TWI643215B - Over-current protection device - Google Patents
Over-current protection device Download PDFInfo
- Publication number
- TWI643215B TWI643215B TW106130668A TW106130668A TWI643215B TW I643215 B TWI643215 B TW I643215B TW 106130668 A TW106130668 A TW 106130668A TW 106130668 A TW106130668 A TW 106130668A TW I643215 B TWI643215 B TW I643215B
- Authority
- TW
- Taiwan
- Prior art keywords
- overcurrent protection
- melting point
- tetrafluoroethylene
- polymer
- carbide
- Prior art date
Links
Landscapes
- Thermistors And Varistors (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一種過電流保護元件包括第一電極層、第二電極層以及一疊設於其間的PTC材料層。該PTC材料層的體積電阻值小於0.05Ω·cm,且包含高分子聚合物基材、導電陶瓷填料及含碳導電填料。該高分子聚合物基材包含熔點高於150℃之含氟高分子聚合物,且其體積百分比50-60%。該導電陶瓷填料散佈於該高分子聚合物基材中,且其體積百分比40-45%,體積電阻值小於500 mΩ·cm。含碳導電填料散佈於該高分子聚合物基材中,且其體積百分比0.5~5%。該過電流保護元件於25℃時的維持電流對其面積的比率為0.21~0.3A/mm 2。該過電流保護元件於25℃時的可承受功率對其面積的比率為4.8~7.2W/mm 2。 An overcurrent protection component includes a first electrode layer, a second electrode layer, and a layer of PTC material stacked therebetween. The PTC material layer has a volume resistance value of less than 0.05 Ω·cm and comprises a high molecular polymer substrate, a conductive ceramic filler, and a carbon-containing conductive filler. The high molecular polymer substrate comprises a fluorine-containing high molecular polymer having a melting point higher than 150 ° C, and its volume percentage is 50-60%. The conductive ceramic filler is dispersed in the high molecular polymer substrate, and has a volume percentage of 40-45% and a volume resistance value of less than 500 mΩ·cm. The carbon-containing conductive filler is dispersed in the polymer base material and has a volume percentage of 0.5 to 5%. The ratio of the sustain current to the area of the overcurrent protection element at 25 ° C is 0.21 to 0.3 A/mm 2 . The ratio of the withstandtable power of the overcurrent protection element to its area at 25 ° C is 4.8 to 7.2 W/mm 2 .
Description
本發明係關於一種過電流保護元件,更具體而言,關於一種具有高維持電流(hold current)特性的過電流保護元件。The present invention relates to an overcurrent protection component, and more particularly to an overcurrent protection component having a high hold current characteristic.
由於具有正溫度係數(Positive Temperature Coefficient;PTC)特性之導電複合材料之電阻具有對溫度變化反應敏銳的特性,可作為電流感測元件之材料,且目前已被廣泛應用於過電流保護元件或電路元件上。由於PTC導電複合材料在正常溫度下之電阻可維持極低值,使電路或電池得以正常運作。但是,當電路或電池發生過電流(over-current)過高溫(overtemperature)的現象時,其電阻值會瞬間提高至一高電阻狀態(至少10 4Ω以上),即所謂之觸發(trip),而將過量之電流反向抵銷,以達到保護電池或電路元件之目的。 Since the resistance of a conductive composite material having a positive temperature coefficient (PTC) characteristic is sensitive to temperature changes, it can be used as a material of a current sensing element, and has been widely used as an overcurrent protection element or circuit. On the component. Since the resistance of the PTC conductive composite at normal temperatures can be maintained at a very low value, the circuit or battery can operate normally. However, when an over-current over-current phenomenon occurs in a circuit or a battery, the resistance value is instantaneously increased to a high-resistance state (at least 10 4 Ω or more), which is called a trip. The excess current is reversed to offset the purpose of protecting the battery or circuit components.
應用於高溫環境之過電流保護元件通常需符合以下兩種特性:(1)至觸發時間(time to trip)不能太快,例如於某特定溫度、電流和電壓的情況下必須大於2秒;以及(2)在室溫25℃、12安培的情況下必須能夠觸發。一般而言,該等過電流保護元件的尺寸較小,習知使用碳黑作為導電填料的PTC元件不易達到上述需求。亦曾有人使用鎳粉作為導電填料進行試驗,然鎳粉與含氟之聚合物混合時於高溫時易產生氫氟酸,而不適宜採用。Overcurrent protection components used in high temperature environments usually have to meet the following two characteristics: (1) The time to trip cannot be too fast, for example, greater than 2 seconds for a certain temperature, current and voltage; (2) It must be able to trigger at room temperature of 25 ° C and 12 amps. In general, the overcurrent protection elements are small in size, and conventional PTC elements using carbon black as a conductive filler are not easy to achieve the above requirements. Nickel powder has also been used as a conductive filler for testing. However, when nickel powder is mixed with a fluorine-containing polymer, hydrofluoric acid is easily generated at a high temperature, which is not suitable.
舉例而言,應用於汽車之過電流保護元件因常曝曬於強烈陽光下,故需具備良好之散熱特性。傳統使用碳黑為導電填料之元件的電阻較高,其維持電流(hold current)較小,有容易產生熱量的缺點。美國專利US7,286,038公開了使用碳化鈦作為導電填料,可達到最大單位面積維持電流0.2A/mm 2,及可承受電壓約15V,但逐漸有更大維持電流和耐電壓的需求出現。 For example, an overcurrent protection component applied to a car is required to have good heat dissipation characteristics because it is often exposed to strong sunlight. Conventionally, a component using carbon black as a conductive filler has a high electrical resistance, a small hold current, and a disadvantage of easily generating heat. U.S. Patent No. 7,286,038 discloses the use of titanium carbide as a conductive filler to achieve a maximum current per unit area of 0.2 A/mm 2 and a withstand voltage of about 15 V, but with a greater need to maintain current and withstand voltage.
綜上可知,必須增加過電流保護元件的維持電流值和耐壓特性,從而提供應用於高溫環境之所需。In summary, it is necessary to increase the sustain current value and the withstand voltage characteristic of the overcurrent protection element, thereby providing a need for application in a high temperature environment.
本發明係提供一種過電流保護元件,通過含氟高分子聚合物、導電陶瓷填料和含碳導電填料的導入,可有效增加過電流保護元件之維持電流、散熱效率及耐電壓特性。所謂維持電流是指在不會有觸發發生的最大承受電流。藉此,本發明之過電流保護元件可應用於汽車等易處於高溫下之環境。The invention provides an overcurrent protection component, which can effectively increase the sustain current, heat dissipation efficiency and withstand voltage characteristics of the overcurrent protection component through introduction of the fluorine-containing polymer, the conductive ceramic filler and the carbon-containing conductive filler. The so-called holding current refers to the maximum withstand current that does not occur in the trigger. Thereby, the overcurrent protection element of the present invention can be applied to an environment in which an automobile or the like is liable to be at a high temperature.
根據本發明的一實施例,一種過電流保護元件包括第一電極層、第二電極層以及一疊設於其間的PTC材料層。該PTC材料層的體積電阻值小於0.05Ω·cm,該PTC材料層包含高分子聚合物基材、導電陶瓷填料及含碳導電填料。該高分子聚合物基材包含熔點高於150℃之含氟高分子聚合物,且該高分子聚合物基材的體積百分比50-60%。該導電陶瓷填料散佈於該高分子聚合物基材中,且該導電陶瓷填料的體積百分比40-45%,體積電阻值小於500 mΩ·cm。含碳導電填料散佈於該高分子聚合物基材中,該含碳導電填料的體積百分比0.5~5%。該過電流保護元件於25℃時的維持電流對其面積的比率為0.21~0.3A/mm 2。該過電流保護元件於25℃時的可承受功率對其面積的比率為4.8~7.2W/mm 2。 In accordance with an embodiment of the invention, an overcurrent protection component includes a first electrode layer, a second electrode layer, and a layer of PTC material stacked therebetween. The PTC material layer has a volume resistance value of less than 0.05 Ω·cm, and the PTC material layer comprises a high molecular polymer substrate, a conductive ceramic filler, and a carbon-containing conductive filler. The polymer base material comprises a fluorine-containing polymer having a melting point higher than 150 ° C, and the volume percentage of the polymer substrate is 50-60%. The conductive ceramic filler is dispersed in the polymer base material, and the conductive ceramic filler has a volume percentage of 40-45% and a volume resistance value of less than 500 mΩ·cm. The carbon-containing conductive filler is dispersed in the polymer base material, and the volume percentage of the carbon-containing conductive filler is 0.5 to 5%. The ratio of the sustain current to the area of the overcurrent protection element at 25 ° C is 0.21 to 0.3 A/mm 2 . The ratio of the withstandtable power of the overcurrent protection element to its area at 25 ° C is 4.8 to 7.2 W/mm 2 .
一實施例中,該含氟高分子聚合物包含聚氟化亞乙烯(polyvinylidene fluoride;PVDF)、乙烯-四氟乙烯共聚物(ethylene-tetra-fluoro-ethylene;ETFE)、聚四氟乙烯(poly(tetrafluoroethylene);PTFE)、四氟乙烯-六氟丙烯共聚物(tetrafluoroethylene-hexafluoro-propylene copolymer;FEP)、乙烯-四氟乙烯共聚物(ethylene-tetrafluoroethylene copolymer;PETFE)、全氟烴氧改質四氟乙烯(perfluoroalkoxy modified tetrafluoroethylenes;PFA)、聚氯三-氟四氟乙烯(poly(chlorotri-fluorotetrafluoroethylene);PCTFE)、二氟乙烯-四氟乙烯聚合物(vinylidene fluoride-tetrafluoroethylene copolymer);VF-2-TFE)、聚二氟乙烯(poly(vinylidene fluoride))、四氟乙烯-全氟間二氧雜環戊烯共聚物(tetrafluoroethylene-perfluorodioxole copolymer)、二氟乙烯-六氟丙烯共聚物(vinylidene fluoride-hexafluoropropylene copolymer)、二氟乙烯-六氟丙烯-四氟乙烯三聚物(vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer)中至少一者。In one embodiment, the fluoropolymer comprises polyvinylidene fluoride (PVDF), ethylene-tetra-fluoro-ethylene (ETFE), and polytetrafluoroethylene (polytetrafluoroethylene). (tetrafluoroethylene); PTFE), tetrafluoroethylene-hexafluoro-propylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (PETFE), perfluorocarbon oxygen modification Perfluoroalkoxy modified tetrafluoroethylenes (PFA), poly(chlorotri-fluorotetrafluoroethylene; PCTFE), vinylidene fluoride-tetrafluoroethylene copolymer; VF-2- TFE), poly(vinylidene fluoride), tetrafluoroethylene-perfluorodioxole copolymer, difluoroethylene-hexafluoropropylene copolymer (vinylidene fluoride- Hexafluoropropylene copolymer), vinylidene fluoride-hexafluoropropylene-tetrafluoroeth At least one of ylene terpolymer).
一實施例中,該導電陶瓷填料係選自碳化鎢、碳化鈦、碳化釩、碳化鋯、碳化鈮、碳化鉭、碳化鉬、碳化鉿、硼化鈦、硼化釩、硼化鋯、硼化鈮、硼化鉬、硼化鉿或氮化鋯中至少一者。In one embodiment, the conductive ceramic filler is selected from the group consisting of tungsten carbide, titanium carbide, vanadium carbide, zirconium carbide, tantalum carbide, tantalum carbide, molybdenum carbide, tantalum carbide, titanium boride, vanadium boride, zirconium boride, boride At least one of cerium, molybdenum boride, lanthanum boride or zirconium nitride.
一實施例中,該含碳導電填料包含碳黑。In one embodiment, the carbon-containing conductive filler comprises carbon black.
一實施例中,該高分子聚合物基材另包含高密度聚乙烯(HDPE)。In one embodiment, the polymeric substrate further comprises high density polyethylene (HDPE).
一實施例中,該含氟高分子聚合物包含不同熔點聚合物的混合物,且最高熔點和最低熔點的差異在4~15℃。In one embodiment, the fluoropolymer comprises a mixture of different melting point polymers, and the difference between the highest melting point and the lowest melting point is between 4 and 15 °C.
一實施例中,該不同熔點聚合物由低至高相鄰熔點的差異在3~8℃。In one embodiment, the difference between the low melting point and the adjacent melting point of the different melting point polymers is between 3 and 8 °C.
一實施例中,該不同熔點聚合物包含多個聚氟化亞乙烯(PVDF)的混合物。In one embodiment, the different melting point polymer comprises a plurality of mixtures of polytetrafluoroethylene (PVDF).
一實施例中,該過電流保護元件可通過24V和50A循環壽命測試(cycle life test)經100次循環而不燒毀。In one embodiment, the overcurrent protection component can be burned through 100 cycles through a 24V and 50A cycle life test.
一實施例中,該過電流保護元件於85℃、16V和20A測試條件下的至觸發時間(Time-to-Trip;TtT)大於2秒。In one embodiment, the overcurrent protection component has a Time-to-Trip (TtT) greater than 2 seconds at 85 ° C, 16 V, and 20 A test conditions.
本發明的過電流保護元件使用含氟高分子聚合物,提供高溫環境的應用。通過使用特定比例的高分子聚合物基材、導電陶瓷填料及含碳導電填料,可以同時達到高維持電流、高可承受功率及高耐電壓(≧24V)的特性。The overcurrent protection device of the present invention uses a fluorine-containing polymer to provide a high temperature environment. By using a specific proportion of polymer substrate, conductive ceramic filler and carbon-containing conductive filler, high holding current, high withstand power and high withstand voltage (≧24V) can be achieved at the same time.
為讓本發明之上述和其他技術內容、特徵和優點能更明顯易懂,下文特舉出相關實施例,並配合所附圖式,作詳細說明如下。The above and other technical contents, features and advantages of the present invention will become more apparent from the following description.
表1顯示各實施例(E1至E5)及比較例(C1至C3)以體積百分比顯示的配方成份,其中作為導電填料的碳黑係選用哥倫比亞化學公司(Columbian Chemical Company)所生產之型號RAVEN 430 ULTRA產品,作為導電填料之碳化鎢陶瓷粉末係選用Micron Metals, Inc.的產品WP-301;高分子聚合物基材中,高密度聚乙烯(HDPE)選用台塑化學公司(Formosa Plastics, Inc.)所生產之型號TAISOX HDPE-8010產品。PVDF則選自kynar 740、kynar 761、kuraha 850、kuraha 1100產品,其熔點分別為165 oC、168 oC、173 oC與175 oC。實施例E1和E2包含碳化鎢、碳黑以及四種不同熔點的PVDF。實施例E3包含碳化鎢以及四種不同熔點的PVDF,但不含碳黑。實施例E4和E5包含碳化鎢、碳黑、PVDF 740以及HDPE。一般而言,維持電流會隨溫度增加而降低,即所謂的熱降(thermal derating)效應。因為HDPE之熔點較低約為130℃,而PVDF之熔點較高約在165℃,故使用PVDF可減緩維持電流下降之趨勢。比較例C1包含碳黑導電填料及PVDF 740,但不含碳化鎢。C2包含碳化鎢、碳黑以及PVDF 740,C3包含碳化鎢、碳黑以及四種不同熔點的PVDF,但碳黑的比例高,碳化鎢的比例低。 Table 1 shows the formulation components shown by volume percentage of each of Examples (E1 to E5) and Comparative Examples (C1 to C3), wherein the carbon black as the conductive filler was selected from the model RAVEN 430 manufactured by Columbia Chemical Company. ULTRA products, tungsten carbide ceramic powder as conductive filler is selected from Micron Metals, Inc. product WP-301; high molecular weight polymer substrate, high density polyethylene (HDPE) is selected from Formosa Plastics, Inc. ) The model TAISOX HDPE-8010 is produced. PVDF is selected from the group consisting of kynar 740, kynar 761, kuraha 850, and kuraha 1100 with melting points of 165 o C, 168 o C, 173 o C and 175 o C, respectively. Examples E1 and E2 comprise tungsten carbide, carbon black and PVDF of four different melting points. Example E3 contained tungsten carbide and four different melting point PVDFs, but no carbon black. Examples E4 and E5 comprise tungsten carbide, carbon black, PVDF 740, and HDPE. In general, the sustain current decreases as the temperature increases, a so-called thermal derating effect. Since HDPE has a lower melting point of about 130 ° C and PVDF has a higher melting point of about 165 ° C, the use of PVDF can slow the tendency of the holding current to decrease. Comparative Example C1 contained a carbon black conductive filler and PVDF 740, but did not contain tungsten carbide. C2 contains tungsten carbide, carbon black and PVDF 740. C3 contains tungsten carbide, carbon black and PVDF with four different melting points, but the ratio of carbon black is high and the proportion of tungsten carbide is low.
表1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> 碳化鎢 </td><td> 碳黑 </td><td> PVDF 740 </td><td> PVDF 761 </td><td> PVDF 850 </td><td> PVDF 1100 </td><td> HDPE </td></tr><tr><td> E1 </td><td> 41% </td><td> 3% </td><td> 17% </td><td> 12% </td><td> 17% </td><td> 10% </td><td> - </td></tr><tr><td> E2 </td><td> 41% </td><td> 3.5% </td><td> 11.5% </td><td> 16% </td><td> 16% </td><td> 12% </td><td> - </td></tr><tr><td> E3 </td><td> 44% </td><td> 0.5% </td><td> 16.5% </td><td> 13% </td><td> 13% </td><td> 13% </td><td> - </td></tr><tr><td> E4 </td><td> 40% </td><td> 5.0% </td><td> 49.0% </td><td> - </td><td> - </td><td> - </td><td> 6% </td></tr><tr><td> E5 </td><td> 41.7% </td><td> 2.8% </td><td> 6.2% </td><td> - </td><td> - </td><td> - </td><td> 49.3% </td></tr><tr><td> C1 </td><td> - </td><td> 32% </td><td> 68% </td><td> - </td><td> - </td><td> - </td><td> - </td></tr><tr><td> C2 </td><td> 41.7% </td><td> 2.8% </td><td> 55.5% </td><td> - </td><td> - </td><td> - </td><td> - </td></tr><tr><td> C3 </td><td> 38.6% </td><td> 6.4% </td><td> 11% </td><td> 16% </td><td> 16% </td><td> 12% </td><td> - </td></tr></TBODY></TABLE>Table 1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> Tungsten Carbide</td><td> Carbon Black</td ><td> PVDF 740 </td><td> PVDF 761 </td><td> PVDF 850 </td><td> PVDF 1100 </td><td> HDPE </td></tr>< Tr><td> E1 </td><td> 41% </td><td> 3% </td><td> 17% </td><td> 12% </td><td> 17 % </td><td> 10% </td><td> - </td></tr><tr><td> E2 </td><td> 41% </td><td> 3.5 % </td><td> 11.5% </td><td> 16% </td><td> 16% </td><td> 12% </td><td> - </td>< /tr><tr><td> E3 </td><td> 44% </td><td> 0.5% </td><td> 16.5% </td><td> 13% </td> <td> 13% </td><td> 13% </td><td> - </td></tr><tr><td> E4 </td><td> 40% </td> <td> 5.0% </td><td> 49.0% </td><td> - </td><td> - </td><td> - </td><td> 6% </td ></tr><tr><td> E5 </td><td> 41.7% </td><td> 2.8% </td><td> 6.2% </td><td> - </td ><td> - </td><td> - </td><td> 49.3% </td></tr><tr><td> C1 </td><td> - </td>< Td> 32% </td><td> 68% </td><td> - </td><td> - </td><td> - </td><td> - </td>< /tr><tr><td> C2 </td><td> 41.7% </td><td> 2.8% </td><td> 55.5% </td><td> - </td>< Td> - < /td><td> - </td><td> - </td></tr><tr><td> C3 </td><td> 38.6% </td><td> 6.4% </ Td><td> 11% </td><td> 16% </td><td> 16% </td><td> 12% </td><td> - </td></tr> </TBODY></TABLE>
上述各實施例及比較例的材料以所示之體積百分比例加入HAAKE公司生產之雙螺桿混練機中進行混練。混練之溫度設定為215℃,預混之時間為3分鐘,而混練之時間則為15分鐘。The materials of the above respective examples and comparative examples were added to a twin-screw kneader manufactured by HAAKE Co., Ltd. for mixing as shown in the volume percentages shown. The temperature of the mixing was set at 215 ° C, the premixing time was 3 minutes, and the mixing time was 15 minutes.
經混練完成之導電性聚合物以熱壓機於210℃及150kg/cm 2之壓力壓成薄片。之後再將該薄片切成約20公分×20公分之正方形,並由熱壓機以210℃之溫度及150kg/cm 2之壓力將兩鍍鎳銅箔貼合至該薄片的兩面,最後以沖床沖壓出如圖1所示之PTC晶片,即本發明之過電流保護元件10。該過電流保護元件10包含由該導電性聚合物所組成之PTC材料層11及由該鍍鎳銅箔所組成之第一電極層12及第二電極層13。PTC材料層11的厚度在0.28~0.77mm。圖2係圖1之過電流保護元件10的上視圖,該過電流保護元件10的面積“A×B”等同於該PTC材料層11的面積,面積大小為32.15~70 mm 2。 The conductive polymer which was kneaded was pressed into a sheet at 210 ° C and a pressure of 150 kg / cm 2 by a hot press. Then, the sheet is cut into a square of about 20 cm × 20 cm, and two nickel-plated copper foils are bonded to both sides of the sheet by a hot press at a temperature of 210 ° C and a pressure of 150 kg / cm 2 , and finally a punching machine A PTC wafer as shown in Fig. 1, which is the overcurrent protection element 10 of the present invention, is punched out. The overcurrent protection element 10 includes a PTC material layer 11 composed of the conductive polymer and a first electrode layer 12 and a second electrode layer 13 composed of the nickel-plated copper foil. The thickness of the PTC material layer 11 is 0.28 to 0.77 mm. 2 is a top view of the overcurrent protection component 10 of FIG. 1. The area "A x B" of the overcurrent protection component 10 is equivalent to the area of the PTC material layer 11, and the area is 32.15 to 70 mm 2 .
一實施例中,可將該第一及第二電極層l2、13之外表面塗上錫膏,將兩片厚度為0.5mm的銅片電極分別置於第一及第二電極層12、13之外表面的錫膏上作為外接電極,再將此組裝的元件經300℃回焊製程即可製得軸型(axial-type)或插件式(radial-lead type)PTC元件。或者,利用相關製程於第一和第二電極層12和13利用蝕刻製作缺口,之後製作絕緣層、外電極層和垂直導通孔等,而形成SMD型式的PTC元件。In one embodiment, the outer surfaces of the first and second electrode layers 12, 13 may be coated with solder paste, and two pieces of copper electrodes having a thickness of 0.5 mm are respectively placed on the first and second electrode layers 12, 13 An external-type solder paste is used as an external electrode, and the assembled component is subjected to a 300 ° C reflow process to obtain an axial-type or radial-lead type PTC component. Alternatively, a notch is formed by etching in the first and second electrode layers 12 and 13 by a related process, and then an insulating layer, an outer electrode layer, a vertical via hole, and the like are formed to form an SMD type PTC element.
上述PTC晶片依不同之配方各取5個作為樣本進行下列量測:(1)起始電阻Ri;(2)85℃、16V、20A的至觸發時間(time-to-trip;TtT);(3)於25℃、施加24V電壓之維持電流(I-hold);以及(4)24V、50A經100次循環(on:10秒;off:60秒)之循環壽命(cycle life)測試,每一次循環表示經過一次觸發和回復的過程。根據Ri和PTC材料層的厚度,可以計算材料的體積電阻值ρ。根據維持電流和元件面積,可以計算出單位面積維持電流值(A/mm 2),以及單位面積的可承受功率(W/mm 2)。表2及表3顯示各實施例E1~E5及比較例C1~C3的測試結果。 The above PTC wafers were taken as samples for five samples according to different formulations: (1) initial resistance Ri; (2) 85 ° C, 16 V, 20 A to time-to-trip (TtT); 3) a holding current (I-hold) at 24 ° C, applying a voltage of 24 V; and (4) a cycle life test of 24 V, 50 A over 100 cycles (on: 10 seconds; off: 60 seconds), each A loop represents the process of a trigger and reply. The volume resistance value ρ of the material can be calculated from the thickness of the Ri and PTC material layers. According to the sustain current and the element area, the unit current holding current value (A/mm 2 ) and the unit area of the withstand power (W/mm 2 ) can be calculated. Tables 2 and 3 show the test results of the respective Examples E1 to E5 and Comparative Examples C1 to C3.
表2 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> Ri (mΩ) </td><td> ρ(Ω-cm) </td><td> 厚度 (mm) </td><td> 面積 (mm<sup>2</sup>) </td><td> TtT@85<sup>o</sup>C(16V/20A) (sec) </td></tr><tr><td> E1 </td><td> 2.87 </td><td> 0.0287 </td><td> 0.7 </td><td> 70 </td><td> 10.6 </td></tr><tr><td> E2 </td><td> 3 </td><td> 0.03 </td><td> 0.7 </td><td> 70 </td><td> 8.4 </td></tr><tr><td> E3 </td><td> 2.78 </td><td> 0.0306 </td><td> 0.77 </td><td> 70 </td><td> 10.51 </td></tr><tr><td> E4 </td><td> 4.79 </td><td> 0.0385 </td><td> 0.35 </td><td> 32.15 </td><td> 0.48 </td></tr><tr><td> E5 </td><td> 3.1 </td><td> 0.0249 </td><td> 0.4 </td><td> 32.15 </td><td> 0.88 </td></tr><tr><td> C1 </td><td> 105 </td><td> 0.9145 </td><td> 0.28 </td><td> 32.15 </td><td> 0.015 </td></tr><tr><td> C2 </td><td> 2.96 </td><td> 0.0326 </td><td> 0.77 </td><td> 70 </td><td> 10.6 </td></tr><tr><td> C3 </td><td> 3.57 </td><td> 0.0393 </td><td> 0.77 </td><td> 70 </td><td> 6.77 </td></tr></TBODY></TABLE>Table 2 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> Ri (mΩ) </td><td> ρ(Ω -cm) </td><td> thickness (mm) </td><td> area (mm<sup>2</sup>) </td><td> TtT@85<sup>o</sup >C(16V/20A) (sec) </td></tr><tr><td> E1 </td><td> 2.87 </td><td> 0.0287 </td><td> 0.7 < /td><td> 70 </td><td> 10.6 </td></tr><tr><td> E2 </td><td> 3 </td><td> 0.03 </td> <td> 0.7 </td><td> 70 </td><td> 8.4 </td></tr><tr><td> E3 </td><td> 2.78 </td><td> 0.0306 </td><td> 0.77 </td><td> 70 </td><td> 10.51 </td></tr><tr><td> E4 </td><td> 4.79 </ Td><td> 0.0385 </td><td> 0.35 </td><td> 32.15 </td><td> 0.48 </td></tr><tr><td> E5 </td>< Td> 3.1 </td><td> 0.0249 </td><td> 0.4 </td><td> 32.15 </td><td> 0.88 </td></tr><tr><td> C1 </td><td> 105 </td><td> 0.9145 </td><td> 0.28 </td><td> 32.15 </td><td> 0.015 </td></tr><tr ><td> C2 </td><td> 2.96 </td><td> 0.0326 </td><td> 0.77 </td><td> 70 </td><td> 10.6 </td>< /tr><tr><td> C3 </td><td> 3.57 </td><td> 0.0393 </td><td> 0.77 </td><td> 70 </td><td> 6.77 </td></tr></ TBODY></TABLE>
表3 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> I-hold@25<sup>o</sup>C (A) </td><td> I-hold@25<sup>o</sup>C /面積(A/mm<sup>2</sup>) </td><td> 循環壽命測試@24V/50A </td><td> 可承受功率/面積 (W/mm<sup>2</sup>) </td></tr><tr><td> E1 </td><td> 16.4 </td><td> 0.234 </td><td> 通過 </td><td> 5.62 </td></tr><tr><td> E2 </td><td> 15.9 </td><td> 0.227 </td><td> 通過 </td><td> 5.45 </td></tr><tr><td> E3 </td><td> 15.2 </td><td> 0.217 </td><td> 通過 </td><td> 5.21 </td></tr><tr><td> E4 </td><td> 7.92 </td><td> 0.254 </td><td> 通過 </td><td> 6.10 </td></tr><tr><td> E5 </td><td> 8.6 </td><td> 0.267 </td><td> 通過 </td><td> 6.41 </td></tr><tr><td> C1 </td><td> 2.6 </td><td> 0.08 </td><td> 通過 </td><td> 1.92 </td></tr><tr><td> C2 </td><td> 14.2 </td><td> 0.203 </td><td> 未通過 </td><td> 4.87 </td></tr><tr><td> C3 </td><td> 12 </td><td> 0.171 </td><td> 通過 </td><td></td></tr></TBODY></TABLE>table 3 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> I-hold@25<sup>o</sup>C (A) </td><td> I-hold@25<sup>o</sup>C / area (A/mm<sup>2</sup>) </td><td> Cycle Life Test@ 24V/50A </td><td> withstand power/area (W/mm<sup>2</sup>) </td></tr><tr><td> E1 </td><td> 16.4 </td><td> 0.234 </td><td> by</td><td> 5.62 </td></tr><tr><td> E2 </td><td> 15.9 </ Td><td> 0.227 </td><td> by </td><td> 5.45 </td></tr><tr><td> E3 </td><td> 15.2 </td>< Td> 0.217 </td><td> by </td><td> 5.21 </td></tr><tr><td> E4 </td><td> 7.92 </td><td> 0.254 </td><td> by</td><td> 6.10 </td></tr><tr><td> E5 </td><td> 8.6 </td><td> 0.267 </td ><td> By</td><td> 6.41 </td></tr><tr><td> C1 </td><td> 2.6 </td><td> 0.08 </td><td > By</td><td> 1.92 </td></tr><tr><td> C2 </td><td> 14.2 </td><td> 0.203 </td><td> Failed </td><td> 4.87 </td></tr><tr><td> C3 </td><td> 12 </td><td> 0.171 </td><td> by </td ><td></td></tr></TBODY></TABLE>
表2中C1因為不包含碳化鎢,其起始體積電阻值Ri大於100mΩ明顯偏高,而且於25℃維持電流(I-hold)過低,其單位面積的維持電流只有0.08 A/mm 2。C2使用較低比例的碳黑,其在進行100次循環的循環壽命測試時燒毀,可見其耐電壓特性不佳。然而,E5的碳黑比例雖然和C2相當,但其高分子聚合物包含PVDF和HDPE,通過適當的高分子聚合物的調整,仍能通過100次循環的循環壽命測試。C3的碳黑比例高(>5%)而碳化鎢的比例低(<40%),造成於25℃的維持電流過低,其單位面積的維持電流只有0.171 A/mm 2。E1~E5使用高比例的碳化鎢和搭配適當比例的碳黑,可以得到小於0.05Ω·cm的體積電阻値以及於25℃時單位面積維持電流值大於等於0.21A/mm 2,且均可通過耐電壓循環壽命測試。E4的高分子聚合物基材中導入HDPE可能造成了材料內部微相分離,使得體積電阻值相對較高。 In Table 2, since C1 does not contain tungsten carbide, its initial volume resistance value Ri is significantly higher than 100 mΩ, and the holding current (I-hold) is too low at 25 ° C, and the holding current per unit area is only 0.08 A/mm 2 . C2 uses a lower proportion of carbon black, which burns out during the cycle life test of 100 cycles, showing that its withstand voltage characteristics are not good. However, although the carbon black ratio of E5 is equivalent to that of C2, its high molecular polymer contains PVDF and HDPE, and it can pass the cycle life test of 100 cycles by adjusting the appropriate polymer. C3 has a high carbon black ratio (>5%) and a low tungsten carbide ratio (<40%), resulting in a low holding current at 25 ° C and a holding current per unit area of only 0.171 A/mm 2 . E1~E5 can use a high proportion of tungsten carbide and a proper proportion of carbon black to obtain a volume resistance of less than 0.05 Ω·cm and a holding current per unit area of 0.21 A/mm 2 at 25 ° C. Withstand voltage cycle life test. The introduction of HDPE into the polymer matrix of E4 may cause micro-phase separation inside the material, resulting in a relatively high volume resistance value.
實施例E1~E3於自動車鎖轉子(automotive lock rotor)85℃、16V、20A之測試條件下之至觸發時間約8至11秒左右,符合至觸發時間大於2秒之規格要求。比較例C2和C3雖然之TtT時間大於2秒,但其耐電壓和維持電流的特性不佳。實施例E4和E5除了PVDF外,另加入HDPE,雖然其TtT時間較短,但仍可應用於不需長TtT的場合。因此本發明中PTC材料層中之含氟聚合物亦可混加其他聚乙烯(PE),只要PVDF仍具足夠之比例而主導混合後聚合物之性質,其仍可得到良好之功效。Embodiments E1 to E3 have a triggering time of about 8 to 11 seconds under the test conditions of the automatic lock rotor of 85 ° C, 16 V, and 20 A, and meet the specifications for the trigger time of more than 2 seconds. Although Comparative Examples C2 and C3 have a TtT time of more than 2 seconds, their withstand voltage and sustain current characteristics are not good. In addition to PVDF, Examples E4 and E5 are additionally added to HDPE. Although their TtT time is short, they can be applied to applications where long TtT is not required. Therefore, the fluoropolymer in the PTC material layer of the present invention may be mixed with other polyethylene (PE), and as long as the PVDF still has a sufficient ratio to dominate the properties of the polymer after mixing, it can still obtain good effects.
綜言之,本發明過電流保護元件中PTC材料層的高分子聚合物的體積百分比為50~60%,或例如為52%、55%或58%;導電陶瓷填料的體積百分比為40~45%,或例如為41%、43%或44%;含碳導電填料的體積百分比為0.5~5%,或例如為1%、2%或4%。藉此,本發明之過電流保護元件於25℃時的維持電流對其面積的比率為0.21~0.3A/mm 2,如0.23 A/mm 2、0.25 A/mm 2或0.27 A/mm 2,且可通過24V和50A的循環測試而不燒毀,同時達到耐高電壓、高單位面積維持電流及高單位面積可承受功率的優良電氣特性。因為元件耐電壓可提升至24V,元件單位面積下的可承受之功率也提升至4.8~7.2W/mm 2,如5W/mm 2、6W/mm 2或7W/mm 2。 In summary, the volume percentage of the polymer of the PTC material layer in the overcurrent protection element of the present invention is 50-60%, or 52%, 55% or 58%, for example; the volume percentage of the conductive ceramic filler is 40-45. %, or for example 41%, 43% or 44%; the volume percentage of the carbon-containing conductive filler is 0.5 to 5%, or for example 1%, 2% or 4%. Thereby, the ratio of the sustain current to the area of the overcurrent protection element of the present invention at 25 ° C is 0.21 to 0.3 A/mm 2 , such as 0.23 A/mm 2 , 0.25 A/mm 2 or 0.27 A/mm 2 , It can be tested by 24V and 50A without burning, and achieves excellent electrical characteristics such as high voltage resistance, high unit area holding current and high unit area withstand power. Since the withstand voltage of the component can be increased to 24V, the power that can be withstood under the unit area is also increased to 4.8~7.2W/mm 2 , such as 5W/mm 2 , 6W/mm 2 or 7W/mm 2 .
本發明之含氟高分子聚合物係以選擇熔點大於150℃為佳,本發明添加之含氟高分子聚合物並不限定使用PVDF,其他具有類似特性且熔點高於150℃之含氟高分子聚合物,亦為本發明所涵蓋。例如:聚四氟乙烯(poly(tetrafluoroethylene);PTFE)、四氟乙烯-六氟丙烯共聚物(tetrafluoroethylene-hexafluoro-propylene copolymer;FEP)、乙烯-四氟乙烯共聚物(ethylene-tetrafluoroethylene copolymer;PETFE)、全氟烴氧改質四氟乙烯(perfluoroalkoxy modified tetrafluoroethylenes;PFA)、聚(氯三-氟四氟乙烯)(poly(chlorotri-fluorotetrafluoroethylene);PCTFE)、二氟乙烯-四氟乙烯聚合物(vinylidene fluoride-tetrafluoroethylene copolymer);VF-2-TFE)、聚二氟乙烯(poly(vinylidene fluoride))、四氟乙烯-全氟間二氧雜環戊烯共聚物(tetrafluoroethylene-perfluorodioxole copolymers)、二氟乙烯-六氟丙烯共聚物(vinylidene fluoride-hexafluoropropylene copolymer) 、以及二氟乙烯-六氟丙烯-四氟乙烯三聚物(vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer)等。優選的,可選用多個不同熔點的含氟高分子聚合物,如實施例E1~E3。因為不同熔點的特性,可以得到較平緩的電阻-溫度曲線(R-T curve),提升循環壽命測試的穩定性以及較好的耐電壓特性。多個含氟高分子聚合物最高熔點和最低熔點的差異在4~15℃。較佳地,該多個含氟高分子聚合物由低至高相鄰熔點的差異在3~8℃。The fluorine-containing polymer of the present invention preferably has a melting point of more than 150 ° C. The fluorine-containing polymer added by the present invention is not limited to the use of PVDF, and other fluorine-containing polymers having similar properties and having a melting point higher than 150 ° C. Polymers are also encompassed by the present invention. For example: polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoro-propylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (PETFE) , perfluoroalkoxy modified tetrafluoroethylenes (PFA), poly(chlorotri-fluorotetrafluoroethylene) (PCTFE), difluoroethylene-tetrafluoroethylene polymer (vinylidene) Fluoride-tetrafluoroethylene copolymer; VF-2-TFE), poly(vinylidene fluoride), tetrafluoroethylene-perfluorodioxole copolymers, difluoroethylene - a hexafluoropropylene copolymer (vinylidene fluoride-hexafluoropropylene copolymer), and a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer. Preferably, a plurality of fluoropolymers having different melting points are selected, as in Examples E1 to E3. Because of the different melting point characteristics, a smoother resistance-temperature curve (R-T curve) can be obtained, which improves the stability of the cycle life test and better withstand voltage characteristics. The difference between the highest melting point and the lowest melting point of a plurality of fluorine-containing high molecular polymers is 4 to 15 °C. Preferably, the plurality of fluoropolymers have a difference from low to high adjacent melting points of 3 to 8 °C.
導電陶瓷填料可選自體積電阻值小於500μΩ·cm之金屬碳化物、金屬硼化物或金屬氮化物。例如:碳化鵭(WC) 、碳化鈦(TiC)、碳化釩(VC)、碳化鋯(ZrC)、碳化鈮(NbC)、碳化鉭(TaC)、碳化鉬(MoC)、碳化鉿(HfC))、硼化鈦(TiB 2)、硼化釩(VB 2)、硼化鋯(ZrB 2)、硼化鈮(NbB 2)、硼化鉬(MoB 2)、硼化鉿(HfB 2)或氮化鋯(ZrN)。 The electrically conductive ceramic filler may be selected from metal carbides, metal borides or metal nitrides having a volume resistance value of less than 500 μΩ·cm. For example: strontium carbide (WC), titanium carbide (TiC), vanadium carbide (VC), zirconium carbide (ZrC), niobium carbide (NbC), tantalum carbide (TaC), molybdenum carbide (MoC), niobium carbide (HfC) Titanium boride (TiB 2 ), vanadium boride (VB 2 ), zirconium boride (ZrB 2 ), niobium boride (NbB 2 ), molybdenum boride (MoB 2 ), hafnium boride (HfB 2 ) or nitrogen Zirconium (ZrN).
本發明之過電流保護元件同時達到耐高電壓、高單位面積維持電流及高單位面積可承受功率的優良電氣特性,可抵抗高溫的嚴苛環境,而適合於高溫過電流保護的應用。The overcurrent protection component of the invention simultaneously achieves excellent electrical characteristics of high voltage resistance, high unit area maintaining current and high unit area withstand power, and is resistant to high temperature and harsh environments, and is suitable for high temperature overcurrent protection applications.
本發明之技術內容及技術特點已揭示如上,然而本領域具有通常知識之技術人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施例所揭示者,而應包括各種不背離本發明之替換及修飾,並為以下之申請專利範圍所涵蓋。The technical contents and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention should be construed as being limited by the scope of the appended claims
10‧‧‧過電流保護元件10‧‧‧Overcurrent protection components
11‧‧‧PTC材料層11‧‧‧ PTC material layer
12‧‧‧第一電極層12‧‧‧First electrode layer
13‧‧‧第二電極層13‧‧‧Second electrode layer
圖1顯示本發明一實施例之過電流保護元件;以及 圖2顯示圖1之過電流保護元件之上視圖。1 shows an overcurrent protection component in accordance with an embodiment of the present invention; and FIG. 2 shows a top view of the overcurrent protection component of FIG. 1.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106130668A TWI643215B (en) | 2017-09-07 | 2017-09-07 | Over-current protection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106130668A TWI643215B (en) | 2017-09-07 | 2017-09-07 | Over-current protection device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI643215B true TWI643215B (en) | 2018-12-01 |
TW201913696A TW201913696A (en) | 2019-04-01 |
Family
ID=65431934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106130668A TWI643215B (en) | 2017-09-07 | 2017-09-07 | Over-current protection device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI643215B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI793611B (en) * | 2021-05-21 | 2023-02-21 | 聚鼎科技股份有限公司 | Over-current protection device |
TWI766722B (en) * | 2021-06-10 | 2022-06-01 | 聚鼎科技股份有限公司 | Over-current protection device |
TWI839220B (en) * | 2023-05-16 | 2024-04-11 | 聚鼎科技股份有限公司 | Over-current protection device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101390231A (en) * | 2006-02-24 | 2009-03-18 | 加利福尼亚大学董事会 | Miniature fuel cells comprised of miniature carbon fluidic plates |
US20100096595A1 (en) * | 2006-10-06 | 2010-04-22 | The Trustees Of Princeton University | Functional graphene-polymer nanocomposites for gas barrier applications |
CN101887766A (en) * | 2010-07-08 | 2010-11-17 | 上海长园维安电子线路保护股份有限公司 | Conductive composite material with resistance positive temperature coefficient and over-current protection element |
TW201546786A (en) * | 2014-03-19 | 2015-12-16 | Semiconductor Energy Lab | Semiconductor device |
-
2017
- 2017-09-07 TW TW106130668A patent/TWI643215B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101390231A (en) * | 2006-02-24 | 2009-03-18 | 加利福尼亚大学董事会 | Miniature fuel cells comprised of miniature carbon fluidic plates |
US20100096595A1 (en) * | 2006-10-06 | 2010-04-22 | The Trustees Of Princeton University | Functional graphene-polymer nanocomposites for gas barrier applications |
CN101887766A (en) * | 2010-07-08 | 2010-11-17 | 上海长园维安电子线路保护股份有限公司 | Conductive composite material with resistance positive temperature coefficient and over-current protection element |
TW201546786A (en) * | 2014-03-19 | 2015-12-16 | Semiconductor Energy Lab | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TW201913696A (en) | 2019-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI310955B (en) | Over-current protection device | |
US9997906B1 (en) | Over-current protection device | |
TWI529753B (en) | Over-current protection device | |
TWI643215B (en) | Over-current protection device | |
TWI298598B (en) | Over-current protection device | |
TWI480900B (en) | Radial-leaded over-current protection device | |
US11984285B2 (en) | PPTC device having low melting temperature polymer body | |
CN109509599B (en) | Overcurrent protection element | |
US10056176B2 (en) | Over-current protection device | |
CN101162632A (en) | Overcurrent protection component | |
TWI842778B (en) | Pptc composition and device having low thermal derating and low process jump | |
TW201842515A (en) | Hybrid device structures including negative temperature coefficient/positive temperature coefficient device | |
TWI793611B (en) | Over-current protection device | |
US11694825B2 (en) | Radial-leaded over-current protection device | |
US20240145132A1 (en) | Over-current protection device | |
JP2810351B2 (en) | Organic positive temperature coefficient thermistor | |
TWI822427B (en) | Over-current protection device | |
TWI859969B (en) | Over-current protection device | |
TWI766722B (en) | Over-current protection device | |
TWI567764B (en) | Pptc over-current protection device | |
TWI859967B (en) | Over-current protection device | |
TW202348710A (en) | Over-current protection device |