TWI785731B - Switching power supply and its control chip - Google Patents

Switching power supply and its control chip Download PDF

Info

Publication number
TWI785731B
TWI785731B TW110129675A TW110129675A TWI785731B TW I785731 B TWI785731 B TW I785731B TW 110129675 A TW110129675 A TW 110129675A TW 110129675 A TW110129675 A TW 110129675A TW I785731 B TWI785731 B TW I785731B
Authority
TW
Taiwan
Prior art keywords
control
voltage
control module
power supply
module
Prior art date
Application number
TW110129675A
Other languages
Chinese (zh)
Other versions
TW202236781A (en
Inventor
翟向坤
陳耀璋
朱力強
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Publication of TW202236781A publication Critical patent/TW202236781A/en
Application granted granted Critical
Publication of TWI785731B publication Critical patent/TWI785731B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)
  • Details Of Television Scanning (AREA)

Abstract

提供了一種開關電源及其控制晶片。該控制晶片包括高壓N溝道JFET、電流路徑控制模組、脈寬調變(Pulse Width Modulation,PWM)控制模組、功率監測模組、及接面場效電晶體(Junction Field Effect Transistor,JFET)控制模組。高壓N溝道JFET的汲極連接控制晶片的高壓輸入腳、源極連接電流路徑控制模組、閘極連接JFET控制模組。電流路徑控制模組被配置為控制高壓N溝道JFET與控制晶片的內部電路之間的電流路徑的導通與關斷。PWM控制模組表徵控制晶片的內部電路中的耗電部分,被配置為控制開關電源中的功率開關的導通與關斷。功率監測模組被配置為監測PWM控制模組的功率消耗,並根據PWM控制模組的功率消耗生成功耗控制信號。JFET控制模組被配置為根據功率控制信號控制高壓N溝道JFET的閘極電壓。 Provided are a switching power supply and a control chip thereof. The control chip includes a high-voltage N-channel JFET, a current path control module, a pulse width modulation (Pulse Width Modulation, PWM) control module, a power monitoring module, and a Junction Field Effect Transistor (JFET). ) control module. The drain of the high-voltage N-channel JFET is connected to the high-voltage input pin of the control chip, the source is connected to the current path control module, and the gate is connected to the JFET control module. The current path control module is configured to control the turn-on and turn-off of the current path between the high-voltage N-channel JFET and the internal circuit of the control chip. The PWM control module represents the power consumption part in the internal circuit of the control chip, and is configured to control the turn-on and turn-off of the power switch in the switching power supply. The power monitoring module is configured to monitor the power consumption of the PWM control module, and generate a power consumption control signal according to the power consumption of the PWM control module. The JFET control module is configured to control the gate voltage of the high voltage N-channel JFET according to the power control signal.

Description

開關電源及其控制晶片 Switching power supply and its control chip

本發明涉及電路領域,尤其涉及一種開關電源及其控制晶片。 The invention relates to the field of circuits, in particular to a switching power supply and a control chip thereof.

開關電源又稱交換式電源、開關變換器,是電源供應器的一種。開關電源的功能是通過不同形式的架構(例如,反激(fly-back)架構、降壓(BUCK)架構、或升壓(BOOST)架構等)將一個位准的電壓轉換為使用者端所需要的電壓或電流。 Switching power supply, also known as switching power supply and switching converter, is a kind of power supply. The function of the switching power supply is to convert a level of voltage into a user-side required voltage or current.

通常,開關電源用於交流到直流(AC/DC)或直流到直流(DC/DC)的轉換,並且主要包括以下電路部分:電磁干擾(EMI)濾波電路、整流濾波電路、功率變換電路、脈寬調變(PWM)控制電路、輸出整流濾波電路等,其中,PWM控制電路主要由PWM控制晶片實現。 Usually, switching power supply is used for AC to DC (AC/DC) or DC to DC (DC/DC) conversion, and mainly includes the following circuit parts: electromagnetic interference (EMI) filter circuit, rectifier filter circuit, power conversion circuit, pulse Wide modulation (PWM) control circuit, output rectification filter circuit, etc., wherein, the PWM control circuit is mainly realized by the PWM control chip.

根據本發明實施例的用於開關電源的控制晶片,包括高壓N溝道結型接面場效應電晶體(JFET)、電流路徑控制模組、脈寬調變(PWM)控制模組、功率監測模組、以及JFET控制模組,其中:高壓N溝道JFET的汲極連接控制晶片的高壓輸入腳、源極連接電流路徑控制模組、閘極連接JFET控制模組;電流路徑控制模組被配置為控制高壓N溝道JFET與控制晶片的內部電路之間的電流路徑的導通與關斷;PWM控制模組表徵控制晶片的內部電路中的耗電部分,並且被配置為控制開關電源中的功率開關的導通與關斷;功率監測模組被配置為監測PWM控制模組的功率消耗,並根據PWM控制模組的功率消耗生成功耗控制信號;並且JFET控制模組被配置為根據功耗控制信號控制高壓N溝道JFET的閘極電 壓,從而控制高壓N溝道JFET提供給控制晶片的內部電路的電流。 A control chip for a switching power supply according to an embodiment of the present invention includes a high-voltage N-channel junction field-effect transistor (JFET), a current path control module, a pulse width modulation (PWM) control module, and a power monitor module, and the JFET control module, wherein: the drain of the high-voltage N-channel JFET is connected to the high-voltage input pin of the control chip, the source is connected to the current path control module, and the gate is connected to the JFET control module; the current path control module is Configured to control the turn-on and turn-off of the current path between the high-voltage N-channel JFET and the internal circuit of the control chip; the PWM control module characterizes the power consumption part in the internal circuit of the control chip, and is configured to control the switching power supply. The power switch is turned on and off; the power monitoring module is configured to monitor the power consumption of the PWM control module, and generates a power consumption control signal according to the power consumption of the PWM control module; and the JFET control module is configured to The control signal controls the gate voltage of the high-voltage N-channel JFET. voltage, thereby controlling the current supplied by the high-voltage N-channel JFET to the internal circuitry of the control die.

根據本發明實施例的用於開關電源的控制晶片集成有高壓可控供電電流源(即,高壓N溝道JFET),並且通過監測PWM控制模組的功率消耗來調整該高壓可控供電電流源的電流輸出,可以實現對開關電源的啟動和供電。進一步地,由於該高壓可控供電電流源集成在控制晶片的高壓輸入腳,利用高壓輸入腳即可實現對開關電源的啟動和供電兩個功能,所以根據本發明實施例的用於開關電源的控制晶片可以省去晶片供電腳。 According to an embodiment of the present invention, a control chip for a switching power supply is integrated with a high-voltage controllable supply current source (ie, a high-voltage N-channel JFET), and the high-voltage controllable supply current source is adjusted by monitoring the power consumption of the PWM control module The current output can realize the start-up and power supply of the switching power supply. Furthermore, because the high-voltage controllable power supply current source is integrated in the high-voltage input pin of the control chip, the two functions of starting and supplying power to the switching power supply can be realized by using the high-voltage input pin, so the switching power supply according to the embodiment of the present invention The control chip can save the power supply pin of the chip.

根據本發明實施例的開關電源,包括如上所述的用於開關電源的控制晶片。 A switching power supply according to an embodiment of the present invention includes the above-mentioned control chip for a switching power supply.

由於根據本發明實施例的用於開關電源的控制晶片可以實現對開關電源的啟動和供電並且可以省去晶片供電腳,所以在應用于開關電源時可以省去使用與晶片供電腳連接的和/或用於實現開關電源的啟動和供電的週邊電路。因此,相比傳統的開關電源,根據本發明實施例的開關電源的成本大大降低。 Since the control chip for switching power supply according to the embodiment of the present invention can start and supply power to the switching power supply and can save the chip power supply pin, it can save the use of and/or connected to the chip power supply pin when applied to the switching power supply. Or the peripheral circuit used to realize the start-up and power supply of the switching power supply. Therefore, compared with the traditional switching power supply, the cost of the switching power supply according to the embodiment of the present invention is greatly reduced.

N:信號控制高壓 N: Signal control high voltage

100,200,300:返馳變換器電源 100,200,300: flyback converter power supply

Vin:輸入線電壓 Vin: input line voltage

R1,R2:電阻 R1, R2: resistance

C1:電容 C1: capacitance

I1,I2,I3:控制晶片 I1, I2, I3: control chips

GATE:閘極驅動腳 GATE: gate drive pin

M1:功率開關 M1: Power switch

NAUX:輔助繞組 N AUX : Auxiliary winding

D1:二極體 D1: Diode

HV:高壓輸入腳 HV: High voltage input pin

VDD:晶片供電腳 VDD: chip power supply pin

T:變壓器 T: Transformer

302:電流路徑控制模組 302: Current path control module

304:脈寬調製(PWM)控制模組 304: Pulse width modulation (PWM) control module

306:JFET(功率監測模組) 306: JFET (power monitoring module)

308:JFET控制模組 308: JFET control module

B:電流輸入埠(端) B: Current input port (end)

E:電流輸出埠(端) E: current output port (end)

K:開關 K: switch

D:信號輸入端 D: signal input terminal

306:功率監測模組 306: Power monitoring module

A、C:埠 A, C: port

J1:高壓N溝道結型接面場效應電晶體(JFFT) J1: High voltage N-channel junction field-effect transistor (JFFT)

F:功率檢測信號 F: power detection signal

Np:變壓器原邊繞組 Np: Transformer primary winding

Ns:變壓器次級繞組 Ns: transformer secondary winding

Co:輸出電容 Co: output capacitance

從下面結合附圖對本發明的具體實施方式的描述中可以更好地理解本發明,其中: The present invention can be better understood from the following description of specific embodiments of the present invention in conjunction with the accompanying drawings, wherein:

圖1示出了傳統的返馳變換器電源的系統電路圖。 Figure 1 shows a system circuit diagram of a traditional flyback converter power supply.

圖2示出了傳統的返馳變換器電源的系統電路圖。 Figure 2 shows a system circuit diagram of a conventional flyback converter power supply.

圖3示出了根據本發明實施例的返馳變換器電源的示例電路圖。 FIG. 3 shows an example circuit diagram of a flyback converter power supply according to an embodiment of the present invention.

圖4示出了圖3所示的電流路徑控制模組302的示例電路實現。 FIG. 4 shows an example circuit implementation of the current path control module 302 shown in FIG. 3 .

圖5示出了圖3所示的功率監測模組306的示例邏輯實現。 FIG. 5 shows an example logic implementation of the power monitoring module 306 shown in FIG. 3 .

圖6示出了圖3所示的JFET控制模組308的示例邏輯實現。 FIG. 6 shows an example logic implementation of the JFET control module 308 shown in FIG. 3 .

下面將詳細描述本發明的各個方面的特徵和示例性實施 例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary implementations of various aspects of the invention are described in detail below example. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. The following description of the embodiments is only to provide a better understanding of the present invention by showing examples of the present invention. The present invention is by no means limited to any specific configurations and algorithms set forth below, but covers any modification, substitution and improvement of elements, components and algorithms without departing from the spirit of the invention. In the drawings and the following description, well-known structures and techniques have not been shown in order to avoid unnecessarily obscuring the present invention.

首先,結合圖1和圖2,說明傳統的返馳變換器電源及其控制晶片存在的一個或多個問題。 First, with reference to FIG. 1 and FIG. 2 , one or more problems existing in the traditional flyback converter power supply and its control chip will be described.

圖1示出了傳統的返馳變換器電源100的系統電路圖。在圖1所示的返馳變換器電源100上電後,輸入線電壓Vin經由高壓啟動電阻R1、R2向電容C1充電,並且在電容C1上的電壓達到預定值時返馳變換器電源100的啟動過程完成(即,返馳變換器電源100從啟動狀態進入正常工作狀態)。由於在返馳變換器電源100上電後高壓啟動電阻R1、R2兩端始終存在很大的電壓差值,所以高壓啟動電阻R1、R2會持續地消耗功率、造成功率損失,這會降低返馳變換器電源100的系統效率。如果為了節省返馳變換器電源100的功耗而選擇較大阻值的高壓啟動電阻,則電容C1上的電壓達到預定值所需要的充電時間會增加,這會使返馳變換器電源100的啟動時間增加。在兼顧返馳變換器電源100的系統效率和啟動時間的綜合考慮下,高壓啟動電阻的選擇會增加返馳變換器電源100的設計難度。同時,高壓啟動電阻R1、R2和電容C1的使用會增加返馳變換器電源100的成本。 FIG. 1 shows a system circuit diagram of a conventional flyback converter power supply 100 . After the flyback converter power supply 100 shown in FIG. 1 is powered on, the input line voltage Vin charges the capacitor C1 through the high-voltage start-up resistors R1 and R2, and when the voltage on the capacitor C1 reaches a predetermined value, the flyback converter power supply 100 The start-up process is completed (ie, the flyback converter power supply 100 enters the normal working state from the start-up state). Since there is always a large voltage difference between the two ends of the high-voltage start-up resistors R1 and R2 after the power supply 100 of the flyback converter is powered on, the high-voltage start-up resistors R1 and R2 will continue to consume power and cause power loss, which will reduce the speed of the flyback conversion. system efficiency of the power supply 100. If in order to save the power consumption of the flyback converter power supply 100, a high-voltage start-up resistor with a larger resistance value is selected, the charging time required for the voltage on the capacitor C1 to reach a predetermined value will increase, which will make the start-up of the flyback converter power supply 100 Time increases. In consideration of the system efficiency and start-up time of the flyback converter power supply 100 , the selection of the high voltage start-up resistor will increase the design difficulty of the flyback converter power supply 100 . Meanwhile, the use of the high-voltage start-up resistors R1 , R2 and capacitor C1 will increase the cost of the flyback converter power supply 100 .

另外,在返馳變換器電源100處於正常工作狀態時,控制晶片I1通過閘極驅動腳GATE驅動功率開關M1的導通與關斷的過程會消耗很大的電流。此時,需要由變壓器T的輔助繞組NAUX經由二極體D1為控制晶片I1供電,來滿足控制晶片I1的電流消耗需求。這裡,輔助繞 組NAUX和二極體D1的使用也會增加返馳變換器電源100的成本。 In addition, when the flyback converter power supply 100 is in a normal working state, the process of turning on and off the power switch M1 driven by the control chip I1 through the gate driving pin GATE consumes a large amount of current. At this time, the auxiliary winding N AUX of the transformer T needs to supply power to the control chip I1 through the diode D1 to meet the current consumption requirement of the control chip I1 . Here, the use of auxiliary winding N AUX and diode D1 also increases the cost of flyback converter power supply 100 .

圖2示出了傳統的返馳變換器電源200的系統電路圖。在圖2所示的返馳變換器電源200上電後,輸入線電壓Vin經由集成在控制晶片I2的高壓輸入腳HV和晶片供電腳VDD之間的高壓啟動電路向電容C1充電,並且在電容C1上的電壓達到預定值時返馳變換器電源200的啟動過程完成(同時,高壓啟動電路從導通狀態變為關斷狀態)。這裡,返馳變換器電源200不需要高壓啟動電阻,並且高壓啟動電路可以在返馳變換器電源200的啟動過程完成後從導通狀態變為關斷狀態,所以返馳變換器電源200在成本和功耗兩方面相比返馳變換器電源100都有所降低。但是,控制晶片I2增加了一個高壓輸入腳HV,並且在返馳變換器電源200處於正常工作狀態時仍然需要由變壓器T的輔助繞組NAUX為控制晶片I2供電來滿足控制晶片I2的電流消耗需求。這裡,輔助繞組NAUX和二極體D1的使用同樣會增加返馳變換器電源200的成本。 FIG. 2 shows a system circuit diagram of a conventional flyback converter power supply 200 . After the flyback converter power supply 200 shown in FIG. 2 is powered on, the input line voltage Vin charges the capacitor C1 through the high-voltage start-up circuit integrated between the high-voltage input pin HV of the control chip I2 and the chip power supply pin VDD, and the capacitor C1 When the voltage on C1 reaches a predetermined value, the start-up process of the flyback converter power supply 200 is completed (at the same time, the high-voltage start-up circuit changes from the on state to the off state). Here, the flyback converter power supply 200 does not need a high-voltage start-up resistor, and the high-voltage start-up circuit can change from the on state to the off state after the start-up process of the flyback converter power supply 200 is completed, so the flyback converter power supply 200 is cost and Compared with the flyback converter power supply 100, the power consumption is reduced in both aspects. However, a high-voltage input pin HV is added to the control chip I2, and when the flyback converter power supply 200 is in a normal working state, the auxiliary winding N AUX of the transformer T still needs to supply power to the control chip I2 to meet the current consumption demand of the control chip I2 . Here too, the use of the auxiliary winding N AUX and the diode D1 increases the cost of the flyback converter power supply 200 .

鑒於結合圖1和圖2描述的返馳變換器電源100、200及其控制晶片I1、I2存在的一個或多個問題,提出了根據本發明實施例的開關電源及其控制晶片。下面,以返馳變換器電源為例,詳細說明根據本發明實施例的開關電源及其控制晶片。 In view of one or more problems existing in the flyback converter power supplies 100 , 200 and their control chips I1 , I2 described in conjunction with FIGS. 1 and 2 , a switching power supply and its control chips according to an embodiment of the present invention are proposed. Hereinafter, taking the flyback converter power supply as an example, the switching power supply and its control chip according to the embodiment of the present invention will be described in detail.

圖3示出了根據本發明實施例的返馳變換器電源300的示例電路圖。在圖3所示的返馳變換器電源300中,控制晶片I3包括高壓N溝道結型場效應電晶體(JFET)J1、電流路徑控制模組302、脈寬調變(PWM)控制模組304、功率監測模組306、以及JFET控制模組308,其中:高壓N溝道JFET J1的汲極連接控制晶片I3的高壓輸入腳HV、源極連接電流路徑控制模組302、閘極連接JFET控制模組308;電流路徑控制模組302被配置為控制高壓N溝道JFET J1與控制晶片I3的內部電路之間的電流路徑的導通與關斷;PWM控制模組304表徵控制晶片I3的內部電路中的耗電部分,並且被配置為控制返馳變換器電源300中的功率開關M1的導通與關斷;功率監測模組306被配置為監測PWM控制模組304的 功率消耗,並根據PWM控制模組304的功率消耗生成功耗控制信號;JFET控制模組308被配置為根據功耗控制信號控制高壓N溝道JFET J1的閘極電壓,從而控制高壓N溝道JFET J1提供給控制晶片I3的內部電路的電流(使得高壓N溝道JFET J1提供給控制晶片I3的內部電路的電流滿足控制晶片I3在啟動和正常工作過程中對供電電流的需求)。 FIG. 3 shows an example circuit diagram of a flyback converter power supply 300 according to an embodiment of the present invention. In the flyback converter power supply 300 shown in FIG. 3 , the control chip I3 includes a high-voltage N-channel junction field effect transistor (JFET) J1, a current path control module 302, and a pulse width modulation (PWM) control module. 304, power monitoring module 306, and JFET control module 308, wherein: the drain of the high-voltage N-channel JFET J1 is connected to the high-voltage input pin HV of the control chip I3, the source is connected to the current path control module 302, and the gate is connected to the JFET Control module 308; the current path control module 302 is configured to control the conduction and shutdown of the current path between the high-voltage N-channel JFET J1 and the internal circuit of the control chip I3; the PWM control module 304 represents the interior of the control chip I3 The power consumption part in the circuit, and is configured to control the turn-on and turn-off of the power switch M1 in the flyback converter power supply 300; the power monitoring module 306 is configured to monitor the PWM control module 304 power consumption, and generate a power consumption control signal according to the power consumption of the PWM control module 304; the JFET control module 308 is configured to control the gate voltage of the high-voltage N-channel JFET J1 according to the power consumption control signal, thereby controlling the high-voltage N-channel The current provided by JFET J1 to the internal circuit of the control chip I3 (so that the current supplied by the high-voltage N-channel JFET J1 to the internal circuit of the control chip I3 meets the supply current requirements of the control chip I3 during start-up and normal operation).

在圖3所示的返馳變換器電源300中,由於控制晶片I3的高壓輸入腳HV連接輸入線電壓Vin,所以高壓N溝道JFET J1可以利用輸入線電壓Vin經由電流路徑控制模組302為控制晶片I3的內部電路供電。 In the flyback converter power supply 300 shown in FIG. 3 , since the high-voltage input pin HV of the control chip I3 is connected to the input line voltage Vin, the high-voltage N-channel JFET J1 can use the input line voltage Vin to control the module 302 via the current path. The internal circuits of the control chip I3 are powered.

這裡,控制晶片I3集成有高壓可控供電電流源(即,高壓N溝道JFET),並且通過監測PWM控制模組的功率消耗(由於PWM控制模組表徵控制晶片I3的內部電路中的耗電部分,所以監測PWM控制模組的功率消耗相當於監測控制晶片I3的功率消耗)來調整該高壓可控供電電流源的電流輸出,可以實現對返馳變換器電源300的啟動和供電。進一步地,由於該高壓可控供電電流源集成在控制晶片I3的高壓輸入腳HV,利用高壓輸入腳HV即可實現對返馳變換器電源300的啟動和供電兩個功能,所以控制晶片I3可以省去晶片供電腳VDD。 Here, the control chip I3 is integrated with a high-voltage controllable supply current source (that is, a high-voltage N-channel JFET), and by monitoring the power consumption of the PWM control module (since the PWM control module represents the power consumption in the internal circuit of the control chip I3 part, so monitoring the power consumption of the PWM control module is equivalent to monitoring the power consumption of the control chip I3) to adjust the current output of the high-voltage controllable supply current source, which can realize the startup and power supply of the flyback converter power supply 300. Further, since the high-voltage controllable power supply current source is integrated in the high-voltage input pin HV of the control chip I3, the two functions of starting and supplying power to the flyback converter power supply 300 can be realized by using the high-voltage input pin HV, so the control chip I3 can The chip power supply pin VDD is omitted.

在圖3所示的返馳變換器電源300中,電流路徑控制模組302的初態設置為導通狀態,JFET控制模組308的初態設置在零電位。在圖3所示的返馳變換器電源300的啟動過程中,高壓N溝道JFET J1向控制晶片I3的內部電路提供啟動電流,以抬升控制晶片I3的內部電路的電源電壓。 In the flyback converter power supply 300 shown in FIG. 3 , the initial state of the current path control module 302 is set to a conduction state, and the initial state of the JFET control module 308 is set to zero potential. During the start-up process of the flyback converter power supply 300 shown in FIG. 3 , the high-voltage N-channel JFET J1 provides start-up current to the internal circuit of the control chip I3 to boost the power supply voltage of the internal circuit of the control chip I3 .

在一些實施例中,當控制晶片I3的內部電路的電源電壓達到啟動電壓閾值UVLO_OFF時,電流路徑控制模組302監測其自身的電流輸入埠(端)B和電流輸出埠(端)E的電壓,並根據電流輸入埠(端)B和電流輸出埠(端)E之間的電壓差值控制高壓N溝道JFET J1與控制晶片I3的內部電路之間的電流路徑的導通與關斷。例如,當電電流輸入埠(端)和 電流輸出埠(端)E之間的電壓差值低於第一設定閾值時,電流路徑控制模組302關斷高壓N溝道JFET J1與控制晶片I3的內部電路之間的電流路徑,以防止控制晶片I3的內部電路對高壓N溝道JFET J1的電流倒灌。 In some embodiments, when the power supply voltage of the internal circuit of the control chip I3 reaches the startup voltage threshold UVLO_OFF, the current path control module 302 monitors the voltage of its own current input port (terminal) B and current output port (terminal) E , and according to the voltage difference between the current input port (terminal) B and the current output port (terminal) E, the conduction and shutdown of the current path between the high-voltage N-channel JFET J1 and the internal circuit of the control chip I3 are controlled. For example, when the electrical current input port (terminal) and When the voltage difference between the current output ports (terminals) E is lower than the first preset threshold, the current path control module 302 shuts off the current path between the high-voltage N-channel JFET J1 and the internal circuit of the control chip I3 to prevent The internal circuit of the control chip I3 feeds back the current of the high-voltage N-channel JFET J1.

在一些實施例中,電流路徑控制模組302在其電流輸出埠E的電壓超過第二設定閾值(例如,過壓保護電壓Vth_ovp)時,也會關斷高壓N溝道JFET J1與控制晶片I3的內部電路之間的電流路經,以防止控制晶片I3的電源電壓過高引起控制晶片I3的內部電路損壞。 In some embodiments, the current path control module 302 also turns off the high-voltage N-channel JFET J1 and the control chip I3 when the voltage of the current output port E exceeds the second preset threshold (for example, the overvoltage protection voltage Vth_ovp). The current path between the internal circuits of the control chip I3 is used to prevent the internal circuit of the control chip I3 from being damaged due to the high power supply voltage of the control chip I3.

在一些實施例中,在控制晶片I3的內部電路開始工作後,PWM控制模組304控制功率開關M1的導通與關斷,功率監測模組306通過監測PWM控制模組304的電流消耗、電源電壓、以及由PWM控制模組304生成的用於控制功率開關M1的導通與關斷的開關控制信號中的至少一者,監測PWM控制模組304的功率消耗。這裡,PWM控制模組304的電流消耗和電源電壓可以表徵控制晶片I3的靜態功耗需求,而由PWM控制模組304生成的用於控制功率開關M1的導通與關斷的開關控制信號可以表徵控制晶片I3的動態功耗需求。功率監測模組308可以即時監測控制晶片I3的靜態功耗需求,並且可以通過監測PWM控制模組304生成的用於控制功率開關M1的導通與關斷的開關控制信號對控制晶片I3接下來的功耗需求(即,動態功耗需求)進行預判,以提早向JFET控制模組308提出電流輸出需求,避免在劇烈的動態功耗變化時由於供電回應不足而造成控制晶片I3的內部電路的電源電壓的掉落,從而防止控制晶片I3的內部電路工作異常。 In some embodiments, after the internal circuit of the control chip I3 starts to work, the PWM control module 304 controls the on and off of the power switch M1, and the power monitoring module 306 monitors the current consumption and the power supply voltage of the PWM control module 304 , and at least one of the switch control signal generated by the PWM control module 304 for controlling the on and off of the power switch M1 to monitor the power consumption of the PWM control module 304 . Here, the current consumption and power supply voltage of the PWM control module 304 can represent the static power consumption demand of the control chip I3, and the switch control signal generated by the PWM control module 304 for controlling the on and off of the power switch M1 can represent Controls the dynamic power requirements of chip I3. The power monitoring module 308 can monitor the static power consumption demand of the control chip I3 in real time, and can monitor the switch control signal generated by the PWM control module 304 for controlling the on and off of the power switch M1 to control the subsequent chip I3. The power consumption requirement (that is, the dynamic power consumption requirement) is pre-judged, so as to propose the current output requirement to the JFET control module 308 in advance, so as to avoid the failure of the internal circuit of the control chip I3 due to insufficient power supply response when the drastic dynamic power consumption changes. The drop of the power supply voltage prevents the internal circuit of the control chip I3 from working abnormally.

在一些實施例中,功率監測模組306還根據PWM控制模組304的功率消耗生成路徑控制信號,以使得電流路徑控制模組302根據路徑控制信號控制高壓N溝道FET J1與控制晶片I3的內部電路之間的電流路徑的導通與關斷。例如,在功率監測模組306根據PWM控制模組304的功率消耗確定控制晶片I3的內部電路無電流輸入需求時,可以生成指示電流路徑控制模組302關斷高壓N溝道FET J1與控制晶片I3的內部 電路之間的電流路徑的路徑關斷控制信號,以快速切斷對控制晶片I3的電流輸入,保護控制晶片I3的內部電路不受到過流、過壓的衝擊。 In some embodiments, the power monitoring module 306 also generates a path control signal according to the power consumption of the PWM control module 304, so that the current path control module 302 controls the connection between the high-voltage N-channel FET J1 and the control chip I3 according to the path control signal. Turns on and off the current path between internal circuits. For example, when the power monitoring module 306 determines that the internal circuit of the control chip I3 has no current input demand according to the power consumption of the PWM control module 304, an instruction current path control module 302 can be generated to turn off the high-voltage N-channel FET J1 and the control chip. Inside the i3 The path of the current path between the circuits turns off the control signal to quickly cut off the current input to the control chip I3, and protect the internal circuit of the control chip I3 from the impact of overcurrent and overvoltage.

圖4示出了圖3所示的電流路徑控制模組302的示例電路實現。如圖4所示,在一些實施例中,電流路徑控制模組302包括開關K和開關控制子模組,開關控制子模組根據電流輸入埠(端)B、電流輸出埠(端)E、以及信號輸入端D三個端子處的電壓來控制開關K的閉合與斷開,從而控制高壓N溝道JFET J1與控制晶片I3的內部電路之間的電流路徑的導通與關斷。例如,開關控制子模組可以在電流輸入埠(端)B和電流輸出端E之間的電壓差值低於第一設定閾值時控制開關K斷開,從而關斷高壓N溝道JFET J1與控制晶片I3的內部電路之間的電流路徑。再如,開關控制子模組可以在電流輸出端E的電壓超過第二設定閾值時控制開關K斷開,從而關斷高壓N溝道JFET J1與控制晶片I3的內部電路之間的電流路徑。再如,開關控制子模組可以在經由信號輸入端D接收到來自功率監測模組306的路徑關斷控制信號時控制開關K斷開,從而關斷高壓N溝道JFET J1與控制晶片I3的內部電路之間的電流路徑。 FIG. 4 shows an example circuit implementation of the current path control module 302 shown in FIG. 3 . As shown in FIG. 4 , in some embodiments, the current path control module 302 includes a switch K and a switch control submodule. and the voltage at the three terminals of the signal input terminal D to control the closing and opening of the switch K, thereby controlling the conduction and closure of the current path between the high-voltage N-channel JFET J1 and the internal circuit of the control chip I3. For example, the switch control sub-module can control the switch K to turn off when the voltage difference between the current input port (terminal) B and the current output terminal E is lower than the first preset threshold, thereby turning off the high-voltage N-channel JFET J1 and Controls the current paths between the internal circuits of wafer I3. For another example, the switch control sub-module can control the switch K to turn off when the voltage of the current output terminal E exceeds the second preset threshold, so as to cut off the current path between the high voltage N-channel JFET J1 and the internal circuit of the control chip I3. For another example, the switch control sub-module can control the switch K to turn off when receiving the path shutdown control signal from the power monitoring module 306 via the signal input terminal D, thereby turning off the connection between the high-voltage N-channel JFET J1 and the control chip I3 The current path between internal circuits.

圖5示出了圖3所示的功率監測模組306的示例邏輯實現。如圖5所示,在一些實施例中,功率監測模組306包括電流資訊處理子模組、電壓資訊處理子模組、開關資訊處理子模組、以及控制信號生成子模組,其中:電流資訊處理子模組監測PWM控制模組304的電流消耗並生成電流消耗表徵信號;電壓資訊處理子模組監測PWM控制模組304的電源電壓並生成電源電壓表徵信號;開關資訊處理子模組監測由PWM控制模組304生成的用於控制功率開關M1的導通與關斷的開關控制信號並生成開關信號表徵信號;控制信號生成子模組根據電流消耗表徵信號、電源電壓表徵信號、以及開關信號表徵信號生成功耗控制信號。 FIG. 5 shows an example logic implementation of the power monitoring module 306 shown in FIG. 3 . As shown in FIG. 5 , in some embodiments, the power monitoring module 306 includes a current information processing submodule, a voltage information processing submodule, a switch information processing submodule, and a control signal generation submodule, wherein: the current The information processing sub-module monitors the current consumption of the PWM control module 304 and generates a current consumption characterization signal; the voltage information processing sub-module monitors the power supply voltage of the PWM control module 304 and generates a power supply voltage characterization signal; the switch information processing sub-module monitors The switch control signal used to control the on and off of the power switch M1 generated by the PWM control module 304 generates a switch signal characterization signal; the control signal generation sub-module is based on the current consumption characterization signal, the power supply voltage characterization signal, and the switching signal The characterization signal generates a power consumption control signal.

圖6示出了圖3所示的JFET控制模組308的示例邏輯實現。如圖6所示,JFET控制模組308包括動態回應控制子模組、調節控制子模組、預判控制子模組、以及控制信號生成子模組,其中:動態回應控 制子模組根據功耗控制信號生成動態回應控制信號;調節控制子模組根據功耗控制信號生成調節控制信號;預判控制子模組根據功耗控制模組生成預判控制信號;控制信號生成子模組根據動態回應控制信號、調節控制信號、以及預判控制信號生成用於控制高壓N溝道JFET J1的閘極電壓的閘極控制信號(即,根據動態回應控制信號、調節控制信號、以及預判控制信號控制高壓N溝道JFET J1的閘極電壓)。這裡,動態回應控制子模組、調節控制子模組、和預判控制子模組均經由埠C接收來自功率監測模組306的功耗控制信號,控制信號生成子模組經由埠A向高壓N溝道JFET J1的閘極電壓輸出閘極控制信號。 FIG. 6 shows an example logic implementation of the JFET control module 308 shown in FIG. 3 . As shown in Figure 6, the JFET control module 308 includes a dynamic response control submodule, an adjustment control submodule, a pre-judgment control submodule, and a control signal generation submodule, wherein: the dynamic response control The control sub-module generates a dynamic response control signal according to the power consumption control signal; the adjustment control sub-module generates an adjustment control signal according to the power consumption control signal; the pre-judgment control sub-module generates a pre-judgment control signal according to the power consumption control module; the control signal The generation sub-module generates a gate control signal for controlling the gate voltage of the high-voltage N-channel JFET J1 according to the dynamic response control signal, the adjustment control signal, and the pre-judgment control signal (that is, according to the dynamic response control signal, the adjustment control signal , and the pre-judgment control signal controls the gate voltage of the high-voltage N-channel JFET J1). Here, the dynamic response control submodule, the adjustment control submodule, and the pre-judgment control submodule all receive the power consumption control signal from the power monitoring module 306 through port C, and the control signal generation submodule sends the high-voltage The gate voltage of N-channel JFET J1 outputs the gate control signal.

從以上描述可以看出,控制晶片I3集成有高壓可控供電電流源,通過監測控制晶片I3的功率消耗來調整該高壓可控供電電流源的電流輸出,可以實現對返馳變換器電源300的啟動和供電。這裡,由於該高壓可控供電電流源集成在控制晶片I3的高壓輸入腳HV,利用高壓輸入腳HV即可實現對返馳變換器電源300的啟動和供電兩個功能,所以控制晶片I3可以省去晶片供電腳VDD。 It can be seen from the above description that the control chip I3 is integrated with a high-voltage controllable power supply current source, and the current output of the high-voltage controllable power supply current source can be adjusted by monitoring the power consumption of the control chip I3, so as to realize the control of the flyback converter power supply 300 Start and power up. Here, because the high-voltage controllable power supply current source is integrated in the high-voltage input pin HV of the control chip I3, the two functions of starting and supplying power to the flyback converter power supply 300 can be realized by using the high-voltage input pin HV, so the control chip I3 can save To chip power supply pin VDD.

在圖3所示的返馳變換器電源300中,由於控制晶片I3自身可以實現對返馳變換器電源300的啟動和供電,所以相比圖1和圖2所示的返馳變換器電源100和200,可以省去使用連接在變壓器T的輔助繞組NAUX和控制晶片I1/I2的晶片供電腳VDD之間的電容C1和二極體D1,極大地降低了成本。 In the flyback converter power supply 300 shown in FIG. 3 , since the control chip I3 itself can start and supply power to the flyback converter power supply 300 , compared with the flyback converter power supply 100 shown in FIGS. 1 and 2 and 200, the capacitor C1 and the diode D1 connected between the auxiliary winding N AUX of the transformer T and the chip power supply pin VDD of the control chip I1/I2 can be omitted, which greatly reduces the cost.

本領域技術人員應該明白的是,控制晶片I3不僅適用於返馳變換器電源300,而且適用于諸如,降壓(BUCK)架構或升壓(BOOST)架構等其他架構的開關電源。在控制晶片I3應用於例如,BUCK或BOOST架構的開關電源時,可以省去使用與晶片供電腳VDD連接的和/或用於實現BUCK或BOOST架構的開關電源的啟動和供電的週邊電路。因此,相比傳統的BUCK或BOOST架構的開關電源,根據本發明實施例的BUCK或BOOST架構的開關電源的成本大大降低。 Those skilled in the art should understand that the control chip I3 is not only applicable to the flyback converter power supply 300 , but also applicable to switching power supplies of other architectures such as buck architecture or boost architecture. When the control chip I3 is applied to, for example, a switching power supply of BUCK or BOOST architecture, the use of peripheral circuits connected to the chip power supply pin VDD and/or used to realize the startup and power supply of the switching power supply of BUCK or BOOST architecture can be omitted. Therefore, compared with the traditional switching power supply with BUCK or BOOST architecture, the cost of the switching power supply with BUCK or BOOST architecture according to the embodiment of the present invention is greatly reduced.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附請求項而非上述描述定義,並且,落入請求項的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention may be embodied in other specific forms without departing from its spirit and essential characteristics. For example, the algorithms described in certain embodiments may be modified without departing from the basic spirit of the invention in terms of system architecture. Therefore, the current embodiments are to be considered in all respects as illustrative rather than restrictive, the scope of the present invention is defined by the appended claims rather than the above description, and what falls within the meanings and equivalents of the claims All changes in scope are thereby embraced within the scope of the invention.

300:返馳變換器電源 300: flyback converter power supply

Vin:輸入線電壓 Vin: input line voltage

I3:控制晶片 I3: Control chip

GATE:閘極驅動腳 GATE: gate drive pin

M1:功率開關 M1: Power switch

HV:高壓輸入腳 HV: High voltage input pin

T:變壓器 T: Transformer

302:電流路徑控制模組 302: Current path control module

304:脈寬調製(PWM)控制模組 304: Pulse width modulation (PWM) control module

306:JFET(功率監測模組) 306: JFET (power monitoring module)

B:電流輸入埠(端) B: Current input port (end)

E:電流輸出埠(端) E: current output port (end)

D:信號輸入端 D: signal input terminal

A、C:埠 A, C: port

J1:高壓N溝道結型接面場效應電晶體(JFET) J1: High voltage N-channel junction field-effect transistor (JFET)

F:功率檢測信號 F: power detection signal

Np:變壓器原邊繞組 Np: Transformer primary winding

Ns:變壓器次級繞組 Ns: transformer secondary winding

Co:輸出電容 Co: output capacitance

Claims (8)

一種用於開關電源的控制晶片,包括高壓N溝道結型場效應電晶體(JFET)、電流路徑控制模組、脈寬調變(PWM)控制模組、功率監測模組、以及JFET控制模組,其中:所述高壓N溝道JFET的汲極連接所述控制晶片的高壓輸入腳、源極連接所述電流路徑控制模組、閘極連接所述JFET控制模組;所述電流路徑控制模組被配置為控制所述高壓N溝道JFET與所述控制晶片的內部電路之間的電流路徑的導通與關斷;所述PWM控制模組表徵所述控制晶片的內部電路中的耗電部分,並且被配置為控制所述開關電源中的功率開關的導通與關斷;所述功率監測模組被配置為監測所述PWM控制模組的功率消耗,並根據所述PWM控制模組的功率消耗生成功耗控制信號;並且所述JFET控制模組被配置為根據所述功耗控制信號控制所述高壓N溝道JFET的閘極電壓,從而控制所述高壓N溝道JFET提供給所述控制晶片的內部電路的電流,且,根據所述功耗控制信號生成動態回應控制信號、調節控制信號、以及預判控制信號,並根據所述動態回應控制信號、所述調節控制信號、以及所述預判控制信號控制所述高壓N溝道JFET的閘極電壓。 A control chip for a switching power supply, including a high-voltage N-channel junction field effect transistor (JFET), a current path control module, a pulse width modulation (PWM) control module, a power monitoring module, and a JFET control module group, wherein: the drain of the high-voltage N-channel JFET is connected to the high-voltage input pin of the control chip, the source is connected to the current path control module, and the gate is connected to the JFET control module; the current path control The module is configured to control the on and off of the current path between the high-voltage N-channel JFET and the internal circuit of the control chip; the PWM control module characterizes the power consumption in the internal circuit of the control chip part, and is configured to control the on and off of the power switch in the switching power supply; the power monitoring module is configured to monitor the power consumption of the PWM control module, and according to the PWM control module Power consumption generates a power consumption control signal; and the JFET control module is configured to control the gate voltage of the high-voltage N-channel JFET according to the power consumption control signal, thereby controlling the high-voltage N-channel JFET to provide control the current of the internal circuit of the wafer, and generate a dynamic response control signal, an adjustment control signal, and a pre-judgment control signal according to the power consumption control signal, and generate a dynamic response control signal, an adjustment control signal, and The predictive control signal controls the gate voltage of the high voltage N-channel JFET. 根據請求項1所述的控制晶片,其中,所述電流路徑控制模組進一步被配置為根據其自身的電流輸入埠和電流輸出埠之間的電壓差值,控制所述高壓N溝道JFET與所述控制晶片的內部電路之間的電流路徑的導通與關斷。 The control chip according to claim 1, wherein the current path control module is further configured to control the high voltage N-channel JFET and the current output port according to the voltage difference between its own current input port and current output port Turning on and off of current paths between internal circuits of the control chip. 根據請求項1所述的控制晶片,其中,所述電流路徑控制模組進一步被配置為根據其自身的電流輸出埠的電壓,控制所述高壓N溝道JFET與所述控制晶片的內部電路之間的電流路徑的導通與關斷。 The control chip according to claim 1, wherein the current path control module is further configured to control the connection between the high-voltage N-channel JFET and the internal circuit of the control chip according to the voltage of its own current output port Turning on and off of the current path between them. 根據請求項1所述的控制晶片,其中,所述功率監測模組進一步被配置為通過監測所述PWM控制模組的電流消耗、電源電壓、以及由所述 PWM控制模組生成的用於控制所述功率開關的導通與關斷的開關控制信號中的至少一者,監測所述PWM控制模組的功率消耗。 The control chip according to claim 1, wherein the power monitoring module is further configured to monitor the current consumption of the PWM control module, the power supply voltage, and the At least one of the switch control signals generated by the PWM control module for controlling the on and off of the power switch monitors the power consumption of the PWM control module. 根據請求項1至4中任一項所述的控制晶片,其中,所述功率監測模組進一步被配置為根據所述PWM控制模組的功率消耗生成路徑控制信號,並且所述電流路徑控制模組進一步被配置為根據所述路徑控制信號控制所述高壓N溝道FET與所述控制晶片的內部電路之間的電流路徑的導通與關斷。 The control chip according to any one of claims 1 to 4, wherein the power monitoring module is further configured to generate a path control signal according to the power consumption of the PWM control module, and the current path control module The group is further configured to control on and off of a current path between the high voltage N-channel FET and an internal circuit of the control wafer according to the path control signal. 根據請求項1所述的控制晶片,其中,所述電流路徑控制模組進一步被配置為在其自身的電流輸入埠和電流輸出埠之間的電壓差值低於第一閾值時,關斷所述高壓N溝道JFET與所述控制晶片的內部電路之間的電流路徑。 The control chip according to claim 1, wherein the current path control module is further configured to shut down all the current path control modules when the voltage difference between its own current input port and current output port is lower than a first threshold The current path between the high voltage N-channel JFET and the internal circuitry of the control die. 根據請求項1所述的控制晶片,其中,所述電流路徑控制模組進一步被配置為在其自身的電流輸出埠的電壓超過第二閾值時,關斷所述高壓N溝道JFET與所述控制晶片的內部電路之間的電流路徑。 The control chip according to claim 1, wherein the current path control module is further configured to turn off the high-voltage N-channel JFET and the Controls the current path between the internal circuits of the chip. 一種開關電源,包括請求項1至7中任一項所述的用於開關電源的控制晶片。 A switching power supply, comprising the control chip for switching power supply according to any one of claims 1 to 7.
TW110129675A 2021-03-03 2021-08-11 Switching power supply and its control chip TWI785731B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110236152.1 2021-03-03
CN202110236152.1A CN112886837B (en) 2021-03-03 2021-03-03 Switching power supply and control chip thereof

Publications (2)

Publication Number Publication Date
TW202236781A TW202236781A (en) 2022-09-16
TWI785731B true TWI785731B (en) 2022-12-01

Family

ID=76055288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110129675A TWI785731B (en) 2021-03-03 2021-08-11 Switching power supply and its control chip

Country Status (2)

Country Link
CN (1) CN112886837B (en)
TW (1) TWI785731B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441145A (en) * 2013-08-02 2013-12-11 无锡华润上华半导体有限公司 Semiconductor device and forming method, starting circuit and switching power source of semiconductor device
TW201526511A (en) * 2013-12-20 2015-07-01 Niko Semiconductor Co Ltd Power conversion apparatus and control chip thereof
CN106329959A (en) * 2015-06-30 2017-01-11 华润矽威科技(上海)有限公司 High-voltage self-powered circuit
US20170047852A1 (en) * 2015-08-13 2017-02-16 Asustek Computer Inc. Power adapter and control method thereof
TW201817143A (en) * 2016-10-28 2018-05-01 昂寶電子(上海)有限公司 System for rapidly starting switch power supply
CN110752742A (en) * 2019-12-03 2020-02-04 珠海格力电器股份有限公司 Direct current conversion control circuit and method for reducing power consumption and power supply system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000626B (en) * 2012-11-28 2015-08-26 深圳市明微电子股份有限公司 The high tension apparatus of composite structure and start-up circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441145A (en) * 2013-08-02 2013-12-11 无锡华润上华半导体有限公司 Semiconductor device and forming method, starting circuit and switching power source of semiconductor device
TW201526511A (en) * 2013-12-20 2015-07-01 Niko Semiconductor Co Ltd Power conversion apparatus and control chip thereof
CN106329959A (en) * 2015-06-30 2017-01-11 华润矽威科技(上海)有限公司 High-voltage self-powered circuit
US20170047852A1 (en) * 2015-08-13 2017-02-16 Asustek Computer Inc. Power adapter and control method thereof
TW201817143A (en) * 2016-10-28 2018-05-01 昂寶電子(上海)有限公司 System for rapidly starting switch power supply
CN110752742A (en) * 2019-12-03 2020-02-04 珠海格力电器股份有限公司 Direct current conversion control circuit and method for reducing power consumption and power supply system

Also Published As

Publication number Publication date
CN112886837B (en) 2022-08-30
CN112886837A (en) 2021-06-01
TW202236781A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
US6906934B2 (en) Integrated start-up circuit with reduced power consumption
JP5984999B2 (en) DC / DC converter and power supply device using the same
US6559689B1 (en) Circuit providing a control voltage to a switch and including a capacitor
US8994411B2 (en) System and method for bootstrapping a switch driver
US7592790B2 (en) Start-up circuit with feedforward compensation for power converters
US9253832B2 (en) Power supply circuit with a control terminal for different functional modes of operation
US7355368B2 (en) Efficient in-rush current limiting circuit with dual gated bidirectional hemts
TWI539732B (en) DC / DC converter and the use of its power supply devices and electronic equipment
JP6374261B2 (en) Insulation synchronous rectification type DC / DC converter and synchronous rectification controller thereof, power supply device using the same, power supply adapter, and electronic device
US7633776B2 (en) DC-DC converter for overvoltage protection
JP5910395B2 (en) Drive circuit
US20080116955A1 (en) Driving circuit
US9444351B2 (en) Electrical power conversion device including normally-off bidirectional switch
US10243451B1 (en) System and method for powering a switching converter
JP2022541841A (en) Boost-buck protection for power converters
KR20060012955A (en) Switching mode power supply and switching control apparatus thereof
US7430131B2 (en) Start-up circuit for providing a start-up voltage to an application circuit
CN109660131A (en) A kind of Switching Power Supply power supply circuit, method of supplying power to and switch power supply system
TWI767535B (en) Method and apparatus for generating control signal and charging dc supply in a secondary synchronous rectifier
JP2009296790A (en) Switching regulator
TWI785731B (en) Switching power supply and its control chip
JP7510804B2 (en) Power Control Unit
TWI767786B (en) Standby state power supply method
CN209642550U (en) A kind of Switching Power Supply power supply circuit and switch power supply system
KR20100107239A (en) Switching mode power supply having primary bios power supply