TWI816312B - Charged particle beam irradiation system - Google Patents
Charged particle beam irradiation system Download PDFInfo
- Publication number
- TWI816312B TWI816312B TW111107494A TW111107494A TWI816312B TW I816312 B TWI816312 B TW I816312B TW 111107494 A TW111107494 A TW 111107494A TW 111107494 A TW111107494 A TW 111107494A TW I816312 B TWI816312 B TW I816312B
- Authority
- TW
- Taiwan
- Prior art keywords
- charged particle
- particle beam
- deenergizer
- irradiation
- penumbra
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 200
- 238000001514 detection method Methods 0.000 claims description 15
- 230000001678 irradiating effect Effects 0.000 claims description 9
- 206010028980 Neoplasm Diseases 0.000 abstract description 47
- 239000003638 chemical reducing agent Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 238000004364 calculation method Methods 0.000 description 11
- 230000032258 transport Effects 0.000 description 11
- 238000004088 simulation Methods 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000004894 snout Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1065—Beam adjustment
- A61N5/1067—Beam adjustment in real time, i.e. during treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1042—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
- A61N5/1043—Scanning the radiation beam, e.g. spot scanning or raster scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1031—Treatment planning systems using a specific method of dose optimization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1042—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
- A61N5/1045—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1065—Beam adjustment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1095—Elements inserted into the radiation path within the system, e.g. filters or wedges
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
[課題] 提供一種能夠對被照射體適當地照射帶電粒子束之帶電粒子束照射系統。 [解決手段] 藉由通氣管降能器(30)調整帶電粒子束(B)的半影,能夠抑制在照射部(2)對腫瘤(14)的邊界部附近進行照射時,對腫瘤(14)的外部照射帶電粒子束(B)。在此,保持通氣管降能器(30)之保持部(60)設置於照射部(2)。因此,能夠容易地進行照射到腫瘤(14)之帶電粒子束(B)與通氣管降能器(30)之間的位置對準。因此,在用通氣管降能器(30)而於適當的位置調整半影之狀態下,照射部(2)能夠對腫瘤(14)照射帶電粒子束(B)。在本實施形態中,由於只要將通氣管降能器(30)保持於保持部(60)即可,因此容易進行位置對準。 [Problem] Provide a charged particle beam irradiation system that can appropriately irradiate a subject with a charged particle beam. [Solution] By adjusting the penumbra of the charged particle beam (B) with the snorkel deenergizer (30), it is possible to suppress the irradiation of the tumor (14) when the irradiation part (2) irradiates near the boundary of the tumor (14). ) externally irradiated charged particle beam (B). Here, the holding part (60) holding the snorkel deenergizer (30) is provided in the irradiation part (2). Therefore, positional alignment between the charged particle beam (B) irradiated onto the tumor (14) and the ventilator deenergizer (30) can be easily performed. Therefore, the irradiation unit (2) can irradiate the tumor (14) with the charged particle beam (B) in a state where the penumbra is adjusted to an appropriate position using the ventilator deenergizer (30). In this embodiment, it is only necessary to hold the snorkel deenergizer (30) on the holding portion (60), so positioning is easy.
Description
本發明係有關一種帶電粒子束照射系統。 本申請案係主張基於2021年3月3日申請之日本專利申請第2021-033429號的優先權。該日本申請案的全部內容係藉由參閱而援用於本說明書中。 The invention relates to a charged particle beam irradiation system. This application claims priority based on Japanese Patent Application No. 2021-033429 filed on March 3, 2021. The entire contents of this Japanese application are incorporated by reference into this specification.
以往,作為藉由對患者的患部照射帶電粒子束來進行治療之帶電粒子束照射系統,例如,專利文獻1中所記載之裝置是廣為人知的。在專利文獻1中所記載之帶電粒子束照射系統中,照射部藉由掃描方式照射帶電粒子束。亦即,照射部一邊藉由用掃描電磁鐵進行掃描來移動帶電粒子束對患部的照射位置,一邊進行照射。
[先前技術文獻]
Conventionally, as a charged particle beam irradiation system that performs treatment by irradiating a charged particle beam to an affected part of a patient, for example, the device described in
[專利文獻1] 日本特開2017-209372號公報[Patent Document 1] Japanese Patent Application Publication No. 2017-209372
[發明所欲解決之問題][Problem to be solved by the invention]
在此,存在如下問題:在照射部藉由掃描方式照射帶電粒子束之情形下,由於帶電粒子束的射束尺寸大等而治療劑量被施加到被照射體的外部。因此,要求對被照射體適當地照射帶電粒子束。Here, there is a problem that when the irradiation unit irradiates the charged particle beam in a scanning manner, the treatment dose is applied to the outside of the irradiated object due to the large beam size of the charged particle beam or the like. Therefore, it is required to appropriately irradiate the irradiated object with the charged particle beam.
因此,本發明的目的為提供一種能夠對被照射體適當地照射帶電粒子束之帶電粒子束照射系統。 [解決問題之技術手段] Therefore, an object of the present invention is to provide a charged particle beam irradiation system capable of appropriately irradiating a subject to be irradiated with a charged particle beam. [Technical means to solve problems]
為了解決上述問題,本發明之帶電粒子束照射系統對對象物內的被照射體照射帶電粒子束粒子束,該帶電粒子射線照射系統具備:照射部,藉由用掃描電磁鐵掃描帶電粒子束來對被照射體照射帶電粒子束;調節構件,調整被掃描之帶電粒子束的半影;及保持部,設置於照射部並保持調節構件。In order to solve the above problem, a charged particle beam irradiation system of the present invention irradiates a charged particle beam to an irradiated object in a target object. The charged particle beam irradiation system includes an irradiation unit that scans the charged particle beam with a scanning electromagnet. The irradiated object is irradiated with a charged particle beam; the adjustment member adjusts the penumbra of the scanned charged particle beam; and the holding part is provided on the irradiation part and holds the adjustment member.
本發明之帶電粒子束照射系統具備:照射部,藉由用掃描電磁鐵掃描帶電粒子束來對被照射體照射帶電粒子束;及調節構件,調整帶電粒子束的半影。因此,藉由調節構件調整帶電粒子束的半影,能夠抑制在照射部對被照射體的邊界部附近進行照射時,對被照射體的外部照射帶電粒子束。在此,保持調節構件之保持部設置於照射部。因此,在用調節構件而於適當的位置調整半影之狀態下,照射部能夠對被照射體照射帶電粒子束。依據以上內容,照射部能夠對被照射體適當地照射帶電粒子束。The charged particle beam irradiation system of the present invention includes: an irradiation unit that irradiates the irradiated object with the charged particle beam by scanning the charged particle beam with a scanning electromagnet; and an adjustment member that adjusts the penumbra of the charged particle beam. Therefore, by adjusting the penumbra of the charged particle beam by the adjusting member, it is possible to suppress the charged particle beam from being irradiated to the outside of the irradiated object when the irradiating unit irradiates the vicinity of the boundary portion of the irradiated object. Here, the holding part holding the adjustment member is provided in the irradiation part. Therefore, the irradiation unit can irradiate the irradiated object with the charged particle beam in a state where the penumbra is adjusted to an appropriate position using the adjustment member. Based on the above, the irradiation unit can appropriately irradiate the irradiated object with the charged particle beam.
保持部可以設置於照射部的前端部。此時,調節構件能夠在靠近對象物之位置調整半影。因此,調節構件調整半影之後,帶電粒子束在射束的擴展變大之前被迅速照射到被照射體。The holding part may be provided at the front end of the irradiation part. At this time, the adjusting member can adjust the penumbra at a position close to the object. Therefore, after the penumbra is adjusted by the adjusting member, the charged particle beam is quickly irradiated to the irradiated object before the beam spread becomes large.
調節構件可以具有與對象物內的被照射體的深度相對應之半影的調整等級。此時,調節構件能夠以與對象物內的被照射體的深度相對應之半影的調整等級調整半影。The adjustment member may have an adjustment level of the penumbra corresponding to the depth of the irradiated object within the object. At this time, the adjustment member can adjust the penumbra at an adjustment level corresponding to the depth of the irradiated object within the object.
帶電粒子束照射系統可以構成為能夠依據對象物內的被照射體的深度來選擇調節構件的半影的調整等級。此時,調節構件能夠依據對象物內的被照射體的深度以適當的半影的調整等級調整半影。The charged particle beam irradiation system may be configured to be able to select the adjustment level of the penumbra of the adjustment member in accordance with the depth of the irradiated object within the object. At this time, the adjustment member can adjust the penumbra with an appropriate adjustment level of the penumbra according to the depth of the irradiated object within the object.
帶電粒子束照射系統可以構成為能夠依據對象物與照射部的距離來選擇調節構件的半影的調整等級。此時,調節構件能夠依據對象物與照射部的距離以適當的半影的調整等級調整半影。The charged particle beam irradiation system may be configured to be able to select the adjustment level of the penumbra of the adjustment member in accordance with the distance between the object and the irradiation part. At this time, the adjustment member can adjust the penumbra with an appropriate adjustment level of the penumbra according to the distance between the object and the irradiation part.
帶電粒子束照射系統可以進一步具備檢測部,該檢測部檢測相對於保持部配置了錯誤的調節構件。此時,能夠抑制由不適當的調整等級之調節構件調整半影。 [發明之效果] The charged particle beam irradiation system may further include a detection unit that detects that the adjustment member is incorrectly arranged with respect to the holding unit. In this case, it is possible to suppress adjustment of the penumbra by an adjustment member of an inappropriate adjustment level. [Effects of the invention]
依本發明,能夠提供一種能夠對被照射體適當地照射帶電粒子束之帶電粒子束照射系統。According to the present invention, it is possible to provide a charged particle beam irradiation system capable of appropriately irradiating a subject to be irradiated with a charged particle beam.
以下,參閱圖式對本發明的一實施形態之帶電粒子束照射系統進行說明。另外,在圖式說明中,對相同的要素標註相同的元件符號,並省略重複說明。Hereinafter, a charged particle beam irradiation system according to an embodiment of the present invention will be described with reference to the drawings. In addition, in the description of the drawings, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted.
圖1係表示本發明的一實施形態之帶電粒子束照射系統1之概略結構圖。帶電粒子束照射系統1為用於基於放射線療法之癌症治療等之系統。帶電粒子束照射系統1具備:加速器3,加速由離子源裝置生成之帶電粒子而作為帶電粒子束射出;照射部2,向被照射體照射帶電粒子束;及射束輸送路線21,將從加速器3射出之帶電粒子束輸送到照射部2。照射部2安裝於以圍繞治療台4的方式設置之旋轉支架5。照射部2能夠藉由旋轉支架5圍繞治療台4旋轉。另外,對於加速器3、照射部2及射束輸送路線21的進一步詳細的結構,待留後述。FIG. 1 is a schematic structural diagram showing a charged particle
圖2係圖1的帶電粒子束照射系統1的照射部2附近的概略結構圖。另外,在以下說明中,使用“X軸方向”、“Y軸方向”、“Z軸方向”的用語進行說明。“Z軸方向”係指帶電粒子束B的基軸AX延伸之方向,並且為帶電粒子束B的照射的深度方向。另外,“基軸AX”設為未被後述掃描電磁鐵50偏向時的帶電粒子束B的照射軸。在圖2中,示出了沿著基軸AX照射了帶電粒子束B之狀態。“X軸方向”係指與Z軸方向正交之平面內的一個方向。“Y軸方向”係指在與Z軸方向正交之平面內與X軸方向正交之方向。FIG. 2 is a schematic structural diagram of the vicinity of the
首先,參閱圖2,對本實施形態之帶電粒子束照射系統1的概略結構進行說明。帶電粒子束照射系統1為與掃描法相關之照射裝置。另外,掃描方式並無特別限定,可以採用線掃描、光柵掃描、點掃描等。如圖2所示,帶電粒子束照射系統1具備加速器3、照射部2、射束輸送路線21、控制部7、治療計劃裝置90及記憶部95。First, the schematic structure of the charged particle
加速器3為加速帶電粒子並射出預先設定之能量的帶電粒子束B之裝置。作為加速器3,例如,可舉出迴旋加速器、同步迴旋加速器、直線加速器等。另外,在作為加速器3採用射出預先確定之能量的帶電粒子束B之迴旋加速器之情形下,藉由採用能量調節部,能夠調整(降低)輸送到照射部2之帶電粒子束的能量。該加速器3與控制部7連接,可控制所供給之電流。由加速器3產生之帶電粒子束B藉由射束輸送路線21輸送到照射部2。射束輸送路線21連接加速器3和照射部2,將從加速器3射出之帶電粒子束輸送到照射部2。The
射束輸送路線21具有一邊輸送一邊調整帶電粒子束B的能量之能量調節裝置(ESS:Energy Selection System)。其中,射束輸送路線21在加速器3的出口附近具有能量降能器20。能量降能器20為調整帶電粒子束B的射程,並調整帶電粒子束B在患者15(對象物)的體內的到達深度之構件。能量降能器20藉由損耗帶電粒子束B的能量來調整射程。能量降能器20能夠藉由調整帶電粒子束B所穿過之部分的厚度來調整帶電粒子束B的射程。另外,ESS除了能量降能器20中的能量損耗以外,還抑制在ESS的下游的射束輸送路線中產生之能量波動或射束尺寸擴大(使用準直器)。能量降能器20例如由鈹、碳等材料構成。能量降能器20配置於射束輸送路線21中的帶電粒子束B的進行方向上的上游側(亦即,加速器3側)的位置。在圖1所示之例子中,能量降能器20配置於比旋轉支架5更靠上游側的路徑中的加速器3的緊後方、亦即射束輸送路線21的電磁鐵等機器中的最靠上游側處。但是,能量降能器20在射束輸送路線21內的位置並無特別限定。The
照射部2為對患者15(對象物)的體內的腫瘤(被照射體)14照射帶電粒子束B者。帶電粒子束B係指高速加速帶電之粒子者,例如可舉出質子束、重粒子(重離子)束、電子束等。具體而言,照射部2為向腫瘤14照射從加速由離子源(未圖示)生成之帶電粒子之加速器3射出而藉由射束輸送路線21輸送之帶電粒子束B之裝置。照射部2具備掃描電磁鐵50、四極電磁鐵8、剖面監測器11、劑量監測器12、位置監測器13a、13b、準直器40及通氣管降能器30(調節構件)。掃描電磁鐵50、各監測器11、12、13a、13b、四極電磁鐵8及通氣管降能器30收納於作為收納體的照射噴嘴9中。如此,藉由在照射噴嘴9收納各主構成要素來構成照射部2。另外,可以省略四極電磁鐵8、剖面監測器11、劑量監測器12及位置監測器13a、13b。The
作為掃描電磁鐵50,使用X軸方向掃描電磁鐵50A及Y軸方向掃描電磁鐵50B。X軸方向掃描電磁鐵50A及Y軸方向掃描電磁鐵50B分別由一對電磁鐵構成,依據從控制部7供給之電流來改變一對電磁鐵之間的磁場,掃描穿過該電磁鐵之間之帶電粒子束B。X軸方向掃描電磁鐵50A在X軸方向上掃描帶電粒子束B,Y軸方向掃描電磁鐵50B在Y軸方向上掃描帶電粒子束B。該等掃描電磁鐵50依序配置於基軸AX上並且比加速器3更靠帶電粒子束B的下游側處。另外,掃描電磁鐵50掃描帶電粒子束B,以便以由治療計劃裝置90預先計劃之掃描模式照射帶電粒子束B。對於如何控制掃描電磁鐵50,待留後述。As the
四極電磁鐵8包括X軸方向四極電磁鐵8a及Y軸方向四極電磁鐵8b。X軸方向四極電磁鐵8a及Y軸方向四極電磁鐵8b依據從控制部7供給之電流來縮小並收斂帶電粒子束B。X軸方向四極電磁鐵8a在X軸方向上收斂帶電粒子束B,Y軸方向四極電磁鐵8b在Y軸方向上收斂帶電粒子束B。藉由改變供給至四極電磁鐵8之電流來改變縮小量(收斂量),能夠改變帶電粒子束B的射束尺寸。四極電磁鐵8依序配置於基軸AX上並且加速器3與掃描電磁鐵50之間。另外,射束尺寸係指XY平面上的帶電粒子束B的大小。又,射束形狀係指XY平面上的帶電粒子束B的形狀。The four-
為了初始設定時的位置對準,剖面監測器11檢測帶電粒子束B的射束形狀及位置。剖面監測器11配置於基軸AX上並且四極電磁鐵8與掃描電磁鐵50之間。劑量監測器12檢測帶電粒子束B的劑量。劑量監測器12配置於基軸AX上並且相對於掃描電磁鐵50之下游側。位置監測器13a、13b檢測並監視帶電粒子束B的射束形狀及位置。位置監測器13a、13b配置於基軸AX上並且比劑量監測器12更靠帶電粒子束B的下游側處。各監測器11、12、13a、13b將檢測出之檢測結果輸出到控制部7。For positioning during initial setting, the
準直器40設置於至少比掃描電磁鐵50更靠帶電粒子束B的下游側處,並且為遮蔽帶電粒子束B的一部分並使一部分穿過之構件。在此,準直器40設置於位置監測器13a、13b的下游側。準直器40與使該準直器40移動之準直器驅動部51連接。The
通氣管降能器30降低所穿過之帶電粒子束B的能量來調整該帶電粒子束B的能量。通氣管降能器30構成為調整帶電粒子束B的半影之調節構件。在本實施形態中,通氣管降能器30由設置於照射噴嘴9的前端部9a之保持部60保持。另外,照射噴嘴9的前端部9a係指帶電粒子束B的下游側的端部。對於通氣管降能器30及保持部60的詳細說明,待留後述。The
控制部7例如由CPU、ROM及RAM等構成。該控制部7依據從各監測器11、12、13a、13b輸出之檢測結果來控制加速器3、能量降能器20的厚度調節機構、掃描電磁鐵50、四極電磁鐵8及準直器驅動部51。The
又,帶電粒子束照射系統1的控制部7與進行帶電粒子束治療的治療計劃之治療計劃裝置90及記憶各種資料之記憶部95連接。治療計劃裝置90在治療之前藉由CT等測量患者15的腫瘤14,並計劃腫瘤14的各位置的劑量分布(應照射之帶電粒子束的劑量分布)。具體而言,治療計劃裝置90針對腫瘤14製作掃描模式。治療計劃裝置90將所製作之掃描模式發送到控制部7。在治療計劃裝置90所製作之掃描模式中,計劃帶電粒子束B以何等的掃描速度描繪何等的掃描路徑。Furthermore, the
在進行基於掃描法之帶電粒子束的照射之情形下,將腫瘤14在Z軸方向上假想分割成複數層,在一層中以使帶電粒子束依照在治療計劃中確定之掃描路徑之方式進行掃描並照射。然後,完成該一層中的帶電粒子束的照射之後,進行相鄰之下一層中的帶電粒子束B的照射。When irradiating a charged particle beam by a scanning method, the
在由圖2所示之帶電粒子束照射系統1,藉由掃描法進行帶電粒子束B的照射之情形下,將四極電磁鐵8設為工作狀態(打開),以使所穿過之帶電粒子束B收斂。In the case where the charged particle
接著,從加速器3射出帶電粒子束B。對於所射出之帶電粒子束B,藉由掃描電磁鐵50的控制以依照在治療計劃中確定之掃描模式之方式進行掃描。藉此,關於帶電粒子束B,在對腫瘤14在Z軸方向上設定之一層中的照射範圍內進行掃描的同時進行照射。若完成對一層之照射,則向下一層照射帶電粒子束B。Next, the charged particle beam B is emitted from the
參閱圖3(a)及圖3(b),對與控制部7的控制相對應之掃描電磁鐵50的帶電粒子束照射圖像進行說明。圖3(a)示出在深度方向上假想切割成複數層之被照射體,圖3(b)示出從深度方向觀察之一層中的帶電粒子束的掃描圖像。Referring to FIGS. 3(a) and 3(b) , a charged particle beam irradiation image of the
如圖3(a)所示,被照射體在照射的深度方向上被假想切割成複數層,在本例中,從深的(帶電粒子束B的射程長)層依序假想切割成層L
1、層L
2、……層L
n-1、層L
n、層L
n+1、……層L
N-1、層L
N這N層。又,如圖3(b)所示,關於帶電粒子束B,一邊描繪沿著掃描路徑TL之射束軌道,在連續照射(線掃描或光柵掃描)之情形下,一邊沿著層L
n的掃描路徑TL連續照射,在點掃描之情形下,一邊照射到層L
n的複數個照射點。關於帶電粒子束B,沿著沿X軸方向延伸之掃描路徑TL1照射,沿著掃描路徑TL2在Y軸方向上稍微位移,沿著相鄰的掃描路徑TL1照射。如此,從被控制部7控制之照射部2射出之帶電粒子束B在掃描路徑TL上移動。
As shown in Figure 3(a), the irradiated object is virtually cut into a plurality of layers in the depth direction of the irradiation. In this example, the layer is virtually cut into layers L 1 in order from the deep layer (where the charged particle beam B has a long range). , layer L 2 , ... layer L n-1 , layer L n , layer L n+1 , ... layer L N-1 , layer L N and these N layers. Furthermore, as shown in FIG. 3(b) , regarding the charged particle beam B, while drawing the beam trajectory along the scanning path TL, in the case of continuous irradiation (line scanning or raster scanning), the beam path along the layer L n The scanning path TL is continuously irradiated, and in the case of point scanning, a plurality of irradiation points of the layer Ln are irradiated on one side. The charged particle beam B is irradiated along the scanning path TL1 extending in the X-axis direction, slightly displaced in the Y-axis direction along the scanning path TL2, and irradiated along the adjacent scanning path TL1. In this way, the charged particle beam B emitted from the
接著,參閱圖4~圖7,對通氣管降能器30進行詳細說明。圖4係表示通氣管降能器30被保持部60保持之狀態之概略圖。如圖4所示,作為一例,通氣管降能器30為具有矩形板狀形狀之構件。通氣管降能器30具有向與基軸AX正交之方向擴展之平面狀的入射面30a及出射面30b。由於通氣管降能器30在帶電粒子束B所掃描之範圍內具有均勻的厚度,因此,其會衰減一定的能量。通氣管降能器30能夠藉由變更厚度、亦即入射面30a與出射面30b之間的尺寸來變更帶電粒子束B的能量調整量。藉此,通氣管降能器30能夠藉由調整帶電粒子束B的射束尺寸的擴大來調整帶電粒子束B的半影。通氣管降能器30例如由聚乙烯、丙烯酸等接近水密度之材料構成。另外,通氣管降能器30為以調整帶電粒子束B的擴展為目的者。Next, referring to FIGS. 4 to 7 , the
保持部60設置於照射部2,在照射部2側保持通氣管降能器30。由於保持部60設置於照射噴嘴9的前端部9a,因此,通氣管降能器30配置於比配置於照射噴嘴9的內部之所有構成要素更靠下游側、亦即靠近患者15之位置。藉由被保持部60保持,通氣管降能器30處於設置於照射部2側之狀態。設置於照射部2側之狀態例如係指如隨著照射部2的移動而通氣管降能器30亦能夠移動般之狀態,而非如在患者15的周圍配置通氣管降能器、或者在患者15的病床上安裝通氣管降能器般之狀態。保持部60能夠在照射部2側保持通氣管降能器30的同時在離患者15最近的位置保持通氣管降能器30。另外,離患者15最近的位置係意味著患者15和通氣管降能器30的位置例如為比30cm近的位置。但是,通氣管降能器30與患者15的距離可以依據與周邊環境的關係等來適當變更。The holding
保持部60具有支撐通氣管降能器30的外周緣部30c之一對側壁部61。保持部60具有與其他外周緣部30c相對向之一對側壁部62(參閱圖4(b))。該等側壁部61、62從支撐部86向下延伸。在側壁部61、62的前端部設置有寬幅構件87。又,保持部60能夠保持複數種厚度的通氣管降能器30。例如,保持部60能夠保持薄的通氣管降能器30A,還能夠保持厚的通氣管降能器30B。在變更厚度之情形下,使用者從保持部60取出薄的通氣管降能器30A,將厚的通氣管降能器30B保持於保持部60。如此,由於保持部60構成為能夠保持複數種厚度的通氣管降能器,因此,可說是具有能夠選擇半影的調整等級、亦即厚度之結構。另外,保持部60例如可以兼作在搖擺照射法中使用之填充物保持架。因此,保持部60可以藉由填充物保持架66保持通氣管降能器30。又,保持部60可以在填充物保持架66的下側具有保持準直器之準直器保持架67。The holding
在此,參閱圖5,對半影進行說明。圖5係表示藉由掃描法向與基軸AX呈直角之預定的平面內照射帶電粒子束B時的劑量分布之圖表。橫軸表示預定平面的預定方向上的位置,縱軸表示各位置的劑量。但是,為了便於理解,圖5所示之圖表變形而示出。圖5中的圖表G1表示每1道次的帶電粒子束B的劑量分布。藉由在預定的平面內掃描帶電粒子束B,在各位置以逐漸偏移之狀態形成複數個圖表G1。將該等圖表G1重合之總劑量分布由圖表G2表示。在圖5中示為W之區域表示基準條件目標寬度。基準條件目標寬度W表示作為照射對象之被照射體在平面內的寬度。照射平面內的腫瘤14的寬度作為基準條件目標寬度W。在基準條件目標寬度W的範圍內,圖表G2形成平坦區域FE。平坦區域FE為劑量大致均勻之區域,並且為劑量之差落入預定的範圍內之區域。相對於此,比基準條件目標寬度W更靠外側的區域成為半影P。Here, the penumbra will be described with reference to FIG. 5 . FIG. 5 is a graph showing the dose distribution when the charged particle beam B is irradiated in a predetermined plane in which the scanning normal direction is at right angles to the base axis AX. The horizontal axis represents the position in the predetermined direction of the predetermined plane, and the vertical axis represents the dose at each position. However, in order to facilitate understanding, the graph shown in FIG. 5 is modified and shown. The graph G1 in FIG. 5 shows the dose distribution of the charged particle beam B per pass. By scanning the charged particle beam B in a predetermined plane, a plurality of graphs G1 are formed in a gradually shifted state at each position. The total dose distribution by superimposing these graphs G1 is represented by graph G2. The area indicated by W in FIG. 5 represents the base condition target width. The reference condition target width W represents the width of the irradiated object as the irradiation target in a plane. The width of the
在此,通氣管降能器30能夠抑制帶電粒子束B的射束尺寸的擴大。因此,在抑制半影之情形下,通氣管降能器30減小帶電粒子束B的擴展(參閱圖表G1a)。藉此,劑量分布在整體上發生變化,帶電粒子束B的擴展亦變小,藉此能夠抑制半影P(參閱圖表G2a)。Here, the
圖6係表示與帶電粒子束B的擴展和對象物的深度的關係相關之模擬結果之圖表。圖6所示之圖表為將通氣管降能器30設定為任意厚度並在各厚度下利用蒙地卡羅(Monte Carlo)模擬實驗運算向水中照射了帶電粒子束B時的帶電粒子束B在水中的擴展之圖表。橫軸表示與水槽的表面的距離。這相當於腫瘤14距離患者15的身體的表面的深度。縱軸表示帶電粒子束B的擴展。該擴展為藉由高斯擬合的方法計算出之值。另外,圖6中,將通氣管降能器30與水槽之間的距離、亦即從通氣管降能器30射出之帶電粒子束B所穿過之空氣層的厚度設定為50mm。這相當於通氣管降能器30與患者15的身體的表面之間的距離。FIG. 6 is a graph showing simulation results related to the relationship between the spread of the charged particle beam B and the depth of the target object. The graph shown in FIG. 6 shows the charged particle beam B when the
如圖6所示,在淺部位處,通氣管降能器30的厚度愈大,則愈能夠抑制帶電粒子束B的擴展。另一方面,在深部位處,通氣管降能器30的厚度愈薄,則愈能夠抑制帶電粒子束B的擴展。依據這樣的模擬結果,帶電粒子束照射系統1可以構成為能夠依據患者15內的腫瘤14的深度來選擇通氣管降能器30的半影的調整等級(在此為厚度)。As shown in FIG. 6 , at shallow locations, the greater the thickness of the
例如,在腫瘤14存在於體內的淺部位E1a(小於10cm)之情形下,可以選擇厚度為13cm的通氣管降能器30。又,在腫瘤14存在於體內的深部位E2a(10cm以上)之情形下,可以選擇厚度為0cm或厚度為4cm的通氣管降能器30。或者,在腫瘤14存在於體內的淺部位E1b(小於7cm)之情形下,可以選擇厚度為12cm的通氣管降能器30。又,在腫瘤14存在於體內的中間部位E2b(7cm以上且小於12cm)之情形下,可以選擇厚度為8cm的通氣管降能器30。又,在腫瘤14存在於體內的深部位E3b(12cm以上)之情形下,可以選擇厚度為0cm或厚度為4cm的通氣管降能器30。For example, in the case where the
圖7及圖8係表示依據圖6變更空氣層的厚度時的模擬結果之圖表。圖7表示空氣層的厚度為100mm時的模擬結果,圖8表示空氣層的厚度為200mm時的模擬結果。如圖6~圖8所示,依據空氣層的厚度,各厚度的通氣管降能器30的深度與帶電粒子束B的擴展的關係發生變化。因此,帶電粒子束照射系統1可以構成為能夠依據患者15與照射部2(參閱圖2)的距離來選擇通氣管降能器30的半影的調整等級(亦即厚度)。7 and 8 are graphs showing simulation results when the thickness of the air layer is changed based on FIG. 6 . FIG. 7 shows the simulation results when the thickness of the air layer is 100 mm, and FIG. 8 shows the simulation results when the thickness of the air layer is 200 mm. As shown in FIGS. 6 to 8 , the relationship between the depth of the
接著,參閱圖4及圖9,對能夠選擇通氣管降能器30的半影的調整等級(亦即厚度)之結構進行說明。圖9係表示用以能夠選擇通氣管降能器30的半影的調整等級之結構之方塊圖。如圖9所示,帶電粒子束照射系統1具備前述控制部7、輸出部76、讀取部77及識別資訊檢測部78。又,控制部7具備資訊獲取部70、運算部71及判定部72。Next, referring to FIG. 4 and FIG. 9 , a structure that enables selection of the adjustment level (ie, thickness) of the penumbra of the
資訊獲取部70從治療計劃裝置90及記憶部95獲取與帶電粒子束B的照射有關之各種資訊。資訊獲取部70能夠從治療計劃裝置90所製作之治療計劃獲取患者15內的腫瘤14的深度的資訊及患者15與照射部2(參閱圖2)的距離的資訊。運算部71進行與通氣管降能器30的半影的調整等級的選擇有關之各種運算。運算部71依據患者15內的腫瘤14的深度的資訊及患者15與照射部2(參閱圖2)的距離的資訊中的至少一方來選擇通氣管降能器30的半影的調整等級亦即厚度。運算部71例如可以藉由對照如圖6~圖8所示之預先準備之資料和所獲取之資訊來選擇通氣管降能器30的厚度。或者,運算部71可以藉由依據所獲取之資訊進行運算來選擇適當的通氣管降能器30的厚度。但是,治療計劃裝置90可以選擇適當的通氣管降能器30的厚度,此時,資訊獲取部70獲取通氣管降能器30的厚度的資訊。判定部72判定是否在保持部60配置了正確的通氣管降能器30。The
輸出部76輸出各種資訊。輸出部76由監測器、揚聲器等構成。輸出部76例如可以將所選擇之通氣管降能器30的厚度的資訊輸出給使用者。藉此,使用者能夠將藉由控制部7選擇之厚度的通氣管降能器30配置於保持部60。The output unit 76 outputs various information. The output unit 76 is composed of a monitor, a speaker, and the like. For example, the output unit 76 may output information about the thickness of the selected
在此,讀取部77、識別資訊檢測部78及判定部72構成為檢測相對於保持部60配置了錯誤的通氣管降能器30之檢測部80。Here, the
具體而言,讀取部77從對各通氣管降能器30賦予之厚度資訊保持部81(參閱圖4(a))讀取與厚度有關之資訊。關於厚度資訊保持部81,只要是能夠保持與厚度有關之資訊者,則並無特別限定,例如可以由條碼構成。此時,讀取部77由條碼讀取器構成。而且,厚度資訊保持部81可以由QR碼(註冊商標)構成,讀取部77可以由QR碼讀取器構成,厚度資訊保持部81亦可以由磁性資訊保持機構構成,讀取部77亦可以由讀取該磁資訊之裝置構成。Specifically, the
識別資訊檢測部78檢測能夠識別被保持部60保持之通氣管降能器30之資訊。例如,識別資訊檢測部78可以檢測來自設置於保持部60之預定的檢測機構之訊號作為識別資訊。在由保持部60保持通氣管降能器30時,這樣的檢測機構可以將表示該保持之通氣管降能器30係何等的厚度者之訊號發送到識別資訊檢測部78。The identification
判定部72判定由運算部71選擇之厚度與由讀取部77読取之厚度是否一致。在不一致的情形下,判定部72藉由輸出部76輸出配置了錯誤的通氣管降能器30之情形的資訊。在一致的情形下,判定部72藉由輸出部76輸出配置了正確的通氣管降能器30之情形的資訊。The
判定部72將由讀取部77讀取之厚度資訊與由運算部71選擇之厚度進行比較。此時,使用者能夠藉由在通氣管降能器30配置於保持部60之前由讀取部77讀取厚度資訊來事前判定錯誤。又,判定部72依據由識別資訊檢測部78檢測到之識別資訊確定被保持部60保持之通氣管降能器30的厚度,並將該厚度與由運算部71選擇之厚度進行比較。此時,使用者無需由讀取部77進行讀取操作,便能夠判定錯誤。The
接著,參閱圖10,對本實施形態之帶電粒子束照射方法進行說明。圖10係表示本實施形態之帶電粒子束照射方法的內容之步驟圖。如圖10所示,執行依據患者15的體內的腫瘤14的深度及患者15與照射部2的距離中的至少一方來選擇通氣管降能器30的半影的調整等級(亦即厚度)之步驟S10。接著,執行將在步驟S10中選擇之通氣管降能器30配置於保持部60之步驟S20。接著,執行使用檢測部80(參閱圖9)判定是否在保持部60配置了錯誤的通氣管降能器30之步驟S30。另外,在使用讀取部77之情形下,在步驟S20的前階段執行判定的步驟S30。接著,若配置了正確的通氣管降能器30,則執行照射部2向腫瘤14照射帶電粒子束B之步驟S40。Next, the charged particle beam irradiation method of this embodiment will be described with reference to FIG. 10 . FIG. 10 is a step diagram showing the contents of the charged particle beam irradiation method of this embodiment. As shown in FIG. 10 , the adjustment level (that is, the thickness) of the penumbra of the
接著,對本實施形態之帶電粒子束照射系統1及帶電粒子束照射方法的作用/效果進行說明。Next, the functions/effects of the charged particle
本實施形態之帶電粒子束照射系統1具備:照射部2,藉由用掃描電磁鐵50掃描帶電粒子束B來對腫瘤14照射帶電粒子束B;及通氣管降能器30,調整帶電粒子束B的半影。因此,藉由通氣管降能器30調整帶電粒子束B的半影,能夠抑制在照射部2對腫瘤14的邊界部附近進行照射時,對腫瘤14的外部照射帶電粒子束B。在此,保持通氣管降能器30之保持部60設置於照射部2。因此,能夠容易地進行照射到腫瘤14之帶電粒子束B與通氣管降能器30之間的位置對準。因此,在用通氣管降能器30而於適當的位置調整半影之狀態下,照射部2能夠對腫瘤14照射帶電粒子束B。例如,在患者15的病床側設置通氣管降能器之情形下,工作人員必須一邊考慮患者15與照射部2的位置關係一邊對通氣管降能器進行位置對準,但是由於患者15難以看到,因此存在難以進行位置對準之問題。相對於此,在本實施形態中,由於只要將通氣管降能器30保持於保持部60即可,因此容易進行位置對準。依據以上內容,照射部2能夠對腫瘤14適當地照射帶電粒子束B。The charged particle
保持部60可以設置於照射部2的前端部9a。此時,通氣管降能器30能夠在靠近患者15之位置調整半影。因此,通氣管降能器30調整半影之後,帶電粒子束B在擴展變大之前被迅速照射到腫瘤14。The holding
帶電粒子束照射系統1可以構成為能夠依據患者15的體內的腫瘤14的深度來選擇通氣管降能器30的半影的調整等級。此時,通氣管降能器30能夠依據患者15的體內的腫瘤14的深度以適當的半影的調整等級調整半影。The charged particle
帶電粒子束照射系統1可以構成為能夠依據患者15與照射部2的距離來選擇通氣管降能器30的半影的調整等級。此時,通氣管降能器30能夠依據患者15與照射部2的距離以適當的半影的調整等級調整半影。The charged particle
帶電粒子束照射系統1可以進一步具備檢測部80,該檢測部80檢測相對於保持部60配置了錯誤的通氣管降能器30。此時,能夠抑制由不適當的調整等級之通氣管降能器30調整半影。The charged particle
本實施形態之帶電粒子束照射方法為對患者15的體內的腫瘤14照射帶電粒子束B之帶電粒子束照射方法,該帶電粒子束照射方法包括:步驟S10,依據患者15的體內的腫瘤14的深度來選擇調整帶電粒子束B的半影之通氣管降能器30的半影的調整等級;步驟S20,相對於帶電粒子束B,配置所選擇之通氣管降能器30;及步驟S40,藉由用掃描電磁鐵50掃描帶電粒子束B來對腫瘤14照射帶電粒子束B。The charged particle beam irradiation method of this embodiment is a charged particle beam irradiation method of irradiating the charged particle beam B to the
依該帶電粒子束照射方法,通氣管降能器30能夠依據患者15體內的腫瘤14的深度以適當的半影的調整等級調整半影。依據以上內容,能夠對腫瘤14適當地照射帶電粒子束B。According to this charged particle beam irradiation method, the
在患者數多的大型醫院,治療通常利用低能量質子束的病例(例如頭頸部病例)之情形下,如本實施形態般使用了調節構件(通氣管降能器)之治療中,射束使用效率變得良好。由於按每一個設施限制質子束射束的使用量,因此若效率高,則與以往的ESS下的控制相比,能夠增加治療患者數。In large hospitals with a large number of patients, when treating cases (such as head and neck cases) that usually use low-energy proton beams, in the treatment using an adjustment member (ventilator deenergizer) as in this embodiment, the beam is used Efficiency becomes good. Since the amount of proton beam used is limited for each facility, if the efficiency is high, the number of patients to be treated can be increased compared to conventional control under ESS.
通氣管降能器30可以具有與患者15和照射部2的距離相對應之調整等級。此時,通氣管降能器30能夠以與患者15和照射部2的距離相對應之半影的調整等級調整半影。The
帶電粒子束照射方法進一步包括依據患者15的體內的腫瘤14的深度來選擇調整等級之步驟S10,在配置通氣管降能器30之步驟S30中,可以配置所選擇之通氣管降能器30。此時,通氣管降能器30能夠依據患者15的體內的腫瘤14的深度以適當的半影的調整等級調整半影。The charged particle beam irradiation method further includes a step S10 of selecting an adjustment level according to the depth of the
帶電粒子束照射方法進一步包括依據患者15與照射部2的距離來選擇調整等級之步驟S10,在配置通氣管降能器30之步驟S30中,可以配置所選擇之通氣管降能器30。此時,通氣管降能器30能夠依據患者15與照射部2的距離以適當的半影的調整等級調整半影。The charged particle beam irradiation method further includes step S10 of selecting an adjustment level according to the distance between the patient 15 and the
例如,作為比較例,對在照射部2的前端部9a不具有通氣管降能器30之帶電粒子束照射系統進行說明。此時,帶電粒子束照射系統中,在射束輸送路線21的上游藉由能量調節裝置(ESS:Energy Selection System)控制帶電粒子束B的能量。能量調節裝置需要在能量降能器20中大幅引起能量損耗,以改變帶電粒子束B在患者體內的到達深度。因此,帶電粒子束B在運動方向上具有擴展。藉由能量調節裝置輸送在運動方向上具有擴展之射束,藉此隨著帶電粒子束B向射束輸送路線21的下游前進,藉由漂移而射束尺寸擴大,半影亦擴大。For example, as a comparative example, a charged particle beam irradiation system in which the
相對於此,在本實施形態之帶電粒子束照射系統1中,通氣管降能器30在患者15的緊前方調整帶電粒子束B的半影。因此,將上游側的能量降能器20中的能量損耗抑制為較小,增加用以通氣管降能器30的半影調整之能量損耗,藉此能夠在抑制了射束尺寸的擴大之狀態下對患者15進行照射,能夠抑制半影。又,由於能夠選擇通氣管降能器30的厚度,因此能夠依據腫瘤14的深度或患者15與照射部2的距離來適當地調整通氣管降能器30的半影的調整等級。On the other hand, in the charged particle
本發明並不限定於上述實施形態。The present invention is not limited to the above-described embodiment.
例如,作為調整半影之調節構件雖例示了通氣管降能器,但是只要是能夠調整半影之構件,則可以採用其他構件。例如,可以在保持部60的位置、亦即患者15的緊前方的位置設置準直器或多葉準直器,藉由該多葉準直器調整半影。多葉準直器能夠藉由在與腫瘤14的邊界部相對應之位置阻斷帶電粒子束B的射束來調整半影。調整等級能夠藉由開口直徑來調整。若將開口直徑開設為較大(亦即在腫瘤外徑設置餘量),則不會阻斷半影部分,若將開口直徑開設為較小(與腫瘤外徑適配),則能夠阻斷半影。此時,在離患者15最近的位置(例如為30cm以下)藉由多葉準直器調整半影,藉此能夠在帶電粒子束B的射束尺寸被擴大之前,對腫瘤14照射帶電粒子束B。For example, a snorkel deenergizer is illustrated as an adjustment member for adjusting the penumbra, but other members may be used as long as the penumbra can be adjusted. For example, a collimator or a multi-leaf collimator may be provided at the position of the holding
設置保持多葉準直器之保持部之位置無需一定為照射部的前端部,可以為照射部的內部。The position where the holding part for holding the multi-leaf collimator is provided does not necessarily need to be the front end of the irradiation part, but may be the inside of the irradiation part.
1:帶電粒子束照射系統 2:照射部 14:腫瘤(被照射體) 15:患者(對象物) 30:通氣管降能器(調節構件) 50:掃描電磁鐵 60:保持部 80:檢測部 1: Charged particle beam irradiation system 2:Irradiation part 14: Tumor (irradiated object) 15:Patient (object) 30: Snorkel energy reducer (adjusting component) 50:Scan electromagnet 60:Maintenance Department 80:Testing Department
[圖1]係表示本發明的一實施形態之帶電粒子束照射系統之概略結構圖。 [圖2]係圖1的帶電粒子束照射系統的照射部附近的概略結構圖。 [圖3]係表示對腫瘤設定之層之圖。 [圖4]係表示通氣管(snout)降能器被保持部保持之狀態之概略圖。 [圖5]係表示藉由掃描法向與基軸呈直角之預定的平面內照射帶電粒子束時的劑量分布之圖表。 [圖6]係表示與帶電粒子束的擴展和對象物的深度的關係相關之模擬結果之圖表。 [圖7]係表示依據圖6變更空氣層的厚度時的模擬結果之圖表。 [圖8]係表示依據圖6變更空氣層的厚度時的模擬結果之圖表。 [圖9]係表示用以能夠選擇通氣管降能器的半影的調整等級之結構之方塊圖。 [圖10]係表示本發明的一實施形態之帶電粒子束照射方法的內容之步驟圖。 [Fig. 1] is a schematic structural diagram showing a charged particle beam irradiation system according to an embodiment of the present invention. [Fig. 2] A schematic structural diagram of the vicinity of the irradiation part of the charged particle beam irradiation system of Fig. 1. [Fig. [Fig. 3] is a diagram showing the layers set for tumors. [Fig. 4] is a schematic diagram showing a state in which a snout deenergizer is held by a holding portion. [Fig. 5] is a graph showing the dose distribution when a charged particle beam is irradiated in a predetermined plane in which the scanning normal direction is at right angles to the base axis. [Fig. 6] is a graph showing simulation results related to the relationship between the spread of the charged particle beam and the depth of the target object. [Fig. 7] is a graph showing the simulation results when the thickness of the air layer is changed based on Fig. 6. [Fig. 8] is a graph showing the simulation results when the thickness of the air layer is changed based on Fig. 6. [Fig. 9] is a block diagram showing a structure for enabling selection of the adjustment level of the penumbra of the snorkel deenergizer. [Fig. 10] is a step diagram showing the contents of a charged particle beam irradiation method according to an embodiment of the present invention.
1:帶電粒子束照射系統 1: Charged particle beam irradiation system
2:照射部 2:Irradiation part
3:加速器 3:Accelerator
7:控制部 7:Control Department
8:四極電磁鐵 8: Four-pole electromagnet
8a:X軸方向四極電磁鐵 8a: Four-pole electromagnet in X-axis direction
8b:Y軸方向四極電磁鐵 8b: Y-axis direction four-pole electromagnet
9:照射噴嘴 9:Irradiation nozzle
9a:前端部 9a: Front end
11:剖面監測器 11: Profile monitor
12:劑量監測器 12:Dose monitor
13a:位置監測器 13a: Position monitor
13b:位置監測器 13b: Position monitor
14:腫瘤(被照射體) 14: Tumor (irradiated object)
15:患者(對象物) 15:Patient (object)
20:能量降能器 20:Energy reducer
21:射束輸送路線 21: Beam delivery route
30:通氣管降能器(調節構件) 30: Snorkel energy reducer (adjusting component)
40:準直器 40:Collimator
50:掃描電磁鐵 50:Scan electromagnet
50A:掃描電磁鐵 50A: Scanning electromagnet
50B:掃描電磁鐵 50B: Scanning electromagnet
51:準直器驅動部 51:Collimator drive unit
60:保持部 60:Maintenance Department
90:治療計劃裝置 90: Treatment planning device
95:記憶部 95:Memory department
AX:基軸 AX: base axis
B:帶電粒子束 B: Charged particle beam
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-033429 | 2021-03-03 | ||
JP2021033429A JP2022134356A (en) | 2021-03-03 | 2021-03-03 | Charged particle beam irradiation system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202235120A TW202235120A (en) | 2022-09-16 |
TWI816312B true TWI816312B (en) | 2023-09-21 |
Family
ID=80623968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111107494A TWI816312B (en) | 2021-03-03 | 2022-03-02 | Charged particle beam irradiation system |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220280811A1 (en) |
EP (1) | EP4052758A1 (en) |
JP (1) | JP2022134356A (en) |
KR (1) | KR20220124639A (en) |
CN (1) | CN115006738A (en) |
TW (1) | TWI816312B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060226372A1 (en) * | 2005-03-31 | 2006-10-12 | Masaki Yanagisawa | Charged particle beam extraction system and method |
US20090242789A1 (en) * | 2008-03-28 | 2009-10-01 | Sumitomo Heavy Industries, Ltd. | Charged particle beam irradiating apparatus |
US20120316378A1 (en) * | 2009-12-28 | 2012-12-13 | Nat'l University Corporation Gunma University | Beam irradiation apparatus and beam irradiation control method |
US20140094639A1 (en) * | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
CN110314290A (en) * | 2018-03-29 | 2019-10-11 | 住友重机械工业株式会社 | Charged particle beam therapeutic device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3685194B2 (en) * | 2003-09-10 | 2005-08-17 | 株式会社日立製作所 | Particle beam therapy device, range modulation rotation device, and method of attaching range modulation rotation device |
US9192787B2 (en) * | 2012-04-25 | 2015-11-24 | Ion Beam Applications S.A. | Apparatus and method for hadron beam verification |
JP5917322B2 (en) * | 2012-07-12 | 2016-05-11 | 住友重機械工業株式会社 | Charged particle beam irradiation equipment |
JP6657015B2 (en) | 2016-05-26 | 2020-03-04 | 住友重機械工業株式会社 | Charged particle beam therapy system |
EP3332755B1 (en) * | 2016-12-08 | 2019-07-03 | Ion Beam Applications | Particle therapy apparatus for eye treatment |
-
2021
- 2021-03-03 JP JP2021033429A patent/JP2022134356A/en active Pending
-
2022
- 2022-02-28 KR KR1020220025987A patent/KR20220124639A/en unknown
- 2022-02-28 EP EP22159060.7A patent/EP4052758A1/en active Pending
- 2022-03-02 TW TW111107494A patent/TWI816312B/en active
- 2022-03-03 US US17/685,814 patent/US20220280811A1/en active Pending
- 2022-03-03 CN CN202210201231.3A patent/CN115006738A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060226372A1 (en) * | 2005-03-31 | 2006-10-12 | Masaki Yanagisawa | Charged particle beam extraction system and method |
US20090242789A1 (en) * | 2008-03-28 | 2009-10-01 | Sumitomo Heavy Industries, Ltd. | Charged particle beam irradiating apparatus |
US20120316378A1 (en) * | 2009-12-28 | 2012-12-13 | Nat'l University Corporation Gunma University | Beam irradiation apparatus and beam irradiation control method |
US20140094639A1 (en) * | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
CN110314290A (en) * | 2018-03-29 | 2019-10-11 | 住友重机械工业株式会社 | Charged particle beam therapeutic device |
Also Published As
Publication number | Publication date |
---|---|
US20220280811A1 (en) | 2022-09-08 |
CN115006738A (en) | 2022-09-06 |
JP2022134356A (en) | 2022-09-15 |
TW202235120A (en) | 2022-09-16 |
EP4052758A1 (en) | 2022-09-07 |
KR20220124639A (en) | 2022-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7834334B2 (en) | Particle therapy system | |
JP5722559B2 (en) | Treatment planning device | |
US20090114847A1 (en) | Particle therapy | |
TWI551323B (en) | Charged particle beam irradiation device | |
JP6657015B2 (en) | Charged particle beam therapy system | |
CN111714787B (en) | Charged particle beam therapy device | |
TWI816312B (en) | Charged particle beam irradiation system | |
TW202135888A (en) | Charged particle beam irradiation apparatus | |
US10039937B2 (en) | Charged-particle beam therapy apparatus and method for controlling charged-particle beam therapy apparatus | |
US8933420B2 (en) | Particle beam therapy system | |
US20190027264A1 (en) | Charged particle beam treatment apparatus | |
US20180015307A1 (en) | Charged particle beam treatment apparatus | |
US20210031056A1 (en) | Charged particle beam treatment apparatus | |
JP7233179B2 (en) | Charged particle beam therapy system | |
JP6063982B2 (en) | Particle beam therapy system | |
JP2017153910A (en) | Particle ray treatment system | |
JP6815231B2 (en) | Charged particle beam therapy device | |
TWI827314B (en) | Particle therapy device | |
JP2013132489A (en) | Therapy planning apparatus and particle beam therapy system | |
JP6063983B2 (en) | Particle beam therapy system | |
JP2020137532A (en) | Charged particle beam medical treatment device and evaluation device | |
JP2018196625A (en) | Charged particle beam treatment apparatus | |
WO2018181595A1 (en) | Charged particle beam treatment device | |
JP2017209579A (en) | Charged-particle beam therapy apparatus and method for controlling charged-particle beam therapy apparatus |