920001131 Pulp (paper) Polymers 0.000 claims description 26
- 239000000123 paper Substances 0.000 claims description 20
- 230000000996 additive effect Effects 0.000 claims description 8
- 229920001169 thermoplastic Polymers 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 7
- 239000004094 surface-active agent Substances 0.000 claims description 5
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 4
- 239000004626 polylactic acid Substances 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 3
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 3
- 150000002334 glycols Chemical class 0.000 claims description 2
- 229920001610 polycaprolactone Polymers 0.000 claims description 2
- 239000004632 polycaprolactone Substances 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 32
- -1 polypropylene Polymers 0.000 description 74
- 239000004743 Polypropylene Substances 0.000 description 69
- 229920001155 polypropylene Polymers 0.000 description 69
- 238000010998 test method Methods 0.000 description 30
- 239000007787 solid Substances 0.000 description 27
- 239000000463 material Substances 0.000 description 24
- 239000000047 product Substances 0.000 description 21
- 239000012530 fluid Substances 0.000 description 17
- 229920001282 polysaccharide Polymers 0.000 description 17
- 239000005017 polysaccharide Substances 0.000 description 17
- 150000004676 glycans Chemical class 0.000 description 16
- 238000009987 spinning Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 13
- 230000002209 hydrophobic effect Effects 0.000 description 12
- 229920002678 cellulose Polymers 0.000 description 10
- 239000001913 cellulose Substances 0.000 description 10
- 235000010980 cellulose Nutrition 0.000 description 9
- 230000001143 conditioned effect Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 229920002488 Hemicellulose Polymers 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000004902 Softening Agent Substances 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 230000002745 absorbent Effects 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003658 microfiber Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 235000019426 modified starch Nutrition 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011122 softwood Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/407—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing absorbing substances, e.g. activated carbon
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4291—Olefin series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/56—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
- D21H13/20—Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H13/24—Polyesters
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/18—Reinforcing agents
- D21H21/20—Wet strength agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
- D21H27/002—Tissue paper; Absorbent paper
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1397—Single layer [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/298—Physical dimension
Definitions
- the present invention relates to fibrous elements, such as filaments, and more particularly to fibrous elements comprising a polymer and a wetting agent, methods for making such fibrous elements, fibrous structures employing such fibrous elements, methods for making such fibrous structures and packages comprising such fibrous structures.
- Fibrous elements comprising wetting agents are known in the art.
- polypropylene filaments comprising wetting agents are known in the art.
- Wetting agents have been used both as surface treating agents on hydrophobic fibrous elements, such as polypropylene filaments and/or polyester fibers, and as melt treating agents within polymer melt compositions that are spun into filaments, such as polypropylene filaments.
- these wetting agents and/or executions have been less than successful, especially for smaller diameter (diameters of less than 2 ⁇ m) filaments.
- fibrous structures incorporating such filaments have exhibited hydrophobic properties depending upon the amount of such filaments present within the fibrous structures.
- Fibrous structures comprising fibrous elements comprising wetting agents are also known.
- problems associated with conventional wetting agents and/or executions for applying wetting agents to hydrophobic fibrous elements such as reducing the surface tension of absorbed fluids thereby altering the ability of the fibrous structure to hold onto the fluid, it is challenging for formulators to make the hydrophobic fibrous structures less hydrophobic and/or even hydrophilic.
- a fibrous element such as a filament
- a polymer and a wetting agent that overcomes the negatives associated with prior hydrophobic filaments and fibrous structures comprising fibrous elements.
- the present invention fulfills the needs described above by providing a novel filament comprising a polymer and a wetting agent, fibrous structures employing same, methods for making same and packages containing such fibrous structures.
- a fibrous element such as a filament, comprising a polymer and a wetting agent, wherein the wetting agent is present at a level of greater than 0% but less than 2% by weight of the fibrous element and wherein the fibrous element exhibits a diameter of less than 2 ⁇ m as measured according to the Diameter Test Method described herein, and a contact angle of less than about 80° as measured according to the Contact Angle Test Method described herein, is provided.
- a fibrous structure comprising a fibrous element, such as a filament, of the present invention is provided.
- a method for making a fibrous element such as a filament comprising the steps of:
- a method for making a fibrous structure comprising the step of associating a plurality of fibrous elements, such as filaments, comprising a fibrous element-forming polymer and a wetting agent present at a level of greater than 0% but less than 2% by weight of the fibrous elements, wherein the fibrous elements exhibit a diameter of less than 2 ⁇ m as measured according to the Diameter Test Method described herein and a contact angle of less than about 80° as measured according to the Contact Angle Test Method described herein, such that a fibrous structure is formed, is provided.
- a method for making a fibrous structure comprising the steps of;
- a method for activating a fibrous element, such as a filament comprising the steps of:
- a fibrous element such as a filament
- a fibrous element-forming polymer comprising a fibrous element-forming polymer and an activatable wetting agent present at a level of greater than 0% but less than 2% by weight of the fibrous element, wherein the fibrous element exhibits a diameter of less than 2 ⁇ m as measured according to the Diameter Test Method described herein and a contact angle of greater than 100° as measured according to the Contact Angle Test Method described herein;
- a package comprising a fibrous structure comprising a fibrous element comprising a fibrous element-forming polymer and an activatable wetting agent present at a level of greater than 0% but less than 2% by weight of the fibrous elements wherein the fibrous element exhibits a diameter of less than 2 ⁇ m as measured according to the Diameter Test Method described herein and a contact angle of greater than 100° as measured according to the Contact Angle Test Method described herein, the package further comprising instructions for activating the activatable wetting agent, is provided.
- the present invention provides fibrous elements comprising a polymer and a wetting agent, methods for making fibrous elements, methods for making fibrous structures comprising such fibrous elements and packages comprising such fibrous structures.
- FIG. 1 is a schematic representation of an example of a fibrous structure according to the present invention
- FIG. 2 is a schematic, cross-sectional representation of FIG. 1 taken along line 2-2;
- FIG. 3 is a scanning electromicrophotograph of a cross-section of another example of fibrous structure according to the present invention.
- FIG. 4 is a schematic representation of another example of a fibrous structure according to the present invention.
- FIG. 5 is a schematic, cross-sectional representation of another example of a fibrous structure according to the present invention.
- FIG. 6 is a schematic, cross-sectional representation of another example of a fibrous structure according to the present invention.
- FIG. 7 is a schematic representation of an example of a process for making a fibrous structure according to the present invention.
- FIG. 8 is a schematic representation of an example of a patterned belt for use in a process according to the present invention.
- FIG. 9 is a schematic representation of an example of a filament-forming hole and fluid-releasing hole from a suitable die useful in making a fibrous structure according to the present invention.
- FIG. 10 are cryo-scanning electromicrographs of an example of a fibrous structure of the present invention prior to activation of the wetting agent within the polypropylene filaments.
- FIG. 11 are cryo-scanning electromicrographs of the fibrous structure of FIG. 10 after activation of the wetting agent within the polypropylene filaments.
- Fibrous element as used herein means an elongate particulate having a length greatly exceeding its average diameter, i.e. a length to average diameter ratio of at least about 10.
- a fibrous element may be a filament or a fiber.
- the fibrous element is a single fibrous element rather than a yarn comprising a plurality of fibrous elements.
- the fibrous elements of the present invention may be spun from spinning compositions such as polymer melt compositions, via suitable spinning operations, such as meltblowing and/or spunbonding and/or they may be obtained from natural sources such as vegetative sources, for example trees.
- the fibrous elements of the present invention may be monocomponent or multicomponent.
- the fibrous elements may comprise bicomponent fibers and/or filaments.
- the bicomponent fibers and/or filaments may be in any form, such as side-by-side, core and sheath, islands-in-the-sea and the like.
- “Filament” as used herein means an elongate particulate as described above that exhibits a length of greater than or equal to 5.08 cm (2 in.) and/or greater than or equal to 7.62 cm (3 in.) and/or greater than or equal to 10.16 cm (4 in.) and/or greater than or equal to 15.24 cm (6 in.).
- Filaments are typically considered continuous or substantially continuous in nature. Filaments are relatively longer than fibers.
- Non-limiting examples of filaments include meltblown and/or spunbond filaments.
- Fiber as used herein means an elongate particulate as described above that exhibits a length of less than 5.08 cm (2 in.) and/or less than 3.81 cm (1.5 in.) and/or less than 2.54 cm (1 in.).
- Fibers are typically considered discontinuous in nature.
- fibers include pulp fibers, such as wood pulp fibers, and synthetic staple fibers such as polypropylene, polyethylene, polyester, copolymers thereof, rayon, glass fibers and polyvinyl alcohol fibers.
- Staple fibers may be produced by spinning a filament tow and then cutting the tow into segments of less than 5.08 cm (2 in.) thus producing fibers.
- a fiber may be a naturally occurring fiber, which means it is obtained from a naturally occurring source, such as a vegetative source, for example a tree and/or plant. Such fibers are typically used in papermaking and are oftentimes referred to as papermaking fibers.
- Papermaking fibers useful in the present invention include cellulosic fibers commonly known as wood pulp fibers. Applicable wood pulps include chemical pulps, such as Kraft, sulfite, and sulfate pulps, as well as mechanical pulps including, for example, groundwood, thermomechanical pulp and chemically modified thermomechanical pulp. Chemical pulps, however, may be preferred since they impart a superior tactile sense of softness to tissue sheets made therefrom.
- Pulps derived from both deciduous trees hereinafter, also referred to as “hardwood”) and coniferous trees (hereinafter, also referred to as “softwood”) may be utilized.
- the hardwood and softwood fibers can be blended, or alternatively, can be deposited in layers to provide a stratified web.
- fibers derived from recycled paper which may contain any or all of the above categories of fibers as well as other non-fibrous polymers such as fillers, softening agents, wet and dry strength agents, and adhesives used to facilitate the original papermaking.
- cellulosic fibers such as cotton linters, rayon, lyocell and bagasse fibers can be used in the fibrous structures of the present invention.
- Fibrous structure as used herein means a structure that comprises one or more filaments and/or fibers.
- a fibrous structure according to the present invention means an orderly arrangement of filaments and/or fibers within a structure in order to perform a function.
- a fibrous structure according to the present invention is a nonwoven.
- the fibrous structures of the present invention may be homogeneous or may be layered. If layered, the fibrous structures may comprise at least two and/or at least three and/or at least four and/or at least five layers.
- the fibrous structures of the present invention may be co-formed fibrous structures.
- the fibrous structures of the present invention are disposable.
- the fibrous structures of the present invention are non-textile fibrous structures.
- the fibrous structures of the present invention are flushable, such as toilet tissue.
- Non-limiting examples of processes for making fibrous structures include known wet-laid papermaking processes and air-laid papermaking processes. Such processes typically include the steps of preparing a fibrous element composition, such as a fiber composition, in the form of a suspension in a medium, either wet, more specifically an aqueous medium, i.e., water, or dry, more specifically a gaseous medium, i.e. air.
- a fibrous element composition such as a fiber composition
- a medium either wet, more specifically an aqueous medium, i.e., water, or dry, more specifically a gaseous medium, i.e. air.
- the suspension of fibers within an aqueous medium is oftentimes referred to as a fiber slurry.
- the fibrous suspension is then used to deposit a plurality of fibers onto a forming wire or belt such that an embryonic fibrous structure is formed, after which drying and/or bonding the fibers together results in the association of the fibers into a fibrous structure. Further processing the fibrous structure may be carried out such that a finished fibrous structure is formed.
- the finished fibrous structure is the fibrous structure that is wound on the reel at the end of papermaking.
- the finished fibrous structure may subsequently be converted into a finished product, e.g. a sanitary tissue product.
- the fibrous structure of the present invention is a “unitary fibrous structure.”
- Unitary fibrous structure as used herein is an arrangement comprising a plurality of two or more and/or three or more fibrous elements that are inter-entangled or otherwise associated with one another to form a fibrous structure.
- a unitary fibrous structure in accordance with the present invention may be incorporated into a fibrous structure according to the present invention.
- a unitary fibrous structure of the present invention may be one or more plies within a multi-ply fibrous structure.
- a unitary fibrous structure of the present invention may comprise three or more different fibrous elements.
- a unitary fibrous structure of the present invention may comprise two different fibrous elements, for example a co-formed fibrous structure, upon which a different fibrous element is deposited to form a fibrous structure comprising three or more different fibrous elements.
- Co-formed fibrous structure as used herein means that the fibrous structure comprises a mixture of at least two different materials wherein at least one of the materials comprises a filament, such as a polypropylene filament, and at least one other material, different from the first material, comprises a solid additive, such as a fiber and/or a particulate.
- a co-formed fibrous structure comprises solid additives, such as fibers, such as wood pulp fibers and/or absorbent gel materials and/or filler particles and/or particulate spot bonding powders and/or clays, and filaments, such as polypropylene filaments.
- Solid additive as used herein means a fiber and/or a particulate.
- Porate as used herein means a granular substance or powder.
- “Sanitary tissue product” as used herein means a soft, low density (i.e. ⁇ about 0.15 g/cm 3 ) web useful as a wiping implement for post-urinary and post-bowel movement cleaning (toilet tissue), for otorhinolaryngological discharges (facial tissue), and multi-functional absorbent and cleaning uses (absorbent towels).
- suitable sanitary tissue products of the present invention include paper towels, bath tissue, facial tissue, napkins, baby wipes, adult wipes, wet wipes, cleaning wipes, polishing wipes, cosmetic wipes, car care wipes, wipes that comprise an active agent for performing a particular function, cleaning substrates for use with implements, such as a Swiffer® cleaning wipe/pad.
- the sanitary tissue product may be convolutedly wound upon itself about a core or without a core to form a sanitary tissue product roll.
- the sanitary tissue product of the present invention comprises one or more fibrous structures according to the present invention.
- the sanitary tissue products of the present invention may exhibit a basis weight between about 10 g/m 2 to about 120 g/m 2 and/or from about 15 g/m 2 to about 110 g/m 2 and/or from about 20 g/m 2 to about 100 g/m 2 and/or from about 30 to 90 g/m 2 .
- the sanitary tissue product of the present invention may exhibit a basis weight between about 40 g/m 2 to about 120 g/m 2 and/or from about 50 g/m 2 to about 110 g/m 2 and/or from about 55 g/m 2 to about 105 g/m 2 and/or from about 60 to 100 g/m 2 .
- the sanitary tissue products of the present invention may be in the form of sanitary tissue product rolls.
- Such sanitary tissue product rolls may comprise a plurality of connected, but perforated sheets of fibrous structure, that are separably dispensable from adjacent sheets.
- the sanitary tissue products of the present invention may comprises additives such as softening agents, temporary wet strength agents, permanent wet strength agents, bulk softening agents, lotions, silicones, wetting agents, latexes, patterned latexes and other types of additives suitable for inclusion in and/or on sanitary tissue products.
- additives such as softening agents, temporary wet strength agents, permanent wet strength agents, bulk softening agents, lotions, silicones, wetting agents, latexes, patterned latexes and other types of additives suitable for inclusion in and/or on sanitary tissue products.
- Fibrous element-forming polymer as used herein means a polymer that exhibits properties that make it suitable for spinning into a fibrous element, such as a filament.
- Polysaccharide polymer as used herein means a natural polysaccharide, a polysaccharide derivative and/or a modified polysaccharide.
- Non-polysaccharide polymer as used herein means a polymer that is not a polysaccharide polymer as defined herein.
- Wash agent as used herein means a material in present in and/or on a fibrous element of the present invention, wherein the material that lowers the surface tension of a liquid, such as water, coming into contact with a surface of the fibrous element, allowing easier spreading and lower interfacial tension between the liquid and the surface.
- “Activatable” as used herein with reference to a wetting agent means that the wetting agent exhibits different properties depending on the conditions it may have been subjected to. For example, in one case, a wetting agent within a fibrous element may not make the fibrous element exhibit a contact angle of less than 80°, but after being subjected to a 120° F. at 60% relative humidity for 24 hours, the wetting agent does make the fibrous element exhibit a contact angle of less than 80°.
- Activated wetting agent as used herein means an activatable wetting agent that causes a fibrous element to exhibit a contact angle of less than 80° after the wetting agent initially failed to cause the fibrous element to exhibit a contact angle of less than 80°.
- Non-thermoplastic as used herein means, with respect to a material, such as a fibrous element as a whole and/or a polymer within a fibrous element, that the fibrous element and/or polymer exhibits no melting point and/or softening point, which allows it to flow under pressure, in the absence of a plasticizer, such as water, glycerin, sorbitol, urea and the like.
- a plasticizer such as water, glycerin, sorbitol, urea and the like.
- Thermoplastic as used herein means, with respect to a material, such as a fibrous element as a whole and/or a polymer within a fibrous element, that the fibrous element and/or polymer exhibits a melting point and/or softening point at a certain temperature, which allows it to flow under pressure, even in the absence of a plasticizer
- Non-cellulose-containing as used herein means that less than 5% and/or less than 3% and/or less than 1% and/or less than 0.1% and/or 0% by weight of cellulose polymer, cellulose derivative polymer and/or cellulose copolymer is present in fibrous element.
- “non-cellulose-containing” means that less than 5% and/or less than 3% and/or less than 1% and/or less than 0.1% and/or 0% by weight of cellulose polymer is present in a fibrous element of the present invention.
- Random mixture of polymers means that two or more different polymers are randomly combined to form a fibrous element. Accordingly, two or more different polymers that are orderly combined to form a fibrous element, such as a core and sheath bicomponent fibrous element, is not a random mixture of different polymers for purposes of the present invention.
- “Associate,” “Associated,” “Association,” and/or “Associating” as used herein with respect to fibrous elements means combining, either in direct contact or in indirect contact, fibrous elements such that a fibrous structure is formed.
- the associated fibrous elements may be bonded together for example by adhesives and/or thermal bonds.
- the fibrous elements may be associated with one another by being deposited onto the same fibrous structure making belt and/or patterned belt.
- Weight average molecular weight as used herein means the weight average molecular weight as determined using gel permeation chromatography according to the protocol found in Colloids and Surfaces A. Physico Chemical & Engineering Aspects, Vol. 162, 2000, pg. 107-121.
- a fibrous element such as a filament
- a fibrous element exhibits a diameter of less than 2 ⁇ m and/or less than 1.5 ⁇ m and/or less than 1 ⁇ m and/or greater than 0.01 ⁇ m and/or greater than 0.1 ⁇ m and/or greater than 0.5 ⁇ m as measured according to the Diameter Test Method described herein.
- Basis Weight as used herein is the weight per unit area of a sample reported in lbs/3000 ft 2 or g/m 2 .
- Ply or “Plies” as used herein means an individual fibrous structure optionally to be disposed in a substantially contiguous, face-to-face relationship with other plies, forming a multiple ply fibrous structure. It is also contemplated that a single fibrous structure can effectively form two “plies” or multiple “plies”, for example, by being folded on itself.
- component or composition levels are in reference to the active level of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources.
- the fibrous elements of the present invention may be synthetic. In other words, the fibrous elements of the present invention may be “human-made” rather than naturally occurring (found in nature).
- the fibrous elements of the present invention comprise a polymer and a wetting agent.
- the polymer may be a fibrous element-forming polymer.
- the fibrous elements of the present invention may comprise greater than 30% and/or greater than 40% and/or greater than 50% and/or greater than 60% and/or greater than 70% to about 100% and/or to about 95% and/or to about 90% by weight of the filament of one or more polymers.
- the fibrous elements of the present invention may comprise greater than 0% and/or greater than 0.5% and/or greater than 0.75% to less than 2% and/or less than 1.75% and/or less than 1.5% by weight of the fibrous elements of one or more wetting agents.
- the fibrous elements of the present invention may associate to form a fibrous structure of the present invention.
- the fibrous element comprises a filament.
- the fibrous elements may be a single component (i.e., single synthetic material or mixture makes up entire fibrous element), bi-component (i.e., the fibrous element is divided into regions, the regions including two or more different polymers or mixtures thereof and may include co-extruded fibrous elements) and mixtures thereof. It is also possible to use bicomponent fibrous elements, or simply bicomponent or sheath polymers. These bicomponent fibrous elements can be used as a component fibrous element of the structure, and/or they may be present to act as a binder for other fibrous elements present in the fibrous structure. Any or all of the fibrous elements may be treated before, during, or after the process of the present invention to change any desired properties of the fibrous elements. For example, in certain embodiments, it may be desirable to treat (for example, make the fibrous elements less hydrophobic or more hydrophilic) the fibrous elements before, during or after making the fibrous elements and/or before, during or after making a fibrous structure.
- Non-limiting examples of suitable polymers for use in the fibrous elements of the present invention include polyolefins.
- the polymer of the present invention may be selected from the group consisting of: polyesters, polypropylenes, polyethylenes, polyethers, polyamides, polyhydroxyalkanoates, polysaccharides, polyvinyl alcohol, copolymers thereof, and mixtures thereof.
- a non-limiting example of a suitable polyester comprises polyethylene terephthalate.
- the polymer is a non-polysaccharide polymer.
- the non-polysaccharide polymer of the present invention which, for purposes of the present invention, does not include cellulose, cellulose derivatives, hemicellulose, hemicellulose derivatives, starch and starch derivatives.
- the filaments may comprise polysaccharide polymers.
- suitable polysaccharide polymers include starch, starch derivatives, cellulose, cellulose derivatives, hemicellulose, hemicellulose derivatives and mixtures thereof.
- the polysaccharide polymers may exhibit a weight average molecular weight of from about 10,000 g/mol to about 40,000,000 g/mol and/or greater than about 100,000 g/mol and/or greater than about 1,000,000 g/mol and/or greater than about 3,000,000 g/mol and/or greater than about 3,000,000 g/mol to about 40,000,000 g/mol.
- the polymer of the present invention may be a thermoplastic polymer.
- the thermoplastic polymer of the present invention may be a biodegradable polymer, such as polylactic acid, polyhydroxyalkanoate, polycaprolactone, polyesteramides and certain polyesters.
- any suitable weight average molecular weight for the polymer of the present invention may be used.
- the weight average molecular weight for a non-polysaccharide polymer in accordance with the present invention is greater than 10,000 g/mol and/or greater than 40,000 g/mol and/or greater than 50,000 g/mol and/or less than 500,000 g/mol and/or less than 400,000 g/mol and/or less than 200,000 g/mol.
- the polypropylene present in the polypropylene fibrous elements exhibits a weight average molecular weight of at least 78,000 g/mol and/or at least 80,000 g/mol and/or at least 82,000 g/mol and/or at least 85,000 g/mol and/or to about 500,000 g/mol and/or to about 400,000 g/mol and/or to about 200,000 g/mol and/or to about 100,000 g/mol.
- the polypropylene present in the polypropylene fibrous elements may exhibit a polydispersity of less than 3.2 and/or less than 3.1 and/or less than 3.0, is provided.
- Fibrous elements such as filaments, comprising the polymers of the present invention, in the absence of a wetting agent, may exhibit a conditioned contact angle of greater than 1000 and/or a contact angle greater than 110° as measured according to the Contact Angle Test Method described herein.
- the wetting agent of the present invention may comprise any suitable wetting agent that can be added to a composition, such as a spinning composition, comprising a polymer, such as a fibrous element-forming polymer.
- a spinning composition comprising the polymer prior to spinning a filament from the spinning composition.
- the wetting agent may be in an “unactivated state,” meaning that its presence in and/or on the filament is not resulting in the filament exhibiting a contact angle of less than 80° as measured according to the Contact Angle Test Method.
- the wetting agent may be in an “activated state,” meaning that its presence in and/or on the filament is resulting in the filament exhibiting a contact angle of less than 80° as measured according to the Contact Angle Test Method.
- suitable wetting agents include surfactants, such as silicone surfactants, polyethylene glycols, glycols and mixtures thereof.
- surfactants such as silicone surfactants
- polyethylene glycols such as polyethylene glycols
- glycols such as polyethylene glycols
- glycols such as polyethylene glycols
- gels such as polyethylene glycols
- glycols such as polyethylene glycols
- gels such as polyethylene glycols, glycols and mixtures thereof.
- Polvyvel S1-1416 commercially available wetting agent suitable for the present invention is sold under the trade name Polvyvel S1-1416 by Polyvel Inc. of Hammonton, N.J., which is sold as 20% active wetting agent. Any suitable wetting agent may be used so long as its presence in the fibrous elements produces the fibrous elements according to the present invention.
- the fibrous element of the present invention is void of surface treating wetting agents that are applied (in an amount to cause the fibrous element to exhibit a contact angle of less than 80°) to an external surface of the fibrous element.
- the fibrous structures of the present invention may comprises a plurality of fibrous elements.
- a fibrous structure of the present invention comprises a plurality of filaments, such as polypropylene filaments.
- a fibrous structure of the present invention may comprise a plurality of filaments, such as polypropylene filaments, and a plurality of solid additives, such as wood pulp fibers.
- the fibrous structures of the present invention have been found to exhibit consumer-recognizable beneficial absorbent capacity.
- FIGS. 1 and 2 show schematic representations of an example of a fibrous structure in accordance with the present invention.
- the fibrous structure 10 may be a co-formed fibrous structure.
- the fibrous structure 10 comprises a plurality of filaments 12 , such as polypropylene filaments, and a plurality of solid additives, such as wood pulp fibers 14 .
- the filaments 12 may be randomly arranged as a result of the process by which they are spun and/or formed into the fibrous structure 10 .
- the wood pulp fibers 14 may be randomly dispersed throughout the fibrous structure 10 in the x-y plane.
- the wood pulp fibers 14 may be non-randomly dispersed throughout the fibrous structure in the z-direction. In one example (not shown), the wood pulp fibers 14 are present at a higher concentration on one or more of the exterior, x-y plane surfaces than within the fibrous structure along the z-direction.
- FIG. 3 shows a cross-sectional, SEM microphotograph of another example of a fibrous structure 10 a in accordance with the present invention shows a fibrous structure 10 a comprising a non-random, repeating pattern of microregions 15 a and 15 b .
- the microregion 15 a (typically referred to as a “pillow”) exhibits a different value of a common intensive property than microregion 15 b (typically referred to as a “knuckle”).
- the microregion 15 b is a continuous or semi-continuous nextwork and the microregion 15 a are discrete regions within the continuous or semi-continuous network.
- the common intensive property may be caliper.
- the common intensive property may be density.
- the layered fibrous structure 10 b comprises a first layer 16 comprising a plurality of filaments 12 , such as polypropylene filaments, and a plurality of solid additives, in this example, wood pulp fibers 14 .
- the layered fibrous structure 10 b further comprises a second layer 18 comprising a plurality of filaments 20 , such as polypropylene filaments.
- the first and second layers 16 , 18 are sharply defined zones of concentration of the filaments and/or solid additives.
- the plurality of filaments 20 may be deposited directly onto a surface of the first layer 16 to form a layered fibrous structure that comprises the first and second layers 16 , 18 , respectively.
- the layered fibrous structure 10 b may comprise a third layer 22 , as shown in FIG. 4 .
- the third layer 22 may comprise a plurality of filaments 24 , which may be the same or different from the filaments 20 and/or 16 in the second 18 and/or first 16 layers.
- the first layer 16 is positioned, for example sandwiched, between the second layer 18 and the third layer 22 .
- the plurality of filaments 24 may be deposited directly onto a surface of the first layer 16 , opposite from the second layer, to form the layered fibrous structure 10 b that comprises the first, second and third layers 16 , 18 , 22 , respectively.
- the layered fibrous structure 10 c comprises a first layer 26 , a second layer 28 and optionally a third layer 30 .
- the first layer 26 comprises a plurality of filaments 12 , such as polypropylene filaments, and a plurality of solid additives, such as wood pulp fibers 14 .
- the second layer 28 may comprise any suitable filaments, solid additives and/or polymeric films.
- the second layer 28 comprises a plurality of filaments 34 .
- the filaments 34 comprise a polymer selected from the group consisting of: polysaccharides, polysaccharide derivatives, polyvinylalcohol, polyvinylalcohol derivatives and mixtures thereof.
- the material forming layers 26 , 28 and 30 may be in the form of plies wherein two or more of the plies may be combined to form a fibrous structure.
- the plies may be bonded together, such as by thermal bonding and/or adhesive bonding, to form a multi-ply fibrous structure.
- FIG. 6 Another example of a fibrous structure of the present invention in accordance with the present invention is shown in FIG. 6 .
- the fibrous structure 10 d may comprise two or more plies, wherein one ply 36 comprises any suitable fibrous structure in accordance with the present invention, for example fibrous structure 10 as shown and described in FIGS. 1 and 2 and another ply 38 comprising any suitable fibrous structure, for example a fibrous structure comprising filaments 12 , such as polypropylene filaments.
- the fibrous structure of ply 38 may be in the form of a net and/or mesh and/or other structure that comprises pores that expose one or more portions of the fibrous structure 10 d to an external environment and/or at least to liquids that may come into contact, at least initially, with the fibrous structure of ply 38 .
- the fibrous structure 10 d may further comprise ply 40 .
- Ply 40 may comprise a fibrous structure comprising filaments 12 , such as polypropylene filaments, and may be the same or different from the fibrous structure of ply 38 .
- Two or more of the plies 36 , 38 and 40 may be bonded together, such as by thermal bonding and/or adhesive bonding, to form a multi-ply fibrous structure. After a bonding operation, especially a thermal bonding operation, it may be difficult to distinguish the plies of the fibrous structure 10 d and the fibrous structure 10 d may visually and/or physically be a similar to a layered fibrous structure in that one would have difficulty separating the once individual plies from each other.
- ply 36 may comprise a fibrous structure that exhibits a basis weight of at least about 15 g/m 2 and/or at least about 20 g/m 2 and/or at least about 25 g/m 2 and/or at least about 30 g/m 2 up to about 120 g/m 2 and/or 100 g/m 2 and/or 80 g/m 2 and/or 60 g/m 2 and the plies 38 and 42 , when present, independently and individually, may comprise fibrous structures that exhibit basis weights of less than about 10 g/m 2 and/or less than about 7 g/m 2 and/or less than about 5 g/m 2 and/or less than about 3 g/m 2 and/or less than about 2 g/m 2 and/or to about 0 g/m 2 and/or 0.5 g/m 2 .
- Plies 38 and 40 when present, may help retain the solid additives, in this case the wood pulp fibers 14 , on and/or within the fibrous structure of ply 36 thus reducing lint and/or dust (as compared to a single-ply fibrous structure comprising the fibrous structure of ply 36 without the plies 38 and 40 ) resulting from the wood pulp fibers 14 becoming free from the fibrous structure of ply 36 .
- the fibrous structures of the present invention may comprise any suitable amount of filaments and any suitable amount of solid additives.
- the fibrous structures may comprise from about 10% to about 70% and/or from about 20% to about 60% and/or from about 30% to about 50% by dry weight of the fibrous structure of filaments and from about 90% to about 30% and/or from about 80% to about 40% and/or from about 70% to about 50% by dry weight of the fibrous structure of solid additives, such as wood pulp fibers.
- the fibrous structures of the present invention comprise less than 30% and/or less than 25% and/or less than 20% and/or less than 15% and/or to about 10% by weight of the fibrous structure of filaments.
- the fibrous structures of the present invention may comprise at least 70% and/or at least 75% and/or at least 80% and/or at least 85% and/or to about 90% by weight of the fibrous structures of solid additives, such as fibers.
- the filaments and solid additives of the present invention may be present in fibrous structures according to the present invention at weight ratios of filaments to solid additives of from at least about 1:1 and/or at least about 1:1.5 and/or at least about 1:2 and/or at least about 1:2.5 and/or at least about 1:3 and/or at least about 1:4 and/or at least about 1:5 and/or at least about 1:7 and/or at least about 1:10.
- the fibrous structures of the present invention and/or any sanitary tissue products comprising such fibrous structures may be subjected to any post-processing operations such as embossing operations, printing operations, tuft-generating operations, thermal bonding operations, ultrasonic bonding operations, perforating operations, surface treatment operations such as application of lotions, silicones and/or other materials and mixtures thereof.
- post-processing operations such as embossing operations, printing operations, tuft-generating operations, thermal bonding operations, ultrasonic bonding operations, perforating operations, surface treatment operations such as application of lotions, silicones and/or other materials and mixtures thereof.
- Non-limiting examples of suitable polypropylenes for making the filaments of the present invention are commercially available from Lyondell-Basell and Exxon-Mobil.
- Any hydrophobic or non-hydrophilic materials within the fibrous structure, such as polypropylene filaments, may be surface treated and/or melt treated with a hydrophilic modifier.
- surface treating hydrophilic modifiers include surfactants, such as Triton X-100.
- melt treating hydrophilic modifiers that are added to the melt, such as the polypropylene melt, prior to spinning filaments include hydrophilic modifying melt additives such as VW351 and/or S-1416 commercially available from Polyvel, Inc. and Irgasurf commercially available from Ciba.
- the hydrophilic modifier may be associated with the hydrophobic or non-hydrophilic material at any suitable level known in the art.
- the hydrophilic modifier is associated with the hydrophobic or non-hydrophilic material at a level of less than about 20% and/or less than about 15% and/or less than about 10% and/or less than about 5% and/or less than about 3% to about 0% by dry weight of the hydrophobic or non-hydrophilic material.
- the filaments and/or fibrous structures containing the filaments of the present invention exhibit a contact angle of less than 80° and/or less than 75° and/or less than 65° and/or less than 50° as measured by the Contact Angle Test Method described herein.
- the fibrous structures of the present invention may include optional additives, each, when present, at individual levels of from about 0% and/or from about 0.01% and/or from about 0.1% and/or from about 1% and/or from about 2% to about 95% and/or to about 80% and/or to about 50% and/or to about 30% and/or to about 20% by dry weight of the fibrous structure.
- Non-limiting examples of optional additives include permanent wet strength agents, temporary wet strength agents, dry strength agents such as carboxymethylcellulose and/or starch, softening agents, lint reducing agents, opacity increasing agents, wetting agents, odor absorbing agents, perfumes, temperature indicating agents, color agents, dyes, osmotic materials, microbial growth detection agents, antibacterial agents and mixtures thereof.
- the fibrous structure of the present invention may itself be a sanitary tissue product. It may be convolutedly wound about a core to form a roll. It may be combined with one or more other fibrous structures as a ply to form a multi-ply sanitary tissue product.
- a co-formed fibrous structure of the present invention may be convolutedly wound about a core to form a roll of co-formed sanitary tissue product.
- the rolls of sanitary tissue products may also be coreless.
- the fibrous elements of the present invention for example the filaments of the present invention, may be made by any suitable method for spinning fibrous elements, such as filaments.
- filaments of the present invention may be created by meltblowing a spinning composition comprising a polymer, such as a filament-forming polymer, and a wetting agent from a meltblow die.
- a polymer such as a filament-forming polymer
- a wetting agent from a meltblow die.
- meltblow dies are Biax-Fiberfilm's (Greenville, Wis.) meltblow dies and knife-edge dies.
- FIG. 7 A non-limiting example of a method for making a fibrous structure according to the present invention is represented in FIG. 7 .
- the method shown in FIG. 7 comprises the step of mixing a plurality of solid additives 14 with a plurality of filaments 12 made from a polymer melt composition comprising polypropylene and a wetting agent.
- the solid additives 14 are wood pulp fibers, such as SSK fibers and/or Eucalytpus fibers
- the filaments 12 are polypropylene filaments.
- the solid additives 14 may be combined with the filaments 12 , such as by being delivered to a stream of filaments 12 from a hammermill 42 via a solid additive spreader 44 to form a mixture of filaments 12 and solid additives 14 .
- the filaments 12 may be created by meltblowing from a meltblow die 46 .
- the mixture of solid additives 14 and filaments 12 are collected on a collection device, such as a belt 48 to form a fibrous structure 50 .
- the collection device may be a patterned and/or molded belt that results in the fibrous structure exhibiting a surface pattern, such as a non-random, repeating pattern of microregions.
- the patterned belt may have a three-dimensional pattern on it that gets imparted to the fibrous structure 50 during the process.
- the patterned belt 52 as shown in FIG. 8 , may comprise a reinforcing structure, such as a fabric 54 , upon which a polymer resin 56 is applied in a pattern.
- the pattern may comprise a continuous or semi-continuous network 58 of the polymer resin 56 within which one or more discrete conduits 60 are arranged.
- the fibrous structures are made using a die comprising at least one filament-forming hole, and/or 2 or more and/or 3 or more rows of filament-forming holes from which filaments are spun. At least one row of holes contains 2 or more and/or 3 or more and/or 10 or more filament-forming holes.
- the die comprises fluid-releasing holes, such as gas-releasing holes, in one example air-releasing holes, that provide attenuation to the filaments formed from the filament-forming holes.
- One or more fluid-releasing holes may be associated with a filament-forming hole such that the fluid exiting the fluid-releasing hole is parallel or substantially parallel (rather than angled like a knife-edge die) to an exterior surface of a filament exiting the filament-forming hole.
- the fluid exiting the fluid-releasing hole contacts the exterior surface of a filament formed from a filament-forming hole at an angle of less than 30° and/or less than 20° and/or less than 10° and/or less than 5° and/or about 0°.
- One or more fluid releasing holes may be arranged around a filament-forming hole.
- one or more fluid-releasing holes are associated with a single filament-forming hole such that the fluid exiting the one or more fluid releasing holes contacts the exterior surface of a single filament formed from the single filament-forming hole.
- the fluid-releasing hole permits a fluid, such as a gas, for example air, to contact the exterior surface of a filament formed from a filament-forming hole rather than contacting an inner surface of a filament, such as what happens when a hollow filament is formed.
- the die comprises a filament-forming hole positioned within a fluid-releasing hole.
- the fluid-releasing hole 62 may be concentrically or substantially concentrically positioned around a filament-forming hole 64 such as is shown in FIG. 9 .
- the fibrous structure 50 may be calendered, for example, while the fibrous structure is still on the collection device.
- the fibrous structure 50 may be subjected to post-processing operations such as embossing, thermal bonding, tuft-generating operations, moisture-imparting operations, and surface treating operations to form a finished fibrous structure.
- post-processing operations such as embossing, thermal bonding, tuft-generating operations, moisture-imparting operations, and surface treating operations to form a finished fibrous structure.
- a surface treating operation that the fibrous structure may be subjected to is the surface application of an elastomeric binder, such as ethylene vinyl acetate (EVA), latexes, and other elastomeric binders.
- EVA ethylene vinyl acetate
- Such an elastomeric binder may aid in reducing the lint created from the fibrous structure during use by consumers.
- the elastomeric binder may be applied to one or more surfaces of the fibrous structure in a pattern, especially a non-random, repeating pattern of microregions, or in a manner that covers or substantially covers the entire surface(s) of the fibrous structure.
- the fibrous structure 50 and/or the finished fibrous structure may be combined with one or more other fibrous structures.
- another fibrous structure such as a filament-containing fibrous structure, such as a polypropylene filament fibrous structure may be associated with a surface of the fibrous structure 50 and/or the finished fibrous structure.
- the polypropylene filament fibrous structure may be formed by meltblowing polypropylene filaments (filaments that comprise a second polymer that may be the same or different from the polymer of the filaments in the fibrous structure 50 ) onto a surface of the fibrous structure 50 and/or finished fibrous structure.
- the polypropylene filament fibrous structure may be formed by meltblowing filaments comprising a second polymer that may be the same or different from the polymer of the filaments in the fibrous structure 50 onto a collection device to form the polypropylene filament fibrous structure.
- the polypropylene filament fibrous structure may then be combined with the fibrous structure 50 or the finished fibrous structure to make a two-ply fibrous structure—three-ply if the fibrous structure 50 or the finished fibrous structure is positioned between two plies of the polypropylene filament fibrous structure like that shown in FIG. 6 for example.
- the polypropylene filament fibrous structure may be thermally bonded to the fibrous structure 50 or the finished fibrous structure via a thermal bonding operation.
- the fibrous structure 50 and/or finished fibrous structure may be combined with a filament-containing fibrous structure such that the filament-containing fibrous structure, such as a polysaccharide filament fibrous structure, such as a starch filament fibrous structure, is positioned between two fibrous structures 50 or two finished fibrous structures like that shown in FIG. 6 for example.
- a filament-containing fibrous structure such as a polysaccharide filament fibrous structure, such as a starch filament fibrous structure
- two plies of fibrous structure 50 comprising a non-random, repeating pattern of microregions may be associated with one another such that protruding microregions, such as pillows, face inward into the two-ply fibrous structure formed.
- the process for making fibrous structure 50 may be close coupled (where the fibrous structure is convolutedly wound into a roll prior to proceeding to a converting operation) or directly coupled (where the fibrous structure is not convolutedly wound into a roll prior to proceeding to a converting operation) with a converting operation to emboss, print, deform, surface treat, or other post-forming operation known to those in the art.
- direct coupling means that the fibrous structure 50 can proceed directly into a converting operation rather than, for example, being convolutedly wound into a roll and then unwound to proceed through a converting operation.
- the process of the present invention may include preparing individual rolls of fibrous structure and/or sanitary tissue product comprising such fibrous structure(s) that are suitable for consumer use.
- the melt blend is heated to 475° F. through a melt extruder.
- nozzles per cross-direction inch of the 192 nozzles have a 0.018 inch inside diameter while the remaining nozzles are solid, i.e. there is no opening in the nozzle.
- Approximately 0.19 grams per hole per minute (ghm) of the melt blend is extruded from the open nozzles to form meltblown filaments from the melt blend.
- Approximately 375 SCFM of compressed air is heated such that the air exhibits a temperature of 395° F. at the spinnerette.
- Approximately 475 g/minute of Golden Isle (from Georgia Pacific) 4825 semi-treated SSK pulp is defibrillated through a hammermill to form SSK wood pulp fibers (solid additive). Air at 85-90° F.
- RH relative humidity
- Approximately 1200 SCFM of air carries the pulp fibers to a solid additive spreader.
- the solid additive spreader turns the pulp fibers and distributes the pulp fibers in the cross-direction such that the pulp fibers are injected into the meltblown filaments in a perpendicular fashion through a 4 inch X 15 inch cross-direction (CD) slot.
- a forming box surrounds the area where the meltblown filaments and pulp fibers are commingled. This forming box is designed to reduce the amount of air allowed to enter or escape from this commingling area; however, there is an additional 4 inch ⁇ 15 inch spreader opposite the solid additive spreader designed to add cooling air.
- a forming vacuum pulls air through a collection device, such as a patterned belt, thus collecting the commingled meltblown filaments and pulp fibers to form a fibrous structure comprising a pattern of non-random, repeating microregions.
- the fibrous structure formed by this process comprises about 75% by dry fibrous structure weight of pulp and about 25% by dry fibrous structure weight of meltblown filaments.
- FIG. 10 shows cryo-scanning electromicrographs of the fibrous structure made as described above without the solid additives and prior to activation of the wetting agent within the polypropylene filaments.
- the fibrous structure of FIG. 10 exhibited a contact angle of about 135° as measured by the Contact Angle Test Method described herein.
- FIG. 11 shows cryo-scanning electromicrographs of the fibrous structure of FIG. 10 after activation of the wetting agent within the polypropylene filaments by subjecting the fibrous structure to 120° F. at a relative humidity of 60% for 24 hours.
- the fibrous structure of FIG. 11 exhibited a contact angle of about 43° as measured according to the Contact Angle Test Method described herein.
- meltblown layer of the meltblown filaments can be added to one or both sides of the above formed fibrous structure.
- This addition of the meltblown layer can help reduce the lint created from the fibrous structure during use by consumers and is preferably performed prior to any thermal bonding operation of the fibrous structure.
- the meltblown filaments for the exterior layers can be the same or different than the meltblown filaments used on the opposite layer or in the center layer(s).
- the fibrous structure may be convolutedly wound to form a roll of fibrous structure.
- each sample is wetted by submerging the sample in a distilled water bath for 30 seconds. The wet property of the wet sample is measured within 30 seconds of removing the sample from the bath.
- Thwing-Albert Intelect II Standard Tensile Tester Thiwing-Albert Instrument Co. of Philadelphia, Pa.
- the break sensitivity is set to 20.0 grams and the sample width is set to 1.00 inch.
- the energy units are set to TEA and the tangent modulus (Modulus) trap setting is set to 38.1 g.
- the instrument tension can be monitored. If it shows a value of 5 grams or more, the fibrous structure sample strip is too taut. Conversely, if a period of 2-3 seconds passes after starting the test before any value is recorded, the fibrous structure sample strip is too slack.
- Peak Elongation (Elongation) (%) (The average of MD Elongation and CD Elongation is reported as the Average Elongation)
- Peak CD TEA (Wet CD TEA) (in-g/in 2 )
- Basis weight of a fibrous structure sample is measured by selecting twelve (12) individual fibrous structure samples and making two stacks of six individual samples each. If the individual samples are connected to one another vie perforation lines, the perforation lines must be aligned on the same side when stacking the individual samples.
- a precision cutter is used to cut each stack into exactly 3.5 in. ⁇ 3.5 in. squares. The two stacks of cut squares are combined to make a basis weight pad of twelve squares thick. The basis weight pad is then weighed on a top loading balance with a minimum resolution of 0.01 g. The top loading balance must be protected from air drafts and other disturbances using a draft shield. Weights are recorded when the readings on the top loading balance become constant.
- the Basis Weight is calculated as follows:
- Basis ⁇ ⁇ Weight ⁇ ( lbs ⁇ / ⁇ 3000 ⁇ ⁇ ft 2 ) Weight ⁇ ⁇ of ⁇ ⁇ basis ⁇ ⁇ weight ⁇ ⁇ pad ⁇ ⁇ ( g ) ⁇ 3000 ⁇ ⁇ ft 2 453.6 ⁇ ⁇ g ⁇ / ⁇ lbs ⁇ 12 ⁇ ⁇ samples ⁇ [ 12.25 ⁇ ⁇ in 2 ⁇ ( Area ⁇ ⁇ of ⁇ ⁇ basis ⁇ ⁇ weight ⁇ ⁇ pad ) / 144 ⁇ ⁇ in 2 ]
- Basis ⁇ ⁇ Weight ⁇ ⁇ ( g ⁇ / ⁇ m 2 ) Weight ⁇ ⁇ of ⁇ ⁇ basis ⁇ ⁇ weight ⁇ ⁇ pad ⁇ ⁇ ( g ) ⁇ 10 , 000 ⁇ ⁇ cm 2 ⁇ / ⁇ m 2 79.0321 ⁇ ⁇ cm 2 ⁇ ( Area ⁇ ⁇ of ⁇ ⁇ basis ⁇ ⁇ weight ⁇
- the filament basis weight of a fibrous structure is determined using the Basis Weight Test Method after separating all non-polypropylene materials from a fibrous structure (examples of methods for completing the separation are described below in the Weight Average Molecular Weight/Polydispersity Test Method).
- the weight average molecular weight of the polypropylene present in the polypropylene fibrous elements, such as polypropylene filaments, a fibrous structure is determined by high temperature gel permeation chromatography (GPC). Any non-propylene material present in the fibrous structure must be separated from the polypropylene filaments. Different approaches may be used to achieve this separation. For example, the polypropylene filaments may be first removed by physically pulling the polypropylene filaments from the fibrous structure. In another example, the polypropylene filaments may be separated from the non-polypropylene material by dissolving the non-polypropylene material in an appropriate dissolution agent, such as sulfuric acid or Cadoxen.
- GPC high temperature gel permeation chromatography
- the step of separating the polypropylene filaments from non-polypropylene material may be combined with the dissolution of the polypropylene such that a portion of the fibrous structure with about 30 mg of polypropylene is placed in about 10-15 ml of 1,2,4-tricholorbenzene (TCB). This is heated to about 150° C. for about 3 hours with gentle shaking during the last 20 minutes of heating. This process dissolves the polypropylene.
- TCB solution/suspension is then filtered through a heated 2-10 ⁇ m stainless steel frit (filter) to remove the undissolved material (non-polypropylene material).
- RI refractive index
- PS polystyrene
- the GPC uses 10 mm Mixed B (3) columns with TCB containing 0.5% BHT as mobile phase at 150° C. with a 1 ml/minute flow rate. Sample injection volume is 200 ⁇ l.
- the diameter of a polypropylene fibrous element, especially a polypropylene microfiber fibrous element, in a fibrous structure is determined by taking scanning electromicrographs of the fibrous structure and determining the diameter of the polypropylene fibrous element from its image.
- the diameter of a polypropylene fibrous element is determined by removing, if necessary, the polypropylene fibrous element to be tested from a fibrous structure containing such polypropylene fibrous element.
- the polypropylene fibrous element is placed under an optical microscope.
- the diameter of the polypropylene fibrous element is measured using a calibrated reticle and an objective of 100 power.
- the samples In order to prepare the samples (fibrous structures and/or fibrous elements) for contact angle measurement, the samples must be conditioned. The samples must be washed 3 times with distilled water. The samples are air dried at 73° F. Next, the samples are subjected to 120° F. at a relative humidity of 60% for 24 hours. The samples are then allowed to return to 73° F. The samples are tested in the conditioned room described above It is important to not permit the conditioned samples to be subjected to greater than 100° F. at a relative humidity of less than 60% prior to measuring the contact angle.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Nonwoven Fabrics (AREA)
- Multicomponent Fibers (AREA)
- Quick-Acting Or Multi-Walled Pipe Joints (AREA)
- Mutual Connection Of Rods And Tubes (AREA)
Abstract
Description
Claims (8)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/917,585 US10895022B2 (en) | 2009-11-02 | 2010-11-02 | Fibrous elements and fibrous structures employing same |
US17/118,679 US11618977B2 (en) | 2009-11-02 | 2020-12-11 | Fibrous elements and fibrous structures employing same |
US18/188,717 US20230228003A1 (en) | 2009-11-02 | 2023-03-23 | Fibrous Elements and Fibrous Structures Employing Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25727509P | 2009-11-02 | 2009-11-02 | |
US12/917,585 US10895022B2 (en) | 2009-11-02 | 2010-11-02 | Fibrous elements and fibrous structures employing same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/118,679 Division US11618977B2 (en) | 2009-11-02 | 2020-12-11 | Fibrous elements and fibrous structures employing same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110104419A1 US20110104419A1 (en) | 2011-05-05 |
US10895022B2 true US10895022B2 (en) | 2021-01-19 |
Family
ID=43531077
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/917,585 Active 2031-04-08 US10895022B2 (en) | 2009-11-02 | 2010-11-02 | Fibrous elements and fibrous structures employing same |
US17/118,679 Active 2031-08-30 US11618977B2 (en) | 2009-11-02 | 2020-12-11 | Fibrous elements and fibrous structures employing same |
US18/188,717 Pending US20230228003A1 (en) | 2009-11-02 | 2023-03-23 | Fibrous Elements and Fibrous Structures Employing Same |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/118,679 Active 2031-08-30 US11618977B2 (en) | 2009-11-02 | 2020-12-11 | Fibrous elements and fibrous structures employing same |
US18/188,717 Pending US20230228003A1 (en) | 2009-11-02 | 2023-03-23 | Fibrous Elements and Fibrous Structures Employing Same |
Country Status (7)
Country | Link |
---|---|
US (3) | US10895022B2 (en) |
EP (1) | EP2496737A1 (en) |
AU (1) | AU2010313170B2 (en) |
BR (1) | BR112012010003A2 (en) |
CA (1) | CA2779719C (en) |
MX (1) | MX338419B (en) |
WO (1) | WO2011053956A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220380982A1 (en) * | 2017-12-15 | 2022-12-01 | The Procter & Gamble Company | Fibrous structures comprising a surfactant |
US11618977B2 (en) | 2009-11-02 | 2023-04-04 | The Procter & Gamble Company | Fibrous elements and fibrous structures employing same |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8921244B2 (en) * | 2005-08-22 | 2014-12-30 | The Procter & Gamble Company | Hydroxyl polymer fiber fibrous structures and processes for making same |
US10024000B2 (en) | 2007-07-17 | 2018-07-17 | The Procter & Gamble Company | Fibrous structures and methods for making same |
US20090022960A1 (en) * | 2007-07-17 | 2009-01-22 | Michael Donald Suer | Fibrous structures and methods for making same |
US20090022983A1 (en) * | 2007-07-17 | 2009-01-22 | David William Cabell | Fibrous structures |
US7972986B2 (en) * | 2007-07-17 | 2011-07-05 | The Procter & Gamble Company | Fibrous structures and methods for making same |
US8852474B2 (en) | 2007-07-17 | 2014-10-07 | The Procter & Gamble Company | Process for making fibrous structures |
BR112012010366A2 (en) | 2009-11-02 | 2019-09-24 | Procter & Gamble | fibrous structures and methods for their manufacture |
WO2011053955A2 (en) * | 2009-11-02 | 2011-05-05 | The Procter & Gamble Company | Fibrous structures that exhibit consumer relevant property values |
US9631321B2 (en) | 2010-03-31 | 2017-04-25 | The Procter & Gamble Company | Absorptive fibrous structures |
CA2971420C (en) | 2014-12-19 | 2021-01-05 | The Procter & Gamble Company | A spatially controllable eductor for managing solid additives and processes using same |
CA2971604C (en) * | 2014-12-19 | 2022-11-29 | The Procter & Gamble Company | Coforming processes and forming boxes used therein |
US11725309B2 (en) | 2015-06-03 | 2023-08-15 | The Procter & Gamble Company | Coforming processes and forming boxes used therein |
EP3390717A1 (en) | 2015-12-18 | 2018-10-24 | The Procter and Gamble Company | Methods for liberating trichome fibers from portions of a host plant |
US20170175338A1 (en) * | 2015-12-18 | 2017-06-22 | The Procter & Gamble Company | Flushable Fibrous Structures |
MX2018010838A (en) | 2016-03-09 | 2019-02-07 | Procter & Gamble | Absorbent article with activatable material. |
WO2017176661A1 (en) * | 2016-04-04 | 2017-10-12 | The Procter & Gamble Company | Fibrous structures different fibrous elements |
CA3022686C (en) | 2016-05-23 | 2021-03-23 | The Procter & Gamble Company | Process for individualizing trichomes |
US10801141B2 (en) | 2016-05-24 | 2020-10-13 | The Procter & Gamble Company | Fibrous nonwoven coform web structure with visible shaped particles, and method for manufacture |
WO2018075510A1 (en) | 2016-10-17 | 2018-04-26 | The Procter & Gamble Company | Fibrous structure-containing articles that exhibit consumer relevant properties |
PL3526406T3 (en) | 2016-10-17 | 2021-12-13 | The Procter & Gamble Company | Fibrous structure-containing articles |
WO2018165511A1 (en) | 2017-03-09 | 2018-09-13 | The Procter & Gamble Company | Thermoplastic polymeric materials with heat activatable compositions |
US10982393B2 (en) | 2017-08-22 | 2021-04-20 | The Procter & Gamble Company | Multi-ply fibrous structure-containing articles |
US11427960B2 (en) | 2018-06-29 | 2022-08-30 | The Procter & Gamble Company | Bleaching trichomes to remove proteins |
US11180888B2 (en) | 2018-06-29 | 2021-11-23 | The Procter & Gamble Company | Fibrous structures comprising trichome compositions and methods for obtaining same |
US12104320B2 (en) | 2018-06-29 | 2024-10-01 | The Procter & Gamble Company | Enzymatic and acid methods for individualizing trichomes |
US20200002889A1 (en) | 2018-06-29 | 2020-01-02 | The Procter & Gamble Company | Process for Separating Trichomes from Non-Trichome Materials |
Citations (225)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2008031A (en) | 1934-01-31 | 1935-07-16 | Miltner Arthur | Self-lubricating drill |
US2175045A (en) | 1936-08-20 | 1939-10-03 | Vogel Rudolf | Coiled material |
US3521638A (en) | 1969-02-10 | 1970-07-28 | Du Pont | Fabrics having water soluble discrete areas and methods of making |
US3838692A (en) | 1972-11-27 | 1974-10-01 | Johnson & Johnson | Hydrophobic sheet with hydrophilic passages |
US3954361A (en) | 1974-05-23 | 1976-05-04 | Beloit Corporation | Melt blowing apparatus with parallel air stream fiber attenuation |
US4100324A (en) | 1974-03-26 | 1978-07-11 | Kimberly-Clark Corporation | Nonwoven fabric and method of producing same |
US4118531A (en) | 1976-08-02 | 1978-10-03 | Minnesota Mining And Manufacturing Company | Web of blended microfibers and crimped bulking fibers |
US4139699A (en) | 1976-03-25 | 1979-02-13 | National Starch And Chemical Corporation | Water insensitive starch fibers and a process for the production thereof |
US4203939A (en) | 1977-03-28 | 1980-05-20 | Akzona Incorporated | Process and apparatus for treatment of the exit surface of spinnerets |
US4243480A (en) | 1977-10-17 | 1981-01-06 | National Starch And Chemical Corporation | Process for the production of paper containing starch fibers and the paper produced thereby |
US4355066A (en) | 1980-12-08 | 1982-10-19 | The Kendall Company | Spot-bonded absorbent composite towel material having 60% or more of the surface area unbonded |
US4370289A (en) | 1979-07-19 | 1983-01-25 | American Can Company | Fibrous web structure and its manufacture |
EP0080382A2 (en) | 1981-11-24 | 1983-06-01 | Kimberly-Clark Limited | Microfibre web product |
US4436780A (en) | 1982-09-02 | 1984-03-13 | Kimberly-Clark Corporation | Nonwoven wiper laminate |
JPS59211667A (en) | 1983-05-11 | 1984-11-30 | チコピ− | Composite cloth and production thereof |
EP0156649A2 (en) | 1984-03-29 | 1985-10-02 | Minnesota Mining And Manufacturing Company | Sorbent sheet material |
US4604313A (en) | 1984-04-23 | 1986-08-05 | Kimberly-Clark Corporation | Selective layering of superabsorbents in meltblown substrates |
US4623576A (en) | 1985-10-22 | 1986-11-18 | Kimberly-Clark Corporation | Lightweight nonwoven tissue and method of manufacture |
US4634621A (en) | 1984-05-17 | 1987-01-06 | The James River Corporation | Scrim reinforced, cloth-like composite laminate and a method of making |
US4636418A (en) | 1984-05-17 | 1987-01-13 | James River Corporation | Cloth-like composite laminate and a method of making |
US4675226A (en) | 1986-07-07 | 1987-06-23 | Ott Hoye L | Stitchbonded composite wiper |
US4720415A (en) | 1985-07-30 | 1988-01-19 | Kimberly-Clark Corporation | Composite elastomeric material and process for making the same |
US4724114A (en) | 1984-04-23 | 1988-02-09 | Kimberly-Clark Corporation | Selective layering of superabsorbents in meltblown substrates |
US4786550A (en) | 1985-05-06 | 1988-11-22 | Kimberly-Clark Corporation | Meltblown and coform materials having application as seed beds |
EP0294137A1 (en) | 1987-06-02 | 1988-12-07 | The Procter & Gamble Company | Composite absorbent structures |
US4803117A (en) | 1986-03-24 | 1989-02-07 | Kimberly-Clark Corporation | Coformed ethylene-vinyl copolymer elastomeric fibrous webs |
EP0308320A2 (en) | 1987-09-15 | 1989-03-22 | Fiberweb North America, Inc. | High strength nonwoven fabric |
US4851168A (en) | 1988-12-28 | 1989-07-25 | Dow Corning Corporation | Novel polyvinyl alcohol compositions and products prepared therefrom |
US4855179A (en) | 1987-07-29 | 1989-08-08 | Arco Chemical Technology, Inc. | Production of nonwoven fibrous articles |
US4863779A (en) | 1986-03-24 | 1989-09-05 | Kimberly-Clark Corporation | Composite elastomeric material |
US4879170A (en) | 1988-03-18 | 1989-11-07 | Kimberly-Clark Corporation | Nonwoven fibrous hydraulically entangled elastic coform material and method of formation thereof |
EP0341977A2 (en) | 1988-05-10 | 1989-11-15 | E.I. Du Pont De Nemours And Company | Composites from wet formed blends of glass and thermoplastic fibers |
US4885202A (en) | 1987-11-24 | 1989-12-05 | Kimberly-Clark Corporation | Tissue laminate |
US4906513A (en) | 1988-10-03 | 1990-03-06 | Kimberly-Clark Corporation | Nonwoven wiper laminate |
US4931355A (en) | 1988-03-18 | 1990-06-05 | Radwanski Fred R | Nonwoven fibrous hydraulically entangled non-elastic coform material and method of formation thereof |
US4939016A (en) | 1988-03-18 | 1990-07-03 | Kimberly-Clark Corporation | Hydraulically entangled nonwoven elastomeric web and method of forming the same |
US4970104A (en) | 1988-03-18 | 1990-11-13 | Kimberly-Clark Corporation | Nonwoven material subjected to hydraulic jet treatment in spots |
EP0423619A1 (en) | 1989-10-13 | 1991-04-24 | Fiberweb North America, Inc. | Wiping fabric and method of manufacture |
US5087506A (en) | 1989-03-16 | 1992-02-11 | Faricerca S.P.A. | Absorbent element and an absorbent article including the element |
US5094717A (en) | 1990-11-15 | 1992-03-10 | James River Corporation Of Virginia | Synthetic fiber paper having a permanent crepe |
WO1992007985A1 (en) | 1990-10-25 | 1992-05-14 | Absorbent Products Inc. | Fiber blending system |
US5120888A (en) | 1988-04-14 | 1992-06-09 | Kimberly-Clark Corporation | Surface-segregatable, melt-extrudable thermoplastic composition |
US5145727A (en) | 1990-11-26 | 1992-09-08 | Kimberly-Clark Corporation | Multilayer nonwoven composite structure |
US5149576A (en) | 1990-11-26 | 1992-09-22 | Kimberly-Clark Corporation | Multilayer nonwoven laminiferous structure |
US5204165A (en) | 1991-08-21 | 1993-04-20 | International Paper Company | Nonwoven laminate with wet-laid barrier fabric and related method |
US5227107A (en) | 1990-08-07 | 1993-07-13 | Kimberly-Clark Corporation | Process and apparatus for forming nonwovens within a forming chamber |
US5254399A (en) | 1990-12-19 | 1993-10-19 | Mitsubishi Paper Mills Limited | Nonwoven fabric |
US5254133A (en) | 1991-04-24 | 1993-10-19 | Seid Arnold S | Surgical implantation device and related method of use |
US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
US5284703A (en) | 1990-12-21 | 1994-02-08 | Kimberly-Clark Corporation | High pulp content nonwoven composite fabric |
EP0357496B1 (en) | 1988-09-02 | 1994-05-18 | Colgate-Palmolive Company | Wiping cloth |
WO1994019179A1 (en) | 1993-02-26 | 1994-09-01 | The University Of Tennessee Research Corporation | Novel composite web |
US5350624A (en) | 1992-10-05 | 1994-09-27 | Kimberly-Clark Corporation | Abrasion resistant fibrous nonwoven composite structure |
US5375306A (en) | 1990-10-08 | 1994-12-27 | Kaysersberg | Method of manufacturing homogeneous non-woven web |
US5427696A (en) | 1992-04-09 | 1995-06-27 | The Procter & Gamble Company | Biodegradable chemical softening composition useful in fibrous cellulosic materials |
US5436066A (en) | 1993-12-30 | 1995-07-25 | Kimberly-Clark Corporation | Absorbent composition including a microfiber |
EP0205242B2 (en) | 1985-05-14 | 1995-11-22 | Kimberly-Clark Corporation | Non-woven laminate material |
US5476616A (en) | 1994-12-12 | 1995-12-19 | Schwarz; Eckhard C. A. | Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices |
US5509915A (en) | 1991-09-11 | 1996-04-23 | Kimberly-Clark Corporation | Thin absorbent article having rapid uptake of liquid |
JPH08174735A (en) | 1994-12-26 | 1996-07-09 | New Oji Paper Co Ltd | Composite nonwoven fabric having porous pattern and production thereof |
US5536563A (en) | 1994-12-01 | 1996-07-16 | Kimberly-Clark Corporation | Nonwoven elastomeric material |
US5539056A (en) | 1995-01-31 | 1996-07-23 | Exxon Chemical Patents Inc. | Thermoplastic elastomers |
US5587225A (en) | 1995-04-27 | 1996-12-24 | Kimberly-Clark Corporation | Knit-like nonwoven composite fabric |
US5597873A (en) | 1994-04-11 | 1997-01-28 | Hoechst Celanese Corporation | Superabsorbent polymers and products therefrom |
US5611890A (en) | 1995-04-07 | 1997-03-18 | The Proctor & Gamble Company | Tissue paper containing a fine particulate filler |
US5629080A (en) | 1992-01-13 | 1997-05-13 | Hercules Incorporated | Thermally bondable fiber for high strength non-woven fabrics |
US5652048A (en) | 1995-08-02 | 1997-07-29 | Kimberly-Clark Worldwide, Inc. | High bulk nonwoven sorbent |
WO1997037757A1 (en) | 1996-04-05 | 1997-10-16 | Kimberly-Clark Worldwide, Inc. | Oil-sorbing article and methods for making and using same |
WO1998003713A1 (en) | 1996-07-24 | 1998-01-29 | Kimberly-Clark Worldwide, Inc. | Wet wipes with improved softness |
WO1998027257A2 (en) | 1996-12-19 | 1998-06-25 | Kimberly-Clark Worldwide, Inc. | Wipers comprising point unbonded webs |
WO1998036117A1 (en) | 1997-02-13 | 1998-08-20 | Kimberly-Clark Worldwide, Inc. | Water-dispersible fibrous nonwoven coform composites |
US5811178A (en) | 1995-08-02 | 1998-09-22 | Kimberly-Clark Worldwide, Inc. | High bulk nonwoven sorbent with fiber density gradient |
EP0865755A1 (en) | 1997-03-21 | 1998-09-23 | Uni-Charm Corporation | Wiping sheet |
US5814570A (en) | 1994-06-27 | 1998-09-29 | Kimberly-Clark Worldwide, Inc. | Nonwoven barrier and method of making the same |
WO1998055295A1 (en) | 1997-06-05 | 1998-12-10 | Bba Nonwovens Simpsonville, Inc. | High strength baby wipe composite |
US5853867A (en) | 1995-09-14 | 1998-12-29 | Nippon Shokubai Co., Ltd. | Absorbent composite, method for production thereof, and absorbent article |
US5952251A (en) | 1995-06-30 | 1999-09-14 | Kimberly-Clark Corporation | Coformed dispersible nonwoven fabric bonded with a hybrid system |
WO2000011998A1 (en) | 1998-08-31 | 2000-03-09 | Kimberly-Clark Limited | Collapse resistant centre feed roll and process of making thereof |
EP0992338A2 (en) | 1998-10-09 | 2000-04-12 | Fort James Corporation | Hydroentangled three ply webs and products made therefrom |
WO2000021476A1 (en) | 1998-10-09 | 2000-04-20 | Weyerhaeuser Company | Compressible wood pulp product |
WO2000029655A1 (en) | 1998-11-13 | 2000-05-25 | Kimberly-Clark Worldwide, Inc. | Bicomponent nonwoven webs containing adhesive and a third component |
WO2000038565A1 (en) | 1998-12-31 | 2000-07-06 | Kimberly-Clark Worldwide, Inc. | Multi-ply wipe |
US6103061A (en) | 1998-07-07 | 2000-08-15 | Kimberly-Clark Worldwide, Inc. | Soft, strong hydraulically entangled nonwoven composite material and method for making the same |
WO2000063486A1 (en) | 1999-04-16 | 2000-10-26 | Kimberly-Clark Worldwide, Inc. | Fibrous structures including a fiber bundle and a debonding agent |
JP2000303335A (en) | 1999-03-08 | 2000-10-31 | Humatro Corp | Absorbent and flexible structure comprising starch fibers |
US6150005A (en) | 1997-04-15 | 2000-11-21 | International Paper Company | Synthetic paper |
US6172276B1 (en) | 1997-05-14 | 2001-01-09 | Kimberly-Clark Worldwide, Inc. | Stabilized absorbent material for improved distribution performance with visco-elastic fluids |
US6177370B1 (en) | 1998-09-29 | 2001-01-23 | Kimberly-Clark Worldwide, Inc. | Fabric |
US6179325B1 (en) | 1998-04-27 | 2001-01-30 | Takata Corporation | Airbag device for driver |
WO2001009023A1 (en) | 1999-07-30 | 2001-02-08 | The Procter & Gamble Company | Dispensable wound products having end-wise indicia |
US6200120B1 (en) | 1997-12-31 | 2001-03-13 | Kimberly-Clark Worldwide, Inc. | Die head assembly, apparatus, and process for meltblowing a fiberforming thermoplastic polymer |
DE19959832A1 (en) | 1999-12-10 | 2001-07-12 | Hakle Kimberly De Gmbh | Layer adhesion system for multilaminar paper on roll, e.g. toilet paper, with mechanical or glue joints in form of strips in edge region only |
EP1132427A1 (en) | 2000-03-07 | 2001-09-12 | HUMATRO CORPORATION, c/o Ladas & Parry | Melt processable starch compositions |
WO2001066345A1 (en) | 2000-03-03 | 2001-09-13 | The Procter & Gamble Company | Absorbent, non-linting nonwoven web |
US6296936B1 (en) | 1996-09-04 | 2001-10-02 | Kimberly-Clark Worldwide, Inc. | Coform material having improved fluid handling and method for producing |
US6319342B1 (en) | 1998-12-31 | 2001-11-20 | Kimberly-Clark Worldwide, Inc. | Method of forming meltblown webs containing particles |
EP1156160A1 (en) | 2000-05-18 | 2001-11-21 | WCK Limited | A canopy |
US6348253B1 (en) | 1999-04-03 | 2002-02-19 | Kimberly-Clark Worldwide, Inc. | Sanitary pad for variable flow management |
US6348133B1 (en) | 1998-02-18 | 2002-02-19 | Basf Corporation | Smooth textured wet-laid absorbent structure |
US6361784B1 (en) | 2000-09-29 | 2002-03-26 | The Procter & Gamble Company | Soft, flexible disposable wipe with embossing |
JP2002088660A (en) | 2000-09-20 | 2002-03-27 | Crecia Corp | Wiper base fabric |
US6383336B1 (en) | 1999-12-14 | 2002-05-07 | Kimberly-Clark Worldwide, Inc. | Strong, soft non-compressively dried tissue products containing particulate fillers |
WO2002050357A1 (en) | 2000-12-19 | 2002-06-27 | M & J Fibretech A/S | Web consisting of a base web and air-laid fibres hydroentangled on the base web |
US6417120B1 (en) | 1998-12-31 | 2002-07-09 | Kimberly-Clark Worldwide, Inc. | Particle-containing meltblown webs |
WO2002053003A2 (en) | 2001-01-03 | 2002-07-11 | Kimberly-Clark Worldwide, Inc. | Stretchable composite sheet |
WO2002053365A2 (en) | 2000-12-29 | 2002-07-11 | Kimberley-Clark Worldwide, Inc. | Composite material with cloth-like feel |
US6423884B1 (en) | 1996-10-11 | 2002-07-23 | Kimberly-Clark Worldwide, Inc. | Absorbent article having apertures for fecal material |
US6465073B1 (en) | 1999-06-30 | 2002-10-15 | Kimberly-Clark Worldwide, Inc. | Variable stretch material and process to make it |
US6488801B1 (en) | 1999-06-16 | 2002-12-03 | First Quality Nonwoven, Inc. | Method of making media of controlled porosity and product thereof |
US6494974B2 (en) | 1999-10-15 | 2002-12-17 | Kimberly-Clark Worldwide, Inc. | Method of forming meltblown webs containing particles |
US6503370B2 (en) | 1998-10-01 | 2003-01-07 | Sca Hygiene Products Ab | Method of producing a paper having a three-dimensional pattern |
US6506873B1 (en) | 1997-05-02 | 2003-01-14 | Cargill, Incorporated | Degradable polymer fibers; preparation product; and, methods of use |
US20030024662A1 (en) | 2001-07-11 | 2003-02-06 | Besemer Arie Cornelis | Cationic fibres |
EP1300511A2 (en) | 2001-09-20 | 2003-04-09 | Armstrong World Industries, Inc. | Thermo formable acoustical panel |
US20030073367A1 (en) | 2001-10-09 | 2003-04-17 | Kimberly-Clark Worldwide, Inc. | Internally tufted laminates and methods of producing same |
WO2003050347A1 (en) | 2001-12-10 | 2003-06-19 | Suominen Nonwovens Ltd. | Composite nonwoven, its use and method of manufacture |
US20030135172A1 (en) | 2001-12-20 | 2003-07-17 | Whitmore Darryl L. | Absorbent article |
US20030131457A1 (en) | 2001-12-21 | 2003-07-17 | Kimberly-Clark Worldwide, Inc. | Method of forming composite absorbent members |
US20030144641A1 (en) * | 2002-01-29 | 2003-07-31 | Chen Dennis Chia-Bin | Absorbent products having high total front pad AULs |
US20030150090A1 (en) | 2001-12-21 | 2003-08-14 | Kimberly-Clark Worldwide, Inc. | Method of forming composite absorbent members |
US6608236B1 (en) | 1997-05-14 | 2003-08-19 | Kimberly-Clark Worldwide, Inc. | Stabilized absorbent material and systems for personal care products having controlled placement of visco-elastic fluids |
US6621679B1 (en) | 2001-12-05 | 2003-09-16 | National Semiconductor Corporation | 5V tolerant corner clamp with keep off circuit |
WO2003080905A1 (en) | 2002-03-26 | 2003-10-02 | Nano Technics Co., Ltd. | A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process |
US20030200991A1 (en) | 2002-04-29 | 2003-10-30 | Kimberly-Clark Worldwide, Inc. | Dual texture absorbent nonwoven web |
US20030220039A1 (en) | 1998-05-22 | 2003-11-27 | Fung-Jou Chen | Fibrous absorbent material and methods of making the same |
US6686303B1 (en) | 1998-11-13 | 2004-02-03 | Kimberly-Clark Worldwide, Inc. | Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component |
US20040048542A1 (en) | 2002-09-09 | 2004-03-11 | Thomaschefsky Craig F. | Multi-layer nonwoven fabric |
US20040065422A1 (en) | 2002-10-08 | 2004-04-08 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced slough |
US20040087237A1 (en) | 2002-11-06 | 2004-05-06 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced lint and slough |
US20040096656A1 (en) | 2002-11-14 | 2004-05-20 | Bond Eric Bryan | Compositions and processes for reducing water solubility of a starch component in a multicomponent fiber |
JP2004141255A (en) | 2002-10-22 | 2004-05-20 | Asahi Kasei Fibers Corp | Wet wiper |
US6739023B2 (en) | 2002-07-18 | 2004-05-25 | Kimberly Clark Worldwide, Inc. | Method of forming a nonwoven composite fabric and fabric produced thereof |
US20040106723A1 (en) | 2002-08-12 | 2004-06-03 | Yang Henry Wu-Hsiang | Plasticized polyolefin compositions |
US6759356B1 (en) | 1998-06-30 | 2004-07-06 | Kimberly-Clark Worldwide, Inc. | Fibrous electret polymeric articles |
US20040163781A1 (en) | 2003-02-25 | 2004-08-26 | The Procter & Gamble Company | Fibrous structure and process for making same |
US20040181199A1 (en) | 2003-03-14 | 2004-09-16 | Barbro Moberg-Alehammar | Absorbent article with improved surface material |
US6797226B2 (en) | 2000-10-10 | 2004-09-28 | Kimberly-Clark Worldwide, Inc. | Process of making microcreped wipers |
WO2004092474A2 (en) | 2003-04-07 | 2004-10-28 | Polymer Group, Inc. | Dual sided nonwoven cleaning articles |
US6823568B1 (en) | 1997-12-26 | 2004-11-30 | Uni-Charm Corporation | Nonwoven fabric and method for making same |
US6836937B1 (en) | 1999-08-19 | 2005-01-04 | Fleissner Gmbh & Co. Maschinenfabrik | Method and device for producing a composite nonwoven for receiving and storing liquids |
US20050020170A1 (en) | 2003-07-25 | 2005-01-27 | Deka Ganesh Chandra | Nonwoven fabric with abrasion resistance and reduced surface fuzziness |
US20050056956A1 (en) | 2003-09-16 | 2005-03-17 | Biax Fiberfilm Corporation | Process for forming micro-fiber cellulosic nonwoven webs from a cellulose solution by melt blown technology and the products made thereby |
US20050103455A1 (en) | 1998-06-12 | 2005-05-19 | Fort James Corporation | Method of making a paper web having a high internal void volume of secondary fibers |
US20050112980A1 (en) | 2003-10-31 | 2005-05-26 | Sca Hygiene Products Ab | Hydroentangled nonwoven material |
US20050130544A1 (en) | 2003-11-18 | 2005-06-16 | Cheng Chia Y. | Elastic nonwoven fabrics made from blends of polyolefins and processes for making the same |
US20050130536A1 (en) | 2003-12-11 | 2005-06-16 | Kimberly-Clark Worldwide, Inc. | Disposable scrubbing product |
US20050136772A1 (en) | 2003-12-23 | 2005-06-23 | Kimberly-Clark Worldwide, Inc. | Composite structures containing tissue webs and other nonwovens |
US20050136765A1 (en) | 2003-12-23 | 2005-06-23 | Kimberly-Clark Worldwide, Inc. | Fibrous materials exhibiting thermal change during use |
US20050133177A1 (en) | 2003-12-22 | 2005-06-23 | Sca Hygiene Products Ab | Method for adding chemicals to a nonwoven material |
US20050136778A1 (en) | 2003-12-23 | 2005-06-23 | Kimberly-Clark Worldwide, Inc . | Ultrasonically laminated multi-ply fabrics |
US20050137540A1 (en) | 2003-12-23 | 2005-06-23 | Kimberly-Clark Worldwide, Inc. | Bacteria removing wipe |
US20050148264A1 (en) | 2003-12-30 | 2005-07-07 | Varona Eugenio G. | Bimodal pore size nonwoven web and wiper |
WO2005065932A1 (en) | 2003-12-31 | 2005-07-21 | Kimberly-Clark Worldwide, Inc. | Single sided stretch bonded laminates, and method of making same |
WO2005065516A2 (en) | 2003-12-30 | 2005-07-21 | Kimberly-Clark Worldwide, Inc. | Wet wipe with low liquid add-on |
US20050159065A1 (en) | 2003-12-18 | 2005-07-21 | Anders Stralin | Composite nonwoven material containing continuous filaments and short fibres |
US20050170727A1 (en) | 2004-01-27 | 2005-08-04 | Melik David H. | Soft extensible nonwoven webs containing fibers with high melt flow rates |
US20050177122A1 (en) | 2004-02-09 | 2005-08-11 | Berba Maria L.M. | Fluid management article and methods of use thereof |
JP2005218525A (en) | 2004-02-03 | 2005-08-18 | Kao Corp | Wiping sheet |
WO2005080497A1 (en) | 2004-02-12 | 2005-09-01 | Exxonmobil Chemical Patents Inc. | Polypropylene resin suitable for fibers and nonwovens |
EP1589137A1 (en) | 2003-01-08 | 2005-10-26 | Teijin Fibers Limited | Nonwoven fabric of polyester composite fiber |
US20050245159A1 (en) | 2004-02-11 | 2005-11-03 | Chmielewski Harry J | Breathable barrier composite with hydrophobic cellulosic fibers |
WO2005106085A1 (en) | 2004-04-26 | 2005-11-10 | Biax Fiberfilm Corporation | Apparatus , product and process forming micro-fiber cellulosic nonwoven webs |
US20050247416A1 (en) | 2004-05-06 | 2005-11-10 | Forry Mark E | Patterned fibrous structures |
WO2005118934A1 (en) | 2004-06-01 | 2005-12-15 | Dan-Web Holding A/S | Manufacture of a multi-layer fabric |
US20050274470A1 (en) | 2004-06-10 | 2005-12-15 | Kimberly-Clark Worldwide, Inc. | Apertured tissue products |
US6979386B1 (en) | 1999-08-23 | 2005-12-27 | Kimberly-Clark Worldwide, Inc. | Tissue products having increased absorbency |
US6986932B2 (en) | 2001-07-30 | 2006-01-17 | The Procter & Gamble Company | Multi-layer wiping device |
US7000000B1 (en) | 1999-01-25 | 2006-02-14 | E. I. Du Pont De Nemours And Company | Polysaccharide fibers |
WO2006027810A1 (en) | 2004-09-06 | 2006-03-16 | Fabio Perini S.P.A. | Sheet product comprising at least two plies joined by gluing with non-uniform distribution of the glue |
US7029620B2 (en) | 2000-11-27 | 2006-04-18 | The Procter & Gamble Company | Electro-spinning process for making starch filaments for flexible structure |
US7028429B1 (en) | 2003-07-31 | 2006-04-18 | Jim Druliner | Decoy |
US20060084340A1 (en) * | 2004-04-19 | 2006-04-20 | The Procter & Gamble Company | Fibers, nonwovens and articles containing nanofibers produced from high glass transition temperature polymers |
US20060088697A1 (en) | 2004-10-22 | 2006-04-27 | Manifold John A | Fibrous structures comprising a design and processes for making same |
US20060086633A1 (en) | 2004-10-26 | 2006-04-27 | The Procter & Gamble Company | Web-material package |
WO2006060815A2 (en) | 2004-12-02 | 2006-06-08 | The Procter & Gamble Company | Fibrous structures comprising a nanoparticle additive |
WO2006060813A1 (en) | 2004-12-02 | 2006-06-08 | The Procter & Gamble Company | Fibrous structures comprising a low surface energy additive |
WO2006060816A1 (en) | 2004-12-02 | 2006-06-08 | The Procter & Gamble Company | Fibrous structures comprising a solid additive |
WO2006069120A2 (en) | 2004-12-20 | 2006-06-29 | The Procter & Gamble Company | Polymeric structures comprising an hydroxyl polymer and processes for making same |
US20070010153A1 (en) | 2005-07-11 | 2007-01-11 | Shaffer Lori A | Cleanroom wiper |
US20070039704A1 (en) | 2005-08-22 | 2007-02-22 | The Procter & Gamble Company | Hydroxyl polymer fiber fibrous structures and processes for making same |
US20070049153A1 (en) | 2005-08-31 | 2007-03-01 | Dunbar Charlene H | Textured wiper material with multi-modal pore size distribution |
US20070063091A1 (en) | 2004-03-05 | 2007-03-22 | Georgia-Pacific France | Controlled dispensing roll |
US20070077841A1 (en) * | 2004-09-27 | 2007-04-05 | Matthias Zoch | Absorbent sanitary product |
WO2007070075A1 (en) | 2005-12-15 | 2007-06-21 | Kimberly-Clark Worldwide, Inc. | Biodegradable continuous filament web |
US20070142803A1 (en) * | 2005-12-15 | 2007-06-21 | Soerens Dave A | Articles comprising superabsorbent polymer compositions |
WO2007078344A1 (en) | 2005-12-15 | 2007-07-12 | Kimberly-Clark Worldwide, Inc. | Filament-meltblown composite materials, and methods of making same |
US20070173162A1 (en) | 2004-04-30 | 2007-07-26 | Samuel Ethiopia | Nonwoven fabric and fibers |
WO2007092303A2 (en) | 2006-02-03 | 2007-08-16 | The University Of Akron | Absorbent non-woven fibrous mats and process for preparing same |
WO2007098449A1 (en) | 2006-02-21 | 2007-08-30 | Fiber Web Simpsonville, Inc. | Extensible absorbent composites |
US20070202766A1 (en) | 2006-02-24 | 2007-08-30 | William Ouellette | Low-density cleaning substrate |
US20070232180A1 (en) | 2006-03-31 | 2007-10-04 | Osman Polat | Absorbent article comprising a fibrous structure comprising synthetic fibers and a hydrophilizing agent |
WO2007124866A1 (en) | 2006-04-28 | 2007-11-08 | Fiberweb Corovin Gmbh | Polymer fiber and nonwoven |
WO2007135624A2 (en) | 2006-05-16 | 2007-11-29 | The Procter & Gamble Company | Fibrous structures comprising a region of auxiliary bonding and methods for making same |
US20070272381A1 (en) | 2006-05-25 | 2007-11-29 | Ahmed Kamal Elony | Embossed multi-ply fibrous structure product |
US20080000602A1 (en) | 2005-12-15 | 2008-01-03 | Kimberly-Clark Worldwide, Inc. | Wiping products having enhanced cleaning abilities |
WO2008005500A2 (en) | 2006-07-05 | 2008-01-10 | The Procter & Gamble Company | A web comprising a tuft |
EP1887036A2 (en) | 2000-03-07 | 2008-02-13 | The Procter and Gamble Company | Melt processable starch composition |
US20080041543A1 (en) | 2005-12-15 | 2008-02-21 | Kimberly-Clark Worldwide, Inc. | Process for increasing the basis weight of sheet materials |
US20080051471A1 (en) * | 2004-05-04 | 2008-02-28 | Bengt Kronberg | Decomposing Surfactant |
US20080050996A1 (en) | 2005-04-29 | 2008-02-28 | Sca Hygiene Products | Hydroentangled integrated composite nonwoven material |
WO2008050311A2 (en) | 2006-10-27 | 2008-05-02 | The Procter & Gamble Company | Clothlike non-woven fibrous structures and processes for making same |
WO2008073101A1 (en) | 2006-12-15 | 2008-06-19 | Kimberly-Clark Worldwide, Inc. | Biodegradable polylactic acids for use in forming fibers |
US20080142178A1 (en) | 2006-12-14 | 2008-06-19 | Daphne Haubrich | Wet layed bundled fiber mat with binder fiber |
US7410683B2 (en) | 2002-12-20 | 2008-08-12 | The Procter & Gamble Company | Tufted laminate web |
US20080241538A1 (en) * | 2004-06-17 | 2008-10-02 | Korea Research Institute Of Chemical Technology | Filament Bundle Type Nano Fiber and Manufacturing Method Thereof |
US20080248239A1 (en) | 2007-04-05 | 2008-10-09 | Stacey Lynn Pomeroy | Wet wipes having increased stack thickness |
EP1504145B1 (en) | 2002-05-10 | 2008-11-05 | Kimberly-Clark Worldwide, Inc. | Three-dimensional coform nonwoven web |
WO2009010942A2 (en) | 2007-07-17 | 2009-01-22 | The Procter & Gamble Company | Fibrous structures |
US20090022960A1 (en) | 2007-07-17 | 2009-01-22 | Michael Donald Suer | Fibrous structures and methods for making same |
US20090023839A1 (en) | 2007-07-17 | 2009-01-22 | Steven Lee Barnholtz | Process for making fibrous structures |
WO2009010939A2 (en) | 2007-07-17 | 2009-01-22 | The Procter & Gamble Company | Fibrous structures and methods for making same |
WO2009010938A1 (en) | 2007-07-17 | 2009-01-22 | The Procter & Gamble Company | Fibrous structures and methods for making same |
EP2028296A1 (en) | 2007-08-24 | 2009-02-25 | Reifenhäuser GmbH & Co. KG Maschinenfabrik | Polymer blend for synthetic filaments and method for manufacturing synthetic filaments |
US20090151748A1 (en) | 2007-12-13 | 2009-06-18 | Ridenhour Aneshia D | Facial blotter with improved oil absorbency |
WO2009105490A1 (en) | 2008-02-18 | 2009-08-27 | Sellars Absorbent Materials, Inc. | Laminate non-woven sheet with high-strength, melt-blown fiber exterior layers |
US20090220741A1 (en) | 2008-02-29 | 2009-09-03 | John Allen Manifold | Embossed fibrous structures |
US20090220769A1 (en) | 2008-02-29 | 2009-09-03 | John Allen Manifold | Fibrous structures |
US20100239825A1 (en) | 2006-05-03 | 2010-09-23 | Jeffrey Glen Sheehan | Fibrous structure product with high softness |
WO2011019908A1 (en) | 2009-08-14 | 2011-02-17 | The Procter & Gamble Company | Fibrous structures and method for making same |
US7902096B2 (en) | 2006-07-31 | 2011-03-08 | 3M Innovative Properties Company | Monocomponent monolayer meltblown web and meltblowing apparatus |
WO2011053677A1 (en) | 2009-11-02 | 2011-05-05 | The Procter & Gamble Company | Fibrous structures and methods for making same |
US7994081B2 (en) | 2007-08-17 | 2011-08-09 | Fiberweb, Inc. | Area bonded nonwoven fabric from single polymer system |
US7994079B2 (en) | 2002-12-17 | 2011-08-09 | Kimberly-Clark Worldwide, Inc. | Meltblown scrubbing product |
US8017534B2 (en) | 2008-03-17 | 2011-09-13 | Kimberly-Clark Worldwide, Inc. | Fibrous nonwoven structure having improved physical characteristics and method of preparing |
US20110244199A1 (en) | 2010-03-31 | 2011-10-06 | Jonathan Paul Brennan | Fibrous structures and methods for making same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000005065A1 (en) | 1998-07-22 | 2000-02-03 | The Procter & Gamble Company | Paper web having a liquid impermeable, breathable barrier layer |
US6500563B1 (en) | 1999-05-13 | 2002-12-31 | Exxonmobil Chemical Patents Inc. | Elastic films including crystalline polymer and crystallizable polymers of propylene |
EP1059332A1 (en) | 1999-06-10 | 2000-12-13 | Fina Research S.A. | Polypropylene with high melt strength and drawability |
US20050148261A1 (en) | 2003-12-30 | 2005-07-07 | Kimberly-Clark Worldwide, Inc. | Nonwoven webs having reduced lint and slough |
CN1922262A (en) | 2004-01-26 | 2007-02-28 | 宝洁公司 | Fibers and nonwovens comprising polypropylene blends and mixtures |
AU2010313170B2 (en) | 2009-11-02 | 2014-03-27 | The Procter & Gamble Company | Fibrous elements and fibrous structures employing same |
JP5449567B2 (en) | 2009-11-02 | 2014-03-19 | ザ プロクター アンド ギャンブル カンパニー | Polypropylene fiber element and manufacturing method thereof |
ES2551230T3 (en) | 2009-11-02 | 2015-11-17 | The Procter & Gamble Company | Low fraying fibrous structures and methods to manufacture them |
-
2010
- 2010-11-02 AU AU2010313170A patent/AU2010313170B2/en not_active Ceased
- 2010-11-02 CA CA2779719A patent/CA2779719C/en active Active
- 2010-11-02 MX MX2012005108A patent/MX338419B/en active IP Right Grant
- 2010-11-02 BR BR112012010003A patent/BR112012010003A2/en not_active IP Right Cessation
- 2010-11-02 WO PCT/US2010/055072 patent/WO2011053956A1/en active Application Filing
- 2010-11-02 US US12/917,585 patent/US10895022B2/en active Active
- 2010-11-02 EP EP10779368A patent/EP2496737A1/en not_active Withdrawn
-
2020
- 2020-12-11 US US17/118,679 patent/US11618977B2/en active Active
-
2023
- 2023-03-23 US US18/188,717 patent/US20230228003A1/en active Pending
Patent Citations (256)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2008031A (en) | 1934-01-31 | 1935-07-16 | Miltner Arthur | Self-lubricating drill |
US2175045A (en) | 1936-08-20 | 1939-10-03 | Vogel Rudolf | Coiled material |
US3521638A (en) | 1969-02-10 | 1970-07-28 | Du Pont | Fabrics having water soluble discrete areas and methods of making |
US3838692A (en) | 1972-11-27 | 1974-10-01 | Johnson & Johnson | Hydrophobic sheet with hydrophilic passages |
US4100324A (en) | 1974-03-26 | 1978-07-11 | Kimberly-Clark Corporation | Nonwoven fabric and method of producing same |
US3954361A (en) | 1974-05-23 | 1976-05-04 | Beloit Corporation | Melt blowing apparatus with parallel air stream fiber attenuation |
US4139699A (en) | 1976-03-25 | 1979-02-13 | National Starch And Chemical Corporation | Water insensitive starch fibers and a process for the production thereof |
US4118531A (en) | 1976-08-02 | 1978-10-03 | Minnesota Mining And Manufacturing Company | Web of blended microfibers and crimped bulking fibers |
US4203939A (en) | 1977-03-28 | 1980-05-20 | Akzona Incorporated | Process and apparatus for treatment of the exit surface of spinnerets |
US4243480A (en) | 1977-10-17 | 1981-01-06 | National Starch And Chemical Corporation | Process for the production of paper containing starch fibers and the paper produced thereby |
US4370289A (en) | 1979-07-19 | 1983-01-25 | American Can Company | Fibrous web structure and its manufacture |
US4355066A (en) | 1980-12-08 | 1982-10-19 | The Kendall Company | Spot-bonded absorbent composite towel material having 60% or more of the surface area unbonded |
EP0080382A2 (en) | 1981-11-24 | 1983-06-01 | Kimberly-Clark Limited | Microfibre web product |
GB2113731A (en) | 1981-11-24 | 1983-08-10 | Kimberly Clark Ltd | Non-woven microfibre web |
US4436780A (en) | 1982-09-02 | 1984-03-13 | Kimberly-Clark Corporation | Nonwoven wiper laminate |
JPS59211667A (en) | 1983-05-11 | 1984-11-30 | チコピ− | Composite cloth and production thereof |
EP0156649A2 (en) | 1984-03-29 | 1985-10-02 | Minnesota Mining And Manufacturing Company | Sorbent sheet material |
US4604313A (en) | 1984-04-23 | 1986-08-05 | Kimberly-Clark Corporation | Selective layering of superabsorbents in meltblown substrates |
US4724114A (en) | 1984-04-23 | 1988-02-09 | Kimberly-Clark Corporation | Selective layering of superabsorbents in meltblown substrates |
US4636418A (en) | 1984-05-17 | 1987-01-13 | James River Corporation | Cloth-like composite laminate and a method of making |
US4634621A (en) | 1984-05-17 | 1987-01-06 | The James River Corporation | Scrim reinforced, cloth-like composite laminate and a method of making |
US4786550A (en) | 1985-05-06 | 1988-11-22 | Kimberly-Clark Corporation | Meltblown and coform materials having application as seed beds |
EP0205242B2 (en) | 1985-05-14 | 1995-11-22 | Kimberly-Clark Corporation | Non-woven laminate material |
US4720415A (en) | 1985-07-30 | 1988-01-19 | Kimberly-Clark Corporation | Composite elastomeric material and process for making the same |
US4623576A (en) | 1985-10-22 | 1986-11-18 | Kimberly-Clark Corporation | Lightweight nonwoven tissue and method of manufacture |
US4803117A (en) | 1986-03-24 | 1989-02-07 | Kimberly-Clark Corporation | Coformed ethylene-vinyl copolymer elastomeric fibrous webs |
US4863779A (en) | 1986-03-24 | 1989-09-05 | Kimberly-Clark Corporation | Composite elastomeric material |
US4675226A (en) | 1986-07-07 | 1987-06-23 | Ott Hoye L | Stitchbonded composite wiper |
EP0294137A1 (en) | 1987-06-02 | 1988-12-07 | The Procter & Gamble Company | Composite absorbent structures |
US4855179A (en) | 1987-07-29 | 1989-08-08 | Arco Chemical Technology, Inc. | Production of nonwoven fibrous articles |
EP0308320A2 (en) | 1987-09-15 | 1989-03-22 | Fiberweb North America, Inc. | High strength nonwoven fabric |
US4885202A (en) | 1987-11-24 | 1989-12-05 | Kimberly-Clark Corporation | Tissue laminate |
US4939016A (en) | 1988-03-18 | 1990-07-03 | Kimberly-Clark Corporation | Hydraulically entangled nonwoven elastomeric web and method of forming the same |
US4931355A (en) | 1988-03-18 | 1990-06-05 | Radwanski Fred R | Nonwoven fibrous hydraulically entangled non-elastic coform material and method of formation thereof |
US4879170A (en) | 1988-03-18 | 1989-11-07 | Kimberly-Clark Corporation | Nonwoven fibrous hydraulically entangled elastic coform material and method of formation thereof |
US4970104A (en) | 1988-03-18 | 1990-11-13 | Kimberly-Clark Corporation | Nonwoven material subjected to hydraulic jet treatment in spots |
EP0333209B1 (en) | 1988-03-18 | 1994-06-29 | Kimberly-Clark Corporation | Nonwoven fibrous elastomeric web material and method of formation thereof |
US5120888A (en) | 1988-04-14 | 1992-06-09 | Kimberly-Clark Corporation | Surface-segregatable, melt-extrudable thermoplastic composition |
EP0341977A2 (en) | 1988-05-10 | 1989-11-15 | E.I. Du Pont De Nemours And Company | Composites from wet formed blends of glass and thermoplastic fibers |
EP0357496B1 (en) | 1988-09-02 | 1994-05-18 | Colgate-Palmolive Company | Wiping cloth |
US4906513A (en) | 1988-10-03 | 1990-03-06 | Kimberly-Clark Corporation | Nonwoven wiper laminate |
US4851168A (en) | 1988-12-28 | 1989-07-25 | Dow Corning Corporation | Novel polyvinyl alcohol compositions and products prepared therefrom |
US5087506A (en) | 1989-03-16 | 1992-02-11 | Faricerca S.P.A. | Absorbent element and an absorbent article including the element |
EP0423619A1 (en) | 1989-10-13 | 1991-04-24 | Fiberweb North America, Inc. | Wiping fabric and method of manufacture |
US5227107A (en) | 1990-08-07 | 1993-07-13 | Kimberly-Clark Corporation | Process and apparatus for forming nonwovens within a forming chamber |
US5409768A (en) | 1990-08-07 | 1995-04-25 | Kimberly-Clark Corporation | Multicomponent nonwoven fibrous web |
US5375306A (en) | 1990-10-08 | 1994-12-27 | Kaysersberg | Method of manufacturing homogeneous non-woven web |
WO1992007985A1 (en) | 1990-10-25 | 1992-05-14 | Absorbent Products Inc. | Fiber blending system |
US5094717A (en) | 1990-11-15 | 1992-03-10 | James River Corporation Of Virginia | Synthetic fiber paper having a permanent crepe |
US5145727A (en) | 1990-11-26 | 1992-09-08 | Kimberly-Clark Corporation | Multilayer nonwoven composite structure |
US5149576A (en) | 1990-11-26 | 1992-09-22 | Kimberly-Clark Corporation | Multilayer nonwoven laminiferous structure |
US5254399A (en) | 1990-12-19 | 1993-10-19 | Mitsubishi Paper Mills Limited | Nonwoven fabric |
US5284703A (en) | 1990-12-21 | 1994-02-08 | Kimberly-Clark Corporation | High pulp content nonwoven composite fabric |
US5254133A (en) | 1991-04-24 | 1993-10-19 | Seid Arnold S | Surgical implantation device and related method of use |
US5204165A (en) | 1991-08-21 | 1993-04-20 | International Paper Company | Nonwoven laminate with wet-laid barrier fabric and related method |
US5509915A (en) | 1991-09-11 | 1996-04-23 | Kimberly-Clark Corporation | Thin absorbent article having rapid uptake of liquid |
US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
US5629080A (en) | 1992-01-13 | 1997-05-13 | Hercules Incorporated | Thermally bondable fiber for high strength non-woven fabrics |
US5427696A (en) | 1992-04-09 | 1995-06-27 | The Procter & Gamble Company | Biodegradable chemical softening composition useful in fibrous cellulosic materials |
US5350624A (en) | 1992-10-05 | 1994-09-27 | Kimberly-Clark Corporation | Abrasion resistant fibrous nonwoven composite structure |
EP0590307B1 (en) | 1992-10-05 | 1998-12-16 | Kimberly-Clark Worldwide, Inc. | Abrasion resistant fibrous nonwoven composite structure |
US5508102A (en) | 1992-10-05 | 1996-04-16 | Kimberly-Clark Corporation | Abrasion resistant fibrous nonwoven composite structure |
WO1994019179A1 (en) | 1993-02-26 | 1994-09-01 | The University Of Tennessee Research Corporation | Novel composite web |
US5436066A (en) | 1993-12-30 | 1995-07-25 | Kimberly-Clark Corporation | Absorbent composition including a microfiber |
US5597873A (en) | 1994-04-11 | 1997-01-28 | Hoechst Celanese Corporation | Superabsorbent polymers and products therefrom |
US5814570A (en) | 1994-06-27 | 1998-09-29 | Kimberly-Clark Worldwide, Inc. | Nonwoven barrier and method of making the same |
US5536563A (en) | 1994-12-01 | 1996-07-16 | Kimberly-Clark Corporation | Nonwoven elastomeric material |
US5476616A (en) | 1994-12-12 | 1995-12-19 | Schwarz; Eckhard C. A. | Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices |
JPH08174735A (en) | 1994-12-26 | 1996-07-09 | New Oji Paper Co Ltd | Composite nonwoven fabric having porous pattern and production thereof |
US5539056A (en) | 1995-01-31 | 1996-07-23 | Exxon Chemical Patents Inc. | Thermoplastic elastomers |
US5611890A (en) | 1995-04-07 | 1997-03-18 | The Proctor & Gamble Company | Tissue paper containing a fine particulate filler |
US5587225A (en) | 1995-04-27 | 1996-12-24 | Kimberly-Clark Corporation | Knit-like nonwoven composite fabric |
US5952251A (en) | 1995-06-30 | 1999-09-14 | Kimberly-Clark Corporation | Coformed dispersible nonwoven fabric bonded with a hybrid system |
US5948710A (en) | 1995-06-30 | 1999-09-07 | Kimberly-Clark Worldwide, Inc. | Water-dispersible fibrous nonwoven coform composites |
US5652048A (en) | 1995-08-02 | 1997-07-29 | Kimberly-Clark Worldwide, Inc. | High bulk nonwoven sorbent |
US5811178A (en) | 1995-08-02 | 1998-09-22 | Kimberly-Clark Worldwide, Inc. | High bulk nonwoven sorbent with fiber density gradient |
US5853867A (en) | 1995-09-14 | 1998-12-29 | Nippon Shokubai Co., Ltd. | Absorbent composite, method for production thereof, and absorbent article |
WO1997037757A1 (en) | 1996-04-05 | 1997-10-16 | Kimberly-Clark Worldwide, Inc. | Oil-sorbing article and methods for making and using same |
WO1998003713A1 (en) | 1996-07-24 | 1998-01-29 | Kimberly-Clark Worldwide, Inc. | Wet wipes with improved softness |
US6296936B1 (en) | 1996-09-04 | 2001-10-02 | Kimberly-Clark Worldwide, Inc. | Coform material having improved fluid handling and method for producing |
US6423884B1 (en) | 1996-10-11 | 2002-07-23 | Kimberly-Clark Worldwide, Inc. | Absorbent article having apertures for fecal material |
WO1998027257A2 (en) | 1996-12-19 | 1998-06-25 | Kimberly-Clark Worldwide, Inc. | Wipers comprising point unbonded webs |
WO1998036117A1 (en) | 1997-02-13 | 1998-08-20 | Kimberly-Clark Worldwide, Inc. | Water-dispersible fibrous nonwoven coform composites |
EP0865755A1 (en) | 1997-03-21 | 1998-09-23 | Uni-Charm Corporation | Wiping sheet |
US6150005A (en) | 1997-04-15 | 2000-11-21 | International Paper Company | Synthetic paper |
US6506873B1 (en) | 1997-05-02 | 2003-01-14 | Cargill, Incorporated | Degradable polymer fibers; preparation product; and, methods of use |
US6608236B1 (en) | 1997-05-14 | 2003-08-19 | Kimberly-Clark Worldwide, Inc. | Stabilized absorbent material and systems for personal care products having controlled placement of visco-elastic fluids |
US6172276B1 (en) | 1997-05-14 | 2001-01-09 | Kimberly-Clark Worldwide, Inc. | Stabilized absorbent material for improved distribution performance with visco-elastic fluids |
WO1998055295A1 (en) | 1997-06-05 | 1998-12-10 | Bba Nonwovens Simpsonville, Inc. | High strength baby wipe composite |
US6823568B1 (en) | 1997-12-26 | 2004-11-30 | Uni-Charm Corporation | Nonwoven fabric and method for making same |
US6200120B1 (en) | 1997-12-31 | 2001-03-13 | Kimberly-Clark Worldwide, Inc. | Die head assembly, apparatus, and process for meltblowing a fiberforming thermoplastic polymer |
US6348133B1 (en) | 1998-02-18 | 2002-02-19 | Basf Corporation | Smooth textured wet-laid absorbent structure |
US6179325B1 (en) | 1998-04-27 | 2001-01-30 | Takata Corporation | Airbag device for driver |
US20030220039A1 (en) | 1998-05-22 | 2003-11-27 | Fung-Jou Chen | Fibrous absorbent material and methods of making the same |
US20050103455A1 (en) | 1998-06-12 | 2005-05-19 | Fort James Corporation | Method of making a paper web having a high internal void volume of secondary fibers |
US6759356B1 (en) | 1998-06-30 | 2004-07-06 | Kimberly-Clark Worldwide, Inc. | Fibrous electret polymeric articles |
US6103061A (en) | 1998-07-07 | 2000-08-15 | Kimberly-Clark Worldwide, Inc. | Soft, strong hydraulically entangled nonwoven composite material and method for making the same |
WO2000011998A1 (en) | 1998-08-31 | 2000-03-09 | Kimberly-Clark Limited | Collapse resistant centre feed roll and process of making thereof |
US6550115B1 (en) | 1998-09-29 | 2003-04-22 | Kimberly-Clark Worldwide, Inc. | Method for making a hydraulically entangled composite fabric |
US6177370B1 (en) | 1998-09-29 | 2001-01-23 | Kimberly-Clark Worldwide, Inc. | Fabric |
US6503370B2 (en) | 1998-10-01 | 2003-01-07 | Sca Hygiene Products Ab | Method of producing a paper having a three-dimensional pattern |
WO2000021476A1 (en) | 1998-10-09 | 2000-04-20 | Weyerhaeuser Company | Compressible wood pulp product |
EP0992338A2 (en) | 1998-10-09 | 2000-04-12 | Fort James Corporation | Hydroentangled three ply webs and products made therefrom |
US6686303B1 (en) | 1998-11-13 | 2004-02-03 | Kimberly-Clark Worldwide, Inc. | Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component |
WO2000029655A1 (en) | 1998-11-13 | 2000-05-25 | Kimberly-Clark Worldwide, Inc. | Bicomponent nonwoven webs containing adhesive and a third component |
US6589892B1 (en) | 1998-11-13 | 2003-07-08 | Kimberly-Clark Worldwide, Inc. | Bicomponent nonwoven webs containing adhesive and a third component |
WO2000038565A1 (en) | 1998-12-31 | 2000-07-06 | Kimberly-Clark Worldwide, Inc. | Multi-ply wipe |
US6319342B1 (en) | 1998-12-31 | 2001-11-20 | Kimberly-Clark Worldwide, Inc. | Method of forming meltblown webs containing particles |
US6417120B1 (en) | 1998-12-31 | 2002-07-09 | Kimberly-Clark Worldwide, Inc. | Particle-containing meltblown webs |
US7000000B1 (en) | 1999-01-25 | 2006-02-14 | E. I. Du Pont De Nemours And Company | Polysaccharide fibers |
US6709526B1 (en) | 1999-03-08 | 2004-03-23 | The Procter & Gamble Company | Melt processable starch compositions |
US7041369B1 (en) | 1999-03-08 | 2006-05-09 | The Procter & Gamble Company | Melt processable starch composition |
JP2000303335A (en) | 1999-03-08 | 2000-10-31 | Humatro Corp | Absorbent and flexible structure comprising starch fibers |
US6348253B1 (en) | 1999-04-03 | 2002-02-19 | Kimberly-Clark Worldwide, Inc. | Sanitary pad for variable flow management |
WO2000063486A1 (en) | 1999-04-16 | 2000-10-26 | Kimberly-Clark Worldwide, Inc. | Fibrous structures including a fiber bundle and a debonding agent |
US6488801B1 (en) | 1999-06-16 | 2002-12-03 | First Quality Nonwoven, Inc. | Method of making media of controlled porosity and product thereof |
US6465073B1 (en) | 1999-06-30 | 2002-10-15 | Kimberly-Clark Worldwide, Inc. | Variable stretch material and process to make it |
WO2001009023A1 (en) | 1999-07-30 | 2001-02-08 | The Procter & Gamble Company | Dispensable wound products having end-wise indicia |
US6836937B1 (en) | 1999-08-19 | 2005-01-04 | Fleissner Gmbh & Co. Maschinenfabrik | Method and device for producing a composite nonwoven for receiving and storing liquids |
US6979386B1 (en) | 1999-08-23 | 2005-12-27 | Kimberly-Clark Worldwide, Inc. | Tissue products having increased absorbency |
US6494974B2 (en) | 1999-10-15 | 2002-12-17 | Kimberly-Clark Worldwide, Inc. | Method of forming meltblown webs containing particles |
DE19959832A1 (en) | 1999-12-10 | 2001-07-12 | Hakle Kimberly De Gmbh | Layer adhesion system for multilaminar paper on roll, e.g. toilet paper, with mechanical or glue joints in form of strips in edge region only |
US6383336B1 (en) | 1999-12-14 | 2002-05-07 | Kimberly-Clark Worldwide, Inc. | Strong, soft non-compressively dried tissue products containing particulate fillers |
WO2001066345A1 (en) | 2000-03-03 | 2001-09-13 | The Procter & Gamble Company | Absorbent, non-linting nonwoven web |
EP1887036A2 (en) | 2000-03-07 | 2008-02-13 | The Procter and Gamble Company | Melt processable starch composition |
EP1132427A1 (en) | 2000-03-07 | 2001-09-12 | HUMATRO CORPORATION, c/o Ladas & Parry | Melt processable starch compositions |
EP1156160A1 (en) | 2000-05-18 | 2001-11-21 | WCK Limited | A canopy |
JP2002088660A (en) | 2000-09-20 | 2002-03-27 | Crecia Corp | Wiper base fabric |
US6361784B1 (en) | 2000-09-29 | 2002-03-26 | The Procter & Gamble Company | Soft, flexible disposable wipe with embossing |
US6797226B2 (en) | 2000-10-10 | 2004-09-28 | Kimberly-Clark Worldwide, Inc. | Process of making microcreped wipers |
US7029620B2 (en) | 2000-11-27 | 2006-04-18 | The Procter & Gamble Company | Electro-spinning process for making starch filaments for flexible structure |
WO2002050357A1 (en) | 2000-12-19 | 2002-06-27 | M & J Fibretech A/S | Web consisting of a base web and air-laid fibres hydroentangled on the base web |
US6811638B2 (en) | 2000-12-29 | 2004-11-02 | Kimberly-Clark Worldwide, Inc. | Method for controlling retraction of composite materials |
WO2002053365A2 (en) | 2000-12-29 | 2002-07-11 | Kimberley-Clark Worldwide, Inc. | Composite material with cloth-like feel |
US6946413B2 (en) | 2000-12-29 | 2005-09-20 | Kimberly-Clark Worldwide, Inc. | Composite material with cloth-like feel |
WO2002053003A2 (en) | 2001-01-03 | 2002-07-11 | Kimberly-Clark Worldwide, Inc. | Stretchable composite sheet |
US20030024662A1 (en) | 2001-07-11 | 2003-02-06 | Besemer Arie Cornelis | Cationic fibres |
US6986932B2 (en) | 2001-07-30 | 2006-01-17 | The Procter & Gamble Company | Multi-layer wiping device |
EP1300511A2 (en) | 2001-09-20 | 2003-04-09 | Armstrong World Industries, Inc. | Thermo formable acoustical panel |
US7176150B2 (en) | 2001-10-09 | 2007-02-13 | Kimberly-Clark Worldwide, Inc. | Internally tufted laminates |
US20030073367A1 (en) | 2001-10-09 | 2003-04-17 | Kimberly-Clark Worldwide, Inc. | Internally tufted laminates and methods of producing same |
US7879172B2 (en) | 2001-10-09 | 2011-02-01 | Kimberly-Clark Worldwide, Inc. | Methods for producing internally-tufted laminates |
US6621679B1 (en) | 2001-12-05 | 2003-09-16 | National Semiconductor Corporation | 5V tolerant corner clamp with keep off circuit |
US20050090175A1 (en) | 2001-12-10 | 2005-04-28 | Heikki Bergholm | Composite nonwoven its use and method of manufacture |
WO2003050347A1 (en) | 2001-12-10 | 2003-06-19 | Suominen Nonwovens Ltd. | Composite nonwoven, its use and method of manufacture |
US20030135172A1 (en) | 2001-12-20 | 2003-07-17 | Whitmore Darryl L. | Absorbent article |
US20030150090A1 (en) | 2001-12-21 | 2003-08-14 | Kimberly-Clark Worldwide, Inc. | Method of forming composite absorbent members |
US20030131457A1 (en) | 2001-12-21 | 2003-07-17 | Kimberly-Clark Worldwide, Inc. | Method of forming composite absorbent members |
US20030144641A1 (en) * | 2002-01-29 | 2003-07-31 | Chen Dennis Chia-Bin | Absorbent products having high total front pad AULs |
WO2003080905A1 (en) | 2002-03-26 | 2003-10-02 | Nano Technics Co., Ltd. | A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process |
US20030200991A1 (en) | 2002-04-29 | 2003-10-30 | Kimberly-Clark Worldwide, Inc. | Dual texture absorbent nonwoven web |
EP1504145B1 (en) | 2002-05-10 | 2008-11-05 | Kimberly-Clark Worldwide, Inc. | Three-dimensional coform nonwoven web |
US6739023B2 (en) | 2002-07-18 | 2004-05-25 | Kimberly Clark Worldwide, Inc. | Method of forming a nonwoven composite fabric and fabric produced thereof |
US20040106723A1 (en) | 2002-08-12 | 2004-06-03 | Yang Henry Wu-Hsiang | Plasticized polyolefin compositions |
US6992028B2 (en) | 2002-09-09 | 2006-01-31 | Kimberly-Clark Worldwide, Inc. | Multi-layer nonwoven fabric |
US20040048542A1 (en) | 2002-09-09 | 2004-03-11 | Thomaschefsky Craig F. | Multi-layer nonwoven fabric |
US20040065422A1 (en) | 2002-10-08 | 2004-04-08 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced slough |
JP2004141255A (en) | 2002-10-22 | 2004-05-20 | Asahi Kasei Fibers Corp | Wet wiper |
US20040087237A1 (en) | 2002-11-06 | 2004-05-06 | Kimberly-Clark Worldwide, Inc. | Tissue products having reduced lint and slough |
US20040096656A1 (en) | 2002-11-14 | 2004-05-20 | Bond Eric Bryan | Compositions and processes for reducing water solubility of a starch component in a multicomponent fiber |
US7994079B2 (en) | 2002-12-17 | 2011-08-09 | Kimberly-Clark Worldwide, Inc. | Meltblown scrubbing product |
US7410683B2 (en) | 2002-12-20 | 2008-08-12 | The Procter & Gamble Company | Tufted laminate web |
EP1589137A1 (en) | 2003-01-08 | 2005-10-26 | Teijin Fibers Limited | Nonwoven fabric of polyester composite fiber |
US20040163781A1 (en) | 2003-02-25 | 2004-08-26 | The Procter & Gamble Company | Fibrous structure and process for making same |
US20040181199A1 (en) | 2003-03-14 | 2004-09-16 | Barbro Moberg-Alehammar | Absorbent article with improved surface material |
WO2004092474A2 (en) | 2003-04-07 | 2004-10-28 | Polymer Group, Inc. | Dual sided nonwoven cleaning articles |
US7425517B2 (en) | 2003-07-25 | 2008-09-16 | Kimberly-Clark Worldwide, Inc. | Nonwoven fabric with abrasion resistance and reduced surface fuzziness |
US20050020170A1 (en) | 2003-07-25 | 2005-01-27 | Deka Ganesh Chandra | Nonwoven fabric with abrasion resistance and reduced surface fuzziness |
US7028429B1 (en) | 2003-07-31 | 2006-04-18 | Jim Druliner | Decoy |
US20050056956A1 (en) | 2003-09-16 | 2005-03-17 | Biax Fiberfilm Corporation | Process for forming micro-fiber cellulosic nonwoven webs from a cellulose solution by melt blown technology and the products made thereby |
US20050112980A1 (en) | 2003-10-31 | 2005-05-26 | Sca Hygiene Products Ab | Hydroentangled nonwoven material |
US20050130544A1 (en) | 2003-11-18 | 2005-06-16 | Cheng Chia Y. | Elastic nonwoven fabrics made from blends of polyolefins and processes for making the same |
US20050130536A1 (en) | 2003-12-11 | 2005-06-16 | Kimberly-Clark Worldwide, Inc. | Disposable scrubbing product |
US20050159065A1 (en) | 2003-12-18 | 2005-07-21 | Anders Stralin | Composite nonwoven material containing continuous filaments and short fibres |
US20050133177A1 (en) | 2003-12-22 | 2005-06-23 | Sca Hygiene Products Ab | Method for adding chemicals to a nonwoven material |
US20050136772A1 (en) | 2003-12-23 | 2005-06-23 | Kimberly-Clark Worldwide, Inc. | Composite structures containing tissue webs and other nonwovens |
US20050137540A1 (en) | 2003-12-23 | 2005-06-23 | Kimberly-Clark Worldwide, Inc. | Bacteria removing wipe |
US20050136765A1 (en) | 2003-12-23 | 2005-06-23 | Kimberly-Clark Worldwide, Inc. | Fibrous materials exhibiting thermal change during use |
US20050136778A1 (en) | 2003-12-23 | 2005-06-23 | Kimberly-Clark Worldwide, Inc . | Ultrasonically laminated multi-ply fabrics |
US20050148264A1 (en) | 2003-12-30 | 2005-07-07 | Varona Eugenio G. | Bimodal pore size nonwoven web and wiper |
WO2005065516A2 (en) | 2003-12-30 | 2005-07-21 | Kimberly-Clark Worldwide, Inc. | Wet wipe with low liquid add-on |
WO2005065932A1 (en) | 2003-12-31 | 2005-07-21 | Kimberly-Clark Worldwide, Inc. | Single sided stretch bonded laminates, and method of making same |
WO2005073446A1 (en) | 2004-01-27 | 2005-08-11 | The Procter & Gamble Company | Soft extensible nonwoven webs containing multicomponent fibers with high melt flow rates |
US20050170727A1 (en) | 2004-01-27 | 2005-08-04 | Melik David H. | Soft extensible nonwoven webs containing fibers with high melt flow rates |
JP2005218525A (en) | 2004-02-03 | 2005-08-18 | Kao Corp | Wiping sheet |
US20050177122A1 (en) | 2004-02-09 | 2005-08-11 | Berba Maria L.M. | Fluid management article and methods of use thereof |
US20050245159A1 (en) | 2004-02-11 | 2005-11-03 | Chmielewski Harry J | Breathable barrier composite with hydrophobic cellulosic fibers |
WO2005080497A1 (en) | 2004-02-12 | 2005-09-01 | Exxonmobil Chemical Patents Inc. | Polypropylene resin suitable for fibers and nonwovens |
US20070063091A1 (en) | 2004-03-05 | 2007-03-22 | Georgia-Pacific France | Controlled dispensing roll |
US20060084340A1 (en) * | 2004-04-19 | 2006-04-20 | The Procter & Gamble Company | Fibers, nonwovens and articles containing nanofibers produced from high glass transition temperature polymers |
WO2005106085A1 (en) | 2004-04-26 | 2005-11-10 | Biax Fiberfilm Corporation | Apparatus , product and process forming micro-fiber cellulosic nonwoven webs |
US20070173162A1 (en) | 2004-04-30 | 2007-07-26 | Samuel Ethiopia | Nonwoven fabric and fibers |
US20080051471A1 (en) * | 2004-05-04 | 2008-02-28 | Bengt Kronberg | Decomposing Surfactant |
US20050247416A1 (en) | 2004-05-06 | 2005-11-10 | Forry Mark E | Patterned fibrous structures |
WO2005118934A1 (en) | 2004-06-01 | 2005-12-15 | Dan-Web Holding A/S | Manufacture of a multi-layer fabric |
US20050274470A1 (en) | 2004-06-10 | 2005-12-15 | Kimberly-Clark Worldwide, Inc. | Apertured tissue products |
US20080241538A1 (en) * | 2004-06-17 | 2008-10-02 | Korea Research Institute Of Chemical Technology | Filament Bundle Type Nano Fiber and Manufacturing Method Thereof |
WO2006027810A1 (en) | 2004-09-06 | 2006-03-16 | Fabio Perini S.P.A. | Sheet product comprising at least two plies joined by gluing with non-uniform distribution of the glue |
US20070077841A1 (en) * | 2004-09-27 | 2007-04-05 | Matthias Zoch | Absorbent sanitary product |
US20060088697A1 (en) | 2004-10-22 | 2006-04-27 | Manifold John A | Fibrous structures comprising a design and processes for making same |
US20060086633A1 (en) | 2004-10-26 | 2006-04-27 | The Procter & Gamble Company | Web-material package |
WO2006060816A1 (en) | 2004-12-02 | 2006-06-08 | The Procter & Gamble Company | Fibrous structures comprising a solid additive |
WO2006060813A1 (en) | 2004-12-02 | 2006-06-08 | The Procter & Gamble Company | Fibrous structures comprising a low surface energy additive |
WO2006060815A2 (en) | 2004-12-02 | 2006-06-08 | The Procter & Gamble Company | Fibrous structures comprising a nanoparticle additive |
WO2006069120A2 (en) | 2004-12-20 | 2006-06-29 | The Procter & Gamble Company | Polymeric structures comprising an hydroxyl polymer and processes for making same |
US7998889B2 (en) | 2005-04-29 | 2011-08-16 | Sca Hygiene Products Ab | Hydroentangled integrated composite nonwoven material |
US20080050996A1 (en) | 2005-04-29 | 2008-02-28 | Sca Hygiene Products | Hydroentangled integrated composite nonwoven material |
US20070010153A1 (en) | 2005-07-11 | 2007-01-11 | Shaffer Lori A | Cleanroom wiper |
US20070039704A1 (en) | 2005-08-22 | 2007-02-22 | The Procter & Gamble Company | Hydroxyl polymer fiber fibrous structures and processes for making same |
US20070049153A1 (en) | 2005-08-31 | 2007-03-01 | Dunbar Charlene H | Textured wiper material with multi-modal pore size distribution |
WO2007070075A1 (en) | 2005-12-15 | 2007-06-21 | Kimberly-Clark Worldwide, Inc. | Biodegradable continuous filament web |
WO2007070064A1 (en) | 2005-12-15 | 2007-06-21 | Kimberly - Clark Worldwide, Inc. | Biodegradable multicomponent fibers |
US20080000602A1 (en) | 2005-12-15 | 2008-01-03 | Kimberly-Clark Worldwide, Inc. | Wiping products having enhanced cleaning abilities |
WO2007078344A1 (en) | 2005-12-15 | 2007-07-12 | Kimberly-Clark Worldwide, Inc. | Filament-meltblown composite materials, and methods of making same |
US20080041543A1 (en) | 2005-12-15 | 2008-02-21 | Kimberly-Clark Worldwide, Inc. | Process for increasing the basis weight of sheet materials |
US20070142803A1 (en) * | 2005-12-15 | 2007-06-21 | Soerens Dave A | Articles comprising superabsorbent polymer compositions |
WO2007092303A2 (en) | 2006-02-03 | 2007-08-16 | The University Of Akron | Absorbent non-woven fibrous mats and process for preparing same |
WO2007098449A1 (en) | 2006-02-21 | 2007-08-30 | Fiber Web Simpsonville, Inc. | Extensible absorbent composites |
US20070202766A1 (en) | 2006-02-24 | 2007-08-30 | William Ouellette | Low-density cleaning substrate |
WO2007100936A2 (en) | 2006-02-24 | 2007-09-07 | The Clorox Company | Low-density cleaning substrate |
US7696109B2 (en) | 2006-02-24 | 2010-04-13 | The Clorox Company | Low-density cleaning substrate |
US20110220310A1 (en) | 2006-03-31 | 2011-09-15 | Osman Polat | Absorbent article comprising a fibrous structure comprising synthetic fibers and a hydrophilizing agent |
US20070232180A1 (en) | 2006-03-31 | 2007-10-04 | Osman Polat | Absorbent article comprising a fibrous structure comprising synthetic fibers and a hydrophilizing agent |
WO2007124866A1 (en) | 2006-04-28 | 2007-11-08 | Fiberweb Corovin Gmbh | Polymer fiber and nonwoven |
US20100239825A1 (en) | 2006-05-03 | 2010-09-23 | Jeffrey Glen Sheehan | Fibrous structure product with high softness |
WO2007135624A2 (en) | 2006-05-16 | 2007-11-29 | The Procter & Gamble Company | Fibrous structures comprising a region of auxiliary bonding and methods for making same |
US20070272381A1 (en) | 2006-05-25 | 2007-11-29 | Ahmed Kamal Elony | Embossed multi-ply fibrous structure product |
US20080008853A1 (en) | 2006-07-05 | 2008-01-10 | The Procter & Gamble Company | Web comprising a tuft |
WO2008005500A2 (en) | 2006-07-05 | 2008-01-10 | The Procter & Gamble Company | A web comprising a tuft |
US7902096B2 (en) | 2006-07-31 | 2011-03-08 | 3M Innovative Properties Company | Monocomponent monolayer meltblown web and meltblowing apparatus |
US20100326612A1 (en) | 2006-10-27 | 2010-12-30 | Matthew Todd Hupp | Clothlike non-woven fibrous structures and processes for making same |
WO2008050311A2 (en) | 2006-10-27 | 2008-05-02 | The Procter & Gamble Company | Clothlike non-woven fibrous structures and processes for making same |
US20080142178A1 (en) | 2006-12-14 | 2008-06-19 | Daphne Haubrich | Wet layed bundled fiber mat with binder fiber |
WO2008073101A1 (en) | 2006-12-15 | 2008-06-19 | Kimberly-Clark Worldwide, Inc. | Biodegradable polylactic acids for use in forming fibers |
US20080248239A1 (en) | 2007-04-05 | 2008-10-09 | Stacey Lynn Pomeroy | Wet wipes having increased stack thickness |
US20090022960A1 (en) | 2007-07-17 | 2009-01-22 | Michael Donald Suer | Fibrous structures and methods for making same |
WO2009010942A2 (en) | 2007-07-17 | 2009-01-22 | The Procter & Gamble Company | Fibrous structures |
US20090084513A1 (en) | 2007-07-17 | 2009-04-02 | Steven Lee Barnholtz | Fibrous structures and methods for making same |
WO2009010938A1 (en) | 2007-07-17 | 2009-01-22 | The Procter & Gamble Company | Fibrous structures and methods for making same |
US20090025894A1 (en) | 2007-07-17 | 2009-01-29 | Steven Lee Barnholtz | Fibrous structures and methods for making same |
WO2009010941A2 (en) | 2007-07-17 | 2009-01-22 | The Procter & Gamble Company | Fibrous structures and methods for making same |
US20110209840A1 (en) | 2007-07-17 | 2011-09-01 | Steven Lee Barnholtz | Fibrous structures and methods for making same |
US20090023839A1 (en) | 2007-07-17 | 2009-01-22 | Steven Lee Barnholtz | Process for making fibrous structures |
WO2009010939A2 (en) | 2007-07-17 | 2009-01-22 | The Procter & Gamble Company | Fibrous structures and methods for making same |
US20090022983A1 (en) | 2007-07-17 | 2009-01-22 | David William Cabell | Fibrous structures |
WO2009010940A2 (en) | 2007-07-17 | 2009-01-22 | The Procter & Gamble Company | Process for making fibrous structures |
US7994081B2 (en) | 2007-08-17 | 2011-08-09 | Fiberweb, Inc. | Area bonded nonwoven fabric from single polymer system |
EP2028296A1 (en) | 2007-08-24 | 2009-02-25 | Reifenhäuser GmbH & Co. KG Maschinenfabrik | Polymer blend for synthetic filaments and method for manufacturing synthetic filaments |
US20090151748A1 (en) | 2007-12-13 | 2009-06-18 | Ridenhour Aneshia D | Facial blotter with improved oil absorbency |
WO2009105490A1 (en) | 2008-02-18 | 2009-08-27 | Sellars Absorbent Materials, Inc. | Laminate non-woven sheet with high-strength, melt-blown fiber exterior layers |
US20090220769A1 (en) | 2008-02-29 | 2009-09-03 | John Allen Manifold | Fibrous structures |
US20090220741A1 (en) | 2008-02-29 | 2009-09-03 | John Allen Manifold | Embossed fibrous structures |
US8017534B2 (en) | 2008-03-17 | 2011-09-13 | Kimberly-Clark Worldwide, Inc. | Fibrous nonwoven structure having improved physical characteristics and method of preparing |
WO2011019908A1 (en) | 2009-08-14 | 2011-02-17 | The Procter & Gamble Company | Fibrous structures and method for making same |
WO2011053677A1 (en) | 2009-11-02 | 2011-05-05 | The Procter & Gamble Company | Fibrous structures and methods for making same |
US20110244199A1 (en) | 2010-03-31 | 2011-10-06 | Jonathan Paul Brennan | Fibrous structures and methods for making same |
Non-Patent Citations (18)
Title |
---|
All Office Actions in U.S. Appl. Nos. 13/106,302, 12/170,578, 12/170,575, 12/170,557, 12/917,535, 12/917,547, 12/917,558, 12/917,574, 12/917,585, and 13/076,492. |
All Office Actions in U.S. Appl. Nos. 13/106,302, 12/170,578, 12/170,575, 14/475,699, 12/170,557, 12/917,535, 12/917,547, 12/917,558, 12/917,574, 12/917,585, and 13/076,492. |
Anonymous, "NanoDispense® Contact Angle Measurements", First Ten Angstroms, (Oct. 3, 2004). Retrieved from the Internet: URL: https://www.firsttenangstroms.com/pdfdocs/NanoDispenseExamples.pdf, (retrieved Feb. 15, 2011) Entire document. |
Complete Textile Glossary, Celaneses Acetate (2001), definition of "filament". |
Final Office Action U.S. Appl. No. 12/170,557 dated Apr. 18, 2011 (P&G Case 11002). |
Final Office Action U.S. Appl. No. 12/170,575 dated Mar. 11, 2010 (P&G Case 10859). |
Final Office Action U.S. Appl. No. 12/170,585 dated Jan. 31, 2011 (P&G Case 10857). |
International Search Report dated Feb. 23, 2011. |
Meyer, et al., "Comparison between different presentations of pore size distribution in porous materials." Fresenius J. Anal Chem. 1999. 363: pp. 174-178. |
Office Action U.S. Appl. No. 12/170,557 dated Dec. 29, 2010 (P&G Case 11002). |
Office Action U.S. Appl. No. 12/170,565 dated Mar. 2, 2011 (P&G Case 10860). |
Office Action U.S. Appl. No. 12/170,575 dated May 29, 2010 (P&G Case 10859). |
Office Action U.S. Appl. No. 12/170,575 dated Oct. 1, 2009 (P&G Case 10859). |
Office Action U.S. Appl. No. 12/170,585 dated Aug. 20, 2010 (P&G Case 10857). |
U.S. Appl. No. 12/917,535, filed Nov. 2, 2010, Barnholtz, et al. |
U.S. Appl. No. 12/917,547, filed Nov. 2, 2010, Barnholtz, et al. |
U.S. Appl. No. 12/917,558, filed Nov. 2, 2010, Barnholtz, et al. |
U.S. Appl. No. 12/917,574, filed Nov. 2, 2010, Barnholtz, et al. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11618977B2 (en) | 2009-11-02 | 2023-04-04 | The Procter & Gamble Company | Fibrous elements and fibrous structures employing same |
US20220380982A1 (en) * | 2017-12-15 | 2022-12-01 | The Procter & Gamble Company | Fibrous structures comprising a surfactant |
Also Published As
Publication number | Publication date |
---|---|
AU2010313170B2 (en) | 2014-03-27 |
EP2496737A1 (en) | 2012-09-12 |
US20210095395A1 (en) | 2021-04-01 |
US20110104419A1 (en) | 2011-05-05 |
US11618977B2 (en) | 2023-04-04 |
MX2012005108A (en) | 2012-05-22 |
WO2011053956A1 (en) | 2011-05-05 |
AU2010313170A1 (en) | 2012-05-24 |
MX338419B (en) | 2016-04-15 |
CA2779719A1 (en) | 2011-05-05 |
US20230228003A1 (en) | 2023-07-20 |
CA2779719C (en) | 2014-05-27 |
BR112012010003A2 (en) | 2016-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11618977B2 (en) | Fibrous elements and fibrous structures employing same | |
US9714484B2 (en) | Fibrous structures and methods for making same | |
US20230295879A1 (en) | Fibrous Structures and Methods for Making Same | |
US11326276B2 (en) | Process for making fibrous structures | |
CA2779110C (en) | Polypropylene fibrous elements and processes for making same | |
US20190242066A1 (en) | Fibrous Structures and Methods for Making Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE PROCTER & GAMBLE COMPANY, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARNHOLTZ, STEVEN LEE;SUER, MICHAEL DONALD;TROKHAN, PAUL DENNIS;AND OTHERS;SIGNING DATES FROM 20091109 TO 20091214;REEL/FRAME:025239/0645 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |