TWI558087B - Motor control device (2) - Google Patents
Motor control device (2) Download PDFInfo
- Publication number
- TWI558087B TWI558087B TW101144705A TW101144705A TWI558087B TW I558087 B TWI558087 B TW I558087B TW 101144705 A TW101144705 A TW 101144705A TW 101144705 A TW101144705 A TW 101144705A TW I558087 B TWI558087 B TW I558087B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- phase
- current
- power
- motor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
- Control Of Electric Motors In General (AREA)
Description
本發明係有關於一種具備電力監測機能的馬達控制裝置。 The present invention relates to a motor control device having a power monitoring function.
近年來,在生產工廠內,有須更精密地管理工廠內之消費電力量的需求。因此,對設置於生產工廠的工作機械之消費電力量個別地進行監測。例如,在電動射出成型機或工作機械中,為了把握該機械之消費電力量,在控制該機械之動作的馬達控制裝置設有電力監測機能。 In recent years, there has been a need to more precisely manage the amount of power consumed in the plant in a production plant. Therefore, the amount of power consumed by the work machine installed in the production plant is individually monitored. For example, in an electric injection molding machine or a work machine, in order to grasp the amount of consumed electric power of the machine, a motor control device that controls the operation of the machine is provided with a power monitoring function.
使用於電動射出成型機等之馬達控制裝置,一般而言,具有將交流電流整流的整流器(converter)、與驅動馬達的複數轉換器(inverter)。在馬達控制裝置中監測消費電力量的方法,例如有以下第1至第4的4個方法。 A motor control device used in an electric injection molding machine or the like generally has a rectifier that rectifies an alternating current and a plurality of inverters that drive the motor. The method of monitoring the amount of consumed electric power in the motor control device is, for example, the following four methods of the first to fourth.
首先,第1方法係於馬達控制裝置設置電力計,藉由該電力計來掌握工作機械之消費電力量的方法。 First, the first method is a method in which a motor controller is provided with a power meter, and the power meter is used to grasp the amount of power consumed by the working machine.
接著,第2方法如下述專利文獻1所揭示,藉由運算分別求出馬達的消費電力、驅動馬達的放大器之損失電力、工作機械的固定消費電力,將所求出之各電力以時間進行積分,而掌握工作機械之消費電力量的方法。 Next, as disclosed in Patent Document 1 below, the second method calculates the power consumption of the motor, the loss power of the amplifier for driving the motor, and the fixed power consumption of the machine tool by calculation, and integrates each of the obtained electric powers with time. And master the method of the amount of electricity consumed by the working machinery.
第3方法如下述專利文獻2所揭示,檢測出整流器與轉換器之間的電壓值與電流值,將根據所檢測出之電壓 值與電流值而運算出的電力,以時間進行積分,藉此來掌握工作機械之消費電力量的方法。 According to the third method, as disclosed in the following Patent Document 2, the voltage value and the current value between the rectifier and the converter are detected, and the voltage is detected based on the detected voltage. The method of integrating the electric power calculated by the value and the current value with time, thereby grasping the amount of electric power consumed by the working machine.
最後,第4方法係如下述專利文獻3所揭示,檢測出三相交流電源側與PWM整流器之間的電壓值與電流值,從所檢測出的電壓值與電流值,運算消費電力與再生(regenerative)電力,而掌握工作機械之消費電力量的方法。 Finally, the fourth method detects the voltage value and the current value between the three-phase AC power source side and the PWM rectifier as described in Patent Document 3 below, and calculates the consumption power and regeneration from the detected voltage value and current value ( Regenerative) The method of controlling the amount of electricity consumed by a working machine.
[專利文獻1]日本專利公開公報2010-115063號 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2010-115063
[專利文獻2]日本專利公開公報2002-192588號 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2002-192588
[專利文獻3]日本專利公開公報2010-110936號 [Patent Document 3] Japanese Patent Laid-Open Publication No. 2010-110936
然而,由於第1方法須另外設置電力計,因此會增加構成馬達控制裝置之零件的零件數及成本。 However, since the first method requires an additional power meter, the number of parts and the cost of the components constituting the motor control device are increased.
第2方法的情況下,為了求出馬達的消費電力、放大器的損失電力等電力,必須事先求出並記憶馬達的扭矩定數、馬達的線圈電阻值、放大器電力損失係數等多個參數。又,當整流器連接有複數的轉換器,連接於轉換器的馬達之機種有複數種時,必須事先依各馬達分別求出並記憶個別的參數。另一方面,由於並未考慮馬達的鐵損或機械損,因此難稱其消費電力的檢測精度高。 In the case of the second method, in order to obtain electric power such as the power consumption of the motor and the loss power of the amplifier, it is necessary to obtain and store a plurality of parameters such as the motor torque constant, the motor coil resistance value, and the amplifier power loss coefficient. Further, when a plurality of converters are connected to the rectifier and a plurality of types of motors connected to the converter are used, it is necessary to separately determine and memorize individual parameters in accordance with each motor. On the other hand, since the iron loss or mechanical damage of the motor is not considered, it is difficult to say that the detection accuracy of the power consumption is high.
第3方法的情況下,需要用以檢測整流器與轉換 器間之電壓值與電流值的檢測器。一般而言,在僅進行整流的整流器中並未設置用以檢測電流的檢測器。因此,由於必須另外設置用以檢測電流的檢測器,因此會增加構成馬達控制裝置的零件之零件數及成本。 In the case of the third method, it is required to detect the rectifier and the conversion A detector for the voltage and current values between the devices. In general, a detector for detecting current is not provided in a rectifier that is only rectified. Therefore, since the detector for detecting the current must be separately provided, the number of parts and the cost of the parts constituting the motor control device are increased.
第4方法的情況下,一般的120°通電電源再生整 流器為了低成本化,並未設置用以檢測三相交流電壓的檢測器。因此,由於須要另外設置用以檢測三相交流電壓的檢測器,因此會增加構成馬達控制裝置的零件之零件數及成本。 In the case of the fourth method, the general 120° power supply is regenerated. In order to reduce the cost of the flow device, a detector for detecting a three-phase AC voltage is not provided. Therefore, since it is necessary to additionally provide a detector for detecting a three-phase AC voltage, the number of parts and the cost of the components constituting the motor control device are increased.
本發明係為了解決如上所述之習知問題而作成 者,目的在於提供一種具備電力監測機能的馬達控制裝置,無須使用馬達常數等之多個參數,且無須設置用以運算電力之特別的檢測器,在120°通電電源再生整流器中,可利用為了控制整流器而設置之既存的檢測器,來監測消費電力。 The present invention has been made to solve the conventional problems as described above. The purpose of the present invention is to provide a motor control device having a power monitoring function, which does not require the use of a plurality of parameters such as a motor constant, and does not require a special detector for calculating power, and can be utilized in a 120° power supply regenerative rectifier. An existing detector is provided to control the rectifier to monitor the power consumption.
用以解決上述課題之本發明的馬達控制裝置,係具備連接於多相電源之整流器單元與連接於馬達之轉換器單元,且整流器單元與轉換器單元協同動作而控制馬達之動力運轉及再生的馬達控制裝置。 A motor control device according to the present invention for solving the above problems includes a rectifier unit connected to a multi-phase power supply and a converter unit connected to the motor, and the rectifier unit and the converter unit cooperate to control power operation and regeneration of the motor. Motor control unit.
馬達控制裝置具有相位檢測電路、選擇器電路、 平均化電路、係數乘算電路、電力運算電路、積算電力電路。相位檢測電路、選擇器電路、平均化電路,係利用為了控制整流器之動力運轉及再生而設置的既存之電路。 The motor control device has a phase detecting circuit, a selector circuit, The averaging circuit, the coefficient multiplication circuit, the power calculation circuit, and the integrated power circuit. The phase detecting circuit, the selector circuit, and the averaging circuit use an existing circuit provided to control the power operation and regeneration of the rectifier.
相位檢測電路檢測多相電源之多相交流電壓之 相位。選擇器電路從相位檢測電路檢測出之相位選擇特定之相之交流電流而變換成直流電流。平均化電路將選擇器電路所變換之直流電流平均化而求出平均直流電流。藉由選擇器電路與平均化電路的動作,可從根據多相交流電壓之相位而選擇的特定之相之交流電流,求出平均直流電流。 Phase detection circuit detects multiphase AC voltage of multiphase power supply Phase. The selector circuit converts the alternating current into a specific phase from the phase detected by the phase detecting circuit to convert it into a direct current. The averaging circuit averages the DC current converted by the selector circuit to obtain an average DC current. The average DC current can be obtained from the AC current of a specific phase selected based on the phase of the multi-phase AC voltage by the operation of the selector circuit and the averaging circuit.
係數乘算電路將係數乘上在平均化電路求出的 平均直流電流。電力運算電路將在係數乘算電路乘上係數後的平均直流電流與整流器單元之負荷側之直流電壓相乘而運算電力。積算電力電路將在電力運算電路運算出之電力以時間進行積分而運算積算電力。 The coefficient multiplication circuit multiplies the coefficient by the averaging circuit Average DC current. The power calculation circuit calculates the power by multiplying the average DC current obtained by multiplying the coefficient by the coefficient multiplication circuit by the DC voltage on the load side of the rectifier unit. The integrated power circuit integrates the power calculated by the power calculation circuit with time to calculate the integrated power.
根據如上述構成之本發明,可使用既存之相位檢測電路、選擇器電路、平均化電路,求出由多相交流電源供給之平均直流電流,並使用已求出的平均直流電流與整流器單元之負荷側之直流電壓來求出積算電力。 According to the present invention having the above configuration, the existing phase detecting circuit, the selector circuit, and the averaging circuit can be used to obtain the average DC current supplied from the multi-phase AC power source, and the obtained average DC current and the rectifier unit can be used. The integrated voltage is obtained by the DC voltage on the load side.
因此,可不使用馬達常數等之多個參數,且可不設置用以運算電力之特別的檢測器,而利用為了控制整流器而設置的既存之檢測器,來監測消費電力。 Therefore, it is possible to monitor the power consumption by using a plurality of parameters such as a motor constant and without providing a special detector for calculating the power, and using an existing detector provided to control the rectifier.
圖1係本實施形態之馬達控制裝置的方塊圖。 Fig. 1 is a block diagram of a motor control device of the embodiment.
圖2(A)~(F)係用以說明圖1所示之馬達控制裝置之動作的波形圖。 2(A) to (F) are waveform diagrams for explaining the operation of the motor control device shown in Fig. 1.
圖3(A)~(E)係用以說明圖1所示之馬達控制裝置之動 作的波形圖。 3(A) to (E) are for explaining the movement of the motor control device shown in Fig. 1. Waveforms made.
以下,說明本實施形態之馬達控制裝置。圖1係本實施形態之馬達控制裝置的方塊圖。 Hereinafter, a motor control device according to the embodiment will be described. Fig. 1 is a block diagram of a motor control device of the embodiment.
〔馬達控制裝置之構成〕 [Composition of motor control device]
馬達控制裝置100為了將電力供給至馬達300,具備反應器10R、10S、10T、整流器單元20、電容器25、轉換器單元30。 The motor control device 100 includes the reactors 10R, 10S, and 10T, the rectifier unit 20, the capacitor 25, and the converter unit 30 in order to supply electric power to the motor 300.
反應器10R、10S、10T係分別與連接三相電源200 與整流器單元20的三相電源線R、S、T之各電源線,在三相電源200與整流器單元20之間串聯地連接。反應器10R、10S、10T可調整分別流通三相電源線R、S、T之各電源線的電流。 The reactors 10R, 10S, and 10T are connected to the three-phase power source 200, respectively. The power lines of the three-phase power lines R, S, and T of the rectifier unit 20 are connected in series between the three-phase power source 200 and the rectifier unit 20. The reactors 10R, 10S, and 10T can adjust the currents of the respective power supply lines that respectively flow through the three-phase power lines R, S, and T.
整流器單元20可將來自於三相電源200的交流變 換成直流。整流器單元20係將6個半導體開關元件橋接所構成。半導體開關元件係由稱為IGBT的絕緣閘雙極電晶體20A與二極體20D構成。二極體20D係連接於絕緣閘雙極電晶體20A之集極-射極間。各二極體20D係以如下之極性來進行連接:在馬達300之動力運轉時會將三相交流全波整流成直流,但不會流通再生電流。另外,半導體開關元件亦可使用於IGBT附有保護電路的IPM,來代替IGBT。 The rectifier unit 20 can change the alternating current from the three-phase power supply 200 Switch to DC. The rectifier unit 20 is constructed by bridging six semiconductor switching elements. The semiconductor switching element is composed of an insulating gate bipolar transistor 20A called an IGBT and a diode 20D. The diode 20D is connected between the collector and the emitter of the insulating gate bipolar transistor 20A. Each of the diodes 20D is connected in such a manner that the three-phase AC full-wave is rectified into a direct current when the power of the motor 300 is operated, but no regenerative current flows. In addition, the semiconductor switching element can also be used in the IGBT with an IPM with a protection circuit instead of the IGBT.
電容器25係使用容量大的電解電容器,使整流器 單元20輸出的直流電流平滑化。 Capacitor 25 uses a large capacity electrolytic capacitor to make the rectifier The DC current output by unit 20 is smoothed.
轉換器單元30將整流器單元20所輸出的直流變 換成交流而供給至馬達300。轉換器單元30與整流器單元20一樣,係將6個半導體開關元件橋接所構成。半導體開關元件係由稱為IGBT的絕緣閘雙極電晶體30A與二極體30D構成。二極體30D連接於絕緣閘雙極電晶體30A之集極-射極間。另外,各二極體30D係以如下之極性來進行連接:在馬達300之再生時可將馬達300所發電之交流整流成直流。 The converter unit 30 changes the direct current output from the rectifier unit 20 It is supplied to the motor 300 instead of alternating current. Like the rectifier unit 20, the converter unit 30 is constructed by bridging six semiconductor switching elements. The semiconductor switching element is composed of an insulating gate bipolar transistor 30A called an IGBT and a diode 30D. The diode 30D is connected between the collector-emitter of the insulating gate bipolar transistor 30A. Further, each of the diodes 30D is connected in such a manner that the alternating current generated by the motor 300 can be rectified to a direct current when the motor 300 is regenerated.
馬達控制裝置100在馬達300之動力運轉時與再 生時,大致會如下般動作。 The motor control device 100 is operated when the power of the motor 300 is running. When you are alive, you will generally behave as follows.
當使馬達300進行動力運轉時,由三相電源200 供給之交流電流,會藉由整流器單元20暫時變換成直流電流,在電容器25成為幾乎完全為直流的電流。更進一步,直流電流藉由轉換器單元30變換成所需的頻率、電壓之交流電流,以該交流電流使馬達300進行動力運轉。 When the motor 300 is powered, the three-phase power supply 200 The supplied alternating current is temporarily converted into a direct current by the rectifier unit 20, and the capacitor 25 becomes a nearly completely direct current. Further, the direct current is converted into an alternating current of a desired frequency and voltage by the converter unit 30, and the motor 300 is powered by the alternating current.
另一方面,當使馬達300所發電之電流進行再生 時,馬達300所發電出之交流電流會藉由轉換器單元30變換成直流電流。更進一步,直流電流會藉由整流器單元20變換成商用頻率、電壓之交流電,而朝三相電源200進行再生。 On the other hand, when the current generated by the motor 300 is regenerated At this time, the alternating current generated by the motor 300 is converted into a direct current by the converter unit 30. Further, the direct current is converted into a commercial frequency and a voltage alternating current by the rectifier unit 20, and is reproduced toward the three-phase power supply 200.
另外,在本實施形態中,係使整流器單元20所含 的6個半導體開關元件以120°導通模式導通,藉此來進行馬達300所發電之電流的再生。 Further, in the present embodiment, the rectifier unit 20 is included The six semiconductor switching elements are turned on in the 120° conduction mode, whereby the current generated by the motor 300 is regenerated.
馬達控制裝置100藉由控制整流器單元20及轉換 器單元30之絕緣閘雙極電晶體20A、30A的開關 (switching),來調整馬達300之再生時及動力運轉時的電流。 The motor control device 100 controls the rectifier unit 20 and converts Switching of the insulated gate bipolar transistors 20A, 30A of the unit 30 (switching) to adjust the current during the regeneration of the motor 300 and during the power running.
馬達控制裝置100為了控制絕緣閘雙極電晶體 20A、30A的開關,具備有相位檢測電路35、電流選擇信號作成電路40、電流檢測器45R、45S、選擇器電路50、邊緣檢測電路55、平均化電路60、極性判定電路65、停止信號產生電路70、電源電壓峰值檢測電路75、再生開始檢測電路80、閘信號作成電路85。 Motor control device 100 for controlling insulated gate bipolar transistors The switches of 20A and 30A are provided with a phase detecting circuit 35, a current selection signal generating circuit 40, current detectors 45R and 45S, a selector circuit 50, an edge detecting circuit 55, an averaging circuit 60, a polarity determining circuit 65, and a stop signal generating. The circuit 70, the power supply voltage peak detecting circuit 75, the regeneration start detecting circuit 80, and the gate signal generating circuit 85 are provided.
相位檢測電路35檢測施加於三相電源線R、S、T 的三相交流電壓之相位,並將與三相交流電壓之相位之變化相應的相位信號S4輸出。 The phase detecting circuit 35 detects application to the three-phase power lines R, S, T The phase of the three-phase AC voltage is outputted by a phase signal S4 corresponding to a change in the phase of the three-phase AC voltage.
電流選擇信號作成電路40根據相位檢測電路35 輸出的相位信號S4來作成電流選擇信號S3。電流選擇信號S3係用以從三相份之交流電流選擇特定之相之交流電流的信號。 The current selection signal generating circuit 40 is based on the phase detecting circuit 35 The output phase signal S4 is used to create a current selection signal S3. The current selection signal S3 is used to select a signal of a specific phase of the alternating current from the three-phase AC current.
電流檢測器45R、45S檢測流通於三相電源線R、 S的二相之交流電流。流通於T相之電流係從二相之交流電流藉由運算來求出。 The current detectors 45R and 45S detect the flow through the three-phase power line R, The two-phase AC current of S. The current flowing through the T phase is obtained from an alternating current of two phases by calculation.
選擇器電路50根據電流選擇信號作成電路40已 作成之電流選擇信號S3,從電流檢測器45R、45S所檢測、更藉由運算而求出的三相之交流電流,選擇R相、S相、T相、-R相、-S相、-T相。因此,選擇器電路50所行之交流電流的選擇,等於對由三相電源200所供給的交流電流進行交流-直流變換。所以,藉由選擇器電路50這樣的簡單構成,可將交流電流變換成直流電流。 The selector circuit 50 creates the circuit 40 based on the current selection signal. The generated current selection signal S3 is selected from the three-phase alternating currents detected by the current detectors 45R and 45S and calculated by calculation, and the R phase, the S phase, the T phase, the -R phase, the -S phase, and - are selected. Phase T. Therefore, the selection of the alternating current by the selector circuit 50 is equivalent to the AC-DC conversion of the alternating current supplied by the three-phase power supply 200. Therefore, the alternating current can be converted into a direct current by the simple configuration of the selector circuit 50.
邊緣檢測電路55檢測電流選擇信號S3的邊緣,藉 由邊緣的檢測而輸出時序信號。在本實施形態中係檢測電流選擇信號S3的邊緣,但亦可檢測由相位檢測電路35輸出之相位信號S4的邊緣而輸出時序信號。 The edge detecting circuit 55 detects the edge of the current selection signal S3, borrowing The timing signal is outputted by the detection of the edge. In the present embodiment, the edge of the current selection signal S3 is detected, but the edge of the phase signal S4 outputted by the phase detecting circuit 35 may be detected to output a timing signal.
平均化電路60根據邊緣檢測電路55輸出的時序 信號,將藉由選擇器電路50所選擇出之電流值平均化而求出平均直流電流。因此,平均化電路60會將R相、S相、T相、-R相、-S相、-T相之交流電流依序平均化。 The averaging circuit 60 is based on the timing of the output of the edge detecting circuit 55. The signal is averaged by the current value selected by the selector circuit 50 to obtain an average DC current. Therefore, the averaging circuit 60 averages the alternating currents of the R phase, the S phase, the T phase, the -R phase, the -S phase, and the -T phase.
而,相位檢測電路35、電流選擇信號作成電路 40、電流檢測器45R、45S、選擇器電路50、邊緣檢測電路55、平均化電路60係使用為了控制整流器而設置於馬達控制裝置100的電路。 The phase detecting circuit 35 and the current selection signal are used as circuit 40. The current detectors 45R and 45S, the selector circuit 50, the edge detecting circuit 55, and the averaging circuit 60 are circuits provided in the motor control device 100 for controlling the rectifier.
極性判定電路65係藉由平均化電路60所輸出的 平均直流電流值是否成為0、或者平均直流電流之極性是否已從+變化成-、或從-變化成+,來判定馬達300是否已從動力運轉改變為再生、從再生改變為動力運轉。 The polarity determination circuit 65 is output by the averaging circuit 60. Whether or not the average DC current value becomes 0 or whether the polarity of the average DC current has changed from + to - or from - to + determines whether the motor 300 has changed from power running to regeneration and from regeneration to power running.
若極性判定電路65之判定顯示已從再生改變為 動力運轉,則停止信號產生電路70輸出停止信號S2。 If the determination of the polarity determination circuit 65 indicates that it has changed from regeneration to In the power running, the stop signal generating circuit 70 outputs the stop signal S2.
電源電壓峰值檢測電路75將施加於三相電源線 R、S、T的三相交流電壓進行全波整流,而檢測全波整流後之電源電壓之峰值。 The power supply voltage peak detecting circuit 75 will be applied to the three-phase power line The three-phase AC voltages of R, S, and T are full-wave rectified, and the peak value of the power supply voltage after full-wave rectification is detected.
再生開始檢測電路80比較整流器單元20輸出的 直流電壓、與以電源電壓峰值檢測電路75檢測出的全波整流後之電源電壓之峰值。再生開始檢測電路80在整流器單 元20輸出的直流電壓比全波整流後之電源電壓之峰值高15V左右時,判定為已進入再生狀態,並輸出再生開始信號S1。 The regeneration start detecting circuit 80 compares the output of the rectifier unit 20 The DC voltage and the peak value of the full-wave rectified power supply voltage detected by the power supply voltage peak detecting circuit 75. The regeneration start detection circuit 80 is in the rectifier single When the DC voltage output from the element 20 is higher than the peak value of the full-wave rectified power supply voltage by about 15 V, it is determined that the DC voltage has entered the regenerative state, and the regeneration start signal S1 is output.
閘信號作成電路85根據相位檢測電路35已輸出之相位信號S4,將閘信號S5輸出至構成整流器單元20的絕緣閘雙極電晶體20A。又,閘信號作成電路85根據再生開始檢測電路80已輸出之再生開始信號S1,將閘信號S5輸出至絕緣閘雙極電晶體20A。且,閘信號作成電路85根據停止信號產生電路70已輸出之停止信號S2而停止閘信號S5的輸出。 The gate signal generating circuit 85 outputs the gate signal S5 to the insulating gate bipolar transistor 20A constituting the rectifier unit 20 based on the phase signal S4 which the phase detecting circuit 35 has output. Further, the gate signal generating circuit 85 outputs the gate signal S5 to the insulating gate bipolar transistor 20A based on the regeneration start signal S1 output from the regeneration start detecting circuit 80. Further, the gate signal generating circuit 85 stops the output of the gate signal S5 based on the stop signal S2 that the stop signal generating circuit 70 has output.
馬達控制裝置100在馬達300進行動力運轉時係使整流器單元20以交流-直流變換模式進行動作。另一方面,當馬達300為再生狀態,則馬達控制裝置100使整流器單元20以直流-交流變換模式進行動作。 The motor control device 100 operates the rectifier unit 20 in the AC-DC conversion mode when the motor 300 performs the power running. On the other hand, when the motor 300 is in the regenerative state, the motor control device 100 causes the rectifier unit 20 to operate in the DC-AC conversion mode.
成為再生狀態一事係由再生開始檢測電路80進行檢測。當成為再生狀態時,從閘信號作成電路85輸出閘信號S5至整流器單元20。整流器單元20係藉由閘信號S5而被控制,絕緣閘雙極電晶體20A則藉由電源相位時序而僅通電120°區間。進行所謂120°通電的電源再生控制。藉由電源再生控制而使馬達300的發電電力再生於三相電源200。 The regeneration state is detected by the regeneration start detecting circuit 80. When it is in the regenerative state, the gate signal generating circuit 85 outputs the gate signal S5 to the rectifier unit 20. The rectifier unit 20 is controlled by the gate signal S5, and the insulating gate bipolar transistor 20A is energized only by the 120° interval by the power supply phase timing. Power regeneration control called 120° energization is performed. The generated electric power of the motor 300 is regenerated by the three-phase power supply 200 by the power regeneration control.
然後,若馬達300從再生狀態改變成動力運轉狀態(也包含再生狀態結束),馬達控制裝置100會再度使整流器單元20以交流-直流變換模式動作。成為動力運轉狀態一事係由極性判定電路65所檢測。由於當檢測到已成為動 力運轉狀態,則停止信號產生電路70會輸出停止信號S2,所以從閘信號作成電路85不會輸出閘信號S5,而停止電源再生。 Then, when the motor 300 is changed from the regenerative state to the power running state (including the completion of the regenerative state), the motor control device 100 again causes the rectifier unit 20 to operate in the AC-DC conversion mode. The power running state is detected by the polarity determining circuit 65. Because when it is detected that it has become moving In the force operation state, the stop signal generating circuit 70 outputs the stop signal S2. Therefore, the slave gate signal generating circuit 85 does not output the gate signal S5, and stops the power source regeneration.
馬達控制裝置100為了檢測馬達控制裝置100及馬達300的消費電力,具備有係數乘算電路110、電力運算電路120、濾波器電路130、積算電力電路140。 The motor control device 100 includes a coefficient multiplication circuit 110, a power calculation circuit 120, a filter circuit 130, and an integrated power circuit 140 in order to detect the power consumption of the motor control device 100 and the motor 300.
係數乘算電路110將已設定好的係數乘以平均化電路60已平均化的直流電流,推定整流器20輸出的直流電流值。設定於係數乘算電路110的係數,在馬達300之動力運轉時與再生時為不同的值。動力運轉時與再生時之係數,係在實際之使用狀態下事先測定,而設定該所測定到的值。另外,由於整流器20的損失係與直流電流的大小成比例,故係數可預見整流器20的損失而事先設定好,如此可進行更正確的消費電力運算。 The coefficient multiplication circuit 110 multiplies the set coefficient by the DC current averaged by the averaging circuit 60, and estimates the DC current value output from the rectifier 20. The coefficient set in the coefficient multiplying circuit 110 is a value different from that at the time of power running of the motor 300. The coefficient during the power running and the regeneration is measured in advance in the actual use state, and the measured value is set. In addition, since the loss of the rectifier 20 is proportional to the magnitude of the direct current, the coefficient can be set in advance foreseeing the loss of the rectifier 20, so that a more accurate consumption power calculation can be performed.
電力運算電路120將係數乘算電路110所推定出之直流電流與整流器20之直流電壓相乘而運算電力。 The power calculation circuit 120 multiplies the DC current estimated by the coefficient multiplication circuit 110 by the DC voltage of the rectifier 20 to calculate the power.
濾波器電路130係將以電力運算電路120運算出之電力波形之高頻份刪減的低通濾波器。 The filter circuit 130 is a low-pass filter that cuts off high-frequency components of the power waveform calculated by the power calculation circuit 120.
積算電力電路140係運算積算電力量,該積算電力量係合計了將已通過濾波器電路130且無雜訊的電力波形進行時間積分而馬達控制裝置100供給至馬達300的電力量、由馬達300再生的電力量、馬達控制裝置100本身已消費的電力量者。經運算之積算電力量被輸出至外部的裝置。 The integrated power circuit 140 calculates an integrated power amount that totals the amount of electric power that the motor control device 100 supplies to the motor 300 by integrating the power waveform that has passed through the filter circuit 130 and is free of noise, and the motor 300 The amount of electric power to be regenerated, and the amount of electric power that the motor control device 100 itself has consumed. The calculated integrated power amount is output to an external device.
另外,亦可將三相電源200之三相電源電壓進行 全波整流而算出電源電壓的平均值,把係數乘上電源電壓平均值者、與係數乘上經平均化之直流電流者進行乘算,通過濾波器電路130而運算平均電力。 In addition, the three-phase power supply voltage of the three-phase power supply 200 can also be performed. The average value of the power supply voltage is calculated by full-wave rectification, the coefficient is multiplied by the average value of the power supply voltage, and the coefficient is multiplied by the averaged DC current, and the average power is calculated by the filter circuit 130.
又,反應器10R、10S、10T亦可較電流檢測器45R、45S配置於靠電源側。在本實施形態中,係將1台轉換器單元30連接於1台整流器單元20,但即使是將複數台轉換器單元30連接於1台整流器單元20的形態,亦可進行消費電力的運算。 Further, the reactors 10R, 10S, and 10T may be disposed on the power source side than the current detectors 45R and 45S. In the present embodiment, one converter unit 30 is connected to one rectifier unit 20. However, even if a plurality of converter units 30 are connected to one rectifier unit 20, power consumption can be calculated.
馬達控制裝置100檢測流通於三相電源200的電流,將係數乘以該所檢測出的電流而推定整流器單元20輸出之直流電流值,將整流器單元20之輸出電壓乘以推定出之直流電流值而運算平均電力。並且,將運算出之平均電力以時間進行積分,藉此來求出正確的消費電力。 The motor control device 100 detects the current flowing through the three-phase power supply 200, multiplies the coefficient by the detected current, estimates the DC current value output from the rectifier unit 20, and multiplies the output voltage of the rectifier unit 20 by the estimated DC current value. And calculate the average power. Then, the calculated average power is integrated over time to obtain the correct power consumption.
另外,構成本實施形態之馬達控制裝置100的各電路,可以硬體構成,亦可使用軟體而形成於微電腦等之內部。 Further, each of the circuits constituting the motor control device 100 of the present embodiment may be configured as a hard body or may be formed inside a microcomputer or the like using a soft body.
〔馬達控制裝置的動作〕 [Operation of Motor Control Unit]
接著,一面參照圖2及圖3,一面說明馬達控制裝置100的具體動作。圖2及圖3係用以說明圖1所示之馬達控制裝置之動作的波形圖。 Next, a specific operation of the motor control device 100 will be described with reference to FIGS. 2 and 3. 2 and 3 are waveform diagrams for explaining the operation of the motor control device shown in Fig. 1.
圖2(A)所示之波形係三相電源200分別施加於三相電源線R、S、T之各電源線的電源電壓VR、VS、VT。電源電壓VR、VS、VT具有相同的電壓波形而各相位分別相差120°。 The waveform shown in FIG. 2(A) is a three-phase power supply 200 applied to the power supply voltages VR, VS, and VT of the respective power supply lines of the three-phase power supply lines R, S, and T, respectively. The power supply voltages VR, VS, and VT have the same voltage waveform and each phase differs by 120°.
圖2(B)顯示圖1之相位檢測電路35輸出的相位信號S4。相位檢測電路35比較三相電源線R、S、T的電源電壓VR、VS、VT,輸出相位信號PR1、PS1、PT1、PR2、PS2、PT2。 Fig. 2(B) shows the phase signal S4 output from the phase detecting circuit 35 of Fig. 1. The phase detecting circuit 35 compares the power supply voltages VR, VS, and VT of the three-phase power supply lines R, S, and T, and outputs phase signals PR1, PS1, PT1, PR2, PS2, and PT2.
比較電源電壓VR、電源電壓VS、或電源電壓VT,當電源電壓VR較電源電壓VS、或電源電壓VT大時,相位信號PR1為HI,當電源電壓VR較電源電壓VS、或電源電壓VT小時,相位信號PR1為LOW。當電源電壓VS較電源電壓VR、或電源電壓VT大時,相位信號PS1為HI,當電源電壓VS較電源電壓VR、或電源電壓VT小時,相位信號PS1為LOW。當電源電壓VT較電源電壓VR、或電源電壓VS大時,相位信號PT1為HI,當電源電壓VT較電源電壓VR、或電源電壓VS小時,相位信號PT1為LOW。 Comparing the power supply voltage VR, the power supply voltage VS, or the power supply voltage VT, when the power supply voltage VR is larger than the power supply voltage VS or the power supply voltage VT, the phase signal PR1 is HI, when the power supply voltage VR is lower than the power supply voltage VS, or the power supply voltage VT The phase signal PR1 is LOW. When the power supply voltage VS is larger than the power supply voltage VR or the power supply voltage VT, the phase signal PS1 is HI, and when the power supply voltage VS is smaller than the power supply voltage VR or the power supply voltage VT, the phase signal PS1 is LOW. When the power supply voltage VT is larger than the power supply voltage VR or the power supply voltage VS, the phase signal PT1 is HI. When the power supply voltage VT is lower than the power supply voltage VR or the power supply voltage VS, the phase signal PT1 is LOW.
比較電源電壓VR、電源電壓VS、或電源電壓VT,當電源電壓VR較電源電壓VS、或電源電壓VT小時,相位信號PR2為HI,當電源電壓VR較電源電壓VS、或電源電壓VT大時,相位信號PR2為LOW。當電源電壓VS較電源電壓VR、或電源電壓VT小時,相位信號PS2為HI,當電源電壓VS較電源電壓VR、或電源電壓VT大時,相位信號PS2為LOW。當電源電壓VT較電源電壓VR、或電源電壓VS小時,相位信號PT2為HI,當電源電壓VT較電源電壓VR、或電源電壓VS大時,相位信號PT2為LOW。 Comparing the power supply voltage VR, the power supply voltage VS, or the power supply voltage VT, when the power supply voltage VR is lower than the power supply voltage VS or the power supply voltage VT, the phase signal PR2 is HI, when the power supply voltage VR is greater than the power supply voltage VS or the power supply voltage VT The phase signal PR2 is LOW. When the power supply voltage VS is smaller than the power supply voltage VR or the power supply voltage VT, the phase signal PS2 is HI, and when the power supply voltage VS is larger than the power supply voltage VR or the power supply voltage VT, the phase signal PS2 is LOW. When the power supply voltage VT is lower than the power supply voltage VR or the power supply voltage VS, the phase signal PT2 is HI, and when the power supply voltage VT is larger than the power supply voltage VR or the power supply voltage VS, the phase signal PT2 is LOW.
因此,相位信號PR1、PS1、PT1表示各相之電源電壓較其他之相之電壓大的區間,相位信號PR2、PS2、PT2 表示各相之電源電壓在負側比其他之相之電壓大的區間。 Therefore, the phase signals PR1, PS1, and PT1 indicate intervals in which the power supply voltage of each phase is larger than the voltages of the other phases, and the phase signals PR2, PS2, and PT2. A section in which the power supply voltage of each phase is larger on the negative side than the voltage of the other phase.
馬達300之動力運轉時,將來自於三相電源200的三相交流電力以整流器單元20之飛輪(freewheel)二極體20D進行整流,將已整流之直流電力輸出至電容器25與轉換器單元30,變換成交流電力而驅動馬達300。在馬達300加速時,整流器單元20輸出之直流電壓會如圖3(A)所示般慢慢低下,由平均化電路60輸出的平均直流電流會漸漸變大。然後,當馬達300成為定速狀態,則平均直流電流之值會成為一定。用以得到平均直流電流值的動作如後所述。馬達300之動力運轉時,閘信號作成電路85會停止動作。 When the power of the motor 300 is running, the three-phase AC power from the three-phase power source 200 is rectified by the freewheel diode 20D of the rectifier unit 20, and the rectified DC power is output to the capacitor 25 and the converter unit 30. The motor 300 is driven by conversion to alternating current power. When the motor 300 is accelerated, the DC voltage output from the rectifier unit 20 is slowly lowered as shown in Fig. 3(A), and the average DC current output from the averaging circuit 60 is gradually increased. Then, when the motor 300 is in the constant speed state, the value of the average DC current becomes constant. The action for obtaining the average DC current value will be described later. When the power of the motor 300 is being operated, the brake signal generating circuit 85 is stopped.
馬達300之再生時,整流器單元20輸出之直流電壓會如圖3(A)所示般慢慢變高。整流器單元20輸出之直流電壓會比電源電壓峰值檢測電路75檢測之電源電壓的峰值還高。再生開始檢測電路80輸出再生開始信號S1。 When the motor 300 is regenerated, the DC voltage output from the rectifier unit 20 gradually increases as shown in Fig. 3(A). The DC voltage output from the rectifier unit 20 is higher than the peak value of the power supply voltage detected by the power supply voltage peak detecting circuit 75. The regeneration start detecting circuit 80 outputs a regeneration start signal S1.
當再生開始信號S1輸入至閘信號作成電路85,則閘信號作成電路85根據相位信號PR1、PS1、PT1、PR2、PS2、PT2來作成閘信號S5。所作成之閘信號S5係輸出至整流器單元20。 When the reproduction start signal S1 is input to the gate signal creation circuit 85, the gate signal creation circuit 85 creates the gate signal S5 based on the phase signals PR1, PS1, PT1, PR2, PS2, and PT2. The generated gate signal S5 is output to the rectifier unit 20.
整流器單元20的6個電晶體20A依照閘信號S5以120°的導通模式進行導通,將再生電力再生於三相電源200。 The six transistors 20A of the rectifier unit 20 are turned on in the 120° conduction mode in accordance with the gate signal S5, and the regenerative electric power is regenerated in the three-phase power supply 200.
圖2(C)顯示以電流選擇信號作成電路40作成的電流選擇信號S3之內容。圖2(C)中S、R、T及-S、-R、-T之表記,係指分別選擇流通於三相電源線R、S、T的電 流之IR、IS、IT及其反相信號之意。 Fig. 2(C) shows the contents of the current selection signal S3 created by the current selection signal creation circuit 40. In Fig. 2(C), the expressions of S, R, T, and -S, -R, and -T refer to the electric power respectively selected to flow through the three-phase power lines R, S, and T. The meaning of IR, IS, IT and its inverted signals.
如圖2(D)所示之流通於三相電源線R、S、T的各相之電流IR、IS、IT,由於係動作成整流器單元20藉由120°導通模式而將各相之電流再生於三相電源200側,故呈以分別相差電角度120°地流通電流IR、IS、IT的態樣。 The currents IR, IS, and IT flowing through the phases of the three-phase power lines R, S, and T as shown in Fig. 2(D) are operated by the rectifier unit 20 to conduct currents of the respective phases by the 120° conduction mode. Since it is regenerated on the side of the three-phase power supply 200, the currents IR, IS, and IT are distributed at 120 degrees apart.
例如,圖2(C)之電流選擇信號「-S」表示:選擇流通於三相電源線S的電流IS,選擇器電路50輸出該電流之極性反相信號。又,圖2(C)之電流選擇信號「R」表示:選擇流通於三相電源線R的電流IR,選擇器電路50將該電流直接輸出。圖2(C)之電流選擇信號「-T」表示:選擇流通於三相電源線T的電流IT,選擇器電路50輸出該電流之極性反相信號。電流選擇信號「S」、「-R」、「T」所示之事項,依上述之電流選擇信號「-S」、「R」、「-T」所示事項為準。 For example, the current selection signal "-S" of Fig. 2(C) indicates that the current IS flowing through the three-phase power line S is selected, and the selector circuit 50 outputs the polarity inversion signal of the current. Further, the current selection signal "R" of Fig. 2(C) indicates that the current IR flowing through the three-phase power supply line R is selected, and the selector circuit 50 directly outputs the current. The current selection signal "-T" of Fig. 2(C) indicates that the current IT flowing through the three-phase power supply line T is selected, and the selector circuit 50 outputs the polarity inversion signal of the current. The items indicated by the current selection signals "S", "-R", and "T" are subject to the above-mentioned current selection signals "-S", "R", and "-T".
圖2(E)表示將藉由選擇器電路50所選擇出之電流依時序列排列的電流選擇輸出。平均化電路60當藉由選擇器電路50選擇三相份的電流時,則將該等三相份的電流平均化而輸出。 2(E) shows the current selection output in which the current selected by the selector circuit 50 is arranged in time series. When the current of the three-phase share is selected by the selector circuit 50, the averaging circuit 60 averages the currents of the three-phase parts and outputs them.
圖2(F)係平均化電路60輸出的平均直流電流之波形。平均化電路60依每次三相份之電流值的輸入結束而進行平均化處理,因應電流值的變化,平均直流電流之值會有階段性的變化。 2(F) is a waveform of the average DC current output from the averaging circuit 60. The averaging circuit 60 performs averaging processing according to the end of the input of the current value of each three-phase component, and the value of the average DC current changes stepwise in response to the change in the current value.
圖3(B)顯示使時間軸之長度較圖2(F)縮短時的平均直流電流之變化。由於在再生期間中,電流係從馬達300側流向三相電源200側,因此若在動力運轉狀態中,例 如作成電流選擇信號S3以輸出正極性之平均直流電流之值,則再生時之平均直流電流值會成為負極性。當馬達300的旋轉速度降低而再生電力變少時,則平均直流電流之值也會相應地變低。 Fig. 3(B) shows the change in the average DC current when the length of the time axis is shortened as compared with Fig. 2(F). Since the current flows from the motor 300 side to the three-phase power source 200 side during the regeneration period, in the power running state, for example, When the current selection signal S3 is generated to output the value of the average direct current of the positive polarity, the average DC current value at the time of regeneration becomes negative. When the rotational speed of the motor 300 is lowered and the regenerative electric power is reduced, the value of the average direct current is correspondingly lowered.
理論上,在平均直流電流之值成為「0」的時點可判定為再生已結束。然而,平均直流電流之值變成「0」的附近的電流變化不安定,容易有誤判。因此,在本實施形態中,是否已從再生改變成動力運轉,係藉由如下來判定:在極性判定電路65中,平均直流電流之值超過事先預定好之值而朝零變化後,在經過了一定時間的時點下,平均直流電流之值是否已變成0,或者其極性是否有變化。 Theoretically, when the value of the average DC current becomes "0", it can be determined that the regeneration has ended. However, the current change in the vicinity of the average DC current value of "0" becomes unstable, and it is easy to make a misjudgment. Therefore, in the present embodiment, whether or not the power has been changed from the regeneration to the power operation is determined by the polarity determination circuit 65 that the value of the average DC current exceeds a predetermined value and changes to zero. At a certain time, the average DC current value has become 0, or its polarity has changed.
因此,在本實施形態中誤判的可能性較少。當極性判定電路65檢測到平均直流電流之值變成0、或其極性反相,則停止信號產生電路70產生停止信號S2。 Therefore, there is less possibility of erroneous determination in the present embodiment. When the polarity determination circuit 65 detects that the value of the average direct current becomes 0 or its polarity is inverted, the stop signal generating circuit 70 generates the stop signal S2.
當從停止信號產生電路70輸出停止信號S2時,則閘信號作成電路85停止閘信號的作成動作,整流器單元20的6個電晶體20A成為OFF狀態。之後,若轉換器單元30動作,則通過藉由整流器單元20的6個二極體20D所構成的整流電路來輸出直流電力。 When the stop signal S2 is output from the stop signal generating circuit 70, the brake signal generating circuit 85 stops the operation of the gate signal, and the six transistors 20A of the rectifier unit 20 are turned off. Thereafter, when the converter unit 30 operates, DC power is output by the rectifier circuit constituted by the six diodes 20D of the rectifier unit 20.
圖3(C)係藉由將事先設定於係數乘算電路110之係數乘以平均化電路60輸出之平均直流電流而求得的整流器單元20之直流電流推定值。在馬達300之動力運轉時,比起圖3(B)的平均直流電流之上升角度,圖3(C)的直流電流推定值之上升角度較大。另一方面,當馬達300再生時,圖3(B) 的平均直流電流之上升角度與圖3(C)的直流電流推定值之上升角度大致相同。此係由於使設定於係數乘算電路110之係數在馬達300之動力運轉時與再生時為不同值之故。 3(C) is a DC current estimated value of the rectifier unit 20 obtained by multiplying the coefficient previously set in the coefficient multiplying circuit 110 by the average DC current output from the averaging circuit 60. When the power of the motor 300 is running, the rising angle of the DC current estimated value of FIG. 3(C) is larger than the rising angle of the average DC current of FIG. 3(B). On the other hand, when the motor 300 is regenerated, Figure 3(B) The rising angle of the average DC current is substantially the same as the rising angle of the DC current estimated value of FIG. 3(C). This is because the coefficient set in the coefficient multiplying circuit 110 is different between the power running of the motor 300 and the time of regeneration.
圖3(D)係通過了濾波器電路130之後所得的平均電力之波形。圖3(E)係藉由在積算電力電路140將平均電力進行時間積分而得的電力量之波形。從圖3(E)可知:馬達300之動力運轉時,電力量會增加,而再生時電力量則會減少。 FIG. 3(D) is a waveform of the average power obtained after passing through the filter circuit 130. FIG. 3(E) is a waveform of the amount of electric power obtained by time-integrating the average electric power in the integrated electric power circuit 140. As can be seen from Fig. 3(E), when the power of the motor 300 is operated, the amount of electric power is increased, and the amount of electric power during regeneration is reduced.
藉由監測在積算電力電路140所運算出之電力量,可簡單且正確地以低成本掌握包含馬達控制裝置100的馬達300之消費電力。可簡單地掌握電力量,係由於無須使用馬達常數等之多個參數之故;而可為低成本,則係由於不設置用以運算電力的特別的檢測器,而是利用為了控制整流器而設置之既存的檢測器之故。 By monitoring the amount of electric power calculated by the integrated power circuit 140, the power consumption of the motor 300 including the motor control device 100 can be easily and accurately obtained at low cost. It is possible to easily grasp the amount of electric power because it is not necessary to use a plurality of parameters such as a motor constant; and it is low-cost, because it is not provided with a special detector for calculating electric power, but is provided for controlling the rectifier. The existing detector is the reason.
如以上所述,根據本實施形態之馬達控制裝置,可以低成本簡單且正確地掌握消費電力。 As described above, according to the motor control device of the present embodiment, the power consumption can be easily and accurately grasped at a low cost.
10R、10S、10T‧‧‧反應器 10R, 10S, 10T‧‧‧ reactor
20‧‧‧整流器單元 20‧‧‧Rectifier unit
20A‧‧‧絕緣閘雙極電晶體 20A‧‧‧Insulated gate bipolar transistor
20D‧‧‧二極體 20D‧‧‧ diode
25‧‧‧電容器 25‧‧‧ capacitor
30‧‧‧轉換器單元 30‧‧‧ converter unit
30A‧‧‧絕緣閘雙極電晶體 30A‧‧‧Insulated gate bipolar transistor
30D‧‧‧二極體 30D‧‧‧ diode
35‧‧‧相位檢測電路 35‧‧‧ phase detection circuit
40‧‧‧電流選擇信號作成電路 40‧‧‧ Current selection signal making circuit
45R、45S‧‧‧電流檢測器 45R, 45S‧‧‧ current detector
50‧‧‧選擇器電路 50‧‧‧Selector Circuit
55‧‧‧邊緣檢測電路 55‧‧‧Edge detection circuit
60‧‧‧平均化電路 60‧‧‧Averaging circuit
65‧‧‧極性判定電路 65‧‧‧Polarity determination circuit
70‧‧‧停止信號產生電路 70‧‧‧ stop signal generation circuit
75‧‧‧電源電壓峰值檢測電路 75‧‧‧Power supply voltage peak detection circuit
80‧‧‧再生開始檢測電路 80‧‧‧Regeneration start detection circuit
85‧‧‧閘信號作成電路 85‧‧‧ brake signal making circuit
100‧‧‧馬達控制裝置 100‧‧‧Motor control unit
110‧‧‧係數乘算電路 110‧‧‧ coefficient multiplication circuit
120‧‧‧電力運算電路 120‧‧‧Power calculation circuit
130‧‧‧濾波器電路 130‧‧‧Filter circuit
140‧‧‧積算電力電路 140‧‧‧Integrated power circuit
200‧‧‧三相電源 200‧‧‧Three-phase power supply
300‧‧‧馬達 300‧‧‧Motor
R、S、T‧‧‧三相電源線 R, S, T‧‧‧ three-phase power cord
S1‧‧‧再生開始信號 S1‧‧‧ regeneration start signal
S2‧‧‧停止信號 S2‧‧‧ stop signal
S3‧‧‧電流選擇信號 S3‧‧‧ current selection signal
S4‧‧‧相位信號 S4‧‧‧ phase signal
S5‧‧‧閘信號 S5‧‧‧ gate signal
圖1係本實施形態之馬達控制裝置的方塊圖。 Fig. 1 is a block diagram of a motor control device of the embodiment.
圖2(A)~(F)係用以說明圖1所示之馬達控制裝置之動作的波形圖。 2(A) to (F) are waveform diagrams for explaining the operation of the motor control device shown in Fig. 1.
圖3(A)~(E)係用以說明圖1所示之馬達控制裝置之動作的波形圖。 3(A) to (E) are waveform diagrams for explaining the operation of the motor control device shown in Fig. 1.
10R、10S、10T‧‧‧反應器 10R, 10S, 10T‧‧‧ reactor
20‧‧‧整流器單元 20‧‧‧Rectifier unit
20A‧‧‧絕緣閘雙極電晶體 20A‧‧‧Insulated gate bipolar transistor
20D‧‧‧二極體 20D‧‧‧ diode
25‧‧‧電容器 25‧‧‧ capacitor
30‧‧‧轉換器單元 30‧‧‧ converter unit
30A‧‧‧絕緣閘雙極電晶體 30A‧‧‧Insulated gate bipolar transistor
30D‧‧‧二極體 30D‧‧‧ diode
35‧‧‧相位檢測電路 35‧‧‧ phase detection circuit
40‧‧‧電流選擇信號作成電路 40‧‧‧ Current selection signal making circuit
45R、45S‧‧‧電流檢測器 45R, 45S‧‧‧ current detector
50‧‧‧選擇器電路 50‧‧‧Selector Circuit
55‧‧‧邊緣檢測電路 55‧‧‧Edge detection circuit
60‧‧‧平均化電路 60‧‧‧Averaging circuit
65‧‧‧極性判定電路 65‧‧‧Polarity determination circuit
70‧‧‧停止信號產生電路 70‧‧‧ stop signal generation circuit
75‧‧‧電源電壓峰值檢測電路 75‧‧‧Power supply voltage peak detection circuit
80‧‧‧再生開始檢測電路 80‧‧‧Regeneration start detection circuit
85‧‧‧閘信號作成電路 85‧‧‧ brake signal making circuit
100‧‧‧馬達控制裝置 100‧‧‧Motor control unit
110‧‧‧係數乘算電路 110‧‧‧ coefficient multiplication circuit
120‧‧‧電力運算電路 120‧‧‧Power calculation circuit
130‧‧‧濾波器電路 130‧‧‧Filter circuit
140‧‧‧積算電力電路 140‧‧‧Integrated power circuit
200‧‧‧三相電源 200‧‧‧Three-phase power supply
300‧‧‧馬達 300‧‧‧Motor
R、S、T‧‧‧三相電源線 R, S, T‧‧‧ three-phase power cord
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011271484A JP5351246B2 (en) | 2011-12-12 | 2011-12-12 | Motor control device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201334394A TW201334394A (en) | 2013-08-16 |
TWI558087B true TWI558087B (en) | 2016-11-11 |
Family
ID=48589352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101144705A TWI558087B (en) | 2011-12-12 | 2012-11-29 | Motor control device (2) |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5351246B2 (en) |
KR (1) | KR101724646B1 (en) |
CN (1) | CN103166570B (en) |
TW (1) | TWI558087B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017189000A (en) * | 2016-04-05 | 2017-10-12 | 山洋電気株式会社 | Power Conditioner |
US10050574B2 (en) * | 2016-05-06 | 2018-08-14 | The Boeing Company | Management of motor regeneration |
WO2018139331A1 (en) * | 2017-01-24 | 2018-08-02 | 株式会社日立産機システム | Motor power conversion device, and motor power conversion system using same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1135271A (en) * | 1994-07-25 | 1996-11-06 | 大金工业株式会社 | High efficiency motor apparatus and method for controlling same |
JP2002192588A (en) * | 2000-12-26 | 2002-07-10 | Sumitomo Heavy Ind Ltd | Injection molding machine |
CN101339644A (en) * | 2007-07-04 | 2009-01-07 | 株式会社日立制作所 | Method of calculating electric power consumption saving effect in energy-saving drive support method and system |
JP2010110936A (en) * | 2008-11-05 | 2010-05-20 | Japan Steel Works Ltd:The | Method and device for displaying electric power of electric injection molding machine |
CN101738979A (en) * | 2008-11-07 | 2010-06-16 | 发那科株式会社 | Controller for calculating electric power consumption of industrial machine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0866056A (en) * | 1994-08-24 | 1996-03-08 | Mitsubishi Electric Corp | Inverter apparatus |
JP3582523B2 (en) * | 2002-09-17 | 2004-10-27 | トヨタ自動車株式会社 | Electric load device, abnormality processing method, and computer-readable recording medium recording a program for causing a computer to execute electric load abnormality processing |
JP4175151B2 (en) * | 2003-03-18 | 2008-11-05 | 株式会社日立製作所 | Load control system |
JP4663684B2 (en) * | 2007-06-04 | 2011-04-06 | 株式会社日立製作所 | AC motor control device and control method |
-
2011
- 2011-12-12 JP JP2011271484A patent/JP5351246B2/en active Active
-
2012
- 2012-11-29 TW TW101144705A patent/TWI558087B/en active
- 2012-12-03 KR KR1020120139051A patent/KR101724646B1/en active IP Right Grant
- 2012-12-05 CN CN201210517387.9A patent/CN103166570B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1135271A (en) * | 1994-07-25 | 1996-11-06 | 大金工业株式会社 | High efficiency motor apparatus and method for controlling same |
JP2002192588A (en) * | 2000-12-26 | 2002-07-10 | Sumitomo Heavy Ind Ltd | Injection molding machine |
CN101339644A (en) * | 2007-07-04 | 2009-01-07 | 株式会社日立制作所 | Method of calculating electric power consumption saving effect in energy-saving drive support method and system |
JP2010110936A (en) * | 2008-11-05 | 2010-05-20 | Japan Steel Works Ltd:The | Method and device for displaying electric power of electric injection molding machine |
CN101738979A (en) * | 2008-11-07 | 2010-06-16 | 发那科株式会社 | Controller for calculating electric power consumption of industrial machine |
Also Published As
Publication number | Publication date |
---|---|
JP2013123341A (en) | 2013-06-20 |
TW201334394A (en) | 2013-08-16 |
JP5351246B2 (en) | 2013-11-27 |
CN103166570A (en) | 2013-06-19 |
KR101724646B1 (en) | 2017-04-07 |
CN103166570B (en) | 2016-05-04 |
KR20130066510A (en) | 2013-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101799957B1 (en) | Motor control apparatus | |
JP5026553B2 (en) | Motor drive device having function of dynamically switching conversion operation mode of AC / DC converter | |
US20110298402A1 (en) | Motor drive device with function of switching to power regenerative operation mode | |
US8729846B2 (en) | Motor drive system and control method thereof | |
WO2006103869A1 (en) | Current control apparatus and current offset correction method thereof | |
US20130271048A1 (en) | Synchronous motor control device for controlling synchronous motor to carry out power regenerative operation and stop synchronous motor at the time of power failure | |
JP2007049837A (en) | Controller for power converter | |
TWI558087B (en) | Motor control device (2) | |
US10224860B2 (en) | Control device for rotary electrical machine and control method | |
US20230152375A1 (en) | Deterioration estimation device and deterioration estimation program for power conversion device | |
US10236813B2 (en) | Method and device for detecting a control method of an inverter | |
JP3616527B2 (en) | Electric motor drive power converter | |
JP2016019439A (en) | Fault detection device for semiconductor power converter | |
CN101471622B (en) | Apparatus for controlling inverter | |
JP6530244B2 (en) | Square wave power regeneration device | |
JP2011166989A (en) | Drive device | |
JP2016092989A (en) | Motor control device | |
JP2016059114A (en) | Motor generator device and control method for the same | |
JP5933311B2 (en) | Power converter | |
KR20110132939A (en) | Apparatus for controlling motor and operation of compressor including the motor | |
KR20180137994A (en) | Power transforming apparatus and air conditioner including the same |