US10822170B2 - Warehouse and supply-chain coordinator - Google Patents

Warehouse and supply-chain coordinator Download PDF

Info

Publication number
US10822170B2
US10822170B2 US16/110,014 US201816110014A US10822170B2 US 10822170 B2 US10822170 B2 US 10822170B2 US 201816110014 A US201816110014 A US 201816110014A US 10822170 B2 US10822170 B2 US 10822170B2
Authority
US
United States
Prior art keywords
warehouse
pallet
vehicle
queue entry
goods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/110,014
Other versions
US20190066035A1 (en
Inventor
Chris Hance
Thibault Vrevin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Assigned to X DEVELOPMENT LLC reassignment X DEVELOPMENT LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANCE, CHRIS, VREVIN, THIBAULT
Priority to US16/110,014 priority Critical patent/US10822170B2/en
Priority to CN201880056673.5A priority patent/CN111328404B/en
Priority to EP18765527.9A priority patent/EP3665627A1/en
Priority to PCT/US2018/047867 priority patent/WO2019046113A1/en
Publication of US20190066035A1 publication Critical patent/US20190066035A1/en
Assigned to GOOGLE LLC reassignment GOOGLE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: X DEVELOPMENT, LLC
Assigned to GOOGLE LLC reassignment GOOGLE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: X DEVELOPMENT LLC
Publication of US10822170B2 publication Critical patent/US10822170B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G67/00Loading or unloading vehicles
    • B65G67/02Loading or unloading land vehicles
    • B65G67/04Loading land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/343Calculating itineraries, i.e. routes leading from a starting point to a series of categorical destinations using a global route restraint, round trips, touristic trips
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0833Tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0835Relationships between shipper or supplier and carriers
    • G06Q10/08355Routing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • G05D2201/0216

Definitions

  • One or more robots and/or other actors can operate throughout a supply chain.
  • the supply chain can include various regions, such as buildings, roadways, flight routes, and seaways. Some of these regions are associated with one or more spaces, such as the interior of part or all of a building and/or its surrounding outdoor regions, where robots and/or the other actors perform tasks and/or otherwise utilize the space(s) together.
  • An example building in a supply chain is a warehouse, which may be used for storage of goods by a variety of different types of commercial entities, including manufacturers, wholesalers, and transport businesses.
  • Example stored goods may include raw materials, parts or components, packing materials, and finished goods.
  • the warehouse can be visited by various vehicles, such as human-driven and/or autonomous trucks, that load and unload goods at the warehouse.
  • the warehouse may be equipped with loading docks to allow goods to be loaded onto and unloaded from delivery trucks or other types of vehicles.
  • the warehouse may also use rows of pallet racks to allow for storage of pallets, flat transport structures that contain stacks of boxes or other objects.
  • the warehouse may use machines or vehicles for lifting and moving goods or pallets of goods, such as cranes and forklifts. Human operators may be employed in the warehouse to operate machines, vehicles, and other equipment. In some cases, one or more of the machines or vehicles may be robotic devices guided by computer control systems.
  • a method is provided.
  • a first estimated arrival time for a first vehicle at a loading dock of a warehouse is determined.
  • a second estimated arrival time for a second vehicle at the loading dock of the warehouse is determined.
  • the first estimated arrival time is before the second estimated arrival time.
  • a pallet arrangement at the loading dock of the warehouse is determined.
  • the pallet arrangement includes a first pallet associated with the first vehicle and a second pallet associated with the second vehicle, where the first pallet is closer to the loading dock than the second pallet; after determining the pallet arrangement, the first estimated arrival time is determined to have changed to be after the second estimated arrival time.
  • a robot is instructed to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time.
  • a computing device in another aspect, includes one or more processors and data storage.
  • the data storage includes at least computer-executable instructions stored thereon that, when executed by the one or more processors, cause the computing device to perform functions.
  • the functions include: determine a first estimated arrival time for a first vehicle at a loading dock of a warehouse; determine a second estimated arrival time for a second vehicle at the loading dock of the warehouse, where the first estimated arrival time is before the second estimated arrival time; determine a pallet arrangement at the loading dock of the warehouse, where the pallet arrangement includes a first pallet associated with the first vehicle and the second pallet associated with the second vehicle, and where the first pallet is closer to the loading dock than the second pallet; after determining the pallet arrangement, determine that the first estimated arrival time has changed to be after the second estimated arrival time; and in response to determining that the first estimated arrival time has changed to be after the second estimated arrival time, instruct a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time.
  • a non-transitory computer readable medium has stored thereon instructions, that when executed by one or more processors of a computing device, cause the computing device to perform functions.
  • the functions include: determining a first estimated arrival time for a first vehicle at a loading dock of a warehouse; determining a second estimated arrival time for a second vehicle at the loading dock of the warehouse, where the first estimated arrival time is before the second estimated arrival time; determining a pallet arrangement at the loading dock of the warehouse, where the pallet arrangement includes a first pallet associated with the first vehicle and the second pallet associated with the second vehicle, and where the first pallet is closer to the loading dock than the second pallet; after determining the pallet arrangement, determining that the first estimated arrival time has changed to be after the second estimated arrival time; and after determining that the first estimated arrival time has changed to be after the second estimated arrival time, instructing a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time.
  • a device in another aspect, includes: means for determining a first estimated arrival time for a first vehicle at a loading dock of a warehouse; means for determining a second estimated arrival time for a second vehicle at the loading dock of the warehouse, where the first estimated arrival time is before the second estimated arrival time; means for determining a pallet arrangement at the loading dock of the warehouse, where the pallet arrangement includes a first pallet associated with the first vehicle and the second pallet associated with the second vehicle, and where the first pallet is closer to the loading dock than the second pallet; means for, after determining the pallet arrangement, determining that the first estimated arrival time has changed to be after the second estimated arrival time; and means for, after determining that the first estimated arrival time has changed to be after the second estimated arrival time, instructing a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time.
  • FIG. 1 is a diagram of a supply chain, in accordance with an example embodiment.
  • FIG. 2 illustrates a scenario where order-related data triggers a shipment to a retailer, in accordance with an example embodiment.
  • FIG. 3 illustrates a scenario where an event triggers re-routing of a shipment, in accordance with an example embodiment.
  • FIG. 4 illustrates a scenario where order-related data triggers shipments from a supplier to a manufacturer and from the manufacturer to a warehouse, in accordance with an example embodiment.
  • FIG. 5 illustrates a scenario where order-related data triggers shipments throughout a supply chain, in accordance with an example embodiment.
  • FIG. 6 illustrates a scenario where order-related data from a customer triggers shipments throughout a supply chain, in accordance with an example embodiment.
  • FIG. 7 depicts a system with a warehouse and supply chain coordinator, trucks, and robots associated with a warehouse, in accordance with an example embodiment.
  • FIGS. 8, 9, 10, 11, 12, 13, 14, 15, and 16 illustrate a scenario where trucks arrive, load, unload, and depart a warehouse, in accordance with an example embodiment.
  • FIG. 17 is a flow chart of a method, in accordance with an example embodiment.
  • FIGS. 18, 19, 20, and 21 illustrate a scenario where trucks arrive at a loading dock with pallets of a pallet arrangement being loaded into the trucks, in accordance with an example embodiment.
  • FIG. 22 is a block diagram of another supply chain, in accordance with an example embodiment.
  • FIG. 23 is a block diagram of still another supply chain, in accordance with an example embodiment.
  • FIG. 24 is a block diagram of yet another supply chain, in accordance with an example embodiment.
  • FIG. 25 is a flowchart of another method, in accordance with an example embodiment.
  • a warehouse and supply-chain coordinator is disclosed herein.
  • the warehouse and supply-chain coordinator can coordinate and optimize various elements in one or more supply chains.
  • the warehouse and supply-chain coordinator can receive data from multiple data sources and computer systems, such as, but not limited to: warehouse management systems (WMSs) operating in different warehouses, transportation systems, including freight brokering systems and/or in-vehicle monitoring systems for real-time estimated time of arrival (ETA) estimates, and demand forecasting systems.
  • WMSs warehouse management systems
  • transportation systems including freight brokering systems and/or in-vehicle monitoring systems for real-time estimated time of arrival (ETA) estimates, and demand forecasting systems.
  • ETA estimated time of arrival
  • the warehouse and supply-chain coordinator can provide services including, but not limited to: warehouse control services; robotic control services for controlling robots in a warehouse and/or autonomous vehicles; services for coordination of replenishment of inventory from multiple supply chain levels; services for coordinating freight and shipping transactions, including combining partial vehicle loads, increasing vehicle utilization, and decreasing empty miles driven; and services for rationalizing shipping networks.
  • the warehouse and supply-chain coordinator is used to control one supply chain; e.g., a supply chain for one company or other enterprise.
  • the warehouse and supply-chain coordinator is part of a marketplace and/or ecosystem where service providers for warehousing, freight transportation, etc. are matched with demands for services.
  • Example warehouse control services include, but are not limited to: yard management services for vehicle arrivals to the warehouse, such as routing trucks and/or other vehicles to appropriate loading docks, staging locations, and/or parking locations; services related to coordinating robots and/or other agents with vehicle arrivals at (a loading dock of) the warehouse based upon vehicle traceability and real-time ETA for maximizing warehouse throughput; services related to controlling robots within the warehouse to move inventory; services for automatic virtual receipt of goods based upon knowledge of vehicle contents and successful robotic unloading; services for “slotting” or locating inventory within the warehouse (e.g., locating inventory based on projected and/or actual stock keeping unit (SKU) velocity), services for “re-slotting” or relocating inventory within the warehouse (e.g., based upon changes in projected and/or actual SKU velocity and/or available warehouse space); services for reallocating inventory between customer orders based upon priority or required shipping time; and services for automatic virtual shipment of goods based upon knowledge of vehicle contents and successful robotic loading.
  • a pallet represents a container of one or more goods that can be brought to, stored at, and/or obtained from a warehouse; e.g, a pallet can include one or more: pallets, boxes, bags, bales, cartons, crates, packages, parcels, and/or other containers (or other objects) associated with goods that can be brought to, stored at, and/or obtained from a warehouse.
  • the warehouse and supply-chain coordinator can estimate times of arrival and departure for vehicles arriving at and departing from a warehouse or other location.
  • the warehouse and supply-chain coordinator can determine a pallet arrangement based on arrival and/or departure times.
  • a pallet arrangement associated with a loading dock can include a first pallet associated with a first vehicle and a second pallet associated with a second vehicle.
  • the first pallet can be located closer to the loading dock than the second pallet, so to shorten a distance between a location of the first pallet and a location of the first vehicle at the loading dock, and thus reduce loading time of the first vehicle.
  • the warehouse and supply-chain coordinator can responsively order one or more robots to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet, and thus reduce loading time of the second vehicle.
  • Example arrangements of pallets (and/or other objects) can include, but are not limited to, one or more of: a line of pallets (and/or other objects), a regular or irregular grid of pallets (and/or other objects), a stack of pallets (and/or other objects), a cube of pallets (and/or other objects), a pyramid of pallets (and/or other objects), and/or other arrangements of pallets (and/or other objects).
  • the warehouse and supply-chain coordinator can manage resources associated with the warehouse, such as loading dock time slots, parking locations, storage spaces (e.g., spaces for storing pallets), warehouse access, and robots at the warehouse.
  • Resources can be managed by reserving or allocating a resource for one or more vehicles, robots, and/or other entities, releasing or deallocating a resource from one or more vehicles, robots, and/or other entities, switching reservations between vehicles, robots, and/or other entities, providing information about managed resources (e.g., a schedule of allocated time slots, data whether a particular parking spot is available at a particular time, information about a location of a robot).
  • resources can be allocated based on estimated and/or actual arrival times; e.g., access to a warehouse can be granted to a vehicle when the vehicle actually arrives at the warehouse, a time slot at a loading dock can be reserved for a vehicle scheduled to arrive at the warehouse during the time slot, a robot can be directed to arrive a loading dock at or about the same time that a vehicle arrives at the loading dock.
  • the warehouse and supply-chain coordinator can: (1) release an original time slot at a loading dock and/or parking spot from a vehicle scheduled to arrive at the changed arrival time (or departure time); (2) reserve the original time slot at the loading dock and/or parking spot for a vehicle scheduled to arrive (or depart) before the changed arrival time (or departure time), (3) reserve a new time slot at the loading dock and/or parking spot for the vehicle scheduled to arrive (or depart) at the changed arrival time (or departure time), and (4) schedule one or more robots to be at the loading dock at or before the beginning of the original time slot and/or the new time slot.
  • the original and/or new time slot and/or parking spot can be based on the changed arrival time (or departure time); e.g., a reserved time slot includes/starts at an estimated arrival time, a reserved time slot ends at/before an estimated departure time, a parking spot is reserved from an estimated arrival time to a beginning of a time slot, etc.
  • other resources can be based on an arrival time or departure; e.g., a warehouse gate can be opened to enable access to a vehicle at an arrival time and/or a departure time, robots can be scheduled to be at a loading dock when a vehicle arrives and/or until a vehicle departs, space in a warehouse can be made available for pallets scheduled to be unloaded from a vehicle arriving at an ETA, pallets can be moved toward and/or to a loading dock at an estimated arrival time to be loaded onto a vehicle arriving at the estimated arrival time. More specifically, robots can be assigned to tasks that are based on an arrival time or departure.
  • These tasks can include picking up one or more pallets and taking the palllet(s) to a loading dock at least X minutes before a truck arrives at the loading dock, where X is an estimated number of minutes estimated to take the pallet(s) from their location(s) in the warehouse to the loading dock.
  • These tasks can be scheduled based on the truck's estimated time of arrival so that congestion at the loading dock is reduced or eliminated to reduce or eliminate delay in delivering the pallet(s) from the warehouse to the truck.
  • the warehouse and supply-chain coordinator can direct robots to perform various tasks in and around the warehouse, such as, but not limited to: loading a vehicle, unloading a vehicle, pick-and-place operations where a robot gets (or “picks”) one or more items, such as pallets, from one location and takes (or “places”) the item(s) to a second location, inspecting goods, and swapping item(s) between locations.
  • the robot can examine a pallet of goods; e.g., a pallet arriving on a vehicle and/or a pallet already stored in the warehouse, to determine if goods of the pallet are in compliance with a contract. For example, suppose a contract states that a pallet of goods that includes 100 mobile devices is to be shipped on truck T1 to a warehouse W1 where robot R1 is located. In this example, suppose truck T1 only includes one pallet P1 to be unloaded at warehouse W1. Then, upon arrival of truck T1, the robot R1 can examine pallet P1 carried by truck T1, perhaps before P1 is unloaded from truck T1 into warehouse W1, to determine whether pallet P1 actually includes 100 mobile devices.
  • a pallet of goods e.g., a pallet arriving on a vehicle and/or a pallet already stored in the warehouse, to determine if goods of the pallet are in compliance with a contract. For example, suppose a contract states that a pallet of goods that includes 100 mobile devices is to be shipped on truck T1 to a warehouse W1 where robot R1 is located. In
  • robot R1 determines that pallet P1 includes 100 mobile devices, then robot R1 can inform the warehouse and supply-chain coordinator that inspection of pallet P1 succeeded, and the warehouse and supply-chain coordinator can both (a) generate a receipt for pallet P1 and (b) direct robot R1 and/or one or more other robots to unload pallet P1 from truck T1 into warehouse W1. Otherwise, if robot R1 determines that pallet P1 does not include 100 mobile devices, then robot R1 can inform the warehouse and supply-chain coordinator that inspection of pallet P1 failed, and the warehouse and supply-chain coordinator can reject delivery of pallet P1 and direct robot R1 and/or one or more other robots to leave pallet P1 on truck T1 as rejected goods. In some cases, rejecting delivery of a pallet of goods includes sending a rejection notice to a supplier of the pallet of goods informing the supplier that the pallet was rejected. Many other examples of inspecting and/or rejecting goods are possible as well.
  • the warehouse and supply-chain coordinator can coordinate additional aspects of a supply chain beyond warehouses.
  • the warehouse and supply-chain coordinator can determine one or more orders requesting production, storage, and/or delivery of one or more pallets of goods using a supply chain that includes the warehouse and supply-chain coordinator.
  • the supply chain can also include locations, such as supplier locations, warehouses, and retail locations, connected by a plurality of paths such as roads, water shipping routes, and/or airways, where at least one pallet is conveyed from a first location to the second location using a vehicle traveling on a path from the first location to a second location, where at least one of the first location and the second location includes a warehouse capable of storing the at least one pallet, and where the vehicle includes an autonomous vehicle configured to be controlled by the warehouse and supply-chain coordinator. Then, the warehouse and supply-chain coordinator can determine whether an event occurs that is related to the at least one pallet.
  • locations such as supplier locations, warehouses, and retail locations, connected by a plurality of paths such as roads, water shipping routes, and/or airways, where at least one pallet is conveyed from a first location to the second location using a vehicle traveling on a path from the first location to a second location, where at least one of the first location and the second location includes a warehouse capable of storing the at least one pallet, and where
  • the event can include, but is not limited to one or more of: an event related to goods of the at least one pallet, an event related to the first and/or second locations, an event related to the autonomous vehicle, a weather-related event, a seasonally-related event, an event related to search queries and/or results, an event related to advertising and/or social media, and other types of events.
  • the event includes an event where a location does not store at least a quantity of an item; e.g., the location is running relatively-low and/or has run out of the item.
  • the warehouse and supply-chain coordinator can change the path of the vehicle to a third location in the supply chain.
  • the pallet of goods includes bottled water
  • the warehouse and supply-chain coordinator determines that an event E1 occurs where a hurricane or other storm is predicted to reach the third location (thus increasing a demand for the bottled water at the third location) but not reach the second location.
  • the warehouse and supply-chain coordinator can change the path of the vehicle with the pallet having bottled water to the third location.
  • the pallet of goods includes football jerseys and the warehouse and supply-chain coordinator determines that an event E2 occurs where a location of a scheduled football game is moved from the second location to the third location.
  • the warehouse and supply-chain coordinator can change the path of the vehicle with the pallet having the football jerseys to the third location.
  • the pallet of goods includes an item I
  • the warehouse and supply-chain coordinator determines that an event E3 occurs where search queries and/or results including references to item I with respect to the third location are greatly increased, but search queries and/or results including references to item I associated with the second location are not increased.
  • the warehouse and supply-chain coordinator can change the path of the vehicle with the pallet having the item Ito the third location.
  • Many other examples are possible as well.
  • Some or all locations in the supply chain can have priorities, which can change based on events.
  • the priority of the second location before E1 is P2_BEFORE and the priority of the third location before E1 is P3_BEFORE, where P2_BEFORE is higher than P3_BEFORE since the second location is the destination for the pallet of goods having the bottled water.
  • the warehouse and supply-chain coordinator can recalculate or otherwise determine the priority of the third location to be P3_AFTER, where P3_AFTER is a higher priority than P2_BEFORE.
  • P3_AFTER is a higher priority than P2_BEFORE
  • the warehouse and supply-chain coordinator can change the path of the vehicle with the pallet having the bottled water to the third location.
  • the warehouse and supply-chain coordinator can trigger new orders and/or replenishment of supplies based on existing orders and/or changed orders. For example, suppose the warehouse and supply-chain determines that an order O1 orders a quantity Q1 of goods G1 to be carried from a location L1 to a location L2. Then, the warehouse and supply-chain can route and/or otherwise assign a vehicle V1 to pick up at least the quantity Q1 of goods G1 from location L1 and carry the quantity Q1 of goods G1 to location L2. In this example, after routing vehicle V1 to pick up the quantity Q1 of goods G1 at location L1, the warehouse and supply-chain coordinator determines that location L1 does not have the quantity Q1 of goods G1, but another location L3 has at least the quantity Q1 of goods G1. Then, the warehouse and supply-chain coordinator can reroute and/or otherwise reassign vehicle V1 to pick up at least the quantity Q1 of goods G1 from location L3.
  • the warehouse and supply-chain coordinator can replenish quantities of goods by ordering items from a supplier.
  • the warehouse and supply-chain coordinator can generate and send an order O1 to supplier S1 for a quantity Q2 of goods G1.
  • supplier S1 can send a response R1 to the warehouse and supply-chain coordinator indicating that order O1 is fulfilled and awaiting shipment.
  • the warehouse and supply-chain coordinator can generate and send an order O2 to vehicle V2 to pick up the quantity Q2 of goods G1 from supplier S1.
  • order O2 also directs vehicle V2 to take at least some of the quantity Q2 of goods G1 from supplier S1 to location L1, which did not have a quantity Q1 of goods G1. In other examples, order O2 also directs vehicle V2 to take at least some of the quantity Q2 of goods G1 from supplier S1 to another location L3. In still other examples, order O2 also directs vehicle V2 to take at least some of the quantity Q2 of goods G1 from supplier S1 to location L1 via a waypoint location WL1; e.g., to pick up goods at WL1 and/or to deliver goods to WL1.
  • the warehouse and supply-chain coordinator can receive information I1 that vehicle V2 has arrived at waypoint location WL1 (or location L1) or that vehicle V2 is scheduled to arrive at waypoint location WL1 (or location L1). Upon receiving information I1, the warehouse and supply-chain coordinator can generate and send order O3 to one or more robots at waypoint location WL1 (or location L1) to load and/or unload vehicle V2. After the robot(s) have loaded and/or unloaded vehicle V2, vehicle V2 can leave waypoint location WL1 (or location L1) and continue on to another location.
  • routing vehicles, re-routing vehicles, orders, replenishment, and/or other operations related to warehouses and/or supply chains are possible as well.
  • the warehouse and supply-chain coordinator can provide services and/or applications related to transportation network rationalization.
  • the warehouse and supply-chain coordinator determines movement of goods, reviews possible shipping and warehousing permutations, and generates recommendations for transport network solutions.
  • Such solutions can include, but are not limited to, solutions involving: consolidation of partial vehicle shipments to improve vehicle utilization/decrease empty miles driven, passing of freight between warehouses to increase vehicle and/or warehouse utilization; relocation of warehouses and inventory placement to more economically utilize transportation routes and establish more efficient shipping networks, and in some cases, leverage inventory, warehouses, and vehicles owned by multiple parties.
  • the warehouse and supply-chain coordinator can coordinate groups of robots efficiently to optimize the loading and unloading of vehicles at a facility, such as a loading dock of a warehouse.
  • the warehouse and supply-chain coordinator can precisely time the arrival of a pallet at the front of the loading dock when a truck arrives and economically utilize the space at the loading dock; e.g., as a queue of pallets.
  • the warehouse and supply-chain coordinator can precisely determine where a pallet destined for shipment is located, that is, when the pallet destined for shipment will arrive in the queue, when the pallet destined for shipment will be slotted in the front of the queue for immediate shipment, etc.
  • Designating one or more robots to move pallets in the queue of pallets to save a few minutes for an incoming vehicle may be more feasible than assigning human workers/drivers to move these pallets with a fork truck.
  • some robots are smaller than a standard forklift and so can more easily fit in tight spaces at the loading dock.
  • the use of two or more robots directed and coordinated by the warehouse and supply-chain coordinator can also more easily reorder the queue, both by reducing the number of operations used in queue reordering and by receiving navigation instructions from a single control system as opposed to two autonomous agents trying to coordinate their actions in the confines of a loading dock.
  • instructions and/or messages communicated between the warehouse and supply-chain coordinator and robots are communicated between the warehouse and supply-chain coordinator and other agents than robots, such as, but not limited to, human agents, material handling systems operated and/or managed by humans, and human-assisted robotic devices.
  • material handling systems include, but are not limited to, electrical systems, mechanical systems, and electro-mechanical systems, such as automated pallet wrapping machines, powered doors, etc.
  • the warehouse and supply-chain coordinator operates using a work plan.
  • pallets can be physically placed at or near a loading dock as directed by an expected pallet movement schedule of the work plan. Then, when the warehouse and supply-chain coordinator receives data that truck arrival times and/or estimated times of arrival have changed the warehouse and supply-chain coordinator can update the work plan in accord with the changed truck arrival times/estimated times of arrival. In these examples, the warehouse and supply-chain coordinator changes the work plan based on changes in truck arrival times/estimated times of arrival, rather than typical workflows that schedule work within the warehouse based on scheduled appointments for the arriving trucks.
  • the use of the warehouse and supply-chain coordinator can make supply chains more flexible, and thus more efficient. Other efficiencies can be gained by coordinating warehouse activities with arriving and departing trucks—time can be saved when the warehouse and supply-chain coordinator arranges for robots to be waiting for incoming trucks and arranges for pallets of goods destined for an outgoing truck to be near its loading dock. Fuel and time expended by trucks waiting for loading docks and goods at warehouses can be saved as well.
  • the warehouse and supply-chain coordinator can provide better visibility into the supply chain. By making supply chains more efficient and flexible, the warehouse and supply-chain coordinator can enable consolidation of shipments, routes, vehicles, warehouses, and suppliers.
  • FIG. 1 is a diagram of a supply chain, in accordance with an example embodiment.
  • the supply chain includes warehouse and supply-chain coordinator 100 , supplier 110 , manufacturer 120 , warehouses 130 , 140 , warehouse/distribution center 150 , warehouse/fulfillment center 156 , retailer 160 , and customers 170 , 172 . These entities are connected by routes traversed by various vehicles, including trucks 112 , 124 , 142 , 144 , 152 , 158 , air freight 134 , sea freight 136 , and drones 154 , 162 .
  • trucks 112 , 124 , 142 , 144 , 152 , 158 are connected by routes traversed by various vehicles, including trucks 112 , 124 , 142 , 144 , 152 , 158 , air freight 134 , sea freight 136 , and drones 154 , 162 .
  • a route between supplier 110 and manufacturer 120 is traversed by truck 112
  • a route between manufacturer 120 and warehouse 130 is traversed by truck 124
  • routes between warehouse 130 and warehouse 140 are traversed by air freight 134 and sea freight 136 .
  • warehouse and supply-chain coordinator 100 can communicate with supplier 110 , manufacturer 120 , warehouses 130 , 140 , warehouse/distribution center 150 , warehouse/fulfillment center 152 , and retailer 160 .
  • warehouse and supply-chain coordinator 100 can communicate with additional entities; e.g., some or all of trucks 112 , 124 , 142 , 144 , 152 , 158 , air freight 134 , sea freight 136 , customers 170 , 172 , and/or additional entities related to one or more supply chains; e.g., one or more robots and/or other agents working in a warehouse, at a supplier, at a manufacturer, etc.
  • a route between warehouse 140 and warehouse/distribution center 150 is traversed by truck 142
  • a route between warehouse 140 and warehouse/fulfillment center 156 is traversed by truck 144
  • routes between warehouse/distribution center 150 and retailer 160 are traversed by truck 152 and drone 154 ; i.e., an autonomous aerial vehicle acting as drone 154
  • a route between retailer 160 and customer 170 is traversed by drone 162
  • a route between warehouse/fulfillment center 156 and customer 172 is traversed by truck 158 .
  • more, fewer, and/or different routes and vehicles traversing routes are possible in a supply chain.
  • more, fewer, and/or other locations in a supply chain are utilized; e.g., there are more and/or different suppliers, there are more and/or different manufacturers, there are more, fewer, and/or different warehouses, etc.
  • drones such as drones, 154 , 162 , and 164 are utilized to cover a “last mile” from a warehouse; e.g., a drone is used to deliver goods on routes from warehouses, such as warehouse 140 , warehouse/distribution center 150 , and/or warehouse/fulfillment center 156 , to customers, such as customers 170 , 172 .
  • FIG. 1 shows drone 164 delivering goods from warehouse/fulfillment center 156 to customer 172 .
  • a supplier location provides components used by a manufacturer location to make and/or otherwise prepare one or more goods or shipment.
  • a manufacturer location and/or a supplier location store raw materials used to make components and/or goods, such as raw materials 122 stored at manufacturer 120 .
  • a supply chain can have one or more owners.
  • supplier 110 can be owned by a first company
  • manufacturer 120 can be owned by a second company
  • warehouses 130 and 140 can be owned by a third company, etc.
  • vehicles in the supply chain may be owned by different entities than own buildings in the supply chain, where buildings are depicted in FIG. 1 using rounded rectangles; e.g., customers 170 , 172 can be in buildings such as homes or business related buildings such as offices, factories, and/or other kinds of business-related buildings; some or all of supplier 110 , manufacturer 120 , and warehouses 130 , 140 can include one or more buildings, etc.
  • a supply chain can be managed by one or more entities, which may or may not own any buildings or vehicles in the supply chain.
  • a warehouse management company can operate warehouse 130 for the owner of warehouse 130 ; in other examples, the owner of warehouse 130 can manage/operate the warehouse.
  • Various data can be used to operate the supply chain. For example, data on a per-SKU basis can be maintained; e.g., a quantity of an item represented by a SKU at a particular location in the supply chain, data on SKU velocity, one or more costs, prices, weights, sizes, dimensions, sources, and/or destinations of items represented by a SKU, etc.
  • Data about buildings, locations, and/or vehicles in the supply chain can be maintained; e.g., one or more locations, costs, prices, weights, sizes, dimensions, sources, and/or destinations of buildings and/or vehicles in the supply chain; data about a route
  • One or more computing devices executing software can be utilized as warehouse and supply-chain coordinator 100 .
  • the or more computing devices acting as warehouse and supply-chain coordinator 100 can be utilized as a cloud and/or network-based solution.
  • the warehouse and supply-chain coordinator 100 can include and/or communicate with a warehouse management system (WMS) used to control operations within one or more warehouses and/or to provide information about items/entities that are “upstream” (or logically closer to a supplier location.
  • WMS warehouse management system
  • items/entities that are downstream or logically closer to a customer location, such as customer 170 or 172 .
  • Warehouse and supply-chain coordinator 100 can provide user interfaces enabling review, creation, updating, and deletion of data used to operate the supply chain and can send and receive messages to control various entities, such as, but not limited to, robots, vehicles, and access control systems such as gates providing ingress and/or egress to a building or other locations.
  • Warehouse and supply-chain coordinator 100 also can control various resources used in operating a warehouse and/or a supply-chain, such as access to a facility, time slots for loading/unloading vehicles, storage locations or “slots”, parking spots, cargo capacity of a vehicle.
  • Warehouse and supply-chain coordinator 100 can provide visibility and control of goods moving through the supply chain; e.g, visibility about goods that are upstream and/or downstream of one or more points in the supply chain (e.g., upstream and/or downstream of one or more selected warehouses, suppliers, retailers, and/or customers). This visibility can be provided by tracking shipments of goods through the supply chain and extracting information from these goods at a SKU level, enabling visibility of specific goods within the supply chain; e.g., warehouse and supply-chain coordinator 100 can provide information about locations of goods having one or more given SKUs, locations of shipments carrying goods having one or more given SKUs, pending, in-progress, and/or fulfilled orders of goods having one or more given SKUs from one or more suppliers, etc.
  • warehouse and supply-chain coordinator 100 can communicate with various transportation modes, such as air, sea, and land-based modes of transportation.
  • warehouse and supply-chain coordinator 100 can combine loads from multiple warehouses into one shipment and consolidate loads from multiple shipments for storage at one warehouse.
  • warehouse and supply-chain coordinator 100 can account for various constraints at a given warehouse, such as a number of loading docks, space for loading and/or unloading goods, total amount of available storage, types of storage facilities (e.g., refrigerated storage, climate-controlled storage, storage for liquid and/or gaseous goods), labor and/or robot availability, to reduce and/or avoid inefficiencies at a warehouse.
  • types of storage facilities e.g., refrigerated storage, climate-controlled storage, storage for liquid and/or gaseous goods
  • Warehouse and supply-chain coordinator 100 can stage goods for outgoing orders at a loading dock to increase efficiencies of loading goods onto trucks, ships, rail cars, planes, drones, and/or other vehicles; e.g., stage goods in a pallet arrangement that ensure pallets destined for a truck at a loading dock are closest to the loading dock.
  • Warehouse and supply-chain coordinator 100 can also manage storage locations within a warehouse to enable efficient unloading of vehicles at loading docks; e.g., allocate storage close to a loading dock for an incoming vehicle to the incoming vehicle, so that goods can be rapidly unloaded from the incoming vehicle to the allocated storage.
  • Scenarios 200 , 300 , 400 , 500 , and 600 reflect various applications of a flexible supply chain utilizing warehouse and supply-chain coordinator 100 , such as the supply chain shown in FIG. 1 discussed above, and in FIGS. 2, 3, 4, 5, and 6 discussed below.
  • FIG. 2 illustrates scenario 200 where order-related data (ORD) 220 triggers shipment 222 to retailer 160 , in accordance with an example embodiment.
  • Scenario 200 involves shipment 210 of goods G200 from warehouse/distribution center 150 to retailer 160 via truck 152 .
  • order-related data 220 is communicated between warehouse 140 and supply-chain coordinator 100 leading to shipment of goods G200 from warehouse 140 to warehouse/distribution center 150 via truck 142 .
  • Scenario 200 begins with shipment 210 of goods G200 from warehouse/distribution center 150 to retailer 160 via truck 152 .
  • Shipment 210 was triggered by an order O200 from retailer 160 for goods G200 (and perhaps other goods) to warehouse and supply-chain coordinator 100 that occurred prior to scenario 200 .
  • warehouse and supply-chain coordinator 100 located a warehouse that had enough of goods G200 to satisfy order O200; in this case, warehouse/distribution center 150 has enough of goods G200 to satisfy order O200.
  • warehouse and supply-chain coordinator 100 ordered truck 152 to warehouse/distribution center 150 to load goods G200 (and any other goods available at warehouse/distribution center 150 to satisfy order O200) and deliver the loaded goods G200 to retailer 160 .
  • warehouse and supply-chain coordinator 100 communicates order-related data 220 with warehouse 140 .
  • order-related data 220 includes an order from warehouse and supply-chain coordinator 100 to deliver goods G200 from warehouse 140 to warehouse/distribution center 150 , an order to truck 142 to load goods G200 from warehouse 140 , and orders to robots (and perhaps other agents) at warehouse 140 to load goods G200 onto truck 142 .
  • warehouse and supply-chain coordinator 100 also includes a confirmation from warehouse 140 that goods G200 are available therein or a notification from warehouse 140 that goods G200 are not available.
  • truck 142 After truck 142 is loaded with goods G200 at warehouse 140 , shipment 222 begins where truck 142 conveys goods G200 (and perhaps other goods) to warehouse/distribution center 150 . Upon arrival at warehouse/distribution center 150 , goods G200 are unloaded from truck 142 , and scenario 200 can be completed.
  • order-related data 220 is communicated before shipment 210 begins.
  • order-related data 220 can include a prediction that retailer 160 will order goods G200 and/or a predictive order of goods G200 placed on behalf of retailer 160 before retailer 160 actually places an order for goods G200 with warehouse and supply-chain coordinator 100 .
  • the prediction of an order of goods G200 and/or the predictive order of goods G200 can be based on order-predictive data related to one or more entities, such as retailer 160 , where the order-predictive data includes, but is not limited to:
  • order-related data 220 includes a predictive order of goods G200 destined for retailer 160 that is sent to warehouse 140 .
  • warehouse and supply-chain coordinator 100 orders two shipments: shipment 210 from warehouse 140 to replenish goods G200 at warehouse/distribution center 150 and shipment 222 from warehouse/distribution center 150 to retailer 160 . If warehouse/distribution center 150 has enough of goods G200 to satisfy the predictive order, then shipments 210 and 222 can take place in parallel and/or shipment 222 can precede shipment 210 . If warehouse/distribution center 150 does not have enough of goods G200 to satisfy the predictive order, then shipment 222 can precede shipment 210 .
  • scenario 200 can be considered to be a “reactive” scenario, where warehouse and supply-chain coordinator 100 reacts to order O200 for goods G200 from retailer 160 to replenish warehouse/distribution center 150 .
  • the related scenario mentioned above can be considered to be a “proactive” scenario, where warehouse and supply-chain coordinator 100 issues a predictive order for goods G200 on behalf of retailer 160 without retailer 160 actually placing an order.
  • order-related data can include one or more: orders, order-predictive data, predictions of orders, predictive orders, confirmations of orders, event notifications, notifications that orders cannot be carried out and/or satisfied, data about inspections of goods in and/or related to the supply chain, and/or other data associated with one or more orders involving a supply chain.
  • order-related data can be used, generated, and/or processed using machine-learning techniques utilizing neural networks to find patterns in data, such as order-related data, and generate predictive orders and/or other commands based on the patterns found in the data.
  • patterns can include, but are not limited to, patterns in the above-mentioned order-predictive data (e.g., data indicating trends) and/or other data.
  • Other and/or additional techniques for using, generating, and/or processing order-related data can be used as well, or instead of, machine-learning techniques.
  • FIG. 3 illustrates scenario 300 where event 320 triggers re-routing of a shipment, in accordance with an example embodiment.
  • Scenario 300 involves occurrence of event 320 associated with warehouse/fulfillment center 156 while shipment 310 of goods G300 is en route from warehouse 140 to warehouse/distribution center 150 via truck 142 .
  • Warehouse/fulfillment center 156 sends event notification 322 regarding event 320 to warehouse and supply-chain coordinator 100 .
  • warehouse and supply-chain coordinator 100 determines that, because of event 320 , warehouse/fulfillment center 156 has a higher priority for goods G300 than warehouse/distribution center 150 .
  • warehouse and supply-chain coordinator 100 sends reroute message 330 to reroute truck 142 to deliver goods G300 to warehouse/fulfillment center 156 .
  • warehouse and supply-chain coordinator 100 sends route message 340 to truck 144 to route the truck to warehouse 140 to pick up goods G300 and deliver goods G300 to warehouse/distribution center 150 .
  • warehouse and supply-chain coordinator 100 sends event notification 342 to inform warehouse/distribution center 150 that truck 142 was rerouted and that truck 144 will bring goods G300 to warehouse/distribution center 150 .
  • truck 142 is carrying goods G300 to warehouse/distribution center 150 as part of shipment 310 .
  • event 320 occurs, where event 320 is related to warehouse/fulfillment center 156 and goods G300.
  • goods G300 includes bottled water
  • event 320 is “a hurricane made landfall near warehouse/fulfillment center 156 ”
  • warehouse/fulfillment center 156 can have an increased demand for bottled water.
  • goods G300 includes team jerseys for Team A
  • event 320 is “Team A was just announced as playing a big game near warehouse/fulfillment center 156 ”
  • warehouse/fulfillment center 156 can have an increased demand for Team A jerseys.
  • event 320 can be “warehouse/fulfillment center 156 has sold out of a month's supply of goods G300 in one day”, then warehouse/fulfillment center 156 can have an increased demand for goods G300.
  • Other events related to both goods G300 and warehouse/fulfillment center 156 are possible as well.
  • event notification 322 After event 320 occurs, warehouse/fulfillment center 156 sends event notification (EN) 322 informing warehouse and supply-chain coordinator 100 of the occurrence of event 320 .
  • event notification 322 also includes a request for a change in priority for one or more goods; e.g., requesting an increased priority for snow shovels when event 320 is a prediction of an imminent blizzard, requesting a decreased priority for Team B related gear after a game with Team B is canceled, etc.
  • a priority of delivery of goods G300 to warehouse/fulfillment center 156 e.g., reasons related to changes in costs, such as monetary costs for delivery and/or goods, reasons related to transportation of goods; e.g., a total amount of miles traveled by a vehicle destined for a location carbon-footprint-related costs, reasons related to an entity in the supply chain, such as a warehouse, vehicle, manufacturer, or supplier; e.g., an increase or decrease in capacity of a, damage to the entity, a surplus or deficit of goods at the entity, etc.
  • reasons related to changes in costs such as monetary costs for delivery and/or goods, reasons related to transportation of goods
  • reasons related to an entity in the supply chain such as a warehouse, vehicle, manufacturer, or supplier
  • Many other reasons for changing priority of goods, shipments, and/or entities in the supply chain are possible as well.
  • Scenario 300 continues with warehouse and supply-chain coordinator 100 receiving event notification 322 . Then, based on event notification 322 , warehouse and supply-chain coordinator 100 changes the priority of warehouse/fulfillment center 156 to have a higher priority for goods G300 than warehouse/distribution center 150 , and subsequently determines to reroute truck 142 to warehouse/fulfillment center 156 to deliver high-priority goods G300. Rerouting truck 142 effectively cancels shipment 310 to warehouse/distribution center 150 .
  • warehouse and supply-chain coordinator 100 can change one or more priorities associated with goods G300, truck 142 , warehouse/distribution center 150 , warehouse/fulfillment center 156 , and/or shipment 310 for other reasons than event notification 322 ; e.g., some or all of the reasons listed above for changing priorities.
  • warehouse and supply-chain coordinator 100 After warehouse and supply-chain coordinator 100 determines to reroute truck 142 , warehouse and supply-chain coordinator 100 sends reroute message 330 to truck 142 to change truck 142 's route to deliver goods G300 to warehouse/fulfillment center 156 . In response to reroute message 330 , truck 142 stops shipment 310 and begins shipment 332 to warehouse/fulfillment center 156 .
  • Scenario 300 continues with warehouse and supply-chain coordinator 100 determining that a quantity of goods G300 are available at warehouse 140 , and that truck 144 is available to deliver goods G300 from warehouse 140 to warehouse/distribution center 150 . Then, warehouse and supply-chain coordinator 100 sends route message 340 to truck 144 to route the truck to warehouse 140 to pick up goods G300 and deliver goods G300 to warehouse/distribution center 150 . Additionally, warehouse and supply-chain coordinator 100 sends event notification 342 to inform warehouse/distribution center 150 that truck 142 was rerouted and that truck 144 will bring goods G300 to warehouse/distribution center 150 . In some examples, event notification 342 includes an ETA for truck 142 /goods G300.
  • scenario 300 can be completed. In other scenarios, truck 142 delivers goods G300 to warehouse/fulfillment center 156 before truck 144 is routed to warehouse 140 and/or before event notification 342 is sent to warehouse/distribution center 150 .
  • FIG. 4 illustrates scenario 400 where order-related data 410 triggers shipments 424 , 426 from a supplier to a manufacturer and from the manufacturer to a warehouse, in accordance with an example embodiment.
  • Scenario 400 involves communication of order-related data 410 between warehouse and supply-chain coordinator 100 and manufacturer 120 leading to warehouse and supply-chain coordinator 100 sending order 420 to supplier 110 , where order 420 requests shipment 424 for raw materials 122 to manufacturer 120 .
  • warehouse and supply-chain coordinator 100 also sends order 422 to manufacturer 120 requesting forecast amount FA400 of goods G400 and subsequent shipment of the goods G400 to warehouse 130 .
  • the forecast amount FA400 of goods G400 are manufactured by manufacturer 120 and carried as part of shipment 426 using truck 124 to warehouse 130 . Once shipment 426 arrives at warehouse 130 and goods G400 are unloaded from truck 124 at warehouse 130 , scenario 400 ends.
  • FIG. 4 shows that scenario 400 begins with communication of order-related data 410 between warehouse and supply-chain coordinator 100 and manufacturer 120 .
  • order-related data 410 includes a request from warehouse and supply-chain coordinator 100 for a maximum amount of goods G400 that can be made based on an amount of raw materials 122 at a location of manufacturer 120 .
  • manufacturer 120 sends a response message informing warehouse and supply-chain coordinator 100 that an amount A 400 of goods G400 can be made with the amount of raw materials 122 at the location of manufacturer 120 , and that raw materials 122 is a limiting factor; that is, the amount of goods G400 that can be manufactured is limited by an amount of raw materials 122 .
  • warehouse and supply-chain coordinator 100 determines a forecast amount FA400 of goods G400 that will likely be required at warehouse 130 .
  • the forecast amount FA400 of goods G400 is determined using order-predictive data for goods G400, where order-predictive data is discussed above in the context of scenario 200 and FIG. 2 . More specifically, warehouse and supply-chain coordinator 100 determines forecast amount FA400 based on orders for goods G400 and trends in order data indicating orders for goods G400 that are likely to arrive in the near future.
  • Warehouse and supply-chain coordinator 100 also determines that the forecast amount FA400 of goods G400 is greater than the amount A 400 provided by manufacturer 120 in the response message.
  • the response message also indicates that raw materials 122 are a limiting factor for production of goods G400.
  • warehouse and supply-chain coordinator 100 determines manufacturer 120 will need more raw materials 122 to produce at least the forecast amount FA400 of goods G400.
  • warehouse and supply-chain coordinator 100 After determining that manufacturer 120 will need more raw materials 122 , warehouse and supply-chain coordinator 100 sends order 420 to supplier 110 for raw materials 122 on behalf of manufacturer 120 . In response to order 420 , supplier 110 produces raw materials 122 and puts raw materials 122 on truck 112 as part of shipment 424 to manufacturer 120 . In some scenarios, supplier 110 informs warehouse and supply-chain coordinator 100 and/or manufacturer 120 that raw materials 122 are on truck 112 as part of shipment 424 .
  • Warehouse and supply-chain coordinator 100 also sends order 422 to manufacturer 120 requesting forecast amount FA400 of goods G400 and subsequent shipment of the goods G400 to warehouse 130 .
  • Order 422 also informs manufacturer 120 that order 420 for raw materials 122 has been placed on behalf of manufacturer 120 .
  • order 422 includes information about shipment 424 and/or truck 112 ; e.g., ETA of shipment 424 , identifying information about truck 112 , a carrier providing shipment 424 , etc.
  • model 400 After raw materials 122 in shipment 424 are unloaded at manufacturer 120 , and manufacturer 120 receives order 422 for the forecast amount FA400 of goods G400, manufacturer 120 manufactures the forecast amount FA400 of goods G400. Upon manufacture of the forecast amount FA400 of goods G400, the forecast amount FA400 of goods G400 are carried as part of shipment 426 using truck 124 to warehouse 130 . Once shipment 426 arrives at warehouse 130 and goods G400 are unloaded from truck 124 at warehouse 130 , scenario 400 ends.
  • Scenario 400 can be considered to be a proactive scenario, as order 420 for raw materials is made before order 422 for goods G400.
  • warehouse and supply-chain coordinator 100 first places order 422 with manufacturer 120 and manufacturer 120 subsequently places order 420 to supplier 110 for raw materials 122 .
  • FIG. 5 illustrates a scenario 500 where order-related data 510 , 520 , 530 , 540 , 550 triggers shipments 512 , 522 , 532 , 542 , 552 throughout a supply chain, in accordance with an example embodiment.
  • Scenario 500 involves order-related data 510 , 520 , 530 , 540 , 550 regarding goods G500 communicated between warehouse and supply-chain coordinator 100 and retailer 160 , warehouse 140 , warehouse 130 , manufacturer 120 , and supplier 110 , respectively.
  • respective shipments 512 , 522 , 532 , 542 , 552 related to goods G500 are made, with shipment 512 between warehouse/distribution center 150 and retailer 160 , shipment 522 between warehouse 140 and warehouse/distribution center 150 , shipment 532 between warehouse 130 and warehouse 140 (via sea), shipment 542 between manufacturer 120 and warehouse 130 , and shipment 542 between supplier 110 and manufacturer 120 .
  • scenario 500 can be completed.
  • Scenario 500 is a proactive scenario, where warehouse and supply-chain coordinator 100 first receives order-related data 510 that includes POS data indicating sales of goods G500 at retailer 160 . Utilizing the POS data in order-related data 510 and other order-predictive data, warehouse and supply-chain coordinator 100 determines a forecast amount FA500 of goods G500 to be provided throughout the supply chain shown in FIG. 5 .
  • Warehouse and supply-chain coordinator 100 also determines that to have sufficient supplies of goods G500 to meet forecast amount FA500 throughout the supply chain that manufacturer 120 needs more raw materials for goods G500 to produce the forecast amount FA500 of goods G500, and that some of the forecast amount FA500 of goods G500 are to be stored at each of warehouse 130 , warehouse 140 , warehouse/distribution center 150 , and an additional amount AM500 of goods G500 are to be ordered on behalf of retailer 160 based on the POS data.
  • warehouse and supply-chain coordinator 100 and supplier 110 communicate order-related data 550 to order a supply of raw materials for goods G500 on behalf of manufacturer 120 , and coordinate shipment of the supply of raw materials for goods G500 to be shipped to manufacturer 120 as part of shipment 552 carried by truck 112 .
  • warehouse and supply-chain coordinator 100 and manufacturer 120 communicate order-related data 540 to inform manufacturer 120 about the supply of raw materials for goods G500 arriving via shipment 552 /truck 112 , to order the forecast amount FA500 of goods G500, and to coordinate shipment of the forecast amount FA500 of goods G500 to warehouse 130 as part of shipment 542 carried by truck 124 .
  • Scenario 500 continues with warehouse and supply-chain coordinator 100 and warehouse 130 communicating order-related data 530 to inform warehouse 130 about shipment 542 of the forecast amount FA500 of goods G500 arriving via truck 124 , to store a portion P130 of the forecast amount FA500 of goods G500 at warehouse 130 , and to coordinate shipment of the remaining amount RA130 of goods G500 to warehouse 140 as part of shipment 532 carried by sea freight 136 .
  • warehouse and supply-chain coordinator 100 and warehouse 140 communicate order-related data 520 to inform warehouse 140 about shipment 532 of the remaining amount RA130 of goods G500 arriving via sea freight 136 , to store a portion P140 of the remaining amount RA130 of goods G500 at warehouse 140 , and to coordinate shipment of a now-remaining amount RA140 goods G500 to warehouse/distribution center 150 as part of shipment 522 carried by truck 142 .
  • Scenario 500 continues with warehouse and supply-chain coordinator 100 and warehouse 140 communicating order-related data 520 to inform warehouse 140 about shipment 532 of the remaining amount RA130 of goods G500 arriving via sea freight 136 , to store a portion P140 of the remaining amount RA130 of goods G500 at warehouse 140 , and to coordinate shipment of additional amount AM500 of goods G500 to retailer 160 via shipment 522 carried by truck 142 .
  • shipment 522 unexpectedly terminates at warehouse/distribution center 150 , and so warehouse and supply-chain coordinator 100 arranges shipment 512 of the additional amount AM500 of goods G500 to retailer 160 carried by truck 152 .
  • scenario 500 can be completed.
  • warehouse and supply-chain coordinator 100 first receives order-related data 550 from supplier 110 indicating that raw materials for producing goods G500 are available and ready for shipment to manufacturer 120 .
  • warehouse and supply-chain coordinator 100 then communicates order-related data 540 to manufacturer 120 requesting production of goods G500 and shipment of the produced goods G500 via shipment 542 on truck 124 to warehouse 130 , and communicates additional order-related data 550 to supplier 110 ordering raw materials for goods G500 to be shipped to manufacturer 120 via shipment 552 on truck 112 .
  • warehouse and supply-chain coordinator 100 Upon reception of the raw materials for goods G500 on shipment 552 , manufacturer 120 produces goods G500 and ships the produced goods G500 via shipment 542 on truck 124 to warehouse 130 .
  • warehouse and supply-chain coordinator 100 communicates order-related data 530 to warehouse 130 requesting storage of goods G500 received via shipment 542 and subsequent shipment of goods G500 to warehouse 140 as part of shipment 532 carried by sea freight 136 .
  • warehouse and supply-chain coordinator 100 communicates order-related data 520 to warehouse 140 requesting storage of goods G500 received via shipment 532 and subsequent shipment of goods G500 to warehouse/distribution center 150 as part of shipment 522 carried by truck 142 .
  • Warehouse and supply-chain coordinator 100 communicates order-related data 510 to retailer 160 indicating an order of goods G500 placed on behalf of retailer 160 will arrive from warehouse/distribution center 150 via shipment 512 carried by truck 152 .
  • retailer 160 can have an outstanding, unfulfilled order for goods G500 that is at least partially fulfilled by the order of goods G500 arriving via shipment 512 .
  • retailer 160 sends order-related data 510 with an order for an additional amount AM500 of goods G500 to warehouse and supply-chain coordinator 100 .
  • warehouse and supply-chain coordinator 100 inquires at manufacturer 120 , warehouse 130 , and warehouse 140 as part of respective order-related data 540 , 530 , and 520 to locate the additional amount AM500 of goods G500, but no goods G500 are available.
  • Warehouse and supply-chain coordinator 100 then coordinates with supplier 110 via order-related data 550 and manufacturer 120 to order raw materials for at least the additional amount AM500 of goods G500 from supplier 110 and to ship the raw materials via shipment 552 carried by truck 112 .
  • manufacturer 120 manufactures the at least the additional amount AM500 of goods G500 and informs warehouse and supply-chain coordinator 100 that the at least the additional amount AM500 of goods G500 are ready for shipment.
  • Warehouse and supply-chain coordinator 100 uses order-related data 530 , 520 , and 510 to coordinate shipment of the additional amount AM500 of goods G500 to retailer 160 via: shipment 542 carried by truck 124 to warehouse 130 , shipment 532 carried by sea freight 136 to warehouse 140 , and shipment 522 carried by truck 142 to retailer 160 bypassing warehouse/distribution center 150 .
  • shipment 542 carried by truck 124 to warehouse 130
  • shipment 532 carried by sea freight 136 to warehouse 140
  • shipment 522 carried by truck 142 to retailer 160 bypassing warehouse/distribution center 150 .
  • this related reactive scenario can be completed.
  • Other proactive and reactive scenarios are possible as well.
  • FIG. 6 illustrates scenario 600 where order-related data 610 , 612 from customers 170 , 172 triggers order 620 and shipments 622 , 624 , 626 , 628 , 630 , 632 throughout a supply chain, in accordance with an example embodiment.
  • Scenario 600 begins with order-related data 610 from customer 170 and order-related data 612 from customer 172 being transmitted to warehouse and supply-chain coordinator 100 .
  • order-related data 610 includes an indication of an electronic commerce (e-commerce) purchase of a quantity Q170 of goods G600 and order-related data 612 includes search query data related to goods G600 and a subsequent conversion of the search query into an e-commerce purchase of a quantity Q172 of goods G600.
  • e-commerce electronic commerce
  • warehouse and supply-chain coordinator 100 analyzes order-related data 610 , 612 and additional data, such as but not limited to the above-mentioned order-predictive data, to both fulfill the purchases made by respective customers 170 , 172 and to order additional goods G600 to be stored in the supply chain; e.g., at warehouse/distribution center 150 , warehouse/fulfillment center 156 and/or retailer 160 , for future distribution of goods G600.
  • warehouse and supply-chain coordinator 100 Upon reception of order-related data 610 , 612 , warehouse and supply-chain coordinator 100 sends order 620 to manufacturer 120 for a complete quantity CQ600 of goods G600.
  • warehouse and supply-chain coordinator 100 arranges shipment 622 of complete quantity CQ600 of goods G600 to warehouse 130 via truck 124 .
  • warehouse and supply-chain coordinator 100 can send an order to a shipper associated with truck 124 to order pick up of complete quantity CQ600 of goods G600 at a first mutually-agreed upon date and subsequent delivery of the complete quantity CQ600 of goods G600 at warehouse 130 at a second mutually-agreed upon date.
  • truck 124 is an autonomous vehicle in communication with warehouse and supply-chain coordinator 100
  • warehouse and supply-chain coordinator 100 determines a pick-up time PT600 for complete quantity CQ600 of goods G600 at manufacturer 120 .
  • warehouse and supply-chain coordinator 100 directs truck/autonomous vehicle 124 to arrive at manufacturer 120 at PT600 to pick up the complete quantity CQ600 of goods G600 and subsequently deliver the goods to warehouse 130 .
  • Other techniques for arranging shipments of goods using supply-chain coordinator 100 are possible as well; e.g., supply-chain coordinator 100 arranging shipment 622 by communicating directly with a vehicle that that is not an autonomous vehicle and/or a vehicle owned by the same entity that owns warehouse and supply-chain coordinator 100 .
  • truck 124 Upon production of complete quantity CQ600 of goods G600, truck 124 picks up complete quantity CQ600 of goods G600 and conveys the goods as part of shipment 622 to warehouse 130 . Complete quantity CQ600 of goods G600 are then unloaded and stored at warehouse 130 .
  • Warehouse and supply-chain coordinator 100 arranges shipment 624 of a first portion FP600 of the complete quantity CQ600 of goods G600 from warehouse 130 to warehouse 140 via air freight 134 , where FP600 ⁇ CQ600.
  • FP600 equals CQ600; that is, the complete quantity CQ600 of goods G600 is shipped via shipment 624 /air freight 134 to warehouse 140 .
  • a remaining portion of a quantity (CQ600 ⁇ FP600) of goods G600 can be stored at warehouse 130 ; i.e. for later shipment via air freight 134 , sea freight 136 , and/or via another shipment means.
  • the first portion FP600 of goods G600 Upon arrival of air freight 134 , the first portion FP600 of goods G600 are unloaded from air freight 134 and subsequently stored at warehouse 140 . Of the first portion FP600 of goods G600, a second portion SP600 of goods G600 are loaded onto truck 142 as part of shipment 626 and a third portion TP600 of goods G600 are loaded onto truck 144 as part of shipment 630 . Both shipments 626 and 630 are arranged by warehouse and supply-chain coordinator 100 .
  • second portion SP600 and third portion TP600 equal first portion FP600; in other scenarios, some of second portion SP600 and/or third portion TP600 of goods G600 are stored in warehouse 140 ; i.e., for later shipment by truck 142 , truck 144 , and/or via another shipment means.
  • warehouse and supply-chain coordinator 100 arranges for shipment of at least the quantity Q170 of goods G600 from warehouse/distribution center 150 to retailer 160 via shipment 628 carried by truck 152 and subsequent shipment of quantity Q170 of goods G600 from retailer 160 to customer 170 via drone 162 to fulfill the order placed as part of order-related data 610 .
  • third portion TP600 of goods G600 are unloaded from truck 144 and stored at warehouse/fulfillment center 156 .
  • warehouse and supply-chain coordinator 100 arranges for shipment of the quantity Q172 of goods G600 from warehouse/fulfillment center 156 to customer 172 via shipment 632 carried by truck 158 to fulfill the order placed as part of order-related data 612 .
  • scenario 600 can be completed.
  • warehouse and supply-chain coordinator 100 obtains at least shipping and tracking information for all shipments of supplies and goods, including shipments of goods G600, throughout the supply chain shown in FIG. 6 .
  • warehouse and supply-chain coordinator 100 searches its own data to determine whether goods G600 can be supplied from an existing stock of goods G600; e.g., a quantity of goods G600 that is greater than Q170 and is located in a warehouse or other facility in communications with warehouse and supply-chain coordinator 100 .
  • warehouse and supply-chain coordinator 100 did not find the quantity Q170 of goods G600, and so warehouse and supply-chain coordinator 100 sends order 620 to manufacturer 120 for goods G600. Also, warehouse and supply-chain coordinator 100 updates shipping information for the order placed by customer 170 to indicate that the quantity Q170 of goods G600 are on order. In this instance, an estimated delivery date is determined when the quantity Q170 of goods G600 are estimated to arrive at customer 170 ; i.e., via shipments 622 , 624 , 626 , 628 , and a flight of drone 162 .
  • warehouse and supply-chain coordinator 100 updates the shipping information for customer 170 .
  • warehouse and supply-chain coordinator 100 also maintains tracking information for the trucks and air freight used to convey goods G600 from manufacturer 120 to customer 170 .
  • warehouse and supply-chain coordinator 100 maintains time and location information for each of shipments 622 , 624 , 626 , 628 ; e.g., at time T622, shipment 622 is 50 miles (or 80 kilometers) west of warehouse 130 and is expected to arrive at warehouse 130 at a later time T 623 , and that shipment 624 /air freight 134 is destined to leave from warehouse 130 at a time T 624 destined for warehouse 140 .
  • warehouse and supply-chain coordinator 100 can maintain manifest information for some or all shipments in the supply chain shown in FIGS. 2-6 .
  • the manifest information for shipment 622 includes a listing of items included in the shipment; e.g., the listing includes complete quantity CQ600 of goods G600 as well as any other goods shipped from manufacturer 120 to warehouse 130 via truck 124 that is part of shipment 622 .
  • FIG. 7 depicts system 700 with warehouse and supply chain coordinator 100 associated with warehouse 140 , with system 700 including gate 712 and robots 750 , 752 , 754 , 756 , 758 , 760 , in communication with warehouse and supply chain coordinator 100 , as indicated by dashed lines, in accordance with an example embodiment.
  • system 700 further includes some or all of trucks 770 , 772 , 774 , 776 , 778 , 780 , 782 , 784 , 786 , 788 , and 790 .
  • Warehouse 140 includes four inbound loading docks (ILDs) 720 , 722 , 724 , 726 where goods are unloaded from vehicles, such as trucks 770 , 772 , 774 , 776 for storage within warehouse 140 .
  • warehouse 140 also includes four outbound loading docks (OLDs) 730 , 732 , 734 , 736 where goods are taken from warehouse 140 and loaded onto vehicles, such as trucks 784 , 786 , 788 , 790 , for shipment to one or more destinations.
  • ILDs inbound loading docks
  • OLDs outbound loading docks
  • warehouse 140 is divided into four areas: goods storage (GS) 740 , order picking (OP) 742 , order consolidation (OC) 744 , and packing region (PR) 746 .
  • goods storage (GS) 740 goods storage
  • OP order picking
  • OC order consolidation
  • PR packing region
  • the pallet of goods PG700 can be taken from goods storage 740 to order picking 742 for selection as part of the order O700 and to order consolidation 744 to be grouped with other pallets of goods into group of pallets GRP700 to fulfill order O700.
  • group of pallets GRP700 can be taken to packing region 746 to be readied for shipment via an outbound loading dock; e.g, outbound loading dock 730 onto a vehicle such as truck 784 to fulfill order O700.
  • warehouse 140 has more or fewer inbound loading docks and/or outbound loading docks.
  • warehouse 140 has loading docks that are not distinguished between inbound loading docks and outbound loading docks.
  • warehouse 140 has more, fewer, and/or different regions than goods storage 740 , order picking 742 , order consolidation 744 , and packing region 746 .
  • Robots 750 , 752 , 754 , 756 , 758 , 760 can be used to perform various tasks related to warehouse 140 , such as, but not limited to, tasks related to: unloading pallets of goods from vehicles at inbound loading docks 720 , 722 , 724 , 726 , storing the unloaded pallets of goods within warehouse 140 (e.g., at goods storage 740 ), picking pallets of goods to fulfill orders, consolidating/grouping pallets of goods for shipment, packing pallets of goods for shipment, and loading pallets of goods onto vehicles at outbound loading docks 730 , 732 , 734 , 736 .
  • system 700 has more, fewer, and/or different robots. In the example shown in FIG.
  • warehouse and supply-chain coordinator 100 is in communication with each of robots 750 , 752 , 754 , 756 , 758 , 760 so that warehouse and supply chain coordinator 100 can send commands and/or other messages to the robots and receive responses and/or other messages from the robots.
  • FIG. 7 shows warehouse 140 surrounded by warehouse yard 710 , where vehicles, such as trucks 770 - 790 , can maneuver in and around warehouse 140 , load and unload goods to and from warehouse 140 using loading docks 720 - 736 , and park in parking areas 714 a , 714 b .
  • Warehouse 140 and warehouse yard 710 is protected by gate 712 .
  • Gate 712 can be opened and closed based on commands/messages from warehouse and supply-chain coordinator 100 .
  • FIGS. 8, 9, 10, 11, 12, 13, 14, 15, and 16 illustrate scenario 800 where trucks arrive, load, unload, and depart a warehouse.
  • Scenario 800 begins with truck 810 arriving at gate 712 of warehouse yard 710 and warehouse 140 .
  • Warehouse and supply-chain coordinator 100 determines that truck 810 has to park and wait for a time slot at an incoming loading dock, and so allocates parking spot 842 for truck 810 , where truck 810 is parked.
  • warehouse and supply-chain coordinator 100 then allocates a time slot at incoming loading dock 724 starting at time T 1 to truck 810 , allocates space within warehouse 140 for storage of goods G1 carried by truck 810 , and allocates robot 752 to unload truck 810 .
  • Goods G1 are inspected by robot 752 and are found to be in compliance with a contract for goods G1. After the successful inspection of goods G1, warehouse and supply-chain coordinator 100 directs robots 752 and 756 to unload goods G1 from truck 810 to area 922 in goods storage 740 of warehouse 140 . Subsequently, truck 810 leaves warehouse 140 and warehouse yard 710 .
  • Scenario 800 continues with warehouse and supply-chain coordinator 100 directing robots 752 , 754 , and 756 to move pallets P 10 , P 11 , and P 12 to area 1112 in packing region 746 of warehouse 140 in preparation for arrival of truck 1210 .
  • Truck 1210 is delayed, and truck 1220 arrives before truck 1210 .
  • warehouse and supply-chain coordinator 100 allows entry of truck 1220 via gate 712 and allocates a time slot to load truck 1220 at outbound loading dock 734 immediately.
  • Truck 1220 enters warehouse yard 710 and parks at outbound loading dock 734 .
  • warehouse and supply-chain coordinator 100 directs robots 752 and 756 to rearrange pallet arrangement 1310 by moving pallets P 20 and P 21 closer to outbound loading dock 734 since pallets P 20 and P 21 are to be loaded onto truck 1220 .
  • warehouse and supply-chain coordinator 100 also directs robots 752 and 756 to load pallets P 20 and P 21 onto truck 1220 . After pallets P 20 and P 21 are loaded onto truck 1220 , truck 1220 departs. Subsequently, truck 1210 arrives at warehouse 140 and parks at outbound loading dock 734 .
  • Warehouse and supply-chain coordinator 100 directs robots 752 , 754 , and 756 to load pallets P 10 , P 11 , and P 12 onto truck 1210 . After pallets P 20 and P 21 are loaded onto truck 1210 , truck 1210 departs and warehouse and supply-chain coordinator 100 directs robots 752 and 760 to move pallets P 30 , P 31 , and P 32 closer to outbound loading dock 734 in preparation for a next arriving truck. After pallets P 30 , P 31 , and P 32 have been moved closer to outbound loading dock 734 , scenario 800 can be completed.
  • FIG. 8 shows that scenario 800 begins with truck 810 arriving at gate 712 of warehouse yard 710 that surrounds warehouse 140 .
  • truck 810 carries goods G1 destined for warehouse 140 .
  • gate 712 Upon arrival of truck 810 , gate 712 sends arrival message 830 to inform warehouse and supply-chain coordinator 100 of the arrival of truck 810 .
  • warehouse and supply-chain coordinator 100 sends open gate message 832 to gate 712 to open the gate and allow truck 810 to enter into warehouse yard 710 .
  • warehouse and supply-chain coordinator 100 After receiving arrival message 830 , warehouse and supply-chain coordinator 100 determines that inbound loading dock 724 is to be used to load goods onto truck 810 , and that inbound loading dock 724 is currently occupied with the loading of truck 774 as shown at a left side of FIG. 8 . Warehouse and supply-chain coordinator 100 then allocates 840 a parking spot 842 to truck 810 and sends park message 844 directing truck 810 to park in parking spot 842 .
  • FIG. 9 shows that scenario 800 continues after truck 810 has parked in parking spot 842 .
  • warehouse and supply-chain coordinator 100 allocates a time slot starting at time T 1 for inbound loading dock 724 to truck 810 , and informs truck 810 of this time slot allocation using time slot message 910 .
  • warehouse and supply-chain coordinator 100 also allocates an area, area 922 , within goods storage 740 of warehouse 140 for storing pallets unloaded from truck 810 , as indicated by allocate warehouse storage (AllocWStorage) message 920 .
  • warehouse and supply-chain coordinator 100 further sends GoTo message 930 directing robot 752 to travel to incoming loading dock 724 . Just before time T 1 , truck 774 departs from incoming loading dock 724 and truck 810 travels along path 940 to park at incoming loading dock 724 at time T 1 .
  • FIG. 10 shows that scenario 800 continues with truck 810 arriving at inbound loading dock 724 at time T 1 .
  • warehouse and supply-chain coordinator 100 sends inspect message 1010 to robot 752 to inspect goods G1 on truck 810 .
  • robot 752 Upon reception of inspect message 1010 , robot 752 inspects goods G1 to determine their compliance with a contract for the goods G1.
  • goods G1 aboard truck 810 are compliant with the contract, and so robot 752 sends inspect response (InspectResp) message 1020 indicating goods G1 are compliant “OK” with the contract.
  • InspectionResp inspect response
  • robot 752 can visually inspect goods G1, scan text, bar codes, Radio Frequency ID (RFID), and/or Quick Response (QR) codes on and/or associated with goods G1, provide a video and/or audio information related to goods G1 on truck 810 for inspection by another entity, such a warehouse and supply-chain coordinator 100 and/or a human inspector, physically examine goods G1 using one or more actuators and/or sensors, and/or use other reasonable techniques to inspect goods G1.
  • warehouse and supply-chain coordinator 100 sends receipt 1022 to truck 810 for goods G1 to indicate acceptance of goods G1 from truck 810 at warehouse 140 .
  • the inspect response message indicates that goods G1 are “NOT OK” or non-compliant with the contract.
  • warehouse and supply-chain coordinator 100 sends a rejection message rejecting goods G1 rather than a receipt 1022 for goods G1. Also in these other scenarios, at least the rejected goods G1 are not unloaded from truck 810 .
  • warehouse and supply-chain coordinator 100 sends move message 1030 to robot 752 to move pallet “G 1 P 1 ” from truck 810 to area 922 , and sends move message 1040 to robot 756 to move pallet “G 1 P 2 ” from truck 810 to area 922 .
  • truck 810 pulls away from incoming loading dock 724 and leaves warehouse yard 710 via gate 712 .
  • Scenario 800 continues, as shown in FIG. 11 , with one or more information sources 1110 providing event notification 1120 to warehouse and supply-chain coordinator 100 .
  • event notification 1120 causes warehouse and supply-chain coordinator 100 to “re-slot” or move within warehouse 140 three pallets: P 10 , P 11 , and P 12 .
  • event notification 1120 includes information about a weather related event, and goods in pallets P 10 , P 11 , and P 12 can be used to address concerns with the weather related event; e.g., sun screen for a hot weather event, snow shovels for a winter storm event.
  • Other types of events and related event information are possible, such as discussed above at least in the context of FIG. 3 .
  • warehouse and supply-chain coordinator 100 re-slots pallets P 10 , P 11 , and P 12 to area 1112 within packing region 746 ; i.e., makes pallets P 10 , P 11 , and P 12 more readily available for shipment after re-slotting.
  • re-slotting occurs when warehouse 140 is not loading or unloading goods at loading docks 720 , 722 , 724 , 726 , 730 , 732 , 734 , 736 ; in other scenarios, re-slotting occurs while goods are being loaded and/or unloaded at warehouse 140 .
  • re-slotting occurs based on available storage within warehouse 140 (e.g., re-slot from relatively-full areas to relatively-empty areas of warehouse 140 ), based on expected vehicle arrivals/departures and/or shipments of goods, one or more velocities of goods, based on a re-slotting list of pallets maintained by warehouse and supply-chain coordinator 100 , and/or for other reasons.
  • re-slotting involves re-slotting during robot “deadhead” time; e.g., if robot is instructed to take a pallet to a loading dock and return to a location L within warehouse 140 , then the robot can return to location L (or another location) within warehouse 140 with a pallet being re-slotted rather than returning to location L empty/deadheaded (that is, not carrying anything back to location L).
  • deadhead time e.g., when the robot is not assigned to carry out a task, can be utilized for re-slotting as well.
  • warehouse and supply-chain coordinator 100 sends respective move messages 1130 , 1132 , 1134 to robots 752 , 754 , 756 to move all three of respective pallets P 10 , P 11 , and P 12 to area 1112 .
  • trucks 1210 , 1220 , 1230 are expected to be the next three vehicles to arrive at warehouse 140 in that order.
  • FIG. 12 shows that scenario 800 continues with information source(s) 1110 sending new arrival time (“NewArrTime”) message 1232 informing warehouse and supply-chain coordinator 100 that truck 1210 has been delayed and is now expected to arrive at time T 3 in the future.
  • NewArrTime new arrival time
  • FIG. 12 also shows truck 1220 arriving at gate 712 of warehouse yard 710 .
  • Gate 712 sends arrival message 1240 informing warehouse and supply-chain coordinator 100 that truck 1220 has arrived at gate 712 .
  • warehouse and supply-chain coordinator 100 sends open gate message 1242 instructing gate 712 to open, thereby allowing truck 1220 access to warehouse yard 710 .
  • warehouse and supply-chain coordinator 100 allocates a time slot starting immediately at outbound loading dock 734 and sends time slot message 1250 informing truck 1220 that it has a time slot at outbound loading dock 734 starting “now”.
  • time slot message 1250 truck 1220 starts along path 1252 toward outbound loading dock 734 .
  • warehouse and supply-chain coordinator 100 sends GoTo message 1260 directing robot 760 to travel toward outbound loading dock 734 .
  • the time slot at outbound loading dock 734 is previously allocated to truck 1210 , as truck 1210 is expected to be a next arriving vehicle at outbound loading dock 734 .
  • a timeslot for a first arriving vehicle after the no-load interval can be previously allocated by warehouse and supply-chain coordinator 100 .
  • the time slot at outbound loading dock 734 to truck 1210 can be released before the time slot is allocated to truck 1220 , as discussed above regarding time slot message 1250 .
  • FIG. 13 shows a portion of warehouse 140 that includes outbound loading dock 734 , packing region 746 , and all of area 1112 , as well as a portion of warehouse yard 710 near outbound loading dock 734 .
  • Scenario 800 continues with truck 1220 continuing on path 1252 toward outbound loading dock 734 .
  • Warehouse and supply-chain coordinator 100 determines to rearrange pallet arrangement 1310 as much as possible before truck 1220 arrives at outbound loading dock 734 .
  • FIG. 13 shows that pallet arrangement 1310 has three columns of pallets: a first column of pallets P 10 , P 11 , and P 12 destined for loading onto truck 1210 , a second column of pallets P 20 and P 21 destined for loading onto truck 1220 , and a third column of pallets P 30 , P 31 , and P 32 destined for loading onto truck 1230 , where the first column of pallets is closer to outbound loading dock 734 that the second column of pallets, which in turn is closer to outbound loading dock 734 that the third column of pallets.
  • Pallet arrangement 1310 is so organized to enable faster loading for truck 1210 , which was expected to be the next truck arriving at outbound loading dock 734 ; i.e., the first column of pallets are both destined for loading onto truck 1210 and are closest to outbound loading dock 734 . But, as mentioned above, truck 1210 has been delayed and truck 1220 is now the next truck arriving outbound loading dock 734 .
  • each column of pallets can be considered to be a queue entry of a pallet arrangement, where such queue entries are discussed below at least in the context of FIGS. 17-22 .
  • warehouse and supply-chain coordinator 100 determines to swap the first and second columns of pallets, thus placing pallets P 20 and P 21 destined for truck 1220 closer to outbound loading dock 734 for faster loading onto truck 1220 .
  • scenario 800 though, there is not enough time to fully swap the first and second columns of pallets before truck 1220 arrives and parks at outbound loading dock 734 .
  • warehouse and supply-chain coordinator 100 sends swap message 1330 to robot 752 to swap pallets P 10 and P 20 , and sends swap message 1332 to robot 760 to swap pallets P 11 and P 21 , thus moving the two pallets destined for truck 1220 (P 20 and P 21 ) closer to outbound loading dock 734 , while pallet P 12 destined for truck 1210 remains in the first column of pallet arrangement 1310 .
  • Scenario 800 continues with truck 1220 arriving at outbound loading dock 734 .
  • warehouse and supply-chain coordinator 100 instructs robots 752 and 760 to load truck 1220 .
  • warehouse and supply-chain coordinator 100 sends move message 1340 to robot 752 to move pallet “P 20 ” to “Truck 1220 ” that is loaded at “OLD” (outbound loading dock) “ 734 ”, and sends move message 1342 to robot 752 to move pallet “P 21 ” to “Truck 1220 ” that is loaded at “OLD 734 ”.
  • robots 752 and 760 load truck 1220 with pallets P 20 and P 21 that are initially in the second column of pallet arrangement 1310 .
  • FIG. 14 shows robots 752 and 760 loading respective pallets P 20 and P 21 onto truck 1220 .
  • truck 1210 arrives at gate 712 .
  • Gate 712 sends arrival message 1410 informing warehouse and supply-chain coordinator 100 of the arrival of truck 1210 .
  • warehouse and supply-chain coordinator 100 instructs gate 712 to open via open gate message 1412 , thereby permitting truck 1210 to enter warehouse yard 710 .
  • Warehouse and supply-chain coordinator 100 determines that truck 1210 has to park and wait until truck 1220 is loaded before proceeding to outgoing loading dock 734 and so allocates parking spot 1418 for truck 1210 as indicated by allocate parking message 1414 .
  • Warehouse and supply-chain coordinator 100 sends park message 1416 to inform truck 1210 to park at parking spot 1418 .
  • Warehouse and supply-chain coordinator 100 then allocates a time slot at outgoing loading dock 734 starting at time T 3 to truck 1210 and sends time slot message 1420 to inform truck 1210 about the allocated time slot.
  • Scenario 800 continues with robots 752 and 760 finishing loading of pallets P 20 and P 21 onto truck 1220 , and the subsequent departure of truck 1220 , as shown in FIG. 15 . Then, time T 3 arrives and truck 1210 drives from parking spot 1418 to outgoing loading dock 734 . Upon arrival of truck 1210 at outgoing loading dock 734 , warehouse and supply-chain coordinator 100 directs robots 752 , 754 , and 756 to load truck 1210 .
  • warehouse and supply-chain coordinator 100 sends respective move messages 1510 , 1512 , and 1514 to respective robots 760 , 752 , and 754 to move respective pallets “P 10 ”,“P 11 ”, and “P 12 ” onto “Truck 1210 ” at “OLD 734 ”. After truck 1210 is loaded, truck 1210 departs from outgoing loading dock 734 .
  • FIG. 16 shows scenario 800 continuing with truck 1210 on its way from outgoing loading dock 734 .
  • FIG. 16 also shows the first column of pallet arrangement 1310 with two pallets P 30 and P 32 .
  • Warehouse and supply-chain coordinator 100 sends move message 1610 to direct robot 752 to move pallet P 31 to the first column “Col 1 ” of pallet arrangement 1310 in “Area 1112 ”.
  • the first column has all three pallets—P 30 , P 31 , and P 32 —destined for truck 1230 , which is the next arriving truck at outgoing loading dock 734 .
  • Warehouse and supply-chain coordinator 100 also sends GoTo message 1612 instructing robot 760 to move to outgoing loading dock 736 .
  • scenario 800 can be completed.
  • FIG. 17 is a flow chart of method 1700 , in accordance with an example embodiment.
  • Method 1700 is used to maintain a pallet arrangement, such as pallet arrangement 1310 .
  • the pallet arrangement can include QL>0 “queue entries”, or spaces that can hold one or more pallets of goods, where each queue entry is sequentially numbered starting at one and ending at QL.
  • Queue entry 1 is followed by queue entry 2 , which in turn is followed by queue entry 3 .
  • Queue entry 3 is followed by the remainder of warehouse 1870 .
  • FIG. 17 indicates that method 1700 can be performed by warehouse and supply-chain coordinator 100 ; e.g., method 1700 can be included in one or more computer-readable instructions that, when executed by one or more processors of a computing device, cause the computing device to perform some or all of the functions of method 1700 while performing herein-described features of warehouse and supply-chain coordinator 100 . In other examples, method 1700 can be performed by one or more other entities other than warehouse and supply-chain coordinator 100 .
  • FIG. 17 indicates that method 1700 begins at block 1710 , where warehouse and supply-chain coordinator 100 determines a time T_NAV until a next arriving vehicle NAV arrives at a facility, such as a warehouse. In some examples, warehouse and supply-chain coordinator 100 determines whether or not next arriving vehicle NAV will arrive before a pre-determined time, such as prior to an onset of a upcoming no-load period. Then, if next arriving vehicle NAV will not arrive until after the pre-determined time, warehouse and supply-chain coordinator 100 can terminate method 1700 .
  • warehouse and supply-chain coordinator 100 determines a queue entry QE associated with vehicle NAV; e.g., a queue entry that holds pallets destined to be loaded onto vehicle NAV at the facility.
  • warehouse and supply-chain coordinator 100 determines whether vehicle NAV has arrived at the facility. For example, warehouse and supply-chain coordinator 100 can receive a message that vehicle NAV has entered a gate at the facility, such as gate 712 of warehouse 140 and warehouse yard 710 discussed above in the context of FIGS. 7-16 . As another example, a robot or other agent at the facility can detect vehicle NAV and send a message informing warehouse and supply-chain coordinator 100 of the arrival of vehicle NAL. As yet another example, vehicle NAV can send a message indicating that the vehicle NAV has arrived at the facility warehouse and supply-chain coordinator 100 . Other techniques for informing warehouse and supply-chain coordinator 100 of an arrival of vehicle NAV and/or for warehouse and supply-chain coordinator 100 to determine that vehicle NAV has arrived at the facility are possible as well.
  • warehouse and supply-chain coordinator 100 determines whether QE, which is the queue entry associated with vehicle NAV, is equal to one; that is, if the queue entry associated with vehicle NAV is the closest queue entry to the loading dock where vehicle NAV will arrive. If QE equals one, then warehouse and supply-chain coordinator 100 proceeds to block 1710 . Otherwise, QE does not equal one and warehouse and supply-chain coordinator 100 proceeds to block 1740 .
  • warehouse and supply-chain coordinator 100 determines a time T_SWAP for the NR robots available to swap queue entries. For example, warehouse and supply-chain coordinator 100 can estimate T_SWAP for NR robots based on historical data, one or more mathematical models, data performed during a test or experiment of swapping pallets, and/or using other techniques and/or data.
  • T_SWAP may not be strictly inversely proportional the number of robots, as adding additional robots may provide additional speedup of operations.
  • NR NR 1
  • the actions shown in Table 1 are those taken by one robot RS1 to swap one pallet PS1 located at location LS1 in queue entry 1 with another pallet PS2 located at location LS2 in queue entry 2 .
  • Robot RS1 Robot RS2 1. Go to location LS1. 1. Go to location LS2. 2. Pick up pallet PS1. 2. Pick up pallet PS2. 3. Take pallet PS1 to location LS2. 3. Take pallet PS2 to location LS1. 4. Place pallet PS1 at location LS2. 4. Place pallet PS2 at location LS1.
  • warehouse and supply-chain coordinator 100 coordinates robots RS1 and RS2 so that robot RS2 takes pallet PS2 to location LS1 while robot RS1 takes pallet PS1 to location LS2.
  • warehouse and supply-chain coordinator 100 coordinates robots RS1 and RS2 so that robot RS1 moves pallet PS1 from location LS1 to location LS2 at or about the same time that robot RS2 moves pallet PS2 from location LS2 to location LS1.
  • warehouse and supply-chain coordinator 100 coordinates robots RS1 and RS2 so that that one robot may wait for a pallet to be cleared. For example, if robot RS1 is not near LS1 at a time one or more commands to swap pallets PS1 and PS2, but RS2 is near LS2 at that time, then warehouse and supply-chain coordinator 100 can instruct robot RS2 to pick up pallet PS2 and wait until robot RS1 has picked up pallet PS1 before robot RS2 moves toward location LS1.
  • T_SWAP were inversely proportional to the number of robots, then the two-robot example shown above in Table 2 would take (approximately) 1 ⁇ 2 as long as the one-robot example shown in Table 1.
  • LTEMP temporary location
  • Other examples of reductions of T_SWAP that are more than inversely proportional are possible as well.
  • T_SWAP is infinite.
  • T_SWAP can be represented as a “practical infinity”; that is, a number that is less than infinity that is much larger than usual/expected.
  • warehouse and supply-chain coordinator 100 determines whether T_NAV is greater than T_SWAP; that is, whether the amount of time until vehicle NAV arrives is greater than the amount of time to swap pallets. If T_NAV is greater than T_SWAP, then warehouse and supply-chain coordinator 100 proceeds to block 1760 . Otherwise, T_SWAP is greater than or equal to T_NAV, and warehouse and supply-chain coordinator 100 proceeds to block 1710 .
  • the value of T_SWAP is compared to a threshold amount of time THR_SWAP to swap pallets between queue entries 1 and QE. If T_SWAP is greater than THR_SWAP, then warehouse and supply-chain coordinator 100 proceeds to block 1760 to swap pallets between queue entries 1 and QE. Otherwise, warehouse and supply-chain coordinator 100 proceeds to block 1710 without swapping pallets.
  • the value of T_NAV is compared to a threshold amount of time THR_NAV for a vehicle to arrive at the facility. If T_NAV is greater than THR_NAV, then warehouse and supply-chain coordinator 100 proceeds to block 1760 to swap pallets between queue entries 1 and QE. Otherwise, warehouse and supply-chain coordinator 100 proceeds to block 1710 without swapping pallets.
  • warehouse and supply-chain coordinator 100 can determine whether to swap pallets between queue entries 1 and QE; i.e., proceed to block 1760 , based on an estimated QE-load time and an estimated Q1-load time.
  • Warehouse and supply-chain coordinator 100 can consider DIFF_QE-LOAD an estimated amount of time saved by swapping pallets for the next arriving vehicle from queue entry QE to queue entry 1 . Then, along with or instead of comparing T_NAV and T_SWAP at block 1750 , warehouse and supply-chain coordinator 100 can compare DIFF_QE-LOAD and T_SWAP. If DIFF_QE-LOAD is greater than T_SWAP, warehouse and supply-chain coordinator 100 can proceed to block 1760 to swap pallets between queue entries 1 and QE. Otherwise, warehouse and supply-chain coordinator 100 proceeds to block 1710 without swapping pallets.
  • warehouse and supply-chain coordinator 100 can determine a vehicle V1 that is associated with queue entry 1 .
  • warehouse and supply-chain coordinator 100 directs the NR robots to swap pallets between queue entry 1 and queue entry QE.
  • warehouse and supply-chain coordinator 100 can direct the NR robots to use some or all of the techniques mentioned above in the context of Tables 1 and/or 2 to swap pallets between queue entry 1 and queue entry QE.
  • warehouse and supply-chain coordinator 100 can associate queue entry 1 with vehicle NAV and associate queue entry QE with vehicle V1; i.e., swap vehicle associations of queue entries 1 and QE in keeping with the swap of pallets between queue entries 1 and QE performed at block 1762 .
  • warehouse and supply-chain coordinator 100 proceeds to block 1710 .
  • warehouse and supply-chain coordinator 100 has determined that vehicle NAV has arrived at the loading dock. Then, warehouse and supply-chain coordinator 100 directs one or more robots to load pallets from queue entry QE onto the now-arrived vehicle. After being loaded with the pallets from queue entry QE, vehicle NAV can leave the loading dock.
  • warehouse and supply-chain coordinator 100 directs one or more robots to move pallets up one queue entry at a time from queue entry QE+1 to a last queue entry; e.g., queue entry QL.
  • Moving pallets up one queue entry at a time can involve moving pallets from a non-empty first queue entry to an adjacent empty second queue entry, thereby emptying the first queue entry.
  • Table 3 shows example operations required for one robot to move up one pallet:
  • queue entries 2 and 3 are be moved up during block 1772 .
  • the pallets in queue entry 2 (the non-empty first queue entry) would be moved to queue entry 1 (the adjacent empty second queue entry), as the pallets in queue entry 1 were loaded on to vehicle NAV during block 1770 , leaving queue entry 1 empty of pallets.
  • queue entry 1 is non-empty
  • queue entry 2 is empty
  • queue entry 3 has pallets.
  • the pallets in queue entry 3 are moved up to queue entry 2 , thereby emptying queue entry 3 of pallets.
  • warehouse and supply-chain coordinator 100 moves vehicle associates up the queue one queue entry at a time from queue entry QE+1 to a last queue entry QL; e.g., queue entry QL.
  • a last queue entry QL e.g., queue entry QL.
  • the vehicle entries associated with queue entries 2 and 3 are to be moved up during block 1774 .
  • queue entry 1 is associated with vehicle NAV
  • queue entry 2 is associated with a vehicle V2
  • queue entry 3 is associated with vehicle V3
  • a loop can be performed to move up the vehicle entries, such as
  • warehouse and supply-chain coordinator 100 determines NewV, which is a next vehicle to arrive after the vehicle now associated with queue entry QL ⁇ 1 and associates NewV with queue entry QL.
  • warehouse and supply-chain coordinator 100 determines whether or not next arriving vehicle NewV will arrive before a pre-determined time, such as prior to an onset of a upcoming no-load period. Then, if next arriving vehicle NewV will not arrive until after the pre-determined time, warehouse and supply-chain coordinator 100 can proceed to block 1710 rather than proceeding to block 1782 .
  • warehouse and supply-chain coordinator 100 instructs one or more robots to pick pallets destined for vehicle NewV from the facility (e.g., warehouse) and place these pallets in queue entry QL.
  • warehouse and supply-chain coordinator 100 can determine a pallet P_NEWV located at a location L_NEWV in the facility is destined for loading onto vehicle New and instruct a robot to follow the example procedures in Table 4 to move pallet P_NEWV to queue entry QL:
  • FIGS. 18, 19, 20, and 21 illustrate a scenario 1800 where trucks 1810 , 1820 and van 1830 arrive at loading dock 1850 of warehouse 1870 with pallets of a pallet arrangement being loaded into the trucks using the techniques of method 1700 , in accordance with an example embodiment.
  • Scenario 1800 involves a period of time from a time T 1 to time T 8 , through consecutive intermediate times T 2 , T 3 , T 4 , T 5 , T 6 , and T 7 , where pallet arrangement 1860 is modified according to the procedures of method 1700 , discussed in the context of FIG. 17 .
  • Pallet arrangement 1860 has three queue entries during scenario 1800 : queue entry 1 , queue entry 2 , and queue entry 3 .
  • Queue entry 1 is closest to an edge of loading dock 1850 for loading vehicles
  • queue entry 2 is just behind queue entry 1
  • queue entry 3 is just behind queue entry 1 .
  • Behind queue entry 3 is a remainder of warehouse 1870 , where a plurality of pallets are stored and a plurality of robots operate.
  • At least the robots of warehouse 1870 are in communication with a warehouse and supply-chain coordinator, such as warehouse and supply-chain coordinator 100 , that is embodied as one or more computing devices executing computer-readable instructions that include instructions, that when executed by the one or more computing devices, cause the warehouse and supply-chain coordinator at least to carry out the procedures of method 1700 .
  • trucks 1810 , 1820 , and van 1830 are initially expected to arrive in that order, but truck 1810 is delayed.
  • the actual order of vehicle arrival for scenario 1800 is: truck 1820 arriving at time T 1 , van 1830 arriving at time T 5 , and truck 1810 arriving at time T 7 .
  • queue entries and related associations are moved up per method 1700 .
  • scenario 1800 is completed.
  • FIG. 18 A left side of FIG. 18 shows that, at an onset of scenario 1800 , truck 1820 has just arrived at loading dock 1850 of warehouse 1870 .
  • Loading dock 1850 includes pallet arrangement 1860 having three queue entries: queue entry 1 holding two pallets and being associated with truck 1810 , queue entry 2 holding four pallets and being associated with truck 1820 , and queue entry 3 holding one pallet and being associated with truck 1820 .
  • the warehouse and supply-chain coordinator initially reserves a time slot TS1 at loading dock 1850 for truck 1810 , where time slot TS1 at loading dock 1850 is for a time period that includes time T 1 . Then, when the warehouse and supply-chain coordinator is informed truck 1810 is delayed, the warehouse and supply-chain coordinator: releases time slot TS1 for truck 1810 , determines that truck 1820 is a next arriving vehicle after truck 1810 , and reserves time slot TS1 for truck 1820 . Then, truck 1820 arrives during timeslot TS1. In particular of these scenarios, the warehouse and supply-chain coordinator also reserves another time slot TS2 that is immediately after time slot TS1 for truck 1810 .
  • reserving a time slot for a truck TRK can include granting access to warehouse 1870 to truck TRK up to a beginning of the time slot and/or releasing a time slot for truck TRK can include revoking access to warehouse 1870 to truck TRK.
  • releasing time slot TS1 for truck 1810 includes revocation of access to warehouse 1870 for truck 1810
  • reserving time slot TS1 for truck 1820 includes granting of access to warehouse 1870 for truck 1820 until a beginning of time slot TS1
  • reserving time slot TS2 for truck 1810 includes granting of access to warehouse 1870 for truck 1810 until a beginning of time slot TS2.
  • truck 1820 is loaded with the pallets held in queue entry 2 as indicated by arrow 1880 using the procedures of block 1770 of method 1700 .
  • truck 1820 departs from loading dock 1850 as indicated by arrow 1882 .
  • the warehouse and supply-chain coordinator executes the procedures of blocks 1772 and 1774 of method 1700 to move up the pallets of queue entry 3 to queue entry 2 , as indicated by arrow 1884 , and to associate queue entry 2 with van 1830 .
  • a new vehicle, railcar 1840 is determined to be the next vehicle to arrive at warehouse 1870 after van 1830 and is associated with queue entry 3 at block 1780 of method 1700 .
  • the warehouse and supply-chain coordinator directs one or more robots to pick pallets for railcar 1840 from warehouse 1870 and place those pallets into queue entry 3 in keeping with the procedures of block 1782 of method 1700 .
  • Resulting pallet arrangement 1860 has queue entry 1 holding pallets associated with truck 1810 , queue entry 2 holding a pallet associated with van 1830 , and queue entry 3 holding pallets associated with railcar 1840 .
  • the warehouse and supply-chain coordinator determines a number NR>0 of robots available to swap queue entries and a time T_SWAP that is less than T_NAV.
  • execution of method 1700 proceeds to block 1760 , where V1 is set to truck 1810 , and then to block 1762 , where the warehouse and supply-chain coordinator direct the NR robots found available at block 1740 to swap pallets between queue entry 1 (associated with truck 1810 ) and queue entry 2 (associated with van 1830 ).
  • the NR robots proceed to swap pallets between queue entries 1 and 2 .
  • the warehouse and supply-chain coordinator executes the procedures of block 1764 to associate queue entry 1 with van 1830 and associate queue entry 2 with truck 1810 .
  • Resulting pallet arrangement 1860 has queue entry 1 holding a pallet associated with van 1830 , queue entry 2 holding pallets associated with truck 1810 , and queue entry 3 holding pallets associated with railcar 1840 . Also at time T 5 , van 1830 arrives at loading dock 1850 .
  • the warehouse and supply-chain coordinator has reserved time slot TS2 at loading dock 1850 for truck 1810 , where time slot TS2 at loading dock 1850 is immediately after time slot TS1, and where time slot TS2 is for a time period that includes T 5 . Then, when the warehouse and supply-chain coordinator is informed truck 1810 is delayed beyond time T 5 , the warehouse and supply-chain coordinator: releases time slot TS2 for truck 1810 , determines that van 1830 is a next arriving vehicle after truck 1810 , and reserves time slot TS2 for truck 1820 . Then, van 1820 arrives during timeslot TS2. In particular of these scenarios, the warehouse and supply-chain coordinator also reserves another time slot TS3 that is immediately after time slot TS2 for truck 1810 .
  • releasing time slot TS2 for truck 1810 includes revocation of access to warehouse 1870 for truck 1810
  • reserving time slot TS2 for van 1830 includes granting of access to warehouse 1870 for van 1830 until a beginning of time slot TS2
  • reserving time slot TS3 for truck 1810 includes granting of access to warehouse 1870 for truck 1810 until a beginning of time slot TS3.
  • van 1830 is loaded with the pallet held in queue entry 1 using the procedures of block 1770 of method 1700 as indicated by arrow 2010 . After being loaded, van 1830 departs from loading dock 1850 as indicated by arrow 2012 .
  • the warehouse and supply-chain coordinator executes the procedures of blocks 1772 and 1774 of method 1700 to: (1) to direct one or more robots move up the pallets of queue entry 2 to queue entry 1 as indicated by arrow 2020 and to associate queue entry 2 with truck 1810 , and (2) to direct one or more robots move up the pallets of queue entry 3 to queue entry 2 as indicated by arrow 2030 and to associate queue entry 2 with railcar 1840 .
  • a new vehicle, truck 2000 is determined to be the next vehicle to arrive after railcar 1840 at warehouse 1870 and is associated with queue entry 3 at block 1780 of method 1700 . Then, as indicated by arrow 2040 , the warehouse and supply-chain coordinator directs one or more robots to pick pallets for truck 2000 from warehouse 1870 and place those pallets into queue entry 3 in keeping with the procedures of block 1782 of method 1700 .
  • Resulting pallet arrangement 1860 has queue entry 1 holding pallets associated with truck 1810 , queue entry 2 holding pallets associated with railcar 1840 , and queue entry 3 holding pallets associated with truck 2000 .
  • truck 1810 arrives at loading dock 1850 .
  • execution of method 1700 proceed from block 1720 to block 1770 , where the rehouse and supply-chain coordinator directs one or more robots in warehouse 1870 to load truck 1810 with the pallets held in queue entry 1 .
  • the warehouse and supply-chain coordinator has reserved a time slot TS3 for truck 1810 at loading dock 1850 , where time slot TS3 is for a time period that includes time T 7 .
  • truck 1810 is loaded with the pallets held in queue entry 1 using the procedures of block 1770 of method 1700 as indicated by arrow 2110 .
  • truck 1810 departs from loading dock 1850 as indicated by arrow 2112 .
  • the warehouse and supply-chain coordinator executes the procedures of blocks 1772 and 1774 of method 1700 to: (1) to direct one or more robots move up the pallets of queue entry 2 to queue entry 1 as indicated by arrow 2120 and to associate queue entry 2 with railcar 1840 , and (2) to direct one or more robots move up the pallets of queue entry 3 to queue entry 2 as indicated by arrow 2130 and to associate queue entry 2 with truck 2000 .
  • a new vehicle, vessel 2100 is determined to be the next vehicle after truck 2000 to arrive at warehouse 1870 and is associated with queue entry 3 at block 1780 of method 1700 . Then, as indicated by arrow 2140 , the warehouse and supply-chain coordinator directs one or more robots to pick pallets for vessel 2100 from warehouse 1870 and place those pallets into queue entry 3 in keeping with the procedures of block 1782 of method 1700 . After all of the pallets for vessel 2100 have been placed into queue entry 3 , scenario 1800 can be completed.
  • FIG. 22 is a block diagram of supply chain 2200 , in accordance with an example embodiment.
  • a supply chain can have one or more components, where a component includes one or more facilities connected by zero or more paths.
  • a facility is an entity of a supply chain that has a fixed location, such as, but not limited to, one or more buildings associated with a supplier, a manufacturer, a warehouse, a distribution center, a maintenance center, and/or a fulfillment center.
  • a relative size of a facility in FIGS. 22-24 indicates a concentration of an inventory of goods and/or a capacity of the facility; e.g., in FIG.
  • a rectangle depicting facility 2232 is larger than a rectangle depicting facility 2234 , indicating that facility 2232 has a larger concentration of inventory of goods and/or a capacity than facility 2234 .
  • a path between facilities can be used to communicate goods, vehicles, information, and/or other material objects between connected facilities, such as path 2262 that connects facilities 2250 and 2252 .
  • Supply chain 2200 has four disconnected components: component 2202 shown at upper left of FIG. 22 that includes facilities (Fs) 2210 and 2212 connected by one path; component 2204 shown at center left of FIG. 22 that includes facilities 2220 , 2222 , 2224 , 2226 , 2228 connected by four paths; component 2206 shown at upper right of FIG. 22 that includes facilities 2230 , 2232 , 2234 , 2236 , 2238 , 2240 connected by five paths; and component 2208 shown at lower right of FIG. 22 that includes facilities 2250 , 2252 , 2254 , 2256 , 2258 , 2260 connected by seven paths.
  • goods, vehicles, information, and/or other material moving between two facilities in supply chain 2200 has to pass through one or more intermediate facilities; e.g., goods traveling between facility 2230 and facility 2234 have to pass through facility 2232 .
  • each of the four components 2202 , 2204 , 2206 , 2208 comprises a separate sub-supply chain, and in the example shown in FIG. 22 , the four components are not interconnected.
  • each component is owned separately; e.g., component 2202 is owned by owner A, component 2204 is owned by owner B, component 2206 is owned by owner C, and component 2208 is owned by owner D, where each of owners A, B, C, and D are different.
  • some or all components 2202 , 2204 , 2206 , 2208 are co-owned.
  • the four components 2202 , 2204 , 2206 , 2208 of supply chain 2200 do not directly interconnect.
  • one or more intermediate facilities can be used to ship goods and/or other material between components 2202 , 2204 , 2206 , and 2208 ; e.g, goods shipped from component 2206 to component 2204 can be routed through facility 2236 of component 2206 and through facility 2226 of component 2204 for shipment to their destination in component 2204 .
  • two or more non-intermeshing components send partially-loaded vehicles to the same relatively-small region (e.g., a region having only one zip-code or postal code), leading to inefficient coverage of the relatively-small region.
  • routing goods and/or other material through an intermediate facility can increase costs and time due to loading, unloading, and perhaps extra breakage/spoilage of the goods and/or other material at the intermediate facility. To reduce such inefficiencies related to partial loads and intermediate facilities, part or all of various components of a supply chain can be consolidated.
  • FIG. 23 shows supply chain 2300 where components 2202 , 2204 , and 2208 have been substantially consolidated into component 2302 , and where component 2206 has been somewhat consolidated to become component 2304 .
  • FIG. 23 shows that consolidated component 2302 has nine facilities 2212 , 2220 , 2222 , 2226 , 2238 , 2250 , 2252 , 2254 , 2260 , which is fewer than the thirteen facilities in components 2202 , 2204 , and 2208 .
  • paths between facilities have changed consolidated component 2302 ; e.g., paths have been added between facility 2238 and each of facilities 2250 , 2252 , 2254 , and 2260 .
  • the addition of paths between facilities reduces and/or eliminates use of intermediate facilities in transporting goods and/or other material between facility 2238 and each of facilities 2250 , 2252 , 2254 , and 2260 .
  • partial truckloads can be reduced. For example, if a partially loaded truck PLT2202 was sent from component 2202 of supply chain 2200 to zip code ZC1 and a partially loaded truck PLT2204 was also sent from component 2204 of supply chain 2200 to zip code ZC 1 , then these partial truckloads can be consolidated by coordinated management of component 2302 to send one truck to zip code ZC1 rather than two partially loaded trucks.
  • Such coordinated management of component 2302 can be provided by a herein-described warehouse and supply-chain coordinator, such as warehouse and supply-chain coordinator 100 .
  • the warehouse and supply-chain coordinator can recognize two partial truck loads going to the same destination or nearby region, such as an area covered by one zip code, determine a facility that has most, if not all, of the goods to be carried in the two partial truck loads, and send one truck from that facility with the goods to the destination or nearby region to deliver the goods of the two partial truck loads.
  • Consolidation of truck loads can be performed based on other and/or additional reasons than geography, such as a type of goods/vehicle to be used (e.g., refrigerated goods, gas/liquid goods, use of a refrigerated truck, tanker truck, air freight, or sea vessel), a priority of the goods/shipment (e.g., may continue to have partial loads for high-priority shipments and/or high-value goods).
  • a type of goods/vehicle to be used e.g., refrigerated goods, gas/liquid goods, use of a refrigerated truck, tanker truck, air freight, or sea vessel
  • a priority of the goods/shipment e.g., may continue to have partial loads for high-priority shipments and/or high-value goods.
  • FIG. 24 is a block diagram of supply chain 2400 , in accordance with an example embodiment.
  • Supply chain 2400 shows effects of further consolidation to supply chain 2300 .
  • Component 2302 of supply chain 2300 has been consolidated to become component 2402 of supply chain 2400 .
  • Component 2402 has one fewer facility and two more paths, with one facility—facility 2226 —being directly connected to all of the other seven facilities 2212 , 2220 , 2222 , 2238 , 2250 , 2254 , 2260 of component 2402 , while no facility of component 2302 was directly connected to all other facilities of that component.
  • With fewer facilities and more paths than in component 2302 fewer facilities have to be maintained and fewer intermediate facilities are likely to be used in component 2402 , and thus making component 2402 more time-efficient and cost-effective than component 2302 .
  • component 2404 has been consolidated to use only three facilities—facilities 2230 , 2232 , and 2410 —which are all directly interconnected.
  • component 2304 of supply chain 2300 used five facilities, only one of which was fully connected. With fewer facilities and more paths than in component 2304 , fewer facilities have to be maintained and fewer intermediate facilities are likely to be used in component 2404 , and thus making component 2404 more time-efficient and cost-effective than component 2304 .
  • component 2402 , component 2404 , and/or supply chain 2400 is configured, such as by the herein-described warehouse and supply-chain coordinator, to provide on-demand logistics and/or supply chain services; i.e., provide logistics as a service in a similar fashion to cloud computing devices provide various computing services on demand. That is, the warehouse and supply-chain coordinator enables reception of an order from a customer for warehousing, transportation, goods manufacture, supply provisioning, and/or other various logistics/supply-chain related services, and component 2402 , component 2404 , and/or supply chain 2400 provides those services to the customer without the customer having to manage details of where goods are stored, transportation of goods through the supply chain, obtaining goods from suppliers and manufacturers, and supervision of warehouses.
  • FIG. 25 is a flowchart of method 2500 , in accordance with an example embodiment.
  • Method 2500 can be executed by a computing device.
  • the computing device includes computer-readable instructions/software that, when executed by one or more processors of the computing device, cause the computing device to perform some or all of the functionality of a warehouse and supply-chain coordinator; e.g., warehouse and supply-chain coordinator 100 .
  • Method 2500 can begin at block 2510 , where the computing device can determine a first estimated arrival time for a first vehicle at a loading dock of a warehouse, such as discussed above at least in the context of FIGS. 2-21 .
  • determining the first estimated arrival time can include reserving a first time slot at the loading dock for the first vehicle, where the first time slot includes the first estimated arrival time, such as discussed above at least in the context of FIGS. 9, 14, and 21 .
  • the warehouse includes a first parking location; then, determining the first estimated arrival time for the first vehicle at the loading dock can include: granting warehouse access to the first vehicle at the first estimated arrival time; determining whether the first vehicle has access to the loading dock at the first estimated arrival time; and after determining that first vehicle does not have access to the loading dock at the first estimated arrival time, reserving the first parking location for the first vehicle starting at the first estimated arrival time, such as discussed above at least in the context of FIGS. 8, 9, 14, 15, and 18-20 .
  • the computing device can determine a second estimated arrival time for a second vehicle at the loading dock of the warehouse, where the first estimated arrival time is before the second estimated arrival time, such as discussed above at least in the context of FIGS. 8-21 .
  • the computing device can determine a pallet arrangement at the loading dock of the warehouse, where the pallet arrangement includes a first pallet associated with the first vehicle and a second pallet associated with the second vehicle, and where the first pallet is closer to the loading dock than the second pallet, such as discussed above at least in the context of FIGS. 13-21 .
  • the pallet arrangement can include at least a first queue entry and a second queue entry, each of the first queue entry and the second queue entry for holding one or more pallets, where a location of the first queue entry is closer to the loading dock than a location of the second queue entry, and where the first queue entry holds the first pallet and the second queue entry holds the second pallet, such as discussed above at least in the context of FIGS. 13-21 .
  • the computing device can, after determining the pallet arrangement, determine that the first estimated arrival time has changed to be after the second estimated arrival time, such as discussed above at least in the context of FIGS. 13-21 .
  • the computing device can, in response to determining that the first estimated arrival time has changed to be after the second estimated arrival time, instruct a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time, such as discussed above at least in the context of FIGS. 13-21 .
  • instructing a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time can include: determining a second arrival time indicating an amount of time until second vehicle arrives at the warehouse; determining an amount of time to swap pallets between the first queue entry and the second queue entry; determining whether the second arrival time is greater than the amount of time to swap pallets; and after determining that the second arrival time is greater than the amount of time to swap pallets, instructing the robot to: move the second pallet from the second queue entry to the first queue entry, and move the first pallet from the first queue entry to the second queue entry, such as discussed above at least in the context of FIGS. 17-21 .
  • determining the amount of time to swap pallets between the first queue entry and the second queue entry can include determining the amount of time to swap pallets between the first queue entry and the second queue entry based on a number of robots available to swap pallets, such as discussed above at least in the context of FIGS. 17-21 .
  • method 2500 can further include: after moving the first pallet from the first queue entry to the second queue entry: associating the first queue entry with the second vehicle; and associating the second queue entry with the first vehicle, such as discussed above at least in the context of FIGS. 17-21 .
  • method 2500 can further include: after moving the first pallet from the first queue entry to the second queue entry, determining that the second vehicle has arrived at the warehouse; and instructing the robot to load the second vehicle with at least the second pallet in the first queue entry, such as discussed above at least in the context of FIGS. 17-21 .
  • method 2500 can further include: after instructing the robot to load the second vehicle with at least the second pallet in the first queue entry, instructing the robot to move pallets from the second queue entry to the first queue entry; associating the first queue entry with the first vehicle; determining a new vehicle that is a next vehicle to arrive at the warehouse after each vehicle associated with a queue entry; associating the QEth queue entry with the new vehicle; and instructing the robot to move pallets associated with the new vehicle to the QEth queue entry, such as discussed above at least in the context of FIGS. 17-21 .
  • the pallet arrangement includes a first queue entry and a second queue entry, the first queue entry holding at least a first pallet at a first location, and the second queue entry holding at least a second pallet at a second location; then, instructing the robot to modify the pallet arrangement can include: instructing the robot to go to the first location; instructing the robot to pick up the first pallet at the first location; instructing a second robot to go to the second location; instructing the second robot to pick up the second pallet at the second location; instructing the robot to take the first pallet to the second location; instructing the second robot to take the second pallet to the first location while the first robot is taking the first pallet to the second location; instructing the robot to place the first pallet at the second location; and instructing the second robot to place the second pallet at the first location, such as discussed above at least in the context of FIGS. 17-21 .
  • method 2500 can further include: after determining that the first estimated arrival time has changed to be after the second estimated arrival time, the computing device: releasing the reservation of the first time slot at the loading dock; and reserving a second time slot at the loading dock for the second vehicle, where the second time slot includes the second estimated arrival time, such as discussed above at least in the context of FIGS. 12, 14 , and 18 - 21 .
  • method 2500 can further include: determining whether the third estimated arrival time is during the second time slot; and after determining that the third estimated arrival time is during the second time slot, reserving a third time slot at the loading dock for the first vehicle, where the third time slot is immediately after the second time slot, such as discussed above at least in the context of FIGS. 12, 14, and 18-21 .
  • method 2500 can further include: after determining that the first estimated arrival time has changed to be after the second estimated arrival time: revoking warehouse access to the first vehicle at the first estimated arrival time; determining that the first estimated arrival time has changed to be a third estimated arrival time; and granting warehouse access to the first vehicle at the third estimated arrival time, such as discussed above at least in the context of FIGS. 8, 9, and 18-20 .
  • method 2500 can further include: after the first vehicle arrives at the warehouse: directing an inspecting robot to inspect goods carried by the first vehicle to determine whether the goods carried by the first vehicle are in conformity with a contract for the goods; and after determining that the goods carried by the first vehicle are in conformity with the contract, moving the goods carried by the first vehicle into the warehouse; and sending a receipt for the goods carried by the first vehicle, such as discussed above at least in the context of FIGS. 10 and 11 .
  • method 2500 can further include: after determining that the goods carried by the first vehicle are not in conformity with the contract, rejecting delivery of the goods carried by the first vehicle, such as discussed above at least in the context of FIG. 10
  • method 2500 can further include: receiving a first order to deliver a pallet of goods from the warehouse for the first vehicle via the loading dock; and after receiving the first order to deliver the pallet of goods, instructing the robot to move the pallet of goods to the pallet arrangement at the loading dock, such as discussed above at least in the context of FIGS. 12-16 .
  • method 2500 can further include: after receiving the first order to deliver the pallet of goods, receiving a second order to deliver the pallet of goods from the warehouse at a second time of delivery via a second loading dock of the warehouse; determining whether the second order has a higher priority that the first order; and after determining that the second order has a higher priority that the first order, instructing the robot to move the pallet of goods to the second loading dock by the second time of delivery.
  • method 2500 can further include determining a first estimated departure time from the warehouse for the first vehicle; determine a pallet of deliverable goods to be delivered via the first vehicle; and directing a robot to take the pallet of deliverable goods to the pallet arrangement before the first estimated departure time.
  • each block and/or communication may represent a processing of information and/or a transmission of information in accordance with example embodiments.
  • Alternative embodiments are included within the scope of these example embodiments.
  • functions described as blocks, transmissions, communications, requests, responses, and/or messages may be executed out of order from that shown or discussed, including substantially concurrent or in reverse order, depending on the functionality involved.
  • more or fewer blocks and/or functions may be used with any of the ladder diagrams, scenarios, and flow charts discussed herein, and these ladder diagrams, scenarios, and flow charts may be combined with one another, in part or in whole.
  • a block that represents a processing of information may correspond to circuitry that can be configured to perform the specific logical functions of a herein-described method or technique.
  • a block that represents a processing of information may correspond to a module, a segment, or a portion of program code (including related data).
  • the program code may include one or more instructions executable by a processor for implementing specific logical functions or actions in the method or technique.
  • the program code and/or related data may be stored on any type of computer readable medium such as a storage device including a disk or hard drive or other storage medium.
  • the computer readable medium may also include non-transitory computer readable media such as non-transitory computer-readable media that stores data for short periods of time like register memory, processor cache, and random access memory (RAM).
  • the computer readable media may also include non-transitory computer readable media that stores program code and/or data for longer periods of time, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example.
  • the computer readable media may also be any other volatile or non-volatile storage systems.
  • a computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device.
  • a block that represents one or more information transmissions may correspond to information transmissions between software and/or hardware modules in the same physical device. However, other information transmissions may be between software modules and/or hardware modules in different physical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Systems and methods related to coordinating warehouses and supply chains are provided. Respective first and second estimated times of arrival at a loading dock of a warehouse are determined for respective first and second vehicles, where the first estimated arrival time is before the second estimated arrival time. A pallet arrangement at the loading dock is determined that includes a first pallet for the first vehicle and a second pallet for the second vehicle, where the first pallet is closer to the loading dock than the second pallet. The first estimated arrival time later changes to be after the second estimated arrival time. After the first estimated arrival time changes to be after the second estimated arrival time, a robot is instructed to modify the arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time.

Description

CROSS REFERENCE TO RELATED APPLICATION
The present application claims priority to U.S. Provisional patent application Ser. No. 62/551,181 filed on Aug. 28, 2017, the entire contents of which is incorporated herein by reference, as if fully set forth in this description.
BACKGROUND
One or more robots and/or other actors, such as human actors, human-driven vehicles, and autonomous vehicles, can operate throughout a supply chain. The supply chain can include various regions, such as buildings, roadways, flight routes, and seaways. Some of these regions are associated with one or more spaces, such as the interior of part or all of a building and/or its surrounding outdoor regions, where robots and/or the other actors perform tasks and/or otherwise utilize the space(s) together.
An example building in a supply chain is a warehouse, which may be used for storage of goods by a variety of different types of commercial entities, including manufacturers, wholesalers, and transport businesses. Example stored goods may include raw materials, parts or components, packing materials, and finished goods. The warehouse can be visited by various vehicles, such as human-driven and/or autonomous trucks, that load and unload goods at the warehouse. In some cases, the warehouse may be equipped with loading docks to allow goods to be loaded onto and unloaded from delivery trucks or other types of vehicles. The warehouse may also use rows of pallet racks to allow for storage of pallets, flat transport structures that contain stacks of boxes or other objects. Additionally, the warehouse may use machines or vehicles for lifting and moving goods or pallets of goods, such as cranes and forklifts. Human operators may be employed in the warehouse to operate machines, vehicles, and other equipment. In some cases, one or more of the machines or vehicles may be robotic devices guided by computer control systems.
SUMMARY
In one aspect, a method is provided. A first estimated arrival time for a first vehicle at a loading dock of a warehouse is determined. A second estimated arrival time for a second vehicle at the loading dock of the warehouse is determined. The first estimated arrival time is before the second estimated arrival time. A pallet arrangement at the loading dock of the warehouse is determined. The pallet arrangement includes a first pallet associated with the first vehicle and a second pallet associated with the second vehicle, where the first pallet is closer to the loading dock than the second pallet; after determining the pallet arrangement, the first estimated arrival time is determined to have changed to be after the second estimated arrival time. In response to determining that the first estimated arrival time has changed to be after the second estimated arrival time, a robot is instructed to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time.
In another aspect, a computing device is provided. The computing device includes one or more processors and data storage. The data storage includes at least computer-executable instructions stored thereon that, when executed by the one or more processors, cause the computing device to perform functions. The functions include: determine a first estimated arrival time for a first vehicle at a loading dock of a warehouse; determine a second estimated arrival time for a second vehicle at the loading dock of the warehouse, where the first estimated arrival time is before the second estimated arrival time; determine a pallet arrangement at the loading dock of the warehouse, where the pallet arrangement includes a first pallet associated with the first vehicle and the second pallet associated with the second vehicle, and where the first pallet is closer to the loading dock than the second pallet; after determining the pallet arrangement, determine that the first estimated arrival time has changed to be after the second estimated arrival time; and in response to determining that the first estimated arrival time has changed to be after the second estimated arrival time, instruct a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time.
In another aspect, a non-transitory computer readable medium is provided. The non-transitory computer readable medium has stored thereon instructions, that when executed by one or more processors of a computing device, cause the computing device to perform functions. The functions include: determining a first estimated arrival time for a first vehicle at a loading dock of a warehouse; determining a second estimated arrival time for a second vehicle at the loading dock of the warehouse, where the first estimated arrival time is before the second estimated arrival time; determining a pallet arrangement at the loading dock of the warehouse, where the pallet arrangement includes a first pallet associated with the first vehicle and the second pallet associated with the second vehicle, and where the first pallet is closer to the loading dock than the second pallet; after determining the pallet arrangement, determining that the first estimated arrival time has changed to be after the second estimated arrival time; and after determining that the first estimated arrival time has changed to be after the second estimated arrival time, instructing a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time.
In another aspect, a device is provided. The device includes: means for determining a first estimated arrival time for a first vehicle at a loading dock of a warehouse; means for determining a second estimated arrival time for a second vehicle at the loading dock of the warehouse, where the first estimated arrival time is before the second estimated arrival time; means for determining a pallet arrangement at the loading dock of the warehouse, where the pallet arrangement includes a first pallet associated with the first vehicle and the second pallet associated with the second vehicle, and where the first pallet is closer to the loading dock than the second pallet; means for, after determining the pallet arrangement, determining that the first estimated arrival time has changed to be after the second estimated arrival time; and means for, after determining that the first estimated arrival time has changed to be after the second estimated arrival time, instructing a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the figures and the following detailed description and the accompanying drawings.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is a diagram of a supply chain, in accordance with an example embodiment.
FIG. 2 illustrates a scenario where order-related data triggers a shipment to a retailer, in accordance with an example embodiment.
FIG. 3 illustrates a scenario where an event triggers re-routing of a shipment, in accordance with an example embodiment.
FIG. 4 illustrates a scenario where order-related data triggers shipments from a supplier to a manufacturer and from the manufacturer to a warehouse, in accordance with an example embodiment.
FIG. 5 illustrates a scenario where order-related data triggers shipments throughout a supply chain, in accordance with an example embodiment.
FIG. 6 illustrates a scenario where order-related data from a customer triggers shipments throughout a supply chain, in accordance with an example embodiment.
FIG. 7 depicts a system with a warehouse and supply chain coordinator, trucks, and robots associated with a warehouse, in accordance with an example embodiment.
FIGS. 8, 9, 10, 11, 12, 13, 14, 15, and 16 illustrate a scenario where trucks arrive, load, unload, and depart a warehouse, in accordance with an example embodiment.
FIG. 17 is a flow chart of a method, in accordance with an example embodiment.
FIGS. 18, 19, 20, and 21 illustrate a scenario where trucks arrive at a loading dock with pallets of a pallet arrangement being loaded into the trucks, in accordance with an example embodiment.
FIG. 22 is a block diagram of another supply chain, in accordance with an example embodiment.
FIG. 23 is a block diagram of still another supply chain, in accordance with an example embodiment.
FIG. 24 is a block diagram of yet another supply chain, in accordance with an example embodiment.
FIG. 25 is a flowchart of another method, in accordance with an example embodiment.
DETAILED DESCRIPTION Coordinated Logistics and Warehouse Manager
A warehouse and supply-chain coordinator is disclosed herein. The warehouse and supply-chain coordinator can coordinate and optimize various elements in one or more supply chains. The warehouse and supply-chain coordinator can receive data from multiple data sources and computer systems, such as, but not limited to: warehouse management systems (WMSs) operating in different warehouses, transportation systems, including freight brokering systems and/or in-vehicle monitoring systems for real-time estimated time of arrival (ETA) estimates, and demand forecasting systems. Some or all of the herein-described functionality of the warehouse and supply-chain coordinator can be implemented using software executing one or more (networked) computing devices; i.e., the warehouse and supply-chain coordinator can be software executing in the “cloud”.
The warehouse and supply-chain coordinator can provide services including, but not limited to: warehouse control services; robotic control services for controlling robots in a warehouse and/or autonomous vehicles; services for coordination of replenishment of inventory from multiple supply chain levels; services for coordinating freight and shipping transactions, including combining partial vehicle loads, increasing vehicle utilization, and decreasing empty miles driven; and services for rationalizing shipping networks. In some examples, the warehouse and supply-chain coordinator is used to control one supply chain; e.g., a supply chain for one company or other enterprise. In other examples, the warehouse and supply-chain coordinator is part of a marketplace and/or ecosystem where service providers for warehousing, freight transportation, etc. are matched with demands for services.
Example warehouse control services include, but are not limited to: yard management services for vehicle arrivals to the warehouse, such as routing trucks and/or other vehicles to appropriate loading docks, staging locations, and/or parking locations; services related to coordinating robots and/or other agents with vehicle arrivals at (a loading dock of) the warehouse based upon vehicle traceability and real-time ETA for maximizing warehouse throughput; services related to controlling robots within the warehouse to move inventory; services for automatic virtual receipt of goods based upon knowledge of vehicle contents and successful robotic unloading; services for “slotting” or locating inventory within the warehouse (e.g., locating inventory based on projected and/or actual stock keeping unit (SKU) velocity), services for “re-slotting” or relocating inventory within the warehouse (e.g., based upon changes in projected and/or actual SKU velocity and/or available warehouse space); services for reallocating inventory between customer orders based upon priority or required shipping time; and services for automatic virtual shipment of goods based upon knowledge of vehicle contents and successful robotic loading.
In this document, unless otherwise explicitly stated, the term “pallet” represents a container of one or more goods that can be brought to, stored at, and/or obtained from a warehouse; e.g, a pallet can include one or more: pallets, boxes, bags, bales, cartons, crates, packages, parcels, and/or other containers (or other objects) associated with goods that can be brought to, stored at, and/or obtained from a warehouse.
For example, the warehouse and supply-chain coordinator can estimate times of arrival and departure for vehicles arriving at and departing from a warehouse or other location. The warehouse and supply-chain coordinator can determine a pallet arrangement based on arrival and/or departure times. For example, a pallet arrangement associated with a loading dock can include a first pallet associated with a first vehicle and a second pallet associated with a second vehicle.
If the first vehicle is scheduled to arrive at the loading dock before the second vehicle, then the first pallet can be located closer to the loading dock than the second pallet, so to shorten a distance between a location of the first pallet and a location of the first vehicle at the loading dock, and thus reduce loading time of the first vehicle. However, if the estimated time of arrival changes so that the first vehicle is now estimated to arrive after the second vehicle, the warehouse and supply-chain coordinator can responsively order one or more robots to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet, and thus reduce loading time of the second vehicle. Example arrangements of pallets (and/or other objects) can include, but are not limited to, one or more of: a line of pallets (and/or other objects), a regular or irregular grid of pallets (and/or other objects), a stack of pallets (and/or other objects), a cube of pallets (and/or other objects), a pyramid of pallets (and/or other objects), and/or other arrangements of pallets (and/or other objects).
As another example, the warehouse and supply-chain coordinator can manage resources associated with the warehouse, such as loading dock time slots, parking locations, storage spaces (e.g., spaces for storing pallets), warehouse access, and robots at the warehouse. Resources can be managed by reserving or allocating a resource for one or more vehicles, robots, and/or other entities, releasing or deallocating a resource from one or more vehicles, robots, and/or other entities, switching reservations between vehicles, robots, and/or other entities, providing information about managed resources (e.g., a schedule of allocated time slots, data whether a particular parking spot is available at a particular time, information about a location of a robot).
In some cases, resources can be allocated based on estimated and/or actual arrival times; e.g., access to a warehouse can be granted to a vehicle when the vehicle actually arrives at the warehouse, a time slot at a loading dock can be reserved for a vehicle scheduled to arrive at the warehouse during the time slot, a robot can be directed to arrive a loading dock at or about the same time that a vehicle arrives at the loading dock. Then, when an estimated arrival time (or departure time) changes, the warehouse and supply-chain coordinator can: (1) release an original time slot at a loading dock and/or parking spot from a vehicle scheduled to arrive at the changed arrival time (or departure time); (2) reserve the original time slot at the loading dock and/or parking spot for a vehicle scheduled to arrive (or depart) before the changed arrival time (or departure time), (3) reserve a new time slot at the loading dock and/or parking spot for the vehicle scheduled to arrive (or depart) at the changed arrival time (or departure time), and (4) schedule one or more robots to be at the loading dock at or before the beginning of the original time slot and/or the new time slot. The original and/or new time slot and/or parking spot can be based on the changed arrival time (or departure time); e.g., a reserved time slot includes/starts at an estimated arrival time, a reserved time slot ends at/before an estimated departure time, a parking spot is reserved from an estimated arrival time to a beginning of a time slot, etc.
Also, other resources, such as warehouse access and robots, can be based on an arrival time or departure; e.g., a warehouse gate can be opened to enable access to a vehicle at an arrival time and/or a departure time, robots can be scheduled to be at a loading dock when a vehicle arrives and/or until a vehicle departs, space in a warehouse can be made available for pallets scheduled to be unloaded from a vehicle arriving at an ETA, pallets can be moved toward and/or to a loading dock at an estimated arrival time to be loaded onto a vehicle arriving at the estimated arrival time. More specifically, robots can be assigned to tasks that are based on an arrival time or departure. These tasks can include picking up one or more pallets and taking the palllet(s) to a loading dock at least X minutes before a truck arrives at the loading dock, where X is an estimated number of minutes estimated to take the pallet(s) from their location(s) in the warehouse to the loading dock. These tasks can be scheduled based on the truck's estimated time of arrival so that congestion at the loading dock is reduced or eliminated to reduce or eliminate delay in delivering the pallet(s) from the warehouse to the truck.
The warehouse and supply-chain coordinator can direct robots to perform various tasks in and around the warehouse, such as, but not limited to: loading a vehicle, unloading a vehicle, pick-and-place operations where a robot gets (or “picks”) one or more items, such as pallets, from one location and takes (or “places”) the item(s) to a second location, inspecting goods, and swapping item(s) between locations.
To inspect goods, the robot can examine a pallet of goods; e.g., a pallet arriving on a vehicle and/or a pallet already stored in the warehouse, to determine if goods of the pallet are in compliance with a contract. For example, suppose a contract states that a pallet of goods that includes 100 mobile devices is to be shipped on truck T1 to a warehouse W1 where robot R1 is located. In this example, suppose truck T1 only includes one pallet P1 to be unloaded at warehouse W1. Then, upon arrival of truck T1, the robot R1 can examine pallet P1 carried by truck T1, perhaps before P1 is unloaded from truck T1 into warehouse W1, to determine whether pallet P1 actually includes 100 mobile devices. If robot R1 determines that pallet P1 includes 100 mobile devices, then robot R1 can inform the warehouse and supply-chain coordinator that inspection of pallet P1 succeeded, and the warehouse and supply-chain coordinator can both (a) generate a receipt for pallet P1 and (b) direct robot R1 and/or one or more other robots to unload pallet P1 from truck T1 into warehouse W1. Otherwise, if robot R1 determines that pallet P1 does not include 100 mobile devices, then robot R1 can inform the warehouse and supply-chain coordinator that inspection of pallet P1 failed, and the warehouse and supply-chain coordinator can reject delivery of pallet P1 and direct robot R1 and/or one or more other robots to leave pallet P1 on truck T1 as rejected goods. In some cases, rejecting delivery of a pallet of goods includes sending a rejection notice to a supplier of the pallet of goods informing the supplier that the pallet was rejected. Many other examples of inspecting and/or rejecting goods are possible as well.
In some examples, the warehouse and supply-chain coordinator can coordinate additional aspects of a supply chain beyond warehouses. For examples, the warehouse and supply-chain coordinator can determine one or more orders requesting production, storage, and/or delivery of one or more pallets of goods using a supply chain that includes the warehouse and supply-chain coordinator. The supply chain can also include locations, such as supplier locations, warehouses, and retail locations, connected by a plurality of paths such as roads, water shipping routes, and/or airways, where at least one pallet is conveyed from a first location to the second location using a vehicle traveling on a path from the first location to a second location, where at least one of the first location and the second location includes a warehouse capable of storing the at least one pallet, and where the vehicle includes an autonomous vehicle configured to be controlled by the warehouse and supply-chain coordinator. Then, the warehouse and supply-chain coordinator can determine whether an event occurs that is related to the at least one pallet. The event can include, but is not limited to one or more of: an event related to goods of the at least one pallet, an event related to the first and/or second locations, an event related to the autonomous vehicle, a weather-related event, a seasonally-related event, an event related to search queries and/or results, an event related to advertising and/or social media, and other types of events. In some cases, the event includes an event where a location does not store at least a quantity of an item; e.g., the location is running relatively-low and/or has run out of the item.
After determining that the event is related to the at least one pallet, the warehouse and supply-chain coordinator can change the path of the vehicle to a third location in the supply chain. As one specific example, suppose the pallet of goods includes bottled water, and the warehouse and supply-chain coordinator determines that an event E1 occurs where a hurricane or other storm is predicted to reach the third location (thus increasing a demand for the bottled water at the third location) but not reach the second location. Then, the warehouse and supply-chain coordinator can change the path of the vehicle with the pallet having bottled water to the third location. As another specific example, suppose the pallet of goods includes football jerseys and the warehouse and supply-chain coordinator determines that an event E2 occurs where a location of a scheduled football game is moved from the second location to the third location. Then, the warehouse and supply-chain coordinator can change the path of the vehicle with the pallet having the football jerseys to the third location. As a third specific example, suppose that the pallet of goods includes an item I, and the warehouse and supply-chain coordinator determines that an event E3 occurs where search queries and/or results including references to item I with respect to the third location are greatly increased, but search queries and/or results including references to item I associated with the second location are not increased. Then, the warehouse and supply-chain coordinator can change the path of the vehicle with the pallet having the item Ito the third location. Many other examples are possible as well.
Some or all locations in the supply chain can have priorities, which can change based on events. Continuing the bottled-water example above, suppose that the priority of the second location before E1 is P2_BEFORE and the priority of the third location before E1 is P3_BEFORE, where P2_BEFORE is higher than P3_BEFORE since the second location is the destination for the pallet of goods having the bottled water. Then, upon determining the E1 has occurred, the warehouse and supply-chain coordinator can recalculate or otherwise determine the priority of the third location to be P3_AFTER, where P3_AFTER is a higher priority than P2_BEFORE. Then, since P3_AFTER is a higher priority than P2_BEFORE, the warehouse and supply-chain coordinator can change the path of the vehicle with the pallet having the bottled water to the third location.
In some cases, the warehouse and supply-chain coordinator can trigger new orders and/or replenishment of supplies based on existing orders and/or changed orders. For example, suppose the warehouse and supply-chain determines that an order O1 orders a quantity Q1 of goods G1 to be carried from a location L1 to a location L2. Then, the warehouse and supply-chain can route and/or otherwise assign a vehicle V1 to pick up at least the quantity Q1 of goods G1 from location L1 and carry the quantity Q1 of goods G1 to location L2. In this example, after routing vehicle V1 to pick up the quantity Q1 of goods G1 at location L1, the warehouse and supply-chain coordinator determines that location L1 does not have the quantity Q1 of goods G1, but another location L3 has at least the quantity Q1 of goods G1. Then, the warehouse and supply-chain coordinator can reroute and/or otherwise reassign vehicle V1 to pick up at least the quantity Q1 of goods G1 from location L3.
The warehouse and supply-chain coordinator can replenish quantities of goods by ordering items from a supplier. Continuing the example above, after the warehouse and supply-chain coordinator determines that location L1 does not have the quantity Q1 of goods G1, the warehouse and supply-chain coordinator can generate and send an order O1 to supplier S1 for a quantity Q2 of goods G1. Upon reception of order O1, supplier S1 can send a response R1 to the warehouse and supply-chain coordinator indicating that order O1 is fulfilled and awaiting shipment. Upon sending order O1, upon receiving response R1, or at some other time, the warehouse and supply-chain coordinator can generate and send an order O2 to vehicle V2 to pick up the quantity Q2 of goods G1 from supplier S1. In some examples, order O2 also directs vehicle V2 to take at least some of the quantity Q2 of goods G1 from supplier S1 to location L1, which did not have a quantity Q1 of goods G1. In other examples, order O2 also directs vehicle V2 to take at least some of the quantity Q2 of goods G1 from supplier S1 to another location L3. In still other examples, order O2 also directs vehicle V2 to take at least some of the quantity Q2 of goods G1 from supplier S1 to location L1 via a waypoint location WL1; e.g., to pick up goods at WL1 and/or to deliver goods to WL1. When vehicle V2 arrives at waypoint location WL1 (or location L1), the warehouse and supply-chain coordinator can receive information I1 that vehicle V2 has arrived at waypoint location WL1 (or location L1) or that vehicle V2 is scheduled to arrive at waypoint location WL1 (or location L1). Upon receiving information I1, the warehouse and supply-chain coordinator can generate and send order O3 to one or more robots at waypoint location WL1 (or location L1) to load and/or unload vehicle V2. After the robot(s) have loaded and/or unloaded vehicle V2, vehicle V2 can leave waypoint location WL1 (or location L1) and continue on to another location. Many other examples of routing vehicles, re-routing vehicles, orders, replenishment, and/or other operations related to warehouses and/or supply chains are possible as well.
The warehouse and supply-chain coordinator can provide services and/or applications related to transportation network rationalization. In some examples, the warehouse and supply-chain coordinator determines movement of goods, reviews possible shipping and warehousing permutations, and generates recommendations for transport network solutions. Such solutions can include, but are not limited to, solutions involving: consolidation of partial vehicle shipments to improve vehicle utilization/decrease empty miles driven, passing of freight between warehouses to increase vehicle and/or warehouse utilization; relocation of warehouses and inventory placement to more economically utilize transportation routes and establish more efficient shipping networks, and in some cases, leverage inventory, warehouses, and vehicles owned by multiple parties.
The warehouse and supply-chain coordinator can coordinate groups of robots efficiently to optimize the loading and unloading of vehicles at a facility, such as a loading dock of a warehouse. In particular, the warehouse and supply-chain coordinator can precisely time the arrival of a pallet at the front of the loading dock when a truck arrives and economically utilize the space at the loading dock; e.g., as a queue of pallets. By planning/coordinating future robot actions the warehouse and supply-chain coordinator can precisely determine where a pallet destined for shipment is located, that is, when the pallet destined for shipment will arrive in the queue, when the pallet destined for shipment will be slotted in the front of the queue for immediate shipment, etc. Designating one or more robots to move pallets in the queue of pallets to save a few minutes for an incoming vehicle may be more feasible than assigning human workers/drivers to move these pallets with a fork truck. Also, some robots are smaller than a standard forklift and so can more easily fit in tight spaces at the loading dock. Further, the use of two or more robots directed and coordinated by the warehouse and supply-chain coordinator can also more easily reorder the queue, both by reducing the number of operations used in queue reordering and by receiving navigation instructions from a single control system as opposed to two autonomous agents trying to coordinate their actions in the confines of a loading dock.
In some examples, instructions and/or messages communicated between the warehouse and supply-chain coordinator and robots are communicated between the warehouse and supply-chain coordinator and other agents than robots, such as, but not limited to, human agents, material handling systems operated and/or managed by humans, and human-assisted robotic devices. Examples of material handling systems include, but are not limited to, electrical systems, mechanical systems, and electro-mechanical systems, such as automated pallet wrapping machines, powered doors, etc.
In other examples, the warehouse and supply-chain coordinator operates using a work plan. In these examples, pallets can be physically placed at or near a loading dock as directed by an expected pallet movement schedule of the work plan. Then, when the warehouse and supply-chain coordinator receives data that truck arrival times and/or estimated times of arrival have changed the warehouse and supply-chain coordinator can update the work plan in accord with the changed truck arrival times/estimated times of arrival. In these examples, the warehouse and supply-chain coordinator changes the work plan based on changes in truck arrival times/estimated times of arrival, rather than typical workflows that schedule work within the warehouse based on scheduled appointments for the arriving trucks.
The use of the warehouse and supply-chain coordinator can make supply chains more flexible, and thus more efficient. Other efficiencies can be gained by coordinating warehouse activities with arriving and departing trucks—time can be saved when the warehouse and supply-chain coordinator arranges for robots to be waiting for incoming trucks and arranges for pallets of goods destined for an outgoing truck to be near its loading dock. Fuel and time expended by trucks waiting for loading docks and goods at warehouses can be saved as well. The warehouse and supply-chain coordinator can provide better visibility into the supply chain. By making supply chains more efficient and flexible, the warehouse and supply-chain coordinator can enable consolidation of shipments, routes, vehicles, warehouses, and suppliers.
Example Warehouse and Supply-Chain Coordinator and Supply Chains
FIG. 1 is a diagram of a supply chain, in accordance with an example embodiment. The supply chain includes warehouse and supply-chain coordinator 100, supplier 110, manufacturer 120, warehouses 130, 140, warehouse/distribution center 150, warehouse/fulfillment center 156, retailer 160, and customers 170, 172. These entities are connected by routes traversed by various vehicles, including trucks 112, 124, 142, 144, 152, 158, air freight 134, sea freight 136, and drones 154, 162. In the supply chain shown in FIG. 1, a route between supplier 110 and manufacturer 120 is traversed by truck 112, a route between manufacturer 120 and warehouse 130 is traversed by truck 124, and routes between warehouse 130 and warehouse 140 are traversed by air freight 134 and sea freight 136.
As indicated by dashed lines in FIG. 1, warehouse and supply-chain coordinator 100 can communicate with supplier 110, manufacturer 120, warehouses 130, 140, warehouse/distribution center 150, warehouse/fulfillment center 152, and retailer 160. In some examples, warehouse and supply-chain coordinator 100 can communicate with additional entities; e.g., some or all of trucks 112, 124, 142, 144, 152, 158, air freight 134, sea freight 136, customers 170, 172, and/or additional entities related to one or more supply chains; e.g., one or more robots and/or other agents working in a warehouse, at a supplier, at a manufacturer, etc.
Also in the supply chain shown in FIG. 1, a route between warehouse 140 and warehouse/distribution center 150 is traversed by truck 142, a route between warehouse 140 and warehouse/fulfillment center 156 is traversed by truck 144, routes between warehouse/distribution center 150 and retailer 160 are traversed by truck 152 and drone 154; i.e., an autonomous aerial vehicle acting as drone 154, a route between retailer 160 and customer 170 is traversed by drone 162, and a route between warehouse/fulfillment center 156 and customer 172 is traversed by truck 158. In other examples, more, fewer, and/or different routes and vehicles traversing routes are possible in a supply chain. In still other examples, more, fewer, and/or other locations in a supply chain are utilized; e.g., there are more and/or different suppliers, there are more and/or different manufacturers, there are more, fewer, and/or different warehouses, etc. In even other examples, drones, such as drones, 154, 162, and 164 are utilized to cover a “last mile” from a warehouse; e.g., a drone is used to deliver goods on routes from warehouses, such as warehouse 140, warehouse/distribution center 150, and/or warehouse/fulfillment center 156, to customers, such as customers 170, 172. In particular, FIG. 1 shows drone 164 delivering goods from warehouse/fulfillment center 156 to customer 172.
In the supply chain shown in FIG. 1, a supplier location provides components used by a manufacturer location to make and/or otherwise prepare one or more goods or shipment. In some examples, a manufacturer location and/or a supplier location store raw materials used to make components and/or goods, such as raw materials 122 stored at manufacturer 120.
A supply chain can have one or more owners. For example, supplier 110 can be owned by a first company, manufacturer 120 can be owned by a second company, warehouses 130 and 140 can be owned by a third company, etc. Also, vehicles in the supply chain may be owned by different entities than own buildings in the supply chain, where buildings are depicted in FIG. 1 using rounded rectangles; e.g., customers 170, 172 can be in buildings such as homes or business related buildings such as offices, factories, and/or other kinds of business-related buildings; some or all of supplier 110, manufacturer 120, and warehouses 130, 140 can include one or more buildings, etc.
A supply chain can be managed by one or more entities, which may or may not own any buildings or vehicles in the supply chain. For example, a warehouse management company can operate warehouse 130 for the owner of warehouse 130; in other examples, the owner of warehouse 130 can manage/operate the warehouse.
Various data can be used to operate the supply chain. For example, data on a per-SKU basis can be maintained; e.g., a quantity of an item represented by a SKU at a particular location in the supply chain, data on SKU velocity, one or more costs, prices, weights, sizes, dimensions, sources, and/or destinations of items represented by a SKU, etc. Data about buildings, locations, and/or vehicles in the supply chain can be maintained; e.g., one or more locations, costs, prices, weights, sizes, dimensions, sources, and/or destinations of buildings and/or vehicles in the supply chain; data about a route
One or more computing devices executing software can be utilized as warehouse and supply-chain coordinator 100. For example, the or more computing devices acting as warehouse and supply-chain coordinator 100 can be utilized as a cloud and/or network-based solution. The warehouse and supply-chain coordinator 100 can include and/or communicate with a warehouse management system (WMS) used to control operations within one or more warehouses and/or to provide information about items/entities that are “upstream” (or logically closer to a supplier location. In the supply chain, such as supplier 110) and/or items/entities that are downstream (or logically closer to a customer location, such as customer 170 or 172).
Warehouse and supply-chain coordinator 100 can provide user interfaces enabling review, creation, updating, and deletion of data used to operate the supply chain and can send and receive messages to control various entities, such as, but not limited to, robots, vehicles, and access control systems such as gates providing ingress and/or egress to a building or other locations. Warehouse and supply-chain coordinator 100 also can control various resources used in operating a warehouse and/or a supply-chain, such as access to a facility, time slots for loading/unloading vehicles, storage locations or “slots”, parking spots, cargo capacity of a vehicle. Warehouse and supply-chain coordinator 100 can provide visibility and control of goods moving through the supply chain; e.g, visibility about goods that are upstream and/or downstream of one or more points in the supply chain (e.g., upstream and/or downstream of one or more selected warehouses, suppliers, retailers, and/or customers). This visibility can be provided by tracking shipments of goods through the supply chain and extracting information from these goods at a SKU level, enabling visibility of specific goods within the supply chain; e.g., warehouse and supply-chain coordinator 100 can provide information about locations of goods having one or more given SKUs, locations of shipments carrying goods having one or more given SKUs, pending, in-progress, and/or fulfilled orders of goods having one or more given SKUs from one or more suppliers, etc.
While managing and coordinating shipments through the supply chain, warehouse and supply-chain coordinator 100 can communicate with various transportation modes, such as air, sea, and land-based modes of transportation. Warehouse and supply-chain coordinator 100 can combine loads from multiple warehouses into one shipment and consolidate loads from multiple shipments for storage at one warehouse. Warehouse and supply-chain coordinator 100 can account for various constraints at a given warehouse, such as a number of loading docks, space for loading and/or unloading goods, total amount of available storage, types of storage facilities (e.g., refrigerated storage, climate-controlled storage, storage for liquid and/or gaseous goods), labor and/or robot availability, to reduce and/or avoid inefficiencies at a warehouse. Warehouse and supply-chain coordinator 100 can stage goods for outgoing orders at a loading dock to increase efficiencies of loading goods onto trucks, ships, rail cars, planes, drones, and/or other vehicles; e.g., stage goods in a pallet arrangement that ensure pallets destined for a truck at a loading dock are closest to the loading dock. Warehouse and supply-chain coordinator 100 can also manage storage locations within a warehouse to enable efficient unloading of vehicles at loading docks; e.g., allocate storage close to a loading dock for an incoming vehicle to the incoming vehicle, so that goods can be rapidly unloaded from the incoming vehicle to the allocated storage.
Scenarios 200, 300, 400, 500, and 600 reflect various applications of a flexible supply chain utilizing warehouse and supply-chain coordinator 100, such as the supply chain shown in FIG. 1 discussed above, and in FIGS. 2, 3, 4, 5, and 6 discussed below.
FIG. 2 illustrates scenario 200 where order-related data (ORD) 220 triggers shipment 222 to retailer 160, in accordance with an example embodiment. Scenario 200 involves shipment 210 of goods G200 from warehouse/distribution center 150 to retailer 160 via truck 152. After shipment 210, order-related data 220 is communicated between warehouse 140 and supply-chain coordinator 100 leading to shipment of goods G200 from warehouse 140 to warehouse/distribution center 150 via truck 142.
Scenario 200 begins with shipment 210 of goods G200 from warehouse/distribution center 150 to retailer 160 via truck 152. Shipment 210 was triggered by an order O200 from retailer 160 for goods G200 (and perhaps other goods) to warehouse and supply-chain coordinator 100 that occurred prior to scenario 200. Upon receiving order O200, warehouse and supply-chain coordinator 100 located a warehouse that had enough of goods G200 to satisfy order O200; in this case, warehouse/distribution center 150 has enough of goods G200 to satisfy order O200. Warehouse and supply-chain coordinator 100 ordered truck 152 to warehouse/distribution center 150 to load goods G200 (and any other goods available at warehouse/distribution center 150 to satisfy order O200) and deliver the loaded goods G200 to retailer 160.
After truck 152 has loaded goods G200, warehouse and supply-chain coordinator 100 communicates order-related data 220 with warehouse 140. In scenario 200, order-related data 220 includes an order from warehouse and supply-chain coordinator 100 to deliver goods G200 from warehouse 140 to warehouse/distribution center 150, an order to truck 142 to load goods G200 from warehouse 140, and orders to robots (and perhaps other agents) at warehouse 140 to load goods G200 onto truck 142. In other examples, warehouse and supply-chain coordinator 100 also includes a confirmation from warehouse 140 that goods G200 are available therein or a notification from warehouse 140 that goods G200 are not available.
After truck 142 is loaded with goods G200 at warehouse 140, shipment 222 begins where truck 142 conveys goods G200 (and perhaps other goods) to warehouse/distribution center 150. Upon arrival at warehouse/distribution center 150, goods G200 are unloaded from truck 142, and scenario 200 can be completed.
In a related scenario, order-related data 220 is communicated before shipment 210 begins. For example, order-related data 220 can include a prediction that retailer 160 will order goods G200 and/or a predictive order of goods G200 placed on behalf of retailer 160 before retailer 160 actually places an order for goods G200 with warehouse and supply-chain coordinator 100. The prediction of an order of goods G200 and/or the predictive order of goods G200 can be based on order-predictive data related to one or more entities, such as retailer 160, where the order-predictive data includes, but is not limited to:
  • point-of-sale (POS) data from retailer 160 indicating sales of goods G200,
  • an inventory of goods G200 at retailer 160 (e.g., if warehouse and supply-chain coordinator 100 determines that retailer 160 has a relatively small quantity of goods G200, then warehouse and supply-chain coordinator 100 can predictively order goods G200 for retailer 160),
  • data about historical orders from retailer 160 (e.g., retailer 160 has ordered goods G200 most or every day, three days, week, month, quarter, etc., and so warehouse and supply-chain coordinator 100 can predictively order goods G200 for retailer 160),
  • Internet-related data, such as search query data related to goods G200, social-media data, search conversion rates related to goods G200, and/or other data available via the internet indicating customer interest in goods G200 (e.g., if warehouse and supply-chain coordinator 100 determines a relatively-large number of searches involving terms such as “G200” are being placed, perhaps by users in a region at or near retailer 160, then warehouse and supply-chain coordinator 100 can predictively order goods G200 for retailer 160), and
  • data indicating trends in POS data, inventory data, data about historical orders, Internet-related data, and/or other data
In the related scenario, order-related data 220 includes a predictive order of goods G200 destined for retailer 160 that is sent to warehouse 140. After communicating the predictive order of goods G200 to warehouse 140, warehouse and supply-chain coordinator 100 orders two shipments: shipment 210 from warehouse 140 to replenish goods G200 at warehouse/distribution center 150 and shipment 222 from warehouse/distribution center 150 to retailer 160. If warehouse/distribution center 150 has enough of goods G200 to satisfy the predictive order, then shipments 210 and 222 can take place in parallel and/or shipment 222 can precede shipment 210. If warehouse/distribution center 150 does not have enough of goods G200 to satisfy the predictive order, then shipment 222 can precede shipment 210.
As such, scenario 200 can be considered to be a “reactive” scenario, where warehouse and supply-chain coordinator 100 reacts to order O200 for goods G200 from retailer 160 to replenish warehouse/distribution center 150. Also, the related scenario mentioned above can be considered to be a “proactive” scenario, where warehouse and supply-chain coordinator 100 issues a predictive order for goods G200 on behalf of retailer 160 without retailer 160 actually placing an order.
Generally speaking, order-related data, such as order-related data 220, can include one or more: orders, order-predictive data, predictions of orders, predictive orders, confirmations of orders, event notifications, notifications that orders cannot be carried out and/or satisfied, data about inspections of goods in and/or related to the supply chain, and/or other data associated with one or more orders involving a supply chain. In some embodiments, order-related data can be used, generated, and/or processed using machine-learning techniques utilizing neural networks to find patterns in data, such as order-related data, and generate predictive orders and/or other commands based on the patterns found in the data. These patterns can include, but are not limited to, patterns in the above-mentioned order-predictive data (e.g., data indicating trends) and/or other data. Other and/or additional techniques for using, generating, and/or processing order-related data can be used as well, or instead of, machine-learning techniques.
FIG. 3 illustrates scenario 300 where event 320 triggers re-routing of a shipment, in accordance with an example embodiment. Scenario 300 involves occurrence of event 320 associated with warehouse/fulfillment center 156 while shipment 310 of goods G300 is en route from warehouse 140 to warehouse/distribution center 150 via truck 142. Warehouse/fulfillment center 156 sends event notification 322 regarding event 320 to warehouse and supply-chain coordinator 100. Warehouse and supply-chain coordinator 100 determines that, because of event 320, warehouse/fulfillment center 156 has a higher priority for goods G300 than warehouse/distribution center 150. Subsequently, warehouse and supply-chain coordinator 100 sends reroute message 330 to reroute truck 142 to deliver goods G300 to warehouse/fulfillment center 156. Warehouse and supply-chain coordinator 100 sends route message 340 to truck 144 to route the truck to warehouse 140 to pick up goods G300 and deliver goods G300 to warehouse/distribution center 150. Additionally, warehouse and supply-chain coordinator 100 sends event notification 342 to inform warehouse/distribution center 150 that truck 142 was rerouted and that truck 144 will bring goods G300 to warehouse/distribution center 150.
At an onset of scenario 300, truck 142 is carrying goods G300 to warehouse/distribution center 150 as part of shipment 310. Then, event 320 occurs, where event 320 is related to warehouse/fulfillment center 156 and goods G300. As one example, if goods G300 includes bottled water, and event 320 is “a hurricane made landfall near warehouse/fulfillment center 156”, then warehouse/fulfillment center 156 can have an increased demand for bottled water. As another example, if goods G300 includes team jerseys for Team A, and event 320 is “Team A was just announced as playing a big game near warehouse/fulfillment center 156”, then warehouse/fulfillment center 156 can have an increased demand for Team A jerseys. As a third example, event 320 can be “warehouse/fulfillment center 156 has sold out of a month's supply of goods G300 in one day”, then warehouse/fulfillment center 156 can have an increased demand for goods G300. Other events related to both goods G300 and warehouse/fulfillment center 156 are possible as well.
After event 320 occurs, warehouse/fulfillment center 156 sends event notification (EN) 322 informing warehouse and supply-chain coordinator 100 of the occurrence of event 320. In some examples, event notification 322 also includes a request for a change in priority for one or more goods; e.g., requesting an increased priority for snow shovels when event 320 is a prediction of an imminent blizzard, requesting a decreased priority for Team B related gear after a game with Team B is canceled, etc. Other reasons than increased or decreased demand for goods are possible for changing priority of delivery (or pick up) of goods to a location, such as a priority of delivery of goods G300 to warehouse/fulfillment center 156, e.g., reasons related to changes in costs, such as monetary costs for delivery and/or goods, reasons related to transportation of goods; e.g., a total amount of miles traveled by a vehicle destined for a location carbon-footprint-related costs, reasons related to an entity in the supply chain, such as a warehouse, vehicle, manufacturer, or supplier; e.g., an increase or decrease in capacity of a, damage to the entity, a surplus or deficit of goods at the entity, etc. Many other reasons for changing priority of goods, shipments, and/or entities in the supply chain are possible as well.
Scenario 300 continues with warehouse and supply-chain coordinator 100 receiving event notification 322. Then, based on event notification 322, warehouse and supply-chain coordinator 100 changes the priority of warehouse/fulfillment center 156 to have a higher priority for goods G300 than warehouse/distribution center 150, and subsequently determines to reroute truck 142 to warehouse/fulfillment center 156 to deliver high-priority goods G300. Rerouting truck 142 effectively cancels shipment 310 to warehouse/distribution center 150. In other scenarios, warehouse and supply-chain coordinator 100 can change one or more priorities associated with goods G300, truck 142, warehouse/distribution center 150, warehouse/fulfillment center 156, and/or shipment 310 for other reasons than event notification 322; e.g., some or all of the reasons listed above for changing priorities.
After warehouse and supply-chain coordinator 100 determines to reroute truck 142, warehouse and supply-chain coordinator 100 sends reroute message 330 to truck 142 to change truck 142's route to deliver goods G300 to warehouse/fulfillment center 156. In response to reroute message 330, truck 142 stops shipment 310 and begins shipment 332 to warehouse/fulfillment center 156.
Scenario 300 continues with warehouse and supply-chain coordinator 100 determining that a quantity of goods G300 are available at warehouse 140, and that truck 144 is available to deliver goods G300 from warehouse 140 to warehouse/distribution center 150. Then, warehouse and supply-chain coordinator 100 sends route message 340 to truck 144 to route the truck to warehouse 140 to pick up goods G300 and deliver goods G300 to warehouse/distribution center 150. Additionally, warehouse and supply-chain coordinator 100 sends event notification 342 to inform warehouse/distribution center 150 that truck 142 was rerouted and that truck 144 will bring goods G300 to warehouse/distribution center 150. In some examples, event notification 342 includes an ETA for truck 142/goods G300.
After truck 142 delivers goods G300 to warehouse/fulfillment center 156 as part of shipment 332, scenario 300 can be completed. In other scenarios, truck 142 delivers goods G300 to warehouse/fulfillment center 156 before truck 144 is routed to warehouse 140 and/or before event notification 342 is sent to warehouse/distribution center 150.
FIG. 4 illustrates scenario 400 where order-related data 410 triggers shipments 424, 426 from a supplier to a manufacturer and from the manufacturer to a warehouse, in accordance with an example embodiment. Scenario 400 involves communication of order-related data 410 between warehouse and supply-chain coordinator 100 and manufacturer 120 leading to warehouse and supply-chain coordinator 100 sending order 420 to supplier 110, where order 420 requests shipment 424 for raw materials 122 to manufacturer 120. Warehouse and supply-chain coordinator 100 also sends order 422 to manufacturer 120 requesting forecast amount FA400 of goods G400 and subsequent shipment of the goods G400 to warehouse 130. The forecast amount FA400 of goods G400 are manufactured by manufacturer 120 and carried as part of shipment 426 using truck 124 to warehouse 130. Once shipment 426 arrives at warehouse 130 and goods G400 are unloaded from truck 124 at warehouse 130, scenario 400 ends.
FIG. 4 shows that scenario 400 begins with communication of order-related data 410 between warehouse and supply-chain coordinator 100 and manufacturer 120. Specifically for scenario 400, order-related data 410 includes a request from warehouse and supply-chain coordinator 100 for a maximum amount of goods G400 that can be made based on an amount of raw materials 122 at a location of manufacturer 120. In response to the request, manufacturer 120 sends a response message informing warehouse and supply-chain coordinator 100 that an amount A400 of goods G400 can be made with the amount of raw materials 122 at the location of manufacturer 120, and that raw materials 122 is a limiting factor; that is, the amount of goods G400 that can be manufactured is limited by an amount of raw materials 122.
After receiving the response message, warehouse and supply-chain coordinator 100 determines a forecast amount FA400 of goods G400 that will likely be required at warehouse 130. In scenario 400, the forecast amount FA400 of goods G400 is determined using order-predictive data for goods G400, where order-predictive data is discussed above in the context of scenario 200 and FIG. 2. More specifically, warehouse and supply-chain coordinator 100 determines forecast amount FA400 based on orders for goods G400 and trends in order data indicating orders for goods G400 that are likely to arrive in the near future.
Warehouse and supply-chain coordinator 100 also determines that the forecast amount FA400 of goods G400 is greater than the amount A400 provided by manufacturer 120 in the response message. The response message also indicates that raw materials 122 are a limiting factor for production of goods G400. As raw materials 122 are a limiting factor for production of goods G400, warehouse and supply-chain coordinator 100 determines manufacturer 120 will need more raw materials 122 to produce at least the forecast amount FA400 of goods G400.
After determining that manufacturer 120 will need more raw materials 122, warehouse and supply-chain coordinator 100 sends order 420 to supplier 110 for raw materials 122 on behalf of manufacturer 120. In response to order 420, supplier 110 produces raw materials 122 and puts raw materials 122 on truck 112 as part of shipment 424 to manufacturer 120. In some scenarios, supplier 110 informs warehouse and supply-chain coordinator 100 and/or manufacturer 120 that raw materials 122 are on truck 112 as part of shipment 424.
Warehouse and supply-chain coordinator 100 also sends order 422 to manufacturer 120 requesting forecast amount FA400 of goods G400 and subsequent shipment of the goods G400 to warehouse 130. Order 422 also informs manufacturer 120 that order 420 for raw materials 122 has been placed on behalf of manufacturer 120. In some scenarios, order 422 includes information about shipment 424 and/or truck 112; e.g., ETA of shipment 424, identifying information about truck 112, a carrier providing shipment 424, etc.
After raw materials 122 in shipment 424 are unloaded at manufacturer 120, and manufacturer 120 receives order 422 for the forecast amount FA400 of goods G400, manufacturer 120 manufactures the forecast amount FA400 of goods G400. Upon manufacture of the forecast amount FA400 of goods G400, the forecast amount FA400 of goods G400 are carried as part of shipment 426 using truck 124 to warehouse 130. Once shipment 426 arrives at warehouse 130 and goods G400 are unloaded from truck 124 at warehouse 130, scenario 400 ends.
Scenario 400 can be considered to be a proactive scenario, as order 420 for raw materials is made before order 422 for goods G400. In a related reactive scenario, warehouse and supply-chain coordinator 100 first places order 422 with manufacturer 120 and manufacturer 120 subsequently places order 420 to supplier 110 for raw materials 122.
FIG. 5 illustrates a scenario 500 where order-related data 510, 520, 530, 540, 550 triggers shipments 512, 522, 532, 542, 552 throughout a supply chain, in accordance with an example embodiment. Scenario 500 involves order-related data 510, 520, 530, 540, 550 regarding goods G500 communicated between warehouse and supply-chain coordinator 100 and retailer 160, warehouse 140, warehouse 130, manufacturer 120, and supplier 110, respectively. Based on order-related data 510, 520, 530, 540, 550, respective shipments 512, 522, 532, 542, 552 related to goods G500 are made, with shipment 512 between warehouse/distribution center 150 and retailer 160, shipment 522 between warehouse 140 and warehouse/distribution center 150, shipment 532 between warehouse 130 and warehouse 140 (via sea), shipment 542 between manufacturer 120 and warehouse 130, and shipment 542 between supplier 110 and manufacturer 120. Upon completion of all of shipments 512, 522, 532, 542, 552, scenario 500 can be completed.
Scenario 500 is a proactive scenario, where warehouse and supply-chain coordinator 100 first receives order-related data 510 that includes POS data indicating sales of goods G500 at retailer 160. Utilizing the POS data in order-related data 510 and other order-predictive data, warehouse and supply-chain coordinator 100 determines a forecast amount FA500 of goods G500 to be provided throughout the supply chain shown in FIG. 5. Warehouse and supply-chain coordinator 100 also determines that to have sufficient supplies of goods G500 to meet forecast amount FA500 throughout the supply chain that manufacturer 120 needs more raw materials for goods G500 to produce the forecast amount FA500 of goods G500, and that some of the forecast amount FA500 of goods G500 are to be stored at each of warehouse 130, warehouse 140, warehouse/distribution center 150, and an additional amount AM500 of goods G500 are to be ordered on behalf of retailer 160 based on the POS data.
Then, warehouse and supply-chain coordinator 100 and supplier 110 communicate order-related data 550 to order a supply of raw materials for goods G500 on behalf of manufacturer 120, and coordinate shipment of the supply of raw materials for goods G500 to be shipped to manufacturer 120 as part of shipment 552 carried by truck 112. Warehouse and supply-chain coordinator 100 and manufacturer 120 communicate order-related data 540 to inform manufacturer 120 about the supply of raw materials for goods G500 arriving via shipment 552/truck 112, to order the forecast amount FA500 of goods G500, and to coordinate shipment of the forecast amount FA500 of goods G500 to warehouse 130 as part of shipment 542 carried by truck 124.
Scenario 500 continues with warehouse and supply-chain coordinator 100 and warehouse 130 communicating order-related data 530 to inform warehouse 130 about shipment 542 of the forecast amount FA500 of goods G500 arriving via truck 124, to store a portion P130 of the forecast amount FA500 of goods G500 at warehouse 130, and to coordinate shipment of the remaining amount RA130 of goods G500 to warehouse 140 as part of shipment 532 carried by sea freight 136. Then, warehouse and supply-chain coordinator 100 and warehouse 140 communicate order-related data 520 to inform warehouse 140 about shipment 532 of the remaining amount RA130 of goods G500 arriving via sea freight 136, to store a portion P140 of the remaining amount RA130 of goods G500 at warehouse 140, and to coordinate shipment of a now-remaining amount RA140 goods G500 to warehouse/distribution center 150 as part of shipment 522 carried by truck 142.
Scenario 500 continues with warehouse and supply-chain coordinator 100 and warehouse 140 communicating order-related data 520 to inform warehouse 140 about shipment 532 of the remaining amount RA130 of goods G500 arriving via sea freight 136, to store a portion P140 of the remaining amount RA130 of goods G500 at warehouse 140, and to coordinate shipment of additional amount AM500 of goods G500 to retailer 160 via shipment 522 carried by truck 142. In scenario 500, shipment 522 unexpectedly terminates at warehouse/distribution center 150, and so warehouse and supply-chain coordinator 100 arranges shipment 512 of the additional amount AM500 of goods G500 to retailer 160 carried by truck 152. Upon completion of shipment 512, scenario 500 can be completed.
In a related proactive scenario, warehouse and supply-chain coordinator 100 first receives order-related data 550 from supplier 110 indicating that raw materials for producing goods G500 are available and ready for shipment to manufacturer 120. Warehouse and supply-chain coordinator 100 then communicates order-related data 540 to manufacturer 120 requesting production of goods G500 and shipment of the produced goods G500 via shipment 542 on truck 124 to warehouse 130, and communicates additional order-related data 550 to supplier 110 ordering raw materials for goods G500 to be shipped to manufacturer 120 via shipment 552 on truck 112.
Upon reception of the raw materials for goods G500 on shipment 552, manufacturer 120 produces goods G500 and ships the produced goods G500 via shipment 542 on truck 124 to warehouse 130. Warehouse and supply-chain coordinator 100 communicates order-related data 530 to warehouse 130 requesting storage of goods G500 received via shipment 542 and subsequent shipment of goods G500 to warehouse 140 as part of shipment 532 carried by sea freight 136. Warehouse and supply-chain coordinator 100 communicates order-related data 520 to warehouse 140 requesting storage of goods G500 received via shipment 532 and subsequent shipment of goods G500 to warehouse/distribution center 150 as part of shipment 522 carried by truck 142.
Warehouse and supply-chain coordinator 100 communicates order-related data 510 to retailer 160 indicating an order of goods G500 placed on behalf of retailer 160 will arrive from warehouse/distribution center 150 via shipment 512 carried by truck 152. In this related scenario, retailer 160 can have an outstanding, unfulfilled order for goods G500 that is at least partially fulfilled by the order of goods G500 arriving via shipment 512.
In a related reactive scenario, retailer 160 sends order-related data 510 with an order for an additional amount AM500 of goods G500 to warehouse and supply-chain coordinator 100. Warehouse and supply-chain coordinator 100 inquires at manufacturer 120, warehouse 130, and warehouse 140 as part of respective order-related data 540, 530, and 520 to locate the additional amount AM500 of goods G500, but no goods G500 are available. Warehouse and supply-chain coordinator 100 then coordinates with supplier 110 via order-related data 550 and manufacturer 120 to order raw materials for at least the additional amount AM500 of goods G500 from supplier 110 and to ship the raw materials via shipment 552 carried by truck 112. Upon reception of the raw materials, manufacturer 120 manufactures the at least the additional amount AM500 of goods G500 and informs warehouse and supply-chain coordinator 100 that the at least the additional amount AM500 of goods G500 are ready for shipment.
Warehouse and supply-chain coordinator 100 uses order-related data 530, 520, and 510 to coordinate shipment of the additional amount AM500 of goods G500 to retailer 160 via: shipment 542 carried by truck 124 to warehouse 130, shipment 532 carried by sea freight 136 to warehouse 140, and shipment 522 carried by truck 142 to retailer 160 bypassing warehouse/distribution center 150. Upon completion of shipment 522 and delivery of the additional amount AM500 of goods G500 to retailer 160, this related reactive scenario can be completed. Other proactive and reactive scenarios are possible as well.
FIG. 6 illustrates scenario 600 where order-related data 610, 612 from customers 170, 172 triggers order 620 and shipments 622, 624, 626, 628, 630, 632 throughout a supply chain, in accordance with an example embodiment.
Scenario 600 begins with order-related data 610 from customer 170 and order-related data 612 from customer 172 being transmitted to warehouse and supply-chain coordinator 100. In scenario 600, order-related data 610 includes an indication of an electronic commerce (e-commerce) purchase of a quantity Q170 of goods G600 and order-related data 612 includes search query data related to goods G600 and a subsequent conversion of the search query into an e-commerce purchase of a quantity Q172 of goods G600. In other scenarios, other and/or additional order-related data 610, 612 are possible as well.
In scenario 600, warehouse and supply-chain coordinator 100 analyzes order-related data 610, 612 and additional data, such as but not limited to the above-mentioned order-predictive data, to both fulfill the purchases made by respective customers 170, 172 and to order additional goods G600 to be stored in the supply chain; e.g., at warehouse/distribution center 150, warehouse/fulfillment center 156 and/or retailer 160, for future distribution of goods G600. Upon reception of order-related data 610, 612, warehouse and supply-chain coordinator 100 sends order 620 to manufacturer 120 for a complete quantity CQ600 of goods G600.
In scenario 600, warehouse and supply-chain coordinator 100 arranges shipment 622 of complete quantity CQ600 of goods G600 to warehouse 130 via truck 124. For example, warehouse and supply-chain coordinator 100 can send an order to a shipper associated with truck 124 to order pick up of complete quantity CQ600 of goods G600 at a first mutually-agreed upon date and subsequent delivery of the complete quantity CQ600 of goods G600 at warehouse 130 at a second mutually-agreed upon date. In another example where truck 124 is an autonomous vehicle in communication with warehouse and supply-chain coordinator 100, warehouse and supply-chain coordinator 100 determines a pick-up time PT600 for complete quantity CQ600 of goods G600 at manufacturer 120. Then, warehouse and supply-chain coordinator 100 directs truck/autonomous vehicle 124 to arrive at manufacturer 120 at PT600 to pick up the complete quantity CQ600 of goods G600 and subsequently deliver the goods to warehouse 130. Other techniques for arranging shipments of goods using supply-chain coordinator 100 are possible as well; e.g., supply-chain coordinator 100 arranging shipment 622 by communicating directly with a vehicle that that is not an autonomous vehicle and/or a vehicle owned by the same entity that owns warehouse and supply-chain coordinator 100.
Upon production of complete quantity CQ600 of goods G600, truck 124 picks up complete quantity CQ600 of goods G600 and conveys the goods as part of shipment 622 to warehouse 130. Complete quantity CQ600 of goods G600 are then unloaded and stored at warehouse 130. Warehouse and supply-chain coordinator 100 arranges shipment 624 of a first portion FP600 of the complete quantity CQ600 of goods G600 from warehouse 130 to warehouse 140 via air freight 134, where FP600≤CQ600. In scenario 600, FP600 equals CQ600; that is, the complete quantity CQ600 of goods G600 is shipped via shipment 624/air freight 134 to warehouse 140. In other scenarios where FP600<CQ600, a remaining portion of a quantity (CQ600−FP600) of goods G600 can be stored at warehouse 130; i.e. for later shipment via air freight 134, sea freight 136, and/or via another shipment means.
Upon arrival of air freight 134, the first portion FP600 of goods G600 are unloaded from air freight 134 and subsequently stored at warehouse 140. Of the first portion FP600 of goods G600, a second portion SP600 of goods G600 are loaded onto truck 142 as part of shipment 626 and a third portion TP600 of goods G600 are loaded onto truck 144 as part of shipment 630. Both shipments 626 and 630 are arranged by warehouse and supply-chain coordinator 100.
In scenario 600, second portion SP600 and third portion TP600 equal first portion FP600; in other scenarios, some of second portion SP600 and/or third portion TP600 of goods G600 are stored in warehouse 140; i.e., for later shipment by truck 142, truck 144, and/or via another shipment means.
Upon arrival of truck 142 carrying shipment 626 at warehouse/distribution center 150, second portion SP600 of goods G600 are unloaded from truck 142 and stored at warehouse/distribution center 150. Then, warehouse and supply-chain coordinator 100 arranges for shipment of at least the quantity Q170 of goods G600 from warehouse/distribution center 150 to retailer 160 via shipment 628 carried by truck 152 and subsequent shipment of quantity Q170 of goods G600 from retailer 160 to customer 170 via drone 162 to fulfill the order placed as part of order-related data 610.
Upon arrival of truck 144 carrying shipment 630 at warehouse/fulfillment center 156, third portion TP600 of goods G600 are unloaded from truck 144 and stored at warehouse/fulfillment center 156. Then, warehouse and supply-chain coordinator 100 arranges for shipment of the quantity Q172 of goods G600 from warehouse/fulfillment center 156 to customer 172 via shipment 632 carried by truck 158 to fulfill the order placed as part of order-related data 612. Once the orders placed as part of order-related data 610, 612 are fulfilled, scenario 600 can be completed.
In scenario 600, warehouse and supply-chain coordinator 100 obtains at least shipping and tracking information for all shipments of supplies and goods, including shipments of goods G600, throughout the supply chain shown in FIG. 6. For example, upon receiving the order from customer 170 as part of order-related information 610 for quantity Q170 of goods G600, warehouse and supply-chain coordinator 100 searches its own data to determine whether goods G600 can be supplied from an existing stock of goods G600; e.g., a quantity of goods G600 that is greater than Q170 and is located in a warehouse or other facility in communications with warehouse and supply-chain coordinator 100. In scenario 600, warehouse and supply-chain coordinator 100 did not find the quantity Q170 of goods G600, and so warehouse and supply-chain coordinator 100 sends order 620 to manufacturer 120 for goods G600. Also, warehouse and supply-chain coordinator 100 updates shipping information for the order placed by customer 170 to indicate that the quantity Q170 of goods G600 are on order. In this instance, an estimated delivery date is determined when the quantity Q170 of goods G600 are estimated to arrive at customer 170; i.e., via shipments 622, 624, 626, 628, and a flight of drone 162.
Both while shipments 622, 624, 626, 628 are underway and as each of the shipments is completed, warehouse and supply-chain coordinator 100 updates the shipping information for customer 170. Warehouse and supply-chain coordinator 100 also maintains tracking information for the trucks and air freight used to convey goods G600 from manufacturer 120 to customer 170. That is, warehouse and supply-chain coordinator 100 maintains time and location information for each of shipments 622, 624, 626, 628; e.g., at time T622, shipment 622 is 50 miles (or 80 kilometers) west of warehouse 130 and is expected to arrive at warehouse 130 at a later time T623, and that shipment 624/air freight 134 is destined to leave from warehouse 130 at a time T624 destined for warehouse 140.
Also, warehouse and supply-chain coordinator 100 can maintain manifest information for some or all shipments in the supply chain shown in FIGS. 2-6. For example, the manifest information for shipment 622 includes a listing of items included in the shipment; e.g., the listing includes complete quantity CQ600 of goods G600 as well as any other goods shipped from manufacturer 120 to warehouse 130 via truck 124 that is part of shipment 622.
FIG. 7 depicts system 700 with warehouse and supply chain coordinator 100 associated with warehouse 140, with system 700 including gate 712 and robots 750, 752, 754, 756, 758, 760, in communication with warehouse and supply chain coordinator 100, as indicated by dashed lines, in accordance with an example embodiment. In some examples, system 700 further includes some or all of trucks 770, 772, 774, 776, 778, 780, 782, 784, 786, 788, and 790.
Warehouse 140 includes four inbound loading docks (ILDs) 720, 722, 724, 726 where goods are unloaded from vehicles, such as trucks 770, 772, 774, 776 for storage within warehouse 140. Warehouse 140 also includes four outbound loading docks (OLDs) 730, 732, 734, 736 where goods are taken from warehouse 140 and loaded onto vehicles, such as trucks 784, 786, 788, 790, for shipment to one or more destinations. Between inbound loading docks 720, 722, 724, 726 and outbound loading docks 730, 732, 734, 736, warehouse 140 is divided into four areas: goods storage (GS) 740, order picking (OP) 742, order consolidation (OC) 744, and packing region (PR) 746. For example, a pallet of goods PG700 arriving at warehouse 140 via inbound loading dock 720 can be initially unloaded from a vehicle in warehouse yard 710 adjacent to inbound loading dock 720 to goods storage 740. Then, when an order O700 for pallet of goods PG700 is received, the pallet of goods PG700 can be taken from goods storage 740 to order picking 742 for selection as part of the order O700 and to order consolidation 744 to be grouped with other pallets of goods into group of pallets GRP700 to fulfill order O700. Then, group of pallets GRP700 can be taken to packing region 746 to be readied for shipment via an outbound loading dock; e.g, outbound loading dock 730 onto a vehicle such as truck 784 to fulfill order O700. In some examples, warehouse 140 has more or fewer inbound loading docks and/or outbound loading docks. In other examples, warehouse 140 has loading docks that are not distinguished between inbound loading docks and outbound loading docks. In still other example, warehouse 140 has more, fewer, and/or different regions than goods storage 740, order picking 742, order consolidation 744, and packing region 746.
Robots 750, 752, 754, 756, 758, 760 can be used to perform various tasks related to warehouse 140, such as, but not limited to, tasks related to: unloading pallets of goods from vehicles at inbound loading docks 720, 722, 724, 726, storing the unloaded pallets of goods within warehouse 140 (e.g., at goods storage 740), picking pallets of goods to fulfill orders, consolidating/grouping pallets of goods for shipment, packing pallets of goods for shipment, and loading pallets of goods onto vehicles at outbound loading docks 730, 732, 734, 736. In some examples, system 700 has more, fewer, and/or different robots. In the example shown in FIG. 7, warehouse and supply-chain coordinator 100 is in communication with each of robots 750, 752, 754, 756, 758, 760 so that warehouse and supply chain coordinator 100 can send commands and/or other messages to the robots and receive responses and/or other messages from the robots.
FIG. 7 shows warehouse 140 surrounded by warehouse yard 710, where vehicles, such as trucks 770-790, can maneuver in and around warehouse 140, load and unload goods to and from warehouse 140 using loading docks 720-736, and park in parking areas 714 a, 714 b. Warehouse 140 and warehouse yard 710 is protected by gate 712. Gate 712 can be opened and closed based on commands/messages from warehouse and supply-chain coordinator 100.
FIGS. 8, 9, 10, 11, 12, 13, 14, 15, and 16 illustrate scenario 800 where trucks arrive, load, unload, and depart a warehouse. Scenario 800 begins with truck 810 arriving at gate 712 of warehouse yard 710 and warehouse 140. Warehouse and supply-chain coordinator 100 determines that truck 810 has to park and wait for a time slot at an incoming loading dock, and so allocates parking spot 842 for truck 810, where truck 810 is parked. Warehouse and supply-chain coordinator 100 then allocates a time slot at incoming loading dock 724 starting at time T1 to truck 810, allocates space within warehouse 140 for storage of goods G1 carried by truck 810, and allocates robot 752 to unload truck 810. Goods G1 are inspected by robot 752 and are found to be in compliance with a contract for goods G1. After the successful inspection of goods G1, warehouse and supply-chain coordinator 100 directs robots 752 and 756 to unload goods G1 from truck 810 to area 922 in goods storage 740 of warehouse 140. Subsequently, truck 810 leaves warehouse 140 and warehouse yard 710.
Scenario 800 continues with warehouse and supply-chain coordinator 100 directing robots 752, 754, and 756 to move pallets P10, P11, and P12 to area 1112 in packing region 746 of warehouse 140 in preparation for arrival of truck 1210. Truck 1210 is delayed, and truck 1220 arrives before truck 1210. Upon arrival of truck 1220, warehouse and supply-chain coordinator 100 allows entry of truck 1220 via gate 712 and allocates a time slot to load truck 1220 at outbound loading dock 734 immediately. Truck 1220 enters warehouse yard 710 and parks at outbound loading dock 734. While truck 1220 is making its way to outbound loading dock 734, warehouse and supply-chain coordinator 100 directs robots 752 and 756 to rearrange pallet arrangement 1310 by moving pallets P20 and P21 closer to outbound loading dock 734 since pallets P20 and P21 are to be loaded onto truck 1220. Warehouse and supply-chain coordinator 100 also directs robots 752 and 756 to load pallets P20 and P21 onto truck 1220. After pallets P20 and P21 are loaded onto truck 1220, truck 1220 departs. Subsequently, truck 1210 arrives at warehouse 140 and parks at outbound loading dock 734. Warehouse and supply-chain coordinator 100 directs robots 752, 754, and 756 to load pallets P10, P11, and P12 onto truck 1210. After pallets P20 and P21 are loaded onto truck 1210, truck 1210 departs and warehouse and supply-chain coordinator 100 directs robots 752 and 760 to move pallets P30, P31, and P32 closer to outbound loading dock 734 in preparation for a next arriving truck. After pallets P30, P31, and P32 have been moved closer to outbound loading dock 734, scenario 800 can be completed.
FIG. 8 shows that scenario 800 begins with truck 810 arriving at gate 712 of warehouse yard 710 that surrounds warehouse 140. In scenario 800, truck 810 carries goods G1 destined for warehouse 140. Upon arrival of truck 810, gate 712 sends arrival message 830 to inform warehouse and supply-chain coordinator 100 of the arrival of truck 810. In response, warehouse and supply-chain coordinator 100 sends open gate message 832 to gate 712 to open the gate and allow truck 810 to enter into warehouse yard 710.
After receiving arrival message 830, warehouse and supply-chain coordinator 100 determines that inbound loading dock 724 is to be used to load goods onto truck 810, and that inbound loading dock 724 is currently occupied with the loading of truck 774 as shown at a left side of FIG. 8. Warehouse and supply-chain coordinator 100 then allocates 840 a parking spot 842 to truck 810 and sends park message 844 directing truck 810 to park in parking spot 842.
FIG. 9 shows that scenario 800 continues after truck 810 has parked in parking spot 842. Warehouse and supply-chain coordinator 100 allocates a time slot starting at time T1 for inbound loading dock 724 to truck 810, and informs truck 810 of this time slot allocation using time slot message 910. Warehouse and supply-chain coordinator 100 also allocates an area, area 922, within goods storage 740 of warehouse 140 for storing pallets unloaded from truck 810, as indicated by allocate warehouse storage (AllocWStorage) message 920. Warehouse and supply-chain coordinator 100 further sends GoTo message 930 directing robot 752 to travel to incoming loading dock 724. Just before time T1, truck 774 departs from incoming loading dock 724 and truck 810 travels along path 940 to park at incoming loading dock 724 at time T1.
FIG. 10 shows that scenario 800 continues with truck 810 arriving at inbound loading dock 724 at time T1. Warehouse and supply-chain coordinator 100 sends inspect message 1010 to robot 752 to inspect goods G1 on truck 810. Upon reception of inspect message 1010, robot 752 inspects goods G1 to determine their compliance with a contract for the goods G1. In scenario 800, goods G1 aboard truck 810 are compliant with the contract, and so robot 752 sends inspect response (InspectResp) message 1020 indicating goods G1 are compliant “OK” with the contract. To inspect goods G1, robot 752 can visually inspect goods G1, scan text, bar codes, Radio Frequency ID (RFID), and/or Quick Response (QR) codes on and/or associated with goods G1, provide a video and/or audio information related to goods G1 on truck 810 for inspection by another entity, such a warehouse and supply-chain coordinator 100 and/or a human inspector, physically examine goods G1 using one or more actuators and/or sensors, and/or use other reasonable techniques to inspect goods G1. As goods G1 are compliant with the contract, warehouse and supply-chain coordinator 100 sends receipt 1022 to truck 810 for goods G1 to indicate acceptance of goods G1 from truck 810 at warehouse 140.
In other scenarios, goods G1 are not compliant with the contract—in those scenarios, the inspect response message indicates that goods G1 are “NOT OK” or non-compliant with the contract. In these scenarios, warehouse and supply-chain coordinator 100 sends a rejection message rejecting goods G1 rather than a receipt 1022 for goods G1. Also in these other scenarios, at least the rejected goods G1 are not unloaded from truck 810.
In scenario 800, goods G1 are loaded on to two pallets—G1P1 and G1P2. After the successful inspection of goods G1, warehouse and supply-chain coordinator 100 sends move message 1030 to robot 752 to move pallet “G1P1” from truck 810 to area 922, and sends move message 1040 to robot 756 to move pallet “G1P2” from truck 810 to area 922. Once pallets G1P1 and G1P2 have been unloaded, truck 810 pulls away from incoming loading dock 724 and leaves warehouse yard 710 via gate 712.
Scenario 800 continues, as shown in FIG. 11, with one or more information sources 1110 providing event notification 1120 to warehouse and supply-chain coordinator 100. In scenario 800, event notification 1120 causes warehouse and supply-chain coordinator 100 to “re-slot” or move within warehouse 140 three pallets: P10, P11, and P12. In scenario 800, event notification 1120 includes information about a weather related event, and goods in pallets P10, P11, and P12 can be used to address concerns with the weather related event; e.g., sun screen for a hot weather event, snow shovels for a winter storm event. Other types of events and related event information are possible, such as discussed above at least in the context of FIG. 3.
In response to event notification 1120, warehouse and supply-chain coordinator 100 re-slots pallets P10, P11, and P12 to area 1112 within packing region 746; i.e., makes pallets P10, P11, and P12 more readily available for shipment after re-slotting. In scenario 800, re-slotting occurs when warehouse 140 is not loading or unloading goods at loading docks 720, 722, 724, 726, 730, 732, 734, 736; in other scenarios, re-slotting occurs while goods are being loaded and/or unloaded at warehouse 140. In additional other scenarios, re-slotting occurs based on available storage within warehouse 140 (e.g., re-slot from relatively-full areas to relatively-empty areas of warehouse 140), based on expected vehicle arrivals/departures and/or shipments of goods, one or more velocities of goods, based on a re-slotting list of pallets maintained by warehouse and supply-chain coordinator 100, and/or for other reasons.
In still other scenarios, re-slotting involves re-slotting during robot “deadhead” time; e.g., if robot is instructed to take a pallet to a loading dock and return to a location L within warehouse 140, then the robot can return to location L (or another location) within warehouse 140 with a pallet being re-slotted rather than returning to location L empty/deadheaded (that is, not carrying anything back to location L). Other types of deadhead time; e.g., when the robot is not assigned to carry out a task, can be utilized for re-slotting as well.
To re-slot pallets P10, P11, and P12 to area 1112, warehouse and supply-chain coordinator 100 sends respective move messages 1130, 1132, 1134 to robots 752, 754, 756 to move all three of respective pallets P10, P11, and P12 to area 1112.
In scenario 800, trucks 1210, 1220, 1230 are expected to be the next three vehicles to arrive at warehouse 140 in that order. FIG. 12 shows that scenario 800 continues with information source(s) 1110 sending new arrival time (“NewArrTime”) message 1232 informing warehouse and supply-chain coordinator 100 that truck 1210 has been delayed and is now expected to arrive at time T3 in the future.
FIG. 12 also shows truck 1220 arriving at gate 712 of warehouse yard 710. Gate 712 sends arrival message 1240 informing warehouse and supply-chain coordinator 100 that truck 1220 has arrived at gate 712. In response to arrival message 1240, warehouse and supply-chain coordinator 100 sends open gate message 1242 instructing gate 712 to open, thereby allowing truck 1220 access to warehouse yard 710. Warehouse and supply-chain coordinator 100 allocates a time slot starting immediately at outbound loading dock 734 and sends time slot message 1250 informing truck 1220 that it has a time slot at outbound loading dock 734 starting “now”. In response to time slot message 1250, truck 1220 starts along path 1252 toward outbound loading dock 734. In preparation of the arrival of truck 1220 at outbound loading dock 734, warehouse and supply-chain coordinator 100 sends GoTo message 1260 directing robot 760 to travel toward outbound loading dock 734.
In some scenarios, the time slot at outbound loading dock 734 is previously allocated to truck 1210, as truck 1210 is expected to be a next arriving vehicle at outbound loading dock 734. For example, if vehicle loading and/or unloading is not performed at warehouse 140 during a “no-load” interval, such as during an overnight shift, then a timeslot for a first arriving vehicle after the no-load interval can be previously allocated by warehouse and supply-chain coordinator 100. In these scenarios, the time slot at outbound loading dock 734 to truck 1210 can be released before the time slot is allocated to truck 1220, as discussed above regarding time slot message 1250.
FIG. 13 shows a portion of warehouse 140 that includes outbound loading dock 734, packing region 746, and all of area 1112, as well as a portion of warehouse yard 710 near outbound loading dock 734. Scenario 800 continues with truck 1220 continuing on path 1252 toward outbound loading dock 734. Warehouse and supply-chain coordinator 100 determines to rearrange pallet arrangement 1310 as much as possible before truck 1220 arrives at outbound loading dock 734.
FIG. 13 shows that pallet arrangement 1310 has three columns of pallets: a first column of pallets P10, P11, and P12 destined for loading onto truck 1210, a second column of pallets P20 and P21 destined for loading onto truck 1220, and a third column of pallets P30, P31, and P32 destined for loading onto truck 1230, where the first column of pallets is closer to outbound loading dock 734 that the second column of pallets, which in turn is closer to outbound loading dock 734 that the third column of pallets. Pallet arrangement 1310 is so organized to enable faster loading for truck 1210, which was expected to be the next truck arriving at outbound loading dock 734; i.e., the first column of pallets are both destined for loading onto truck 1210 and are closest to outbound loading dock 734. But, as mentioned above, truck 1210 has been delayed and truck 1220 is now the next truck arriving outbound loading dock 734. In some examples, each column of pallets can be considered to be a queue entry of a pallet arrangement, where such queue entries are discussed below at least in the context of FIGS. 17-22.
To help speed loading of truck 1220, warehouse and supply-chain coordinator 100 determines to swap the first and second columns of pallets, thus placing pallets P20 and P21 destined for truck 1220 closer to outbound loading dock 734 for faster loading onto truck 1220. In scenario 800, though, there is not enough time to fully swap the first and second columns of pallets before truck 1220 arrives and parks at outbound loading dock 734. So, warehouse and supply-chain coordinator 100 sends swap message 1330 to robot 752 to swap pallets P10 and P20, and sends swap message 1332 to robot 760 to swap pallets P11 and P21, thus moving the two pallets destined for truck 1220 (P20 and P21) closer to outbound loading dock 734, while pallet P12 destined for truck 1210 remains in the first column of pallet arrangement 1310.
Scenario 800 continues with truck 1220 arriving at outbound loading dock 734. After truck 1220 arrives at outbound loading dock 734, warehouse and supply-chain coordinator 100 instructs robots 752 and 760 to load truck 1220. In particular, warehouse and supply-chain coordinator 100 sends move message 1340 to robot 752 to move pallet “P20” to “Truck 1220” that is loaded at “OLD” (outbound loading dock) “734”, and sends move message 1342 to robot 752 to move pallet “P21” to “Truck 1220” that is loaded at “OLD 734”. In other scenarios, rather than swapping pallets, robots 752 and 760 load truck 1220 with pallets P20 and P21 that are initially in the second column of pallet arrangement 1310.
FIG. 14 shows robots 752 and 760 loading respective pallets P20 and P21 onto truck 1220. While truck 1220 is being loaded, truck 1210 arrives at gate 712. Gate 712 sends arrival message 1410 informing warehouse and supply-chain coordinator 100 of the arrival of truck 1210. In response to arrival message 1410, warehouse and supply-chain coordinator 100 instructs gate 712 to open via open gate message 1412, thereby permitting truck 1210 to enter warehouse yard 710.
Warehouse and supply-chain coordinator 100 determines that truck 1210 has to park and wait until truck 1220 is loaded before proceeding to outgoing loading dock 734 and so allocates parking spot 1418 for truck 1210 as indicated by allocate parking message 1414. Warehouse and supply-chain coordinator 100 sends park message 1416 to inform truck 1210 to park at parking spot 1418. Warehouse and supply-chain coordinator 100 then allocates a time slot at outgoing loading dock 734 starting at time T3 to truck 1210 and sends time slot message 1420 to inform truck 1210 about the allocated time slot.
Scenario 800 continues with robots 752 and 760 finishing loading of pallets P20 and P21 onto truck 1220, and the subsequent departure of truck 1220, as shown in FIG. 15. Then, time T3 arrives and truck 1210 drives from parking spot 1418 to outgoing loading dock 734. Upon arrival of truck 1210 at outgoing loading dock 734, warehouse and supply-chain coordinator 100 directs robots 752, 754, and 756 to load truck 1210. More specifically, warehouse and supply-chain coordinator 100 sends respective move messages 1510, 1512, and 1514 to respective robots 760, 752, and 754 to move respective pallets “P10”,“P11”, and “P12” onto “Truck 1210” at “OLD 734”. After truck 1210 is loaded, truck 1210 departs from outgoing loading dock 734.
FIG. 16 shows scenario 800 continuing with truck 1210 on its way from outgoing loading dock 734. FIG. 16 also shows the first column of pallet arrangement 1310 with two pallets P30 and P32. Warehouse and supply-chain coordinator 100 sends move message 1610 to direct robot 752 to move pallet P31 to the first column “Col1” of pallet arrangement 1310 in “Area 1112”. After robot 752 has moved pallet P31 to the first column of pallet arrangement 1310, the first column has all three pallets—P30, P31, and P32—destined for truck 1230, which is the next arriving truck at outgoing loading dock 734. Warehouse and supply-chain coordinator 100 also sends GoTo message 1612 instructing robot 760 to move to outgoing loading dock 736. Once pallet P31 has been moved to the first column of pallet arrangement 1310 and robot 760 has moved to outgoing loading dock 736, scenario 800 can be completed.
FIG. 17 is a flow chart of method 1700, in accordance with an example embodiment. Method 1700 is used to maintain a pallet arrangement, such as pallet arrangement 1310. The pallet arrangement can include QL>0 “queue entries”, or spaces that can hold one or more pallets of goods, where each queue entry is sequentially numbered starting at one and ending at QL. An example pallet arrangement of queue entries where QL=3 is shown on a left side of FIG. 18 as pallet arrangement 1860 located in loading dock 1850 of warehouse 1870 where queue entry 1 of pallet arrangement 1860 is closest to an edge of loading dock 1850 where one or more vehicles can be loaded with pallets. Queue entry 1 is followed by queue entry 2, which in turn is followed by queue entry 3. Queue entry 3 is followed by the remainder of warehouse 1870.
FIG. 17 indicates that method 1700 can be performed by warehouse and supply-chain coordinator 100; e.g., method 1700 can be included in one or more computer-readable instructions that, when executed by one or more processors of a computing device, cause the computing device to perform some or all of the functions of method 1700 while performing herein-described features of warehouse and supply-chain coordinator 100. In other examples, method 1700 can be performed by one or more other entities other than warehouse and supply-chain coordinator 100.
FIG. 17 indicates that method 1700 begins at block 1710, where warehouse and supply-chain coordinator 100 determines a time T_NAV until a next arriving vehicle NAV arrives at a facility, such as a warehouse. In some examples, warehouse and supply-chain coordinator 100 determines whether or not next arriving vehicle NAV will arrive before a pre-determined time, such as prior to an onset of a upcoming no-load period. Then, if next arriving vehicle NAV will not arrive until after the pre-determined time, warehouse and supply-chain coordinator 100 can terminate method 1700.
At block 1712, warehouse and supply-chain coordinator 100 determines a queue entry QE associated with vehicle NAV; e.g., a queue entry that holds pallets destined to be loaded onto vehicle NAV at the facility.
At block 1720, warehouse and supply-chain coordinator 100 determines whether vehicle NAV has arrived at the facility. For example, warehouse and supply-chain coordinator 100 can receive a message that vehicle NAV has entered a gate at the facility, such as gate 712 of warehouse 140 and warehouse yard 710 discussed above in the context of FIGS. 7-16. As another example, a robot or other agent at the facility can detect vehicle NAV and send a message informing warehouse and supply-chain coordinator 100 of the arrival of vehicle NAL. As yet another example, vehicle NAV can send a message indicating that the vehicle NAV has arrived at the facility warehouse and supply-chain coordinator 100. Other techniques for informing warehouse and supply-chain coordinator 100 of an arrival of vehicle NAV and/or for warehouse and supply-chain coordinator 100 to determine that vehicle NAV has arrived at the facility are possible as well.
If vehicle NAV has arrived at the facility, warehouse and supply-chain coordinator 100 proceeds to block 1770. Otherwise, vehicle NAV has not arrived at the facility and warehouse and supply-chain coordinator 100 proceeds to block 1730.
At block 1730, warehouse and supply-chain coordinator 100 determines whether QE, which is the queue entry associated with vehicle NAV, is equal to one; that is, if the queue entry associated with vehicle NAV is the closest queue entry to the loading dock where vehicle NAV will arrive. If QE equals one, then warehouse and supply-chain coordinator 100 proceeds to block 1710. Otherwise, QE does not equal one and warehouse and supply-chain coordinator 100 proceeds to block 1740.
At block 1740, warehouse and supply-chain coordinator 100 determines a number of robots NR available to swap queue entries; that is, a number of robots that can move pallets from queue entry 1 to queue entry QE (at block 1740, QE≠1) and vice versa. In some embodiments, if NR=0, then no robots are available to swap pallets, and so warehouse and supply-chain coordinator 100 can proceed to block 1710.
At block 1742, warehouse and supply-chain coordinator 100 determines a time T_SWAP for the NR robots available to swap queue entries. For example, warehouse and supply-chain coordinator 100 can estimate T_SWAP for NR robots based on historical data, one or more mathematical models, data performed during a test or experiment of swapping pallets, and/or using other techniques and/or data.
The value of T_SWAP may not be strictly inversely proportional the number of robots, as adding additional robots may provide additional speedup of operations. In one example where NR=1, suppose the actions shown in Table 1 are those taken by one robot RS1 to swap one pallet PS1 located at location LS1 in queue entry 1 with another pallet PS2 located at location LS2 in queue entry 2.
TABLE 1
1. Go to location LS1.
2. Pick up pallet PS1.
3. Take pallet PS1 to location TEMP1.
4. Place pallet PS1 at TEMP1.
5. Go to location LS2.
6. Pick up pallet PS2.
7. Take pallet PS2 to location LS1.
8. Place pallet PS2 at LS1.
9. Go to location TEMP1.
10. Pick up pallet PS1.
11. Take pallet PS1 to location LS2.
12. Place pallet PS1 at location LS2. .
As another example where NR=2, suppose the actions shown in Table 2 are those taken by two robots RS1 and RS2 to swap one pallet PS1 located at location LS1 in queue entry 1 with another pallet PS2 located at location LS2 in queue entry 2.
TABLE 2
Robot RS1 Robot RS2
1. Go to location LS1. 1. Go to location LS2.
2. Pick up pallet PS1. 2. Pick up pallet PS2.
3. Take pallet PS1 to location LS2. 3. Take pallet PS2 to location LS1.
4. Place pallet PS1 at location LS2. 4. Place pallet PS2 at location LS1.

In particular examples, warehouse and supply-chain coordinator 100 coordinates robots RS1 and RS2 so that robot RS2 takes pallet PS2 to location LS1 while robot RS1 takes pallet PS1 to location LS2. That is, warehouse and supply-chain coordinator 100 coordinates robots RS1 and RS2 so that robot RS1 moves pallet PS1 from location LS1 to location LS2 at or about the same time that robot RS2 moves pallet PS2 from location LS2 to location LS1.
The example described by Table 2 assumes that robots RS1 and RS2 both take approximately or exactly the same amount of time to perform respective steps 1, 2, and 3 listed in Table 2. Under this assumption, when robot RS1 tries to place pallet PS1 at location LS2, robot RS2 will have already cleared pallet PS2 from location LS2, and so robot RS1 will be free to place pallet PS1 at location LS2 without delay. Similarly, when robot RS2 tries to place pallet PS2 at location LS1, robot RS1 will have already cleared pallet PS1 from location LS1, and so robot RS2 will be free to place pallet PS2 at location LS1 without delay. In cases where this assumption does not hold, warehouse and supply-chain coordinator 100 coordinates robots RS1 and RS2 so that that one robot may wait for a pallet to be cleared. For example, if robot RS1 is not near LS1 at a time one or more commands to swap pallets PS1 and PS2, but RS2 is near LS2 at that time, then warehouse and supply-chain coordinator 100 can instruct robot RS2 to pick up pallet PS2 and wait until robot RS1 has picked up pallet PS1 before robot RS2 moves toward location LS1.
If T_SWAP were inversely proportional to the number of robots, then the two-robot example shown above in Table 2 would take (approximately) ½ as long as the one-robot example shown in Table 1. However, while one robot has to place a pallet in a temporary location (LTEMP) to perform a swap, two robots need not place a pallet in a temporary location, thus reducing the number of operations performed by each robot to be ⅓ of the number of operations than one robot, thereby increasing speedup. Thus, T_SWAP for NR=2 may be (approximately) ⅓ of the value of T_SWAP for NR=1, which is less than ½ of the value of T_SWAP that may be expected (assuming inverse proportionality) by doubling NR from 1 to 2. Other examples of reductions of T_SWAP that are more than inversely proportional are possible as well.
In the case where NR=0, T_SWAP is infinite. In some of these examples, T_SWAP can be represented as a “practical infinity”; that is, a number that is less than infinity that is much larger than usual/expected. For example, T_SWAP when NR=0 can have a practically infinite value representing a day or longer if swapping pallets typically takes no more than a few minutes.
At block 1750, warehouse and supply-chain coordinator 100 determines whether T_NAV is greater than T_SWAP; that is, whether the amount of time until vehicle NAV arrives is greater than the amount of time to swap pallets. If T_NAV is greater than T_SWAP, then warehouse and supply-chain coordinator 100 proceeds to block 1760. Otherwise, T_SWAP is greater than or equal to T_NAV, and warehouse and supply-chain coordinator 100 proceeds to block 1710.
In some examples, rather than or along with comparing T_NAV and T_SWAP, the value of T_SWAP is compared to a threshold amount of time THR_SWAP to swap pallets between queue entries 1 and QE. If T_SWAP is greater than THR_SWAP, then warehouse and supply-chain coordinator 100 proceeds to block 1760 to swap pallets between queue entries 1 and QE. Otherwise, warehouse and supply-chain coordinator 100 proceeds to block 1710 without swapping pallets. In still other examples, rather than or along with comparing T_NAV and T_SWAP, the value of T_NAV is compared to a threshold amount of time THR_NAV for a vehicle to arrive at the facility. If T_NAV is greater than THR_NAV, then warehouse and supply-chain coordinator 100 proceeds to block 1760 to swap pallets between queue entries 1 and QE. Otherwise, warehouse and supply-chain coordinator 100 proceeds to block 1710 without swapping pallets.
In even other examples, warehouse and supply-chain coordinator 100 can determine whether to swap pallets between queue entries 1 and QE; i.e., proceed to block 1760, based on an estimated QE-load time and an estimated Q1-load time. Warehouse and supply-chain coordinator 100 can estimate the QE-load time to be the time to load the next arriving vehicle with its pallets held in queue entry QE and can estimate the Q1-load time to the time to load the next arriving vehicle with its pallets held in queue entry 1. Then, warehouse and supply-chain coordinator 100 can determine a difference DIFF_QE-LOAD=QE-load time−Q1-load time. Warehouse and supply-chain coordinator 100 can consider DIFF_QE-LOAD an estimated amount of time saved by swapping pallets for the next arriving vehicle from queue entry QE to queue entry 1. Then, along with or instead of comparing T_NAV and T_SWAP at block 1750, warehouse and supply-chain coordinator 100 can compare DIFF_QE-LOAD and T_SWAP. If DIFF_QE-LOAD is greater than T_SWAP, warehouse and supply-chain coordinator 100 can proceed to block 1760 to swap pallets between queue entries 1 and QE. Otherwise, warehouse and supply-chain coordinator 100 proceeds to block 1710 without swapping pallets.
Other data and related comparisons can be used to determine whether or not to swap pallets as well.
At block 1760, warehouse and supply-chain coordinator 100 can determine a vehicle V1 that is associated with queue entry 1.
At block 1762, warehouse and supply-chain coordinator 100 directs the NR robots to swap pallets between queue entry 1 and queue entry QE. For example, warehouse and supply-chain coordinator 100 can direct the NR robots to use some or all of the techniques mentioned above in the context of Tables 1 and/or 2 to swap pallets between queue entry 1 and queue entry QE.
At block 1764, warehouse and supply-chain coordinator 100 can associate queue entry 1 with vehicle NAV and associate queue entry QE with vehicle V1; i.e., swap vehicle associations of queue entries 1 and QE in keeping with the swap of pallets between queue entries 1 and QE performed at block 1762. Upon completion of block 1764, warehouse and supply-chain coordinator 100 proceeds to block 1710.
At block 1770, warehouse and supply-chain coordinator 100 has determined that vehicle NAV has arrived at the loading dock. Then, warehouse and supply-chain coordinator 100 directs one or more robots to load pallets from queue entry QE onto the now-arrived vehicle. After being loaded with the pallets from queue entry QE, vehicle NAV can leave the loading dock.
At block 1772, warehouse and supply-chain coordinator 100 directs one or more robots to move pallets up one queue entry at a time from queue entry QE+1 to a last queue entry; e.g., queue entry QL. Moving pallets up one queue entry at a time can involve moving pallets from a non-empty first queue entry to an adjacent empty second queue entry, thereby emptying the first queue entry. Table 3 shows example operations required for one robot to move up one pallet:
TABLE 3
1. Go to location Q1 in the non-empty queue entry.
2. Pick up pallet PQ1 (at location Q1).
3. Take pallet PQ1 to location Q2 in the empty queue entry.
4. Place pallet PQ1 at Q2.
For example, suppose QL=3 and QE=1 at an onset of block 1772. Then, queue entries 2 and 3 are be moved up during block 1772. To move up queue entry 2, the pallets in queue entry 2 (the non-empty first queue entry) would be moved to queue entry 1 (the adjacent empty second queue entry), as the pallets in queue entry 1 were loaded on to vehicle NAV during block 1770, leaving queue entry 1 empty of pallets. After queue entry 2 has been moved up, queue entry 1 is non-empty, queue entry 2 is empty, and queue entry 3 has pallets. Then, when queue entry 3 is moved up, the pallets in queue entry 3 are moved up to queue entry 2, thereby emptying queue entry 3 of pallets.
At block 1774, warehouse and supply-chain coordinator 100 moves vehicle associates up the queue one queue entry at a time from queue entry QE+1 to a last queue entry QL; e.g., queue entry QL. Continuing the QL=3 and QE=1 example from block 1772, the vehicle entries associated with queue entries 2 and 3 are to be moved up during block 1774. Further suppose that queue entry 1 is associated with vehicle NAV, queue entry 2 is associated with a vehicle V2, and queue entry 3 is associated with vehicle V3, and that a vehicle array is used to store the vehicle associations, where an index into the vehicle array represents the queue entry; e.g., vehicle[ ] is an array of three vehicle association values, where vehicle[1]=NAV, vehicle[2]=V2, and vehicle[3]=V3. Then, a loop can be performed to move up the vehicle entries, such as
for i = (QE + 1) to QL
vehicle[i−1] = vehicle[i];
end for

At the end of this loop, vehicle[1]=V2, vehicle[2]=V3, and vehicle[3]=V3. Other representations of associations between queue entries and vehicles other than the vehicle array vehicle[ ] are possible as well.
At block 1780, warehouse and supply-chain coordinator 100 determines NewV, which is a next vehicle to arrive after the vehicle now associated with queue entry QL−1 and associates NewV with queue entry QL. Continuing the example of blocks 1772 and 1774 above where QL=3, warehouse and supply-chain coordinator 100 can associate NewV with queue entry QL by assigning vehicle[QL]=NewV. After associating NewV with queue entry QL in this example, the resulting vehicle array has: vehicle[1]=V2, vehicle[2]=V3, and vehicle[3]=NewV.
In some examples, at block 1780, warehouse and supply-chain coordinator 100 determines whether or not next arriving vehicle NewV will arrive before a pre-determined time, such as prior to an onset of a upcoming no-load period. Then, if next arriving vehicle NewV will not arrive until after the pre-determined time, warehouse and supply-chain coordinator 100 can proceed to block 1710 rather than proceeding to block 1782.
At block 1782, warehouse and supply-chain coordinator 100 instructs one or more robots to pick pallets destined for vehicle NewV from the facility (e.g., warehouse) and place these pallets in queue entry QL. For example, warehouse and supply-chain coordinator 100 can determine a pallet P_NEWV located at a location L_NEWV in the facility is destined for loading onto vehicle New and instruct a robot to follow the example procedures in Table 4 to move pallet P_NEWV to queue entry QL:
TABLE 4
1. Go to location L_NEWV.
2. Pick up pallet P_NEWV.
3. Take pallet P_NEWV to location L_QL in queue entry QL.
4. Place pallet P_NEWV at location L_QL.
Continuing the example of blocks 1772, 1774, and 1780 above with QL=3 and vehicle[3]=NewV, during block 1782, robots in the facility obtain/pick pallets destined for vehicle NewV and place/put those pallets in queue entry QL, which was emptied at block 1772. After the execution of the procedures of block 1772, 1774, 1780, and 1782, queue entry 1 has pallets for vehicle V2, queue entry 2 has pallets for vehicle V3, and queue entry 3 has pallets for vehicle NewV, and the vehicle array has: vehicle[1]=V2, vehicle[2]=V3, and vehicle[3]=NewV. Upon completion of the procedures of block 1782, warehouse and supply-chain coordinator 100 proceeds to block 1710.
FIGS. 18, 19, 20, and 21 illustrate a scenario 1800 where trucks 1810, 1820 and van 1830 arrive at loading dock 1850 of warehouse 1870 with pallets of a pallet arrangement being loaded into the trucks using the techniques of method 1700, in accordance with an example embodiment.
Scenario 1800 involves a period of time from a time T1 to time T8, through consecutive intermediate times T2, T3, T4, T5, T6, and T7, where pallet arrangement 1860 is modified according to the procedures of method 1700, discussed in the context of FIG. 17. Pallet arrangement 1860 has three queue entries during scenario 1800: queue entry 1, queue entry 2, and queue entry 3. Queue entry 1 is closest to an edge of loading dock 1850 for loading vehicles, queue entry 2 is just behind queue entry 1, and queue entry 3 is just behind queue entry 1. Behind queue entry 3 is a remainder of warehouse 1870, where a plurality of pallets are stored and a plurality of robots operate. During scenario 1800, at least the robots of warehouse 1870 are in communication with a warehouse and supply-chain coordinator, such as warehouse and supply-chain coordinator 100, that is embodied as one or more computing devices executing computer-readable instructions that include instructions, that when executed by the one or more computing devices, cause the warehouse and supply-chain coordinator at least to carry out the procedures of method 1700. In scenario 1800, trucks 1810, 1820, and van 1830 are initially expected to arrive in that order, but truck 1810 is delayed. The actual order of vehicle arrival for scenario 1800 is: truck 1820 arriving at time T1, van 1830 arriving at time T5, and truck 1810 arriving at time T7. After truck 1810 is loaded at time T8, queue entries and related associations are moved up per method 1700. After truck 1810 is loaded and all queue entries and related associations are moved up, scenario 1800 is completed.
A left side of FIG. 18 shows that, at an onset of scenario 1800, truck 1820 has just arrived at loading dock 1850 of warehouse 1870. Loading dock 1850 includes pallet arrangement 1860 having three queue entries: queue entry 1 holding two pallets and being associated with truck 1810, queue entry 2 holding four pallets and being associated with truck 1820, and queue entry 3 holding one pallet and being associated with truck 1820. At time T1, truck 1810 was expected to arrive before truck 1820, and truck 1820 arrived before there was time to swap pallets between queue entries 1 and 2; that is, in the context of method 1700, T_SWAP>T_NAV at block 1750 until NAV=truck 1820 arrived with QE=2.
In some scenarios, the warehouse and supply-chain coordinator initially reserves a time slot TS1 at loading dock 1850 for truck 1810, where time slot TS1 at loading dock 1850 is for a time period that includes time T1. Then, when the warehouse and supply-chain coordinator is informed truck 1810 is delayed, the warehouse and supply-chain coordinator: releases time slot TS1 for truck 1810, determines that truck 1820 is a next arriving vehicle after truck 1810, and reserves time slot TS1 for truck 1820. Then, truck 1820 arrives during timeslot TS1. In particular of these scenarios, the warehouse and supply-chain coordinator also reserves another time slot TS2 that is immediately after time slot TS1 for truck 1810.
In particular scenarios, reserving a time slot for a truck TRK can include granting access to warehouse 1870 to truck TRK up to a beginning of the time slot and/or releasing a time slot for truck TRK can include revoking access to warehouse 1870 to truck TRK. In these scenarios, releasing time slot TS1 for truck 1810 includes revocation of access to warehouse 1870 for truck 1810, reserving time slot TS1 for truck 1820 includes granting of access to warehouse 1870 for truck 1820 until a beginning of time slot TS1, and reserving time slot TS2 for truck 1810 includes granting of access to warehouse 1870 for truck 1810 until a beginning of time slot TS2.
At time T2 as shown on a right side of FIG. 18, truck 1820 is loaded with the pallets held in queue entry 2 as indicated by arrow 1880 using the procedures of block 1770 of method 1700. After being loaded, truck 1820 departs from loading dock 1850 as indicated by arrow 1882. Once the procedures of block 1770 are completed, the warehouse and supply-chain coordinator executes the procedures of blocks 1772 and 1774 of method 1700 to move up the pallets of queue entry 3 to queue entry 2, as indicated by arrow 1884, and to associate queue entry 2 with van 1830. A new vehicle, railcar 1840, is determined to be the next vehicle to arrive at warehouse 1870 after van 1830 and is associated with queue entry 3 at block 1780 of method 1700. Then, as indicated by arrow 1886, the warehouse and supply-chain coordinator directs one or more robots to pick pallets for railcar 1840 from warehouse 1870 and place those pallets into queue entry 3 in keeping with the procedures of block 1782 of method 1700.
At time T3 of scenario 1800 as shown on a left side of FIG. 19, truck 1820 has left, and the procedures described above with respect to time T2 have been completed. Resulting pallet arrangement 1860 has queue entry 1 holding pallets associated with truck 1810, queue entry 2 holding a pallet associated with van 1830, and queue entry 3 holding pallets associated with railcar 1840.
At time T3, the warehouse and supply-chain coordinator executes blocks 1710 and 1712 of method 1700 to determine that a next arriving vehicle NAV is van 1830 which is associated with queue entry QE=2 will arrive in T_NAV units of time. At T3, van 1830 has not yet arrived at warehouse 1870, so execution of method 1700 proceeds from block 1720, to block 1730 where QE=2, to block 1740. After execution of blocks 1740 and 1742, the warehouse and supply-chain coordinator determines a number NR>0 of robots available to swap queue entries and a time T_SWAP that is less than T_NAV. As such, execution of method 1700 proceeds to block 1760, where V1 is set to truck 1810, and then to block 1762, where the warehouse and supply-chain coordinator direct the NR robots found available at block 1740 to swap pallets between queue entry 1 (associated with truck 1810) and queue entry 2 (associated with van 1830).
At shown by arrow 1910 at time T4 on a right side of FIG. 19, the NR robots proceed to swap pallets between queue entries 1 and 2. The warehouse and supply-chain coordinator executes the procedures of block 1764 to associate queue entry 1 with van 1830 and associate queue entry 2 with truck 1810.
At time T5 as shown on a left side of FIG. 20, the procedures of blocks 1762 and 1764 discussed above with respect to time T4 have completed. Resulting pallet arrangement 1860 has queue entry 1 holding a pallet associated with van 1830, queue entry 2 holding pallets associated with truck 1810, and queue entry 3 holding pallets associated with railcar 1840. Also at time T5, van 1830 arrives at loading dock 1850.
The warehouse and supply-chain coordinator executes blocks 1710 and 1712 of method 1700 to determine that a next arriving vehicle NAV is van 1830 which is associated with queue entry QE=1 will arrive in T_NAV amount of time=0 time units. As van 1830 has arrived, execution of method 1700 proceed from block 1720 to block 1770, where the rehouse and supply-chain coordinator directs one or more robots in warehouse 1870 to load van 1830 with the pallet held in queue entry 1.
In some scenarios, the warehouse and supply-chain coordinator has reserved time slot TS2 at loading dock 1850 for truck 1810, where time slot TS2 at loading dock 1850 is immediately after time slot TS1, and where time slot TS2 is for a time period that includes T5. Then, when the warehouse and supply-chain coordinator is informed truck 1810 is delayed beyond time T5, the warehouse and supply-chain coordinator: releases time slot TS2 for truck 1810, determines that van 1830 is a next arriving vehicle after truck 1810, and reserves time slot TS2 for truck 1820. Then, van 1820 arrives during timeslot TS2. In particular of these scenarios, the warehouse and supply-chain coordinator also reserves another time slot TS3 that is immediately after time slot TS2 for truck 1810.
In particular scenarios, releasing time slot TS2 for truck 1810 includes revocation of access to warehouse 1870 for truck 1810, reserving time slot TS2 for van 1830 includes granting of access to warehouse 1870 for van 1830 until a beginning of time slot TS2, and reserving time slot TS3 for truck 1810 includes granting of access to warehouse 1870 for truck 1810 until a beginning of time slot TS3.
At time T6 as shown on a right side of FIG. 20, van 1830 is loaded with the pallet held in queue entry 1 using the procedures of block 1770 of method 1700 as indicated by arrow 2010. After being loaded, van 1830 departs from loading dock 1850 as indicated by arrow 2012. Once the procedures of block 1770 are completed, the warehouse and supply-chain coordinator executes the procedures of blocks 1772 and 1774 of method 1700 to: (1) to direct one or more robots move up the pallets of queue entry 2 to queue entry 1 as indicated by arrow 2020 and to associate queue entry 2 with truck 1810, and (2) to direct one or more robots move up the pallets of queue entry 3 to queue entry 2 as indicated by arrow 2030 and to associate queue entry 2 with railcar 1840. A new vehicle, truck 2000, is determined to be the next vehicle to arrive after railcar 1840 at warehouse 1870 and is associated with queue entry 3 at block 1780 of method 1700. Then, as indicated by arrow 2040, the warehouse and supply-chain coordinator directs one or more robots to pick pallets for truck 2000 from warehouse 1870 and place those pallets into queue entry 3 in keeping with the procedures of block 1782 of method 1700.
At time T7 of scenario 1800 as shown on a left side of FIG. 21, van 1830 has departed and the procedures described above with respect to time T6 have been completed. Resulting pallet arrangement 1860 has queue entry 1 holding pallets associated with truck 1810, queue entry 2 holding pallets associated with railcar 1840, and queue entry 3 holding pallets associated with truck 2000.
Also at time T7, truck 1810 arrives at loading dock 1850. The warehouse and supply-chain coordinator executes blocks 1710 and 1712 of method 1700 to determine that a next arriving vehicle NAV is truck 1810 which is associated with queue entry QE=1 will arrive in T_NAV amount of time=0 time units. As truck 1810 has arrived, execution of method 1700 proceed from block 1720 to block 1770, where the rehouse and supply-chain coordinator directs one or more robots in warehouse 1870 to load truck 1810 with the pallets held in queue entry 1. In some scenarios, the warehouse and supply-chain coordinator has reserved a time slot TS3 for truck 1810 at loading dock 1850, where time slot TS3 is for a time period that includes time T7.
At time T8 as shown on a right side of FIG. 21, truck 1810 is loaded with the pallets held in queue entry 1 using the procedures of block 1770 of method 1700 as indicated by arrow 2110. After being loaded, truck 1810 departs from loading dock 1850 as indicated by arrow 2112. Once the procedures of block 1770 are completed, the warehouse and supply-chain coordinator executes the procedures of blocks 1772 and 1774 of method 1700 to: (1) to direct one or more robots move up the pallets of queue entry 2 to queue entry 1 as indicated by arrow 2120 and to associate queue entry 2 with railcar 1840, and (2) to direct one or more robots move up the pallets of queue entry 3 to queue entry 2 as indicated by arrow 2130 and to associate queue entry 2 with truck 2000. A new vehicle, vessel 2100, is determined to be the next vehicle after truck 2000 to arrive at warehouse 1870 and is associated with queue entry 3 at block 1780 of method 1700. Then, as indicated by arrow 2140, the warehouse and supply-chain coordinator directs one or more robots to pick pallets for vessel 2100 from warehouse 1870 and place those pallets into queue entry 3 in keeping with the procedures of block 1782 of method 1700. After all of the pallets for vessel 2100 have been placed into queue entry 3, scenario 1800 can be completed.
FIG. 22 is a block diagram of supply chain 2200, in accordance with an example embodiment. A supply chain can have one or more components, where a component includes one or more facilities connected by zero or more paths. A facility is an entity of a supply chain that has a fixed location, such as, but not limited to, one or more buildings associated with a supplier, a manufacturer, a warehouse, a distribution center, a maintenance center, and/or a fulfillment center. A relative size of a facility in FIGS. 22-24 indicates a concentration of an inventory of goods and/or a capacity of the facility; e.g., in FIG. 22, a rectangle depicting facility 2232 is larger than a rectangle depicting facility 2234, indicating that facility 2232 has a larger concentration of inventory of goods and/or a capacity than facility 2234. A path between facilities can be used to communicate goods, vehicles, information, and/or other material objects between connected facilities, such as path 2262 that connects facilities 2250 and 2252.
Supply chain 2200 has four disconnected components: component 2202 shown at upper left of FIG. 22 that includes facilities (Fs) 2210 and 2212 connected by one path; component 2204 shown at center left of FIG. 22 that includes facilities 2220, 2222, 2224, 2226, 2228 connected by four paths; component 2206 shown at upper right of FIG. 22 that includes facilities 2230, 2232, 2234, 2236, 2238, 2240 connected by five paths; and component 2208 shown at lower right of FIG. 22 that includes facilities 2250, 2252, 2254, 2256, 2258, 2260 connected by seven paths. In some examples, goods, vehicles, information, and/or other material moving between two facilities in supply chain 2200 has to pass through one or more intermediate facilities; e.g., goods traveling between facility 2230 and facility 2234 have to pass through facility 2232.
In the example supply chain 2200, each of the four components 2202, 2204, 2206, 2208 comprises a separate sub-supply chain, and in the example shown in FIG. 22, the four components are not interconnected. In some examples of supply chain 2200, each component is owned separately; e.g., component 2202 is owned by owner A, component 2204 is owned by owner B, component 2206 is owned by owner C, and component 2208 is owned by owner D, where each of owners A, B, C, and D are different. In other examples of supply chain 2200, some or all components 2202, 2204, 2206, 2208 are co-owned.
As indicated in FIG. 22, the four components 2202, 2204, 2206, 2208 of supply chain 2200 do not directly interconnect. Then, one or more intermediate facilities can be used to ship goods and/or other material between components 2202, 2204, 2206, and 2208; e.g, goods shipped from component 2206 to component 2204 can be routed through facility 2236 of component 2206 and through facility 2226 of component 2204 for shipment to their destination in component 2204.
In other examples, two or more non-intermeshing components send partially-loaded vehicles to the same relatively-small region (e.g., a region having only one zip-code or postal code), leading to inefficient coverage of the relatively-small region. Further, routing goods and/or other material through an intermediate facility can increase costs and time due to loading, unloading, and perhaps extra breakage/spoilage of the goods and/or other material at the intermediate facility. To reduce such inefficiencies related to partial loads and intermediate facilities, part or all of various components of a supply chain can be consolidated.
FIG. 23 shows supply chain 2300 where components 2202, 2204, and 2208 have been substantially consolidated into component 2302, and where component 2206 has been somewhat consolidated to become component 2304. FIG. 23 shows that consolidated component 2302 has nine facilities 2212, 2220, 2222, 2226, 2238, 2250, 2252, 2254, 2260, which is fewer than the thirteen facilities in components 2202, 2204, and 2208. Also, paths between facilities have changed consolidated component 2302; e.g., paths have been added between facility 2238 and each of facilities 2250, 2252, 2254, and 2260.
The addition of paths between facilities reduces and/or eliminates use of intermediate facilities in transporting goods and/or other material between facility 2238 and each of facilities 2250, 2252, 2254, and 2260. By consolidating components 2202, 2204, and 2208, partial truckloads can be reduced. For example, if a partially loaded truck PLT2202 was sent from component 2202 of supply chain 2200 to zip code ZC1 and a partially loaded truck PLT2204 was also sent from component 2204 of supply chain 2200 to zip code ZC1, then these partial truckloads can be consolidated by coordinated management of component 2302 to send one truck to zip code ZC1 rather than two partially loaded trucks. Such coordinated management of component 2302 can be provided by a herein-described warehouse and supply-chain coordinator, such as warehouse and supply-chain coordinator 100. The warehouse and supply-chain coordinator can recognize two partial truck loads going to the same destination or nearby region, such as an area covered by one zip code, determine a facility that has most, if not all, of the goods to be carried in the two partial truck loads, and send one truck from that facility with the goods to the destination or nearby region to deliver the goods of the two partial truck loads. Consolidation of truck loads can be performed based on other and/or additional reasons than geography, such as a type of goods/vehicle to be used (e.g., refrigerated goods, gas/liquid goods, use of a refrigerated truck, tanker truck, air freight, or sea vessel), a priority of the goods/shipment (e.g., may continue to have partial loads for high-priority shipments and/or high-value goods).
FIG. 24 is a block diagram of supply chain 2400, in accordance with an example embodiment. Supply chain 2400 shows effects of further consolidation to supply chain 2300. Component 2302 of supply chain 2300 has been consolidated to become component 2402 of supply chain 2400. Component 2402 has one fewer facility and two more paths, with one facility—facility 2226—being directly connected to all of the other seven facilities 2212, 2220, 2222, 2238, 2250, 2254, 2260 of component 2402, while no facility of component 2302 was directly connected to all other facilities of that component. With fewer facilities and more paths than in component 2302, fewer facilities have to be maintained and fewer intermediate facilities are likely to be used in component 2402, and thus making component 2402 more time-efficient and cost-effective than component 2302.
Also, component 2404 has been consolidated to use only three facilities— facilities 2230, 2232, and 2410—which are all directly interconnected. In comparison, component 2304 of supply chain 2300 used five facilities, only one of which was fully connected. With fewer facilities and more paths than in component 2304, fewer facilities have to be maintained and fewer intermediate facilities are likely to be used in component 2404, and thus making component 2404 more time-efficient and cost-effective than component 2304.
In some examples, component 2402, component 2404, and/or supply chain 2400 is configured, such as by the herein-described warehouse and supply-chain coordinator, to provide on-demand logistics and/or supply chain services; i.e., provide logistics as a service in a similar fashion to cloud computing devices provide various computing services on demand. That is, the warehouse and supply-chain coordinator enables reception of an order from a customer for warehousing, transportation, goods manufacture, supply provisioning, and/or other various logistics/supply-chain related services, and component 2402, component 2404, and/or supply chain 2400 provides those services to the customer without the customer having to manage details of where goods are stored, transportation of goods through the supply chain, obtaining goods from suppliers and manufacturers, and supervision of warehouses.
Example Methods of Operation
FIG. 25 is a flowchart of method 2500, in accordance with an example embodiment. Method 2500 can be executed by a computing device. In some examples, the computing device includes computer-readable instructions/software that, when executed by one or more processors of the computing device, cause the computing device to perform some or all of the functionality of a warehouse and supply-chain coordinator; e.g., warehouse and supply-chain coordinator 100.
Method 2500 can begin at block 2510, where the computing device can determine a first estimated arrival time for a first vehicle at a loading dock of a warehouse, such as discussed above at least in the context of FIGS. 2-21.
In some embodiments, determining the first estimated arrival time can include reserving a first time slot at the loading dock for the first vehicle, where the first time slot includes the first estimated arrival time, such as discussed above at least in the context of FIGS. 9, 14, and 21.
In other embodiments, the warehouse includes a first parking location; then, determining the first estimated arrival time for the first vehicle at the loading dock can include: granting warehouse access to the first vehicle at the first estimated arrival time; determining whether the first vehicle has access to the loading dock at the first estimated arrival time; and after determining that first vehicle does not have access to the loading dock at the first estimated arrival time, reserving the first parking location for the first vehicle starting at the first estimated arrival time, such as discussed above at least in the context of FIGS. 8, 9, 14, 15, and 18-20.
At block 2520, the computing device can determine a second estimated arrival time for a second vehicle at the loading dock of the warehouse, where the first estimated arrival time is before the second estimated arrival time, such as discussed above at least in the context of FIGS. 8-21.
At block 2530, the computing device can determine a pallet arrangement at the loading dock of the warehouse, where the pallet arrangement includes a first pallet associated with the first vehicle and a second pallet associated with the second vehicle, and where the first pallet is closer to the loading dock than the second pallet, such as discussed above at least in the context of FIGS. 13-21. In some embodiments, the pallet arrangement can include at least a first queue entry and a second queue entry, each of the first queue entry and the second queue entry for holding one or more pallets, where a location of the first queue entry is closer to the loading dock than a location of the second queue entry, and where the first queue entry holds the first pallet and the second queue entry holds the second pallet, such as discussed above at least in the context of FIGS. 13-21.
At block 2540, the computing device can, after determining the pallet arrangement, determine that the first estimated arrival time has changed to be after the second estimated arrival time, such as discussed above at least in the context of FIGS. 13-21.
At block 2550, the computing device can, in response to determining that the first estimated arrival time has changed to be after the second estimated arrival time, instruct a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time, such as discussed above at least in the context of FIGS. 13-21.
In some embodiments, in response to determining that the first estimated arrival time has changed to be after the second estimated arrival time, instructing a robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time can include: determining a second arrival time indicating an amount of time until second vehicle arrives at the warehouse; determining an amount of time to swap pallets between the first queue entry and the second queue entry; determining whether the second arrival time is greater than the amount of time to swap pallets; and after determining that the second arrival time is greater than the amount of time to swap pallets, instructing the robot to: move the second pallet from the second queue entry to the first queue entry, and move the first pallet from the first queue entry to the second queue entry, such as discussed above at least in the context of FIGS. 17-21.
In particular embodiments, determining the amount of time to swap pallets between the first queue entry and the second queue entry can include determining the amount of time to swap pallets between the first queue entry and the second queue entry based on a number of robots available to swap pallets, such as discussed above at least in the context of FIGS. 17-21. In other particular embodiments, method 2500 can further include: after moving the first pallet from the first queue entry to the second queue entry: associating the first queue entry with the second vehicle; and associating the second queue entry with the first vehicle, such as discussed above at least in the context of FIGS. 17-21. In still other particular embodiments, method 2500 can further include: after moving the first pallet from the first queue entry to the second queue entry, determining that the second vehicle has arrived at the warehouse; and instructing the robot to load the second vehicle with at least the second pallet in the first queue entry, such as discussed above at least in the context of FIGS. 17-21. In even other particular embodiments, the pallet arrangement has a number of queue entries QE that is greater than or equal to two; then, method 2500 can further include: after instructing the robot to load the second vehicle with at least the second pallet in the first queue entry, instructing the robot to move pallets from the second queue entry to the first queue entry; associating the first queue entry with the first vehicle; determining a new vehicle that is a next vehicle to arrive at the warehouse after each vehicle associated with a queue entry; associating the QEth queue entry with the new vehicle; and instructing the robot to move pallets associated with the new vehicle to the QEth queue entry, such as discussed above at least in the context of FIGS. 17-21.
In other embodiments, the pallet arrangement includes a first queue entry and a second queue entry, the first queue entry holding at least a first pallet at a first location, and the second queue entry holding at least a second pallet at a second location; then, instructing the robot to modify the pallet arrangement can include: instructing the robot to go to the first location; instructing the robot to pick up the first pallet at the first location; instructing a second robot to go to the second location; instructing the second robot to pick up the second pallet at the second location; instructing the robot to take the first pallet to the second location; instructing the second robot to take the second pallet to the first location while the first robot is taking the first pallet to the second location; instructing the robot to place the first pallet at the second location; and instructing the second robot to place the second pallet at the first location, such as discussed above at least in the context of FIGS. 17-21.
In some embodiments, method 2500 can further include: after determining that the first estimated arrival time has changed to be after the second estimated arrival time, the computing device: releasing the reservation of the first time slot at the loading dock; and reserving a second time slot at the loading dock for the second vehicle, where the second time slot includes the second estimated arrival time, such as discussed above at least in the context of FIGS. 12, 14, and 18-21. In particular embodiments, the first estimated arrival time has changed to a third estimated arrival time; then, method 2500 can further include: determining whether the third estimated arrival time is during the second time slot; and after determining that the third estimated arrival time is during the second time slot, reserving a third time slot at the loading dock for the first vehicle, where the third time slot is immediately after the second time slot, such as discussed above at least in the context of FIGS. 12, 14, and 18-21.
In other embodiments, method 2500 can further include: after determining that the first estimated arrival time has changed to be after the second estimated arrival time: revoking warehouse access to the first vehicle at the first estimated arrival time; determining that the first estimated arrival time has changed to be a third estimated arrival time; and granting warehouse access to the first vehicle at the third estimated arrival time, such as discussed above at least in the context of FIGS. 8, 9, and 18-20.
In still other embodiments, method 2500 can further include: after the first vehicle arrives at the warehouse: directing an inspecting robot to inspect goods carried by the first vehicle to determine whether the goods carried by the first vehicle are in conformity with a contract for the goods; and after determining that the goods carried by the first vehicle are in conformity with the contract, moving the goods carried by the first vehicle into the warehouse; and sending a receipt for the goods carried by the first vehicle, such as discussed above at least in the context of FIGS. 10 and 11. In particular embodiments, method 2500 can further include: after determining that the goods carried by the first vehicle are not in conformity with the contract, rejecting delivery of the goods carried by the first vehicle, such as discussed above at least in the context of FIG. 10
In still other embodiments, method 2500 can further include: receiving a first order to deliver a pallet of goods from the warehouse for the first vehicle via the loading dock; and after receiving the first order to deliver the pallet of goods, instructing the robot to move the pallet of goods to the pallet arrangement at the loading dock, such as discussed above at least in the context of FIGS. 12-16. In particular embodiments, method 2500 can further include: after receiving the first order to deliver the pallet of goods, receiving a second order to deliver the pallet of goods from the warehouse at a second time of delivery via a second loading dock of the warehouse; determining whether the second order has a higher priority that the first order; and after determining that the second order has a higher priority that the first order, instructing the robot to move the pallet of goods to the second loading dock by the second time of delivery.
In even other embodiments, method 2500 can further include determining a first estimated departure time from the warehouse for the first vehicle; determine a pallet of deliverable goods to be delivered via the first vehicle; and directing a robot to take the pallet of deliverable goods to the pallet arrangement before the first estimated departure time.
The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims.
The above detailed description describes various features and functions of the disclosed systems, devices, and methods with reference to the accompanying figures. In the figures, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, figures, and claims are not meant to be limiting. Other embodiments can be utilized, and other changes can be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.
With respect to any or all of the ladder diagrams, scenarios, and flow charts in the figures and as discussed herein, each block and/or communication may represent a processing of information and/or a transmission of information in accordance with example embodiments. Alternative embodiments are included within the scope of these example embodiments. In these alternative embodiments, for example, functions described as blocks, transmissions, communications, requests, responses, and/or messages may be executed out of order from that shown or discussed, including substantially concurrent or in reverse order, depending on the functionality involved. Further, more or fewer blocks and/or functions may be used with any of the ladder diagrams, scenarios, and flow charts discussed herein, and these ladder diagrams, scenarios, and flow charts may be combined with one another, in part or in whole.
A block that represents a processing of information may correspond to circuitry that can be configured to perform the specific logical functions of a herein-described method or technique. Alternatively or additionally, a block that represents a processing of information may correspond to a module, a segment, or a portion of program code (including related data). The program code may include one or more instructions executable by a processor for implementing specific logical functions or actions in the method or technique. The program code and/or related data may be stored on any type of computer readable medium such as a storage device including a disk or hard drive or other storage medium.
The computer readable medium may also include non-transitory computer readable media such as non-transitory computer-readable media that stores data for short periods of time like register memory, processor cache, and random access memory (RAM). The computer readable media may also include non-transitory computer readable media that stores program code and/or data for longer periods of time, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. A computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device.
Moreover, a block that represents one or more information transmissions may correspond to information transmissions between software and/or hardware modules in the same physical device. However, other information transmissions may be between software modules and/or hardware modules in different physical devices.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for provided for explanatory purposes and are not intended to be limiting, with the true scope being indicated by the following claims.

Claims (17)

What is claimed is:
1. A method, comprising:
determining a first estimated arrival time for a first vehicle at a loading dock of a warehouse;
determining a second estimated arrival time for a second vehicle at the loading dock of the warehouse, wherein the first estimated arrival time is before the second estimated arrival time;
determining a pallet arrangement at the loading dock of the warehouse, wherein the pallet arrangement comprises a first pallet associated with the first vehicle and a second pallet associated with the second vehicle, wherein the pallet arrangement comprises at least a first queue entry and a second queue entry, wherein a location of the first queue entry is closer to the loading dock than a location of the second queue entry, and wherein the first queue entry holds the first pallet and the second queue entry holds the second pallet;
after determining the pallet arrangement, determining that the first estimated arrival time has changed to be after the second estimated arrival time; and
in response to determining that the first estimated arrival time has changed to be after the second estimated arrival time, determining, based on a number of robots available to swap pallets, an amount of time to swap pallets between the first queue entry and the second queue entry;
determining whether an amount of time until the second estimated arrival time is greater than the amount of time to swap pallets; and
after determining that the amount of time until the second estimated arrival time is greater than the amount of time to swap pallets, instructing, based on the number of robots available to swap pallets, at least one available robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time, wherein the instructing comprises instructing the at least one available robot to:
move the second pallet from the second queue entry to the first queue entry, and
move the first pallet from the first queue entry to the second queue entry.
2. The method of claim 1, wherein determining the first estimated arrival time comprises:
reserving a first time slot at the loading dock for the first vehicle, wherein the first time slot includes the first estimated arrival time.
3. The method of claim 2, further comprising:
after determining that the first estimated arrival time has changed to be after the second estimated arrival time:
releasing the reservation of the first time slot at the loading dock; and
reserving a second time slot at the loading dock for the second vehicle, wherein the second time slot includes the second estimated arrival time.
4. The method of claim 3, wherein the first estimated arrival time has changed to a third estimated arrival time, and wherein the method further comprises:
determining whether the third estimated arrival time is during the second time slot; and
after determining that the third estimated arrival time is during the second time slot, reserving a third time slot at the loading dock for the first vehicle, wherein the third time slot is immediately after the second time slot.
5. The method of claim 1, wherein the warehouse comprises a first parking location, and wherein determining the first estimated arrival time for the first vehicle at the loading dock comprises:
granting warehouse access to the first vehicle at the first estimated arrival time;
determining whether the first vehicle has access to the loading dock at the first estimated arrival time; and
after determining that first vehicle does not have access to the loading dock at the first estimated arrival time, reserving the first parking location for the first vehicle starting at the first estimated arrival time.
6. The method of claim 5, wherein the method further comprises:
after determining that the first estimated arrival time has changed to be after the second estimated arrival time:
revoking warehouse access to the first vehicle at the first estimated arrival time;
determining that the first estimated arrival time has changed to be a third estimated arrival time; and
granting warehouse access to the first vehicle at the third estimated arrival time.
7. The method of claim 1, further comprising:
after the first vehicle arrives at the warehouse:
directing an inspecting robot to inspect goods carried by the first vehicle to determine whether the goods carried by the first vehicle are in conformity with a contract for the goods; and
after determining that the goods carried by the first vehicle are in conformity with the contract:
moving the goods carried by the first vehicle into the warehouse; and
sending a receipt for the goods carried by the first vehicle.
8. The method of claim 7, further comprising:
after determining that the goods carried by the first vehicle are not in conformity with the contract, rejecting delivery of the goods carried by the first vehicle.
9. The method of claim 1, further comprising:
after moving the first pallet from the first queue entry to the second queue entry:
associating the first queue entry with the second vehicle; and
associating the second queue entry with the first vehicle.
10. The method of claim 1, further comprising:
after moving the first pallet from the first queue entry to the second queue entry:
determining that the second vehicle has arrived at the warehouse; and
instructing the at least one available robot to load the second vehicle with at least the second pallet in the first queue entry.
11. The method of claim 10, wherein the pallet arrangement has a number of queue entries QE that is greater than or equal to two, and wherein the method further comprises:
after instructing the at least one available robot to load the second vehicle with at least the second pallet in the first queue entry:
instructing the at least one available robot to move pallets from the second queue entry to the first queue entry;
associating the first queue entry with the first vehicle;
determining a new vehicle that is a next vehicle to arrive at the warehouse after each vehicle associated with a queue entry;
associating the QEth queue entry with the new vehicle; and
instructing the at least one available robot to move pallets associated with the new vehicle to the QEth queue entry.
12. The method of claim 1, further comprising:
receiving a first order to deliver a pallet of goods from the warehouse for the first vehicle via the loading dock; and
after receiving the first order to deliver the pallet of goods, instructing the at least one available robot to move the pallet of goods to the pallet arrangement at the loading dock.
13. The method of claim 12, further comprising:
after receiving the first order to deliver the pallet of goods, receiving a second order to deliver the pallet of goods from the warehouse at a second time of delivery via a second loading dock of the warehouse;
determining whether the second order has a higher priority that the first order; and
after determining that the second order has a higher priority that the first order, instructing the at least one available robot to move the pallet of goods to the second loading dock by the second time of delivery.
14. The method of claim 1, further comprising:
determining a first estimated departure time from the warehouse for the first vehicle;
determining a pallet of deliverable goods to be delivered via the first vehicle; and
directing the at least one available robot to take the pallet of deliverable goods to the pallet arrangement before the first estimated departure time.
15. The method of claim 1, wherein instructing the at least one available robot to modify the pallet arrangement comprises:
instructing a first available robot to go to the first location;
instructing the first available robot to pick up the first pallet at the first location;
instructing a second available robot to go to the second location;
instructing the second available robot to pick up the second pallet at the second location;
instructing the first available robot to take the first pallet to the second location;
instructing the second available robot to take the second pallet to the first location while the first robot is taking the first pallet to the second location;
instructing the first available robot to place the first pallet at the second location; and
instructing the second available robot to place the second pallet at the first location.
16. A computing device, comprising:
one or more processors; and
data storage including at least computer-executable instructions stored thereon that, when executed by the one or more processors, cause the computing device to:
determine a first estimated arrival time for a first vehicle at a loading dock of a warehouse;
determine a second estimated arrival time for a second vehicle at the loading dock of the warehouse, wherein the first estimated arrival time is before the second estimated arrival time;
determine a pallet arrangement at the loading dock of the warehouse, wherein the pallet arrangement comprises a first pallet associated with the first vehicle and a second pallet associated with the second vehicle, wherein the pallet arrangement comprises at least a first queue entry and a second queue entry, wherein a location of the first queue entry is closer to the loading dock than a location of the second queue entry, and wherein the first queue entry holds the first pallet and the second queue entry holds the second pallet;
after determining the pallet arrangement, determine that the first estimated arrival time has changed to be after the second estimated arrival time; and
in response to determining that the first estimated arrival time has changed to be after the second estimated arrival time, determine, based on a number of robots available to swap pallets, an amount of time to swap pallets between the first queue entry and the second queue entry;
determine whether an amount of time until the second estimated arrival time is greater than the amount of time to swap pallets; and
after determining that the amount of time until the second estimated arrival time is greater than the amount of time to swap pallets, instruct, based on the number of robots available to swap pallets, at least one available robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time, wherein the instructing comprises instructing the at least one available robot to:
move the second pallet from the second queue entry to the first queue entry, and
move the first pallet from the first queue entry to the second queue entry.
17. A non-transitory computer readable medium having stored thereon instructions, that when executed by one or more processors of a computing device, cause the computing device to perform functions comprising:
determining a first estimated arrival time for a first vehicle at a loading dock of a warehouse;
determining a second estimated arrival time for a second vehicle at the loading dock of the warehouse, wherein the first estimated arrival time is before the second estimated arrival time;
determining a pallet arrangement at the loading dock of the warehouse, wherein the pallet arrangement comprises a first pallet associated with the first vehicle and a second pallet associated with the second vehicle, wherein the pallet arrangement comprises at least a first queue entry and a second queue entry, wherein a location of the first queue entry is closer to the loading dock than a location of the second queue entry, and wherein the first queue entry holds the first pallet and the second queue entry holds the second pallet;
after determining the pallet arrangement, determining that the first estimated arrival time has changed to be after the second estimated arrival time; and
after determining that the first estimated arrival time has changed to be after the second estimated arrival time, determining, based on a number of robots available to swap pallets, an amount of time to swap pallets between the first queue entry and the second queue entry;
determining whether an amount of time until the second estimated arrival time is greater than the amount of time to swap pallets; and
after determining that the amount of time until the second estimated arrival time is greater than the amount of time to swap pallets, instructing, based on the number of robots available to swap pallets, at least one available robot to modify the pallet arrangement so that the second pallet is closer to the loading dock than the first pallet before the second estimated arrival time, wherein the instructing comprises instructing the at least one available robot to:
move the second pallet from the second queue entry to the first queue entry, and
move the first pallet from the first queue entry to the second queue entry.
US16/110,014 2017-08-28 2018-08-23 Warehouse and supply-chain coordinator Active 2039-02-19 US10822170B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/110,014 US10822170B2 (en) 2017-08-28 2018-08-23 Warehouse and supply-chain coordinator
CN201880056673.5A CN111328404B (en) 2017-08-28 2018-08-24 Warehouse and supply chain coordinator
EP18765527.9A EP3665627A1 (en) 2017-08-28 2018-08-24 Warehouse and supply-chain coordinator
PCT/US2018/047867 WO2019046113A1 (en) 2017-08-28 2018-08-24 Warehouse and supply-chain coordinator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762551181P 2017-08-28 2017-08-28
US16/110,014 US10822170B2 (en) 2017-08-28 2018-08-23 Warehouse and supply-chain coordinator

Publications (2)

Publication Number Publication Date
US20190066035A1 US20190066035A1 (en) 2019-02-28
US10822170B2 true US10822170B2 (en) 2020-11-03

Family

ID=65435372

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/843,559 Active 2038-07-29 US10787315B2 (en) 2017-08-28 2017-12-15 Dynamic truck route planning between automated facilities
US15/843,581 Active 2038-06-25 US10723555B2 (en) 2017-08-28 2017-12-15 Robot inventory updates for order routing
US16/110,014 Active 2039-02-19 US10822170B2 (en) 2017-08-28 2018-08-23 Warehouse and supply-chain coordinator

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/843,559 Active 2038-07-29 US10787315B2 (en) 2017-08-28 2017-12-15 Dynamic truck route planning between automated facilities
US15/843,581 Active 2038-06-25 US10723555B2 (en) 2017-08-28 2017-12-15 Robot inventory updates for order routing

Country Status (4)

Country Link
US (3) US10787315B2 (en)
EP (3) EP3665627A1 (en)
CN (3) CN111033539B (en)
WO (3) WO2019046114A1 (en)

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11775892B2 (en) 2013-10-03 2023-10-03 Crc R&D, Llc Apparatus and method for freight delivery and pick-up
US10311634B2 (en) * 2015-07-21 2019-06-04 IAM Robotics, LLC Three dimensional scanning and data extraction systems and processes for supply chain piece automation
US10553122B1 (en) * 2016-03-22 2020-02-04 Amazon Technologies, Inc. Unmanned aerial vehicle data collection for routing
US10917921B2 (en) 2016-06-19 2021-02-09 Platform Science, Inc. Secure wireless networks for vehicles
US11503655B2 (en) 2016-06-19 2022-11-15 Platform Science, Inc. Micro-navigation for a vehicle
US12069749B2 (en) 2016-06-19 2024-08-20 Platform Science, Inc. Method and system for generating standardized format data from disparate, non-standardized vehicle data
US12120754B2 (en) 2016-06-19 2024-10-15 Platform Science, Inc. Method and system to identify and mitigate problematic devices
US11528759B1 (en) 2016-06-19 2022-12-13 Platform Science, Inc. Method and system for vehicle inspection
US11438938B1 (en) 2016-06-19 2022-09-06 Platform Science, Inc. System and method to generate position and state-based electronic signaling from a vehicle
US12016061B2 (en) 2016-06-19 2024-06-18 Platform Science, Inc. Remote mobile device management
US10475258B1 (en) 2016-06-19 2019-11-12 Platform Science, Inc. Method and system for utilizing vehicle odometer values and dynamic compliance
US11330644B2 (en) 2016-06-19 2022-05-10 Platform Science, Inc. Secure wireless networks for vehicle assigning authority
US10346797B2 (en) 2016-09-26 2019-07-09 Cybernet Systems, Inc. Path and load localization and operations supporting automated warehousing using robotic forklifts or other material handling vehicles
US11030570B2 (en) * 2017-05-24 2021-06-08 Tata Colsultancy Services Limited System and method for dynamic fleet management
US10787315B2 (en) * 2017-08-28 2020-09-29 Google Llc Dynamic truck route planning between automated facilities
US10885490B2 (en) 2017-08-31 2021-01-05 Cross Road Centers, Llc Providing truck drivers directions to a loading dock or an off-site location based on dock availability
US11074540B2 (en) * 2017-10-10 2021-07-27 Uber Technologies, Inc. Network system including drones
US10628786B2 (en) * 2017-11-29 2020-04-21 Walmart Apollo, Llc System and method for gate and resource assignment at a distribution center
CN110007620B (en) 2018-01-05 2022-04-05 菜鸟智能物流控股有限公司 Equipment control method and device
US10467581B2 (en) * 2018-01-19 2019-11-05 Udelv Inc. Delivery management system
US20190266567A1 (en) * 2018-02-27 2019-08-29 Ncr Corporation Consolidated delivery
US10630628B2 (en) * 2018-03-23 2020-04-21 Satori Worldwide, Llc Systems and methods for managing vehicles
JP6989429B2 (en) * 2018-03-28 2022-01-05 株式会社東芝 The platooning operation system and the platooning operation method
US20210149401A1 (en) * 2018-04-12 2021-05-20 Murata Machinery, Ltd. Transport vehicle system and transport vehicle control method
US11756428B2 (en) * 2018-04-17 2023-09-12 Vorto Technologies, Llc Resource transportation systems and methods
US12073725B2 (en) * 2018-04-26 2024-08-27 Aurora Operations, Inc. Systems and methods for coordinating an arrival of one or more assets at a location
US20200010071A1 (en) * 2018-07-03 2020-01-09 Jacob M. Brancato Payload transport and delivery method, system and multi-platform unmanned cargo delivery vehicle
CN109669427A (en) * 2018-07-12 2019-04-23 北京图森未来科技有限公司 Realize the system and relevant device of automatic transport of goods
US11097897B1 (en) * 2018-07-13 2021-08-24 Vecna Robotics, Inc. System and method of providing delivery of items from one container to another container via robot movement control to indicate recipient container
US20210272037A1 (en) * 2018-07-24 2021-09-02 Truckl Llc Systems for supply chain event management
US10909847B1 (en) * 2018-09-19 2021-02-02 All Turtles Corporation Building urban area noise pollution maps and mitigating noise from emergency vehicles
US11126957B2 (en) * 2018-10-31 2021-09-21 International Business Machines Corporation Supply chain forecasting system
US20200134557A1 (en) * 2018-10-31 2020-04-30 Quisto Company Limited Logistical service for processing modular delivery requests
US20200184387A1 (en) * 2018-12-06 2020-06-11 Target Brands, Inc. Platform using swappable policies to simulate and perform warehouse processes
US11062405B2 (en) * 2019-01-31 2021-07-13 Toyota Motor Engineering & Manufacturing North America, Inc. Dynamic ordering system
US11466998B1 (en) * 2019-02-15 2022-10-11 State Farm Mutual Automobile Insurance Company Systems and methods for dynamically generating optimal routes for management of multiple vehicles
US11493345B1 (en) 2019-02-15 2022-11-08 State Farm Mutual Automobile Insurance Company Systems and methods for dynamically generating optimal routes for vehicle delivery management
JP7070463B2 (en) * 2019-02-22 2022-05-18 トヨタ自動車株式会社 Information processing equipment and information processing methods, programs
WO2020176273A1 (en) * 2019-02-27 2020-09-03 Walmart Apollo, Llc Flexible automated sorting and transport arrangement (fast) asset monitor
US11151507B2 (en) * 2019-03-18 2021-10-19 Coupang Corp. Systems and methods for automatic package reordering using delivery wave systems
US10664793B1 (en) * 2019-03-18 2020-05-26 Coupang Corp. Systems and methods for automatic package tracking and prioritized reordering
JP7393130B2 (en) * 2019-04-15 2023-12-06 日野自動車株式会社 Delivery vehicle management system
US20200342525A1 (en) * 2019-04-23 2020-10-29 Walmart Apollo, Llc Third party carrier management
US10766141B1 (en) * 2019-05-09 2020-09-08 Mujin, Inc. Robotic system with a coordinated transfer mechanism
US11161704B2 (en) * 2019-06-17 2021-11-02 Siemens Logistics Llc Systems and methods for automatic unloading of parcels
WO2021019596A1 (en) * 2019-07-26 2021-02-04 株式会社Fuji Distribution system
US11248912B2 (en) 2019-08-07 2022-02-15 Ford Global Technologies, Llc System and methods for simulations of vehicle-based item delivery
JP7205422B2 (en) * 2019-09-02 2023-01-17 トヨタ自動車株式会社 Information processing device, information processing system, program, and information processing method
TWI771615B (en) * 2019-09-17 2022-07-21 英業達股份有限公司 Product order prediction method
WO2021055384A1 (en) * 2019-09-19 2021-03-25 Platform Science, Inc. Micro-navigation for a vehicle
US20210116928A1 (en) * 2019-10-21 2021-04-22 TE Connectivity Services Gmbh Autonomous mobile vehicle and method of operating the autonomous mobile vehicle
CN112700181B (en) * 2019-10-23 2024-04-02 京东方科技集团股份有限公司 Material distribution system, method, electronic equipment and storage medium
CN115699050A (en) * 2019-11-05 2023-02-03 强力价值链网络投资组合2019有限公司 Value chain network control tower and enterprise management platform
CN111125848A (en) * 2019-11-25 2020-05-08 李林卿 Dangerous goods transportation network emergency rescue resource allocation method
US11455594B2 (en) 2019-11-26 2022-09-27 Target Brands, Inc. Load tracking computing platform and user interface
US11488100B2 (en) * 2019-11-26 2022-11-01 Target Brands, Inc. Load tracking computing platform and user interface
EP4115255A1 (en) * 2020-03-03 2023-01-11 United States Postal Service Automated systems and devices for loading and unloading
EP4120156A4 (en) * 2020-03-18 2023-05-10 UISEE (Shanghai) Automotive Technologies Ltd Multi-vehicle coordination-based vehicle scheduling system, method, electronic apparatus, and storage medium
CN111402005B (en) * 2020-03-18 2023-09-29 上海东普信息科技有限公司 E-business ERP system and management method thereof
JP6993072B2 (en) * 2020-04-01 2022-01-13 三菱ロジスネクスト株式会社 Cargo handling system
EP3905158A1 (en) * 2020-04-27 2021-11-03 Accenture Global Solutions Limited Dlt-based demand sensing network
CN111409997B (en) * 2020-05-20 2021-06-01 大连海事大学 Transfer robot picking task scheduling method for mobile shelf warehousing system
US11068838B1 (en) * 2020-05-29 2021-07-20 Alex Cougar System and method for delivering to a package receptacle using a drone
US11775915B2 (en) 2020-06-30 2023-10-03 Tusimple, Inc. Hub-based distribution and delivery network for autonomous trucking services
US20220001549A1 (en) * 2020-07-06 2022-01-06 International Business Machines Corporation Managing shared robots in a data center
CN111985700B (en) * 2020-07-30 2024-01-05 中国外运股份有限公司 Vehicle carrying bill quantity balancing method and device for determining home delivery
JP2023538113A (en) * 2020-08-17 2023-09-06 アンビ ロボティクス, インコーポレイテッド Systems and methods for dynamic robotic kitting lines
JP7474857B2 (en) 2020-08-24 2024-04-25 株式会社Fuji Control device, delivery system and control method
US11132739B1 (en) 2020-08-26 2021-09-28 Coupang Corp. Systems and methods for on-demand decomposition of orders and urgency-based identification of item combination for fulfillment
CN112116218A (en) * 2020-08-31 2020-12-22 深圳优地科技有限公司 Distribution method, distribution device, distribution terminal and storage medium
US11724883B2 (en) * 2020-09-11 2023-08-15 Locus Robotics Corp. Presort system for executing robot-assisted putaway tasks
US11443364B2 (en) * 2020-09-18 2022-09-13 Shopify Inc. Real-time management of inventory transfers and related user interfaces
US11699114B2 (en) * 2020-09-21 2023-07-11 Walmart Apollo, Llc Automated robotic pre-staging of prioritized pick up orders for non-notifying customers of a retail store
US11699121B2 (en) 2020-10-05 2023-07-11 Ford Global Technologies, TLC Systems and methods for evaluating loading and unloading times of items in a vehicle
JP7435409B2 (en) * 2020-11-05 2024-02-21 トヨタ自動車株式会社 Vehicle instruction device, vehicle instruction method, and vehicle instruction program
JP7071482B1 (en) 2020-11-30 2022-05-19 楽天グループ株式会社 Information processing equipment, systems, and methods
JP2022086436A (en) * 2020-11-30 2022-06-09 トヨタ自動車株式会社 Device, system, method, and program for transport management
WO2022132025A1 (en) * 2020-12-14 2022-06-23 Ych Group Pte Ltd Autonomous drone inventory of palleted collections placed within pallet bays of an indoor warehouse
JP7367665B2 (en) * 2020-12-17 2023-10-24 トヨタ自動車株式会社 Information processing device, information processing system, and program
US11687880B2 (en) 2020-12-29 2023-06-27 Target Brands, Inc. Aggregated supply chain management interfaces
US20220207449A1 (en) * 2020-12-29 2022-06-30 Target Brands, Inc. Order management with supply chain management system and platform
CN112849899B (en) * 2020-12-29 2022-10-21 深圳市海柔创新科技有限公司 Storage management method, device, equipment, medium, program product and system
US20230159197A1 (en) * 2021-01-11 2023-05-25 Rehrig Pacific Company Turntable system
TWI786537B (en) * 2021-02-04 2022-12-11 鍇興工業股份有限公司 Inventory and pick-up method of dynamic warehousing system with automated crane cooperation
CN113077597A (en) * 2021-03-23 2021-07-06 韦东华 Full-automatic intelligent mobile unmanned service vehicle and implementation method thereof
DE102021107425A1 (en) * 2021-03-24 2022-09-29 Bayerische Motoren Werke Aktiengesellschaft Method and motor vehicle for multimodal route planning
KR102326916B1 (en) * 2021-04-05 2021-11-17 쿠팡 주식회사 Electronic apparatus for processing information for item delivery and method thereof
WO2022221353A1 (en) * 2021-04-14 2022-10-20 Locomation, Inc. Segmented relay transportation network
US20220358437A1 (en) * 2021-05-06 2022-11-10 Target Brands, Inc. Supply chain management sysem and platform with features for milestone and data calculations
CN117413288A (en) * 2021-06-02 2024-01-16 利尼芝物流有限责任公司 Exchanging task assignments to determine task selection
CN113537883B (en) * 2021-07-13 2023-09-08 长安大学 Method and related device for vehicle allocation and monitoring in logistics park
CN113627858A (en) * 2021-08-24 2021-11-09 北京京东乾石科技有限公司 Method and device for determining cache location of warehouse
CN113895935B (en) * 2021-09-14 2024-01-26 北京机科国创轻量化科学研究院有限公司 Full-automatic intelligent chemical fiber POY wire ingot feeding equipment control method and control system
CN113837660B (en) * 2021-10-21 2024-08-13 上海欧冶物流股份有限公司 Driving scheduling method, medium and electronic equipment
CN113706085B (en) * 2021-10-29 2022-04-01 南京我乐家居智能制造有限公司 Intelligent manufacturing factory product warehouse logistics informatization management method and cloud management system
US12020204B2 (en) * 2021-12-01 2024-06-25 International Business Machines Corporation Scalability of physical storage spaces
US12001994B2 (en) 2021-12-21 2024-06-04 Target Brands, Inc. Delivery management platform and mobile application
US20230195119A1 (en) * 2021-12-22 2023-06-22 Ford Global Technologies, Llc Systems and methods for controlling autonomous mobile robots in a manufacturing environment
US20230230025A1 (en) * 2022-01-20 2023-07-20 Target Brands, Inc. Systems and methods for preparing direct-to-customer shipments
US20230267400A1 (en) * 2022-02-18 2023-08-24 Architecture Technology Corporation Artificially intelligent warehouse management system
CN114219802B (en) * 2022-02-21 2022-06-14 成都飞机工业(集团)有限责任公司 Skin connecting hole position detection method based on image processing
US20230306325A1 (en) * 2022-03-22 2023-09-28 Amazon Technologies, Inc. Optimized task generation and scheduling of automated guided carts using overhead sensor systems
CN114399123B (en) * 2022-03-24 2022-06-21 深圳市磅旗科技智能发展有限公司 Intelligent supply chain logistics intelligent optimization management method and system
US20230339457A1 (en) * 2022-04-20 2023-10-26 Volley Automation, Inc. Parking systems and methods for arranging vehicles within a parking garage
US20230410029A1 (en) * 2022-05-17 2023-12-21 Koireader Technologies, Inc. Warehouse system for asset tracking and load scheduling
CN114919908B (en) * 2022-05-18 2023-04-28 北京航空航天大学 Storage robot configuration quantity planning method and device and electronic equipment
US12131066B2 (en) * 2022-06-21 2024-10-29 Micron Technology, Inc. Efficient command fetching in a memory sub-system
EP4343650A1 (en) * 2022-09-23 2024-03-27 Volvo Truck Corporation Method and control unit for managing loading and/or offloading of a vehicle
WO2024086956A1 (en) * 2022-10-26 2024-05-02 孟卫平 Smart warehousing chain optimization system
DE102023200019A1 (en) 2023-01-03 2024-07-04 Volkswagen Aktiengesellschaft Procedure for assigning transport orders to electrically operated transport vehicles, as well as electronic transport assignment system
WO2024154090A1 (en) * 2023-01-18 2024-07-25 Dematic Corp. System and method for real-time order projection and release
CN115796387B (en) * 2023-01-29 2023-05-30 深圳市普拉托科技有限公司 Tray scheduling optimizing method, device, equipment and storage medium
US20240311751A1 (en) * 2023-03-15 2024-09-19 Roadie, Inc. System and method for bundling deliveries and matching authenticated drivers to the bundled deliveries
US20240320607A1 (en) * 2023-03-23 2024-09-26 Draying, Inc. Method, apparatus and computer-readable medium for enhanced shipping
CN116205571A (en) * 2023-04-28 2023-06-02 浙江中之杰智能系统有限公司 Inventory management method and system based on RFID technology

Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625559A (en) 1993-04-02 1997-04-29 Shinko Electric Co., Ltd. Transport management control apparatus and method for unmanned vehicle system
US6148291A (en) * 1998-01-26 2000-11-14 K & T Of Lorain, Ltd. Container and inventory monitoring methods and systems
US20020143862A1 (en) 2000-05-19 2002-10-03 Atitania Ltd. Method and apparatus for transferring information between a source and a destination on a network
US20040146380A1 (en) 2001-01-26 2004-07-29 Baker John Russell Method and apparatus for container storage and container retrieval
US20050197876A1 (en) * 2000-12-29 2005-09-08 Peter Benda Transport vehicle capacity maximization logistics system and method of same
US7055741B2 (en) 2002-10-31 2006-06-06 United Parcel Service Of America, Inc. Systems and methods of inventory management utilizing unattended facilities
US20060282284A1 (en) * 2005-03-07 2006-12-14 Daniel Charles A Truck-trailer unloading services management system and method
US20070276558A1 (en) 2004-03-27 2007-11-29 Kyeong-Keun Kim Navigation system for position self control robot and floor materials for providing absolute coordinates used thereof
US20080077511A1 (en) 2006-09-21 2008-03-27 International Business Machines Corporation System and Method for Performing Inventory Using a Mobile Inventory Robot
US20080131255A1 (en) 2006-11-30 2008-06-05 Transbotics Corporation Palletizing systems and methods
US20090063233A1 (en) * 2007-08-31 2009-03-05 Amar Kumar Goods Receipt Preparation
US20090119010A1 (en) 2005-02-08 2009-05-07 Seegrid Corporation Multidimensional evidence grids and system and methods for applying same
US20090180667A1 (en) 2008-01-14 2009-07-16 Mahan Larry G Optical position marker apparatus
US20090198376A1 (en) 2008-01-28 2009-08-06 Seegrid Corporation Distributed multi-robot system
US20100121481A1 (en) 2005-08-30 2010-05-13 Talley Paul A Automated self-storage system
US7770792B2 (en) 2004-06-23 2010-08-10 Sap Ag Methods and systems for managing stock transportation
US20100249988A1 (en) * 2009-03-02 2010-09-30 Lars Baldes Method and device for automated palletizing of packages
US20110295411A1 (en) 2010-05-26 2011-12-01 Christopher David Rotella System And Method For Managing Reassignment Of Units Among Shipments In A Materials Handling Facility
US8075238B2 (en) 2003-04-14 2011-12-13 Gudel Group Ag Device and method for running a warehouse
US20120030070A1 (en) 2010-08-02 2012-02-02 Keller Mark J Managing an inventory comprising serialized products
US20120166247A1 (en) 2010-12-22 2012-06-28 Industrial Technology Research Institute Method and system for modelling supply chain network
US20120330458A1 (en) * 2011-06-24 2012-12-27 Seegrid Corporation Robot-enabled case picking
US20130173049A1 (en) 2012-01-04 2013-07-04 Kiva Systems, Inc. System and method for order fulfillment
US20130317642A1 (en) 2012-05-28 2013-11-28 Well.Ca Inc. Order processing systems using picking robots
US8639591B1 (en) 2008-09-30 2014-01-28 Amazon Technologies, Inc. System and method for generating a visual display indicating the status of multiple shipping loads
US20140267703A1 (en) 2013-03-15 2014-09-18 Robert M. Taylor Method and Apparatus of Mapping Landmark Position and Orientation
US20140277691A1 (en) * 2013-03-15 2014-09-18 Cybernet Systems Corporation Automated warehousing using robotic forklifts
US20140278097A1 (en) 2013-03-13 2014-09-18 Mohammad Suleiman KHORSHEED Systems and methods for guidance
US20140285330A1 (en) * 2011-11-22 2014-09-25 Cargotec Finlandoy System for indicating and measuring the position of a container in a vehicle and/or trailer loaded with containers
US20140350725A1 (en) 2012-01-25 2014-11-27 Adept Technology, Inc. Autonomous mobile robot for handling job assignments in a physical environment inhabited by stationary and non-stationary obstacles
US20140354809A1 (en) 2013-06-04 2014-12-04 James W. Shondel Unmanned aerial vehicle inventory system
US8965562B1 (en) 2013-09-09 2015-02-24 Amazon Technologies, Inc. Efficient shuffling of mobile drive units for inventory holders
US20150057793A1 (en) 2012-02-21 2015-02-26 Amazon Technologies, Inc. System and method for automatic picking of products in a materials handling facility
US20150088302A1 (en) 2013-09-23 2015-03-26 Amazon Technologies, Inc. Inter-facility transport in inventory management and fulfillment systems
US20150139766A1 (en) 2013-06-26 2015-05-21 Willow Garage, Inc. Robotic bin management system and method
US9047579B2 (en) 2008-04-17 2015-06-02 Seagate Technology Llc Advanced material tracking system (AMTS)
US9111251B1 (en) 2014-03-31 2015-08-18 Amazon Technologies, Inc. Shuffling inventory holders
US9120622B1 (en) 2015-04-16 2015-09-01 inVia Robotics, LLC Autonomous order fulfillment and inventory control robots
US20150332213A1 (en) 2013-07-25 2015-11-19 IAM Robotics, LLC Autonomous mobile bin storage and retrieval system
US20150363758A1 (en) 2014-06-13 2015-12-17 Xerox Corporation Store shelf imaging system
US20150360865A1 (en) 2013-06-18 2015-12-17 Hdt Robotics, Inc. Robotic manipulator for warehouses
US20160042312A1 (en) 2014-08-06 2016-02-11 Flexe, Inc. System and method for an internet-enabled marketplace for commercial warehouse storage and services
US20160129592A1 (en) 2014-11-11 2016-05-12 Google Inc. Dynamically Maintaining A Map Of A Fleet Of Robotic Devices In An Environment To Facilitate Robotic Action
US9367827B1 (en) * 2014-12-15 2016-06-14 Innovative Logistics, Inc. Cross-dock management system, method and apparatus
US20160350701A1 (en) * 2015-05-26 2016-12-01 Locanis Technologies Inc. Controlling industrial trucks in a warehouse
US9561941B1 (en) * 2015-03-30 2017-02-07 X Development Llc Autonomous approach and object pickup
US20170046658A1 (en) * 2015-02-18 2017-02-16 Cargo Chief, Inc. Partial load shipment consolidation and scheduling
US20170080566A1 (en) 2015-09-21 2017-03-23 Amazon Technologies, Inc. Networked robotic manipulators
US9616335B2 (en) 2013-01-29 2017-04-11 Eddie's Social Club, LLC Game system with interactive show control
US20170200248A1 (en) * 2016-01-13 2017-07-13 Christopher J. Murphy System And Method For Storing And Sequencing Luggage Items
US20170337511A1 (en) * 2016-05-20 2017-11-23 United Parcel Service Of America, Inc. Sharing location information with a recipient
US20180060764A1 (en) * 2016-08-23 2018-03-01 X Development Llc Autonomous Shuffling Of Pallets Of Items In A Warehouse
US20180060765A1 (en) * 2016-08-23 2018-03-01 X Development Llc Autonomous Condensing Of Pallets Of Items In A Warehouse
US20180068255A1 (en) * 2016-09-02 2018-03-08 X Development Llc Optimization of Warehouse Layout Based on Customizable Goals
US20180099751A1 (en) * 2016-10-10 2018-04-12 Christopher Murphy System And Method For Storing And Sequencing Luggage Items
US20180158020A1 (en) * 2016-03-11 2018-06-07 Route4Me, Inc. Autonomous supply and distribution chain
US20180200761A1 (en) * 2017-01-19 2018-07-19 Wal-Mart Stores, Inc. Systems and methods for optimizing the loading of merchandise at merchandise distribution centers
US10147059B2 (en) * 2016-10-31 2018-12-04 Innovative Logistics, Inc. System and method for automated cross-dock operations
US20190066041A1 (en) * 2017-08-28 2019-02-28 X Development Llc Dynamic Truck Route Planning Between Automated Facilities

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379905B2 (en) * 2001-05-01 2008-05-27 Dell Products L.P. Automated data warehouse for demand fulfillment system
US7676404B2 (en) * 2002-10-15 2010-03-09 Rmr Associates Llc Method for forecasting consumption and generating optimal delivery schedules for vehicles involved in delivering propane and other consumables to end consumers
CN1609872A (en) * 2003-10-23 2005-04-27 鸿富锦精密工业(深圳)有限公司 Supply chain sold control system and method
US7536321B2 (en) * 2004-01-30 2009-05-19 Canon U.S.A., Inc. Estimated time of arrival (ETA) systems and methods
US7624024B2 (en) * 2005-04-18 2009-11-24 United Parcel Service Of America, Inc. Systems and methods for dynamically updating a dispatch plan
US8244645B2 (en) * 2005-08-25 2012-08-14 Sap Aktiengeselleschaft Method for shipment planning/scheduling
US20080277391A1 (en) * 2007-05-07 2008-11-13 International Business Machines Corporation Mobile, Robotic Crate
US8508590B2 (en) * 2010-03-02 2013-08-13 Crown Equipment Limited Method and apparatus for simulating a physical environment to facilitate vehicle operation and task completion
CN102842077A (en) * 2012-07-18 2012-12-26 河南中烟工业有限责任公司 System and method for real-timely inquiring information of cigarette accessories distribution products
WO2014138472A2 (en) * 2013-03-06 2014-09-12 Robotex Inc. System and method for collecting and processing data and for utilizing robotic and/or human resources
US20150046363A1 (en) * 2013-08-07 2015-02-12 Flextronics Ap, Llc Method and Apparatus for Managing, Displaying, Analyzing, Coordinating, and Optimizing Innovation, Engineering, Manufacturing, and Logistics Infrastructures
US9358975B1 (en) * 2015-04-10 2016-06-07 Google Inc. Virtual moving safety limits for vehicles transporting objects
WO2018046980A1 (en) * 2016-09-06 2018-03-15 Fibre Reinforced Thermoplastics B.V. Fiber-reinforced composites, laminates including the same, and systems and methods for making such laminates
US10233021B1 (en) * 2016-11-02 2019-03-19 Amazon Technologies, Inc. Autonomous vehicles for delivery and safety
US10458808B2 (en) * 2017-01-04 2019-10-29 Uber Technologies, Inc. Optimization of network service based on an existing service
US10259648B2 (en) * 2017-04-06 2019-04-16 Lineage Logistics, LLC Automated warehouse improvements
CN107067311A (en) * 2017-04-28 2017-08-18 深圳齐心集团股份有限公司 A kind of logistics system based on e-commerce platform

Patent Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625559A (en) 1993-04-02 1997-04-29 Shinko Electric Co., Ltd. Transport management control apparatus and method for unmanned vehicle system
US6148291A (en) * 1998-01-26 2000-11-14 K & T Of Lorain, Ltd. Container and inventory monitoring methods and systems
US20020143862A1 (en) 2000-05-19 2002-10-03 Atitania Ltd. Method and apparatus for transferring information between a source and a destination on a network
US20140297553A1 (en) * 2000-12-29 2014-10-02 Arrowstream, Inc. Transport Vehicle Capacity Maximization Logistics System and Method of Same
US20110029448A1 (en) * 2000-12-29 2011-02-03 Arrowstream, Inc. Transport Vehicle Capacity Maximization Logistics System and Method of Same
US20110029414A1 (en) * 2000-12-29 2011-02-03 Arrowstream, Inc. Transport Vehicle Capacity Maximization Logistics System and Method of Same
US20110029446A1 (en) * 2000-12-29 2011-02-03 Arrowstream, Inc. Transport Vehicle Capacity Maximization Logistics System and Method of Same
US8756089B2 (en) * 2000-12-29 2014-06-17 Arrowstream, Inc. Transport vehicle capacity maximization logistics system and method of same
US8756090B2 (en) * 2000-12-29 2014-06-17 Arrowstream, Inc. Transport vehicle capacity maximization logistics system and method of same
US8744884B2 (en) * 2000-12-29 2014-06-03 Arrowstream, Inc. Transport vehicle capacity maximization logistics system and method of same
US8478619B2 (en) * 2000-12-29 2013-07-02 Arrowstream, Inc. Transport vehicle capacity maximization logistics system and method of same
US20050197876A1 (en) * 2000-12-29 2005-09-08 Peter Benda Transport vehicle capacity maximization logistics system and method of same
US20110035327A1 (en) * 2000-12-29 2011-02-10 Arrowstream, Inc. Transport Vehicle Capacity Maximization Logistics System and Method of Same
US7840429B2 (en) * 2000-12-29 2010-11-23 Arrowstream, Inc. Transport vehicle capacity maximization logistics system and method of same
US20040146380A1 (en) 2001-01-26 2004-07-29 Baker John Russell Method and apparatus for container storage and container retrieval
US7055741B2 (en) 2002-10-31 2006-06-06 United Parcel Service Of America, Inc. Systems and methods of inventory management utilizing unattended facilities
US8075238B2 (en) 2003-04-14 2011-12-13 Gudel Group Ag Device and method for running a warehouse
US20070276558A1 (en) 2004-03-27 2007-11-29 Kyeong-Keun Kim Navigation system for position self control robot and floor materials for providing absolute coordinates used thereof
US7770792B2 (en) 2004-06-23 2010-08-10 Sap Ag Methods and systems for managing stock transportation
US20090119010A1 (en) 2005-02-08 2009-05-07 Seegrid Corporation Multidimensional evidence grids and system and methods for applying same
US20060282284A1 (en) * 2005-03-07 2006-12-14 Daniel Charles A Truck-trailer unloading services management system and method
US20100121481A1 (en) 2005-08-30 2010-05-13 Talley Paul A Automated self-storage system
US20080077511A1 (en) 2006-09-21 2008-03-27 International Business Machines Corporation System and Method for Performing Inventory Using a Mobile Inventory Robot
US20080131255A1 (en) 2006-11-30 2008-06-05 Transbotics Corporation Palletizing systems and methods
US20090063233A1 (en) * 2007-08-31 2009-03-05 Amar Kumar Goods Receipt Preparation
US20090180667A1 (en) 2008-01-14 2009-07-16 Mahan Larry G Optical position marker apparatus
US20090198376A1 (en) 2008-01-28 2009-08-06 Seegrid Corporation Distributed multi-robot system
US9047579B2 (en) 2008-04-17 2015-06-02 Seagate Technology Llc Advanced material tracking system (AMTS)
US8639591B1 (en) 2008-09-30 2014-01-28 Amazon Technologies, Inc. System and method for generating a visual display indicating the status of multiple shipping loads
US20100249988A1 (en) * 2009-03-02 2010-09-30 Lars Baldes Method and device for automated palletizing of packages
US20110295411A1 (en) 2010-05-26 2011-12-01 Christopher David Rotella System And Method For Managing Reassignment Of Units Among Shipments In A Materials Handling Facility
US20120030070A1 (en) 2010-08-02 2012-02-02 Keller Mark J Managing an inventory comprising serialized products
US20120166247A1 (en) 2010-12-22 2012-06-28 Industrial Technology Research Institute Method and system for modelling supply chain network
US20150073586A1 (en) 2011-06-24 2015-03-12 Seegrid Corporation Robot-enabled case picking
US20120330458A1 (en) * 2011-06-24 2012-12-27 Seegrid Corporation Robot-enabled case picking
US8892241B2 (en) 2011-06-24 2014-11-18 Seegrid Corporation Robot-enabled case picking
US20140285330A1 (en) * 2011-11-22 2014-09-25 Cargotec Finlandoy System for indicating and measuring the position of a container in a vehicle and/or trailer loaded with containers
US20130173049A1 (en) 2012-01-04 2013-07-04 Kiva Systems, Inc. System and method for order fulfillment
US20140350725A1 (en) 2012-01-25 2014-11-27 Adept Technology, Inc. Autonomous mobile robot for handling job assignments in a physical environment inhabited by stationary and non-stationary obstacles
US20150057793A1 (en) 2012-02-21 2015-02-26 Amazon Technologies, Inc. System and method for automatic picking of products in a materials handling facility
US20130317642A1 (en) 2012-05-28 2013-11-28 Well.Ca Inc. Order processing systems using picking robots
US9616335B2 (en) 2013-01-29 2017-04-11 Eddie's Social Club, LLC Game system with interactive show control
US20140278097A1 (en) 2013-03-13 2014-09-18 Mohammad Suleiman KHORSHEED Systems and methods for guidance
US20140277691A1 (en) * 2013-03-15 2014-09-18 Cybernet Systems Corporation Automated warehousing using robotic forklifts
US20140267703A1 (en) 2013-03-15 2014-09-18 Robert M. Taylor Method and Apparatus of Mapping Landmark Position and Orientation
US20180357601A1 (en) * 2013-03-15 2018-12-13 Cybernet Systems Corp. Automated warehousing using robotic forklifts
US20140354809A1 (en) 2013-06-04 2014-12-04 James W. Shondel Unmanned aerial vehicle inventory system
US20150360865A1 (en) 2013-06-18 2015-12-17 Hdt Robotics, Inc. Robotic manipulator for warehouses
US20150139766A1 (en) 2013-06-26 2015-05-21 Willow Garage, Inc. Robotic bin management system and method
US20150332213A1 (en) 2013-07-25 2015-11-19 IAM Robotics, LLC Autonomous mobile bin storage and retrieval system
US8965562B1 (en) 2013-09-09 2015-02-24 Amazon Technologies, Inc. Efficient shuffling of mobile drive units for inventory holders
US20150088302A1 (en) 2013-09-23 2015-03-26 Amazon Technologies, Inc. Inter-facility transport in inventory management and fulfillment systems
US9111251B1 (en) 2014-03-31 2015-08-18 Amazon Technologies, Inc. Shuffling inventory holders
US20150363758A1 (en) 2014-06-13 2015-12-17 Xerox Corporation Store shelf imaging system
US20160042312A1 (en) 2014-08-06 2016-02-11 Flexe, Inc. System and method for an internet-enabled marketplace for commercial warehouse storage and services
US20180300835A1 (en) * 2014-11-11 2018-10-18 X Development Llc Dynamically Maintaining A Map Of A Fleet Of Robotic Devices In An Environment To Facilitate Robotic Action
US20160129592A1 (en) 2014-11-11 2016-05-12 Google Inc. Dynamically Maintaining A Map Of A Fleet Of Robotic Devices In An Environment To Facilitate Robotic Action
US9367827B1 (en) * 2014-12-15 2016-06-14 Innovative Logistics, Inc. Cross-dock management system, method and apparatus
US20170046658A1 (en) * 2015-02-18 2017-02-16 Cargo Chief, Inc. Partial load shipment consolidation and scheduling
US10282694B2 (en) * 2015-02-18 2019-05-07 Cargo Chief Acquisition Inc. Partial load shipment consolidation and scheduling
US9561941B1 (en) * 2015-03-30 2017-02-07 X Development Llc Autonomous approach and object pickup
US9120622B1 (en) 2015-04-16 2015-09-01 inVia Robotics, LLC Autonomous order fulfillment and inventory control robots
US20160350701A1 (en) * 2015-05-26 2016-12-01 Locanis Technologies Inc. Controlling industrial trucks in a warehouse
US20170080566A1 (en) 2015-09-21 2017-03-23 Amazon Technologies, Inc. Networked robotic manipulators
US20170200248A1 (en) * 2016-01-13 2017-07-13 Christopher J. Murphy System And Method For Storing And Sequencing Luggage Items
US20180158020A1 (en) * 2016-03-11 2018-06-07 Route4Me, Inc. Autonomous supply and distribution chain
US20190347614A1 (en) * 2016-03-11 2019-11-14 Route4Me, Inc. Autonomous supply and distribution chain
US10380534B2 (en) * 2016-03-11 2019-08-13 Route4Me, Inc. Autonomous supply and distribution chain
US20170337511A1 (en) * 2016-05-20 2017-11-23 United Parcel Service Of America, Inc. Sharing location information with a recipient
US10083406B2 (en) * 2016-08-23 2018-09-25 X Development Llc Autonomous condensing of pallets of items in a warehouse
US10453002B2 (en) * 2016-08-23 2019-10-22 X Development Llc Autonomous condensing of pallets of items in a warehouse
US20180225597A1 (en) * 2016-08-23 2018-08-09 X Development Llc Autonomous Shuffling Of Pallets Of Items In A Warehouse
US20180232668A1 (en) * 2016-08-23 2018-08-16 X Development Llc Autonomous Condensing Of Pallets Of Items In A Warehouse
US20180060764A1 (en) * 2016-08-23 2018-03-01 X Development Llc Autonomous Shuffling Of Pallets Of Items In A Warehouse
US9984339B2 (en) * 2016-08-23 2018-05-29 X Development Llc Autonomous shuffling of pallets of items in a warehouse
US10133990B2 (en) * 2016-08-23 2018-11-20 X Development Llc Autonomous shuffling of pallets of items in a warehouse
US9965730B2 (en) * 2016-08-23 2018-05-08 X Development Llc Autonomous condensing of pallets of items in a warehouse
US20180365603A1 (en) * 2016-08-23 2018-12-20 X Development Llc Autonomous Condensing Of Pallets Of Items In A Warehouse
US20180060765A1 (en) * 2016-08-23 2018-03-01 X Development Llc Autonomous Condensing Of Pallets Of Items In A Warehouse
US10504055B2 (en) * 2016-09-02 2019-12-10 X Development Llc Optimization of warehouse layout based on customizable goals
US20180068255A1 (en) * 2016-09-02 2018-03-08 X Development Llc Optimization of Warehouse Layout Based on Customizable Goals
US20180099751A1 (en) * 2016-10-10 2018-04-12 Christopher Murphy System And Method For Storing And Sequencing Luggage Items
US10147059B2 (en) * 2016-10-31 2018-12-04 Innovative Logistics, Inc. System and method for automated cross-dock operations
US20180200761A1 (en) * 2017-01-19 2018-07-19 Wal-Mart Stores, Inc. Systems and methods for optimizing the loading of merchandise at merchandise distribution centers
US20190066041A1 (en) * 2017-08-28 2019-02-28 X Development Llc Dynamic Truck Route Planning Between Automated Facilities

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
https://freightwhisperer.com/2016/12/11/what-does-ltl-stand-for-in-the-transportation-trucking-industry/ (https://freightwhisperer.com/2016/12/11/what-does-ltl-stand-for-in-the-transportation-trucking-industry/.
Motorola White Paper, "The Synchronized Distribution Supply Chain: Best Practices in Warehouse Management," Motorola, Inc.; motorola.com/supplychainmobility, Mar. 2011.

Also Published As

Publication number Publication date
CN111328404A (en) 2020-06-23
WO2019046113A1 (en) 2019-03-07
WO2019046114A1 (en) 2019-03-07
CN111344726A (en) 2020-06-26
US20190066041A1 (en) 2019-02-28
EP3665626A1 (en) 2020-06-17
CN111344726B (en) 2023-09-29
EP3665628A1 (en) 2020-06-17
EP3665627A1 (en) 2020-06-17
WO2019046112A1 (en) 2019-03-07
US20190066035A1 (en) 2019-02-28
US10787315B2 (en) 2020-09-29
CN111033539A (en) 2020-04-17
US20190062055A1 (en) 2019-02-28
CN111328404B (en) 2023-09-08
US10723555B2 (en) 2020-07-28
CN111033539B (en) 2023-09-29

Similar Documents

Publication Publication Date Title
US10822170B2 (en) Warehouse and supply-chain coordinator
US11934992B2 (en) Cross-dock management system, method and apparatus
US11443396B2 (en) Systems and methods for prioritizing trailers at receiving facility
JP7077162B2 (en) Delivery planning device, delivery planning system and delivery planning method
Dondo et al. A sweep-heuristic based formulation for the vehicle routing problem with cross-docking
Dondo et al. The heterogeneous vehicle routing and truck scheduling problem in a multi-door cross-dock system
JP7322172B2 (en) Multi-entity inventory management with storage bins and inventory reallocation
US9342811B2 (en) System and method for filling an order
Pang et al. Ship routing problem with berthing time clash avoidance constraints
US8639591B1 (en) System and method for generating a visual display indicating the status of multiple shipping loads
KR20210106984A (en) Methods and systems for fulfilling inventory items
US20190080276A1 (en) Allocation management system
KR20230139128A (en) Order processing apparatus and operation method thereof
US20240242169A1 (en) System and methods for automated shipment booking
CN114169822A (en) Logistics scheduling method and device, computer equipment and storage medium
Mattfeld Management of Terminal Operations

Legal Events

Date Code Title Description
AS Assignment

Owner name: X DEVELOPMENT LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANCE, CHRIS;VREVIN, THIBAULT;SIGNING DATES FROM 20180819 TO 20180822;REEL/FRAME:046683/0844

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: GOOGLE LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:X DEVELOPMENT, LLC;REEL/FRAME:052448/0011

Effective date: 20191113

AS Assignment

Owner name: GOOGLE LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:X DEVELOPMENT LLC;REEL/FRAME:052732/0470

Effective date: 20191104

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4