TWI499078B - Device substrate, manufacturing method of device substrate, optical apparatus and manufacturing method thereof - Google Patents

Device substrate, manufacturing method of device substrate, optical apparatus and manufacturing method thereof Download PDF

Info

Publication number
TWI499078B
TWI499078B TW102103795A TW102103795A TWI499078B TW I499078 B TWI499078 B TW I499078B TW 102103795 A TW102103795 A TW 102103795A TW 102103795 A TW102103795 A TW 102103795A TW I499078 B TWI499078 B TW I499078B
Authority
TW
Taiwan
Prior art keywords
nitride
substrate
shallow junction
junction region
amorphous shallow
Prior art date
Application number
TW102103795A
Other languages
Chinese (zh)
Other versions
TW201431116A (en
Inventor
Jinn Kong Sheu
Wei Chih Lai
Shih Chang Shei
Shang Ju Tu
Original Assignee
Just Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Just Innovation Corp filed Critical Just Innovation Corp
Priority to TW102103795A priority Critical patent/TWI499078B/en
Publication of TW201431116A publication Critical patent/TW201431116A/en
Application granted granted Critical
Publication of TWI499078B publication Critical patent/TWI499078B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)

Description

元件基板、元件基板的製造方法、光電裝置及其製造 方法Element substrate, method of manufacturing the element substrate, photovoltaic device, and manufacturing thereof method

本申請案是有關於一種基板及其製造方法與一種半導體裝置及其製造方法,且特別是有關於一種元件基板及其製造方法與一種光電裝置及其製造方法。The present application relates to a substrate and a method of fabricating the same, a semiconductor device and a method of fabricating the same, and more particularly to an element substrate and a method of fabricating the same, an optoelectronic device, and a method of fabricating the same.

近年來發光二極體(LED)廣泛的被應用在市場上,例如以氮化鎵(GaN)製成的藍光與黃色螢光粉組合可以獲得白光,不只是在亮度上或用電量方面皆比之前的傳統泡光源亮且省電,可以大幅降低用電量。此外,發光二極體具有反應速度快、體積小、低污染、高可靠度、適合量產等優點。In recent years, light-emitting diodes (LEDs) have been widely used in the market. For example, a combination of blue light and yellow fluorescent powder made of gallium nitride (GaN) can obtain white light, not only in terms of brightness or power consumption. It is brighter and saves power than the traditional bubble light source, which can greatly reduce the power consumption. In addition, the light-emitting diode has the advantages of fast reaction speed, small volume, low pollution, high reliability, and suitable mass production.

從紅光、綠光、藍光到紫外光的發光二極體,在目前市面上主要的產品大多數的是由氮化鎵系列的化合物為主,但由於氮化鎵基板過於昂貴且不普遍,因此於製造前述之氮化鎵發光二極體時多使用氧化鋁(sapphire)基板。然而氧化鋁基板本身與氮化鎵的晶格常數(lattice constant)、熱澎脹係數及化學性質的具有一定程度的差異,所以於異質基板(例如是矽基板、碳化矽基板或是氧化鋁基板)上成長之氮化鎵層會有許多的線缺陷、錯位,且這些錯位會隨著成長的氮化鎵層之厚度增加而延伸,也就是形成穿透錯位。這些穿透錯位的情形將會嚴重影響到氮化鎵層中的電性傳遞效果,進而導致光電裝置的表現效率不佳。因此, 如何使元件基板具有良好的元件成長基礎以減少穿透錯位的情形發生,實為此領域之技術人員亟欲解決之問題。Light-emitting diodes from red, green, blue, and ultraviolet light are mostly dominated by GaN series compounds, but because GaN substrates are too expensive and not common, Therefore, an alumina (sapphire) substrate is often used in the manufacture of the aforementioned gallium nitride light-emitting diode. However, the alumina substrate itself has a certain degree of difference from the lattice constant, thermal expansion coefficient and chemical properties of gallium nitride, so that it is on a heterogeneous substrate (for example, a germanium substrate, a tantalum carbide substrate or an aluminum oxide substrate). The grown gallium nitride layer has many line defects and misalignments, and these misalignments extend as the thickness of the grown gallium nitride layer increases, that is, the formation of a penetration misalignment. These cases of penetration misalignment will seriously affect the electrical transmission effect in the gallium nitride layer, which in turn leads to poor performance of the photovoltaic device. therefore, How to make the component substrate have a good component growth basis to reduce the occurrence of penetration misalignment is a problem that the technicians in the field are eager to solve.

本申請案提供一種元件基板的製造方法,以使元件基板可以提供適當的元件成長基礎。The present application provides a method of fabricating an element substrate such that the element substrate can provide an appropriate component growth basis.

本申請案提供一種元件基板,其可以提供適當的元件成長基礎。The present application provides an element substrate that can provide a suitable basis for component growth.

本申請案提供一種光電裝置的製造方法,以使光電裝置具有良好的電性表現。The present application provides a method of fabricating an optoelectronic device such that the optoelectronic device has good electrical performance.

本申請案提供一種光電裝置,其具有良好的電性表現。The present application provides an optoelectronic device that has good electrical performance.

本申請案提出一種元件基板的製造方法,其包括下列步驟。首先,對一基板之一成長表面進行一表面處理(surface treatment),以於基板中形成一非晶型淺接面區(amorphous shallow junction region),其中非晶型淺接面區由成長表面延伸至基板之內部。接著,在溫度低於攝氏800度的條件下,於非晶型淺接面區上形成一氮化物晶核層(nitride nucleation layer)。The present application proposes a method of manufacturing an element substrate comprising the following steps. First, a surface treatment is performed on a growth surface of a substrate to form an amorphous shallow junction region in the substrate, wherein the amorphous shallow junction region is extended by the growth surface. To the inside of the substrate. Next, a nitride nucleation layer is formed on the amorphous shallow junction region at a temperature lower than 800 degrees Celsius.

本申請案提出一種元件基板,其包括一基板以及一氮化物晶核層。基板具有一非晶型淺接面區,其中非晶型淺接面區由基板之一成長表面延伸至基板之內部。氮化物晶核層位於非晶型淺接面區上。The present application proposes an element substrate comprising a substrate and a nitride crystal nucleation layer. The substrate has an amorphous shallow junction region, wherein the amorphous shallow junction region extends from one of the growth surfaces of the substrate to the interior of the substrate. The nitride nucleation layer is located on the amorphous shallow junction region.

本申請案提出一種光電裝置的製造方法,其包括下列 步驟。首先,對一基板之一成長表面進行一表面處理,以於基板中形成一非晶型淺接面區,其中非晶型淺接面區由成長表面延伸至基板之內部。接著,在溫度低於攝氏800度的條件下,於非晶型淺接面區上形成一氮化物晶核層。之後,於氮化物晶核層上形成一光電元件層。The present application proposes a method of manufacturing an optoelectronic device, which includes the following step. First, a surface of a growth surface of a substrate is subjected to a surface treatment to form an amorphous shallow junction region in the substrate, wherein the amorphous shallow junction region extends from the growth surface to the inside of the substrate. Next, a nitride crystal nucleation layer is formed on the amorphous shallow junction region at a temperature lower than 800 degrees Celsius. Thereafter, a photovoltaic element layer is formed on the nitride crystal nucleation layer.

本申請案另提出一種光電裝置,其包括一基板、一氮化物晶核層以及一光電元件層。基板具有一非晶型淺接面區,其中非晶型淺接面區由基板之一成長表面延伸至基板之內部。氮化物晶核層位於非晶型淺接面區上。光電元件層位於氮化物晶核層上。The present application further provides an optoelectronic device comprising a substrate, a nitride nucleation layer, and a photovoltaic element layer. The substrate has an amorphous shallow junction region, wherein the amorphous shallow junction region extends from one of the growth surfaces of the substrate to the interior of the substrate. The nitride nucleation layer is located on the amorphous shallow junction region. The photovoltaic element layer is on the nitride crystal nucleation layer.

基於上述,本申請案在基板內形成由成長表面延伸至內部的非晶型淺接面區,並在非晶型淺接面區上形成氮化物晶核層,此氮化物晶核層可以使元件基板具有良好的元件成長基礎,進而減少光電元件層中的錯位密度,以改善光電裝置的電性表現。Based on the above, the present application forms an amorphous shallow junction region extending from the growth surface to the inside in the substrate, and forms a nitride crystal nucleation layer on the amorphous shallow junction region, and the nitride crystal nucleation layer can The component substrate has a good component growth basis, thereby reducing the dislocation density in the photosensor layer to improve the electrical performance of the photovoltaic device.

為讓本申請案之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above-described features and advantages of the present application will become more apparent and understood.

圖1至圖5為本發明一實施例之光電裝置的製造流程示意圖。請參考圖1,首先,選擇性地於一基板110之一成長表面112上形成一阻障層(stop layer)120,其中阻障層120的材質可為氧化物,其例如是氧化矽(SiO2 )。阻障層120的厚度例如為900Å。在本實施例中,基板110的材質 為氧化鋁(Al2 O3 ),即,基板110中的鋁元素之含量為氧元素之含量的約2/3倍。1 to 5 are schematic views showing a manufacturing process of a photovoltaic device according to an embodiment of the present invention. Referring to FIG. 1 , first, a stop layer 120 is formed on a growth surface 112 of a substrate 110. The barrier layer 120 may be made of an oxide such as yttrium oxide (SiO). 2 ). The thickness of the barrier layer 120 is, for example, 900 Å. In the present embodiment, the material of the substrate 110 is alumina (Al 2 O 3 ), that is, the content of the aluminum element in the substrate 110 is about 2/3 times the content of the oxygen element.

接著請參考圖2,對基板110進行表面處理S,以使基板110具有一非晶型淺接面區114。具體而言,上述之表面處理S例如是對基板110進行離子佈植(ion implantation)以使多個改質元素130植入阻障層120內以及部分基板110內,其中基板110內具有改質元素130的區域可形成非晶型淺接面區114。改質元素130例如是氬元素(Ar),且改質元素130的含量例如是大於1015 cm-3Next, referring to FIG. 2, the substrate 110 is subjected to a surface treatment S such that the substrate 110 has an amorphous shallow junction region 114. Specifically, the surface treatment S described above is, for example, ion implantation of the substrate 110 to implant a plurality of modifying elements 130 into the barrier layer 120 and a portion of the substrate 110, wherein the substrate 110 has a modification therein. The region of element 130 may form an amorphous shallow junction region 114. The reforming element 130 is, for example, an argon element (Ar), and the content of the modifying element 130 is, for example, greater than 10 15 cm -3 .

在本實施例中,非晶型淺接面區114例如是由基板110之成長表面112延伸至基板110的內部。換言之,非晶型淺接面區114由基板110的成長表面112沿著厚度方向延伸,並且具有一深度D。在本實施例中,非晶型淺接面區114的深度D例如是小於1微米。In the present embodiment, the amorphous shallow junction region 114 extends, for example, from the growth surface 112 of the substrate 110 to the interior of the substrate 110. In other words, the amorphous shallow junction region 114 extends from the growth surface 112 of the substrate 110 in the thickness direction and has a depth D. In the present embodiment, the depth D of the amorphous shallow junction region 114 is, for example, less than 1 micrometer.

值得一提的是,上述表面處理S例如是對基板110之成長表面112進行全面性地離子佈植,以使基板110之成長表面112被改質,此時,基板110之成長表面112會全面性地被改質為非晶型淺接面區114。It is worth mentioning that the surface treatment S is, for example, comprehensively ion-implanted the growth surface 112 of the substrate 110 so that the growth surface 112 of the substrate 110 is modified. At this time, the growth surface 112 of the substrate 110 is comprehensive. It is qualitatively modified to an amorphous shallow junction region 114.

接著請參考圖3,移除阻障層120,以暴露出非晶型淺接面區114的一粗糙表面116。換言之,透過上述離子佈植,部分的改質元素130會植入於基板110中以形成非晶型淺接面區114,以使原本平整的成長表面112被粗糙化為粗糙表面116。另外,部分的改質元素130會停留基板110的成長表面112上以使非晶型淺接面區114具有粗 糙表面116,其中粗糙表面116的粗糙度(Ra)例如是平均大於0.3奈米。Referring next to FIG. 3, the barrier layer 120 is removed to expose a rough surface 116 of the amorphous shallow junction region 114. In other words, through the ion implantation described above, a portion of the modifying element 130 is implanted in the substrate 110 to form an amorphous shallow junction region 114 such that the originally flat growth surface 112 is roughened into a rough surface 116. In addition, a portion of the modifying element 130 will remain on the growth surface 112 of the substrate 110 to make the amorphous shallow junction region 114 thick. The rough surface 116, wherein the roughness (Ra) of the rough surface 116 is, for example, on average greater than 0.3 nm.

承上述,基板110在進行離子佈植之後,改質元素130的植入將影響位於晶型淺接面區114的基板110的鋁元素之含量與氧元素之含量的平均比例。在本實施例中,基板110在進行離子佈植之後,位於非晶型淺接面區114的鋁元素之含量為氧元素之含量的x倍,且x例如是大於2/3。意即,鋁元素之含量比例會增加。換言之,本實施例可透過改變位於晶型淺接面區114的基板110的鋁元素之含量與氧元素之含量的平均比例,以調整位於晶型淺接面區114的基板110的表面特性,如化學性質、晶格係數或其他所欲調整之表面特性等。In the above, after the ion implantation is performed on the substrate 110, the implantation of the modifying element 130 affects the average ratio of the content of the aluminum element to the content of the oxygen element in the substrate 110 of the shallow junction region 114. In the present embodiment, after the ion implantation is performed on the substrate 110, the content of the aluminum element in the amorphous shallow junction region 114 is x times the content of the oxygen element, and x is, for example, greater than 2/3. This means that the proportion of aluminum content will increase. In other words, the present embodiment can adjust the surface ratio of the substrate 110 located in the shallow junction region 114 of the crystalline form by changing the average ratio of the content of the aluminum element to the content of the oxygen element in the substrate 110 of the shallow junction region 114. Such as chemical properties, lattice coefficients or other surface characteristics to be adjusted.

須說明的是,本實施例是以基板110為氧化鋁為例,然而,本發明不限於此。在其他實施例中,基板110的材質也可以是矽、碳化矽、藍寶石、氮化鎵、氮化鋁、玻璃、石英、氧化鋅、氧化鎂或氧化鋰鎵。此外,本實施例是透過氬元素作為改質元素130來對基板110進行離子佈植,然而,本發明不限於此。在其他實施例中,改質元素130也可以是鋁、銦、鎵、鉿、鋯、鈦、鉻、鈧、砷、磷、矽、硼、氫、碳、氮、氧、氬或前述元素之任意組合。換言之,設計者可依基板110的材質不同而選擇不同的改質元素130來進行離子佈植,進而調整基板110的表面特性。It should be noted that the present embodiment is an example in which the substrate 110 is alumina, however, the invention is not limited thereto. In other embodiments, the material of the substrate 110 may also be tantalum, tantalum carbide, sapphire, gallium nitride, aluminum nitride, glass, quartz, zinc oxide, magnesium oxide or lithium gallium oxide. Further, in the present embodiment, the substrate 110 is ion-implanted through the argon element as the modifying element 130, however, the present invention is not limited thereto. In other embodiments, the modifying element 130 may also be aluminum, indium, gallium, germanium, zirconium, titanium, chromium, antimony, arsenic, phosphorus, antimony, boron, hydrogen, carbon, nitrogen, oxygen, argon or the foregoing elements. random combination. In other words, the designer can select different modifying elements 130 to perform ion implantation according to the material of the substrate 110, thereby adjusting the surface characteristics of the substrate 110.

再者,本實施例是透過離子佈植來進行表面處理S以使基板110具有非晶型淺接面區114,然而,本發明不限 於此。在其他實施例中,表面處理S也可以是熱擴散、電漿處理、化學蝕刻或雷射照射。換言之,只要是能夠使基板110表面粗糙化的處理程序都可作為本發明之表面處理S。Furthermore, in this embodiment, the surface treatment S is performed by ion implantation to make the substrate 110 have an amorphous shallow junction region 114. However, the present invention is not limited thereto. herein. In other embodiments, the surface treatment S can also be thermal diffusion, plasma treatment, chemical etching, or laser irradiation. In other words, any treatment procedure capable of roughening the surface of the substrate 110 can be used as the surface treatment S of the present invention.

再來,請參考圖4,在溫度低於攝氏800度的條件下,於非晶型淺接面區114上形成一氮化物晶核層140,其中氮化物晶核層140的厚度介於10奈米至100奈米。氮化物晶核層140的材質例如是氮化鋁(AlN)、氮化鎵(GaN)、氮化硼(BN)、氮化鉿(HfN)、氮化鉻(CrN)、氮化鈦(TiN)、氮化鋯(ZrN)及氮化鈧(ScN)。在本實施例中,氮化物晶核層140的材質較佳是氮化鋁(AlN)。Next, referring to FIG. 4, a nitride nucleation layer 140 is formed on the amorphous shallow junction region 114 at a temperature lower than 800 degrees Celsius, wherein the thickness of the nitride nucleation layer 140 is 10 Nano to 100 nm. The material of the nitride crystal core layer 140 is, for example, aluminum nitride (AlN), gallium nitride (GaN), boron nitride (BN), hafnium nitride (HfN), chromium nitride (CrN), titanium nitride (TiN). ), zirconium nitride (ZrN) and tantalum nitride (ScN). In the present embodiment, the material of the nitride crystal core layer 140 is preferably aluminum nitride (AlN).

具體而言,在溫度約為攝氏500度的條件下,氮化鋁可於非晶型淺接面區114的粗糙表面116上結晶,以形成氮化物晶核層140。此外,由於非晶型淺接面區114具有全面性的粗糙表面116,因此氮化物晶核層140例如是全面性地位於非晶型淺接面區114的粗糙表面116上。另外,由於位於非晶型淺接面區114的基板110的鋁元素之含量增加,因此,相較於原本未經表面處理S的基板110的成長表面112,改質後的非晶型淺接面區114的粗糙表面116更適合氮化物晶核層140的成長。Specifically, aluminum nitride may be crystallized on the rough surface 116 of the amorphous shallow junction region 114 at a temperature of about 500 degrees Celsius to form a nitride crystal core layer 140. Moreover, since the amorphous shallow junction region 114 has a comprehensive rough surface 116, the nitride crystal core layer 140 is, for example, wholly located on the rough surface 116 of the amorphous shallow junction region 114. In addition, since the content of the aluminum element in the substrate 110 of the amorphous shallow junction region 114 is increased, the modified amorphous shallow connection is compared with the growth surface 112 of the substrate 110 which has not been surface treated S. The rough surface 116 of the face region 114 is more suitable for the growth of the nitride nucleation layer 140.

至此,已初步完成光電裝置10中的元件基板100。接著,以下將說明於元件基板100上形成一光電元件層200的製造流程。So far, the element substrate 100 in the photovoltaic device 10 has been initially completed. Next, a manufacturing flow for forming a photovoltaic element layer 200 on the element substrate 100 will be described below.

請參考圖5,於元件基板100的氮化物晶核層140上 形成光電元件層250。光電元件層250例如是發光二極體元件層,其包括一緩衝半導體層210、一第一型摻雜半導體層220、一主動層230、一第二型摻雜半導體層240、一第一電極層250以及一第二電極層260。Please refer to FIG. 5, on the nitride crystal nucleation layer 140 of the element substrate 100. A photovoltaic element layer 250 is formed. The photo-electric device layer 250 is, for example, a light-emitting diode element layer, and includes a buffer semiconductor layer 210, a first-type doped semiconductor layer 220, an active layer 230, a second-type doped semiconductor layer 240, and a first electrode. Layer 250 and a second electrode layer 260.

緩衝半導體層210位於氮化物晶核層140上。第一型摻雜半導體層220位於緩衝半導體層210上。主動層230位於第一型摻雜半導體層220上。第二型摻雜半導體層240位於主動層230上。第一電極層250位於第二型摻雜半導體層240上,且第一電極層250可包括一金屬電極層250a以及一透明電極層250b。第二電極層260位於第一型摻雜半導體層220上,且主動層230、第二型摻雜半導體層240以及第一電極層250暴露出第二電極層260。有關發光二極體元件層的結構以及各構件之材料,應為此領域技術人員所熟知之技術內容,於此不再贅述。The buffer semiconductor layer 210 is on the nitride crystal nucleation layer 140. The first type doped semiconductor layer 220 is on the buffer semiconductor layer 210. The active layer 230 is on the first type doped semiconductor layer 220. The second type doped semiconductor layer 240 is on the active layer 230. The first electrode layer 250 is disposed on the second type doped semiconductor layer 240, and the first electrode layer 250 may include a metal electrode layer 250a and a transparent electrode layer 250b. The second electrode layer 260 is located on the first type doped semiconductor layer 220, and the active layer 230, the second type doped semiconductor layer 240, and the first electrode layer 250 expose the second electrode layer 260. The structure of the light-emitting diode element layer and the material of each component should be well known to those skilled in the art, and will not be described herein.

在本實施例中,第一型摻雜半導體層220的材質例如為含五族元素的氮化鎵,第二型摻雜半導體層240的材質例如為含三族元素的氮化鎵。換言之,第一型摻雜半導體層220例如是n型摻雜半導體層,第二型摻雜半導體層220例如是p型摻雜半導體層。當然,本發明不限於此。在其他實施例中,第一型摻雜半導體層220可以是p型摻雜半導體層,第二型摻雜半導體層220可以是n型摻雜半導體層。In the present embodiment, the material of the first type doped semiconductor layer 220 is, for example, gallium nitride containing a group C element, and the material of the second type doped semiconductor layer 240 is, for example, gallium nitride containing a group III element. In other words, the first type doped semiconductor layer 220 is, for example, an n-type doped semiconductor layer, and the second type doped semiconductor layer 220 is, for example, a p-type doped semiconductor layer. Of course, the invention is not limited thereto. In other embodiments, the first type doped semiconductor layer 220 may be a p-type doped semiconductor layer, and the second type doped semiconductor layer 220 may be an n-type doped semiconductor layer.

在本實施例中,緩衝半導體層210的材質例如為未摻雜的氮化鎵,氮化物晶核層140的材質例如為氮化鋁。當 緩衝半導體層210形成於氮化物晶核層140上時,由於氮化物晶核層140與緩衝半導體層210的性質相近,因此氮化物晶核層140有助於緩衝半導體層210的成長,進而減少穿透錯位的情形發生。換言之,元件基板100可透過氮化物晶核層140提供良好的光電元件層200的成長基礎,因此可以進一步使光電裝置10具有良好的電性表現。In the present embodiment, the material of the buffer semiconductor layer 210 is, for example, undoped gallium nitride, and the material of the nitride crystal core layer 140 is, for example, aluminum nitride. when When the buffer semiconductor layer 210 is formed on the nitride crystal core layer 140, since the properties of the nitride crystal core layer 140 and the buffer semiconductor layer 210 are similar, the nitride crystal core layer 140 helps to buffer the growth of the semiconductor layer 210, thereby reducing The situation of penetrating misplacement occurs. In other words, the element substrate 100 can provide a good growth base of the photovoltaic element layer 200 through the nitride crystal core layer 140, so that the photovoltaic device 10 can be further provided with good electrical performance.

在本實施例中,是以光電元件層250是發光二極體元件層為例說明,但本發明不限於此。在其他實施例中,光電元件層250也可以是太陽能電池元件層或是其他具有氮化物半導體材料層的光電元件層。In the present embodiment, the photo-electric element layer 250 is a light-emitting diode element layer as an example, but the present invention is not limited thereto. In other embodiments, the photovoltaic element layer 250 can also be a layer of solar cell elements or other layer of photovoltaic elements having a layer of nitride semiconductor material.

實驗例Experimental example

以下將以實例1以及對照例1來說明元件基板對成長氮化鎵層的影響。詳細而言,實例1是對氧化鋁基板進行離子佈植形成非晶型淺接面區後,再於非晶型淺接面區上以成長溫約攝氏500度形成氮化鎵晶核層,接著,再以成長溫約攝氏1000度於元件基板上成長氮化鎵層。對照例1則是直接於未經表面處理的元件基板上成長氮化鎵層。表一為實例1之元件基板的離子佈植的參數。圖6為實例1與對照例1之元件基板的X-ray吸收繞射光譜圖。The influence of the element substrate on the grown gallium nitride layer will be described below with reference to Example 1 and Comparative Example 1. In detail, in the first example, after the ion implantation of the alumina substrate to form an amorphous shallow junction region, the gallium nitride crystal nucleation layer is formed at a growth temperature of about 500 degrees Celsius on the amorphous shallow junction region. Next, a gallium nitride layer is grown on the element substrate at a growth temperature of about 1000 degrees Celsius. In Comparative Example 1, a gallium nitride layer was grown directly on the surface substrate which was not surface-treated. Table 1 is the parameters of the ion implantation of the element substrate of Example 1. Fig. 6 is a chart showing the X-ray absorption diffraction spectrum of the element substrate of Example 1 and Comparative Example 1.

如圖6所示,實例1的半高寬值(full width at half maximum)約為480弧度秒(arcsec),對照例1的半高寬值約為565弧度秒(arcsec)。由此可知,實例1的氮化鎵層的結晶品質優於對照例1的氮化鎵層的結晶品質。換言之,透過本申請案之元件基板的製造方法所製得的元件基板,確實可以提供氮化鎵層良好的成長基礎。As shown in FIG. 6, the full width at half maximum of Example 1 was about 480 arc seconds (arcsec), and the full width at half maximum of Comparative Example 1 was about 565 arc seconds (arcsec). From this, it is understood that the crystal quality of the gallium nitride layer of Example 1 is superior to that of the gallium nitride layer of Comparative Example 1. In other words, the element substrate produced by the method for manufacturing an element substrate of the present application can surely provide a good growth basis for the gallium nitride layer.

發光二極體的評價Evaluation of light-emitting diodes

實例2、實例3以及實例4之發光二極體的結構如圖5所示。對照例2、對照例3以及對照例4的結構與實例2相似,其不同之處在於對照例2、對照例3以及對照例4是直接於未經表面處理的氧化鋁基板上製作發光二極體元件層。圖7為實例2、實例3以及實例4之發光二極體的漏電流測試結果。圖8為對照例2、對照例3以及對照例4之發光二極體元件的漏電流測試結果。由圖7以及圖8可知,於電壓為-20伏特(V)時,實例2、實例3以及實例4之發光二極體的漏電流明顯比對照例2、對照例3以及對照例4之發光二極體的漏電流小。換言之,對照例2、對照例3以及對照例4之發光二極體元件確實具有較佳的電性表現。The structures of the light-emitting diodes of Example 2, Example 3, and Example 4 are shown in FIG. The structures of Comparative Example 2, Comparative Example 3, and Comparative Example 4 were similar to those of Example 2 except that Comparative Example 2, Comparative Example 3, and Comparative Example 4 were used to fabricate light-emitting diodes directly on an untreated alumina substrate. Body element layer. 7 is a leakage current test result of the light-emitting diodes of Example 2, Example 3, and Example 4. Fig. 8 shows the results of leakage current test of the light-emitting diode elements of Comparative Example 2, Comparative Example 3, and Comparative Example 4. 7 and FIG. 8, the leakage currents of the light-emitting diodes of Example 2, Example 3, and Example 4 were significantly higher than those of Comparative Example 2, Comparative Example 3, and Comparative Example 4 when the voltage was -20 volts (V). The leakage current of the diode is small. In other words, the light-emitting diode elements of Comparative Example 2, Comparative Example 3, and Comparative Example 4 did have a better electrical performance.

綜上所述,本申請案之元件基板是在基板內形成全面性非晶型淺接面區,並於非晶型淺接面區上形成氮化物晶核層。此氮化物晶核層可具有理想的表面特性,例如是與光電元件層中的緩衝半導體層的性質相近,因此可提供光 電元件層良好的元件成長基礎,進而減少光電元件層中的錯位密度,並藉以優化光電裝置的電性表現。In summary, the component substrate of the present application forms a comprehensive amorphous shallow junction region in the substrate and forms a nitride crystal nucleation layer on the amorphous shallow junction region. The nitride crystal nucleation layer may have desirable surface characteristics, for example, similar to the properties of the buffer semiconductor layer in the photovoltaic element layer, thereby providing light The electrical component layer has a good component growth base, thereby reducing the misalignment density in the photovoltaic device layer, and thereby optimizing the electrical performance of the photovoltaic device.

雖然本申請案已以實施例揭露如上,然其並非用以限定本申請案,任何所屬技術領域中具有通常知識者,在不脫離本申請案之精神和範圍內,當可作些許之更動與潤飾,故本申請案之保護範圍當視後附之申請專利範圍所界定者為準。Although the present application has been disclosed in the above embodiments, it is not intended to limit the application, and any person having ordinary skill in the art can make some changes without departing from the spirit and scope of the present application. Retouching, the scope of protection of this application is subject to the definition of the scope of the patent application attached.

10‧‧‧光電裝置10‧‧‧Optoelectronic devices

100‧‧‧元件基板100‧‧‧ element substrate

110‧‧‧基板110‧‧‧Substrate

112‧‧‧成長表面112‧‧‧Growth surface

114‧‧‧非晶型淺接面區114‧‧‧Amorphous shallow junction area

116‧‧‧粗糙表面116‧‧‧Rough surface

120‧‧‧阻障層120‧‧‧Barrier layer

130‧‧‧改質元素130‧‧‧Modified elements

140‧‧‧氮化物晶核層140‧‧‧Nitride nucleation layer

200‧‧‧光電元件層200‧‧‧Photoelectric layer

210‧‧‧緩衝半導體層210‧‧‧buffered semiconductor layer

220‧‧‧第一型摻雜半導體層220‧‧‧First type doped semiconductor layer

230‧‧‧主動層230‧‧‧ active layer

240‧‧‧第二型摻雜半導體層240‧‧‧Second type doped semiconductor layer

250‧‧‧第一電極層250‧‧‧First electrode layer

250a‧‧‧金屬電極層250a‧‧‧metal electrode layer

250b‧‧‧透明電極層250b‧‧‧transparent electrode layer

260‧‧‧第二電極層260‧‧‧Second electrode layer

S‧‧‧表面處理S‧‧‧Surface treatment

圖1至圖5為本發明一實施例之光電裝置的製造流程示意圖。1 to 5 are schematic views showing a manufacturing process of a photovoltaic device according to an embodiment of the present invention.

圖6為實例1與對照例1之元件基板的X-ray吸收繞射光譜圖。Fig. 6 is a chart showing the X-ray absorption diffraction spectrum of the element substrate of Example 1 and Comparative Example 1.

圖7為實例2、實例3以及實例4之發光二極體的漏電流測試結果。7 is a leakage current test result of the light-emitting diodes of Example 2, Example 3, and Example 4.

圖8為對照例2、對照例3以及對照例4之發光二極體元件的漏電流測試結果。Fig. 8 shows the results of leakage current test of the light-emitting diode elements of Comparative Example 2, Comparative Example 3, and Comparative Example 4.

10‧‧‧光電裝置10‧‧‧Optoelectronic devices

100‧‧‧元件基板100‧‧‧ element substrate

110‧‧‧基板110‧‧‧Substrate

114‧‧‧非晶型淺接面區114‧‧‧Amorphous shallow junction area

116‧‧‧粗糙表面116‧‧‧Rough surface

130‧‧‧改質元素130‧‧‧Modified elements

140‧‧‧氮化物晶核層140‧‧‧Nitride nucleation layer

200‧‧‧光電元件層200‧‧‧Photoelectric layer

210‧‧‧緩衝半導體層210‧‧‧buffered semiconductor layer

220‧‧‧第一型摻雜半導體層220‧‧‧First type doped semiconductor layer

230‧‧‧主動層230‧‧‧ active layer

240‧‧‧第二型摻雜半導體層240‧‧‧Second type doped semiconductor layer

250‧‧‧第一電極層250‧‧‧First electrode layer

250a‧‧‧金屬電極層250a‧‧‧metal electrode layer

250b‧‧‧透明電極層250b‧‧‧transparent electrode layer

260‧‧‧第二電極層260‧‧‧Second electrode layer

Claims (35)

一種元件基板的製造方法,包括:對一基板之一成長表面進行一表面處理,以於該基板中形成一非晶型淺接面區,該非晶型淺接面區由該成長表面延伸至該基板之內部;以及在溫度低於攝氏800度的條件下,於該非晶型淺接面區上形成一氮化物晶核層。A method for manufacturing a component substrate, comprising: performing a surface treatment on a growth surface of a substrate to form an amorphous shallow junction region in the substrate, wherein the amorphous shallow junction region extends from the growth surface to the An inner portion of the substrate; and a nitride crystal nucleation layer formed on the amorphous shallow junction region at a temperature lower than 800 degrees Celsius. 如申請專利範圍第1項所述之元件基板的製造方法,其中該基板之材質為氧化鋁(Al2 O3 ),且位於該非晶型淺接面區的鋁元素之含量為氧元素之含量的x倍,且x大於2/3。The method for manufacturing an element substrate according to claim 1, wherein the material of the substrate is alumina (Al 2 O 3 ), and the content of the aluminum element in the amorphous shallow junction region is oxygen content. x times and x is greater than 2/3. 如申請專利範圍第1項所述之元件基板的製造方法,其中該非晶型淺接面區的深度小於1微米。The method of fabricating an element substrate according to claim 1, wherein the amorphous shallow junction region has a depth of less than 1 micrometer. 如申請專利範圍第1項所述之元件基板的製造方法,其中該非晶型淺接面區具有一粗糙表面,其中該粗糙表面的粗糙度大於0.3奈米。The method of manufacturing a component substrate according to claim 1, wherein the amorphous shallow junction region has a rough surface, wherein the roughness of the rough surface is greater than 0.3 nm. 如申請專利範圍第1項所述之元件基板的製造方法,其中該氮化物晶核層的厚度介於10奈米至100奈米。The method of manufacturing an element substrate according to claim 1, wherein the nitride crystal nucleation layer has a thickness of from 10 nm to 100 nm. 如申請專利範圍第1項所述之元件基板的製造方法,其中該氮化物晶核層的材質包括氮化鋁(AlN)、氮化鎵(GaN)、氮化硼(BN)、氮化鉿(HfN)、氮化鈦(TiN)、氮化鉻(CrN)、氮化鋯(ZrN)及氮化鈧(ScN)。The method for manufacturing an element substrate according to claim 1, wherein the material of the nitride crystal nucleation layer comprises aluminum nitride (AlN), gallium nitride (GaN), boron nitride (BN), and tantalum nitride. (HfN), titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN), and tantalum nitride (ScN). 如申請專利範圍第1項所述之元件基板的製造方法,其中該表面處理包括離子佈植、熱擴散、電漿處理、 化學蝕刻或雷射照射。The method for manufacturing an element substrate according to claim 1, wherein the surface treatment comprises ion implantation, thermal diffusion, plasma treatment, Chemical etching or laser irradiation. 如申請專利範圍第1項所述之元件基板的製造方法,其中該表面處理包括:於該基板之該成長表面上形成一阻障層;進行一離子佈植,以將多個改質元素植入該基板內而形成該非晶型淺接面區;以及移除該阻障層。The method of manufacturing a component substrate according to claim 1, wherein the surface treatment comprises: forming a barrier layer on the growth surface of the substrate; performing an ion implantation to implant a plurality of modified elements Forming the amorphous shallow junction region into the substrate; and removing the barrier layer. 如申請專利範圍第8項所述之元件基板的製造方法,其中該些改質元素包括鋁、銦、鎵、鉿、鋯、鈦、鉻、鈧、砷、磷、矽、硼、氫、碳、氮、氧、氬或前述元素之任意組合。The method for manufacturing an element substrate according to claim 8, wherein the modified elements include aluminum, indium, gallium, germanium, zirconium, titanium, chromium, antimony, arsenic, phosphorus, antimony, boron, hydrogen, carbon. , nitrogen, oxygen, argon or any combination of the foregoing. 一種元件基板,包括:一基板,該基板具有一非晶型淺接面區,其中該非晶型淺接面區由該基板之一成長表面延伸至該基板之內部;以及一氮化物晶核層,位於該非晶型淺接面區上。An element substrate comprising: a substrate having an amorphous shallow junction region, wherein the amorphous shallow junction region extends from a growth surface of the substrate to the inside of the substrate; and a nitride nucleation layer Located on the amorphous shallow junction area. 如申請專利範圍第10項所述之元件基板,其中該基板之材質為氧化鋁(Al2 O3 ),且位於該非晶型淺接面區的鋁元素之含量為氧元素之含量的x倍,且x>2/3。The component substrate according to claim 10, wherein the substrate is made of aluminum oxide (Al 2 O 3 ), and the aluminum element in the amorphous shallow junction region is x times the oxygen content. And x>2/3. 如申請專利範圍第10項所述之元件基板,其中該非晶型淺接面區的深度小於1微米。The element substrate of claim 10, wherein the amorphous shallow junction region has a depth of less than 1 micrometer. 如申請專利範圍第10項所述之元件基板,其中該非晶型淺接面區具有一粗糙表面,其中該粗糙表面的粗糙度大於0.3奈米。The element substrate of claim 10, wherein the amorphous shallow junction region has a rough surface, wherein the roughness of the rough surface is greater than 0.3 nm. 如申請專利範圍第10項所述之元件基板,其中該氮化物晶核層的厚度介於10奈米至100奈米。The element substrate of claim 10, wherein the nitride crystal nucleation layer has a thickness of from 10 nm to 100 nm. 如申請專利範圍第10項所述之元件基板,其中該氮化物晶核層的材質包括氮化鋁(AlN)、氮化鎵(GaN)、氮化硼(BN)、氮化鉿(HfN)、氮化鉻(CrN)、氮化鈦(TiN)、氮化鋯(ZrN)及氮化鈧(ScN)。The component substrate according to claim 10, wherein the material of the nitride crystal nucleation layer comprises aluminum nitride (AlN), gallium nitride (GaN), boron nitride (BN), hafnium nitride (HfN). , chromium nitride (CrN), titanium nitride (TiN), zirconium nitride (ZrN) and tantalum nitride (ScN). 如申請專利範圍第10項所述之元件基板,其中該基板具有位於該非晶型淺接面區內之多個改質元素,該些改質元素的含量大於1015 cm-3The component substrate according to claim 10, wherein the substrate has a plurality of modifying elements in the amorphous shallow junction region, and the content of the modifying elements is greater than 10 15 cm -3 . 如申請專利範圍第16項所述之元件基板,其中該些改質元素包括鋁、銦、鎵、鉿、鋯、鈦、鉻、鈧、砷、磷、矽、硼、氫、碳、氮、氧、氬或前述元素之任意組合。The component substrate according to claim 16, wherein the modified elements include aluminum, indium, gallium, germanium, zirconium, titanium, chromium, strontium, arsenic, phosphorus, antimony, boron, hydrogen, carbon, nitrogen, Oxygen, argon or any combination of the foregoing. 一種光電裝置的製造方法,包括:對一基板之一成長表面進行一表面處理,以於該基板中形成一非晶型淺接面區,該非晶型淺接面區由該成長表面延伸至該基板之內部;在溫度低於攝氏800度的條件下,於該非晶型淺接面區上形成一氮化物晶核層;以及於該氮化物晶核層上形成一光電元件層。A method of manufacturing a photovoltaic device, comprising: performing a surface treatment on a growth surface of a substrate to form an amorphous shallow junction region in the substrate, the amorphous shallow junction region extending from the growth surface to the The inside of the substrate; forming a nitride crystal nucleation layer on the amorphous shallow junction region at a temperature lower than 800 degrees Celsius; and forming a photovoltaic element layer on the nitride crystal nucleation layer. 如申請專利範圍第18項所述之光電裝置的製造方法,其中該基板之材質為氧化鋁(Al2 O3 ),且位於該非晶型淺接面區的鋁元素之含量為氧元素之含量的x倍,且x大於2/3。The method for manufacturing a photovoltaic device according to claim 18, wherein the substrate is made of alumina (Al 2 O 3 ), and the content of the aluminum element in the amorphous shallow junction region is oxygen content. x times and x is greater than 2/3. 如申請專利範圍第18項所述之光電裝置的製造 方法,其中該非晶型淺接面區的深度小於1微米。Manufacture of photovoltaic devices as described in claim 18 The method wherein the amorphous shallow junction region has a depth of less than 1 micron. 如申請專利範圍第18項所述之光電裝置的製造方法,其中該非晶型淺接面區具有一粗糙表面,其中該粗糙表面的粗糙度大於0.3奈米。The method of fabricating a photovoltaic device according to claim 18, wherein the amorphous shallow junction region has a rough surface, wherein the roughness of the rough surface is greater than 0.3 nm. 如申請專利範圍第18項所述之光電裝置的製造方法,其中該氮化物晶核層的厚度介於10奈米至100奈米。The method of manufacturing a photovoltaic device according to claim 18, wherein the nitride crystal nucleation layer has a thickness of from 10 nm to 100 nm. 如申請專利範圍第18項所述之光電裝置的製造方法,其中該氮化物晶核層的材質包括氮化鋁(AlN)、氮化鎵(GaN)、氮化硼(BN)、氮化鉻(CrN)、氮化鉿(HfN)、氮化鈦(TiN)、氮化鋯(ZrN)及氮化鈧(ScN)。The method of manufacturing a photovoltaic device according to claim 18, wherein the material of the nitride crystal nucleation layer comprises aluminum nitride (AlN), gallium nitride (GaN), boron nitride (BN), and chromium nitride. (CrN), hafnium nitride (HfN), titanium nitride (TiN), zirconium nitride (ZrN), and tantalum nitride (ScN). 如申請專利範圍第18項所述之光電裝置的製造方法,其中該表面處理包括離子佈植、熱擴散、電漿處理、化學蝕刻或雷射照射。The method of manufacturing a photovoltaic device according to claim 18, wherein the surface treatment comprises ion implantation, thermal diffusion, plasma treatment, chemical etching or laser irradiation. 如申請專利範圍第18項所述之光電裝置的製造方法,其中該表面處理包括:於該基板之該成長表面上形成一阻障層;進行一離子佈植,以使多個改質元素植入該基板內而形成該非晶型淺接面區;以及移除該阻障層。The method of manufacturing a photovoltaic device according to claim 18, wherein the surface treatment comprises: forming a barrier layer on the growth surface of the substrate; performing an ion implantation to cause a plurality of modified elements to be implanted Forming the amorphous shallow junction region into the substrate; and removing the barrier layer. 如申請專利範圍第25項所述之光電裝置的製造方法,其中該些改質元素包括鋁、銦、鎵、鉿、鋯、鈦、鉻、鈧、砷、磷、矽、硼、氫、碳、氮、氧、氬或前述元素之任意組合。The method for manufacturing a photovoltaic device according to claim 25, wherein the modified elements include aluminum, indium, gallium, germanium, zirconium, titanium, chromium, strontium, arsenic, phosphorus, antimony, boron, hydrogen, carbon. , nitrogen, oxygen, argon or any combination of the foregoing. 一種光電裝置,包括: 一基板,該基板具有一非晶型淺接面區,其中該非晶型淺接面區由該基板之一成長表面延伸至該基板之內部;一氮化物晶核層,位於該非晶型淺接面區上;以及一光電元件層,位於該氮化物晶核層上。An optoelectronic device comprising: a substrate having an amorphous shallow junction region, wherein the amorphous shallow junction region extends from a growth surface of the substrate to the interior of the substrate; a nitride crystal nucleation layer is located in the amorphous shallow junction And a photo-electric element layer on the nitride crystal nucleation layer. 如申請專利範圍第27項所述之光電裝置,其中該基板之材質為氧化鋁(Al2 O3 ),且位於該非晶型淺接面區的鋁元素之含量為氧元素之含量的x倍,且x>2/3。The photovoltaic device according to claim 27, wherein the substrate is made of aluminum oxide (Al 2 O 3 ), and the aluminum element in the amorphous shallow junction region is x times the oxygen content. And x>2/3. 如申請專利範圍第27項所述之光電裝置,其中該非晶型淺接面區的深度小於1微米。The photovoltaic device of claim 27, wherein the amorphous shallow junction region has a depth of less than 1 micron. 如申請專利範圍第27項所述之光電裝置,其中該非晶型淺接面區具有一粗糙表面,其中該粗糙表面的粗糙度大於0.3奈米。The photovoltaic device of claim 27, wherein the amorphous shallow junction region has a rough surface, wherein the roughness of the rough surface is greater than 0.3 nm. 如申請專利範圍第27項所述之光電裝置,其中該氮化物晶核層的厚度介於10奈米至100奈米。The photovoltaic device of claim 27, wherein the nitride nucleation layer has a thickness of from 10 nm to 100 nm. 如申請專利範圍第27項所述之光電裝置,其中該氮化物晶核層的材質包括氮化鋁、氮化鎵(GaN)、氮化硼(BN)、氮化鉿(HfN)、氮化鉻(CrN)、氮化鈦(TiN)、氮化鋯(ZrN)及氮化鈧(ScN)。The photovoltaic device according to claim 27, wherein the material of the nitride crystal nucleation layer comprises aluminum nitride, gallium nitride (GaN), boron nitride (BN), hafnium nitride (HfN), and nitride. Chromium (CrN), titanium nitride (TiN), zirconium nitride (ZrN), and tantalum nitride (ScN). 如申請專利範圍第27項所述之光電裝置,其中該基板具有位於非晶型淺接面區內之多個改質元素,該些改質元素的含量大於1015 cm-3The photovoltaic device according to claim 27, wherein the substrate has a plurality of modifying elements in the amorphous shallow junction region, and the content of the modifying elements is greater than 10 15 cm -3 . 如申請專利範圍第33項所述之光電裝置,其中該些改質元素包括鋁、銦、鎵、鉿、鋯、鈦、鉻、鈧、砷、磷、矽、硼、氫、碳、氮、氧、氬或前述元素之任意組合。The photovoltaic device according to claim 33, wherein the modified elements include aluminum, indium, gallium, germanium, zirconium, titanium, chromium, strontium, arsenic, phosphorus, antimony, boron, hydrogen, carbon, nitrogen, Oxygen, argon or any combination of the foregoing. 如申請專利範圍第27項所述之光電裝置,其中該光電元件層包括發光二極體元件層。The photovoltaic device of claim 27, wherein the photovoltaic element layer comprises a light emitting diode element layer.
TW102103795A 2013-01-31 2013-01-31 Device substrate, manufacturing method of device substrate, optical apparatus and manufacturing method thereof TWI499078B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102103795A TWI499078B (en) 2013-01-31 2013-01-31 Device substrate, manufacturing method of device substrate, optical apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102103795A TWI499078B (en) 2013-01-31 2013-01-31 Device substrate, manufacturing method of device substrate, optical apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201431116A TW201431116A (en) 2014-08-01
TWI499078B true TWI499078B (en) 2015-09-01

Family

ID=51797033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102103795A TWI499078B (en) 2013-01-31 2013-01-31 Device substrate, manufacturing method of device substrate, optical apparatus and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI499078B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010015878A2 (en) * 2008-08-06 2010-02-11 S.O.I. Tec Silicon On Insulator Technologies Process for modifying a substrate
WO2011145370A1 (en) * 2010-05-18 2011-11-24 昭和電工株式会社 Semiconductor light emitting chip and method for processing substrate
TW201141650A (en) * 2010-03-26 2011-12-01 Mitsuboshi Diamond Ind Co Ltd Laser processing method and brittle material substrate
TW201201407A (en) * 2010-03-05 2012-01-01 Namiki Precision Jewel Co Ltd Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor
TW201225158A (en) * 2010-06-30 2012-06-16 Corning Inc Oxygen plasma conversion process for preparing a surface for bonding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010015878A2 (en) * 2008-08-06 2010-02-11 S.O.I. Tec Silicon On Insulator Technologies Process for modifying a substrate
TW201201407A (en) * 2010-03-05 2012-01-01 Namiki Precision Jewel Co Ltd Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor
TW201141650A (en) * 2010-03-26 2011-12-01 Mitsuboshi Diamond Ind Co Ltd Laser processing method and brittle material substrate
WO2011145370A1 (en) * 2010-05-18 2011-11-24 昭和電工株式会社 Semiconductor light emitting chip and method for processing substrate
TW201225158A (en) * 2010-06-30 2012-06-16 Corning Inc Oxygen plasma conversion process for preparing a surface for bonding

Also Published As

Publication number Publication date
TW201431116A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
US8202752B2 (en) Method for fabricating light emitting semiconductor device for reducing defects of dislocation in the device
CN103337573B (en) The epitaxial wafer of semiconductor light-emitting-diode and manufacture method thereof
TWI485882B (en) Ultraviolet light emitting element and method for manufacturing the same
KR20050074274A (en) Zn semiconductor light-emitting device and method for manufacturing same
TW201511327A (en) Light emitting diode
WO2019015217A1 (en) Deep uv led
CN107293622B (en) Epitaxial wafer of light emitting diode and preparation method thereof
KR20140071927A (en) Method for producing group iii nitride semiconductor lightemitting device
WO2013145404A1 (en) Laminated substate of silicon single crystal and group iii nitride single crystal with off angle
CN104952710B (en) A kind of LED outer layer growths method
KR100531073B1 (en) Semiconductor light emitting device having nano-needle and method for manufacturing the same
CN103337571A (en) Epitaxial structure for improving wavelength concentration in GaN-based epitaxial wafer and growth method of epitaxial structure
TWI499078B (en) Device substrate, manufacturing method of device substrate, optical apparatus and manufacturing method thereof
CN109888069B (en) InGaN/GaN quantum well structure and LED epitaxial wafer preparation method
TWI567877B (en) Manufacturing method of nitride semiconductor device
CN103337570A (en) Method for improving uniformity and wavelength concentration degree inside 4-inch GaN-based epitaxy epitaxial wafer
CN103137808A (en) Gallium nitride light-emitting diode (LED) with low-temperature n-type inserted layer and preparation method thereof
KR102099877B1 (en) Method for fabricating nitride semiconductor device
CN111261757A (en) Ultraviolet LED and preparation method thereof
JP6017243B2 (en) ZnO-based semiconductor device and method for manufacturing ZnO-based semiconductor device
KR20110053645A (en) Patterned substrate for gan-based semiconductor light emitting diode and manufacturing method
JP2006019648A (en) Iron-silicide light emitting element and its manufacturing method
JP2011096902A (en) ZuO-BASED COMPOUND SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD OF THE SAME
CN106158592A (en) GaN film being grown on magnesium aluminate scandium substrate and its preparation method and application
TWI612686B (en) Light-emitting device and manufacturing metode thereof