US10305932B2 - System and method for detecting false data injection in electrical substations - Google Patents
System and method for detecting false data injection in electrical substations Download PDFInfo
- Publication number
- US10305932B2 US10305932B2 US15/386,339 US201615386339A US10305932B2 US 10305932 B2 US10305932 B2 US 10305932B2 US 201615386339 A US201615386339 A US 201615386339A US 10305932 B2 US10305932 B2 US 10305932B2
- Authority
- US
- United States
- Prior art keywords
- measurement
- input
- pmu
- sspdc
- phasor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000002347 injection Methods 0.000 title claims description 3
- 239000007924 injection Substances 0.000 title claims description 3
- 238000005259 measurement Methods 0.000 claims abstract description 151
- 238000004891 communication Methods 0.000 claims description 32
- 230000001681 protective effect Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 description 25
- 238000013480 data collection Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1466—Active attacks involving interception, injection, modification, spoofing of data unit addresses, e.g. hijacking, packet injection or TCP sequence number attacks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R25/00—Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/005—Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0286—Modifications to the monitored process, e.g. stopping operation or adapting control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
- G06F21/554—Detecting local intrusion or implementing counter-measures involving event detection and direct action
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/57—Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
- G06F21/577—Assessing vulnerabilities and evaluating computer system security
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1416—Event detection, e.g. attack signature detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
- G01R19/2513—Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/22—Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/20—Information technology specific aspects, e.g. CAD, simulation, modelling, system security
Definitions
- the present disclosure relates generally to false data detection in electrical substations using a local substation phasor data concentrator (ssPDC).
- Measurement data collected within a substation is transmitted to a local ssPDC before being transmitted to a centralized data processor, such as a supervisory control and data acquisition system (SCADA) or a control center level phasor data concentrator system.
- SCADA supervisory control and data acquisition system
- the measurement data is transmitted by way of wireless and wired communication channels.
- a cyber intruder injecting false data into a wireless or wired communication channel of an electrical substation, could disrupt the operation of the centralized data processor, driving the utility grid into an emergency operating state.
- Existing false data detection systems suffer from a number of shortcomings and disadvantages. There remain unmet needs including reduced substation downtime following a cyberattack. For instance, an electrical substation may respond to a cyberattack detection by ceasing operating until a technician determines the extent of the cyberattack. There is a significant need for the unique apparatuses,
- Exemplary embodiments include unique systems, methods, techniques and apparatuses for detecting and removing false data in electrical substation data collection systems. Further embodiments, forms, objects, features, advantages, aspects and benefits of the disclosure shall become apparent from the following description and drawings.
- FIGS. 1 and 2 illustrate exemplary electrical substation data collection systems.
- FIG. 3 is a schematic block diagram illustrating an exemplary substation phasor data concentrator.
- FIG. 4 is a flowchart illustrating an exemplary process for detecting and replacing false data.
- substation 110 may be a transmission substation, a distribution substation, a converter substation, and collection substation, or a switching substation, to name but a few examples.
- Substation 110 includes a substation phasor data concentrator (ssPDC) 131 structured to receive data from other devices of substation 110 by way of wireless or wired communication channels, verify the accuracy of the received data, eliminate and replace inaccurate data, and transmit accurate data to another device, such as a supervisory control and data acquisition system (SCADA) or a central phasor data concentrator structured to receive data from a plurality of electrical substations.
- ssPDC substation phasor data concentrator
- SCADA supervisory control and data acquisition system
- SCADA supervisory control and data acquisition system
- central phasor data concentrator structured to receive data from a plurality of electrical substations.
- substation 110 includes an electrical power line 103 structured to transmit electric power having electrical characteristics including voltage and current. Substation 110 may also include additional electrical power lines such that substation 110 receives and transmits multiphase power, each power line having distinct electrical characteristics.
- Substation 110 includes a circuit breaker 105 , a current transformer 107 , and a voltage transformer, each operatively coupled to power line 103 . Where substation 110 is structured to receive and transmit multiphase power, a circuit breaker, current transformer, and a voltage transformer may be operatively coupled to each additional power line.
- Circuit breaker 105 is structured to selectively disrupt the flow of electrical current in line 103 in response to detecting a fault condition. When circuit breaker 105 is closed, electrical current can flow through power line 103 . When circuit breaker 105 is open, electrical current cannot flow through power line 103 . Circuit breaker 105 is configured to output the open/closed status of breaker 105 .
- Current transformer 107 is structured to receive power from line 103 , step down the current of the received power, and output the power with the stepped down current.
- the output of current transformer 107 may be power with a current within a range of 0 A to 5 A.
- Voltage transformer 109 is structured to receive power from line 103 , step down the voltage of the received power, and output the power with the stepped down voltage.
- the output of voltage transformer 109 may be power with a voltage within a range of 0 V to 120 V.
- Substation 110 includes a plurality of devices structured to receive a set of information 111 from circuit breaker 105 , current transformer 107 , and voltage transformer 109 .
- Information 111 includes data corresponding to electrical characteristics of the power received and transmitted with line 103 , such as current, voltage, and circuit breaker status.
- information 111 a is data related to circuit breaker status
- information 111 b is current transformer output
- information 111 c is voltage transformer output.
- substation 110 includes protective relay 117 , a phasor measurement unit (PMU) 119 , and a merging unit 121 , each coupled to and structured to receive information 111 from circuit breaker 105 , current transformer 107 , and voltage transformer 109 .
- substation 110 includes additional or fewer devices structured to receive information 111 or portion of information 111 .
- System 100 includes an external synchronization unit 139 configured to communicate with substation 110 by way of a time synchronization communication channel 141 .
- Unit 139 is structured to transmit synchronization data using channel 141 .
- unit 139 is a global positioning system.
- unit 139 is configured to operate according to Inter Range Instrumentation Group (IRIG) time code formats, such as one pulse per second (1PPS), or the IEEE 1588 protocol.
- IRIG Inter Range Instrumentation Group
- relay 117 is configured to determine whether a fault condition exists, requiring relay 117 to open in order to protect devices of substation 110 .
- Relay operational data such as the open/close status of relay 117 , may be transmitted to ssPDC 131 by way of a relay communication channel 133 .
- relay 117 receives synchronization data from synchronization unit 139 .
- Relay 117 may transmit relay operational data using a standardized communication protocol, such as Distributed Network Protocol (DNP) or Manufacturing Message Specification (MMS). It shall be appreciated that any or all of the foregoing features of relay 117 may also be present in the other relays disclosed herein.
- DNP Distributed Network Protocol
- MMS Manufacturing Message Specification
- PMU 119 is structured to receive information 111 and generate phasor data using information 111 .
- the phasor data represents electrical characteristics of power line 103 as phasors at a time instant.
- phasor data may include a vector representation of voltage and current at a fundamental frequency, such as 50 Hz or 60 Hz.
- PMU 119 receives synchronization data from synchronization unit 139 .
- PMU 119 transmits the synchronized phasor data to ssPDC 131 by way of a PMU communication channel 134 using a communication protocol, such as C37.118. It shall be appreciated that any or all of the foregoing features of PMU 119 may also be present in the other PMUs disclosed herein.
- PMU 119 may be one of several types of electrical substation devices that are structured to measure voltages and currents of a power grid and output time-stamped voltage and current phasors.
- PMU 119 can be structured as a dedicated device or can be incorporated into a protective relay or other substation device.
- PMU 119 may be operatively coupled to receive input from a current transformer and to provide a current phasor as an output based upon the received input and/or operatively coupled to receive input from a voltage transformer and to provide a voltage phasor as an output based upon the received input.
- the PMU may also output phasors in phase quantities and sequence quantities.
- positive sequence voltage and/or current phasors are calculated using the phase voltage and current phase quantities, respectively.
- the PMU may also output the frequency and rate of change of frequency. Connections between the PMU 119 and the voltage transformer and/or current transformer may correspond to the number of current phases or voltage phases being measured, for example, a three-phase voltage or a three-phase current may utilize three separate electrical connections to a voltage transformer or a current transformer, respectively.
- Merging unit 121 is structured to receive information 111 , generate merging unit data using information 111 , and output merging unit data.
- Merging unit data may be generated by sampling the real-time outputs of voltage transformer 109 and current transformer 107 , receiving time synchronization data from synchronization unit 139 , and combining the synchronization data and the sampled values, also known as sampled measured values or IEC 61850-9-2 values, into a data set.
- the merging unit data may be mapped to a sampled value (SV) protocol such as IEC 61850-9-2.
- merging unit 121 transmits SV data to PMU 127 and relay 129 by way of merging unit communication channel 125 .
- Merging unit data may also be generated by mapping received circuit breaker status information to IEC 61850-8-1 Generic Object Oriented Substation Event (GOOSE) protocol.
- merging unit 121 transmits GOOSE data to relay 129 .
- merging unit 121 uses the merging unit data set to generate synchrophasor data and transmits the synchrophasor data to ssPDC 131 using IEC 61850-5 communication protocol.
- Merging unit 121 may be one of several types of electrical substation devices that are structured to measure voltages and currents within an electrical substation and output time-stamped voltage and current measurements, such as phasors or sampled values. Merging unit may send sampled values to multiple devices, including relays and PMUs. In certain embodiments, relays and PMUs may receive sampled values from merging unit 121 instead of receiving a signal from current transformer 107 and voltage transformer 109 . In various forms, merging unit 121 can be structured as a dedicated device or can be incorporated into an intelligent electronic device or another substation device.
- merging unit 121 may be operatively coupled to receive input from a current transformer and to provide a sampled current value as an output based upon the received input and/or operatively coupled to receive input from a voltage transformer and to provide a sampled voltage value as an output based upon the received input. Connections between the merging unit 121 and the voltage transformer and/or current transformer may correspond to the number of current phases or voltage phases being measured, for example, a three-phase voltage or a three-phase current may utilized three separate electrical connections to three voltage transformers or three current transformers, respectively.
- Merging unit 121 may transmit synchophasors directly to ssPDC 131 or may transmit sampled values to other devices in the electrical substation for processing. Merging unit 121 can receive the GOOSE trip signal, such as a circuit breaker open/close command message from a relay, and then send the open/close trip signal to an operatively coupled circuit breaker.
- PMU 127 is structured to receive SV data from merging unit 121 , receive time synchronization data from synchronization unit 139 , calculate phasor data using the SV data and time synchronization data, and output the phasor data to ssPDC 131 by way of communication channel 135 .
- Relay 129 is structured to receive the SV data and GOOSE data from merging unit 121 and output relay measurements and operational data to ssPDC 131 .
- ssPDC 131 is configured to detect false data received by ssPDC 131 using local state estimation. For example, false data may be injected by a cyber intruder. As explained in more detail below, when ssPDC 131 detects false data regarding a circuit breaker status, the false data is removed and replaced with calculated circuit breaker status data. When ssPDC 131 detects false phasor data, ssPDC 131 eliminates the false data and replaces the eliminated false data with data from an uncorrupted data source.
- ssPDC 131 may also transmit an alarm indicating false data has been detected.
- the alarm may include a message transmitted to an external device such as a SCADA system.
- a blocking command may be sent to a local circuit breaker configured to control the circuit breaker so as to ignore trip commands until a technician addresses the cyberattack.
- ssPDC 131 may be one of several types of electrical substation devices that are structured to collect local substation measurements and transmit the collected measurements to an external device, such as a system operator, a SCADA system, a regional coordinating council, or a centralized data concentrator.
- ssPDC 131 can be structured as a dedicated device or can be incorporated into an intelligent electronic device or other substation device.
- ssPDC 131 includes a server structured to store historical phasor measurements. Before transmitting the collected substation measurements to another device, such as a centralized phasor data concentrator, ssPDC 131 may evaluate the measurements for accuracy.
- Substation 210 includes an electric power line 203 coupled to a bus bar 201 .
- Substation 210 further includes a circuit breaker 205 , and current transformer 207 , and a voltage transformer 209 , each operatively coupled to power line 203 .
- Substation 210 includes a PMU 215 , a merging unit 217 , a relay 219 , and an ssPDC 231 .
- System 200 includes a synchronization unit 233 configured to transmit synchronization data to PMU 215 , relay 219 , and merging unit 217 by way of a time synchronization communication channel 235 .
- a set of information 211 including circuit breaker 205 status, and outputs from current transformer 207 and voltage transformer 209 are transmitted to PMU 215 and merging unit 217 .
- PMU 215 is configured to generate synchronized phasor data and circuit breaker status data using information 211 , and output the generated data to ssPDC 231 by way of PMU communication channel 227 .
- Merging unit 217 is configured to output SV and GOOSE data to relay 219 using merging unit communication channels 221 and 223 , respectively. Merging unit 217 is also configured to generate synchrophasor data using information 211 and output synchrophasor data to ssPDC 231 by way of communication channel 225 using communication protocol IEC 61850-90-5.
- Relay 219 is configured to receive SV and GOOSE data from merging unit 217 . Using the received data, relay 219 determines whether a fault condition is occurring within substation 210 , and transmits operation data to ssPDC 231 by way of communication channel 229 . It shall be appreciated that any or all of the foregoing features of system 200 may also be present in the other electrical substation data collection systems disclosed herein.
- System 300 includes a local state estimation module 320 structured to receive a plurality of inputs 310 .
- the plurality of inputs 310 include phasor data derived from sampled value data 311 , PMU data 313 , relay operational data 315 , and circuit breaker status data 317 .
- State estimation module 320 is structured to estimate the electrical characteristics of a substation, such as substation 110 and substation 120 .
- Module 320 outputs the estimated state to a plurality of analysis modules 330 .
- Module 331 analyzes the output of the state estimation module, to determine whether false data was received with the ssPDC.
- mitigation module 341 is configured to eliminate the data and replace the removed data with measurements from another substation device.
- Module 341 repeats the state estimation of module 320 until all the false data is successfully removed.
- module 333 identifies filtered measurements of module 320 .
- Module 343 transmits the filtered measurements to external applications, such as a SCADA system or central PDC.
- process 400 for identifying and responding to false sampled value measurements, phasor data, or circuit breaker status data received with a substation phasor data concentrator, such as ssPDC 131 of FIG. 1 .
- a substation phasor data concentrator such as ssPDC 131 of FIG. 1 .
- process 400 is made with reference to electrical substation data collection system 100 illustrated in FIG. 1 . It is to be understood, however, that process 400 may be used in combination with other forms of electrical substation data collection systems, such as those described above with reference to FIG. 2 .
- Process 400 begins at start operation 401 where a cyber intruder has already injected false data into data collection system 100 .
- Process 400 proceeds to operation 403 where ssPDC 131 receives circuit breaker status data, relay operational data, and real-time phasor data calculated using phasor data from PMU 119 and phasor data from PMU 127 derived from SV data generated with merging unit 121 .
- Process 400 proceeds to operation 405 where ssPDC 131 stores the received data.
- Process 400 then proceeds to operation 407 where ssPDC 131 evaluates the stored data in order to estimate circuit breaker 105 status.
- Process 400 proceeds to conditional 409 where the estimated circuit breaker status is compared to the received circuit breaker status data. If ssPDC 131 detects bad data, process 400 proceeds to operation 411 where the false circuit breaker data is removed from the memory of ssPDC 131 . Process 400 then proceeds to operation 407 where circuit breaker status is estimated again. Process 400 then returns to conditional 409 .
- process 400 proceeds to operation 415 where ssPDC 131 performs observability analysis to confirm enough data has been received with ssPDC 131 to proceed with state estimation.
- observability of the system can be calculated using node incidence matrix H.
- the network is observable if and only if h has full rank, where h is obtained from H by deleting any column.
- the system is observable if all the nodal voltages are either measured or can be calculated from the measured ones using a spanning tree of the power system graph.
- Process 400 then proceeds to operation 417 where ssPDC 131 performs local state estimation. Pseudo measurements may be calculated using local measurements.
- a pseudo measurement for a current and voltage measurement in a neighboring substation may be calculated using local current and voltage measurements, as well as line parameter data for the line connecting the local substation to the neighboring substation.
- all data input at operation 403 is synchronized and linear state estimation will be used to analyze the PMU and SV data.
- nonlinear state estimation will be used to analyze the PMU and SV data.
- Process 400 proceeds to operation 419 where ssPDC 131 evaluates the stored data. False data may be detected using an algorithm such as Chi-square distribution, normalized residuals, or hypothesis testing identification, to name but a few examples. Process 400 proceeds to conditional 421 . If false data is detected, process 400 proceeds to operation 423 where false data is removed from memory in ssPDC and replaced with another data set. For example, false data detected in PMU data will be replaced with SV data. Process proceeds to operation 417 . If false data is not detected, process 400 proceeds to operation 425 where ssPDC 121 has finished analyzing the received data and confirms all false data has been removed. The filtered data can then be transmitted to a central phasor data concentrator or another external device. Process 400 proceeds to end operation 427 .
- ssPDC 131 evaluates the stored data. False data may be detected using an algorithm such as Chi-square distribution, normalized residuals, or hypothesis testing identification, to name but a few examples. Process 400 proceeds to conditional
- process 400 includes, for example, the omission of one or more aspects of process 400 , or the addition of further conditionals and operations and/or the reorganization or separation of operations and conditionals into separate processes.
- One embodiment is a method for detecting and compensating for a false data injection cyber-attack on an electrical substation including a merging unit (MU), a phasor measurement unit (PMU), and a substation phasor data concentrator (ssPDC), the method comprising operating the PMU to receive input from at least one of a current transformer of the electrical substation, a voltage transformer of the electrical substation and a circuit breaker of the electrical substation and to provide a PMU measurement output based upon the received input, the PMU measurement output including one of a PMU current phasor, a PMU voltage phasor, and a PMU circuit breaker status indication; operating the MU to receive input from the at least one of the current transformer of the electrical substation, the voltage transformer of the electrical substation and the circuit breaker of the electrical substation and to provide an MU measurement output based upon the received input, the MU measurement output including one of an MU current phasor,
- the ssPDC receives the MU measurement by way of communication protocol IEC 61850-90-5.
- the electrical substation includes a circuit breaker and the set of electrical characteristics includes a circuit breaker status.
- the false data includes an inaccurate circuit breaker status and replacing the false data includes replacing the inaccurate circuit breaker status using the received PMU measurement or MU measurement.
- the method comprises transmitting, with the ssPDC, an alarm in response to determining that one of the stored first input and the stored second input comprises false data.
- state estimation includes one of Chi-square distribution, normalized residuals, and hypothesis testing identification.
- determining, with the ssPDC, that one of the stored first input and the stored second input comprises false data includes using historical MU measurements or PMU measurements.
- a substation phasor data concentrator for an electrical substation comprising a phasor measurement unit (PMU) input structured to receive a PMU measurement from a PMU, the PMU measurement including a circuit breaker status and a phasor corresponding to a set of substation electrical characteristics; a merging unit (MU) input structured to receive an MU measurement from an MU including a phasor corresponding to the set of substation electrical characteristics; a non-transitory memory device structured to store the PMU measurement, the MU measurement, and a set of instructions; and a processing device structured to execute the set of instructions stored with the memory device configured to receive with the MU input a first measurement indicated as the MU measurement and; receive with the PMU input a second measurement indicated as the PMU measurement; estimate a circuit breaker status using the first and second measurement; determine the estimated circuit breaker status does not correspond to the circuit breaker status of the PMU measurement; replace the circuit breaker status of the PMU measurement with
- PMU phasor measurement unit
- the set of electrical characteristics include voltage and current.
- the PMU measurement and the MU measurement are time synchronized.
- the MU input receives the MU measurement by way of a phasor measurement unit structured to receive data from the merging unit, convert the data into a phasor measurement, and transmit the phasor measurement to the MU input.
- the MU input receives the MU measurement and the PMU input receives the PMU measurement by way of a wireless communication channel.
- the ssPDC comprises a protective relay input structured to receive a circuit breaker status from a protective relay.
- the processing device repeatedly estimates the set of substation electrical characteristics using the data received from the PMU input and the MU input until the processing device determines the first measurement and second measurement do not include a false measurement.
- the MU measurement is received with the ssPDC by way of an IEC 61850-90-5 communication protocol or an IEC 61850-9-2 communication protocol, and the PMU measurement is received with the ssPDC by way of a C37.118 communication protocol.
- a further exemplary embodiment is a method for detecting and eliminating false data collected within an electrical substation including a first measurement unit, a second measurement unit, and a substation phasor data concentrator (ssPDC), comprising receiving, with the first measurement unit, a set of line information from a current transformer and a voltage transformer corresponding electrical characteristics of the electrical substation; generating, with the first measurement unit, a first phasor measurement using the set of line information; receiving, with the second measurement unit, the set of line information from the current transformer and the voltage transformer; generating, with the second measurement unit, a set of sampled values; converting the set of sampled values into a second phasor measurement; receiving, with the ssPDC, one of the first phasor measurement and the second phasor measurement; receiving, with the ssPDC, a set of false data which does not correspond to electrical characteristics of the electrical substation; determining, with the ssPDC, the set of false data does not correspond to the electrical characteristics of the electrical sub
- the set of false data and electrical characteristics include the status of a circuit breaker and determining the set of false data does not correspond to electrical characteristics of the electrical substation using local state estimation includes estimating the status of the circuit breaker and comparing the estimated status with the set of false data.
- the set of sampled values are IEC 61850-9-2 sampled values.
- the sampled values are transmitted to one of a protective relay and a phasor measurement unit, converted to the second phasor measurement, and transmitted to the ssPDC.
- the second phasor measurement is transmitted to the ssPDC by way of an C37.118 communication protocol, a manufacturing message specification communication protocol, or a distributed network protocol.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Automation & Control Theory (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Description
If (I pmu ≠I sv)V(I pmu=0)V(I sv=0) then open
If the current phasor values from SV and PMU data are not the same, the current phasor of PMU measurement is zero, or the current phasor measurement of SV is zero, then
Claims (20)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/386,339 US10305932B2 (en) | 2016-12-21 | 2016-12-21 | System and method for detecting false data injection in electrical substations |
EP17883049.3A EP3559776B1 (en) | 2016-12-21 | 2017-12-21 | System and method for detecting false data injection in electrical substations |
PCT/US2017/067950 WO2018119265A1 (en) | 2016-12-21 | 2017-12-21 | System and method for detecting false data injection in electrical substations |
CN201780087008.8A CN110337626B (en) | 2016-12-21 | 2017-12-21 | System and method for detecting erroneous data injection in a substation |
EP22166965.8A EP4047444B1 (en) | 2016-12-21 | 2017-12-21 | System and method for detecting false data injection in electrical substations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/386,339 US10305932B2 (en) | 2016-12-21 | 2016-12-21 | System and method for detecting false data injection in electrical substations |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180176249A1 US20180176249A1 (en) | 2018-06-21 |
US10305932B2 true US10305932B2 (en) | 2019-05-28 |
Family
ID=62562117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/386,339 Active 2037-09-08 US10305932B2 (en) | 2016-12-21 | 2016-12-21 | System and method for detecting false data injection in electrical substations |
Country Status (4)
Country | Link |
---|---|
US (1) | US10305932B2 (en) |
EP (2) | EP4047444B1 (en) |
CN (1) | CN110337626B (en) |
WO (1) | WO2018119265A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111404915A (en) * | 2020-03-11 | 2020-07-10 | 湖南大学 | Power grid information physical security risk detection method based on three-layer model |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109165504B (en) * | 2018-08-27 | 2021-05-07 | 广西大学 | Power system false data attack identification method based on anti-generation network |
AU2019352596B2 (en) * | 2018-10-01 | 2022-06-09 | Abb Schweiz Ag | Decentralized false data mitigation for nested microgrids |
US11206287B2 (en) * | 2019-01-29 | 2021-12-21 | Battelle Memorial Institute | Evaluating cyber-risk in synchrophasor systems |
CN109873833B (en) * | 2019-03-11 | 2021-08-03 | 浙江工业大学 | Data injection attack detection method based on chi-square distance KNN |
CN110086803A (en) * | 2019-04-25 | 2019-08-02 | 江苏省电力试验研究院有限公司 | A kind of simulation attack synchronous phasor measuring device clock synchronization signal creating method and device |
CN110035090B (en) * | 2019-05-10 | 2020-09-15 | 燕山大学 | False data injection attack detection method for smart grid |
US11657148B2 (en) | 2019-05-10 | 2023-05-23 | General Electric Company | Event analysis in an electric power system |
CN110336821B (en) * | 2019-07-09 | 2021-09-10 | 长沙理工大学 | Method and device for detecting false data through collaborative voting |
US20230028886A1 (en) * | 2019-11-20 | 2023-01-26 | University Of Tennessee Research Foundation | Methods of detecting anomalous operation of industrial systems and respective control systems, and related systems and articles of manufacture |
CN110752622B (en) * | 2019-12-12 | 2023-12-05 | 燕山大学 | Affine state estimation method for power distribution network |
CN110830514B (en) * | 2019-12-12 | 2021-06-22 | 四川大学 | Detection method for collusion-based false data injection attack of smart power grid |
CN110995761B (en) * | 2019-12-19 | 2021-07-13 | 长沙理工大学 | Method and device for detecting false data injection attack and readable storage medium |
CN111031064A (en) * | 2019-12-25 | 2020-04-17 | 国网浙江省电力有限公司杭州供电公司 | Method for detecting power grid false data injection attack |
CN112565180B (en) * | 2020-10-27 | 2021-12-28 | 西安交通大学 | Power grid defense method, system, equipment and medium based on moving target defense |
US20230050490A1 (en) * | 2021-08-04 | 2023-02-16 | Abb Schweiz Ag | Systems and Methods for Malicious Attack Detection in Phasor Measurement Unit Data |
CN114172262A (en) * | 2021-09-10 | 2022-03-11 | 国网上海市电力公司 | Intelligent substation sampling data quality comprehensive evaluation method and system |
CN114336674B (en) * | 2021-12-09 | 2023-10-20 | 北京交通大学 | Distributed toughness frequency control method for alternating-current micro-grid |
CN114666153B (en) * | 2022-04-08 | 2022-11-18 | 东南大学溧阳研究院 | False data injection attack detection method and system based on state estimation residual distribution description |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010021896A1 (en) | 2000-03-10 | 2001-09-13 | Joachim Bertsch | Method and device for assessing the stability of an electric power transmission network |
US20110288692A1 (en) * | 2010-05-20 | 2011-11-24 | Accenture Global Services Gmbh | Malicious attack detection and analysis |
US8405944B2 (en) * | 2007-10-09 | 2013-03-26 | Schweitzer Engineering Laboratories Inc | Distributed bus differential protection using time-stamped data |
US20130304266A1 (en) | 2012-04-13 | 2013-11-14 | Regents Of The University Of Minnesota | State estimation of electrical power networks using semidefinite relaxation |
US20140074415A1 (en) | 2011-03-24 | 2014-03-13 | Alstom Technology Ltd. | Merging unit and method of operating a merging unit |
WO2016066218A1 (en) | 2014-10-31 | 2016-05-06 | Siemens Aktiengesellschaft | Method for state estimation of a distribution network based on real time measurement values |
US20160315774A1 (en) | 2013-12-13 | 2016-10-27 | University Of North Dakota | Smart grid secure communications method and apparatus |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101431230B (en) * | 2008-12-17 | 2010-12-01 | 中国南方电网有限责任公司 | Transforming plant integrated protection system based on IEC61850 |
CN101621216B (en) * | 2009-08-18 | 2011-02-16 | 湖北省电力公司 | Data sharing type area protection system based on IEC 61850 |
WO2011032579A1 (en) * | 2009-09-15 | 2011-03-24 | Siemens Aktiengesellschaft | Monitoring of an electrical energy supply network |
CN201569691U (en) * | 2009-09-28 | 2010-09-01 | 深圳市双合电脑系统股份有限公司 | Electric power quality monitoring and synchronous phasor monitoring device of power system |
CN102135570B (en) * | 2011-02-25 | 2013-05-01 | 上海思源弘瑞自动化有限公司 | Synchronous phasor measuring method and device for intelligent transformer substation |
US20120266209A1 (en) * | 2012-06-11 | 2012-10-18 | David Jeffrey Gooding | Method of Secure Electric Power Grid Operations Using Common Cyber Security Services |
CN104638762B (en) * | 2015-01-19 | 2017-04-26 | 浙江工商大学 | Method and system for detecting illegal data implantation internal attack in smart power grid |
CN105467204B (en) * | 2015-12-03 | 2018-07-17 | 西安交通大学 | The detection method of user's actual power consumption amount based on false data identification in intelligent grid |
CN105375484A (en) * | 2015-12-22 | 2016-03-02 | 华北电力大学 | PMU-based electric power system distributed dynamic-state estimation method |
CN105791280B (en) * | 2016-02-29 | 2019-05-03 | 西安交通大学 | A method of electric system DC state estimated median is resisted according to complete sexual assault |
CN106788816B (en) * | 2016-11-30 | 2020-11-13 | 全球能源互联网研究院有限公司 | Channel state detection method and device |
-
2016
- 2016-12-21 US US15/386,339 patent/US10305932B2/en active Active
-
2017
- 2017-12-21 EP EP22166965.8A patent/EP4047444B1/en active Active
- 2017-12-21 CN CN201780087008.8A patent/CN110337626B/en active Active
- 2017-12-21 EP EP17883049.3A patent/EP3559776B1/en active Active
- 2017-12-21 WO PCT/US2017/067950 patent/WO2018119265A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010021896A1 (en) | 2000-03-10 | 2001-09-13 | Joachim Bertsch | Method and device for assessing the stability of an electric power transmission network |
US8405944B2 (en) * | 2007-10-09 | 2013-03-26 | Schweitzer Engineering Laboratories Inc | Distributed bus differential protection using time-stamped data |
US20110288692A1 (en) * | 2010-05-20 | 2011-11-24 | Accenture Global Services Gmbh | Malicious attack detection and analysis |
US20140074415A1 (en) | 2011-03-24 | 2014-03-13 | Alstom Technology Ltd. | Merging unit and method of operating a merging unit |
US20130304266A1 (en) | 2012-04-13 | 2013-11-14 | Regents Of The University Of Minnesota | State estimation of electrical power networks using semidefinite relaxation |
US20160315774A1 (en) | 2013-12-13 | 2016-10-27 | University Of North Dakota | Smart grid secure communications method and apparatus |
WO2016066218A1 (en) | 2014-10-31 | 2016-05-06 | Siemens Aktiengesellschaft | Method for state estimation of a distribution network based on real time measurement values |
Non-Patent Citations (3)
Title |
---|
Abur, Ali, Role of Synchronized Measurement in Operation of Smart Grids, ; Northeastern University; Boston, Massachusetts; CISE Seminar, Nov. 12, 2010, pp. 1-64. |
Meliopoulos A.P. Sakis, "Distributed Dynamic State Estimator Enables Seamless DSA", ; Georgia Power Distinguished Professor School of Electrical and Computer Engineering; 2014, Georgia Institute of Technology; Altanta GA USA, Jul. 27, 2014, pp. 1-5. |
Search Report and Written Opinion, PCT Appln. No. PCT/US17/67950, dated Feb. 20, 2018, 14 pgs. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111404915A (en) * | 2020-03-11 | 2020-07-10 | 湖南大学 | Power grid information physical security risk detection method based on three-layer model |
CN111404915B (en) * | 2020-03-11 | 2021-06-25 | 湖南大学 | Power grid information physical security risk detection method based on three-layer model |
Also Published As
Publication number | Publication date |
---|---|
CN110337626A (en) | 2019-10-15 |
EP3559776A4 (en) | 2020-08-19 |
EP3559776B1 (en) | 2023-09-06 |
CN110337626B (en) | 2021-03-19 |
US20180176249A1 (en) | 2018-06-21 |
EP3559776A1 (en) | 2019-10-30 |
WO2018119265A1 (en) | 2018-06-28 |
EP4047444A1 (en) | 2022-08-24 |
EP4047444B1 (en) | 2024-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10305932B2 (en) | System and method for detecting false data injection in electrical substations | |
US10132853B2 (en) | Wide area fault detection method using PMU data | |
US9874593B2 (en) | Decision support system for outage management and automated crew dispatch | |
CN109564257A (en) | The fault detection and protection carried out during stable state using traveling wave | |
Alcaide-Moreno et al. | Electric power network state tracking from multirate measurements | |
US20240168075A1 (en) | Method for identifying and localizing faults in a medium and low voltage electric power distribution grid using measurements from low voltage parts of the grid | |
CN109283407B (en) | Voltage loop monitoring system based on total station data contrastive analysis | |
US9621569B1 (en) | Method and apparatus for detecting cyber attacks on an alternating current power grid | |
EP3020119B1 (en) | Method of determining a condition of an electrical power network and apparatus therefor | |
Janssen et al. | Monitoring, protection and fault location in power distribution networks using system-wide measurements | |
CN203811747U (en) | A small current grounding line selection system | |
Baldwin et al. | Fault locating in distribution networks with the aid of advanced metering infrastructure | |
Tutvedt et al. | Smart fault handling in medium voltage distribution grids | |
KR101309400B1 (en) | Merging unit with frequency protection function | |
Chen et al. | On-line islanding detection application in the realtime dynamics monitoring system | |
KR102011330B1 (en) | Apparatus and method of measuring data in high voltage direct current system | |
Srivastava et al. | Transmission line protection using dynamic state estimation and advanced sensors: Experimental validation | |
Kezunovic et al. | Merging PMU, operational, and non-operational data for interpreting alarms, locating faults and preventing cascades | |
Yeung et al. | Exploring the application of phasor measurement units in the distribution network | |
AU2019352596B2 (en) | Decentralized false data mitigation for nested microgrids | |
Khairalla et al. | Fault location based on smart meters time synchronized measurements | |
US12149070B2 (en) | Decentralized false data mitigation for nested microgrids | |
Mansour et al. | Transmission Line Protection Using Dynamic State Estimation and Advanced Sensors: Experimental Validation | |
Abur et al. | 4 Estimating the System State and Network Model Errors | |
CN105759169A (en) | Fault diagnosis method based on WAMS time section information and topological information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABB INC., NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONG, JUNHO;NUQUI, REYNALDO;REEL/FRAME:041116/0281 Effective date: 20161220 |
|
AS | Assignment |
Owner name: UNITED STATES DEPARTMENT OF ENERGY, DISTRICT OF CO Free format text: CONFIRMATORY LICENSE;ASSIGNOR:ABB, INC.;REEL/FRAME:043713/0600 Effective date: 20170320 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: ABB POWER GRIDS SWITZERLAND AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABB INC.;REEL/FRAME:055594/0148 Effective date: 20201202 |
|
AS | Assignment |
Owner name: HITACHI ENERGY SWITZERLAND AG, SWITZERLAND Free format text: CHANGE OF NAME;ASSIGNOR:ABB POWER GRIDS SWITZERLAND AG;REEL/FRAME:058666/0540 Effective date: 20211006 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: HITACHI ENERGY LTD, SWITZERLAND Free format text: MERGER;ASSIGNOR:HITACHI ENERGY SWITZERLAND AG;REEL/FRAME:065549/0576 Effective date: 20231002 |