M334549 八、新型說明: 【新型所屬之技術領域】 本創作係有關-種高效率雷射二極體,尤指藉由—散熱基板、一第一 金屬層、-第二金屬層、-介電披覆層、1極接觸層…設有至少二十 對之P型布拉格反射鏡層、-主動層、至少_結合層、一設有至少三十對 之N型布祕反雜層、-基缺—第三金屬層之組合财,以達到提昇 整體發光效率,而適於在高效率雷射二極體或類似結構者。M334549 VIII. New Description: [New Technology Field] This creation is related to high-efficiency laser diodes, especially by heat-dissipating substrate, a first metal layer, a second metal layer, and a dielectric. a coating layer, a pole contact layer, a P-type Bragg mirror layer of at least twenty pairs, an active layer, at least a bonding layer, and an N-type cloth anti-hybrid layer of at least thirty pairs, The lack of a combination of the third metal layer to achieve an overall luminous efficiency, and is suitable for high efficiency laser diodes or similar structures.
【先前技術】 按,習用之雷射二極體結構,請參第4圖所示,係為側面出光之雙異 質接面之雷射二極體結構,其係採_件化鎵(η*)為基板A 〇,在該 基板A〇的上面經由蠢晶成長四層薄膜,分別為n型珅化銘姻嫁 (―如)A i、ρ型坤化鎵(p_GaAs) a 2、ρ型坤化銘姻嫁 (P-ALGai-xAs) Α3以及ρ型魏鎵(p、GaAs) Α4 ;然後再覆蓋一層絕 緣用的氧化層A5 ’並將氧化層A5中間部位去除,最後上下兩面鑛上金 屬為接觸電極A6,而該中間p”化鎵(p_GaAs) A2成為活性層,雷 射光由此層發出;P型珅化鎵(p-GaAs)之活性層六2的上下兩層之p型 砷化鋁銦鎵(P-AlxG“S) A3及η型砷化鋁銦鎵(n韻丨▲) A1係為 束困層(或稱披覆層),而最上層的p型坤化鎵(p_GaAs) A4則只是為了 減少接觸電阻而設。雷射的運作源於p n接面順向偏壓時,大量的電子及 電洞注入ρ型砷化鎵(p-GaAs)之活性層八2造成計量反轉(p〇puiati〇n Inversion)產生受激放射放出光子,加上p型神化嫁(p_GaAs)之活性層 A 2上下之p型砷化鋁銦鎵(p-AixGantAs) A 3及η型砷化鋁銦鎵 M334549 (η-AlxGai-xAs) A1二束困層的折射率較該p型砷化鎵(p_GaAs)之活性層 A 2小’使光線因反射作用而限制在p型石申化錄(p—GaAs)之活性層a 2 内,而由活性層A 2射出雷射光。 另一種習用之雷射一極體結構,請參閱第5圖所示,係為頂面出光之 垂直共振腔雷射(Vertical Cavity Surface-Emitting Laser,VCSEL)二極 體,主要由一N型布拉格反射鏡層B1、一 p型布拉格反射鏡層b 2、一 活性區B 3、一P型接觸金屬層B 4、一基座B 5及一N型接觸金屬層B 6所構成,以該P型布拉格反射鏡層b 2及N型布拉格反射鏡層B1分別 構成上、下反射鏡,而該活性區B 3位於該P型布拉格反射鏡層b 2及N 型布拉格反射鏡層B1之間,而形成一雷射共振腔,雷射光子係在上、下 反射鏡之間來回振盪,而頂層之P型接觸金屬層B 4上係設有一發光窗B 41,令雷射光束由該頂層之發光窗B 41輸出。 然,本創作人有鑑於尚有其他結構可達到如上述習用結構可發出雷射 光之目的,乃潛心研思、設計組製,以提供消費大眾使用,為本創作所欲 研創之創作動機者。 【新型内容】 本創作之主要目的,係在提供一種高效率雷射二極體,藉由一散熱基 板、一第一金屬層、一第二金屬層、一介電披覆層、一電極接觸層、一設 有至少二十對之p型布拉格反射鏡層、一主動層、至少一結合層、一設有 至少三十對之N型布拉格反射鏡層、一基板及一第三金屬層之組合設計, 而利用該第一金屬層、第二金屬層及第三金屬層以增加導熱性及反射光源 來提昇整體之出光性,以形成一不同於傳統之雷射二極體結構且具提昇整 M334549 體發光效率之高效率雷射二極體,進而增進整體之實用性者。 本創作之另一目的,係在提供一種高效率雷射二極體,藉由一散熱基 板 第金屬層、一第二金屬層、一介電披覆層、一電極接觸層、一設 有至少一十對之P型布拉格反射鏡層、一主動層、至少一結合層、一設有 至少二十對之N型布拉格反射鏡層、一基板及一第三金屬層之組合設計, 又藉該散熱基板以增加導熱性,以形成一不同於傳統之雷射二極體結構, 以增進其實用性者。 為達上述目的,本創作係包括有一散熱基板、一第一金屬層、一第二 金屬層、一介電披覆層、一電極接觸層、一設有至少二十對之P型布拉格 反射鏡層、一主動層、至少一結合層、一設有至少三十對之N型布拉格反 射鏡層、一基板及一第三金屬層。而該第二金屬層係設有第一凸部與第二 凸部,該介電披覆層係設於該第二金屬層上方,且包覆該第一凸部與第二 凸部,而該介電披覆層於包覆該第二金屬層之第一凸部及第二凸部處係分 別貫穿該電極接觸層、p型布拉格反射鏡層、主動層及至少一結合層後, 而穿入該N型布拉格反射鏡層中,其中,該至少一結合層係包括有二個氧 化層及一個未氧化層,而該二個氧化層係分別對應配合該介電披覆層包覆 第一凸部與第二凸部之之周緣處設置,該介電披覆層對應於該第一凸部與 第一凸部之間的部分係設有缺口,以使該第二金屬層與電極接觸層連接, 且該第二金屬層之中央係設有一光源射出口;藉此,以形成一不同於傳統 之雷射二㈣結構且具提昇整體發級率之紐率雷射二極體。 本創作之其他特點及具體實施例可於以下配合附圖之詳細說明中,進 一步瞭解。 M334549 【實施方式】 明參第1〜3圖所示,本創作係一種高效率雷射二極體,該高效率雷 射二極體係包括: 政熱基板1 Q ’該散熱基板1 Q係設於底層,該散絲板1 0係採 高熱導係數之铸_質,明加導熱性。 %金屬層1 1 ’該第一金屬層1 1係設於該散熱基板10之上 方^亥第一金屬層1 1係採如:銀(Ag)、銘(A1)、金(Au)、銅(Cu)、鉻 等斤、成或可採其他導熱之金屬材料,以供增加導熱性及可供反射光 線用者。 第一金屬層2 〇,該第二金屬層2 〇係結合於該散熱基板丄〇之上 方且"亥第一金屬層2 0係設有第-凸部21及第二凸部2 2。 "電披覆層3 〇,該介電披覆層3 〇係結合於該第二金屬層2 〇之 上方,且包覆言亥第二金屬層2 〇之第一凸部2丄及第二凸部2 2,以供絕 緣,而該介電披覆層3 〇對應於該第二金屬層2 〇之第一凸部U及第二 凸部22間之部分係設有一缺口3i。 一電極接觸層4 0,該電極接觸層4 0係結合於該介電披覆層3 〇之 上方,且該介電披覆層3 〇於包覆該第二金屬層2 〇之第一凸部21及々 二凸部2 2處係貫穿該電極接觸層4 〇,而該電極接觸層4 〇對應於$八 電披覆層3 〇之缺口 3 1處係連接該第二金屬層2 0。 ;1 P型布拉袼反射鏡層5 0,該P型布拉格反射鏡層$ 〇係妹八於 電極接觸層4 Q之上方,且該介電披覆層3 Q於包覆該第二金屬層^ = 弟一凸部21及第二凸部22處係貫穿該p型布拉格反射鏡層5〇,而1 M334549 P型布拉格反射鏡層5 〇係設有至少二十對。 一主動層6 0,該主動層6 〇係結合於該ρ型布拉格反射鏡層5 〇之 上方,且該介電披覆層3 〇於包覆該第二金屬層2 〇之第一凸部2丄及第 二凸部22處係貫穿該主動層β0;該主動層6〇係為雷射光之發光層, 而。亥主動層6 0係可採多重量子井(Multi quantum well,MQW)結構,或 可採係為雙異質結構(D〇uble heterostructure),以使電子與電洞能在 此層復合(recombination)以產生光子。 參 至少一結合層7 0,該結合層7 0係結合於該主動層6 〇之上方,而 该至少-結合層7 〇係由二個氧化層71與一個未氧化層7 2組成,該二 個氧化層71係分別設於該未氧化層7 2中,該氧化層71係為電性絕緣 區,且該介電披覆層3 0於包覆該第二金屬層2 0之第一凸部21及第二 凸部22處係分別穿過該二個氧化層71。 -N型布拉格反射鏡層8 〇,該N型布拉格反射鏡層8 Q係結合於該 結合層7 〇之上方,且該介電披覆層3 0於包覆該第二金屬層2 〇之第一 春凸部21及第二凸部2 2處係穿人該N型布拉格反射鏡層8 q中,而該N _ 型雜格反魏層8 0係設有至少三十對;型雜格反職層8 〇係 為反射層;該N型布拉格反射鏡層8 〇係可採由元素週期表瓜族及v族元 素所組成之化合物。 一基板9 0,該基板9 0係結合於該n型布拉格反射鏡層8 〇上方; 而該基板9⑽以侧、研磨方式製㈣板’明加透光性,_基板9 0係可採磷化銦(InP)、砷化鎵(GaAs )···等材料。 第三金屬層1 〇 〇,該第三金屬層工〇 〇係結合於該基板9 〇之上 M334549 方,而該第三金屬層1〇 〇之中央係設有一光源射出口1〇 〇 a,以侷限 雷射光射出方向;該第三金屬層1 ο ο係可採金(Au)、鍺(Ge)、鎳(Ni)..· 等導熱之金屬材料。 其中’該第一金屬層11、第二金屬層2 〇及第三金屬層1〇 〇係為 導熱之金屬材料,以供增加導熱性及可供反射光線,進而導引光線由該光 源射出口 1 0 Oa輸出,以增加出光性;該主動層6 〇與P型布拉格反射 鏡層5 0之間係可進一步結合一結合層7〇 (如第3圖所示);而該第二 金屬層2 0與第三金屬層1〇 〇係為導電電極(該第二金屬層2 〇係為p 型電極,而該第三金屬層10 0係為N型電極)者。 承上結構’以形成本創作之高效率雷射二極體,其特點係在於藉由一 散熱基板10、—第一金屬層11、-第二金屬層2 0、-介電披覆層3 0、-電極接觸層4〇、-設有至少三十對之p型布拉格反射鏡層5〇、 -主動層6 0、至少—結合層7 Q…設有至少三十對之N型布拉格反射 鏡層8 0、基板9 〇及_第三金屬層1〇◦之組合設計,而該第二金屬 層20係設有第—凸部21與第二凸部2 2,該介電彼覆層3 0係設於該 第二金屬層2 0上方,且包覆該第—凸部21與第二凸部2 2,而該介電 披覆層3 Q於包覆該第二金屬層2◦之第—凸部2 i及第二凸部2 2處 係分別貫穿該電極接觸層4 Q、p型布拉格反射鏡層5 Q、主動層6 〇及 至少一結合層7 0所對應設置之二個氧化層71後,而穿人該N型布拉格 反射鏡層8 Q中,而該介電披覆層3 Q係為-絕緣層,以供絕緣而防止該 第二金屬層2 Q之第-凸部21及第二凸部2 2使該P型布拉格反射鏡 層5 〇額型布拉格反射鏡層8 〇相互導通,該介電彼覆層3 0對應於該 M334549 第一凸部21與第二凸部2 2間之邱八^ W刀係設有缺口 3 ;!,以使該第一金屬 層2 0與電極接觸層4 0連接,且該人阳 第—金屬層10 0之中央係設有一光 源射出口10 0 a,俾利光源射出去· $ # 贝有,再猎由本創作設有第一金屬層工 1、第二金屬層2 0及第三金屬層1〇 〇,且係為導熱之金屬材料,_ 提高整體之導熱性,以及可供反射錄,進而糾光線由該光源射出口工 0 0 a輸出,以增加碰之出紐;又藉由本創作設有散熱基板丨〇,以 增加導熱性;藉此’以形成同於傳統之高效率·二減結構且具提 昇整體發光效率之高效率雷射二極體,以增加其實用性者。 惟以上所述者,僅為本創作之較佳實施例,當不能用以限定本創作可 實施之範圍,凡習於本業之人士所明顯可作變化與修飾,皆應視為不悖離 本創作之實質内容。 綜上所述,本創作確可達到創作之預期目的,具有實用價值無疑,爰 依法提出專利申請。 M334549 【圖式簡單說明】 第1圖係為本創作實施例之結構示意圖。 第2圖係為本創作實施例之發光動作示意圖。 第3圖係為本創作另一實施例之結構示意圖。 第4圖係為習用之側面出光之雷射二極體結構示意圖。 ’ 第5圖係為習用之頂面出光之雷射二極體結構示意圖。 【主要元件符號說明】 1 1、第一金屬層 2 2、第二凸部 3 1、缺口 5 0、P型布拉格反射鏡層 7 0、結合層 7 2、未氧化層 9 0、基板 10 0 a、光源射出口 | 10、散熱基板 2 0、第二金屬層 2 1、第一凸部 3 0、介電披覆層 4 0、電極接觸層 6 0、主動層 71、氧化層 | 8 0、N型布拉格反射鏡層 10 0、第三金屬層 A 0、基板 A1、η型神化紹銦鎵(n-AlxGal-xAs) A2、p型珅化鎵(p-GaAs) A3、P型珅化紹銦鎵(p-AlxGal-xAs) A4、p型珅化鎵(p-GaAs) A 5、氧化層 12 .M334549 _ A 6、接觸電極 B1、N型布拉格反射鏡層 B 2、P型布拉格反射鏡層 B 3、活性區 B 4、P型接觸金屬層 ^ B41、發光窗 ' B 5、基座 _ B 6、N型接觸金屬層 c s ) 13[Prior Art] According to the conventional laser diode structure, please refer to Figure 4, which is a laser diode structure with double-heterojunction of side light, which is a piece of gallium (η* ) is a substrate A 〇, and a four-layer film is grown on the substrate A 经由 via stupid crystals, respectively, n-type 珅化铭 Marriage (―如) A i, ρ-type kung-ga (g_GaAs) a 2, p-type Kunming Ming Marriage (P-ALGai-xAs) Α3 and ρ-type Wei-Gal (p, GaAs) Α4; then covered with a layer of insulating oxide layer A5 'and the middle part of the oxide layer A5, and finally the upper and lower sides of the ore The metal is the contact electrode A6, and the intermediate p" gallium (p_GaAs) A2 becomes the active layer, and the laser light is emitted from the layer; the p-type of the upper and lower layers of the active layer hexa-2 of the p-type gallium antimonide (p-GaAs) Aluminum indium gallium arsenide (P-AlxG "S) A3 and η-type aluminum indium gallium arsenide (n rhyme ▲) A1 is a trapped layer (or coating layer), and the uppermost p-type quinganized gallium (p_GaAs) A4 is only designed to reduce the contact resistance. When the operation of the laser originates from the forward bias of the pn junction, a large number of electrons and holes are injected into the active layer of the p-type GaAs (p-GaAs), causing metering reversal (p〇puiati〇n Inversion). Excited radiation emits photons, plus p-type deified (p_GaAs) active layer A 2 up and down p-type aluminum indium gallium arsenide (p-AixGantAs) A 3 and n-type aluminum arsenide gallium nitride M334549 (η-AlxGai- xAs) The refractive index of the A1 two-layer trap layer is smaller than that of the active layer A 2 of the p-type gallium arsenide (p_GaAs), so that the light is limited by the reflection effect to the active layer a of the p-type stone (p-GaAs) 2, while the active layer A 2 emits laser light. Another conventional laser-polar body structure, as shown in Figure 5, is a top-surface vertical cavity cavity (Emitting Cavity Surface-Emitting Laser (VCSEL) diode, mainly consisting of an N-type Prague The mirror layer B1, a p-type Bragg mirror layer b2, an active region B3, a P-type contact metal layer B4, a susceptor B5 and an N-type contact metal layer B6 are formed by the P The Bragg mirror layer b 2 and the N-type Bragg mirror layer B1 respectively constitute upper and lower mirrors, and the active region B 3 is located between the P-type Bragg mirror layer b 2 and the N-type Bragg mirror layer B1. Forming a laser cavity, the laser photon oscillates back and forth between the upper and lower mirrors, and the P-type contact metal layer B 4 of the top layer is provided with a light-emitting window B 41, so that the laser beam is from the top layer. The light-emitting window B 41 is output. However, the creator has the other purpose of achieving the purpose of emitting laser light as in the above-mentioned conventional structure, and is devoted to research and design, to provide consumer use, and to create creative motives for the creative creation. [New content] The main purpose of this creation is to provide a high-efficiency laser diode with a heat-dissipating substrate, a first metal layer, a second metal layer, a dielectric coating, and an electrode contact. a layer, a p-type Bragg mirror layer of at least twenty pairs, an active layer, at least one bonding layer, an N-type Bragg mirror layer of at least thirty pairs, a substrate and a third metal layer The combined design uses the first metal layer, the second metal layer and the third metal layer to increase the thermal conductivity and the reflective light source to enhance the overall light output to form a laser diode structure different from the conventional one. The high-efficiency laser diode of the M334549 body luminous efficiency, which enhances the overall practicality. Another object of the present invention is to provide a high efficiency laser diode, comprising a heat sink substrate metal layer, a second metal layer, a dielectric coating layer, an electrode contact layer, and at least one a pair of P-type Bragg mirror layers, an active layer, at least one bonding layer, a combination of at least twenty pairs of N-type Bragg mirror layers, a substrate and a third metal layer, The heat sink substrate is added to increase thermal conductivity to form a structure different from the conventional laser diode structure to enhance its practicality. To achieve the above objective, the present invention includes a heat dissipation substrate, a first metal layer, a second metal layer, a dielectric coating layer, an electrode contact layer, and a P-type Bragg mirror having at least twenty pairs. a layer, an active layer, at least one bonding layer, an N-type Bragg mirror layer of at least thirty pairs, a substrate and a third metal layer. The second metal layer is provided with a first convex portion and a second convex portion. The dielectric coating layer is disposed above the second metal layer and covers the first convex portion and the second convex portion. The dielectric coating layer penetrates the electrode contact layer, the p-type Bragg mirror layer, the active layer and the at least one bonding layer after the first convex portion and the second convex portion covering the second metal layer respectively Inserting into the N-type Bragg mirror layer, wherein the at least one bonding layer comprises two oxide layers and one unoxidized layer, and the two oxide layers are respectively matched with the dielectric coating layer a periphery of a convex portion and a second convex portion, wherein the dielectric coating layer is provided with a notch corresponding to a portion between the first convex portion and the first convex portion, so that the second metal layer and the electrode The contact layer is connected, and a light source exit port is disposed at a center of the second metal layer; thereby, a contrast laser diode having a structure different from the conventional laser two (four) structure and having an improved overall emission rate is formed. Other features and embodiments of the present invention can be further understood from the following detailed description in conjunction with the drawings. M334549 [Embodiment] As shown in Figures 1 to 3 of the Mingshen, the present invention is a high-efficiency laser diode. The high-efficiency laser diode system includes: a thermal substrate 1 Q 'the heat sink substrate 1 Q system In the bottom layer, the loose plate 10 is made of a high thermal conductivity coefficient, and the thermal conductivity is improved. The first metal layer 11 is disposed above the heat dissipation substrate 10. The first metal layer 1 1 is made of silver (Ag), Ming (A1), gold (Au), copper. (Cu), chrome, etc., or other conductive metal materials for the purpose of increasing thermal conductivity and for reflecting light. The first metal layer 2 is bonded to the heat dissipation substrate 且 and the first metal layer 20 is provided with a first protrusion 21 and a second protrusion 2 2 . "Electrical coating layer 3 〇, the dielectric coating layer 3 is bonded to the second metal layer 2 ,, and covers the first convex portion 2 丄 and the second metal layer 2 言The two convex portions 2 2 are provided for insulation, and a portion of the dielectric coating layer 3 〇 corresponding to the first convex portion U and the second convex portion 22 of the second metal layer 2 is provided with a notch 3i. An electrode contact layer 40, the electrode contact layer 40 is bonded over the dielectric coating layer 3, and the dielectric coating layer 3 is wrapped around the first metal layer 2 The portion 21 and the second protrusion 2 2 extend through the electrode contact layer 4 〇, and the electrode contact layer 4 〇 corresponds to the octagonal layer 3 〇 the gap 3 1 is connected to the second metal layer 2 0 . 1 P-type Bragg reflector layer 50, the P-type Bragg mirror layer $ is above the electrode contact layer 4 Q, and the dielectric cladding layer 3 Q is coated with the second metal The layer ^ = the first protrusion 21 and the second protrusion 22 penetrate the p-type Bragg mirror layer 5, and the 1 M334549 P-type Bragg mirror layer 5 is provided with at least twenty pairs. An active layer 60, the active layer 6 is bonded to the p-type Bragg mirror layer 5 ,, and the dielectric cladding layer 3 is wrapped around the first convex portion of the second metal layer 2 2丄 and the second convex portion 22 are penetrated through the active layer β0; the active layer 6 is a light-emitting layer of laser light. The active layer of the Hei 60 layer can be a multi-quantum well (MQW) structure, or the can be used as a double heterostructure (D〇uble heterostructure) so that electrons and holes can be recombined in this layer. Produce photons. Referring to at least one bonding layer 70, the bonding layer 70 is bonded over the active layer 6 ,, and the at least-bonding layer 7 is composed of two oxide layers 71 and an unoxidized layer 7 2 . The oxide layer 71 is respectively disposed in the unoxidized layer 7 2 , the oxide layer 71 is an electrically insulating region, and the dielectric cladding layer 30 is coated with the first protrusion of the second metal layer 20 The portion 21 and the second protrusion 22 pass through the two oxide layers 71, respectively. a N-type Bragg mirror layer 8 〇, the N-type Bragg mirror layer 8 Q is bonded over the bonding layer 7 ,, and the dielectric cladding layer 30 is coated on the second metal layer 2 The first spring protrusion 21 and the second protrusion 2 2 are worn in the N-type Bragg mirror layer 8 q, and the N _ type grid anti-Wei layer 80 is provided with at least thirty pairs; The reaction layer 8 is a reflective layer; the N-type Bragg mirror layer 8 is a compound composed of melon and v elements of the periodic table. a substrate 90, the substrate 90 is bonded to the n-type Bragg mirror layer 8 ;; and the substrate 9 (10) is made by side, grinding method (4) plate 'clear light transmission, _ substrate 90 0 can be phosphorus Indium (InP), gallium arsenide (GaAs)··· and other materials. a third metal layer 1 〇〇, the third metal layer is bonded to the substrate 13 〇 above the M334549 square, and the third metal layer 1 〇〇 is centrally provided with a light source exit 1 〇〇 a, The direction of the laser light is limited; the third metal layer 1 is a metal material that can conduct gold (Au), germanium (Ge), nickel (Ni), etc. Wherein the first metal layer 11, the second metal layer 2, and the third metal layer 1 are thermally conductive metal materials for increasing thermal conductivity and for providing reflected light, thereby guiding light from the light source exit. 10 Oa output to increase light output; the active layer 6 〇 and the P-type Bragg mirror layer 50 may further be combined with a bonding layer 7 〇 (as shown in FIG. 3); and the second metal layer 20 and the third metal layer 1 are conductive electrodes (the second metal layer 2 is a p-type electrode, and the third metal layer 100 is an N-type electrode). The high-efficiency laser diode of the present invention is formed by a heat-dissipating substrate 10, a first metal layer 11, a second metal layer 20, a dielectric coating layer 3 0, - electrode contact layer 4 〇, - provided with at least thirty pairs of p-type Bragg mirror layer 5 〇, - active layer 60, at least - bonding layer 7 Q ... with at least thirty pairs of N-type Bragg reflection a combination of the mirror layer 80, the substrate 9 〇 and the _ third metal layer 1 ,, and the second metal layer 20 is provided with a first protrusion 21 and a second protrusion 2 2, the dielectric coating 30 is disposed above the second metal layer 20, and covers the first protrusion 21 and the second protrusion 2 2, and the dielectric coating layer 3 Q covers the second metal layer 2 The first portion of the convex portion 2 i and the second convex portion 2 2 respectively penetrate through the electrode contact layer 4 Q, the p-type Bragg mirror layer 5 Q, the active layer 6 〇 and the at least one bonding layer 70 After the oxide layer 71 is passed through the N-type Bragg mirror layer 8 Q, and the dielectric coating layer 3 Q is an insulating layer for insulation to prevent the second metal layer 2 Q - The convex portion 21 and the second convex portion 2 2 P-type Bragg mirror layer 5 〇-type Bragg mirror layer 8 〇 is electrically connected to each other, and the dielectric-coated layer 30 corresponds to the M334549 between the first convex portion 21 and the second convex portion 2 2 The gap is provided with a gap 3; so that the first metal layer 20 is connected to the electrode contact layer 40, and the center of the human anode-metal layer 10 is provided with a light source exit 10 10 a, the light source Shoot out · $ #贝有,再猎 By this creation, there is a first metal laminator 1, a second metal layer 20 and a third metal layer 1〇〇, and is a heat conductive metal material, _ improve the overall thermal conductivity And can be used for reflection recording, and then the light is corrected by the light source to output the 0 0 a output to increase the touch; and the heat sink substrate is provided by the present invention to increase the thermal conductivity; In the traditional high-efficiency, two-decrement structure and high-efficiency laser diodes that improve the overall luminous efficiency, to increase their practicality. However, the above descriptions are only preferred embodiments of the present invention. When it is not possible to limit the scope of implementation of this creation, it is obvious that those who are in the industry can make changes and modifications. The substance of creation. In summary, this creation can indeed achieve the intended purpose of creation, has practical value, and 提出 file a patent application according to law. M334549 [Simple description of the drawings] Fig. 1 is a schematic structural view of the present embodiment. Fig. 2 is a schematic view showing the illumination operation of the present embodiment. Figure 3 is a schematic view showing the structure of another embodiment of the present invention. Fig. 4 is a schematic view showing the structure of a laser diode of a side light emitted by a conventional one. Figure 5 is a schematic diagram of the structure of the laser diode of the top surface of the conventional light. [Description of main component symbols] 1 1. First metal layer 2 2, second convex portion 3 1 , notch 50, P-type Bragg mirror layer 70, bonding layer 7 2, unoxidized layer 90, substrate 10 0 a, the light source exit port | 10, the heat sink substrate 20, the second metal layer 2 1, the first convex portion 30, the dielectric coating layer 40, the electrode contact layer 60, the active layer 71, the oxide layer | 8 0 , N-type Bragg mirror layer 100, third metal layer A 0, substrate A1, η-type sin-indium gallium (n-AlxGal-xAs) A2, p-type gallium antimonide (p-GaAs) A3, P-type 珅Indium gallium (p-AlxGal-xAs) A4, p-type gallium antimonide (p-GaAs) A 5, oxide layer 12 .M334549 _ A 6, contact electrode B1, N-type Bragg mirror layer B 2, P type Bragg mirror layer B 3, active region B 4, P-type contact metal layer ^ B41, light-emitting window 'B 5, pedestal _ B 6, N-type contact metal layer cs) 13