TWI445162B - Memory cells, memory devices and integrated circuits incorporating the same - Google Patents

Memory cells, memory devices and integrated circuits incorporating the same Download PDF

Info

Publication number
TWI445162B
TWI445162B TW097110943A TW97110943A TWI445162B TW I445162 B TWI445162 B TW I445162B TW 097110943 A TW097110943 A TW 097110943A TW 97110943 A TW97110943 A TW 97110943A TW I445162 B TWI445162 B TW I445162B
Authority
TW
Taiwan
Prior art keywords
node
type
coupled
word line
access transistor
Prior art date
Application number
TW097110943A
Other languages
Chinese (zh)
Other versions
TW200845367A (en
Inventor
Hyun-Jin Cho
Original Assignee
Globalfoundries Us Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globalfoundries Us Inc filed Critical Globalfoundries Us Inc
Publication of TW200845367A publication Critical patent/TW200845367A/en
Application granted granted Critical
Publication of TWI445162B publication Critical patent/TWI445162B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/39Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using thyristors or the avalanche or negative resistance type, e.g. PNPN, SCR, SCS, UJT
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/14Word line organisation; Word line lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)

Description

記憶體單元、記憶體裝置以及內裝有該記憶體單元之積體電路Memory unit, memory device, and integrated circuit including the memory unit

本發明的具體實施例大體有關於數種半導體記憶體裝置。更特別的是,本發明的具體實施例有關於製造用於半導體記憶體裝置之基於閘控橫向閘流體(gated lateral thyristor)的隨機存取記憶體(GLTRAM)裝置之方法,以及有關於實作該GLTRAM裝置的記憶體單元結構與記憶體裝置。Embodiments of the invention generally relate to several semiconductor memory devices. More particularly, embodiments of the present invention relate to methods of fabricating gated lateral thyristor-based random access memory (GLTRAM) devices for semiconductor memory devices, and related to implementation The memory cell structure and memory device of the GLTRAM device.

積體電路記憶體包含靜態隨機存取記憶體(SRAM)。許多SRAM單元結構是用六個電晶體及四個電晶體式記憶體單元。高密度SRAM裝置的設計已受限於與用於實作許多SRAM單元之六個電晶體及四個電晶體式記憶體單元有關的大布局面積。The integrated circuit memory contains static random access memory (SRAM). Many SRAM cell structures use six transistors and four transistor memory cells. The design of high density SRAM devices has been limited by the large layout area associated with the six transistors and four transistor memory cells used to implement many SRAM cells.

由於有這些缺點,已有人企圖構建基於閘流體(thyristor)的記憶體單元以減少與習知記憶體單元有關的布局面積,以及提供一種布局簡單且基於閘流體的記憶體單元。閘流體是由四層結構組成的雙穩態三端子裝置,該四層結構包含經配置成PNPN組構的P型陽極區、N型基極、P型基極、以及N型陰極區。在P型陽極區與N型基極之間、在N型基極與P型基極之間、以及在P型基極與N型陰極區之間有PN接面。製作P型陽極區、N型陰極區、以及耦合至閘極之P型基極的接觸點。Because of these shortcomings, attempts have been made to construct thyristor-based memory cells to reduce the layout area associated with conventional memory cells and to provide a simple and thyristor-based memory cell. The thyristor is a bistable three-terminal device consisting of a four-layer structure comprising a P-type anode region configured as a PNPN fabric, an N-type base, a P-type base, and an N-type cathode region. There is a PN junction between the P-type anode region and the N-type base, between the N-type base and the P-type base, and between the P-type base and the N-type cathode region. A P-type anode region, an N-type cathode region, and a contact point of the P-type base coupled to the gate are fabricated.

第1圖的電路示意圖100係圖示習知包含TRAM單元 110、基於閘流體的隨機存取記憶體(TRAM)單元陣列。Circuit diagram 100 of Figure 1 shows a conventional TRAM cell 110. A thyristor based random access memory (TRAM) cell array.

如第1圖所示,TRAM單元110係由字元線120、130、位元線150、與NMOS存取電晶體(NMOS access transistor)170串聯的薄型電容耦合式閘流體(TCCT)裝置160組成。TCCT裝置160提供主動儲存元件(active storage element),其包括閘流體以及與閘流體之閘極耦合的電容器。NMOS存取電晶體170在TCCT裝置160的陰極節點146與位元線150之間耦合。TCCT裝置160的陽極節點148係固定於正偏壓。TCCT裝置160具有雙穩態電流-電壓(I-V)特性。雙穩態電流-電壓(I-V)特性使得邏輯一(1)與邏輯零(0)資料狀態之間有寬廣的讀取裕量(read margin),因為兩個狀態的開/關電流比能大於1×105 。雙穩態電流-電壓(I-V)特性可產生良好的讀取電流,因為TCCT裝置160在邏輯一(1)資料狀態是處於有較高電流的順向二極體模式(forward diode mode)。由於T-RAM單元110的資料保存性(retention)對於NMOS存取電晶體170中難以控制的洩露電流敏感,故而T-RAM單元110難以維持良好的資料保存性及干擾特性。As shown in FIG. 1, the TRAM cell 110 is composed of a word line 120, 130, a bit line 150, and a thin capacitive coupled thyristor (TCCT) device 160 connected in series with an NMOS access transistor 170. . The TCCT device 160 provides an active storage element that includes a thyristor and a capacitor coupled to the gate of the thyristor. NMOS access transistor 170 is coupled between cathode node 146 of TCCT device 160 and bit line 150. The anode node 148 of the TCCT device 160 is fixed to a positive bias. The TCCT device 160 has a bistable current-voltage (IV) characteristic. The bistable current-voltage (IV) characteristic provides a wide read margin between logic one (1) and logic zero (0) data states because the on/off current ratio of the two states is greater than 1 × 10 5 . The bistable current-voltage (IV) characteristic produces a good read current because the TCCT device 160 is in a forward diode mode with a higher current in the logic one (1) data state. Since the data retention of the T-RAM unit 110 is sensitive to the leakage current that is difficult to control in the NMOS access transistor 170, it is difficult for the T-RAM unit 110 to maintain good data retention and interference characteristics.

第2圖的電路示意圖200係圖示包含TCCT-DRAM單元210、270的習知薄型電容耦合式閘流體(TCCT)-DRAM單元陣列。對照於通常包含MOSFET裝置與電容器的習知DRAM單元,TCCT-DRAM單元210係由單一TCCT裝置260與3條控制線(包含寫入致能線230、字元線240、位元線250)組成。TCCT裝置260由包含與位元線250連接之陽極節點248 的閘流體(第2圖未標示)、與字元線240連接的陰極節點246、以及閘極電容器(未圖示)組成,該閘極電容器在閘流體的P型基極區正上方直接連接至用作寫入致能線230的閘極線。TCCT-DRAM單元210的操作則使用包含待機模式(standby mode)、寫入邏輯一(1)操作、寫入邏輯零(0)操作、以及讀取操作的基本讀寫操作。Circuit diagram 200 of FIG. 2 illustrates a conventional thin capacitively coupled thyristor (TCCT)-DRAM cell array including TCCT-DRAM cells 210,270. The TCCT-DRAM cell 210 is composed of a single TCCT device 260 and three control lines (including write enable lines 230, word lines 240, bit lines 250), as opposed to conventional DRAM cells that typically include MOSFET devices and capacitors. . TCCT device 260 is comprised of an anode node 248 that includes a bit line 250. The thyristor (not shown in FIG. 2), the cathode node 246 connected to the word line 240, and a gate capacitor (not shown) directly connected directly above the P-type base region of the thyristor To the gate line used as the write enable line 230. The operation of the TCCT-DRAM unit 210 uses basic read and write operations including a standby mode, a write logic one (1) operation, a write logic zero (0) operation, and a read operation.

處於待機模式時,位元線250及字元線240兩者的電壓為Vdd而用閘流體中之P型基極區的充電狀態(charge state)來保持貯存的單元資料。字元線240可以當作TCCT DRAM的字元線,以及激活與寫入致能線230連接的TCCT單元。在寫入邏輯一(1)操作期間,寫入致能線230處於脈衝工作狀態(pulsed)同時字元線240保持於接地位準,這會觸發TCCT裝置260的閂鎖功能。除了施加於位元線250的電壓保持在低電位以便寫入致能線230的脈衝能讓TCCT裝置260轉成閉鎖狀態(blocking state)以外,寫入零(0)操作的偏壓方法與寫入一(1)操作的相同。在讀取操作期間,字元線240保持在低電位,而感測放大器(sense amplifier)會讀取位元線250的電壓或電流之變化。In the standby mode, the voltage of both the bit line 250 and the word line 240 is Vdd and the stored cell data is held by the charge state of the P-type base region in the thyristor. Word line 240 can be used as a word line for the TCCT DRAM, as well as a TCCT unit that is coupled to write enable line 230. During write logic one (1) operation, write enable line 230 is pulsed while word line 240 remains at ground level, which triggers the latch function of TCCT device 260. The biasing method and writing of the zero (0) operation are written except that the voltage applied to the bit line 250 is held low to allow the pulse of the write enable line 230 to turn the TCCT device 260 into a blocking state. The same is true for one (1) operation. During the read operation, word line 240 remains at a low level, and a sense amplifier reads the change in voltage or current of bit line 250.

儘管TCCT-DRAM單元210不需要存取電晶體,TCCT-DRAM單元210的操作還是會有干擾問題,例如在寫入零操作期間流失電荷。例如,當選定一個用於寫入零操作的TCCT-DRAM單元210時,位元線250的偏壓位準必須降到接地,這反而造成未被選定的TCCT-DRAM單元270會通過位元線250流失電荷。Although the TCCT-DRAM cell 210 does not require access to the transistor, the operation of the TCCT-DRAM cell 210 can still have interference problems, such as loss of charge during a write zero operation. For example, when a TCCT-DRAM cell 210 for writing a zero operation is selected, the bias level of the bit line 250 must be lowered to ground, which in turn causes the unselected TCCT-DRAM cell 270 to pass through the bit line. 250 lost charge.

爰是,亟須有助於解決上述問題的記憶體裝置和記憶體單元結構,以及用於製造該記憶體裝置及該記憶體單元結構的方法。That is, there is no need for a memory device and a memory cell structure that contribute to solving the above problems, and a method for fabricating the memory device and the memory cell structure.

根據一個具體實施例,提供一種包含存取電晶體與閘控橫向閘流體(GLT)裝置的記憶體單元。該存取電晶體包含源極節點。該閘控橫向閘流體(GLT)裝置包含與該存取電晶體之源極節點耦合的陽極節點。According to a specific embodiment, a memory unit including an access transistor and a gated lateral thyristor (GLT) device is provided. The access transistor includes a source node. The gated lateral thyristor (GLT) device includes an anode node coupled to a source node of the access transistor.

以下的詳細說明在本質上只是用來示範說明而不是用來限制本發明或本發明的應用及用途。本文使用“示範”的意思是“用來作為例子、實例或圖例”。任何描述於本文的“示範”具體實施例不是要讓讀者認為它比其他具體實施例更佳或有利。所有描述於下文的具體實作都是要讓熟諳此藝者能夠製造或使用本發明的示範具體實作而不是限制申請專利範圍所界定的本發明範疇。此外,希望不受明示或暗示於【發明所屬之技術領域】、【先前技術】、【發明內容】或【實施方式】中的理論約束。The following detailed description is merely illustrative of the invention and is not intended to The use of "demonstration" herein means "used as an example, instance or legend." Any "exemplary" embodiment described herein is not intended to suggest that the reader is better or advantageous than the other embodiments. All of the specific implementations described below are intended to enable those skilled in the art to make or use the exemplary embodiments of the present invention and not to limit the scope of the invention as defined by the appended claims. Further, it is intended to be not limited or implied by the technical constraints in the technical field to which the invention pertains, the prior art, the invention, or the embodiment.

為了簡潔,本文不詳述與下列有關的習知技術:電晶體設計及製造、記憶體裝置的控制、記憶體單元編程、記憶體單元抹除、以及裝置及系統(以及該等裝置及系統中的個別操作組件)的其他功能方面。此外,本文圖示於各圖的連接線旨在表示各種元件之間的示範功能關係及/或物理耦合。應注意,本發明的具體實施例可具有多種替代或附 加的功能關係及/或物理聯接。For the sake of brevity, detailed techniques related to the following are detailed herein: transistor design and fabrication, memory device control, memory cell programming, memory cell erase, and devices and systems (and such devices and systems) Other functional aspects of the individual operating components). Furthermore, the connecting lines shown in the figures herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that embodiments of the invention may have a variety of alternatives or attachments Added functional relationships and/or physical connections.

以下的說明會指涉“連接”或“耦合”在一起的元件或節點或特徵。如本文所使用的,除非另有明確說明,“連接”是意指一元件、節點或特徵與另一元件、節點或特徵直接連結(或直接相通)。同樣,除非另有明確說明,“耦合”意指一元件、節點或特徵與另一元件、節點或特徵直接或間接連結(或直接或間接相通)。The following description refers to elements or nodes or features that are "connected" or "coupled" together. "Connected" is used to mean that one element, node or feature is directly connected (or directly connected) to another element, node or feature. Also, "coupled" means that an element, node or feature is directly or indirectly connected (either directly or indirectly) to another element, node or feature.

在說明內容及申請專利範圍中,若有諸如“第一”、“第二”、“第三”、“第四”之類的序數術語是用來區分相同的元件,然而這不一定用來描述特定的順序或時間次序。應瞭解,如此使用的術語是可互換的。在適當的情況下,描述於本文的本發明具體實施例都能夠以不同於本文所述或圖示的順序製造或操作。In the description and the scope of patent application, if there are ordinal terms such as "first", "second", "third", "fourth" are used to distinguish the same elements, this is not necessarily used. Describe a specific order or time sequence. It should be understood that the terms so used are interchangeable. The specific embodiments of the invention described herein can be constructed or operated in a different order than described or illustrated herein.

此外,術語“包含”、“包括”、“具有”及其變體旨在涵蓋非獨佔性的包含,這樣包含一系列元件的製程、方法、物件或裝置不一定受限於該等元件,反而可包含其他未明白列示的元件或該製程、方法、物件或裝置的內在元件。In addition, the terms "comprising," "comprising," "having,", ","," Other elements not explicitly listed or internal components of the process, method, article or device may be included.

第3圖為使用本發明具體實施例之記憶體系統340的方塊圖。記憶體系統340為示範具體實施例的簡圖,而實際的系統340也可包含未圖示於第3圖的習知元件、邏輯、組件及功能。記憶體系統340可執行的操作包含對於記憶體陣列342的寫入一(1)、讀取一(1)、寫入零(0)、以及讀取零(0))。Figure 3 is a block diagram of a memory system 340 using a particular embodiment of the present invention. The memory system 340 is a simplified diagram of an exemplary embodiment, and the actual system 340 may also include conventional elements, logic, components, and functions not shown in FIG. The operations executable by memory system 340 include writing one (1), reading one (1), writing zero (0), and reading zero (0) to memory array 342.

記憶體系統340包含:記憶體陣列342,其係包含多個記憶體單元而彼等的字元線及位元線通常是各自排列成橫列及直行;橫列及直行解碼器344、348;以及,感測放大器電路346。記憶體陣列342包含多個記憶體單元300。各個記憶體單元是用橫列位址及直行位址指定。就特定的記憶體單元而言,特定的字元線是通過允許或阻止在特定位元線上傳送、要寫入或讀出儲存元件的訊號(表示邏輯"0"或邏輯"1")來控制對於特定儲存元件的存取。如此,各個記憶體單元100可儲存一個位元作為邏輯"0"或邏輯"1"的資料。The memory system 340 includes: a memory array 342 comprising a plurality of memory cells and their word lines and bit lines are generally arranged in a horizontal row and a straight line; the horizontal and straight line decoders 344, 348; And, the sense amplifier circuit 346. The memory array 342 includes a plurality of memory cells 300. Each memory unit is specified by a horizontal address and a straight address. For a particular memory unit, a particular word line is controlled by allowing or blocking the transmission of a signal on a particular bit line, to write or read the storage element (representing a logic "0" or a logic "1"). Access to a particular storage element. As such, each memory unit 100 can store one bit as a material of logic "0" or logic "1".

記憶體陣列342的位元線可連接至感測放大器電路346,同時它的字元線可連接至橫列解碼器344。位址及控制訊號係由位址/控制線361輸入記憶體系統340。位址/控制線316均連接至直行解碼器348、感測放大器電路346以及橫列解碼器344。除了別的以外,位址/控制線316可用來得到讀寫記憶體陣列342的存取權。The bit line of memory array 342 can be coupled to sense amplifier circuit 346 while its word line can be coupled to row decoder 344. The address and control signals are input to the memory system 340 by the address/control line 361. Address/control line 316 is coupled to straight row decoder 348, sense amplifier circuit 346, and row decoder 344. The address/control line 316 can be used to obtain access to the read and write memory array 342, among other things.

直行解碼器348係經由直行選擇線362上的控制及直行選擇訊號來連接至感測放大器電路346。感測放大器電路346通過輸入/輸出(I/O)資料線363來接收指派給記憶體陣列342的輸入資料以及輸出由記憶體陣列342讀出的資料。由記憶體陣列342中之數個單元讀出的資料係藉由激活字元線(經由橫列解碼器344),這是讓所有對應至該字元線的記憶體單元耦合至各自的位元線360(彼等係界定陣列的直行)。也激活一條或更多條位元線。當特定的字 元線以及數條位元線被激活用來選定一位元或數個位元時,與一位元線連接的感測放大器電路346係藉由測量被激活之位元線與參考線的電位差來檢出及放大選定位元的資料。The straight line decoder 348 is coupled to the sense amplifier circuit 346 via control and straight line select signals on the straight select line 362. The sense amplifier circuit 346 receives input data assigned to the memory array 342 and outputs data read by the memory array 342 through an input/output (I/O) data line 363. The data read by the plurality of cells in the memory array 342 is activated by the word line (via the horizontal decoder 344), which causes all memory cells corresponding to the word line to be coupled to the respective bit. Line 360 (these define the straight line of the array). One or more bit lines are also activated. When a specific word When the meta-line and the plurality of bit lines are activated for selecting one or more bits, the sense amplifier circuit 346 connected to one bit line measures the potential difference between the activated bit line and the reference line. To check out and enlarge the data of the selected positioning element.

第4圖的電路示意圖係根據本發明之具體實施例圖示記憶體單元的陣列400。在一個具體實施例中,記憶體陣列400可實作成為第3圖記憶體系統340的部份記憶體陣列342。在第4圖中,陣列400係圖示成有四個記憶體單元的區塊,該四個記憶體單元有相同的構造而且組構為2行×2列。儘管第4圖的記憶體單元陣列400只圖示四個記憶體單元,熟諳此藝者應瞭解,在許多實際的實作中,例如TRAM、SRAM、或DRAM積體電路或NAND或NOR型快閃記憶體,記憶體單元陣列400可包含數千或更多個此類記憶體單元。在以下的說明中,將描述記憶體單元中之一個,亦即記憶體單元410,即使第4圖也圖示其他3個結構都包含與記憶體單元410相同的結構。The circuit diagram of Figure 4 illustrates an array 400 of memory cells in accordance with an embodiment of the present invention. In one embodiment, memory array 400 can be implemented as a partial memory array 342 of FIG. 3 memory system 340. In Fig. 4, the array 400 is illustrated as a block having four memory cells having the same configuration and being organized into 2 rows x 2 columns. Although the memory cell array 400 of FIG. 4 illustrates only four memory cells, those skilled in the art should understand that in many practical implementations, such as TRAM, SRAM, or DRAM integrated circuits or NAND or NOR type fast. Flash memory, memory cell array 400 can include thousands or more of such memory cells. In the following description, one of the memory cells, that is, the memory cell 410 will be described, and even if the fourth figure shows that the other three structures include the same structure as the memory cell 410.

記憶體單元410包含閘控橫向閘流體(GLT)裝置460與MOSFET存取電晶體470。多條控制線用來操作包含第一字元線420、第二字元線430、第三字元線440、以及位元線450的記憶體單元410。The memory unit 410 includes a gated lateral thyristor (GLT) device 460 and a MOSFET access transistor 470. A plurality of control lines are used to operate the memory unit 410 including the first word line 420, the second word line 430, the third word line 440, and the bit line 450.

取決於實作,MOSFET存取電晶體470可包含NMOS存取電晶體或者PMOS存取電晶體。此外,儘管術語"MOSFET"是指稱有金屬閘極與氧化物閘極絕緣體(oxide gate insulator)的裝置,該術語仍可用來指稱任何由上而 下包含導電閘極(不管是金屬還是其他導電材料)、閘極絕緣體(不管是氧化物還是其他絕緣體)、半導體基板(不管是矽還是其他半導體材料)的半導體裝置。Depending on the implementation, MOSFET access transistor 470 can include an NMOS access transistor or a PMOS access transistor. Moreover, although the term "MOSFET" refers to a device that has a metal gate and an oxide gate insulator, the term can be used to refer to any Semiconductor devices that include conductive gates (whether metal or other conductive materials), gate insulators (whether oxides or other insulators), semiconductor substrates (whether germanium or other semiconductor materials).

該GLT裝置在第4圖中以元件符號460表示。雖然未圖示,應瞭解,如第11圖所示,GLT裝置460包含閘流體(未圖示)與連接至該閘流體的金屬氧化半導體(MOS)電容器(未圖示)。一般而言,該閘流體為雙穩態、三端子裝置,其係包含:閘極465、陽極區462、陰極區464、以及配置在陽極區462與陰極區464之間的一對基極區(未圖示)。製作陽極區462的接觸點以建立陽極端子,陰極區464的接觸點以建立陰極端子,以及閘極465的接觸點以建立閘極端子。在陽極區462與基極區中之一個之間、在該對基極區之間、以及在基極區中之另一個與陰極區464之間形成PN或NP接面。在GLT裝置460(在第4圖中以元件符號460表示)中,該MOS電容器(未圖示)係連接至閘流體(未圖示)之基極區的其中一個。The GLT device is indicated by element symbol 460 in FIG. Although not shown, it should be understood that, as shown in FIG. 11, the GLT device 460 includes a thyristor (not shown) and a metal oxide semiconductor (MOS) capacitor (not shown) connected to the thyristor. In general, the thyristor is a bistable, three-terminal device comprising: a gate 465, an anode region 462, a cathode region 464, and a pair of base regions disposed between the anode region 462 and the cathode region 464. (not shown). The contact points of the anode region 462 are made to establish the anode terminal, the contact point of the cathode region 464 to establish the cathode terminal, and the contact point of the gate 465 to establish the gate terminal. A PN or NP junction is formed between the anode region 462 and one of the base regions, between the pair of base regions, and between the other of the base regions and the cathode region 464. In GLT device 460 (represented by reference numeral 460 in FIG. 4), the MOS capacitor (not shown) is connected to one of the base regions of a thyristor (not shown).

在記憶體單元410之示範具體實施例中,以下用第5圖至第11圖來描述,MOSFET存取電晶體470包含NMOS存取電晶體,而GLT裝置460包含耦合至MOS電容器(第4圖未標示)的PNPN閘流體(第4圖未標示)。該PNPN閘流體包含配置成PNPN組構的閘極465、P型陽極區462、N型基極區(未圖示)、P型基極區(未圖示)、以及N型陰極區464,其中N型及P型基極區是在P型陽極區462與N型陰極區464之間橫向排列。如上述,製作P型陽極區462、N型陰 極區464、以及閘極465的接觸點。在P型陽極區462及N型基極區之間形成PN接面,在N型基極區及P型基極區之間形成另一PN接面,以及在P型基極及N型陰極區464之間形成另一PN接面。在該等具體實施例中,P型陽極區/N型基極區以及P型基極區/N型陰極區係用作雙極裝置。GLT裝置460的MOS電容器包含閘極465及P型基極區、以及配置在閘極465及P型基極區之間的閘極絕緣層。該閘極絕緣層係用作電容器介電質。N型基極區與P型基極區相互毗鄰。MOS電容器連接至閘流體的P型基極區。在替代示範具體實施例中,MOSFET存取電晶體470包含PMOS存取電晶體,而GLT裝置460包含耦合至MOS電容器的閘流體。在此一替代具體實施例中,該閘流體包含配置成NPNP組構的雙極裝置,而MOS電容器連接至該雙極裝置的N型基極。In an exemplary embodiment of memory unit 410, as described below with reference to Figures 5 through 11, MOSFET access transistor 470 includes an NMOS access transistor, and GLT device 460 includes a coupling to a MOS capacitor (Fig. 4) Unlabeled PNPN thyristor fluid (not shown in Figure 4). The PNPN thyristor includes a gate 465, a P-type anode region 462, an N-type base region (not shown), a P-type base region (not shown), and an N-type cathode region 464, which are arranged in a PNPN configuration. The N-type and P-type base regions are laterally arranged between the P-type anode region 462 and the N-type cathode region 464. As described above, a P-type anode region 462, an N-type cathode is fabricated. The contact area of the pole region 464 and the gate 465. A PN junction is formed between the P-type anode region 462 and the N-type base region, another PN junction is formed between the N-type base region and the P-type base region, and the P-type base and the N-type cathode are formed. Another PN junction is formed between the regions 464. In these particular embodiments, the P-type anode region/N-type base region and the P-type base region/N-type cathode region are used as bipolar devices. The MOS capacitor of the GLT device 460 includes a gate 465 and a P-type base region, and a gate insulating layer disposed between the gate 465 and the P-type base region. The gate insulating layer is used as a capacitor dielectric. The N-type base region and the P-type base region are adjacent to each other. The MOS capacitor is connected to the P-type base region of the thyristor. In an alternate exemplary embodiment, MOSFET access transistor 470 includes a PMOS access transistor and GLT device 460 includes a thyristor coupled to a MOS capacitor. In this alternative embodiment, the thyristor comprises a bipolar device configured in an NPNP configuration, and a MOS capacitor is coupled to the N-type base of the bipolar device.

MOSFET存取電晶體470包含:在節點448耦合至GLT裝置460之陽極端子462的源極區474、在節點444耦合至位元線450的汲極區472、以及在節點441耦合至第一字元線420的閘極475。MOSFET access transistor 470 includes a source region 474 coupled to anode terminal 462 of GLT device 460 at node 448, a drain region 472 coupled to bit line 450 at node 444, and a first word coupled at node 441 The gate 475 of the line 420.

第5圖至第11圖的橫截面圖係根據本發明各種具體實施例圖示記憶體單元500以及用於製造該記憶體單元500的方法步驟。熟諳此藝者應瞭解,記憶體單元500可能為大量記憶體單元(在積體電路中互連)之中的一個。在一個具體實施例中,記憶體單元500可實作成在第4圖記憶體陣列400內的記憶體單元之中的一個。在描述於下文的示 範具體實施例中,示範記憶體單元500包含N型通道MOS (NMOS)存取電晶體510以及包含耦合至MOS電容器之PNPN閘流體的GLT裝置520。不過,如以下所解釋的,類似的方法步驟可用來製造另一包含P型通道MOS (PMOS)存取電晶體以及包含耦合至MOS電容器之NPNP閘流體的GLT裝置的記憶體單元。The cross-sectional views of Figures 5 through 11 illustrate a memory cell 500 and method steps for fabricating the memory cell 500 in accordance with various embodiments of the present invention. Those skilled in the art will appreciate that memory unit 500 may be one of a large number of memory cells (interconnected in integrated circuits). In one embodiment, memory unit 500 can be implemented as one of the memory units within memory array 400 of FIG. In the description described below In a specific embodiment, exemplary memory cell 500 includes an N-channel MOS (NMOS) access transistor 510 and a GLT device 520 including a PNPN thyristor coupled to a MOS capacitor. However, as explained below, similar method steps can be used to fabricate another memory cell that includes a P-channel MOS (PMOS) access transistor and a GLT device that includes an NPNP thyristor coupled to the MOS capacitor.

製造記憶體單元、MOS電晶體以及閘流體的各種步驟已為眾所周知,所以為求簡潔,本文只簡述許多習知的步驟或整個省略而不再描述習知製程的細節。如上述,應以非限制方式解釋用於本文的術語“MOS電晶體”用來指稱任何由上而下包含導電閘極、閘極絕緣體、半導體基板的半導體裝置。Various steps for fabricating memory cells, MOS transistors, and thyristors are well known, so for the sake of brevity, only a few well-known steps or omissions are omitted herein and no details of conventional processes are described. As mentioned above, the term "MOS transistor" as used herein shall be used in a non-limiting manner to refer to any semiconductor device comprising a conductive gate, a gate insulator, a semiconductor substrate from top to bottom.

製造記憶體單元500的初始步驟都是習知步驟,故而以第5圖圖示由該等步驟得到的結構,但是初始步驟本身不圖示而且不予詳述。製造是由提供要製作記憶體單元500於其上或其中的半導體結構或基板505開始。半導體基板505可為塊體半導體材料或者絕緣體上覆半導體(SOI)基板。根據本發明圖示於第5圖的具體實施例,圖中半導體基板505為在用承載晶圓(carrier wafer)或基板525支撐之埋藏氧化物絕緣層(buried oxide insulating layer)530上或上方配置至少一薄層之半導體材料540的(SOI)結構505藉此配置埋藏氧化物絕緣層530於承載晶圓525及半導體層540之間。熟諳半導體技藝者明白,半導體層540可為矽層、鍺層、砷化鎵層、或其他半導體材料。 在一個具體實施例中,半導體層540在埋藏氧化物絕緣層530上包含單晶矽薄層。該單晶矽薄層可為有(100)表面晶體取向的矽基板。該薄矽層有至少約1至35歐姆每平方的電阻率較佳。如本文所使用的,術語“矽層”會用來涵蓋常用於半導體工業的相對純矽材料或輕度摻雜雜質的單晶矽材料,以及混合少量其他元素(例如,鍺、碳、及其類似物)以及雜質摻雜元素(例如硼、磷、及砷)的矽以形成實質單晶半導體材料。在一個具體實施例中,例如,埋藏氧化物絕緣層530可為厚約50至200奈米為較佳的二氧化矽層。The initial steps of manufacturing the memory cell 500 are all conventional steps, so the structure obtained by these steps is illustrated in Fig. 5, but the initial steps themselves are not shown and will not be described in detail. Fabrication begins by providing a semiconductor structure or substrate 505 on or in which memory cell 500 is to be fabricated. The semiconductor substrate 505 may be a bulk semiconductor material or an insulator overlying semiconductor (SOI) substrate. In accordance with an embodiment of the present invention illustrated in FIG. 5, the semiconductor substrate 505 is disposed on or above a buried oxide insulating layer 530 supported by a carrier wafer or substrate 525. The (SOI) structure 505 of at least one thin layer of semiconductor material 540 thereby places the buried oxide insulating layer 530 between the carrier wafer 525 and the semiconductor layer 540. The skilled semiconductor artisan understands that the semiconductor layer 540 can be a germanium layer, a germanium layer, a gallium arsenide layer, or other semiconductor material. In one embodiment, the semiconductor layer 540 comprises a thin layer of single crystal germanium on the buried oxide insulating layer 530. The single crystal thin layer may be a tantalum substrate having a (100) surface crystal orientation. The thin layer has a resistivity of at least about 1 to 35 ohms per square. As used herein, the term "ruthenium layer" is used to encompass relatively pure tantalum materials or lightly doped impurities of single crystal germanium materials commonly used in the semiconductor industry, as well as mixing small amounts of other elements (eg, germanium, carbon, and The analogs) and the doping of impurity doping elements such as boron, phosphorus, and arsenic to form a substantially single crystal semiconductor material. In a specific embodiment, for example, the buried oxide insulating layer 530 may be a preferred hafnium oxide layer having a thickness of about 50 to 200 nm.

視需要的氧化物保護層560可沉積於半導體層540上方以保護半導體層540不受損以及協助在後續植入步驟期間控制植入深度。在一個具體實施例中,例如,氧化物保護層560可為厚約10至20奈米為較佳的二氧化矽層。An optional oxide protective layer 560 can be deposited over the semiconductor layer 540 to protect the semiconductor layer 540 from damage and to assist in controlling the implantation depth during subsequent implantation steps. In a specific embodiment, for example, the oxide protective layer 560 can be a preferred ceria layer having a thickness of about 10 to 20 nm.

如第6圖所示,取決於MOS電晶體510的導電型,半導體層540至少有一部份可用N型導電性決定雜質或P型導電性決定雜質摻雜。在圖示於第6圖之電晶體的NMOS具體實施例中,半導體層540用P型導電性決定雜質摻雜以在半導體層540中製成P型阱區532、534。雜質摻雜,例如,可利用摻雜離子(例如,硼)的植入以及後續的熱退火。在PMOS具體實施例(未圖示於第6圖)中,該半導體層可摻雜N型導電性決定雜質以在半導體層540中製成N型阱區(未圖示)。雜質摻雜,例如,可利用摻雜離子(例如,磷與砷)的植入以及後續的熱退火。As shown in FIG. 6, depending on the conductivity type of the MOS transistor 510, at least a portion of the semiconductor layer 540 may be doped with an N-type conductivity determining impurity or a P-type conductivity. In the NMOS embodiment of the transistor illustrated in FIG. 6, the semiconductor layer 540 is doped with P-type conductivity to define impurity doping to form P-type well regions 532, 534 in the semiconductor layer 540. Impurity doping, for example, implantation of dopant ions (eg, boron) and subsequent thermal annealing can be utilized. In a PMOS embodiment (not shown in FIG. 6), the semiconductor layer may be doped with an N-type conductivity determining impurity to form an N-type well region (not shown) in the semiconductor layer 540. Impurity doping, for example, implantation of dopant ions (eg, phosphorus and arsenic) and subsequent thermal annealing can be utilized.

一旦形成P型阱區532、534後,可選擇性去除一部份的氧化物保護層560,可蝕刻進入半導體層540的溝槽以便在相鄰記憶體單元之間形成介電質隔離區(未圖示)。例如,記憶體單元500與其他記憶體單元(未圖示)的電性隔離可利用介電質隔離區(未圖示),用淺溝槽隔離(STI)區較佳。眾所周知,有許多可用來形成STI的製程,故而本文不需詳述該製程。一般而言,STI包含淺溝槽,其係蝕刻進入半導體層540的表面,隨後填滿絕緣材料。在溝槽填滿絕緣材料(例如,氧化物)後,常用例如化學機械平坦化(CMP)法使該表面平坦化。Once the P-type well regions 532, 534 are formed, a portion of the oxide protective layer 560 can be selectively removed, and the trenches entering the semiconductor layer 540 can be etched to form a dielectric isolation region between adjacent memory cells ( Not shown). For example, the electrical isolation of the memory cell 500 from other memory cells (not shown) may utilize a dielectric isolation region (not shown), preferably with a shallow trench isolation (STI) region. It is well known that there are many processes that can be used to form STI, so this process is not required to be detailed in this article. In general, the STI includes shallow trenches that are etched into the surface of the semiconductor layer 540 and then filled with insulating material. After the trench is filled with an insulating material (eg, an oxide), the surface is typically planarized, such as by chemical mechanical planarization (CMP).

在雜質摻雜區表面形成一層閘極絕緣材料562,以及形成分別上覆閘極絕緣材料562與雜質摻雜P型阱區532、534的閘極566、574。該層閘極絕緣材料562可為一層熱成長二氧化矽,或替換地,沉積絕緣體(例如,氧化矽、氮化矽),或具有相對於二氧化矽之高電介質常數(κ)的絕緣材料。“高電介質常數介電質”材料係包含矽酸鋯與鉿及其氧化物(包含,但不受限於,氧化鉿(HfO2 )、矽酸鉿(HfSiO)、或其類似物。沉積絕緣體的沉積,例如,可利用化學氣相沉積(CVD)法,低壓化學氣相沉積(LPCVD)法,電漿增強化學氣相沉積(PECVD)法或原子層沉積(ALD)法。沉積閘極絕緣層562有約1至10奈米的厚度為較佳,然而實際厚度可由實作電路決定。A gate insulating material 562 is formed on the surface of the impurity doped region, and gates 566, 574 respectively overlying the gate insulating material 562 and the impurity doped P type well regions 532, 534 are formed. The gate gate insulating material 562 may be a layer of thermally grown germanium dioxide or, alternatively, a deposited insulator (eg, hafnium oxide, tantalum nitride) or an insulating material having a high dielectric constant (κ) relative to ceria. . The "high dielectric constant dielectric" material comprises zirconium silicate and tantalum and oxides thereof (including, but not limited to, hafnium oxide (HfO 2 ), hafnium ruthenate (HfSiO), or the like. Deposition insulator The deposition may be, for example, a chemical vapor deposition (CVD) method, a low pressure chemical vapor deposition (LPCVD) method, a plasma enhanced chemical vapor deposition (PECVD) method or an atomic layer deposition (ALD) method. Layer 562 has a thickness of from about 1 to about 10 nm, although the actual thickness can be determined by the actual circuitry.

利用沉積、圖樣化、以及蝕刻一層金屬或多晶矽(一層未摻雜多晶矽為較佳)來形成閘極566、574為較佳。閘極 566、574在半導體層540中形成於P型阱區532、534上方,通常厚約100至300奈米。例如,可利用CVD反應(例如,低壓化學氣相沉積(LPCVD))的矽烷(SiH4 )還原來沉積該多晶矽。It is preferred to form the gates 566, 574 by depositing, patterning, and etching a layer of metal or polysilicon (an undoped polysilicon layer is preferred). Gates 566, 574 are formed over P-type well regions 532, 534 in semiconductor layer 540, typically between about 100 and 300 nanometers thick. For example, using a CVD reaction (e.g., a low pressure chemical vapor deposition (LPCVD)) of Silane (SiH 4) also turned out to deposit the polysilicon.

在閘極566、574形成後,視需要在閘極574上方可形成遮罩層(未圖示),以及用N型導電性決定雜質摻雜至少一部份P型阱區532的表面以在毗鄰閘極絕緣層562的半導體層540中製成輕度摻雜延伸區544、548。雜質摻雜,例如,可利用摻雜離子(例如,砷)的植入以及後續的熱退火。在PMOS具體實施例(未圖示於第6圖)中,可用P型導電性決定雜質摻雜半導體層540以在半導體層540中製成輕度摻雜延伸區。雜質摻雜,例如,可利用摻雜離子(例如,二氟化硼(BF2 ))的植入以及後續的熱退火。After the gates 566, 574 are formed, a mask layer (not shown) may be formed over the gate 574 as needed, and the surface of at least a portion of the P-type well region 532 is doped with an N-type conductivity determining impurity. Lightly doped extension regions 544, 548 are formed in the semiconductor layer 540 adjacent to the gate insulating layer 562. Impurity doping, for example, implantation of dopant ions (eg, arsenic) and subsequent thermal annealing can be utilized. In a PMOS embodiment (not shown in FIG. 6), the impurity-doped semiconductor layer 540 may be doped with P-type conductivity to form a lightly doped extension region in the semiconductor layer 540. Impurity doping, for example, implantation of dopant ions (eg, boron difluoride (BF 2 )) and subsequent thermal annealing can be utilized.

根據一個具體實施例的方法依照第7圖至第11圖繼續進行。根據另一具體實施例的方法則如第12圖至第14圖及第11圖所示繼續進行。The method according to one embodiment continues in accordance with Figures 7 through 11. The method according to another embodiment continues as shown in Figures 12 to 14 and Figure 11.

如第7圖所示,共形沉積(conformally deposit)由絕緣材料569(例如,氧化矽及/或氮化矽的介電層)構成的毯覆層(blanket layer),其係覆蓋閘極566、574以及包含輕度摻雜延伸區544、548之半導體層540的暴露部份。然後,絕緣材料毯覆層569塗上一層感光材料(例如,光阻劑),以及加以圖樣化以留下其餘部份575以及暴露毯覆絕緣層569的選定部份。然後,例如,用反應離子蝕刻法(RIE)非等向蝕刻(anisotropically etch)毯覆絕緣層569的暴 露部份(蝕刻劑用箭頭595表示)。例如,在CHF3 、CF4 、或SF6 化學中,可蝕刻氧化矽及氮化矽。As shown in FIG. 7, a blanket layer consisting of an insulating material 569 (eg, a dielectric layer of hafnium oxide and/or tantalum nitride) is deposited conformally to cover the gate 566. And an exposed portion of the semiconductor layer 540 comprising the lightly doped extension regions 544, 548. The insulating blanket layer 569 is then coated with a layer of photosensitive material (e.g., photoresist) and patterned to leave a remaining portion 575 and expose selected portions of the blanket insulating layer 569. Then, for example, an exposed portion of the blanket insulating layer 569 is anisotropically etched by reactive ion etching (RIE) (the etchant is indicated by arrow 595). For example, in CHF 3 , CF 4 , or SF 6 chemistry, yttrium oxide and tantalum nitride can be etched.

如第8圖所示,絕緣材料毯覆層569係經非等向蝕刻成可在閘極566的側壁上形成側壁間隔體564以及在閘極574的側壁上形成側壁間隔體572及絕緣間隔體區塊570。絕緣間隔體區塊570係覆蓋一部份半導體層540、一部份閘極574、以及閘極574的側壁。然後,在植入後,去除該感光材料的其餘部份575。As shown in FIG. 8, the insulating blanket layer 569 is anisotropically etched to form sidewall spacers 564 on the sidewalls of the gate 566 and sidewall spacers 572 and insulating spacers on the sidewalls of the gate 574. Block 570. The insulating spacer block 570 covers a portion of the semiconductor layer 540, a portion of the gate 574, and sidewalls of the gate 574. Then, after implantation, the remaining portion 575 of the photosensitive material is removed.

如第9圖所示,在閘極566、574上方可塗上一層遮罩材料586、588,例如,一層光阻劑。然後,可圖樣化該層遮罩材料以提供離子植入遮罩(ion implant mask)來暴露半導體層540中對應至汲極區542、源極/基極區550、及陰極區558之最終位置的區域。汲極區542、源極/基極區550、以及陰極區558的植入用箭頭596表示,在此示範具體實施例中,係植入N型導電性決定離子(例如,磷或砷)。在替代具體實施例中,半導體層的暴露區域可植入P型導電性決定離子(例如,硼)。然後,去除該層遮罩材料586、588。As shown in FIG. 9, a layer of masking material 586, 588 may be applied over the gates 566, 574, for example, a layer of photoresist. The layer of masking material can then be patterned to provide an ion implant mask to expose the final locations of the semiconductor layer 540 corresponding to the drain region 542, the source/base region 550, and the cathode region 558. Area. Implantation of the drain region 542, the source/base region 550, and the cathode region 558 is indicated by arrow 596, which in this exemplary embodiment is implanted with an N-type conductivity determining ion (e.g., phosphorus or arsenic). In an alternative embodiment, the exposed regions of the semiconductor layer can be implanted with P-type conductivity determining ions (eg, boron). The layer of masking material 586, 588 is then removed.

如第10圖所示,在圖示於第9圖的植入步驟後,在裝置500上方,提供離子植入遮罩584、585,其係暴露源極/基極區550之狹窄部份,以及覆蓋裝置500包含NMOS電晶體結構510的其餘部份以及一部份閘流體裝置520。離子植入遮罩584、585可包含帶有圖樣的光阻劑層,其係包含與源極/基極區550之狹窄部份對應的開孔。使用高能離 子束植入P型導電性決定離子(第10圖中用箭頭597表示)於源極/基極區550的暴露狹窄部份以形成GLT裝置520的P型陽極區552。形成P型陽極區552會把N型源極/基極區550分成兩個部份:存取電晶體510的N型源極接面550與GLT裝置520的N型基極區554。P型陽極區552係配置於存取電晶體510的N型源極區550和GLT裝置520的N型基極區554之間。As shown in FIG. 10, after the implantation step illustrated in FIG. 9, above the device 500, ion implantation masks 584, 585 are provided which expose the narrow portions of the source/base regions 550, The cover device 500 includes the remainder of the NMOS transistor structure 510 and a portion of the thyristor device 520. The ion implantation masks 584, 585 can include a patterned photoresist layer that includes openings corresponding to the narrow portions of the source/base regions 550. Use high energy separation The beamlet implants a P-type conductivity determining ion (indicated by arrow 597 in FIG. 10) at the exposed narrow portion of the source/base region 550 to form a P-type anode region 552 of the GLT device 520. Forming the P-type anode region 552 divides the N-type source/base region 550 into two portions: the N-type source junction 550 of the access transistor 510 and the N-type base region 554 of the GLT device 520. The P-type anode region 552 is disposed between the N-type source region 550 of the access transistor 510 and the N-type base region 554 of the GLT device 520.

如第11圖所示,其係藉由暴露記憶體單元500於時間受控制的高溫來完成快速熱退火(RTA)步驟。該RTA步驟係電激活(electrically activate)輕度摻雜延伸區544、548、N型汲極區542、N型源極區550、P型陽極區552、N型基極區554、以及N型陰極區558之中的離子以及使植入該等區域的摻雜離子向外橫向擴散。可在N型汲極區542、閘極566、574以及N型陰極區558之暴露區、N型源極區550和P型陽極區552的表面上形成矽化物區(silicide region)559。矽化物區559提供用於使接觸點電耦合至該等區域的機構,包含至存取電晶體510之N型源極區550與GLT裝置520之P型陽極區552的單一接觸點。As shown in FIG. 11, it is accomplished by exposing the memory cell 500 to a time-controlled high temperature to complete a rapid thermal annealing (RTA) step. The RTA step electrically activates the lightly doped extension regions 544, 548, the N-type drain region 542, the N-type source region 550, the P-type anode region 552, the N-type base region 554, and the N-type. The ions in the cathode region 558 and the dopant ions implanted in the regions are laterally diffused outward. A silicide region 559 may be formed on the surfaces of the N-type drain region 542, the gates 566, 574, and the exposed regions of the N-type cathode region 558, the N-type source region 550, and the P-type anode region 552. The telluride region 559 provides a mechanism for electrically coupling the contact points to the regions, including a single point of contact to the N-type source region 550 of the access transistor 510 and the P-type anode region 552 of the GLT device 520.

第5圖、第6圖、第12圖至第14圖的橫截面圖係根據本發明的替代具體實施例圖示記憶體單元500以及用於製造該記憶體單元500的替代方法步驟。在圖示於第12圖至第14圖的示範具體實施例中,在植入第6圖輕度摻雜延伸區544、548後以及在形成側壁間隔體564、572及絕 緣間隔體區塊570之前,再植入N型汲極區542、N型源極/基極區550、以及N型陰極區558。The cross-sectional views of Figures 5, 6 and 12 through 14 illustrate a memory unit 500 and an alternate method step for fabricating the memory unit 500 in accordance with an alternate embodiment of the present invention. In the exemplary embodiment illustrated in Figures 12 through 14, after implantation of the lightly doped extensions 544, 548 of Figure 6, and the formation of sidewall spacers 564, 572 and Prior to the edge spacer block 570, an N-type drain region 542, an N-type source/base region 550, and an N-type cathode region 558 are implanted.

如第12圖所示,隨後在閘極566、574上方塗上一層遮罩材料586、588(例如,一層光阻劑)。圖樣化該層遮罩材料以形成離子植入遮罩586,588來暴露半導體層540中對應至汲極區542、源極/基極區550、陰極區558之最終位置的區域。汲極區542、源極/基極區550、以及陰極區558的植入用箭頭602表示。在此示範具體實施例中,係植入N型導電性決定離子(例如,磷或砷)。在替代具體實施例中,半導體層的暴露區域可植入P型導電性決定離子(例如,硼)。然後,在植入後去除該離子植入遮罩。As shown in Fig. 12, a layer of masking material 586, 588 (e.g., a layer of photoresist) is then applied over the gates 566, 574. The layer of masking material is patterned to form ion implantation masks 586, 588 to expose regions of semiconductor layer 540 that correspond to the final locations of drain region 542, source/base region 550, and cathode region 558. The implantation of the drain region 542, the source/base region 550, and the cathode region 558 is indicated by arrow 602. In this exemplary embodiment, an N-type conductivity determining ion (eg, phosphorus or arsenic) is implanted. In an alternative embodiment, the exposed regions of the semiconductor layer can be implanted with P-type conductivity determining ions (eg, boron). The ion implantation mask is then removed after implantation.

如第13圖所示,共形沉積由絕緣材料569(例如,氧化矽及/或氮化矽的介電層)構成的毯覆層,其係覆蓋閘極566、574以及半導體層540的暴露部份(包含在半導體層540之中的輕度摻雜延伸區544、548、N型源極/基極區550、N型汲極區542、以及N型陰極區558)。絕緣材料毯覆層569塗上一層感光材料(例如,光阻劑),以及加以圖樣化以留下其餘部份575以及暴露毯覆絕緣層569的選定部份。然後,例如,利用反應離子蝕刻法(RIE)以蝕刻劑(在第13圖中以箭頭604表示)非等向蝕刻毯覆絕緣層569的暴露部份。例如,在CHF3 、CF4 、或SF6 化學中,可蝕刻氧化矽及氮化矽。As shown in FIG. 13, a blanket layer composed of an insulating material 569 (for example, a dielectric layer of hafnium oxide and/or tantalum nitride) is deposited conformally to expose the gates 566, 574 and the exposure of the semiconductor layer 540. Portions (lightly doped extension regions 544, 548, N-type source/base regions 550, N-type drain regions 542, and N-type cathode regions 558) included in semiconductor layer 540. The insulating blanket 569 is coated with a layer of photosensitive material (e.g., photoresist) and patterned to leave the remaining portion 575 and expose selected portions of the blanket insulating layer 569. Then, for example, the exposed portion of the blanket insulating layer 569 is anisotropically etched by reactive ion etching (RIE) with an etchant (indicated by arrow 604 in FIG. 13). For example, in CHF 3 , CF 4 , or SF 6 chemistry, yttrium oxide and tantalum nitride can be etched.

如第14圖所示,絕緣材料毯覆層569係經非等向蝕刻成可形成在閘極566的側壁上的側壁間隔體564以及形成 在閘極574的側壁上的側壁間隔體572及絕緣間隔體區塊570。絕緣間隔體區塊570係覆蓋一部份源極/基極區550、一部份閘極574、以及閘極574的側壁。然後,去除該感光材料的其餘部份575。As shown in FIG. 14, the insulating material blanket layer 569 is anisotropically etched into sidewall spacers 564 which may be formed on the sidewalls of the gate 566 and formed A sidewall spacer 572 and an insulating spacer block 570 on the sidewall of the gate 574. The insulating spacer block 570 covers a portion of the source/base region 550, a portion of the gate 574, and sidewalls of the gate 574. Then, the remaining portion 575 of the photosensitive material is removed.

在裝置500上方提供離子植入遮罩584、585,其係暴露源極/基極區550的狹窄部份,以及覆蓋裝置500包含NMOS電晶體結構510的其餘部份與部份閘流體裝置520。使用高能離子束,植入P型導電性決定離子(在第14圖中以箭頭597表示)於源極/基極區550的狹窄部份以形成GLT裝置520的P型陽極區552。形成P型陽極區552會把N型源極/基極區550分成兩個部份:存取電晶體510的N型源極接面550與GLT裝置520的N型基極區554。P型陽極區552係配置於存取電晶體510的N型源極區550和GLT裝置520的N型基極區554之間。然後,進一步進行以上在說明第11圖時提及的加工。An ion implantation mask 584, 585 is provided over the device 500 that exposes a narrow portion of the source/base region 550, and the cover device 500 includes the remainder of the NMOS transistor structure 510 and a portion of the thyristor device 520. . Using a high energy ion beam, a P-type conductivity determining ion (indicated by arrow 597 in FIG. 14) is implanted into the narrow portion of the source/base region 550 to form a P-type anode region 552 of the GLT device 520. Forming the P-type anode region 552 divides the N-type source/base region 550 into two portions: the N-type source junction 550 of the access transistor 510 and the N-type base region 554 of the GLT device 520. The P-type anode region 552 is disposed between the N-type source region 550 of the access transistor 510 and the N-type base region 554 of the GLT device 520. Then, the processing mentioned above in the description of Fig. 11 is further carried out.

圖示於第11圖的記憶體單元500可用習知步驟(未圖示)來完成,例如沉積一層介電質材料、蝕刻穿過介電質材料的開孔、以及形成延伸穿過開孔以電性接觸N型汲極區542、N型陰極區558、N型源極區550、以及P型陽極區552的金屬化,及/或該等閘極結構。例如,可形成數層互連金屬化以使字元線與N型陰極區558連接,以接觸與字元線耦合的閘極566、574,以及以使位元線與N型汲極區542連接。也可進一步施加及圖樣化數層層間介電質材料,互連金屬化的附加層、及其類似者以實現實作積體電 路的適當電路功能。The memory cell 500 illustrated in FIG. 11 can be implemented by conventional steps (not shown), such as depositing a layer of dielectric material, etching openings through the dielectric material, and forming an extension through the opening. Electrically contacting the metallization of the N-type drain region 542, the N-type cathode region 558, the N-type source region 550, and the P-type anode region 552, and/or the gate structures. For example, a plurality of layers of interconnect metallization may be formed to connect the word lines to the N-type cathode region 558 to contact the gates 566, 574 coupled to the word lines, and to cause the bit lines and the N-type drain regions 542. connection. It is also possible to further apply and pattern several layers of interlayer dielectric materials, interconnect metallization additional layers, and the like to achieve integrated electrical The proper circuit function of the road.

因此,如第11圖所示,記憶體單元500包含NMOS存取電晶體510與在半導體層540上製成與NMOS存取電晶體510毗鄰的GLT裝置520。GLT裝置520包含與MOS電容器534、568、574耦合的橫向PNPN閘流體。該橫向PNPN閘流體包含P型、N型交替的材料,其係包含P型陽極區552、N型基極區554、P型基極區534、以及N型陰極區558,其中基極區534、554是在P型陽極區552與N型陰極區558之間橫向排列。NMOS存取電晶體510的N型源極區550耦合至GLT裝置520的P型陽極區552。使N型源極區550與P型陽極區552耦合可防止GLT裝置520經由洩露電流流失電荷,例如,於待機模式期間。NMOS存取電晶體510的N型源極區550能阻擋電荷由GLT裝置520的P型陽極區552洩露,因為存取電晶體是處於關閉狀態。PN接面(J1 )是形成於P型陽極區552與N型基極區554之間,另一PN接面(J2 )是形成於N型基極區554與P型基極區534之間,以及另一PN接面(J3 )是形成於P型基極534與N型陰極區558之間。在這些具體實施例中,P型陽極區/N型基極區552、554以及P型基極區/N型陰極區534、558係用作雙極裝置。GLT裝置520的MOS電容器534、568、574包含閘極574、P型基極區534、以及配置在閘極574及P型基極區534之間的閘極絕緣層568。閘極絕緣層568係用作電容器介電質。N型基極區554與P型基極區534相互毗鄰。當P型陽極區552對於N型陰極區558有正電位(+VA ) (以及閘極574沒有外加電壓)時,則接面J1 與J3 有順向偏壓,而接面J2 有逆向偏壓。當J2 有逆向偏壓時,不導通發生(關閉狀態)。如果施加於P型陽極區552的正電位(+VA )提高超過閘流體的崩潰電壓(VBK ),J2 會突崩潰(avalanche breakdown)以及閘流體開始導通(打開狀態)。如果在閘極574施加正電位(VG )(相對於N型陰極區558),則接面J2 的崩潰會出現在數值較低的正電位(+VA )。藉由選擇適當的VG 值,可使閘流體立即切換成打開狀態。Therefore, as shown in FIG. 11, the memory cell 500 includes an NMOS access transistor 510 and a GLT device 520 formed on the semiconductor layer 540 adjacent to the NMOS access transistor 510. GLT device 520 includes a lateral PNPN thyristor coupled to MOS capacitors 534, 568, 574. The lateral PNPN thyristor comprises P-type, N-type alternating materials comprising a P-type anode region 552, an N-type base region 554, a P-type base region 534, and an N-type cathode region 558, wherein the base region 534 554 is laterally aligned between the P-type anode region 552 and the N-type cathode region 558. The N-type source region 550 of the NMOS access transistor 510 is coupled to the P-type anode region 552 of the GLT device 520. Coupling the N-type source region 550 with the P-type anode region 552 prevents the GLT device 520 from escaping the charge via the leakage current, for example, during the standby mode. The N-type source region 550 of the NMOS access transistor 510 is capable of blocking charge leakage from the P-type anode region 552 of the GLT device 520 because the access transistor is in a closed state. The PN junction (J 1 ) is formed between the P-type anode region 552 and the N-type base region 554, and the other PN junction (J 2 ) is formed between the N-type base region 554 and the P-type base region 534. Between, and another PN junction (J 3 ) is formed between the P-type base 534 and the N-type cathode region 558. In these embodiments, P-type anode region/N-type base regions 552, 554 and P-type base region/N-type cathode regions 534, 558 are used as bipolar devices. The MOS capacitors 534, 568, 574 of the GLT device 520 include a gate 574, a P-type base region 534, and a gate insulating layer 568 disposed between the gate 574 and the P-type base region 534. The gate insulating layer 568 is used as a capacitor dielectric. The N-type base region 554 and the P-type base region 534 are adjacent to each other. When the P-type anode region 552 has a positive potential (+V A ) for the N-type cathode region 558 (and the gate 574 has no applied voltage), the junctions J 1 and J 3 have a forward bias, and the junction J 2 There is a reverse bias. When J 2 has a reverse bias, non-conduction occurs (off state). If the positive potential (+V A ) applied to the P-type anode region 552 increases beyond the breakdown voltage (V BK ) of the thyristor, J 2 will avalanche breakdown and the thyristor will begin to conduct (open state). If a positive potential (V G ) is applied to the gate 574 (relative to the N-type cathode region 558), the collapse of the junction J 2 will occur at a lower positive potential (+V A ). By selecting the appropriate V G value, the thyristor can be immediately switched to the open state.

MOS電容器534、568、574係與閘流體的P型基極區534電容耦合,且保有電荷從而可控制閘流體的P型基極區534的電位。P型基極區534的電壓位準可決定是否觸發N型基極區554、P型基極區534、以及N型陰極區558的NPN雙極作用。在替代示範具體實施例中,MOSFET存取電晶體510包含PMOS存取電晶體,而GLT裝置520包含配置成NPNP組構的閘流體,其中MOS電容器係連接至閘流體的N型基極。The MOS capacitors 534, 568, 574 are capacitively coupled to the P-type base region 534 of the thyristor and hold charge to control the potential of the P-type base region 534 of the thyristor. The voltage level of the P-type base region 534 can determine whether the NPN bipolar action of the N-type base region 554, the P-type base region 534, and the N-type cathode region 558 is triggered. In an alternate exemplary embodiment, MOSFET access transistor 510 includes a PMOS access transistor, while GLT device 520 includes a thyristor configured as an NPNP fabric, wherein the MOS capacitor is coupled to the N-type base of the thyristor.

如第4圖及第11圖所示,MOSFET存取電晶體510包含與GLT裝置520之陽極區552耦合的源極區548/550、與位元線450耦合的汲極區542/544、以及與第一字元線420耦合的閘極566。如以下在參考第15圖以及繼續參考第4圖及第11圖時所描述的,記憶體單元500的操作會使用多條控制線,該等控制線包含第一字元線420、與GLT裝置520之閘極574耦合的第二字元線、連接至GLT裝置520之陰極558的第三字元線430、以及位元線450。如以 下在參考第15圖時所描述的,除了別的以外,此記憶體單元500配置可防止儲存電荷在寫入操作期間放電。As shown in FIGS. 4 and 11, MOSFET access transistor 510 includes a source region 548/550 coupled to anode region 552 of GLT device 520, a drain region 542/544 coupled to bit line 450, and A gate 566 coupled to the first word line 420. As described below with reference to FIG. 15 and with continued reference to FIGS. 4 and 11, the operation of the memory unit 500 uses a plurality of control lines including the first word line 420 and the GLT device. A second word line coupled to gate 574 of 520, a third word line 430 coupled to cathode 558 of GLT device 520, and bit line 450. Such as As described below with reference to Fig. 15, the memory unit 500 configuration, among other things, prevents stored charges from being discharged during a write operation.

第15圖的時序圖係根據本發明之具體實施例圖示在記憶體單元400操作期間施加於記憶體單元400之字元線420、430、440的電壓波形1510、1520、1530。以下參考第4圖及第11圖來描述第15圖。The timing diagram of FIG. 15 illustrates voltage waveforms 1510, 1520, 1530 applied to word lines 420, 430, 440 of memory cell 400 during operation of memory cell 400, in accordance with an embodiment of the present invention. Fig. 15 is described below with reference to Figs. 4 and 11.

圖示於第4圖及第11圖的記憶體單元400可在以下各種模式中之任一模式下操作:待機模式1580、寫入一(1)模式1590、讀取一(1)模式1592、寫入零(0)模式1594、以及讀取零(0)模式1596。在激活第一字元線420時,施加於第一字元線420的電壓波形1510由低位準(例如,接地或0.0伏特)轉變為高位準(例如,等於1.2伏特的Vdd)。在寫入一(1)模式1590的寫入一(1)操作期間激活第二字元線430時,或在寫入零(0)模式1594的寫入零(0)操作期間激活第二字元線430時,施加於第二字元線430的電壓波形1520由低位準(例如,-1.5伏特)轉變為高位準(例如,0.0伏特)。在使第三字元線440失活時,施加於第三字元線440的電壓波形1530由高位準(例如,等於1.2伏特的Vdd)轉變為低位準(例如,接地或0.0伏特)。施加於位元線450的電壓波形1540則取決於操作模式而在高位準(例如,等於1.2伏特的Vdd)與低位準(例如,接地或0.0伏特)之間轉變。The memory unit 400 illustrated in FIGS. 4 and 11 can operate in any of the following modes: standby mode 1580, write one (1) mode 1590, read one (1) mode 1592, Write zero (0) mode 1594, and read zero (0) mode 1596. Upon activation of the first word line 420, the voltage waveform 1510 applied to the first word line 420 transitions from a low level (eg, ground or 0.0 volts) to a high level (eg, equal to 1.2 volts of Vdd). The second word is activated during the write one (1) operation of the write one (1) mode 1590, or during the write zero (0) operation of the write zero (0) mode 1594. At time line 430, voltage waveform 1520 applied to second word line 430 transitions from a low level (eg, -1.5 volts) to a high level (eg, 0.0 volts). When the third word line 440 is deactivated, the voltage waveform 1530 applied to the third word line 440 transitions from a high level (eg, Vdd equal to 1.2 volts) to a low level (eg, ground or 0.0 volts). The voltage waveform 1540 applied to the bit line 450 then transitions between a high level (eg, Vdd equal to 1.2 volts) and a low level (eg, ground or 0.0 volts) depending on the mode of operation.

處於待機模式1580時,第三字元線440保持高電位(Vdd)(例如,1.2伏特),同時施加負偏壓至第二字元線430 與位元線450,而第一字元線420保持低電壓。在一個示範具體實施例中,高電壓(Vdd)的數值可在0.5伏特至3.0伏特之間,而負偏壓的數值可在-1伏特至-3伏特之間。While in standby mode 1580, third word line 440 remains at a high potential (Vdd) (eg, 1.2 volts) while a negative bias is applied to second word line 430. With bit line 450, first word line 420 remains at a low voltage. In an exemplary embodiment, the high voltage (Vdd) value can be between 0.5 volts and 3.0 volts, and the negative bias value can be between -1 volts and -3 volts.

在任一寫入操作期間,記憶體單元400的激活是利用施加高電壓(Vdd)至第一字元線420,以及施加低電壓至第三字元線440以“打開”記憶體單元400的NMOS存取電晶體510。當第三字元線440相對於GLT裝置520的陽極區552是處於低電壓時,GLT裝置520中沒有電流流動直到有電壓脈衝1522(例如,0.0伏特)施加於第二字元線430。同樣,當有電壓脈衝1522施加於第二字元線430以及第三字元線440相對於GLT裝置520的陽極區552是處於低電壓時,GLT裝置520中有電流流動。對於在寫入一(1)模式1590期間出現的寫入一(1)操作是施加高電位(Vdd)於位元線450。對於在寫入零(0)模式1594期間出現的寫入零(0)操作是施加低電壓(例如,0至0.5伏特)於位元線450。During any write operation, activation of memory cell 400 is by applying a high voltage (Vdd) to first word line 420, and applying a low voltage to third word line 440 to "turn on" the NMOS of memory cell 400. The transistor 510 is accessed. When the third word line 440 is at a low voltage relative to the anode region 552 of the GLT device 520, no current flows in the GLT device 520 until a voltage pulse 1522 (eg, 0.0 volts) is applied to the second word line 430. Likewise, when a voltage pulse 1522 is applied to the second word line 430 and the third word line 440 is at a low voltage relative to the anode region 552 of the GLT device 520, current flows in the GLT device 520. The write one (1) operation occurring during the write one (1) mode 1590 is to apply a high potential (Vdd) to the bit line 450. A write zero (0) operation that occurs during a write to zero (0) mode 1594 is to apply a low voltage (eg, 0 to 0.5 volts) to the bit line 450.

記憶體單元400的選定是利用施加高電壓(Vdd)至第一字元線420以及施加低電壓至第三字元線440或使其接地以“打開”記憶體單元400的NMOS存取電晶體510。為了以讀取一(1)模式1592讀取記憶體單元400,使位元線450預充電(pre-charge)至接地(0.0伏特)。如果預充電位元線450的位準能被充電,則感測放大器電路鑑定讀取的資料為"1"。為了以讀取零(0)模式1596讀取記憶體單元400,使位元線預充電至接地(0.0伏特)。如果預充電位元線450的位準沒有改變,則感測放大器電路鑑定讀取的資 料為"0"。The memory cell 400 is selected by an NMOS access transistor that applies a high voltage (Vdd) to the first word line 420 and applies a low voltage to the third word line 440 or grounds it to "turn on" the memory cell 400. 510. To read the memory cell 400 in the read one (1) mode 1592, the bit line 450 is pre-charged to ground (0.0 volts). If the level of pre-charge bit line 450 can be charged, the sense amplifier circuit authenticates that the read data is "1". To read the memory cell 400 in read zero (0) mode 1596, the bit line is precharged to ground (0.0 volts). If the level of the pre-charge bit line 450 does not change, the sense amplifier circuit identifies the read resource The material is "0".

儘管在以上的詳細說明中已提出至少一個示範具體實施例,應瞭解,仍存在許多變體。也應瞭解,該或該等示範具體實施例只是實施例,而且不希望以任何方式來限定本發明的範疇、應用範圍、或組構。反之,上述詳細說明是要讓熟諳此藝者有個方便的發展藍圖用來具體實作該或該等示範具體實施例。應瞭解,在功能及元件配置上可做出不同的改變而不脫離由申請專利範圍及其合法等價陳述界定的本發明範疇。Although at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that many variations are still present. It is also to be understood that the exemplified embodiments of the invention are not intended to On the contrary, the above detailed description is intended to provide a convenient development blueprint for those skilled in the art to implement the or the exemplary embodiments. It will be appreciated that various changes may be made in the function and the component arrangement without departing from the scope of the invention as defined by the scope of the claims and the legal equivalents thereof.

100‧‧‧電路示意圖100‧‧‧Circuit schematic

110‧‧‧隨機存取記憶體(TRAM)單元110‧‧‧ Random Access Memory (TRAM) Unit

120、130‧‧‧字元線120, 130‧‧ ‧ character line

146‧‧‧陰極節點146‧‧‧ cathode node

148‧‧‧陽極節點148‧‧‧Anode node

150‧‧‧位元線150‧‧‧ bit line

160‧‧‧薄型電容耦合式閘流體(TCCT)裝置160‧‧‧Thin capacitive coupled thyristor (TCCT) device

170‧‧‧NMOS存取電晶體170‧‧‧NMOS access transistor

210、270‧‧‧TCCT-DRAM單元210, 270‧‧‧TCCT-DRAM unit

230‧‧‧寫入致能線230‧‧‧Write enable line

240‧‧‧字元線240‧‧‧ character line

246‧‧‧陰極節點246‧‧‧ cathode node

248‧‧‧陽極節點248‧‧‧Anode node

250‧‧‧位元線250‧‧‧ bit line

260‧‧‧單一TCCT裝置260‧‧‧Single TCCT device

270‧‧‧TCCT-DRAM單元270‧‧‧TCCT-DRAM unit

300‧‧‧記憶體單元300‧‧‧ memory unit

316‧‧‧位址/控制線316‧‧‧ Address/Control Line

340‧‧‧記憶體系統340‧‧‧ memory system

342‧‧‧記憶體陣列342‧‧‧ memory array

344‧‧‧橫列解碼器344‧‧‧Horizontal decoder

346‧‧‧感測放大器電路346‧‧‧Sense Amplifier Circuit

348‧‧‧直行解碼器348‧‧‧Direct decoder

360‧‧‧位元線360‧‧‧ bit line

361‧‧‧位址/控制線361‧‧‧ Address/Control Line

362‧‧‧直行選擇線362‧‧‧ Straight line

363‧‧‧輸入/輸出(I/O)資料線363‧‧‧Input/Output (I/O) data lines

400‧‧‧記憶體單元的陣列400‧‧‧Array of memory cells

410‧‧‧記憶體單元410‧‧‧ memory unit

420‧‧‧第一字元線420‧‧‧first character line

430‧‧‧第二字元線430‧‧‧second character line

440‧‧‧第三字元線440‧‧‧third character line

441、444、448‧‧‧節點441, 444, 448‧‧‧ nodes

450‧‧‧位元線450‧‧‧ bit line

460‧‧‧閘控橫向閘流體(GLT)裝置460‧‧‧Gate controlled lateral sluice fluid (GLT) device

462‧‧‧P型陽極區462‧‧‧P type anode area

464‧‧‧N型陰極區464‧‧‧N type cathode area

465‧‧‧閘極465‧‧‧ gate

470‧‧‧MOSFET存取電晶體470‧‧‧MOSFET access transistor

472‧‧‧汲極區472‧‧‧Bungee Area

474‧‧‧源極區474‧‧‧ source area

475‧‧‧閘極475‧‧‧ gate

500‧‧‧記憶體單元500‧‧‧ memory unit

505‧‧‧半導體結構或基板505‧‧‧Semiconductor structure or substrate

510‧‧‧N型通道MOS(NMOS)存取電晶體510‧‧‧N-channel MOS (NMOS) access transistor

520‧‧‧GLT裝置520‧‧‧GLT device

525‧‧‧承載晶圓或基板525‧‧‧Loading wafer or substrate

530‧‧‧埋藏氧化物絕緣層530‧‧‧ buried oxide insulation

532、534‧‧‧P型阱區532, 534‧‧‧P-well zone

534‧‧‧MOS電容器534‧‧‧MOS capacitors

534‧‧‧P型基極區534‧‧‧P type base area

540‧‧‧半導體材料之薄層540‧‧‧Thin layer of semiconductor material

542‧‧‧N型汲極區542‧‧‧N type bungee area

542、544‧‧‧汲極區542, 544‧‧ ‧ bungee area

544、548‧‧‧輕度摻雜延伸區544, 548‧‧‧lightly doped extension

550‧‧‧N型源極/基極區550‧‧‧N source/base region

548、550‧‧‧源極區548, 550‧‧‧ source area

550‧‧‧N型源極接面550‧‧‧N type source junction

552‧‧‧P型陽極區552‧‧‧P type anode area

554‧‧‧N型基極區554‧‧‧N type base region

558‧‧‧N型陰極區558‧‧‧N type cathode area

559‧‧‧矽化物區559‧‧‧ Telluride District

560‧‧‧氧化物保護層560‧‧‧Oxide protective layer

562‧‧‧閘極絕緣材料層562‧‧‧ gate insulating material layer

564‧‧‧側壁間隔體564‧‧‧ sidewall spacers

566‧‧‧閘極566‧‧‧ gate

568、574‧‧‧MOS電容器568, 574‧‧‧ MOS capacitors

568‧‧‧閘極絕緣層568‧‧‧ gate insulation

569‧‧‧絕緣材料毯覆層569‧‧‧Insulation blanket coating

570‧‧‧絕緣間隔體區塊570‧‧‧Insulated spacer block

1510、1520、1530‧‧‧電壓波形1510, 1520, 1530‧‧‧ voltage waveform

1522‧‧‧電壓脈衝1522‧‧‧Voltage pulse

1540‧‧‧電壓波形1540‧‧‧Voltage waveform

1580‧‧‧待機模式1580‧‧‧ Standby mode

1590‧‧‧寫入一(1)模式1590‧‧‧Write one (1) mode

1592‧‧‧讀取一(1)模式1592‧‧‧Read one (1) mode

1594‧‧‧寫入零(0)模式1594‧‧‧Write to zero (0) mode

1596‧‧‧讀取零(0)模式1596‧‧‧Read zero (0) mode

閱讀以下結合附圖的詳細說明和專利申請項可更加明白本發明。The invention will be more apparent from the following detailed description and the appended claims.

第1圖的電路示意圖係圖示基於習知閘流體的隨機存取記憶體(TRAM)單元陣列;第2圖的電路示意圖係圖示習知薄型電容耦合式閘流體(TCCT)-DRAM單元陣列;第3圖的方塊圖係圖示可使用本發明具體實施例的記憶體系統;第4圖的電路示意圖係根據本發明之具體實施例圖示記憶體單元陣列;第5圖至第11圖的橫截面圖係根據本發明各種具體實施例圖示記憶體單元以及用於製造該記憶體單元的方法步驟;第5圖、第6圖、第12圖至第14圖及第11圖的橫截 面圖係根據本發明另一具體實施例圖示記憶體單元以及用於製造該記憶體單元的方法步驟;以及,第15圖係根據本發明之具體實施例圖示在記憶體單元之操作期間施加至字元線的電壓之時序圖。The circuit diagram of FIG. 1 is a diagram of a random access memory (TRAM) cell array based on a conventional thyristor; and the circuit diagram of FIG. 2 is a schematic diagram of a conventional thin capacitive-coupled thyristor (TCCT)-DRAM cell array. The block diagram of FIG. 3 illustrates a memory system in which a specific embodiment of the present invention can be used; the circuit diagram of FIG. 4 illustrates a memory cell array according to a specific embodiment of the present invention; FIGS. 5 to 11 The cross-sectional view illustrates a memory cell and method steps for fabricating the memory cell in accordance with various embodiments of the present invention; cross-sections of Figures 5, 6, 12, 14 and 11 cut The drawing illustrates a memory unit and method steps for fabricating the memory unit in accordance with another embodiment of the present invention; and FIG. 15 illustrates the operation of the memory unit in accordance with a particular embodiment of the present invention. A timing diagram of the voltage applied to the word line.

400‧‧‧記憶體單元的陣列400‧‧‧Array of memory cells

410‧‧‧記憶體單元410‧‧‧ memory unit

420‧‧‧第一字元線420‧‧‧first character line

430‧‧‧第二字元線430‧‧‧second character line

440‧‧‧第三字元線440‧‧‧third character line

441、444、448‧‧‧節點441, 444, 448‧‧‧ nodes

450‧‧‧位元線450‧‧‧ bit line

460‧‧‧閘控橫向閘流體(GLT)裝置460‧‧‧Gate controlled lateral sluice fluid (GLT) device

462‧‧‧P型陽極區462‧‧‧P type anode area

464‧‧‧N型陰極區464‧‧‧N type cathode area

465‧‧‧閘極465‧‧‧ gate

470‧‧‧MOSFET存取電晶體470‧‧‧MOSFET access transistor

472‧‧‧汲極區472‧‧‧Bungee Area

474‧‧‧源極區474‧‧‧ source area

475‧‧‧閘極475‧‧‧ gate

Claims (12)

一種記憶體單元,包括:第一字元線、第二字元線和第三字元線;位元線;存取電晶體,包括耦合至第一節點之源極節點、耦合至該第一字元線之第一閘極和耦合至該位元線之汲極節點;以及閘控橫向閘流體(GLT)裝置,包括與該存取電晶體之該源極節點在該第一節點處耦合的陽極節點、與該第二字元線耦合的第二閘極和與該第三字元線耦合的陰極節點。 A memory unit includes: a first word line, a second word line, and a third word line; a bit line; an access transistor including a source node coupled to the first node, coupled to the first a first gate of the word line and a drain node coupled to the bit line; and a gated lateral thyristor (GLT) device including the source node coupled to the access transistor at the first node An anode node, a second gate coupled to the second word line, and a cathode node coupled to the third word line. 如申請專利範圍第1項的記憶體單元,其中,該存取電晶體包括:N型通道場效存取電晶體。 The memory unit of claim 1, wherein the access transistor comprises: an N-type channel field effect access transistor. 如申請專利範圍第2項的記憶體單元,其中,該GLT裝置包括:包括P型基極的第一PN裝置;與該第一PN裝置毗鄰的第二PN裝置;以及連接至該第一PN裝置之該P型基極的電容器。 The memory unit of claim 2, wherein the GLT device comprises: a first PN device including a P-type base; a second PN device adjacent to the first PN device; and a first PN connected to the first PN device The P-type base capacitor of the device. 如申請專利範圍第1項的記憶體單元,其中,該存取電晶體包括:P型通道場效存取電晶體。 The memory unit of claim 1, wherein the access transistor comprises: a P-type channel field effect access transistor. 如申請專利範圍第4項的記憶體單元,其中,該GLT裝置包括: 包括N型基極的第一NP雙極裝置;與該第一NP雙極裝置毗鄰的第二NP雙極裝置;以及連接至該第一NP雙極裝置之該N型基極的電容器。 The memory unit of claim 4, wherein the GLT device comprises: a first NP bipolar device including an N-type base; a second NP bipolar device adjacent to the first NP bipolar device; and a capacitor coupled to the N-type base of the first NP bipolar device. 一種記憶體裝置,包括:多個記憶體單元,該等記憶體單元之各者包括:位元線;第一字元線;第二字元線;第三字元線;存取電晶體,包括:與第一節點耦合的源極節點;與第二節點和該第一字元線耦合的第一閘極;與該位元線在第三節點處耦合的汲極節點;以及閘控橫向閘流體(GLT)裝置,包括:在該第一節點處與該源極節點耦合的陽極節點,與該第二節點和該第二字元線耦合的第二閘極,以及在第四節點處與該第三字元線耦合的陰極節點,其中,該存取電晶體之該源極節點係防止電荷由該GLT裝置之該陽極節點洩露。 A memory device includes: a plurality of memory cells, each of the memory cells including: a bit line; a first word line; a second word line; a third word line; an access transistor; The method includes: a source node coupled to the first node; a first gate coupled to the second node and the first word line; a bungee node coupled to the bit line at the third node; and a gated lateral A thyristor (GLT) device comprising: an anode node coupled to the source node at the first node, a second gate coupled to the second node and the second word line, and at the fourth node a cathode node coupled to the third word line, wherein the source node of the access transistor prevents charge from being leaked by the anode node of the GLT device. 如申請專利範圍第6項的記憶體裝置,其中,該存取電晶體包括: 包括N型源極區的N型通道場效存取電晶體。 The memory device of claim 6, wherein the access transistor comprises: An N-type field effect access transistor including an N-type source region. 如申請專利範圍第7項的記憶體裝置,其中,該GLT裝置包括:包含P型基極的第一PN裝置;與該第一PN裝置毗鄰的第二PN裝置,其中,該第二PN裝置包括P型陽極區,以及其中,該N型通道場效存取電晶體之該N型源極區係阻擋電荷由該P型陽極區洩露;以及與該第一PN裝置之該P型基極電容耦合的電容器,其中,該電容器係控制該第一PN裝置之該P型基極的電位。 The memory device of claim 7, wherein the GLT device comprises: a first PN device including a P-type base; a second PN device adjacent to the first PN device, wherein the second PN device Including a P-type anode region, and wherein the N-type source region of the N-type field effect access transistor blocks leakage charge from the P-type anode region; and the P-type base of the first PN device A capacitively coupled capacitor, wherein the capacitor controls a potential of the P-type base of the first PN device. 如申請專利範圍第6項的記憶體裝置,其中,該存取電晶體包括:包括P型源極區的P型通道場效存取電晶體。 The memory device of claim 6, wherein the access transistor comprises: a P-type channel field effect access transistor including a P-type source region. 如申請專利範圍第9項的記憶體裝置,其中,該GLT裝置包括:包括N型基極的第一NP雙極裝置;與該第一NP雙極裝置毗鄰的第二NP雙極裝置,其中,該第二NP裝置包括N型陽極區,以及其中,該P型通道場效存取電晶體之該P型源極區係阻擋電荷由該N型陽極區洩露;以及與該第一NP雙極裝置之該N型基極電容耦合的電容器,其中,該電容器係控制該第一NP裝置之該N型基極的電位。 The memory device of claim 9, wherein the GLT device comprises: a first NP bipolar device including an N-type base; and a second NP bipolar device adjacent to the first NP bipolar device, wherein The second NP device includes an N-type anode region, and wherein the P-type source region barrier charge of the P-type channel field effect access transistor is leaked by the N-type anode region; and the first NP pair The N-type base capacitively coupled capacitor of the pole device, wherein the capacitor controls the potential of the N-type base of the first NP device. 一種積體電路,包括:記憶體單元,包括:第一字元線;第二字元線;第三字元線;位元線;存取電晶體,包括:與第一節點耦合的源極節點;與第二節點耦合的第一閘極,其中,該閘極係耦合至該第一字元線;在第三節點處與該位元線耦合的汲極節點;以及閘控橫向閘流體(GLT)裝置,包括:在該第一節點處與該源極節點耦合的陽極節點;與該第二節點耦合的第二閘極,其中,該第二閘極係耦合至該第二字元線;以及與第四節點耦合的陰極節點;以及耦合至該陰極節點之該第三字元線。 An integrated circuit comprising: a memory unit comprising: a first word line; a second word line; a third word line; a bit line; and an access transistor comprising: a source coupled to the first node a first gate coupled to the second node, wherein the gate is coupled to the first word line; a drain node coupled to the bit line at the third node; and a gated lateral thyristor a (GLT) device comprising: an anode node coupled to the source node at the first node; a second gate coupled to the second node, wherein the second gate is coupled to the second character a line; and a cathode node coupled to the fourth node; and the third word line coupled to the cathode node. 如申請專利範圍第11項的積體電路,其中,該存取電晶體包括N型通道場效存取電晶體,以及其中,該GLT裝置包括:包括P型基極的第一PN裝置;與該第一PN裝置毗鄰的第二PN裝置;以及連接至該第一PN裝置之該P型基極的電容器。The integrated circuit of claim 11, wherein the access transistor comprises an N-channel field effect access transistor, and wherein the GLT device comprises: a first PN device including a P-type base; a second PN device adjacent to the first PN device; and a capacitor connected to the P-type base of the first PN device.
TW097110943A 2007-03-28 2008-03-27 Memory cells, memory devices and integrated circuits incorporating the same TWI445162B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/692,627 US7630235B2 (en) 2007-03-28 2007-03-28 Memory cells, memory devices and integrated circuits incorporating the same

Publications (2)

Publication Number Publication Date
TW200845367A TW200845367A (en) 2008-11-16
TWI445162B true TWI445162B (en) 2014-07-11

Family

ID=39522058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097110943A TWI445162B (en) 2007-03-28 2008-03-27 Memory cells, memory devices and integrated circuits incorporating the same

Country Status (6)

Country Link
US (1) US7630235B2 (en)
EP (1) EP2140456A1 (en)
KR (1) KR20100016024A (en)
CN (1) CN101711411B (en)
TW (1) TWI445162B (en)
WO (1) WO2008118293A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655973B2 (en) * 2005-10-31 2010-02-02 Micron Technology, Inc. Recessed channel negative differential resistance-based memory cell
US7724567B2 (en) * 2008-07-03 2010-05-25 Advanced Micro Devices, Inc. Memory device and method of refreshing
US20100002482A1 (en) * 2008-07-03 2010-01-07 Advanced Micro Devices, Inc. Memory device and method
US20100238743A1 (en) * 2009-03-23 2010-09-23 James Pan FAST EMBEDDED BiCMOS-THYRISTOR LATCH-UP NONVOLATILE MEMORY
RU2465659C1 (en) * 2011-08-09 2012-10-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Memory cell for high-speed eeprom with controlled potential of under-gate region
EP3149740A4 (en) * 2014-09-25 2017-11-01 Kilopass Technology, Inc. Thyristor volatile random access memory and methods of manufacture
US9530482B2 (en) 2014-09-25 2016-12-27 Kilopass Technology, Inc. Methods of retaining and refreshing data in a thyristor random access memory
US9613968B2 (en) * 2014-09-25 2017-04-04 Kilopass Technology, Inc. Cross-coupled thyristor SRAM semiconductor structures and methods of fabrication
US9564441B2 (en) 2014-09-25 2017-02-07 Kilopass Technology, Inc. Two-transistor SRAM semiconductor structure and methods of fabrication
US9460771B2 (en) 2014-09-25 2016-10-04 Kilopass Technology, Inc. Two-transistor thyristor SRAM circuit and methods of operation
EP3149736A4 (en) * 2014-09-25 2018-01-24 Kilopass Technology, Inc. Write assist sram circuits and methods of operation
US20160093624A1 (en) 2014-09-25 2016-03-31 Kilopass Technology, Inc. Thyristor Volatile Random Access Memory and Methods of Manufacture
CN107358975A (en) * 2014-09-25 2017-11-17 克劳帕斯科技有限公司 Power in thyristor random access memory reduces
US9741413B2 (en) 2014-09-25 2017-08-22 Kilopass Technology, Inc. Methods of reading six-transistor cross-coupled thyristor-based SRAM memory cells
US9449669B2 (en) 2014-09-25 2016-09-20 Kilopass Technology, Inc. Cross-coupled thyristor SRAM circuits and methods of operation
US9564199B2 (en) 2014-09-25 2017-02-07 Kilopass Technology, Inc. Methods of reading and writing data in a thyristor random access memory
WO2018068061A1 (en) * 2016-10-07 2018-04-12 Kilopass Technology, Inc. Ddr controller for thyristor memory cell arrays
KR102226206B1 (en) * 2020-02-06 2021-03-11 포항공과대학교 산학협력단 Memory device including double PN junctions and driving method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491586B2 (en) * 2001-03-22 2009-02-17 T-Ram Semiconductor, Inc. Semiconductor device with leakage implant and method of fabrication
US7123508B1 (en) * 2002-03-18 2006-10-17 T-Ram, Inc. Reference cells for TCCT based memory cells
US6940772B1 (en) * 2002-03-18 2005-09-06 T-Ram, Inc Reference cells for TCCT based memory cells
US6703646B1 (en) * 2002-09-24 2004-03-09 T-Ram, Inc. Thyristor with lightly-doped emitter
US7125753B1 (en) * 2002-10-01 2006-10-24 T-Ram Semiconductor, Inc. Self-aligned thin capacitively-coupled thyristor structure
US7037763B1 (en) * 2002-12-31 2006-05-02 T-Ram Semiconductor, Inc. Gated-thyristor approach having angle-implanted base region
US8125003B2 (en) * 2003-07-02 2012-02-28 Micron Technology, Inc. High-performance one-transistor memory cell
US7304327B1 (en) * 2003-11-12 2007-12-04 T-Ram Semiconductor, Inc. Thyristor circuit and approach for temperature stability
US7268373B1 (en) * 2003-11-12 2007-09-11 T-Ram Semiconductor, Inc. Thyristor-based memory and its method of operation
US7460395B1 (en) * 2005-06-22 2008-12-02 T-Ram Semiconductor, Inc. Thyristor-based semiconductor memory and memory array with data refresh
US7655973B2 (en) * 2005-10-31 2010-02-02 Micron Technology, Inc. Recessed channel negative differential resistance-based memory cell
US7209384B1 (en) * 2005-12-08 2007-04-24 Juhan Kim Planar capacitor memory cell and its applications

Also Published As

Publication number Publication date
KR20100016024A (en) 2010-02-12
US20080239803A1 (en) 2008-10-02
WO2008118293A1 (en) 2008-10-02
CN101711411B (en) 2013-11-06
CN101711411A (en) 2010-05-19
US7630235B2 (en) 2009-12-08
TW200845367A (en) 2008-11-16
EP2140456A1 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
TWI445162B (en) Memory cells, memory devices and integrated circuits incorporating the same
TWI520270B (en) Semiconductor memory devices and methods for fabricating the same
US6225165B1 (en) High density SRAM cell with latched vertical transistors
US8093107B1 (en) Thyristor semiconductor memory and method of manufacture
KR101519573B1 (en) Gated lateral thyristor-based random access memory (gltram) cells with separate read and write access transistors, memory devices and integrated circuits incorporating the same
US20020151130A1 (en) T-RAM structure having dual vertical devices and method for fabricating the same
US7894255B1 (en) Thyristor based memory cell
KR101631634B1 (en) Methods for fabricating gated lateral thyristor-based random access memory(gltram) cells
US7894256B1 (en) Thyristor based memory cell
US7208799B2 (en) Floating body cell dynamic random access memory with optimized body geometry
US7274066B2 (en) Semiconductor memory devices and methods of fabricating the same
TW202428124A (en) Memory array circuit
JP2003017588A (en) Semiconductor memory