TWI524439B - Semiconductor device and method of forming vertical interconnect structure using stud bumps - Google Patents

Semiconductor device and method of forming vertical interconnect structure using stud bumps Download PDF

Info

Publication number
TWI524439B
TWI524439B TW099115260A TW99115260A TWI524439B TW I524439 B TWI524439 B TW I524439B TW 099115260 A TW099115260 A TW 099115260A TW 99115260 A TW99115260 A TW 99115260A TW I524439 B TWI524439 B TW I524439B
Authority
TW
Taiwan
Prior art keywords
interconnect structure
semiconductor
conductive layer
layer
component
Prior art date
Application number
TW099115260A
Other languages
Chinese (zh)
Other versions
TW201104771A (en
Inventor
瑞莎A 派蓋菈
杜雍台
黃双武
拉簡德拉D 潘斯
Original Assignee
史達晶片有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/492,360 external-priority patent/US8193034B2/en
Application filed by 史達晶片有限公司 filed Critical 史達晶片有限公司
Publication of TW201104771A publication Critical patent/TW201104771A/en
Application granted granted Critical
Publication of TWI524439B publication Critical patent/TWI524439B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73227Wire and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1035All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1041Special adaptations for top connections of the lowermost container, e.g. redistribution layer, integral interposer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

半導體元件和使用凸塊形成垂直互連結構之方法Semiconductor component and method of forming vertical interconnect structure using bumps

本發明基本上有關於半導體元件,特別是關於針對扇出晶圓級晶片尺寸封裝(fan-out wafer level chip scale package;FO-WLCSP)利用凸柱凸塊(stud bump)及整合式被動元件(integrated passive device;IPD)形成垂直互連結構之半導體元件及方法。The present invention relates generally to semiconductor devices, and more particularly to the use of stud bumps and integrated passive components for a fan-out wafer level chip scale package (FO-WLCSP). Integrated passive device; IPD) A semiconductor component and method for forming a vertical interconnect structure.

半導體元件普遍見於近代電子產品之中。不同半導體元件內含電氣組件的數目和密度各有所差異。獨件式半導體元件通常包含一種電氣組件,例如,發光二極體(light emitting diode;LED)、小信號電晶體、電阻器、電容器、電感器以及功率型金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor;MOSFET)。整合式半導體元件則基本上內含數百到數百萬個電氣組件。整合式半導體元件的實例包含微控制器(microcontroller)、微處理器(microprocessor)、電荷耦合元件(charged-coupled device;CCD)、太陽能電池(solar cell)以及數位微鏡元件(digital micro-mirror device;DMD)。Semiconductor components are commonly found in modern electronics. The number and density of electrical components contained in different semiconductor components vary. A single-piece semiconductor component typically includes an electrical component such as a light emitting diode (LED), a small signal transistor, a resistor, a capacitor, an inductor, and a power metal oxide semiconductor field effect transistor (metal) Oxide semiconductor field effect transistor; MOSFET). Integrated semiconductor components typically contain hundreds to millions of electrical components. Examples of integrated semiconductor components include a microcontroller, a microprocessor, a charged-coupled device (CCD), a solar cell, and a digital micro-mirror device. ;DMD).

半導體元件執行種類繁多的功能,諸如高速計算、傳送及接收電磁信號、控制電子裝置、將太陽光轉換成電力以及產生電視顯示器之視覺投映。半導體元件應用於娛樂、通信、功率轉換、網路、電腦以及消費性產品等領域。半導體元件亦可見於軍事應用、航空、汽車、工業控制器以及辦公室設備。Semiconductor components perform a wide variety of functions, such as high speed computing, transmitting and receiving electromagnetic signals, controlling electronics, converting sunlight into electricity, and producing visual projections of television displays. Semiconductor components are used in entertainment, communications, power conversion, networking, computers, and consumer products. Semiconductor components are also found in military applications, aerospace, automotive, industrial controllers, and office equipment.

半導體元件利用半導體材料之電氣特性。半導體材料之原子結構使得其導電性可以應用電場或經由摻雜(doping)程序加以控制。摻雜係將雜質掺入半導體材料以操縱及控制半導體元件之導電性。Semiconductor components utilize the electrical properties of semiconductor materials. The atomic structure of the semiconductor material allows its conductivity to be controlled using an electric field or via a doping procedure. The doping incorporates impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor components.

半導體元件包含主動式(active)及被動式(passive)電氣結構。主動式結構,包含雙載子及場效式電晶體,控制電流的流動。藉由改變摻雜的程度和施加電場或基極電流,對電晶體中的電流流動加以提升或抑制。被動式結構,包含電阻器、電容器和電感器,建立特定之電壓和電流間的關係以實現各種電氣功能。被動式和主動式結構彼此電性連接以構成電路,其致使半導體元件可以執行高速計算以及其他有有用的功能。Semiconductor components include active and passive electrical structures. The active structure consists of a bi-carrier and a field-effect transistor that controls the flow of current. The current flow in the transistor is boosted or suppressed by varying the degree of doping and applying an electric or base current. Passive structures, including resistors, capacitors, and inductors, establish a specific relationship between voltage and current to achieve various electrical functions. The passive and active structures are electrically connected to each other to form a circuit that enables the semiconductor component to perform high speed calculations as well as other useful functions.

半導體元件的生產一般而言係利用二個複雜的製程,意即,前端製造和後端製造,其各自均可能包含數百個步驟。前端製造包含在一半導體晶圓的表面上形成複數個晶粒。每一晶粒基本上彼此相同且包含藉由電性連接主動式和被動式組件所構成的電路。後端製造包含自完成的晶圓單片化個別晶粒並封裝晶粒以提供結構上的支承及環境隔絕。The production of semiconductor components generally utilizes two complex processes, namely, front-end fabrication and back-end fabrication, each of which may contain hundreds of steps. The front end fabrication includes forming a plurality of grains on a surface of a semiconductor wafer. Each of the dies is substantially identical to each other and includes circuitry formed by electrically connecting the active and passive components. The back end manufacturing includes self-finishing wafer singulation of individual dies and encapsulating the dies to provide structural support and environmental isolation.

半導體製造的目標之一係生產較小型的半導體元件。較小型的元件通常耗用較少之電力、具有較高之效能、且可以更有效率地生產。此外,較小型的半導體元件具有較小的覆佔面積,為小型產品所必須。較小型的晶粒尺寸可以藉由改善前端製程達成,其產生具有較小型而較高密度主動式和被動式組件之晶粒。後端製程藉由電氣互連及封裝材料上的改善可以產生具有較小覆佔面積的半導體元件封裝。One of the goals of semiconductor manufacturing is to produce smaller semiconductor components. Smaller components typically consume less power, are more efficient, and can be produced more efficiently. In addition, smaller semiconductor components have a smaller footprint and are necessary for small products. Smaller grain sizes can be achieved by improving the front end process, which produces grains with smaller and higher density active and passive components. The back-end process can result in a semiconductor component package with a smaller footprint by improvements in electrical interconnects and packaging materials.

半導體製造的另一目標係生產較高效能之半導體元件。元件效能之增進可以藉由形成能夠運作於較高速度之主動式組件而達成。在高頻應用中,諸如射頻(radio frequency;RF)無線通信,IPD常包含於半導體元件之內。IPD之實例包含電阻、電容以及電感。典型的RF系統在一或多個半導體封裝中需要多個IPD以執行所需之電氣功能。Another goal of semiconductor manufacturing is to produce higher performance semiconductor components. Improvements in component performance can be achieved by forming active components that can operate at higher speeds. In high frequency applications, such as radio frequency (RF) wireless communications, IPDs are often included within semiconductor components. Examples of IPDs include resistors, capacitors, and inductors. A typical RF system requires multiple IPDs in one or more semiconductor packages to perform the required electrical functions.

半導體封裝間的電性互連可以經由導電性的矽通孔(through silicon via;TSV)或導穿孔(through hole via;THV)達成。為了形成TSV或THV,半導體晶粒被自晶圓單片化並置於一暫時性載體之上。晶粒固定至載體時,其在半導體材料或環繞每一半導體晶粒的周邊區域切穿一穿孔。該穿孔接著被填充以電性傳導物質,例如,經由一電鍍製程之銅質沉積(deposition)。Electrical interconnections between semiconductor packages can be achieved via conductive through silicon vias (TSVs) or through hole vias (THVs). To form a TSV or THV, the semiconductor die is singulated from the wafer and placed over a temporary carrier. When the die is fixed to the carrier, it cuts through a perforation in the semiconductor material or in a peripheral region surrounding each of the semiconductor grains. The perforations are then filled with an electrically conductive substance, for example, by a copper deposition process.

由於其區域相當小,TSV及THV之形成在穿孔的填充上需要相當多的時間。完全填充之TSV可以在穿孔之間產生高應力,導致裂縫和較低之可靠度。電鍍所需之設備,例如電鍍槽,以及側壁之鈍化(passivation)均增加製造成本。此外,穿孔內部可能形成空隙,其造成缺陷並降低元件之可靠度。對於在半導體封裝中製造垂直電性導線,TSV和THV可能是緩慢且代價昂貴之方式。此等互連機制在生產良率、大封裝尺寸以及製程成本管理上亦有問題。Due to the relatively small area, the formation of TSV and THV requires considerable time on the filling of the perforations. A fully filled TSV can create high stresses between the perforations, resulting in cracks and lower reliability. Equipment required for electroplating, such as electroplating baths, and passivation of sidewalls, both increase manufacturing costs. In addition, voids may form inside the perforations which cause defects and reduce the reliability of the components. For manufacturing vertical electrical leads in semiconductor packages, TSV and THV can be slow and costly. These interconnection mechanisms also have problems in production yield, large package size, and process cost management.

其有需要提供一種用於堆疊式半導體元件之垂直互連結構。有鑑於此,在一實施例中,本發明係一種製造半導體元件的方法,其步驟包含提供一暫時性載體,以及形成一導電層於該暫時性載體之上。該導電層包含一可濕性墊片(wettable pad)。本方法之步驟更包含形成一凸柱凸塊於該可濕性墊片之上、固定一半導體晶粒或組件至該暫時性載體、沉積一封裝劑於該半導體晶粒或組件上以及該凸柱凸塊周圍、以及形成一第一互連結構於該封裝劑之一第一表面上。第一互連結構包含一第一IPD且電性連接至該凸柱凸塊。本方法之步驟更包含移除該暫時性載體、以及形成一第二互連結構於該第一互連結構對側之封裝劑之一第二表面上。It is desirable to provide a vertical interconnect structure for stacked semiconductor components. In view of this, in one embodiment, the present invention is a method of fabricating a semiconductor device, the steps of which include providing a temporary carrier and forming a conductive layer over the temporary carrier. The conductive layer comprises a wettable pad. The method further includes forming a stud bump on the wettable pad, fixing a semiconductor die or component to the temporary carrier, depositing an encapsulant on the semiconductor die or component, and the bump A pillar structure is formed around the pillar bump and a first interconnect structure is formed on the first surface of the encapsulant. The first interconnect structure includes a first IPD and is electrically connected to the stud bump. The method further includes removing the temporary carrier and forming a second interconnect structure on a second surface of one of the encapsulants on the opposite side of the first interconnect structure.

在另一實施例中,本發明係一種製造半導體元件的方法,其步驟包含提供一載體、形成一凸柱凸塊於該載體之上、固定一半導體晶粒或組件至該載體、沉積一封裝劑於該半導體晶粒或組件上以及該凸柱凸塊周圍以及形成一第一互連結構於該封裝劑之一第一表面上。第一互連結構電性連接至該凸柱凸塊。In another embodiment, the invention is a method of fabricating a semiconductor device, the method comprising the steps of: providing a carrier, forming a stud bump on the carrier, securing a semiconductor die or component to the carrier, depositing a package And surrounding the stud bump and forming a first interconnect structure on a first surface of the encapsulant. The first interconnect structure is electrically connected to the stud bump.

在另一實施例中,本發明係一種製造半導體元件的方法,其步驟包含形成具有一第一IPD之一第一互連結構、形成一凸柱凸塊於該第一互連結構之上、固定一半導體晶粒或組件至該第一互連結構、沉積一封裝劑於該半導體晶粒或組件上以及該凸柱凸塊周圍以及形成一第二互連結構於該第一互連結構對側之封裝劑上。In another embodiment, the present invention is a method of fabricating a semiconductor device, the method comprising the steps of forming a first interconnect structure having a first IPD, forming a stud bump over the first interconnect structure, Fixing a semiconductor die or component to the first interconnect structure, depositing an encapsulant on the semiconductor die or component, and surrounding the stud bump and forming a second interconnect structure on the first interconnect structure pair On the side of the encapsulant.

在另一實施例中,本發明係一種半導體元件,其包含具有一第一IPD之一第一互連結構。一凸柱凸塊形成於該第一互連結構之上。一半導體晶粒或組件固定至該第一互連結構。一封裝劑沉積於該半導體晶粒或組件上以及該凸柱凸塊周圍。一第二互連結構形成於該第一互連結構對側之封裝劑上。In another embodiment, the invention is a semiconductor component comprising a first interconnect structure having a first IPD. A stud bump is formed over the first interconnect structure. A semiconductor die or component is secured to the first interconnect structure. An encapsulant is deposited over the semiconductor die or component and around the stud bumps. A second interconnect structure is formed on the encapsulant on the opposite side of the first interconnect structure.

以下透過配合圖式之實施例說明本發明之細節,圖式中相同之標號代表相同或類似之構件。雖然本發明之說明係呈現達成其目標之最佳模式,但習於斯藝之人士應能了解,其涵蓋後附申請專利範圍所界定之本發明之精神和範疇所包含之替代、修改及等效結構或方法,以及以下揭示和圖式所支持之等效結構或方法。The details of the present invention are described in the following with reference to the embodiments of the drawings, wherein the same reference numerals represent the same or similar components. Although the description of the present invention is the best mode of achieving the objectives of the present invention, it is understood by those skilled in the art that it encompasses alternatives, modifications, and the like included in the spirit and scope of the invention as defined by the appended claims. An effective structure or method, and equivalent structures or methods supported by the following disclosure and drawings.

半導體元件的生產一般而言係利用二個複雜的製程:前端製造和後端製造。前端製造包含在一半導體晶圓的表面上形成複數個晶粒。晶圓上的每一晶粒包含主動式及被動式電氣組件,其彼此電性連接以形成功能性之電路。諸如電晶體和二極體之主動式電氣組件具有控制電流流動之能力。諸如電容器、電感器、電阻器和變壓器之被動式電氣組件建立實現各種電路功能所需之特定電壓和電流間的關係。The production of semiconductor components generally utilizes two complex processes: front-end manufacturing and back-end manufacturing. The front end fabrication includes forming a plurality of grains on a surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components that are electrically connected to each other to form a functional circuit. Active electrical components such as transistors and diodes have the ability to control the flow of current. Passive electrical components such as capacitors, inductors, resistors, and transformers establish the relationship between the particular voltage and current required to achieve various circuit functions.

被動式和主動式組件係藉由一連串包含摻雜、沉積、光學微影術(photolithography)、蝕刻(etching)及平面化(planarization)之製程步驟,形成於半導體晶圓之表面上。摻雜程序藉由諸如離子植入(ion implantation)或熱擴散(thermal diffusion)等技術將雜質掺入半導體材料之中。摻雜處理修改主動元件中半導體材料之導電性、將半導體材料轉換成絕緣體、導體或者因應電場或基礎電流動態地改變半導體材料導電性。電晶體包含依據所需配置之不同型態和摻雜程度之區域,使電晶體依據施加之電場或基極電流而能夠對電流之流動加以提升或抑制。Passive and active components are formed on the surface of a semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization. The doping process incorporates impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the conductivity of the semiconductor material in the active device, converts the semiconductor material into an insulator, a conductor, or dynamically changes the conductivity of the semiconductor material in response to an electric field or a base current. The transistor contains regions of different types and doping levels depending on the desired configuration, enabling the transistor to boost or suppress the flow of current depending on the applied electric field or base current.

主動式和被動式組件係藉由具有不同電氣特性之材料疊層所形成。此等疊層之形成可以藉由各種沉積技術,該等技術在某種程度上係決定於被沉積之材料種類。例如,薄膜沉積可以包含化學氣相沉積(chemical vapor deposition;CVD)、物理氣相沉積(physical vapor deposition;PVD)、電解電鍍(electrolytic plating)、以及無電電鍍(electroless plating)製程。每一疊層通常被圖案化(patterned)以形成主動式組件、被動式組件或介於組件間的電性連接部分。Active and passive components are formed by a stack of materials having different electrical characteristics. The formation of such laminates can be accomplished by a variety of deposition techniques that are somewhat dependent on the type of material being deposited. For example, thin film deposition may include chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating. Each stack is typically patterned to form an active component, a passive component, or an electrical connection between components.

疊層可以利用光學微影技術加以圖案化,該技術包含例如光阻劑之感光物質沉積於待圖案化的疊層之上。圖案利用光被自一光罩(photomask)轉移至光阻劑。其使用溶劑移除耐光之光阻劑圖案部分,以露出下層待圖案化的部分。剩餘之光阻劑移除之後,餘留一圖案化之疊層。或者,某些材料之圖案化係藉由直接沉積材料至利用諸如無電及電解電鍍等技術由一先前之沉積/蝕刻製程形成之區域或空間上。The laminate can be patterned using optical lithography, which involves depositing a photosensitive material such as a photoresist onto the laminate to be patterned. The pattern utilizes light to be transferred from a photomask to a photoresist. It removes the light-resistant photoresist pattern portion using a solvent to expose the underlying portion to be patterned. After the remaining photoresist is removed, a patterned laminate remains. Alternatively, the patterning of certain materials is by depositing the material directly into areas or spaces formed by a prior deposition/etch process using techniques such as electroless and electrolytic plating.

沉積一薄膜材料於一現有之圖案上可以擴大其下之圖案並產生一不均勻之平坦表面。其需要一均勻之平坦表面以產生較小且結構密集之主動式和被動式組件。其可以使用平面化製程以自晶圓表面移除材料並產生一均勻之平坦表面。平面化包含以一研磨墊磨平晶圓之表面。磨蝕材料和腐蝕性化學藥品在磨平期間被加入晶圓之表面。磨蝕材料之機械作用結合化學藥品之腐蝕作用移除任何不規則之表面凹凸,進而產生一均勻之平坦表面。Depositing a thin film material onto an existing pattern can enlarge the underlying pattern and create a non-uniform flat surface. It requires a uniform flat surface to produce smaller and structurally dense active and passive components. It can use a planarization process to remove material from the wafer surface and create a uniform flat surface. Planarization involves smoothing the surface of the wafer with a polishing pad. Abrasive materials and corrosive chemicals are added to the surface of the wafer during smoothing. The mechanical action of the abrasive material, combined with the corrosive action of the chemical, removes any irregular surface relief resulting in a uniform flat surface.

後端製造包含將完成的晶圓切割或單片化成個別之晶粒,接著並封裝晶粒以提供結構上的支承及環境隔絕。就單片化晶粒而言,晶圓被標劃刻線且沿著晶圓上被稱為鋸道或鋸線之非功能性區域切斷。晶圓之單片化係利用一雷射切割工具或鋸片。單片化之後,個別晶粒被固定至一封裝基板,該基板包含用以與其他系統組件互連之接腳(pin)或接墊(contact pad)。形成於半導體晶粒上的接墊接著被連接至封裝內部之接墊。此電性連接可以藉由銲錫凸塊、凸柱凸塊、導電膠(conductive paste)或打線接合(wirebond)而達成。一封裝劑或其他模封材料沉積於封裝上以提供實體之支持和電性之絕緣。完成之封裝插入電氣系統中,使得該半導體元件之功能可以為其他系統組件所用。Backend fabrication involves cutting or singulating the finished wafer into individual dies, and then packaging the dies to provide structural support and environmental isolation. In the case of a singulated die, the wafer is scored and cut along a non-functional area on the wafer called a saw or saw wire. Wafer singulation utilizes a laser cutting tool or saw blade. After singulation, individual dies are secured to a package substrate that includes pins or contact pads for interconnecting with other system components. The pads formed on the semiconductor die are then connected to the pads inside the package. This electrical connection can be achieved by solder bumps, stud bumps, conductive paste or wirebond. An encapsulant or other molding material is deposited on the package to provide physical support and electrical insulation. The completed package is inserted into the electrical system such that the functionality of the semiconductor component can be used by other system components.

圖1例示電子裝置50,其具有一晶片載體基板或PCB 52,複數個半導體封裝固定於其表面之上。電子裝置50可以具有一種半導體封裝,或者多種型態之半導體封裝,取決於其應用。基於例示之目的,圖1顯示不同種類之半導體封裝。1 illustrates an electronic device 50 having a wafer carrier substrate or PCB 52 with a plurality of semiconductor packages mounted thereon. The electronic device 50 can have a semiconductor package, or a plurality of types of semiconductor packages, depending on its application. For purposes of illustration, Figure 1 shows different types of semiconductor packages.

電子裝置50可以是一獨立系統,其使用該等半導體封裝執行一或多種電性功能。或者,電子裝置50可以是一更大系統中的一個次組件。舉例而言,電子裝置50可以是一繪圖卡、網路介面卡或其他可以插入電腦中的信號處理卡。半導體封裝可以包含微處理器、記憶體、特定用途積體電路(application specific integrated circuit;ASIC)、邏輯電路、類比電路、RF電路、獨立元件或者其他半導體晶粒或電氣組件。The electronic device 50 can be a stand-alone system that performs one or more electrical functions using the semiconductor packages. Alternatively, electronic device 50 can be a secondary component in a larger system. For example, the electronic device 50 can be a graphics card, a network interface card, or other signal processing card that can be inserted into a computer. The semiconductor package can include a microprocessor, a memory, an application specific integrated circuit (ASIC), a logic circuit, an analog circuit, an RF circuit, a separate component, or other semiconductor die or electrical component.

在圖1之中,PCB 52提供一公用基板做為結構上的支承以及與固定於PCB上的半導體封裝之電性互連。導電信號走線54利用蒸鍍(evaporation)、電解電鍍、無電電鍍、網印(screen printing)或其他適當之金屬沉積製程形成於PCB 52之一表面或疊層內。信號走線54提供半導體封裝、固定組件及其他外部系統組件間的電性通信。走線54同時亦提供電源及接地連接至每一半導體封裝。In FIG. 1, PCB 52 provides a common substrate for structural support and electrical interconnection to a semiconductor package mounted on the PCB. The conductive signal traces 54 are formed on one surface or laminate of the PCB 52 by evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide electrical communication between the semiconductor package, the fixed components, and other external system components. Trace 54 also provides power and ground connections to each semiconductor package.

在一些實施例之中,一半導體元件具有二封裝層級。第一層級封裝係一用以機械性及電性裝配半導體晶粒至一中介載體之技術。第二層級封裝包含機械性及電性裝配該中介載體至PCB。在其他實施例中,一半導體元件可以僅具有第一層級封裝,其中晶粒被以機械性及電性方式直接固定至PCB。In some embodiments, a semiconductor component has two package levels. The first level of packaging is a technique for mechanically and electrically assembling semiconductor dies to an intermediate carrier. The second level package includes mechanically and electrically assembling the intermediate carrier to the PCB. In other embodiments, a semiconductor component may have only a first level package in which the die is directly fixed to the PCB in a mechanical and electrical manner.

為了例示之目的,許多第一層級封裝之型態,包括打線接合封裝56以及覆晶(flip chip)58,均顯示於PCB 52之上。此外,多種型態之第二層級封裝,包括球柵陣列(ball grid array;BGA)60、凸塊晶片載體(bump chip carrier;BCC)62、雙排型封裝(dual in-line package;DIP)64、基板柵格陣列(land grid array;LGA)66、多晶片模組(multi-chip module;MCM)68、四側無引腳扁平封裝(quad flat non-leaded package;QFN)70以及四面扁平封裝(quad flat package)72,均顯示固定於PCB 52之上。取決於系統需求,半導體封裝的任何組合,配置成第一及第二層級封裝形式的任何組合,以及其他電子組件,均可以連接至PCB 52。在一些實施例之中,電子裝置50包含一單一裝配之半導體封裝,而其他實施例可能需要多個互連之封裝。藉由結合一或多個半導體封裝於單一基板上,生產者可以將組件成品加入電子裝置及系統之中。由於半導體封裝包含複雜之功能,電子裝置之生產可以利用價格較低廉之組件以及一產線流動式的製程。由此產出之裝置較不易故障且生產代價較不昂貴,使得對消費者的成本較低。For purposes of illustration, a number of first level package types, including wire bond packages 56 and flip chips 58, are shown on top of PCB 52. In addition, a plurality of types of second level packages, including a ball grid array (BGA) 60, a bump chip carrier (BCC) 62, and a dual in-line package (DIP) 64, land grid array (LGA) 66, multi-chip module (MCM) 68, quad flat non-leaded package (QFN) 70 and four flat A quad flat package 72 is shown mounted on the PCB 52. Any combination of semiconductor packages, configured in any combination of first and second level package formats, as well as other electronic components, can be coupled to PCB 52, depending on system requirements. In some embodiments, electronic device 50 includes a single assembled semiconductor package, while other embodiments may require multiple interconnected packages. By incorporating one or more semiconductor packages onto a single substrate, the manufacturer can add the finished component to the electronic device and system. Because semiconductor packages contain complex functions, electronic devices can be produced using less expensive components and a production line flow process. The resulting device is less prone to failure and less expensive to produce, resulting in lower cost to the consumer.

圖2a-2c顯示示範性半導體封裝。圖2a例示固定於PCB 52上的DIP 64之進一步細節。半導體晶粒74包含一作用區域,其包含實施為主動元件、被動元件、導電層及介電層之類比或數位電路形成於該晶粒之內,且依據該晶粒之電氣設計彼此電性互連。例如,該電路可以包含一或多個電晶體、二極體、電感、電容、電阻器,以及形成於半導體晶粒74之作用區域內的其他電路構件。接墊76係一或多層導電材料,諸如鋁(Al)、銅(Cu)、錫(Sn)、鎳(Ni)、金(Au)或銀(Ag),其電性連接至形成於半導體晶粒74內之電路構件。在DIP 64的組配期間,半導體晶粒74利用一金矽共熔層(gold-silicon eutectic layer)或諸如熱環氧樹脂(thermal epoxy)之黏著材料固定至一中介載體78。封裝主體包含一諸如聚合物(polymer)或陶瓷(ceramic)之絕緣封裝材料。導體引線80和打線接合82提供半導體晶粒74和PCB 52之間的電性互連。封裝劑84沉積於封裝上,藉由防止溼氣和微粒進入封裝污染晶粒74或打線接合82而達到環境防護之目的。2a-2c show an exemplary semiconductor package. Figure 2a illustrates further details of the DIP 64 affixed to the PCB 52. The semiconductor die 74 includes an active region including an analog or digital circuit implemented as an active component, a passive component, a conductive layer, and a dielectric layer, and is electrically formed in the die according to the electrical design of the die. even. For example, the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit components formed within the active region of the semiconductor die 74. The pad 76 is one or more layers of conductive materials, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au) or silver (Ag), which are electrically connected to the semiconductor crystal. Circuit components within the pellets 74. During assembly of the DIP 64, the semiconductor die 74 is secured to an intermediate carrier 78 using a gold-silicon eutectic layer or an adhesive material such as a thermal epoxy. The package body comprises an insulating encapsulating material such as a polymer or a ceramic. Conductor lead 80 and wire bond 82 provide an electrical interconnection between semiconductor die 74 and PCB 52. The encapsulant 84 is deposited on the package for environmental protection by preventing moisture and particulates from entering the package contamination grain 74 or wire bond 82.

圖2b例示固定於PCB 52上的BCC 62之進一步細節。半導體晶粒88利用一底部填充或環氧合成樹脂黏著材料92被固定於載體90之上。打線接合94提供接墊96和98間的第一層級封裝互連。模封材料或封裝劑100沉積於半導體晶粒88及打線接合94之上以提供該元件實體之支持和電性之絕緣。接墊102利用一諸如電解式電鍍或無電式電鍍之適當金屬沉積形成於PCB 52之一表面上以防止氧化。接墊102電性連接至PCB 52中的一或多條導電信號走線54。凸塊104形成於BCC 62的接墊98和PCB 52的接墊102之間。FIG. 2b illustrates further details of the BCC 62 secured to the PCB 52. The semiconductor die 88 is secured to the carrier 90 by an underfill or epoxy synthetic resin bonding material 92. Wire bonding 94 provides a first level package interconnect between pads 96 and 98. A molding material or encapsulant 100 is deposited over the semiconductor die 88 and the wire bond 94 to provide support and electrical isolation of the component body. The pads 102 are formed on one surface of the PCB 52 by a suitable metal deposition such as electrolytic plating or electroless plating to prevent oxidation. The pad 102 is electrically connected to one or more conductive signal traces 54 in the PCB 52. Bumps 104 are formed between pads 98 of BCC 62 and pads 102 of PCB 52.

在圖2c之中,半導體晶粒58以一覆晶形式第一層級封裝面朝下地固定至中介載體106。半導體晶粒58之作用區域108包含實施為主動元件、被動元件、導電層及介電層之類比或數位電路依據該晶粒之電氣設計形成。例如,該電路可以包含一或多個電晶體、二極體、電感、電容、電阻器,以及作用區域108內的其他電路構件。半導體晶粒58經由凸塊110電性且機械性地連接至載體106。In FIG. 2c, the semiconductor die 58 is fixed to the interposer carrier 106 in a flip chip form with the first level package facing down. The active region 108 of the semiconductor die 58 includes analog or digital circuitry implemented as active, passive, conductive, and dielectric layers in accordance with the electrical design of the die. For example, the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit components within the active region 108. Semiconductor die 58 is electrically and mechanically coupled to carrier 106 via bumps 110.

BGA 60利用凸塊112以一BGA形式第二層級封裝電性且機械性地連接至PCB 52。半導體晶粒58透過凸塊110、信號線114、以及凸塊112電性連接至PCB 52中的導電信號走線54。一模封材料或封裝劑116沉積於半導體晶粒58及載體106之上以提供該元件實體之支持和電性之絕緣。此覆晶式半導體元件提供一條從半導體晶粒58上的作用元件到PCB 52上的導電走線間的極短電性傳導路徑,以降低信號傳播距離、減少電容並增進整體電路效能。在另一實施例中,半導體晶粒58可以利用覆晶式第一層級封裝不經由中介載體106即電性且機械性地直接連接至PCB 52。The BGA 60 utilizes bumps 112 to electrically and mechanically connect to the PCB 52 in a second level package in the form of a BGA. The semiconductor die 58 is electrically connected to the conductive signal traces 54 in the PCB 52 through the bumps 110, the signal lines 114, and the bumps 112. A molding material or encapsulant 116 is deposited over the semiconductor die 58 and the carrier 106 to provide support and electrical isolation of the component body. The flip-chip semiconductor component provides a very short electrical conduction path from the active component on the semiconductor die 58 to the conductive traces on the PCB 52 to reduce signal propagation distance, reduce capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 may be electrically and mechanically directly connected to the PCB 52 using a flip-chip first level package without via the interposer carrier 106.

圖3a-3h例示一製程,其以用於FO-WLCSP之凸柱凸塊及IPD形成一垂直互連結構。在圖3a之中,一暫時性基板或載體120包含一基座材料,諸如矽、聚合物、聚合式合成物、金屬、陶瓷、玻璃、玻璃環氧樹脂、氧化鈹(beryllium oxide)或其他用於結構支承之適當低價、堅固材質。一選擇性介面層121可以形成於載體120之上做為一蝕刻終止層。一電性傳導層122利用圖案化配合PVD、CVD、濺鍍(sputtering)、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程形成於介面層121及載體120之上。導電層122可以是一或多層由鋁、銅、錫、鎳、金、銀、鎢、多晶矽(poly-silicon)或其他適當電性傳導物質構成之疊層。導電層122包含可濕性接墊以利後續凸柱凸塊之形成。在一實施例中,導電層122之可濕性接墊係預先電鍍於介面層121之上。Figures 3a-3h illustrate a process for forming a vertical interconnect structure with stud bumps and IPDs for FO-WLCSP. In FIG. 3a, a temporary substrate or carrier 120 comprises a susceptor material such as germanium, polymer, polymeric composition, metal, ceramic, glass, glass epoxy, beryllium oxide or other A suitable low-cost, sturdy material for structural support. A selective interface layer 121 can be formed over the carrier 120 as an etch stop layer. An electrically conductive layer 122 is formed over the interface layer 121 and the carrier 120 by patterning, PVD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 122 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, tungsten, poly-silicon, or other suitable electrically conductive material. The conductive layer 122 includes a wettable pad to facilitate the formation of subsequent stud bumps. In one embodiment, the wettable pads of the conductive layer 122 are pre-plated over the interface layer 121.

複數個半導體晶粒或組件124以覆晶之配置方式固定至介面層121,使接墊126朝下而位於載體120之上。每一半導體晶粒124各自包含一作用表面128,其包含實施為主動元件、被動元件、導電層及介電層之類比或數位電路形成於該晶粒之內,且依據該晶粒之電氣設計及功能彼此電性互連。舉例而言,該電路可以包含一或多個電晶體、二極體以及其他電路構件形成於作用表面128內以實施基頻類比電路或數位電路,諸如數位信號處理器(digital signal processor;DSP)、ASIC、記憶體或其他信號處理電路。半導體晶粒124亦可以包含IPD,諸如用於RF信號處理之電感、電容和電阻。在另一實施例中,一獨立半導體組件可以被固定至介面層121。A plurality of semiconductor dies or components 124 are secured to the interface layer 121 in a flip chip configuration with the pads 126 facing downwardly over the carrier 120. Each of the semiconductor dies 124 includes an active surface 128 including an analog or digital circuit implemented as an active device, a passive device, a conductive layer, and a dielectric layer, and is formed within the die, and is electrically designed according to the die And the functions are electrically interconnected to each other. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in the active surface 128 to implement a base frequency analog circuit or a digital circuit, such as a digital signal processor (DSP). , ASIC, memory or other signal processing circuit. Semiconductor die 124 may also include an IPD, such as an inductor, capacitor, and resistor for RF signal processing. In another embodiment, a separate semiconductor component can be secured to the interface layer 121.

在圖3b之中,複數個凸柱凸塊或杆狀結構130形成於導電層122之可濕性接墊上。在一實施例中,一打線接合機器可以形成凸柱凸塊130。凸柱凸塊130具有一範圍從2到120微米(μm)之高度。In FIG. 3b, a plurality of stud bumps or rod structures 130 are formed on the wettable pads of the conductive layer 122. In an embodiment, a wire bonding machine can form stud bumps 130. The stud bumps 130 have a height ranging from 2 to 120 micrometers (μm).

圖3b顯示凸柱凸塊130實施為具有凸柱形之凸塊,包含凸塊部分132及凸柱部分134。在另一實施例中,凸柱凸塊130可以形成為堆疊凸塊136,如圖3c所示。凸柱凸塊130亦可以在沒有導電層122之情況下形成,如圖3d所示。在任何情形下,凸柱凸塊130之形成均係使用一簡單、低價之製程。FIG. 3b shows that the stud bump 130 is implemented as a bump having a convex post shape, including the bump portion 132 and the stud portion 134. In another embodiment, the stud bumps 130 can be formed as stacked bumps 136, as shown in Figure 3c. The stud bumps 130 can also be formed without the conductive layer 122, as shown in Figure 3d. In any event, the formation of the stud bumps 130 is a simple, low cost process.

圖3e顯示一封裝劑或模封材料138利用膏劑印刷(paste printing)、壓縮模封(compressive molding)、轉注模封(transfer molding)、液態封裝劑模封(liquid encapsulant molding)、真空層壓(vacuum lamination)或其他適當之塗佈機制沉積於半導體晶粒124及凸柱凸塊130之上。封裝劑138可以是聚合物合成材料,諸如具有填充劑之環氧合成樹脂(epoxy resin)、具有填充劑之環氧丙烯酸酯(epoxy acrylate)或是具有適當填充劑之聚合物。封裝劑138係非導電性的且能在環境上保護半導體元件免於外部構件之影響及污染。封裝劑138接受研磨或電漿蝕刻以平面化其表面並暴露出凸柱凸塊130。或者,凸柱凸塊130之高度可以小於半導體晶粒124之厚度(晶粒面朝下)。執行封裝之後,封裝劑及半導體晶粒124之背側均接受研磨或平面化直到露出凸柱凸塊130為止。藉由如此,凸柱凸塊130具有較高之可靠度以抵擋封裝劑流動、凸柱凸塊之材料成本得以降低且總封裝高度可以縮減。Figure 3e shows an encapsulant or molding material 138 using paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination ( A vacuum lamination or other suitable coating mechanism is deposited over the semiconductor die 124 and the stud bumps 130. The encapsulant 138 may be a polymer synthetic material such as an epoxy resin having a filler, an epoxy acrylate having a filler, or a polymer having a suitable filler. The encapsulant 138 is non-conductive and environmentally protects the semiconductor component from external components and contamination. Encapsulant 138 is subjected to grinding or plasma etching to planarize its surface and expose stud bumps 130. Alternatively, the height of the stud bumps 130 may be less than the thickness of the semiconductor die 124 (the die faces face down). After the package is performed, both the encapsulant and the back side of the semiconductor die 124 are ground or planarized until the stud bumps 130 are exposed. By doing so, the stud bumps 130 have a higher degree of reliability against the flow of the encapsulant, the material cost of the stud bumps is reduced, and the total package height can be reduced.

在圖3f之中,一頂側增生互連結構140形成於封裝劑138之一第一表面上。增生互連結構140包含一藉由PVD、CVD、印刷、旋轉塗佈(spin coating)、噴霧塗佈(spray coating)、燒結(sintering)或熱氧化(thermal oxidation)形成之絕緣或鈍化層142。鈍化層142可以是一或多層由二氧化矽(SiO2)、氮化矽(Si3N4)、氮氧化矽(SiON)、五氧化鉭(Ta2O5)、氧化鋁(Al2O3)或其他具有類似絕緣及結構性質之材料構成之疊層。一部分鈍化層142藉由一蝕刻製程被移除以暴露出凸柱凸塊130。In FIG. 3f, a top side accretion interconnect structure 140 is formed on one of the first surfaces of encapsulant 138. The hyperplastic interconnect structure 140 includes an insulating or passivation layer 142 formed by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. The passivation layer 142 may be one or more layers of hafnium oxide (SiO 2 ), hafnium nitride (Si 3 N 4 ), hafnium oxynitride (SiON), tantalum pentoxide (Ta 2 O 5 ), aluminum oxide (Al 2 O). 3 ) or other laminates of materials having similar insulating and structural properties. A portion of passivation layer 142 is removed by an etch process to expose stud bumps 130.

一電性傳導層144利用圖案化配合PVD、CVD、濺鍍、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程形成於絕緣層142及凸柱凸塊130之上。導電層144可以是一或多層由鋁、銅、錫、鎳、金、銀或其他適當電性傳導物質構成之疊層。導電層144的一部分電性連接至凸柱凸塊130。導電層144的其他部分取決於半導體元件之設計及功能可以彼此電性相通或電性絕緣。An electrically conductive layer 144 is formed over the insulating layer 142 and the stud bumps 130 by patterning, PVD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 144 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material. A portion of the conductive layer 144 is electrically connected to the stud bumps 130. Other portions of conductive layer 144 may be electrically or electrically insulated from each other depending on the design and function of the semiconductor components.

一絕緣或鈍化層146利用PVD、CVD、印刷、旋轉塗佈、噴霧塗佈、燒結或熱氧化形成於鈍化層142及導電層144之上。鈍化層146可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3、或其他具有類似絕緣及結構性質之材料所構成之疊層。一部分鈍化層146藉由一蝕刻製程被移除以暴露出導電層144。An insulating or passivation layer 146 is formed over passivation layer 142 and conductive layer 144 by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. Passivation layer 146 can be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 , or other materials having similar insulating and structural properties. A portion of passivation layer 146 is removed by an etch process to expose conductive layer 144.

在圖3g之中,其藉由化學蝕刻、機械式剝除(mechanical peel-off)、CMP、機械式研磨、熱烘(thermal bake)、雷射掃描(laser scanning)或濕式剝除(wet stripping)以移除載體120及介面層121。載體120及介面層121移除之後暴露出導電層122及半導體晶粒124之接墊126。In Figure 3g, it is by chemical etching, mechanical peel-off, CMP, mechanical grinding, thermal bake, laser scanning or wet stripping (wet) Stripping) to remove the carrier 120 and the interface layer 121. After the carrier 120 and the interface layer 121 are removed, the conductive layer 122 and the pads 126 of the semiconductor die 124 are exposed.

在圖3h之中,一底側增生互連結構150形成於封裝劑138之一第二表面,位於頂側增生互連結構140之對側,以及半導體晶粒124之一前側表面上。增生互連結構150包含一電性傳導層152,其形成係利用圖案化配合PVD、CVD、濺鍍、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程。導電層152可以是一或多層由鋁、銅、錫、鎳、金、銀或其他適當電性傳導物質構成之疊層。導電層152的一部分電性連接至凸柱凸塊130及半導體晶粒124之接墊126。導電層152的其他部分取決於半導體元件之設計及功能可以彼此電性相通或電性絕緣。In FIG. 3h, a bottom side growth interconnect structure 150 is formed on a second surface of the encapsulant 138, on the opposite side of the top side growth interconnect structure 140, and on a front side surface of the semiconductor die 124. The hyperplastic interconnect structure 150 includes an electrically conductive layer 152 formed by patterning, PVD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 152 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material. A portion of the conductive layer 152 is electrically connected to the stud bumps 130 and the pads 126 of the semiconductor die 124. Other portions of conductive layer 152 may be electrically or electrically insulated from each other depending on the design and function of the semiconductor components.

一絕緣或鈍化層154利用PVD、CVD、印刷、旋轉塗佈、噴霧塗佈、燒結或熱氧化形成於導電層152及半導體晶粒124之作用表面128上。鈍化層154可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3、或其他具有類似絕緣及結構性質之材料所構成之疊層。一部分鈍化層154藉由一蝕刻製程被移除以暴露出導電層152。An insulating or passivation layer 154 is formed on conductive surface 152 and active surface 128 of semiconductor die 124 by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. The passivation layer 154 may be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 , or other materials having similar insulating and structural properties. A portion of passivation layer 154 is removed by an etch process to expose conductive layer 152.

一電性傳導凸塊材料利用一蒸鍍、電解式電鍍、無電式電鍍、錫球投入(ball drop)、或網印製程沉積於導電層152之上。凸塊材料可以是鋁、錫、鎳、金、銀、鈀(Pb)、鉍(Bi)、銅、焊錫以及前述項目之組合,外加一選擇性之助熔劑。舉例而言,凸塊材料可以是共熔錫/鈀、高鉛焊錫或無鉛焊錫。凸塊材料利用一適當之黏附或接合製程黏接至導電層152。在一實施例中,凸塊材料藉由將該材料加熱至其熔點以上以形成球狀的錫球或凸塊156而進行回流(reflow)。在一些應用之中,凸塊156被第二次回流以增進與導電層152之電性接觸。凸塊亦可以被壓接(compression bond)至導電層152。凸塊156代表可以形成於導電層152上的一種互連結構類型。該互連結構亦可以使用接線、導電膠、凸柱凸塊、微凸塊(micro bump)或其他電性連接。An electrically conductive bump material is deposited over the conductive layer 152 by an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be aluminum, tin, nickel, gold, silver, palladium (Pb), bismuth (Bi), copper, solder, and combinations of the foregoing, plus a selective flux. For example, the bump material can be eutectic tin/palladium, high lead solder, or lead free solder. The bump material is bonded to the conductive layer 152 using a suitable adhesion or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical solder balls or bumps 156. In some applications, bumps 156 are reflowed a second time to promote electrical contact with conductive layer 152. The bumps can also be bonded to the conductive layer 152. Bumps 156 represent an interconnect structure type that can be formed on conductive layer 152. The interconnect structure can also use wiring, conductive paste, stud bumps, micro bumps, or other electrical connections.

半導體晶粒124係以鋸片或雷射切割工具158被單片化成個別的半導體元件160,如圖4所示。單片化之後,個別半導體元件160可以被堆疊,如圖5所示。凸柱凸塊130提供頂側增生互連層140和底側增生互連層150間的垂直z方向互連。導電層144經由凸柱凸塊130電性連接至每一半導體元件160之導電層152及接墊126。The semiconductor die 124 is singulated into individual semiconductor components 160 by a saw blade or laser cutting tool 158, as shown in FIG. After singulation, individual semiconductor components 160 can be stacked as shown in FIG. The stud bumps 130 provide vertical z-direction interconnections between the top side accretion interconnect layer 140 and the bottom side accretion interconnect layer 150. The conductive layer 144 is electrically connected to the conductive layer 152 of each of the semiconductor elements 160 and the pads 126 via the stud bumps 130 .

圖6例示垂直互連結構之一實施例,其中之半導體晶粒具有面朝上之作用表面。類似圖3a-3h所述之製程,半導體元件170使用具有一選擇性介面層之暫時性基板或載體,該選擇性介面層係做為一蝕刻終止層。一電性傳導層172利用圖案化配合PVD、CVD、濺鍍、電解式電鍍、無電式電鍍製程或其他適當之金屬沉積製程形成於載體之上。導電層172可以是一或多層由鋁、銅、錫、鎳、金、銀、鎢、多晶矽或其他適當電性傳導物質構成之疊層。導電層172包含可濕性接墊以利後續凸柱凸塊之形成。Figure 6 illustrates an embodiment of a vertical interconnect structure in which the semiconductor die has an active surface that faces upward. Similar to the process illustrated in Figures 3a-3h, the semiconductor device 170 uses a temporary substrate or carrier having a selective interface layer that acts as an etch stop layer. An electrically conductive layer 172 is formed over the carrier by patterning, PVD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 172 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, tungsten, polysilicon or other suitable electrically conductive material. The conductive layer 172 includes a wettable pad to facilitate the formation of subsequent stud bumps.

複數個半導體晶粒或組件174以覆晶之配置方式固定至載體,使接墊176朝上。半導體晶粒174包含作用表面178,其包含實施為主動元件、被動元件、導電層及介電層之類比或數位電路形成於該晶粒之內,且依據該晶粒之電氣設計及功能彼此電性互連。舉例而言,該電路可以包含一或多個電晶體、二極體以及其他電路構件形成於作用表面178內以實施基頻類比電路或數位電路,諸如DSP、ASIC、記憶體或其他信號處理電路。半導體晶粒174亦可以包含IPD,諸如用於RF信號處理之電感、電容和電阻器。在另一實施例中,一獨立半導體組件可以被固定至載體或介面層。A plurality of semiconductor dies or components 174 are affixed to the carrier in a flip chip configuration with pads 176 facing up. The semiconductor die 174 includes an active surface 178 including analog or digital circuits implemented as active components, passive components, conductive layers, and dielectric layers formed within the die, and electrically coupled to each other depending on the electrical design and function of the die Sexual interconnection. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in the active surface 178 to implement a base frequency analog circuit or digital circuit, such as a DSP, ASIC, memory, or other signal processing circuit. . Semiconductor die 174 may also include an IPD, such as inductors, capacitors, and resistors for RF signal processing. In another embodiment, a separate semiconductor component can be secured to the carrier or interface layer.

複數個凸柱凸塊180形成於導電層172之可濕性接墊上。此外,複數個凸柱凸塊182形成於半導體晶粒174之接墊176上。其使用一打線接合機器藉由凸柱凸塊製程形成凸柱凸塊180-182。凸柱凸塊180-182可以是銅、鋁、鎢、金、焊錫或其他適當之導電材料。在一實施例中,凸柱凸塊180-182係實施為具有凸柱形之凸塊。或者,凸柱凸塊180-182可以形成為堆疊凸塊,類似圖3c所示。接線186電性連接於接墊176和導電層172之間。A plurality of stud bumps 180 are formed on the wettable pads of the conductive layer 172. In addition, a plurality of stud bumps 182 are formed on pads 176 of semiconductor die 174. It uses a one-wire bonding machine to form stud bumps 180-182 by a stud bump process. The stud bumps 180-182 can be copper, aluminum, tungsten, gold, solder, or other suitable electrically conductive material. In one embodiment, the stud bumps 180-182 are implemented as bumps having a convex cylindrical shape. Alternatively, stud bumps 180-182 may be formed as stacked bumps, similar to that shown in Figure 3c. The wiring 186 is electrically connected between the pad 176 and the conductive layer 172.

一封裝劑或模封材料188利用膏劑印刷、壓縮模封、轉注模封、液態封裝劑模封、真空層壓或其他適當之塗佈機制沉積於半導體晶粒174及凸柱凸塊180-182之上。封裝劑188可以是聚合物合成材料,諸如具有填充劑之環氧合成樹脂、具有填充劑之環氧丙烯酸酯或是具有適當填充劑之聚合物。封裝劑188係非導電性的且能在環境上保護半導體元件免於外部構件之影響及污染。封裝劑188接受研磨或電漿蝕刻以平面化其表面並暴露出凸柱凸塊180-182。An encapsulant or molding material 188 is deposited on the semiconductor die 174 and stud bumps 180-182 using paste printing, compression molding, transfer molding, liquid encapsulant molding, vacuum lamination, or other suitable coating mechanism. Above. The encapsulant 188 may be a polymer synthetic material such as an epoxy synthetic resin having a filler, an epoxy acrylate having a filler, or a polymer having a suitable filler. The encapsulant 188 is non-conductive and environmentally protects the semiconductor component from external components and contamination. Encapsulant 188 is subjected to grinding or plasma etching to planarize its surface and expose stud bumps 180-182.

一頂側增生互連結構190形成於封裝劑188之一第一表面上。增生互連結構190包含一藉由PVD、CVD、印刷、旋轉塗佈、噴霧塗佈、燒結或熱氧化形成之絕緣或鈍化層192,。一部分鈍化層192藉由一蝕刻製程被移除以暴露出凸柱凸塊180-182。一電性傳導層194形成於鈍化層192及凸柱凸塊180-182之上。導電層194的一部分分別電性連接至凸柱凸塊180-182。導電層194的其他部分取決於半導體元件之設計及功能可以彼此電性相通或電性絕緣。一絕緣或鈍化層196形成於鈍化層192及導電層194之上。一部分鈍化層196藉由一蝕刻製程被移除以暴露出導電層194。A top side accretion interconnect structure 190 is formed on one of the first surfaces of the encapsulant 188. The hyperplastic interconnect structure 190 includes an insulating or passivation layer 192 formed by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. A portion of the passivation layer 192 is removed by an etch process to expose the stud bumps 180-182. An electrically conductive layer 194 is formed over the passivation layer 192 and the stud bumps 180-182. A portion of the conductive layer 194 is electrically connected to the stud bumps 180-182, respectively. Other portions of conductive layer 194 may be electrically or electrically insulated from one another depending on the design and function of the semiconductor components. An insulating or passivation layer 196 is formed over the passivation layer 192 and the conductive layer 194. A portion of passivation layer 196 is removed by an etch process to expose conductive layer 194.

載體及介面層藉由化學蝕刻、機械式剝除、CMP、機械式研磨、熱烘、雷射掃描或濕式剝除被移除。一底側增生互連結構200形成於封裝劑188之一第二表面,位於頂側增生互連結構190之對側,以及半導體晶粒174之一背側表面上。一電性傳導層202形成於導電層172及半導體晶粒174之背側表面上。導電層202的一部分電性連接至凸柱凸塊180。導電層202的其他部分取決於半導體元件之設計及功能可以彼此電性相通或電性絕緣。一絕緣或鈍化層204形成於導電層202及半導體晶粒174之背側表面上。一部分絕緣層204藉由一蝕刻製程被移除以暴露出導電層202。The carrier and interface layer are removed by chemical etching, mechanical stripping, CMP, mechanical milling, thermal baking, laser scanning or wet stripping. A bottom side growth interconnect structure 200 is formed on one of the second surfaces of the encapsulant 188, on the opposite side of the top side growth interconnect structure 190, and on one of the back side surfaces of the semiconductor die 174. An electrically conductive layer 202 is formed on the back side surfaces of the conductive layer 172 and the semiconductor die 174. A portion of the conductive layer 202 is electrically connected to the stud bumps 180. Other portions of conductive layer 202 may be electrically or electrically insulated from one another depending on the design and function of the semiconductor components. An insulating or passivation layer 204 is formed over the back side surfaces of the conductive layer 202 and the semiconductor die 174. A portion of the insulating layer 204 is removed by an etching process to expose the conductive layer 202.

一電性傳導凸塊材料利用一蒸鍍、電解電鍍、無電電鍍、錫球投入或網印製程沉積於導電層202之上。凸塊材料可以是鋁、錫、鎳、金、銀、鈀、鉍、銅、焊錫以及前述項目之組合,外加一選擇性之助熔溶劑。舉例而言,凸塊材料可以是共熔錫/鈀、高鉛焊錫或無鉛焊錫。凸塊材料利用一適當之黏附或接合製程黏接至導電層202。在一實施例中,凸塊材料藉由將該材料加熱至其熔點以上以形成球狀的錫球或凸塊206而進行回流。在一些應用之中,凸塊206被第二次回流以增進與導電層202之電性接觸。凸塊亦可以被壓接至導電層202。凸塊206代表可以形成於導電層202上的一種互連結構類型。該互連結構亦可以使用接線、導電膠、凸柱凸塊、微凸塊或其他電性連接。An electrically conductive bump material is deposited on the conductive layer 202 by an evaporation, electrolytic plating, electroless plating, solder ball implantation or screen printing process. The bump material can be aluminum, tin, nickel, gold, silver, palladium, rhodium, copper, solder, and combinations of the foregoing, plus a selective fluxing solvent. For example, the bump material can be eutectic tin/palladium, high lead solder, or lead free solder. The bump material is bonded to the conductive layer 202 using a suitable adhesion or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical solder balls or bumps 206. In some applications, bumps 206 are reflowed a second time to enhance electrical contact with conductive layer 202. The bumps can also be crimped to the conductive layer 202. Bumps 206 represent an interconnect structure type that can be formed on conductive layer 202. The interconnect structure can also use wiring, conductive paste, stud bumps, microbumps, or other electrical connections.

半導體元件170係可堆疊的。凸柱凸塊180-182提供介於頂側增生互連層190和底側增生互連層200間的垂直z方向互連。導電層194經由凸柱凸塊180-182電性連接至半導體元件170之導電層202、接墊176以及接線186。The semiconductor components 170 are stackable. The stud bumps 180-182 provide a vertical z-direction interconnect between the top side accumulating interconnect layer 190 and the bottom side accelerating interconnect layer 200. The conductive layer 194 is electrically connected to the conductive layer 202 of the semiconductor device 170, the pad 176, and the wiring 186 via the stud bumps 180-182.

圖7例示垂直互連結構之一實施例,其具有封裝之前形成於底側互連結構中的一或多個IPD。此例中,一底側增生互連結構240形成於載體之上。一電性傳導層242被圖案化並利用PVD、CVD、濺鍍、電解電鍍、無電電鍍製程,或其他適當之金屬沉積製程以沉積形成個別之部分或區段242a-242h。導電層242的個別部分取決於個別半導體晶粒之連接性可以彼此電性相通或電性絕緣。導電層242可以是一或多層由鋁、銅、錫、鎳、金、銀或其他適當電性傳導物質構成之疊層。Figure 7 illustrates an embodiment of a vertical interconnect structure having one or more IPDs formed in a bottom side interconnect structure prior to packaging. In this example, a bottom side growth interconnect structure 240 is formed over the carrier. An electrically conductive layer 242 is patterned and deposited to form individual portions or sections 242a-242h using PVD, CVD, sputtering, electrolytic plating, electroless plating processes, or other suitable metal deposition processes. The individual portions of the conductive layer 242 may be electrically or electrically insulated from each other depending on the connectivity of the individual semiconductor dies. Conductive layer 242 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material.

一電阻層244被圖案化並利用PVD或CVD沉積於導電層242b上及介於導電層242e和242f之間。電阻層244係矽化鉭(TaxSiy)或其他金屬矽化物、氮化鉭(TaN)、鎳鉻(NiCr)、氮化鈦(TiN)或掺有雜質的多晶矽,其具有之電阻率(resistivity)介於5及100 ohm/sq之間。一絕緣層246利用PVD、CVD、印刷、燒結或熱氧化形成於電阻層244之上。絕緣層246可以是一或多層由Si3N4、SiO2、SiON、Ta2O5、ZnO、ZrO2、Al2O3、聚醯亞胺(polyimide)、苯環丁烯(benzocyclobutene;BCB)、聚苯噁唑(polybenzoxazoles;PBO)或其他適當之介電材料所構成之疊層。電阻層244和絕緣層246可以以同一光罩形成並同時進行蝕刻。或者,電阻層244和絕緣層246可以以不同光罩進行圖案化及蝕刻。A resistive layer 244 is patterned and deposited on conductive layer 242b and between conductive layers 242e and 242f using PVD or CVD. The resistive layer 244 is a tantalum crucible (Ta x Si y ) or other metal telluride, tantalum nitride (TaN), nickel chromium (NiCr), titanium nitride (TiN) or polycrystalline germanium doped with impurities, which has a resistivity ( Resistivity) is between 5 and 100 ohm/sq. An insulating layer 246 is formed over the resistive layer 244 by PVD, CVD, printing, sintering, or thermal oxidation. The insulating layer 246 may be one or more layers of Si 3 N 4 , SiO 2 , SiON, Ta 2 O 5 , ZnO, ZrO 2 , Al 2 O 3 , polyimide, benzocyclobutene (BCB). A laminate of polybenzoxazoles (PBO) or other suitable dielectric material. The resistive layer 244 and the insulating layer 246 may be formed in the same mask and etched simultaneously. Alternatively, the resistive layer 244 and the insulating layer 246 can be patterned and etched with different masks.

一絕緣或鈍化層248利用旋轉塗佈、PVD、CVD、印刷、燒結或熱氧化形成於電阻層244、絕緣層246以及導電層242之上。鈍化層248可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3、或其他具有適當絕緣性質之材料所構成之疊層。一部分鈍化層248被移除以暴露出導電層242、電阻層244以及絕緣層246。An insulating or passivation layer 248 is formed over the resistive layer 244, the insulating layer 246, and the conductive layer 242 by spin coating, PVD, CVD, printing, sintering, or thermal oxidation. Passivation layer 248 can be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 , or other materials having suitable insulating properties. A portion of the passivation layer 248 is removed to expose the conductive layer 242, the resistive layer 244, and the insulating layer 246.

一電性傳導層252被圖案化並利用PVD、CVD、濺鍍、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程沉積於導電層242、電阻層244、絕緣層246以及鈍化層248之上,以形成個別之部分或區段,且取決於個別半導體晶粒之連接性,該等部分或區塊可以彼此電性相通或電性絕緣。導電層252可以是一或多層由鋁、銅、錫、鎳、金、銀或其他適當電性傳導物質構成之疊層。An electrically conductive layer 252 is patterned and deposited over conductive layer 242, resistive layer 244, insulating layer 246, and passivation layer 248 using PVD, CVD, sputtering, electrolytic plating, electroless plating processes, or other suitable metal deposition processes. To form individual portions or segments, and depending on the connectivity of the individual semiconductor dies, the portions or blocks may be electrically or electrically insulated from each other. Conductive layer 252 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material.

一絕緣或鈍化層254利用旋轉塗佈、PVD、CVD、印刷、燒結或熱氧化形成於導電層252及絕緣層248之上。鈍化層254可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3、或其他具有適當絕緣性質之材料所構成之疊層。一部分鈍化層254被移除以暴露出導電層252。An insulating or passivation layer 254 is formed over conductive layer 252 and insulating layer 248 by spin coating, PVD, CVD, printing, sintering, or thermal oxidation. Passivation layer 254 can be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 , or other materials having suitable insulating properties. A portion of the passivation layer 254 is removed to expose the conductive layer 252.

描述於增生互連結構240中之結構構成一或多個被動電路構件或IPD。在一實施例中,導電層242b、電阻層244、絕緣層246以及導電層252係一金屬-絕緣體-金屬(metal-insulator-metal;MIM)式電容。介於導電層242e-242f之間的電阻層244係被動式電路中之一電阻構件。導電層252之個別區段可以在平面上被纏繞或捲成線圈以產生或展現一電感器應有之性質。上述之IPD結構提供諸如諧振器(resonator)、高通濾波器(high-pass filter)、低通濾波器(low-pass filter)、帶通濾波器(band-pass filter)、對稱Hi-Q諧振變壓器(symmetric Hi-Q resonant transformer)、匹配網路(matching network)和調諧電容器(tuning capacitor)等高頻應用所需之電氣特性。該等IPD可以充當前端無線RF組件,可以置於天線(antenna)和收發器(transceiver)之間。電感可以是一hi-Q貝楞(balun;即平衡-不平衡轉換器)、變壓器、或線圈,運作頻率上達100 GHz(Gigahertz;十億赫茲)。在一些應用之中,多個貝楞形成於同一基板之上,使其可以進行多頻帶運作。例如,二或多個貝楞使用於行動電話或其他全球行動系統(global system for mobile;GSM)通信中負責四頻帶,每一貝楞專用於該四頻帶裝置中一個頻帶之運作。一典型RF系統在一或多個半導體封裝中需要多個IPD以及其他高頻電路以執行所需的電氣功能。The structures described in the proliferation interconnect structure 240 constitute one or more passive circuit components or IPDs. In one embodiment, the conductive layer 242b, the resistive layer 244, the insulating layer 246, and the conductive layer 252 are metal-insulator-metal (MIM) capacitors. The resistive layer 244 interposed between the conductive layers 242e-242f is one of the resistive members in the passive circuit. Individual sections of conductive layer 252 can be wound or wound into a coil on a plane to create or exhibit the properties of an inductor. The above IPD structure provides such as a resonator, a high-pass filter, a low-pass filter, a band-pass filter, a symmetric Hi-Q resonant transformer. Electrical characteristics required for high frequency applications such as (symmetric Hi-Q resonant transformer), matching network, and tuning capacitor. These IPDs can act as front-end wireless RF components that can be placed between an antenna and a transceiver. The inductor can be a hi-Q shell (balun), a transformer, or a coil operating at up to 100 GHz (Gigahertz; billion Hz). In some applications, multiple shellfish are formed on the same substrate to enable multi-band operation. For example, two or more bellows are used in a mobile phone or other global system for mobile (GSM) communication to be responsible for four bands, each dedicated to the operation of one of the four band devices. A typical RF system requires multiple IPDs and other high frequency circuitry in one or more semiconductor packages to perform the required electrical functions.

複數個半導體晶粒或組件214以覆晶之配置方式固定至增生互連結構240,使接墊216朝下而位於載體之上。半導體晶粒214包含一作用表面218,其包含實施為主動元件、被動元件、導電層及介電層之類比或數位電路形成於該晶粒之內,且依據該晶粒之電氣設計及功能彼此電性互連。舉例而言,該電路可以包含一或多個電晶體、二極體以及其他電路構件形成於作用表面218內以實施基頻類比電路或數位電路,諸如DSP、ASIC、記憶體或其他信號處理電路。半導體晶粒214亦可以包含IPD,諸如用於RF信號處理之電感、電容和電阻器。在另一實施例中,一獨立半導體組件被固定至增生互連結構240。A plurality of semiconductor dies or components 214 are affixed to the proliferative interconnect structure 240 in a flip chip configuration with the pads 216 facing downwardly over the carrier. The semiconductor die 214 includes an active surface 218 including analog or digital circuits implemented as active components, passive components, conductive layers, and dielectric layers formed within the die, and in accordance with the electrical design and function of the die Electrical interconnection. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in the active surface 218 to implement a base frequency analog circuit or digital circuit, such as a DSP, ASIC, memory, or other signal processing circuit. . Semiconductor die 214 may also include an IPD, such as inductors, capacitors, and resistors for RF signal processing. In another embodiment, a separate semiconductor component is secured to the proliferation interconnect structure 240.

複數個凸柱凸塊220形成於導電層252之上。凸柱凸塊220電性連接至導電層252以及半導體晶粒214之接墊216。A plurality of stud bumps 220 are formed over the conductive layer 252. The stud bumps 220 are electrically connected to the conductive layer 252 and the pads 216 of the semiconductor die 214.

一封裝劑或模封材料228利用膏劑印刷、壓縮模封、轉注模封、液態封裝劑模封、真空層壓或其他適當之塗佈機制沉積於半導體晶粒214及凸柱凸塊220之上。封裝劑228可以是聚合物合成材料,諸如具有填充劑之環氧合成樹脂、具有填充劑之環氧丙烯酸酯或是具有適當填充劑之聚合物。封裝劑228係非導電性的且能在環境上保護半導體元件免於外部構件之影響及污染。封裝劑228接受研磨或電漿蝕刻以平面化其表面並暴露出凸柱凸塊220。An encapsulant or molding material 228 is deposited over the semiconductor die 214 and the stud bumps 220 using paste printing, compression molding, transfer molding, liquid encapsulant molding, vacuum lamination, or other suitable coating mechanism. . The encapsulant 228 may be a polymer synthetic material such as an epoxy synthetic resin having a filler, an epoxy acrylate having a filler, or a polymer having a suitable filler. The encapsulant 228 is non-conductive and environmentally protects the semiconductor component from external components and contamination. Encapsulant 228 is subjected to grinding or plasma etching to planarize its surface and expose stud bumps 220.

一頂側增生互連結構230形成於封裝劑228之上。增生互連結構230包含一藉由PVD、CVD、印刷、旋轉塗佈、噴霧塗佈、燒結或熱氧化形成之絕緣或鈍化層232。一部分鈍化層232藉由一蝕刻製程被移除以暴露出凸柱凸塊220。一電性傳導層234形成於鈍化層232及凸柱凸塊220之上。導電層234的一部分電性連接至凸柱凸塊220。導電層234的其他部分取決於半導體元件之設計及功能可以彼此電性相通或電性絕緣。一絕緣或鈍化層236形成於鈍化層232及導電層234之上。一部分鈍化層236藉由一蝕刻製程被移除以暴露出導電層234。A top side accretion interconnect structure 230 is formed over encapsulant 228. The hyperplastic interconnect structure 230 includes an insulating or passivation layer 232 formed by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. A portion of passivation layer 232 is removed by an etch process to expose stud bumps 220. An electrically conductive layer 234 is formed over the passivation layer 232 and the stud bumps 220. A portion of the conductive layer 234 is electrically connected to the stud bump 220. Other portions of conductive layer 234 may be electrically or electrically insulated from one another depending on the design and function of the semiconductor components. An insulating or passivation layer 236 is formed over the passivation layer 232 and the conductive layer 234. A portion of passivation layer 236 is removed by an etch process to expose conductive layer 234.

載體藉由化學蝕刻、機械式剝除、CMP、機械式研磨、熱烘、雷射掃描或濕式剝除被移除。The carrier is removed by chemical etching, mechanical stripping, CMP, mechanical milling, thermal baking, laser scanning or wet stripping.

一絕緣或鈍化層258利用旋轉塗佈、PVD、CVD、印刷、燒結或熱氧化形成於導電層242及絕緣層248之上。An insulating or passivation layer 258 is formed over conductive layer 242 and insulating layer 248 by spin coating, PVD, CVD, printing, sintering, or thermal oxidation.

鈍化層258可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3或其他具有適當絕緣性質之材料所構成之疊層。一部分鈍化層258被移除以暴露出導電層242。Passivation layer 258 can be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 or other materials having suitable insulating properties. A portion of the passivation layer 258 is removed to expose the conductive layer 242.

一電性傳導層260利用圖案化配合PVD、CVD、濺鍍、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程形成於導電層242之上。導電層260可以是一或多層由鋁、銅、錫、鎳、金、銀或其他適當電性傳導物質構成之疊層。An electrically conductive layer 260 is formed over conductive layer 242 by patterning, PVD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 260 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material.

一電性傳導凸塊材料利用一蒸鍍、電解式電鍍、無電式電鍍、錫球投入或網印製程沉積於導電層260之上。凸塊材料可以是鋁、錫、鎳、金、銀、鈀、鉍、銅、焊錫以及前述項目之組合,外加一選擇性之助熔劑。舉例而言,凸塊材料可以是共熔錫/鈀、高鉛焊錫或無鉛焊錫。凸塊材料利用一適當之黏附或接合製程黏接至導電層260。在一實施例中,凸塊材料藉由將該材料加熱至其熔點以上以形成球狀的錫球或凸塊262而進行回流。在一些應用之中,凸塊262被第二次回流以增進與導電層260之電性接觸。凸塊亦可以被壓接至導電層260。凸塊262代表可以形成於導電層260上的一種互連結構類型。該互連結構亦可以使用接線、導電膠、凸柱凸塊、微凸塊或其他電性連接。An electrically conductive bump material is deposited on the conductive layer 260 by an evaporation, electrolytic plating, electroless plating, solder ball implantation or screen printing process. The bump material can be aluminum, tin, nickel, gold, silver, palladium, rhodium, copper, solder, and combinations of the foregoing, plus a selective flux. For example, the bump material can be eutectic tin/palladium, high lead solder, or lead free solder. The bump material is bonded to the conductive layer 260 using a suitable adhesion or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical solder balls or bumps 262. In some applications, bumps 262 are reflowed a second time to enhance electrical contact with conductive layer 260. The bumps can also be crimped to the conductive layer 260. Bumps 262 represent an interconnect structure type that can be formed on conductive layer 260. The interconnect structure can also use wiring, conductive paste, stud bumps, microbumps, or other electrical connections.

半導體元件210係可堆疊的。凸柱凸塊220提供頂側增生互連層230和底側增生互連層240間的垂直z方向互連。導電層234經由凸柱凸塊220電性連接至導電層252及半導體晶粒214之接墊216。The semiconductor component 210 is stackable. The stud bump 220 provides a vertical z-direction interconnect between the top side accretion interconnect layer 230 and the bottom side accretion interconnect layer 240. The conductive layer 234 is electrically connected to the conductive layer 252 and the pads 216 of the semiconductor die 214 via the stud bumps 220 .

圖8例示垂直互連結構之一實施例,其具有形成於頂側互連結構中的一或多個IPD。類似圖3a-3h所述之製程,半導體元件270使用具有一選擇性介面層之暫時性基板或載體,該選擇性介面層係做為一蝕刻終止層。一電性傳導層272利用圖案化配合PVD、CVD、濺鍍、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程形成於載體之上。導電層272可以是一或多層由鋁、銅、錫、鎳、金、銀、鎢、多晶矽或其他適當電性傳導物質構成之疊層。導電層272包含可濕性接墊以利後續凸柱凸塊之形成。Figure 8 illustrates an embodiment of a vertical interconnect structure having one or more IPDs formed in a topside interconnect structure. Similar to the process illustrated in Figures 3a-3h, the semiconductor component 270 uses a temporary substrate or carrier having a selective interfacial layer that acts as an etch stop layer. An electrically conductive layer 272 is formed over the carrier by patterning, PVD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 272 can be a laminate of one or more layers of aluminum, copper, tin, nickel, gold, silver, tungsten, polysilicon or other suitable electrically conductive material. The conductive layer 272 includes a wettable pad to facilitate the formation of subsequent stud bumps.

複數個半導體晶粒或組件274以覆晶之配置方式固定至載體,其接墊276朝下。半導體晶粒274包含一作用表面278,其包含實施為主動元件、被動元件、導電層及介電層之類比或數位電路形成於該晶粒之內,且依據該晶粒之電氣設計及功能彼此電性互連。舉例而言,該電路可以包含一或多個電晶體、二極體以及其他電路構件形成於作用表面278內以實施基頻類比電路或數位電路,諸如DSP、ASIC、記憶體或其他信號處理電路。半導體晶粒274亦可以包含IPD,諸如用於RF信號處理之電感、電容和電阻器。在另一實施例中,一獨立半導體組件被固定至載體或介面層。A plurality of semiconductor dies or components 274 are affixed to the carrier in a flip chip configuration with pads 276 facing downward. The semiconductor die 274 includes an active surface 278 including analog or digital circuits implemented as active components, passive components, conductive layers, and dielectric layers formed within the die, and in accordance with the electrical design and function of the die Electrical interconnection. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in the active surface 278 to implement a base frequency analog circuit or digital circuit, such as a DSP, ASIC, memory, or other signal processing circuit. . Semiconductor die 274 may also include an IPD, such as inductors, capacitors, and resistors for RF signal processing. In another embodiment, a separate semiconductor component is secured to the carrier or interface layer.

複數個凸柱凸塊280形成於導電層272之可濕性接墊上。一封裝劑或模封材料288利用膏劑印刷、壓縮模封、轉注模封、液態封裝劑模封、真空層壓或其他適當之塗佈機制沉積於半導體晶粒274及凸柱凸塊280之上。封裝劑288可以是聚合物合成材料,諸如具有填充劑之環氧合成樹脂、具有填充劑之環氧丙烯酸酯或是具有適當填充劑之聚合物。封裝劑288係非導電性的且能在環境上保護半導體元件免於外部構件之影響及污染。封裝劑288接受研磨或電漿蝕刻以平面化其表面並暴露出凸柱凸塊280。A plurality of stud bumps 280 are formed on the wettable pads of the conductive layer 272. An encapsulant or molding material 288 is deposited over the semiconductor die 274 and stud bumps 280 using paste printing, compression molding, transfer molding, liquid encapsulant molding, vacuum lamination, or other suitable coating mechanism. . The encapsulant 288 may be a polymer synthetic material such as an epoxy synthetic resin having a filler, an epoxy acrylate having a filler, or a polymer having a suitable filler. The encapsulant 288 is non-conductive and environmentally protects the semiconductor component from external components and contamination. Encapsulant 288 is subjected to grinding or plasma etching to planarize its surface and expose stud bumps 280.

一頂側增生互連結構290形成於封裝劑288之一第一表面上。一絕緣或鈍化層292利用旋轉塗佈、PVD、CVD、印刷、燒結或熱氧化形成於封裝劑288及凸柱凸塊280之上。鈍化層292可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3或其他具有適當絕緣性質之材料所構成之疊層。一部分鈍化層292被移除以暴露出凸柱凸塊280。A top side accretion interconnect structure 290 is formed on one of the first surfaces of encapsulant 288. An insulating or passivation layer 292 is formed over encapsulant 288 and stud bumps 280 by spin coating, PVD, CVD, printing, sintering, or thermal oxidation. The passivation layer 292 may be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 or other materials having suitable insulating properties. A portion of the passivation layer 292 is removed to expose the stud bumps 280.

一電性傳導層294利用圖案化配合PVD、CVD、濺鍍、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程形成於絕緣層292之上以形成個別之部分或區段。導電層294的個別部分取決於個別半導體晶粒之連接性可以彼此電性相通或電性絕緣。導電層294可以是一或多層由鋁、銅、錫、鎳、金、銀或其他適當電性傳導物質構成之疊層。導電層294的一部分電性連接至凸柱凸塊280。導電層294的其他部分取決於半導體元件之設計及功能可以彼此電性相通或電性絕緣。An electrically conductive layer 294 is formed over the insulating layer 292 by patterning in conjunction with PVD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process to form individual portions or sections. Individual portions of conductive layer 294 may be electrically or electrically insulated from one another depending on the connectivity of the individual semiconductor dies. Conductive layer 294 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material. A portion of the conductive layer 294 is electrically connected to the stud bump 280. Other portions of conductive layer 294 may be electrically or electrically insulated from each other depending on the design and function of the semiconductor components.

一電阻層296利用PVD或CVD被圖案化並沉積於導電層294及絕緣層292之上。電阻層296係TaxSiy或其他金屬矽化物、氮化鉭(TaN)、鎳鉻(NiCr)、氮化鈦(TiN)或掺有雜質的多晶矽,其具有之電阻率介於5及100 ohm/sq之間。一絕緣層298利用PVD、CVD、印刷、燒結或熱氧化形成於電阻層296之上。絕緣層298可以是一或多層由Si3N4、SiO2、SiON、Ta2O5、ZnO、ZrO2、Al2O3、聚醯亞胺、BCB、PBO或其他適當之介電材料所構成之疊層。A resistive layer 296 is patterned and deposited over conductive layer 294 and insulating layer 292 using PVD or CVD. The resistive layer 296 is Ta x Si y or other metal telluride, tantalum nitride (TaN), nickel chromium (NiCr), titanium nitride (TiN) or polysilicon doped with impurities, and has a resistivity of 5 and 100. Between ohm/sq. An insulating layer 298 is formed over the resistive layer 296 by PVD, CVD, printing, sintering, or thermal oxidation. The insulating layer 298 may be one or more layers of Si 3 N 4 , SiO 2 , SiON, Ta 2 O 5 , ZnO, ZrO 2 , Al 2 O 3 , polyimine, BCB, PBO or other suitable dielectric materials. A laminate of the components.

一絕緣或鈍化層300利用旋轉塗佈、PVD、CVD、印刷、燒結或熱氧化形成於鈍化層292、導電層294、電阻層296以及絕緣層298之上。鈍化層300可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3或其他具有適當絕緣性質之材料所構成之疊層。一部分鈍化層300被移除以暴露出導電層294、電阻層296以及絕緣層298。An insulating or passivation layer 300 is formed over the passivation layer 292, the conductive layer 294, the resistive layer 296, and the insulating layer 298 by spin coating, PVD, CVD, printing, sintering, or thermal oxidation. The passivation layer 300 may be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 or other materials having suitable insulating properties. A portion of the passivation layer 300 is removed to expose the conductive layer 294, the resistive layer 296, and the insulating layer 298.

一電性傳導層302被圖案化並利用PVD、CVD、濺鍍、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程被沉積於鈍化層300、導電層294以及電阻層296之上,以形成個別之部分或區段做為進一步互連之用。導電層302的個別部分取決於個別半導體晶粒之連接性可以彼此電性相通或電性絕緣。導電層302可以是一或多層由鋁、銅、錫、鎳、金、銀或其他適當電性傳導物質構成之疊層。An electrically conductive layer 302 is patterned and deposited over the passivation layer 300, the conductive layer 294, and the resistive layer 296 by PVD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process to form Individual parts or sections are used for further interconnection. Individual portions of conductive layer 302 may be electrically or electrically insulated from one another depending on the connectivity of the individual semiconductor dies. Conductive layer 302 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material.

一絕緣或鈍化層304利用旋轉塗佈、PVD、CVD、印刷、燒結或熱氧化形成於導電層302及鈍化層300之上。鈍化層304可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3或其他具有適當絕緣性質之材料所構成之疊層。一部分鈍化層304被移除以暴露出導電層302。An insulating or passivation layer 304 is formed over conductive layer 302 and passivation layer 300 by spin coating, PVD, CVD, printing, sintering, or thermal oxidation. The passivation layer 304 may be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 or other materials having suitable insulating properties. A portion of the passivation layer 304 is removed to expose the conductive layer 302.

描述於增生互連結構290中之結構構成一或多個被動式電路構件或IPD。在一實施例中,導電層294、電阻層296、絕緣層298以及導電層302係一MIM式電容。電阻層296亦係被動式電路中之一電阻構件。導電層302之其他個別區塊可以在平面上被纏繞或捲成線圈以產生或展現一電感器應有之性質。The structures described in the proliferative interconnect structure 290 form one or more passive circuit components or IPDs. In one embodiment, the conductive layer 294, the resistive layer 296, the insulating layer 298, and the conductive layer 302 are a MIM type capacitor. The resistive layer 296 is also a resistive member in a passive circuit. Other individual blocks of conductive layer 302 may be wound or rolled into a coil on a plane to create or exhibit the properties of an inductor.

載體及介面層藉由化學蝕刻、機械式剝除、CMP、機械式研磨、熱烘、雷射掃描或濕式剝除被移除。一底側增生互連結構310形成於封裝劑288之一第二表面,位於頂側增生互連結構290之對側,以及半導體晶粒274之一前側表面上。一電性傳導層312形成於導電層272及半導體晶粒274之前側表面上。導電層312的一部分電性連接至凸柱凸塊280。導電層312的其他部分取決於半導體元件之設計及功能可以彼此電性相通或電性絕緣。一絕緣或鈍化層314形成於導電層312及半導體晶粒274之前側表面上。一部分絕緣層314藉由一蝕刻製程被移除以暴露出導電層312。The carrier and interface layer are removed by chemical etching, mechanical stripping, CMP, mechanical milling, thermal baking, laser scanning or wet stripping. A bottom side growth interconnect structure 310 is formed on a second surface of the encapsulant 288, on the opposite side of the top side growth interconnect structure 290, and on a front side surface of the semiconductor die 274. An electrically conductive layer 312 is formed on the conductive layer 272 and the front side surface of the semiconductor die 274. A portion of the conductive layer 312 is electrically connected to the stud bump 280. Other portions of conductive layer 312 may be electrically or electrically insulated from each other depending on the design and function of the semiconductor components. An insulating or passivation layer 314 is formed on the conductive layer 312 and the front side surface of the semiconductor die 274. A portion of the insulating layer 314 is removed by an etching process to expose the conductive layer 312.

一電性傳導凸塊材料利用一蒸鍍、電解電鍍、無電電鍍、錫球投入或網印製程沉積於導電層312之上。凸塊材料可以是鋁、錫、鎳、金、銀、鈀、鉍、銅、焊錫以及前述項目之組合,外加一選擇性之助熔溶劑。舉例而言,凸塊材料可以是共熔錫/鈀、高鉛焊錫或無鉛焊錫。凸塊材料利用一適當之黏附或接合製程黏接至導電層312。在一實施例中,凸塊材料藉由將該材料加熱至其熔點以上以形成球狀的錫球或凸塊316而進行回流。在一些應用之中,凸塊316被第二次回流以增進與導電層312之電性接觸。凸塊亦可以被壓接至導電層312。凸塊316代表可以形成於導電層312上的一種互連結構類型。該互連結構亦可以使用接線、導電膠、凸柱凸塊、微凸塊或其他電性連接。An electrically conductive bump material is deposited over the conductive layer 312 by an evaporation, electrolytic plating, electroless plating, solder ball implantation or screen printing process. The bump material can be aluminum, tin, nickel, gold, silver, palladium, rhodium, copper, solder, and combinations of the foregoing, plus a selective fluxing solvent. For example, the bump material can be eutectic tin/palladium, high lead solder, or lead free solder. The bump material is bonded to the conductive layer 312 using a suitable adhesion or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form a spherical tin ball or bump 316. In some applications, bumps 316 are reflowed a second time to enhance electrical contact with conductive layer 312. The bumps can also be crimped to the conductive layer 312. Bump 316 represents an interconnect structure type that can be formed on conductive layer 312. The interconnect structure can also use wiring, conductive paste, stud bumps, microbumps, or other electrical connections.

半導體元件270係可堆疊的。凸柱凸塊280提供頂側增生互連層290和底側增生互連層310間的垂直z方向互連。導電層294及302經由凸柱凸塊302電性連接至導電層312及半導體晶粒274之接墊276。Semiconductor component 270 is stackable. The stud bump 280 provides a vertical z-direction interconnect between the top side accretion interconnect layer 290 and the bottom side accretion interconnect layer 310. The conductive layers 294 and 302 are electrically connected to the conductive layer 312 and the pads 276 of the semiconductor die 274 via the stud bumps 302.

圖9例示一垂直互連結構之替代實施例,其具有封裝之後形成於底側互連結構中的一或多個IPD。類似圖3a-3h所述之製程,半導體元件320使用具有一選擇性介面層之暫時性基板或載體,該選擇性介面層係做為一蝕刻終止層。一電性傳導層322利用圖案化配合PVD、CVD、濺鍍、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程形成於載體之上。導電層322可以是一或多層由鋁、銅、錫、鎳、金、銀、鎢、多晶矽或其他適當電性傳導物質構成之疊層。導電層322包含可濕性接墊以利後續凸柱凸塊之形成。Figure 9 illustrates an alternate embodiment of a vertical interconnect structure having one or more IPDs formed in the bottom side interconnect structure after packaging. Similar to the process illustrated in Figures 3a-3h, the semiconductor component 320 uses a temporary substrate or carrier having a selective interface layer that acts as an etch stop layer. An electrically conductive layer 322 is formed over the carrier by patterning, PVD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 322 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, tungsten, polysilicon or other suitable electrically conductive material. The conductive layer 322 includes a wettable pad to facilitate the formation of subsequent stud bumps.

複數個半導體晶粒或組件324以覆晶之配置方式固定至載體,其接墊326朝下。半導體晶粒324包含一作用表面328,其包含實施為主動元件、被動元件、導電層及介電層之類比或數位電路形成於該晶粒之內,且依據該晶粒之電氣設計及功能彼此電性互連。舉例而言,該電路可以包含一或多個電晶體、二極體以及其他電路構件形成於作用表面328內以實施基頻類比電路或數位電路,諸如DSP、ASIC、記憶體或其他信號處理電路。半導體晶粒324亦可以包含IPD,諸如用於RF信號處理之電感、電容和電阻器。在另一實施例中,一獨立半導體組件被固定至載體或介面層。A plurality of semiconductor dies or components 324 are secured to the carrier in a flip chip configuration with pads 326 facing downward. The semiconductor die 324 includes an active surface 328 including analog or digital circuits implemented as active components, passive components, conductive layers, and dielectric layers formed within the die, and in accordance with the electrical design and function of the die Electrical interconnection. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in the active surface 328 to implement a base frequency analog circuit or digital circuit, such as a DSP, ASIC, memory, or other signal processing circuit. . Semiconductor die 324 may also include an IPD, such as inductors, capacitors, and resistors for RF signal processing. In another embodiment, a separate semiconductor component is secured to the carrier or interface layer.

複數個凸柱凸塊330形成於導電層322之可濕性接墊上。一封裝劑或模封材料338利用膏劑印刷、壓縮模封、轉注模封、液態封裝劑模封、真空層壓或其他適當之塗佈機制沉積於半導體晶粒324及凸柱凸塊330之上。封裝劑338可以是聚合物合成材料,諸如具有填充劑之環氧合成樹脂、具有填充劑之環氧丙烯酸酯或是具有適當填充劑之聚合物。封裝劑338係非導電性的且能在環境上保護半導體元件免於外部構件之影響及污染。封裝劑338接受研磨或電漿蝕刻以平面化其表面並暴露出凸柱凸塊330。A plurality of stud bumps 330 are formed on the wettable pads of the conductive layer 322. An encapsulant or molding material 338 is deposited over the semiconductor die 324 and the stud bumps 330 using paste printing, compression molding, transfer molding, liquid encapsulant molding, vacuum lamination, or other suitable coating mechanism. . The encapsulant 338 may be a polymer synthetic material such as an epoxy synthetic resin having a filler, an epoxy acrylate having a filler, or a polymer having a suitable filler. The encapsulant 338 is non-conductive and environmentally protects the semiconductor component from external components and contamination. Encapsulant 338 is subjected to grinding or plasma etching to planarize its surface and expose stud bumps 330.

一頂側增生互連結構340形成於封裝劑338之一第一表面上。增生互連結構340包含一藉由PVD、CVD、印刷、旋轉塗佈、噴霧塗佈、燒結或熱氧化形成之絕緣或鈍化層342。一部分鈍化層342藉由一蝕刻製程被移除以暴露出凸柱凸塊330。一電性傳導層344形成於鈍化層342及凸柱凸塊330之上。導電層344的一部分電性連接至凸柱凸塊330。導電層344的其他部分取決於半導體元件之設計及功能可以彼此電性相通或電性絕緣。一絕緣或鈍化層346形成於鈍化層342及導電層344之上。一部分絕緣層346藉由一蝕刻製程被移除以暴露出導電層344。A top side accretion interconnect structure 340 is formed on one of the first surfaces of the encapsulant 338. The hyperplastic interconnect structure 340 includes an insulating or passivation layer 342 formed by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. A portion of passivation layer 342 is removed by an etch process to expose stud bumps 330. An electrically conductive layer 344 is formed over the passivation layer 342 and the stud bumps 330. A portion of the conductive layer 344 is electrically connected to the stud bumps 330. Other portions of conductive layer 344 may be electrically or electrically insulated from each other depending on the design and function of the semiconductor components. An insulating or passivation layer 346 is formed over the passivation layer 342 and the conductive layer 344. A portion of the insulating layer 346 is removed by an etching process to expose the conductive layer 344.

載體及介面層藉由化學蝕刻、機械式剝除、CMP、機械式研磨、熱烘、雷射掃描或濕式剝除被移除。一底側增生互連結構350形成於封裝劑338之一第二表面,位於頂側增生互連結構340之對側,以及半導體晶粒324之一前側表面上。一電性傳導層352被圖案化並利用PVD、CVD、濺鍍、電解電鍍、無電電鍍製程,或其他適當之金屬沉積製程沉積而成。導電層352的個別部分取決於個別半導體晶粒之連接性可以彼此電性相通或電性絕緣。導電層352可以是一或多層由鋁、銅、錫、鎳、金、銀或其他適當電性傳導物質構成之疊層。導電層352電性連接至凸柱凸塊330及半導體晶粒324之接墊326。The carrier and interface layer are removed by chemical etching, mechanical stripping, CMP, mechanical milling, thermal baking, laser scanning or wet stripping. A bottom side growth interconnect structure 350 is formed on a second surface of the encapsulant 338, on the opposite side of the top side growth interconnect structure 340, and on a front side surface of the semiconductor die 324. An electrically conductive layer 352 is patterned and deposited using PVD, CVD, sputtering, electrolytic plating, electroless plating processes, or other suitable metal deposition processes. Individual portions of conductive layer 352 may be electrically or electrically insulated from each other depending on the connectivity of the individual semiconductor dies. Conductive layer 352 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material. The conductive layer 352 is electrically connected to the stud bumps 330 and the pads 326 of the semiconductor die 324.

一絕緣層354利用PVD、CVD、印刷、燒結或熱氧化形成於導電層352之上。絕緣層354可以是一或多層由Si3N4、SiO2、SiON、Ta2O5、ZnO、ZrO2、Al2O3、聚醯亞胺、BCB、PBO或其他適當之介電材料所構成之疊層。An insulating layer 354 is formed over the conductive layer 352 by PVD, CVD, printing, sintering, or thermal oxidation. The insulating layer 354 may be one or more layers of Si 3 N 4 , SiO 2 , SiON, Ta 2 O 5 , ZnO, ZrO 2 , Al 2 O 3 , polyimine, BCB, PBO or other suitable dielectric materials. A laminate of the components.

一電阻層356被圖案化並利用PVD或CVD沉積而成。電阻層356係TaxSiy或其他金屬矽化物、氮化鉭(TaN)、鎳鉻(NiCr)、氮化鈦(TiN)或掺有雜質的多晶矽,其具有之電阻率介於5及100 ohm/sq之間。A resistive layer 356 is patterned and deposited using PVD or CVD. The resistive layer 356 is Ta x Si y or other metal telluride, tantalum nitride (TaN), nickel chromium (NiCr), titanium nitride (TiN) or polysilicon doped with impurities, and has a resistivity of 5 and 100. Between ohm/sq.

一絕緣或鈍化層358利用旋轉塗佈、PVD、CVD、印刷、燒結或熱氧化形成於絕緣層354、電阻層356以及導電層352之上。鈍化層358可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3或其他具有適當絕緣性質之材料所構成之疊層。一部分鈍化層358被移除以暴露出導電層352、絕緣層354以及電阻層356。An insulating or passivation layer 358 is formed over the insulating layer 354, the resistive layer 356, and the conductive layer 352 by spin coating, PVD, CVD, printing, sintering, or thermal oxidation. The passivation layer 358 can be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 or other materials having suitable insulating properties. A portion of the passivation layer 358 is removed to expose the conductive layer 352, the insulating layer 354, and the resistive layer 356.

一電性傳導層360被圖案化並利用PVD、CVD、濺鍍、電解電鍍、無電電鍍製程或其他適當之金屬沉積製程沉積於導電層352、絕緣層354、電阻層356以及鈍化層358之上,以形成個別之部分或區段,且取決於個別半導體晶粒之連接性,該等部分或區段可以彼此電性相通或電性絕緣。導電層360可以是一或多層由鋁、銅、錫、鎳、金、銀或其他適當電性傳導物質構成之疊層。An electrically conductive layer 360 is patterned and deposited over conductive layer 352, insulating layer 354, resistive layer 356, and passivation layer 358 using PVD, CVD, sputtering, electrolytic plating, electroless plating processes, or other suitable metal deposition processes. To form individual portions or segments, and depending on the connectivity of the individual semiconductor dies, the portions or segments may be electrically or electrically insulated from each other. Conductive layer 360 can be one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material.

一絕緣或鈍化層362利用旋轉塗佈、PVD、CVD、印刷、燒結或熱氧化形成於導電層360及絕緣層358之上。鈍化層362可以是一或多層由SiO2、Si3N4、SiON、Ta2O5、Al2O3、或其他具有適當絕緣性質之材料所構成之疊層。一部分鈍化層362被移除以暴露出導電層360。An insulating or passivation layer 362 is formed over conductive layer 360 and insulating layer 358 by spin coating, PVD, CVD, printing, sintering, or thermal oxidation. Passivation layer 362 can be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 O 5 , Al 2 O 3 , or other materials having suitable insulating properties. A portion of the passivation layer 362 is removed to expose the conductive layer 360.

描述於增生互連結構330中之結構構成一或多個被動式電路構件或IPD。在一實施例中,導電層352、絕緣層354、以及導電層360係一MIM式電容。電阻層356係被動式電路中之一電阻構件。導電層360之個別區段可以在平面上被纏繞或捲成線圈以產生或展現一電感器應有之性質。The structures described in the proliferation interconnect structure 330 constitute one or more passive circuit components or IPDs. In an embodiment, the conductive layer 352, the insulating layer 354, and the conductive layer 360 are a MIM type capacitor. The resistive layer 356 is a resistive member in a passive circuit. Individual sections of conductive layer 360 may be wound or rolled into a coil on a plane to create or exhibit the properties of an inductor.

一電性傳導凸塊材料利用一蒸鍍、電解電鍍、無電電鍍、錫球投入或網印製程沉積於導電層360之上。凸塊材料可以是鋁、錫、鎳、金、銀、鈀、鉍、銅、焊錫以及前述項目之組合,外加一選擇性之助熔劑。舉例而言,凸塊材料可以是共熔錫/鈀、高鉛焊錫或無鉛焊錫。凸塊材料利用一適當之黏附或接合製程黏接至導電層360。在一實施例中,凸塊材料藉由將該材料加熱至其熔點以上以形成球狀的錫球或凸塊364而進行回流。在一些應用之中,凸塊139被第二次回流以增進與導電層360之電性接觸。凸塊亦可以被壓接至導電層360。凸塊364代表可以形成於導電層360上的一種互連結構類型。該互連結構亦可以使用接線、導電膠、凸柱凸塊、微凸塊或其他電性連接。An electrically conductive bump material is deposited on the conductive layer 360 by an evaporation, electrolytic plating, electroless plating, solder ball implantation or screen printing process. The bump material can be aluminum, tin, nickel, gold, silver, palladium, rhodium, copper, solder, and combinations of the foregoing, plus a selective flux. For example, the bump material can be eutectic tin/palladium, high lead solder, or lead free solder. The bump material is bonded to the conductive layer 360 using a suitable adhesion or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical solder balls or bumps 364. In some applications, bumps 139 are reflowed a second time to enhance electrical contact with conductive layer 360. The bumps can also be crimped to the conductive layer 360. Bumps 364 represent an interconnect structure type that can be formed on conductive layer 360. The interconnect structure can also use wiring, conductive paste, stud bumps, microbumps, or other electrical connections.

半導體元件320係可堆疊的。凸柱凸塊330提供頂側增生互連層340和底側增生互連層350間的垂直z方向互連。導電層344經由凸柱凸塊330電性連接至導電層352和360以及半導體晶粒324之接墊326。Semiconductor component 320 is stackable. The stud bumps 330 provide a vertical z-direction interconnect between the top side accretion interconnect layer 340 and the bottom side accretion interconnect layer 350. The conductive layer 344 is electrically connected to the conductive layers 352 and 360 and the pads 326 of the semiconductor die 324 via the stud bumps 330.

如圖7-9所示,該等IPD可以形成於頂側增生互連結構及底側增生互連結構中之一或形成於二者之中。As shown in Figures 7-9, the IPDs can be formed in one or both of the top side proliferative interconnect structure and the bottom side proliferative interconnect structure.

雖然本發明之一或多個實施例詳細例示如上,但習於斯藝者應理解該等實施例可以在未脫離本發明以下申請專利範圍所界定之範疇下進行修改及調整。Although one or more embodiments of the invention are described in detail above, it is to be understood by those skilled in the art that the invention may be modified and modified without departing from the scope of the invention as defined by the appended claims.

50...電子裝置50. . . Electronic device

52...PCB52. . . PCB

54...走線54. . . Traces

56...打線接合封裝56. . . Wire bonding package

58...覆晶58. . . Flip chip

60...球柵陣列60. . . Ball grid array

62...凸塊晶片載體62. . . Bump wafer carrier

64...雙排型封裝64. . . Double row package

66...基板柵格陣列66. . . Substrate grid array

68...多晶片模組68. . . Multi-chip module

70...四側無引腳扁平封裝70. . . Four-sided leadless flat package

72...四面扁平封裝72. . . Four-sided flat package

74...半導體晶粒74. . . Semiconductor grain

76...接墊76. . . Pad

78...中介載體78. . . Mediation carrier

80...導體引線80. . . Conductor lead

82...打線接合82. . . Wire bonding

84...封裝劑84. . . Encapsulant

88...半導體晶粒88. . . Semiconductor grain

90...載體90. . . Carrier

92...底部填充或環氧合成樹脂黏著劑材料92. . . Underfill or epoxy synthetic resin adhesive material

94...打線接合94. . . Wire bonding

96...接墊96. . . Pad

98...接墊98. . . Pad

100...模封材料或封裝劑100. . . Molding material or encapsulant

102...接墊102. . . Pad

104...凸塊104. . . Bump

106...載體106. . . Carrier

108...作用區域108. . . Action area

110...焊錫凸塊或錫球110. . . Solder bump or solder ball

112...焊錫凸塊或錫球112. . . Solder bump or solder ball

114...信號線114. . . Signal line

116...模封材料或封裝劑116. . . Molding material or encapsulant

120...載體120. . . Carrier

121...介面層121. . . Interface layer

122...導電層122. . . Conductive layer

124...半導體晶粒或組件124. . . Semiconductor die or component

126...接墊126. . . Pad

128...作用表面128. . . Surface

130...凸柱凸塊130. . . Stud bump

132...凸塊部分132. . . Bump portion

134...凸柱部分134. . . Bump portion

136...堆疊凸塊136. . . Stacked bump

138...封裝劑或模封材料138. . . Encapsulant or molding material

139...凸塊139. . . Bump

140...頂側增生互連結構140. . . Top side hyperplastic interconnect structure

142...鈍化層142. . . Passivation layer

144...導電層144. . . Conductive layer

146...絕緣或鈍化層146. . . Insulating or passivation layer

150...底側增生互連結構150. . . Bottom side hyperplastic interconnect structure

152...導電層152. . . Conductive layer

154...絕緣或鈍化層154. . . Insulating or passivation layer

156...錫球或凸塊156. . . Tin ball or bump

158...鋸片或雷射切割工具158. . . Saw blade or laser cutting tool

160...半導體元件160. . . Semiconductor component

170...半導體元件170. . . Semiconductor component

172...導電層172. . . Conductive layer

174...半導體晶粒或組件174. . . Semiconductor die or component

176...接墊176. . . Pad

178...作用表面178. . . Surface

180...凸柱凸塊180. . . Stud bump

182...凸柱凸塊182. . . Stud bump

186...接線186. . . wiring

188...封裝劑或模封材料188. . . Encapsulant or molding material

190...頂側增生互連結構190. . . Top side hyperplastic interconnect structure

192...絕緣或鈍化層192. . . Insulating or passivation layer

194...導電層194. . . Conductive layer

196...絕緣或鈍化層196. . . Insulating or passivation layer

200...底側增生互連結構200. . . Bottom side hyperplastic interconnect structure

202...導電層202. . . Conductive layer

204...絕緣或鈍化層204. . . Insulating or passivation layer

206...錫球或凸塊206. . . Tin ball or bump

210...半導體元件210. . . Semiconductor component

214...半導體晶粒或組件214. . . Semiconductor die or component

216...接墊216. . . Pad

218...作用表面218. . . Surface

220...凸柱凸塊220. . . Stud bump

230...頂側增生互連結構230. . . Top side hyperplastic interconnect structure

232...絕緣或鈍化層232. . . Insulating or passivation layer

234...導電層234. . . Conductive layer

236...絕緣或鈍化層236. . . Insulating or passivation layer

240...底側增生互連結構240. . . Bottom side hyperplastic interconnect structure

242...導電層242. . . Conductive layer

244...電阻層244. . . Resistance layer

246...絕緣層246. . . Insulation

248...絕緣或鈍化層248. . . Insulating or passivation layer

252...導電層252. . . Conductive layer

254...絕緣或鈍化層254. . . Insulating or passivation layer

258...絕緣或鈍化層258. . . Insulating or passivation layer

260...導電層260. . . Conductive layer

262...錫球或凸塊262. . . Tin ball or bump

270...半導體元件270. . . Semiconductor component

272...導電層272. . . Conductive layer

274...半導體晶粒或組件274. . . Semiconductor die or component

276...接墊276. . . Pad

278...作用表面278. . . Surface

280...凸柱凸塊280. . . Stud bump

288...封裝劑或模封材料288. . . Encapsulant or molding material

290...頂側增生互連結構290. . . Top side hyperplastic interconnect structure

292...絕緣或鈍化層292. . . Insulating or passivation layer

294...導電層294. . . Conductive layer

296...電阻層296. . . Resistance layer

298...絕緣層298. . . Insulation

300...絕緣或鈍化層300. . . Insulating or passivation layer

302...導電層302. . . Conductive layer

304...絕緣或鈍化層304. . . Insulating or passivation layer

310...底側增生互連結構310. . . Bottom side hyperplastic interconnect structure

312...導電層312. . . Conductive layer

314...絕緣或鈍化層314. . . Insulating or passivation layer

316...錫球或凸塊316. . . Tin ball or bump

320...半導體元件320. . . Semiconductor component

322...導電層322. . . Conductive layer

324...半導體晶粒或組件324. . . Semiconductor die or component

326...接墊326. . . Pad

328...作用表面328. . . Surface

330...凸柱凸塊330. . . Stud bump

338...封裝劑或模封材料338. . . Encapsulant or molding material

340...頂側增生互連結構340. . . Top side hyperplastic interconnect structure

342...鈍化層342. . . Passivation layer

344...導電層344. . . Conductive layer

346...絕緣或鈍化層346. . . Insulating or passivation layer

350...底側增生互連結構350. . . Bottom side hyperplastic interconnect structure

352...導電層352. . . Conductive layer

354...絕緣層354. . . Insulation

356...電阻層356. . . Resistance layer

358...鈍化層358. . . Passivation layer

360...導電層360. . . Conductive layer

362...絕緣或鈍化層362. . . Insulating or passivation layer

364...錫球或凸塊364. . . Tin ball or bump

圖1例示一PCB,其具有不同型態之封裝固定至其表面;Figure 1 illustrates a PCB having a different type of package secured to its surface;

圖2a-2c例示固定至該PCB之代表性半導體封裝之進一步細節;Figures 2a-2c illustrate further details of a representative semiconductor package affixed to the PCB;

圖3a-3h例示一使用凸柱凸塊形成垂直互連結構之製程;3a-3h illustrate a process for forming a vertical interconnect structure using stud bumps;

圖4例示包含具有凸柱凸塊之垂直互連結構之半導體元件;4 illustrates a semiconductor component including a vertical interconnect structure having stud bumps;

圖5例示與凸柱凸塊電性互連之堆疊式半導體元件;Figure 5 illustrates a stacked semiconductor device electrically interconnected with stud bumps;

圖6例示具有凸柱凸塊之半導體元件以及具有其面朝上之作用表面之晶粒;6 illustrates a semiconductor element having a stud bump and a die having an active surface facing upward;

圖7例示具有形成於一底側互連結構中之IPD之半導體元件;Figure 7 illustrates a semiconductor component having an IPD formed in a bottom side interconnect structure;

圖8例示具有形成於一頂側互連結構中之IPD之半導體元件;以及Figure 8 illustrates a semiconductor component having an IPD formed in a top side interconnect structure;

圖9例示具有形成於底側互連結構中之IPD之半導體元件之另一實施例。Figure 9 illustrates another embodiment of a semiconductor component having an IPD formed in a bottom side interconnect structure.

122...導電層122. . . Conductive layer

124...半導體晶粒或組件124. . . Semiconductor die or component

126...接墊126. . . Pad

128...作用表面128. . . Surface

130...凸柱凸塊130. . . Stud bump

138...封裝劑或模封材料138. . . Encapsulant or molding material

140...頂側增生互連結構140. . . Top side hyperplastic interconnect structure

142...鈍化層142. . . Passivation layer

144...導電層144. . . Conductive layer

146...絕緣或鈍化層146. . . Insulating or passivation layer

150...底側增生互連結構150. . . Bottom side hyperplastic interconnect structure

152...導電層152. . . Conductive layer

154...絕緣或鈍化層154. . . Insulating or passivation layer

156...錫球或凸塊156. . . Tin ball or bump

160...半導體元件160. . . Semiconductor component

Claims (15)

一種製造半導體元件的方法,包含:提供一半導體晶粒或組件;提供一導電層,其包含一可濕性墊片;形成一凸柱凸塊於該可濕性墊片之上;沉積一封裝劑於該半導體晶粒或組件上以及該凸柱凸塊周圍;形成一第一互連結構於該封裝劑之一第一表面上,該第一互連結構包含一第一整合式被動元件(IPD)且電性連接至該凸柱凸塊;以及形成一第二互連結構於該第一互連結構對側之封裝劑之一第二表面上。 A method of fabricating a semiconductor device, comprising: providing a semiconductor die or component; providing a conductive layer comprising a wettable pad; forming a stud bump on the wettable pad; depositing a package And on the semiconductor die or assembly and around the stud bump; forming a first interconnect structure on a first surface of the encapsulant, the first interconnect structure comprising a first integrated passive component ( And being electrically connected to the stud bump; and forming a second interconnect structure on a second surface of one of the encapsulants on the opposite side of the first interconnect structure. 如申請專利範圍第1項所述之方法,其中該凸柱凸塊包含複數個堆疊凸塊。 The method of claim 1, wherein the stud bump comprises a plurality of stacked bumps. 如申請專利範圍第1項所述之方法,其中該凸柱凸塊之一高度小於該半導體晶粒或組件之一厚度。 The method of claim 1, wherein the height of one of the stud bumps is less than a thickness of the semiconductor die or component. 如申請專利範圍第1項所述之方法,更包含:堆疊複數個該半導體元件;以及經由該凸柱凸塊電性連接該複數個半導體元件。 The method of claim 1, further comprising: stacking the plurality of semiconductor components; and electrically connecting the plurality of semiconductor components via the stud bumps. 如申請專利範圍第1項所述之方法,其中該半導體晶粒或組件包含一覆晶半導體晶粒,其具有一作用表面朝向該第二互連結構。 The method of claim 1, wherein the semiconductor die or component comprises a flip-chip semiconductor die having an active surface facing the second interconnect structure. 一種製造半導體元件的方法,包含:提供一半導體晶粒或組件; 提供一垂直互連結構;沉積一封裝劑於該半導體晶粒或組件上以及該垂直互連結構上;形成一第一互連結構於該封裝劑之一第一表面上;以及形成一第二互連結構於該第一互連結構對側之封裝劑之一第二表面上。 A method of fabricating a semiconductor device, comprising: providing a semiconductor die or component; Providing a vertical interconnect structure; depositing an encapsulant on the semiconductor die or component and the vertical interconnect structure; forming a first interconnect structure on a first surface of the encapsulant; and forming a second The interconnect structure is on a second surface of one of the encapsulants on the opposite side of the first interconnect structure. 如申請專利範圍第6項所述之方法,其中該第一互連結構包含一整合式被動元件。 The method of claim 6, wherein the first interconnect structure comprises an integrated passive component. 如申請專利範圍第6項所述之方法,其中該第二互連結構包含一整合式被動元件。 The method of claim 6, wherein the second interconnect structure comprises an integrated passive component. 如申請專利範圍第6項所述之方法,其中該垂直互連結構包含一凸塊部分和一凸柱部分。 The method of claim 6, wherein the vertical interconnect structure comprises a bump portion and a stud portion. 如申請專利範圍第6項所述之方法,更包含:堆疊複數個半導體元件;以及經由該第一互連結構、第二互連結構以及垂直互連結構將經堆疊的該些半導體元件彼此電性連接。 The method of claim 6, further comprising: stacking a plurality of semiconductor elements; and electrically electrically stacking the stacked semiconductor elements via the first interconnect structure, the second interconnect structure, and the vertical interconnect structure Sexual connection. 一種半導體元件,包含:一半導體晶粒或組件;一導電層,其包含一可濕性墊片;一垂直互連結構,其形成在該可濕性墊片之上;一封裝劑,沉積於該半導體晶粒或組件上以及該垂直互連結構上;以及一第一互連結構,形成於該封裝劑的一第一表面上, 該第一互連結構包含一第一整合式被動元件(IPD)。 A semiconductor component comprising: a semiconductor die or component; a conductive layer comprising a wettable pad; a vertical interconnect structure formed over the wettable pad; an encapsulant deposited on Forming on the semiconductor die or component and the vertical interconnect structure; and a first interconnect structure on a first surface of the encapsulant, The first interconnect structure includes a first integrated passive component (IPD). 如申請專利範圍第11項所述之半導體元件,更包含一第二互連結構,形成於該第一互連結構對側之封裝劑的一第二表面上。 The semiconductor device of claim 11, further comprising a second interconnect structure formed on a second surface of the encapsulant on the opposite side of the first interconnect structure. 如申請專利範圍第12項所述之半導體元件,其中該第二互連結構包含一第二IPD。 The semiconductor component of claim 12, wherein the second interconnect structure comprises a second IPD. 如申請專利範圍第11項所述之半導體元件,其中該垂直互連結構包含一凸塊部分和一凸柱部分或者複數個堆疊凸塊。 The semiconductor device of claim 11, wherein the vertical interconnect structure comprises a bump portion and a pillar portion or a plurality of stacked bumps. 如申請專利範圍第11項所述之半導體元件,更包含複數個堆疊半導體元件,其透過該垂直互連結構彼此電性連接。 The semiconductor component of claim 11, further comprising a plurality of stacked semiconductor components electrically connected to each other through the vertical interconnect structure.
TW099115260A 2009-06-26 2010-05-13 Semiconductor device and method of forming vertical interconnect structure using stud bumps TWI524439B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/492,360 US8193034B2 (en) 2006-11-10 2009-06-26 Semiconductor device and method of forming vertical interconnect structure using stud bumps

Publications (2)

Publication Number Publication Date
TW201104771A TW201104771A (en) 2011-02-01
TWI524439B true TWI524439B (en) 2016-03-01

Family

ID=44813777

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099115260A TWI524439B (en) 2009-06-26 2010-05-13 Semiconductor device and method of forming vertical interconnect structure using stud bumps

Country Status (2)

Country Link
SG (1) SG185340A1 (en)
TW (1) TWI524439B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552290B (en) * 2014-04-22 2016-10-01 矽品精密工業股份有限公司 Package substrate and manufacturing method thereof
US9601410B2 (en) 2015-01-07 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
CN105405827A (en) * 2015-12-22 2016-03-16 华进半导体封装先导技术研发中心有限公司 Multi-stacked fanout package structure with low cost and fabrication method thereof

Also Published As

Publication number Publication date
TW201104771A (en) 2011-02-01
SG185340A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US9263361B2 (en) Semiconductor device having a vertical interconnect structure using stud bumps
TWI515810B (en) Semiconductor device and method of forming no-flow underfill material around vertical interconnect structure
TWI570820B (en) Semiconductor device and method of forming stress relief layer between die and interconnect structure
US8476120B2 (en) Semiconductor device and method of forming three-dimensional vertically oriented integrated capacitors
US10083916B2 (en) Semiconductor device and method of forming stress relief layer between die and interconnect structure
TWI508199B (en) Semiconductor device and method of providing z-interconnect conductive pillars with inner polymer core
US8049328B2 (en) Semiconductor device and method of forming an interconnect structure for 3-D devices using encapsulant for structural support
US8072059B2 (en) Semiconductor device and method of forming UBM fixed relative to interconnect structure for alignment of semiconductor die
TWI567866B (en) Semiconductor device and method of forming an interconnect structure with tsv using encapsulant for structural support
US7935570B2 (en) Semiconductor device and method of embedding integrated passive devices into the package electrically interconnected using conductive pillars
US9030002B2 (en) Semiconductor device having IPD structure with smooth conductive layer and bottom-side conductive layer
TWI498996B (en) Semiconductor device and method of forming inductor over insulating material filled trench in substrate
TWI524439B (en) Semiconductor device and method of forming vertical interconnect structure using stud bumps
TWI518810B (en) Semiconductor device and method of forming ubm fixed relative to interconnect structure for alignment of semiconductor die